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Preface

This two-volume set constitutes the Proceedings of the 16th International Conference 
on Neural Information Processing (ICONIP 2009), held in Bangkok, Thailand, during 
December 1–5, 2009.  ICONIP is a world-renowned international conference that is 
held annually in the Asia-Pacific region.  This prestigious event is sponsored by the 
Asia Pacific Neural Network Assembly (APNNA), and it has provided an annual 
forum for international researchers to exchange the latest ideas and advances in neural 
networks and related discipline.  The School of Information Technology (SIT) at King 
Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand was 
the proud host of ICONIP 2009.  The conference theme was “Challenges and Trends 
of Neural Information Processing,” with an aim to discuss the past, present, and future 
challenges and trends in the field of neural information processing. 

ICONIP 2009 accepted 145 regular session papers and 53 special session papers 
from a total of 466 submissions received on the Springer Online Conference Service 
(OCS) system.  The authors of accepted papers alone covered 36 countries and re-
gions worldwide and there are over 500 authors in these proceedings.  The technical 
sessions were divided into 23 topical categories, including 9 special sessions.  Techni-
cal highlights included a keynote speech by Shun-ichi Amari (the founder of 
APNNA); plenary and invited talks by Włodzisław Duch (President of the European 
Neural Network Society), Kunihiko Fukushima, Tom Gedeon, Yuzo Hirai (President 
of the Japanese Neural Network Society), Masumi Ishikawa, Nikola Kasabov (Presi-
dent of the International Neural Network Society), Minho Lee, Soo-Young Lee, An-
drew Chi-Sing Leung, Bao-Liang Lu, Chidchanok Lursinsap, Paul Shaoning Pang, 
Ron Sun, Shiro Usui, DeLiang Wang, Jun Wang, Lipo Wang and Zhi-Hua Zhou.  In 
addition, six tutorials by Włodzisław Duch, Chun Che Fung, Irwin King, Saed Sayad, 
Jun Tani and M. Emin Yuksel were part of ICONIP 2009.  Also, for the first time, 
there was a Post-ICONIP Workshop held in a neighboring country to the host: the 
Workshop on Advances in Intelligent Computing (WAIC 2009) was held in Kuala 
Lumpur, Malaysia on December 7, 2009.  Furthermore, the Third International Con-
ference on Advances in Information Technology (IAIT2009) was collocated with 
ICONIP 2009. 

We are indebted to the members of the conference Advisory Board as well as the 
Governing Board and Past Presidents of APNNA for their advice and assistance in the 
organization and promotion of ICONIP 2009.  We are thankful to the Program Com-
mittee and Technical Committee members for their dedication and support in provid-
ing rigorous and timely reviews, especially for the last round of submissions due to 
our extended submission deadline.  Each paper was reviewed by at least two referees 
and three or more reviews were provided in most of the cases.  The Program Commit-
tee Chairs opted to use the relatively new OCS system and we put it through a rigor-
ous workout and helped the system to smooth out numerous minor issues.  We sin-
cerely apologize for any inconvenience the authors may have experienced during the 
entire paper submission and reviewing process. 



 Preface VI 

A special thanks to the Conference Secretariat, Olarn Rojanapornpun, who worked 
tirelessly to facilitate many of the conference delegates and to produce these final 
proceedings.  The Organizing Committee members would like to express our sincere 
appreciation to the devoted behind-the-scene work by Wannida Soontreerutana, 
Chompoonut Watcharinkorn, Paweena Mongkolpongsiri, Thanyapat Natwaratit, 
Chutikarn Hongpitakkul, Korakot Eadjongdee, Suda Kasikitsakunphon, Kanittha 
Charoensuk and Monthana Hunjinda.  Last but not least, the organizers gratefully 
acknowledge the contribution and support from all speakers, panelists and authors, as 
well as all other participants, in making ICONIP 2009 a resounding success.   

December 2009 Jonathan H. Chan 
Chi Sing Leung 

Minho Lee 
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Zbynek Michlovský, Shaoning Pang, Nikola Kasabov, Tao Ban, and
Youki Kadobayashi

Automated Log Analysis of Infected Windows OS Using Mechanized
Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

Ruo Ando

HumanBoost: Utilization of Users’ Past Trust Decision for Identifying
Fraudulent Websites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

Daisuke Miyamoto, Hiroaki Hazeyama, and Youki Kadobayashi

A Methodology for Analyzing Overall Flow of Spam-Based Attacks . . . . 556
Jungsuk Song, Daisuke Inoue, Masashi Eto, Mio Suzuki,
Satoshi Hayashi, and Koji Nakao

A Proposal of Malware Distinction Method Based on Scan Patterns
Using Spectrum Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Masashi Eto, Kotaro Sonoda, Daisuke Inoue,
Katsunari Yoshioka, and Koji Nakao

Evolutionary Neural Networks: Theory and Practice

A Transductive Neuro-Fuzzy Force Control: An Ethernet-Based
Application to a Drilling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Agustin Gajate, Rodolfo Haber, and Pastora Vega

Sentiment Classification with Support Vector Machines and Multiple
Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

Tanasanee Phienthrakul, Boonserm Kijsirikul,
Hiroya Takamura, and Manabu Okumura

Improving the Performance of Fuzzy ARTMAP with Hybrid
Evolutionary Programming: An Experimental Study . . . . . . . . . . . . . . . . . . 593

Shing Chiang Tan and Chee Peng Lim



Table of Contents – Part II XXIX

“Dead” Chromosomes and Their Elimination in the Neuro-Genetic
Stock Index Prediction System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
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Siti Mariyam Shamsuddin

Fault Condition Recognition Based on PSO and KPCA . . . . . . . . . . . . . . . 620
Hongxia Pan, Xiuye Wei, and Xin Xu

Evaluation of Distance Measures for Speciated Evolutionary Neural
Networks in Pattern Classification Problems . . . . . . . . . . . . . . . . . . . . . . . . . 630

Kyung-Joong Kim and Sung-Bae Cho

Emergence of Different Mating Strategies in Artificial Embodied
Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

Stefan Elfwing, Eiji Uchibe, and Kenji Doya

Hybrid and Adaptive Systems for Computer Vision
and Robot Control

A Markov Model for Multiagent Patrolling in Continuous Time . . . . . . . . 648
Jean-Samuel Marier, Camille Besse, and Brahim Chaib-draa

Hybrid Framework to Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 657
Fernando C. Monteiro

On the Robustness of Fuzzy-Genetic Colour Contrast Fusion with
Variable Colour Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

Heesang Shin, Alwyn Husselmann, and Napoleon H. Reyes

Navel Orange Blemish Identification for Quality Grading System . . . . . . . 675
MingHui Liu, Gadi Ben-Tal, Napoleon H. Reyes, and
Andre L.C. Barczak

A Cyclostationarity Analysis Applied to Scaled Images . . . . . . . . . . . . . . . 683
Babak Mahdian and Stanislav Saic

Intelligent Data Mining

Non-segmented Document Clustering Using Self-Organizing Map and
Frequent Max Substring Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

Todsanai Chumwatana, Kok Wai Wong, and Hong Xie

A Visual Method for High-Dimensional Data Cluster Exploration . . . . . . 699
Ke-Bing Zhang, Mao Lin Huang, Mehmet A. Orgun, and
Quang Vinh Nguyen



XXX Table of Contents – Part II

An Algorithm Based on the Construction of Braun’s Cathode Ray
Tube as a Novel Technique for Data Classification . . . . . . . . . . . . . . . . . . . . 710

Mariusz Swiecicki

Fuzzy Decision Tree Induction Approach for Mining Fuzzy Association
Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720

Rolly Intan and Oviliani Yenty Yuliana

AdaIndex: An Adaptive Index Structure for Fast Similarity Search in
Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

Tao Ban, Shanqing Guo, Qiuliang Xu, and Youki Kadobayashi

Neural Networks for Data Mining

The Application of Wavelet Neural Network Optimized by Particle
Swarm in Localization of Acoustic Emission Source . . . . . . . . . . . . . . . . . . . 738

Aidong Deng, Li Zhao, and Xin Wei

Speaker Recognition Based on GMM with an Embedded TDNN . . . . . . . 746
Cunbao Chen and Li Zhao

Finding Appropriate Turning Point for Text Sentiment Polarity . . . . . . . . 754
Haipeng Wang, Lin Shang, Xinyu Dai, and Cunyan Yin

Research on Natural Disaster Risk Assessment Model Based on Support
Vector Machine and Its Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

Junfei Chen, Shihao Zhao, Weihao Liao, and Yuan Weng

Identifying Tobacco Control Policy Drivers: A Neural Network
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

Xiaojiang Ding, Susan Bedingfield, Chung-Hsing Yeh, Ron Borland,
David Young, Sonja Petrovic-Lazarevic, and Ken Coghill

Intrusion Detection Using Neural Networks: A Grid Computing Based
Data Mining Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

Marcello Castellano, Giuseppe Mastronardi, and
Gianfranco Tarricone

SOM and Related Subjects and Its Applications

Recurrent Neural Networks as Local Models for Time Series
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786

Aymen Cherif, Hubert Cardot, and Romuald Boné
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Abstract. This paper proposes a bottom-up attention model based on pulsed 
Hebbian-based neural networks that simulate the lateral surround inhibition of 
neurons with similar visual features. The visual saliency can be represented in 
binary codes that simulate neuronal pulses in the human brain. Moreover, the 
model can be extended to the pulsed cosine transform that is very simple in 
computation. Finally, a dynamic Markov model is proposed to produce the  
human-like stochastic attention selection. Due to its good performance in eye 
fixation prediction and low computational complexity, our model can be used in 
real-time systems such as robot navigation and virtual human system. 

Keywords: Visual attention, Bottom-up, Saliency, Pulsed cosine transform, 
Principal component analysis, Hebbian learning rule. 

1   Introduction 

In human visual system, there exists a bottom-up attention selection mechanism that 
can make our eyes rapidly gaze towards salient objects in a clustered scene without 
any top-down guidance. It is believed that bottom-up visual attention acts like a “spot-
light” that can rapidly shift across the entire visual field and selects a small area from 
the entire visual scene. Only the attended part of input sensory information is allowed 
to reach short-term memory and visual awareness. So, instead of fully processing the 
massive sensory input in parallel, a serial mechanism has evolved because of resource 
limitations [1]. 

Itti et al. [2] proposed a biologically plausible model of bottom-up attention selection. 
After that, Walther [3] extended this model to attend to proto object regions and created 
the Saliency Toolbox (STB). Since Itti and Koch’s model has very complex network 
architecture, it suffers from computational complexity and over-parameterization. 

It is well known that Hebbian learning rule commonly exists among neurons in the 
human brain [4]. So, Hebbian-based neural networks have been deeply investigated. 
However, the relationship between Hebbian-based neural networks and selective 
visual attention has seldom been investigated. In this paper, we only use simple feed-
forward, Hebbian-based neural networks to produce visual saliency. The output of 
networks is binarized (“flattened”) to simulate the lateral surround inhibition of  
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neurons with similar visual features. Since the orthonormal weights of Hebbian net-
works are usually used in principal component analysis (PCA) [5][6][7], such compu-
tational model is called pulsed PCA (P2CA) transform in this article. Moreover, since 
discrete cosine transform (DCT) is closely related to the PCA transform, our PCA-
based model can be extended to a DCT-based framework [8][9]. This DCT-based 
attention model is referred to as the pulsed cosine transform (PCT) in this article. 
Particularly, the visual saliency in our work can be represented in binary codes that 
simulate neuronal pulses in the human brain. This kind of encoding of visual saliency 
largely reduces the dynamic range in the state space. 

The saliency map guides where the attentional focus is to be deployed, that is, to 
the most salient location in the scene. Existing attention models shift the attentional 
focus over different locations with decreasing saliency. However, human eye fixa-
tions are not the result of pure bottom-up attention selection, but the result of a  
combination of bottom-up and top-down attention selection [1]. Movement of atten-
tional focus across the visual field is known to be stochastic rather than deterministic 
[13]. In order to mimic the human vision system, a dynamic Markov model (DMM) is 
proposed to conduct stochastic attention selection. Specifically, the more salient a 
location is, the more probable it will be attended. 

Section 2 gives an overview of the proposed architecture of bottom-up visual atten-
tion as well as its biological plausibility. Section 3 introduces a human-like stochastic 
attention selection based on DMM. Section 4 presents experimental results, where our 
model is compared with STB. Finally, section 5 concludes the paper. 

2   Model Architecture 

Principal component analysis (PCA) is a powerful technique that has been widely 
applied in signal feature extraction and dimensionality reduction [4]. Numerous works 
have been done on how to compute principal components of input data. It has been 
noted that Hebbian learning in neural networks can find the principal components of 
incoming sensory data [5][6][7]. Several efficient numerical methods such the EVD 
and the QR algorithm [16] can also obtain the principal component vectors. 

However, the relationship between the principal components of natural scenes and 
visual salience has seldom been investigated. In this section, we propose the pulsed 
PCA transform and the pulsed cosine transform to compute the bottom-up saliency 
map. We will explain how such frameworks relate to visual salience. 

2.1   The P2CA Model 

To begin with, we propose our computation model of visual attention. Given the input 
image M, our PCA-based model to compute the saliency map is as follows: 

P = sign ( C(M) ) ,                                                             (1) 

F = abs ( C–1(P) ) ,                                                           (2) 

 SM = G * F 2 ,                                                               (3) 
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where C and C–1 denote the PCA transform and its inverse transform, respectively. 
sign(.) is the signum function, and abs(.) is the absolute value function. G is a 2-
dimensional Gaussian low-pass filter. 

Equation (1) is called pulsed PCA (P2CA) transform since it only retains the sign 
of principal components and discards the amplitude information. Its binary codes  
(–1 and 1) simulate the neuronal pulses in the human brain. The network architecture 
of equation (1) is illustrated in Fig. 1. Feedforward connections of PCA transform are 
trained by Hebbian learning rule. Then, the saliency map is computed by equation (2) 
and (3). Note that a given image is sub-sampled before its computation. The size of 
sub-sampling determines the attention scale. In this paper, the input image is resized 
to be 64×64 pixels. 
 

 
Fig. 1. The feedforward pulsed neural networks for saliency information 

It is believed that primitive visual features such as color, edge and intensity are 
closely related with visual saliency, and they are processed in parallel at pre-attentive 
stage [10]. According to this theory, we first compute these feature maps respectively 
before integrating them as a whole. If r, g, and b are the red, green, and blue values of 
the color image, then the intensity map is computed as 

MI = (r + g + b) / 3 .                                                 (4) 

Since only one attention scale is considered, instead of using red-green and blue-
yellow center-surround opponencies [3], we compute three color maps of red, green, 
and blue as follows: 

MR = r – (g + b) / 2 ,                                               (5a) 

MG = g – (r + b) / 2 ,                                              (5b) 

MB = b – (r + g) / 2 .                                               (5c) 

Here, MR, MG, and MB are set to zero at locations with negative value. Such color 
computation is similar with the broadly-tuned color model proposed by [2]. To avoid 
large fluctuations of the color values at low luminance and balance all original feature 
maps, the weight factor of each map is calculated: 

wI = max(MI) ,                                                      (6a) 

wR = max(MR) ,                                                    (6b) 

wG = max(MG) ,                                                   (6c) 

Hebbian learning 
feedforward connections 

Visual input 

neuron’s pulses 

Output 
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wB = max(MB) .                                                   (6d) 
Then, we have 

F = wRFR + wGFG + wBFB + wIFI ,                                     (7) 

where FR, FG, FB, and FI are computed by equation (1) and (2) with feature maps MR, 
MG, MB, and MI, respectively. The saliency map for a color image is then computed 
by equation (3). 

2.2   From P2CA to PCT 

PCA is a data-dependent technique, and its transform is affected by the statistics of 
learning data set [4][5][6][7]. In practical applications, however, a data-independent 
model is more convenient and favorable. In this section, we attempt to find such an 
attention model based on the principle of P2CA. 

It has been noted that the PCA basis will probably come to resemble the DCT basis 
as the population of learning data with stationary statistics tends to infinite [8][9]. So, 
one can consider the discrete cosine transform as a particular PCA transform. In our 
attention model, we can replace the PCA transform by a 2-dimensional discrete cosine 
transform and ultimately produce a data-independent attention model. This model is 
called pulsed cosine transform (PCT) in this article.  

Note that for PCA, the down-sampled 64×64 image is reshaped into a 4096-
dimensional vector before it is projected onto the principal axes (i.e., the eigenvectors 
of natural images). Different from PCA, the 2-dimensional DCT is a separable de-
composition in rows and columns [9]. So, its computational space complexity is much 
lower than the PCA transform. 

It has recently been proposed that the primary visual cortex (V1) creates a bottom-
up saliency map, with the location of the most active neuron responding to a scene 
most likely to be selected [11]. This proposal suggests that the computation of sali-
ency is instantiated in the neural dynamics arising from the lateral surround inhibition 
by activities of nearby neurons with similar features. Accordingly, neuronal activities 
come to occur typically at locations of pop-out items, highlighting the breakdown of 
statistical homogeneity in the input. DCT represents the visual input with periodical 
signals of different frequency and different orientation. So, large coefficients of DCT 
contain the information of statistical homogeneity. By flattening the magnitude, PCT 
mimics the lateral suppression among neurons with similar features. Therefore, our 
model can compute the saliency map of the input image. 

In addition, the visual saliency in our framework can be represented in binary 
codes. Such binary encoding of saliency information not only simulates neuronal 
pulses in the human brain but also has lower dynamic range in the state space. Com-
paring with the investigation in V1, the extent to which higher visual areas, such as 
V2 and beyond, contribute to pre-attentive selection and attentive influences is as yet 
unclear [11]. We expect that our framework can become a heuristic model of the pre-
attentive mechanism in higher visual cortex. 
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3   Human-Like Attention Selection 

The saliency map guides where the attentional spotlight is to be deployed, that is, to 
the most salient location in the scene. A plausible neural architecture to detect the 
most salient location is the winner-take-all (WTA) network [12]. A computational 
strategy called “inhibition of return” (IOR) [12] was also proposed to avoid attend 
only to the location of maximal saliency. WTA and IOR are computationally very 
important components of attention since it allows us to rapidly shift the attentional 
focus over different locations with decreasing saliency. 

As a matter of fact, human eye fixations are not the result of pure bottom-up atten-
tion selection, but the result of a combination of bottom-up and top-down attention 
selection [1]. If we do not take into account top-down influences, eye fixations are 
determined by a bottom-up saliency map. Pure bottom-up attention selection, however, 
does not exist. Human attention is known to be stochastic rather than deterministic 
[13]. When humans scan the same picture, their scanpaths are different between trials 
even if they have no visual search tasks. In this case, top-down influences comprise 
many factors such as personal mood, experiences, long or short-term memory, psycho-
logical and biophysical conditions. Such top-down influences can be described as a 
random disturbance to bottom-up visual saliency. Hence, we propose a dynamic 
Markov model (DMM) to mimic the human visual system and conduct the stochastic 
attention selection. 

Given a saliency map, assume that salient areas L1, L2, ... , Ln are arranged in order 
of decreasing saliency. Let Pi(t) be the probability of attending Li at step t and si(t) be 
its instantaneous saliency degree. Let si be the value of location i in the saliency map 
generated by an attentional model. Note that si(0) = si. So, Pi(t) can be computed by: 

( )
( )

( )
i

i
j

j

s t
P t

s t
=
∑

,  i = 1, 2, …, n.                                            (8) 

Computationally, IOR implements a short-term memory of previously visited loca-
tions and allows the human visual system to focus on a new location. The simplest 
implementation of IOR consists of triggering transient inhibition in the saliency map 
at the currently attended location. Assume that location i was attended at step τ , its 
instantaneous saliency degree si(t) can be computed as: 

1
( )

( ) 1 i
i

i

t
s t n

s t n
s other

λτ τ τ− −⎧ < < +⎪= −⎨
⎪⎩

.                                  (9) 

Here, the amnesic parameter λ > 0. Usually, let λ = 2. 
Fig. 2 illustrates an example for the shift of the attentional spotlight. As can be 

seen, the DMM for attention selection allows robots to flexibly shift their attention to 
a less prominent, but important object (i.e., the helicopter in the top right corner). As 
compared, by shifting the focus of attention with decreasing saliency, the resulting 
scanpath is deterministic for any given saliency map. So, the stochastic process  
produced by DMM is more human-like than the conventional approach. 
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Input image                                     Saliency map 

 

Shift the attentional focus over different locations with decreasing saliency 

 

Shift the attentional focus over different locations with dynamic Markov model 

 

Fig. 2. An example for the shift of the attentional spotlight 

4   Experimental Results 

This section evaluates the output of the proposed model as compared with Walther’s 
Saliency Toolbox (STB) [3]. STB is perhaps the most popular model of saliency 
based attention and currently appears to be the yardstick to measure the performance 
of other models. We set the saliency maps’ resolution of P2CA and PCT to 64×64 
pixels in all experiments. The principal component vectors for P2CA are estimated 
with one million 64×64 sub-images (image patches) that are gathered by sampling 
from hundreds of natural images. For STB, we use the default parameters. All ex-
periments in this paper are implemented using Matlab7.0 in such computer environ-
ment as Intel 2.53G CPU and 2G Memory. 

To measure the consistency of a visual attention model with human eye fixation, 
we use the database from [14] (containing 120 colored natural images of urban envi-
ronments) and eye fixation data from 20 subjects as ground truth. We use P2CA, PCT 
and STB to produce their saliency maps on the 120 images. We use the number and 
the ratio of correct saliency detection as consistency measure with only the first fixa-
tion which is most likely to be driven by bottom-up attention mechanism as proposed 
in [15]. The results given in Table 1 show that both P2CA and PCT outperform STB 
in this test. 

Table 1. Number and ratio of correct detection in the first fixation 

Model P2CA PCT STB 
Number of correct detection 71 73 47 

Ratio of correct detection 0.5917 0.6083 0.3917 
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       Input image           Eye fixation               P2CA                      PCT                        STB 

         

         

         

         

         

         

         

         

         

Fig. 3. Some examples of our experimental images 

Receiver operating characteristic (ROC) curve is recently used to evaluate the sali-
ency map’s ability to predict human fixations in natural images [15]. The larger the 
ROC area is, the better the prediction power of a saliency map is. So, we calculate the 
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ROC areas for P2CA, PCT and STB according to all fixations and the first 2 fixations 
respectively. These results are shown in Table 2. As can be seen, both P2CA and PCT 
models outperform STB. Note that PCT is marginally better than P2CA. 

We also conduct a qualitative comparison of all the models. Fig. 3 illustrates some 
examples and their eye fixation density maps as ground truth. We can notice a resem-
blance between P2CA and PCT. That’s why their results in Table 1 and Table 2 are 
similar. Meanwhile, we have compared their computation speed. STB’s CPU-time for 
all 120 natural images is 52.162 seconds. P2CA’s CPU-time is 66.111 seconds. PCT 
takes only 1.488 seconds to compute all saliency maps. So, the PCT model is very 
fast in computation, which can meet real-time requirements in video systems. 

Table 2. ROC areas for different saliency models according to human fixations 

Model P2CA PCT STB 
All fixations 0.7796 0.7882 0.6043 

First 2 fixations 0.7897 0.7982 0.6183 

5   Conclusions 

This paper aims to find an attentional model based on Hebbian-based neural net-
works. The proposed model not only has good performance in eye fixation prediction 
but also has the biological and developmental implication for the visual attention 
mechanism. Since our model is very simple and fast in computation, it can be used in 
engineering field such as robot navigation, virtual human system, and intelligent auto-
focus system embedded in digital camera. 
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Abstract. Echo State Networks (ESNs) is a newly developed recurrent neural 
network model. It has a special echo state property which entitles it to model 
nonlinear dynamic systems whose outputs are determined by previous inputs and 
outputs. The ESN approach has so far been worked out almost exclusively using 
standard sigmoid networks. Here we will consider ESNs constructed by leaky 
integrator neurons, which incorporate a time constant and the dynamics can be 
slowed down.  Furthermore, we optimized relevant parameters of the network by 
Particle Swarm Optimization (PSO) in order to get a higher modeling precision. 
Here the input signals are spikes distilled from the monkey’s motor cortex in an 
experiment and the outputs are the moving trajectories of the wrist of a monkey 
in the experiment. The results show that this model can well translate the neu-
ronal firing activities into the desired positions. 

Keywords: Echo State Networks, Leaky Integrator Neurons, Particle Swarm 
Optimization. 

1   Introduction 

Since it was proved that it was possible to predict the hand position of a primate using 
cortical neuronal firing activity in the widely acclaimed article by Wessberg et al[1], 
scholars have been making efforts on building a channel to send messages to outside 
equipments from brain cortical signals, which is called Brain-Machine Interface (BMI). 
Along with the development of the technique of multi-channel neural signals collection 
technology and computer control science, how to get the useful information of neural 
activities of the brain cortex, and how to model the signals for detailed behavior are the 
keys for the BMI system. 

For different biology experiments and research purposes, the modeling methods 
vary. Scholars have made deep research in modeling neural spike trains and moving 
activities [2] and proposed diversified modeling frameworks. The inputs are typically 
multidimensional neural recordings collected from relevant regions of a monkey’s 
                                                           
∗ Corresponding author. 
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brain. In this paper, we will utilize ESN to learn the mappings of motor cortical signals 
and the move gesture of a primate in the Brain-Machine Interface. 

ESN is a kind of recurrent neural network so just like the traditional RNNs, it has 
dynamic property and short-term memory. However, the special training scheme of 
ESN, which will be introduced in next section, distinguished it from other RNNs and 
make up for the shortage caused by traditional learning methods which are based on 
back-propagation of errors. 

The disadvantage of the widely used kind of ESN with standard sigmoid neurons is 
that no time constant is contained so it is impossible to slow down their dynamics, thus 
they are just suited for modeling inherently discrete-time systems with a “computa-
tional”, “jumpy” flavor. They behave not very satisfactorily in some occasions of slow 
dynamics. However, the ESN approach is not confined to standard sigmoid networks 
which have been used almost exclusively so far. The basic idea of this net’s property 
that will be introduced works with different forms. 

In this paper we propose to use leaky integrator neurons as the internal units of this 
net. This model was first used in an ESN context in Jaeger 2001[3]. It is a continuous- 
time neuron model which contains a time constant and has individual state dynamics 
that can be exploited in diversified ways to adapt this network to the temporal charac-
teristics of a learning task, so it can solve the problem just stated. The concrete 
mechanism of this neuron model will be introduced in section 3.  

Several parameters of the whole network need to be adjusted manually in order to 
make the net work more precisely, which is very inconvenient. Here we optimize them 
with PSO and well solve this important problem. 

Here the spike trains are motor cortical signals derived from the motor cortex of a 
monkey. The spikes are recorded when the monkey was doing a certain arm flexion and 
extension movements.  

The whole paper is arranged as this: after the instruction, we give the definition and 
structure of the ESN. Then, we setup the experiment and give the outcome of the 
simulation and draw some conclusion at last. 

2   Echo State Networks: Overview 

Echo State Network is first proposed by Jaeger [3], and it shares some similarities with 
the Liquid State Machine which is proposed by Mass et al [4] because they both work 
after the mechanism of dynamic reservoir. In this section, we will briefly summarize 
the basic principles of ESN. 

2.1   Structure 

The typical structure [3] of it is shown in Fig.1, which displays that it is composed of an 
input layer, an internal layer and an output layer. Here the net is a discrete-time neural 
network and these three layers have K , N  and L  nodes respectively. The input units 
are connected to the “reservoir” of N recurrent networks by a N K× weight ma-
trix inW . The internal units are interconnected with untrained random weights which 
are collected in a N N× matrix W . All units can be connected to output units by 
the ( )L K N L× + +  matrix outW . This implies that connections directly from the input 
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to the output nodes and connections between output nodes are allowed. When ESN is 
used for some models, there should be feedback connections from output layer to the 
reservoir and these weights are in the N L× matrix Wback.  

The notable character of ESN is that its internal layer is composed of a large number 
of neurons and the neurons are sparsely connected to each other. This layer is the 
so-called “Dynamic Reservoir” (DR) and it can map inputs into high-dimensional 
space and reserve information of the past which is useful.  

2.2   Echo State Property  

Under certain conditions [5], the network state vector 1( ) ( ( )... ( ))T
Nx n x n x n= is 

uniquely determined by the left-infinite input history ( ), ( 1),...u n u n − presented to the 
network. More precisely, if there exists function series 1( ,..., )NE e e= (here 

: N
ie U R− → ) such that for ..., ( 1),u n −  ( ) Nu n U −∈ the current network state can be 

expressed by ( )x n = (..., ( 1)E u n −  , ( ))u n , then we say this net has the echo state 
property and the series of functions are called echo functions. 

 

Fig. 1. Block diagram of an Echo State Network (the dash arrows represent the matrix that need 
to be trained while the solid ones represent those that are fixed) 

In [11], the conditions of this property are deeply researched and the conclusions in-
dicated that for ESN with normal sigmoid units, it is sufficient to ensure this property 
by scaling the spectral radius of internal weight matrix to max| | 1λ < . The condition for 
leaky integrator neurons will be introduced in next section. 

2.3   Training Procedure 

Here we briefly describe the steps of the off-line training procedure [6]: 

1. Give the temporal input/output series ( ( ), ( ))u n d n , 1, 2,3....n T=  

2. Generate the values of matrixes ( , , )in backW W W randomly and scale W to make the 

echo state property satisfied. Typically for net with normal sigmoid internal units this 
can be done by making max| | 1λ ≤ , where maxλ  is the maximum eigenvalue of W. 

3. Drive the net with the training signals given in step 1 by presenting them into the net 
with Win and Wback respectively and thus get the internal states vector ( )x n . The 

method varies as for different internal neurons. 
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4. At each time step, put the network state vector ( )x n  as a new row into the state 

collecting matrix M , and at each time collect the inverse of sigmoid teacher outputs 
1tanh ( )d n−  into the teacher collection matrix T in a similar way. 

5. The desired weight matrix can be computed by 

( )out tW M T+=  (1)

Here M + represent the pseudo inverse of M and t indicates transpose operation 
For exploitation, Feed new input sequences into the trained network and it could 

predict new outputs.  
The calculation of internal states ( )x n  depends on neural model of internal units 

and in next section the update equation of it will be given. We calculate outputs by 

( 1) ( ( ( 1), ( 1), ( )))out outy n f W u n x n y n+ = + +  (2)

3   ESN with Leaky Integrator Neuron 

The evolution of a continuous-time leaky integrator neuron [7] is described by the 
differential equation  

( ( ))in backx C ax f W u Wx W y= − + + +  (3)

where C is a time constant—the larger, the faster the resulting dynamics, and a  is the 
leaking decay rate. By modeling a decaying potential of the neuron, ax−  helps the 
neuron reserve part of its history state. The larger the decay rate, the faster the attenuate 
of history state, and the greater the relative affect of input from other neurons. Trans-
form this differential equation into a difference equation with step size µ ( 0 1µ< < ), 
we can obtain 

( 1) (1 ) ( ) ( ( 1) ( ) ( )))in backx n Ca x n Cf W u n Wx n W y nµ µ+ = − + + + +  (4)

The function ( )f ⋅  is the standard sigmoid function, ( ) tanh( )f ⋅ = ⋅ . Iterate step by step 
according to this update equation, it can map the previous inputs and outputs to the 
internal states. Now we will give the conditions under which an ESN with this kind of 
neurons can work properly. It means that it has the “echo state property” which is 
discussed in the previous section. Not very rigidly stated, the Echo State Property 
means that the current states are uniquely decided by the history input values and also 
the previous outputs if there are feedbacks. It has been proved that scaling the matrix 

(1 )CW Ca Iµ µ+ − to make the spectral radius of it less than unity can assure existence 
of echo state [3]. The internal units should be sparsely interconnected with each other by 
W. The connection rate is very low in order to make sure that the units can run with 
enough space and thus obtain affluent dynamics, which is of great importance for the 
approximation of dynamic systems. The W is randomly generated within proper scope 
and will be fixed once given. 
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In the first section, we have introduced the advantage of this kind of neuron. For 
modeling continuously and slowly transforming systems, using networks with con-
tinuous dynamics is obviously more feasible. So in this paper we try to model the motor 
cortical signals using an ESN which is composed of these leaky integrator neurons.  

4   Experiments 

The monkey whose motor system in the cerebral cortex was implanted with micro-
electrode arrays of multi-channel was trained to study a task named centre-out [8~12]. 
As represented in Fig.2, the monkey moved a cursor from the starting point to one of 
eight goals in a 3D imaginary cube. The cursor and goals were shown in the monkey's 
workspace with outlines, but did not exist physically. When one of the eight lights was 
on, the monkey reached to it, and the trajectory of the wrist was recorded by the sensor 
taped to it. The spike trains were noted simultaneously from the neurons in the motor 
cortex of the monkey and here 38 neurons were noted. 

      

Fig. 2. Sketch map of the experiments and the eight directions we adopt in this experiment 

There are eight directions all together and we do 20 experiments repetitively each 
direction. We obtain 160 sets of data during the monkey’s experiment. The trajectories 
recorded are shown in Fig.3 

 

Fig. 3. The recorded trajectories of all the trails 
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5   Modeling Using ESN 

Now we utilize ESN with leaky integrator neurons to design the model for the ex-
periments. First, Find 16 neurons which are closely related with the task using t-test 
method (P<0.05) and single-factor analysis (P<0.05). 

The original spikes recorded can not be directly input into the net so we should set up 
a time-bin first and count the spike numbers in the bin and this is the so-called “Fre-
quency code” because it is about the frequency of spikes in the bin. Here the neural 
spike events were binned in windows of 100ms which switch at the step of 20ms.  

The structure shown in Fig.1 is actually the most complete form of this net, which is 
used to deal with auto-regressive systems, whose output ( 1)y n + depends on previous 

outputs ( ),y n ( 1)y n − ...as well as history inputs. For the data here, every coordinate of 

the trajectories is obviously relevant to its previous values, thus this system is a 
auto-regressive one and it take the structure of Fig.1 for its model. 

The number of internal units are chosen to be N =500. The connectivity rate of the 
recurrent connection matrix W is set to be 1%. The net has 16 input units for 16 neu-
rons and 3 output units which together represent the 3-D coordinates of the moving 
track.  

Furthermore, the weights of the matrix W should be equilibrated in the rough, that is 
to say, the average value of weights should be about zero [7]. Here we draw nonzero 
weights randomly over [-1, 1]. 

The setting of its spectral radius α is of crucial importance for the modeling per-
formance of ESN training because it indicates the speed of teacher dynamics. The 
absolute size of input weights inW is also of great importance, Large absolute values of 

inW  implies that the network is strongly actuated by inputs while the opposite means 
that it is only slightly activated around the DR’s zero states. Similar statements hold for 

the situation of matrix Wback. We generate matrixes inW and Wback randomly from [-λ1, 
λ1] and [-λ2, λ2] respectively. 

For the leaky integrator neurons, set the parameters { , }a µ to {1, 1}. 

First we try hand-tune those parameters that haven’t been decided, in which way we 
can just randomly decide their values within a reasonable scope and adjust them ac-
cording to experience and some principles by simulating again and again. This task is 
somehow tough and complicated. We tried out more than ten times until we get a sat-
isfactory result with demanded precision, that is, the average distance between the 
sampled points of the real trajectory and the predicted one is no more than 5cm. 

Now we abandon this process and use particle swarm optimization to decide the 
values of them, which is much more convenient and effective. 

The time constant will be optimized with the other three parameters mentioned 
above. 

For every direction, pick up several trails for training and use the rest trails for 
testing. The 8 different directions are trained and tested respectively and independently.  

Suppose for a direction there are j training samples thus there are j teacher time se-
ries of

11 1 0 ,...,( ( ), ( )) n nu n d n = ,…, 0 ,...,( ( ), ( ))
jj j n nu n d n = , where ( )u n is the 16- di-

mensional vector of input and ( )d n is vector of the corresponding coordinate. As 
mentioned above, first we should set the parameters 1 2{ , , , }Cα λ λ using PSO. The 
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fitness function should reflect represents the total error of all the training steps. To 
ensure the constraint condition that the spectral radius of W = CWµ + (1 )Ca Iµ−  
should satisfy that max| |λ (W ) -1<0, the fitness function is chosen as  

2

1 0

( ( ) ( ))
jnj

m m
m n

fitness d n y n
= =

= −∑∑ +10*max[0,  max| |λ (W )-1] (5)

Here each particle is a 4-dimensional vector iX whose dimensions are for the four 
parameters. Each particle has a current velocity iV and a personal best position Xpbesti 
and we denote the global best position with .Xgbest The updating of velocity and values 
is done according to Eq.6 and Eq.7.  

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i pbesti i gbest iV t wV t c r X t X t c r X t X t+ = + − + −  (6)

( 1) ( ) ( 1)i i iX t X t V t+ = + +  (7)

where 1r and 2r are two random numbers between 0 and 1. c1 and c2 are two learning 

factors and here they are both set to be 2.1 and 2 respectively. 
After we get all the proper parameters, we put them for training. Feed each sample 

fed into the net, update the internal states with  

( 1) (1 ) ( ) ( ( 1) ( ) ( )))in backx n Ca x n Cf W u n Wx n W d nµ µ+ = − + + + +  (8)

After this process we can obtain j state matrixes of 1 2, ,... jM M M and teacher matrixes 
of 1 2, ,... jT T T . Accumulate all these matrixes as this: 

1 2[ , ... ]t
jM M M M= , 1 2[ , ... ]t

jT T T T=  (9)

Then use Eq.1 to calculate the desired outW  and now the whole net is completed and 
can be used to predict the track by feeding new input signals into it. This process is 
done according to Eq.4 and Eq.2. 

We try to reduce the number of internal processing elements gradually with PSO 
optimizing the relevant parameters, and by doing this we finally get that we can still get 
a model with acceptable precision with this number being cut off to 300. The less the 
internal units, the fast the training process, so this is a very meaningful improve- ment. 
The consequences are presented as follows.    

In Fig.4, we give a simulating result for a training sample. 
In Fig.5, we pick up two of the predict results just for illustration. 
From Fig.4, it could be obviously seen that the training precision is very high as the 

two trajectories almost superpose each other. In Fig.5, the red trajectory, which is a line 
combined by coordinates computed at each forecast step, can well track the original 
one.  

In this paper, we adopt ESN with leaky integrator neurons to model the cortical 
signals of the monkey, it could be seen from the test results that this net can get ac-
ceptable result in translating the cortical signals into the desired outputs.  

The essence of ESN is that it can map the original low-dimensional space to 
high-dimensional space which is much easier to be read out.  
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Fig. 4. The simulation result for a training sample (The blue represents the original collected 
while the red represent the test result) 
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Fig. 5. The testing results of the forecasting track (The blue represents the original collected 
while the red represent the test results) 

Another notable advantage of this net is its easy training procedure. Compared with 
traditional recurrent network, only the output weight matrix needs to be trained while 
the other weight matrixes are fixed once given. What’s more, the training of it is quite 
simple because it is computed by a linear regression method. It is quite easy and fast, 
and obviously this character is of great importance for in-line prediction which de-
mands high speed computing. 

In conclusion, we can get satisfactory results using Echo State Networks with leaky 
integrator neurons. 
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Abstract. A normally visible stimulus can be rendered invisible by

some psychophysical techniques. Flash suppression and forward mask-

ing are two such techniques. In this study, we investigated the selectivity

of suppression in flash suppression and forward masking. Observers were

asked to discriminate the orientation or color of the test grating that was

at the orientation-discrimination threshold. We found that during flash

suppression color sensitivity was more suppressed than orientation sen-

sitivity. Forward masking produced a pattern of results similar to flash

suppression. These results suggest that the flash suppression and forward

masking share partly a common mechanism.

Keywords: Flash suppression, forward masking, color, orientation, form.

1 Introduction

Psychophysical techniques that render a normally visible stimulus invisible [1]
provide a powerful tool for investigating the neural correlates of conscious visual
experience [2,3,4]. One such technique is flash suppression [5]. In flash suppres-
sion, a stimulus is first presented to one eye (initial stimulus), followed by pre-
sentation of the same stimulus to the same eye (test stimulus) and a dissimilar
stimulus to the opposite eye (contralateral stimulus). Under these conditions,
observers perceive only the initial and contralateral stimuli, and the test stim-
ulus is rendered invisible [6]. Previous studies showed that the initial and test
stimuli need not be spatially similar to obtain the suppressive effect [6,7].

In this study, we focus on the interaction between the initial and test stimuli.
The detection threshold of a visual stimulus could be raised by a preceding visual
stimulus, without presentation of the contralateral stimulus, which is known as
forward masking [8,9]. Hanson and Anderson [10] measured the detection thresh-
old for a monocular color patch after the extinction of the larger stimulus that
was presented to the same eye. They reported the observer’s inability to identify
the color of the detection-threshold color patch. Because flash suppression and
forward masking share a common stimulation sequence, i.e., the test stimulus is
preceded by the initial stimulus, we predicted that, in flash suppression, observer

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 19–25, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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may also fail to identify color of the threshold test stimulus, when the initial stim-
ulus is larger than the test stimulus. To test the prediction, we asked observers
to discriminate the orientation or color of the test grating presented as the test
stimulus in flash suppression. The grating was at the orientation-discrimination
threshold. According to the prediction, we anticipated that observer’s perfor-
mance on the orientation discrimination task would be higher than that on the
color discrimination task.

2 Methods

Seven observers participated in the experiment. All of them were naive to the
purpose of the experiment. The experiment was conducted in a dark room.
Observer’s head movements were reduced using chin and forehead rests. Visual
stimuli were presented on a CRT display (SONY CPD–E200). Left half images
on the display were presented to the left eye, and right half images on the display
were presented to the right eye, through mirror stereoscope. The distance from
the display to the eyes was 1 m. All stimuli were presented on a black background.

Each observer’s performances to discriminate the orientation and color of
the test stimulus were examined in three stimulation conditions: flash suppres-
sion condition, monoptic masking condition, and dichoptic masking condition.
The flash suppression condition began with presentation of five small squares to
each eye (Fig. 1a). Center squares were fixation points. Observer was instructed
to fixate these squares during they were presented. Squares around the cen-
ter squares were presented to induce binocular fusion. Following the observer’s
button press, fixation points disappeared, and a white diamond shape (initial
stimulus; side lengths are 3 ◦, 95.3 cd/m2) was presented to the right eye for 1 s.
After a blank field for 40ms, a test stimulus was presented to the right eye, and
a white diamond shape (contralateral stimulus; side lengths are 3 ◦, 95.3 cd/m2)
was presented to the left eye, for 10ms. Then the stimuli disappeared, and the
observer responded using one of two buttons. The test stimulus was a square-
wave grating (1 ◦×1 ◦, 5 c/deg), its orientation was −45 ◦ or +45 ◦ from vertical,
and its color was red or achromatic. The observer’s task was to discriminate the
orientation or color of the test grating. In the orientation discrimination tasks,
the observer had to press the left (right) button when the −45 ◦ (+45 ◦) grating
was presented. In the color discrimination tasks, the observer had to press the
left (right) button when the red (achromatic) grating was presented. After the
response, the fixation points reappeared and the next trial followed.

The monoptic and dichoptic masking conditions were the same with the flash
suppression condition, except that the contralateral stimulus did not appear in
the monoptic and dichoptic condition (Fig. 1b, c) and that the initial stimulus
was presented to the left eye in the dichoptic condition (Fig. 1c).

Each block consisted of 120 trials. During one block every pair of the three
stimulation conditions and four test stimuli was presented 10 trials in a random
order. The observers performed the orientation-discrimination task block and
the color-discrimination task block alternately. Each task consisted of 5 blocks.
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Fig. 1. Time course of the stimulation conditions. The test stimulus was presented in

three conditions: (a) flash suppression condition, (b) monoptic masking condition, and

(c) dichoptic masking condition. Stimuli, which were presented to the right eye, are

shown in RE rows, and stimuli, which were presented to the left eye, are shown in LE

rows.

The task order was counterbalanced across the observers. Luminances of the red
and achromatic test gratings were at the orientation-discrimination thresholds,
which were predetermined using a two-down-one-up staircase strategy for each
color in the flash suppression condition [11,12].

3 Results

The averaged percent correct of each condition and task is shown in Fig. 2.
In the flash suppression condition, observer’s performance on the orientation
discrimination task was significantly higher than that on the color discrimina-
tion task (Wilcoxon signed rank test, p < 0.05). Three of the seven observers
showed a significant difference individually (p < 0.05; Fig. 3a). In the monop-
tic masking condition, although no significant difference between performances
in the two tasks was shown in a group analysis (Wilcoxon signed rank test,
p = 0.16), in two of the seven observers, a significant difference was found indi-
vidually (p < 0.05; Fig. 3b). In the dichoptic masking condition, the performance
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Fig. 2. Averaged performance in each condition and task. (a) Performance in the flash

suppression condition. (b) Performance in the monoptic masking condition. (c) Per-

formance in the dichoptic masking condition. The performance was measured by the

percent correct. ‘Form’ means the performance of the orientation discrimination tasks,

and ‘Color’ means the performance of the color discrimination tasks. Error bars repre-

sent standard error of the mean.

Fig. 3. Individual performance in each condition and task. (a) Performance in the

flash suppression condition. (b) Performance in the monoptic masking condition. Per-

formance was measured by the percent correct. Each line represents one observer.

Performances of observers who showed a significant difference are shown by solid lines,

and performances of the other observers are shown by dashed lines.

of the orientation discrimination task was not significantly higher than the per-
formance of the color discrimination task (sign test, p = 0.38), and no observers
showed a significant difference individually (p > 0.7).
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Fig. 4. The performance difference found in the flash suppression condition was signif-

icantly correlated with that in the monoptic masking condition. Here, the performance

difference is the difference in the percent correct between the orientation discrimination

task and the color discrimination task. Each point represents a single subject.

The performance difference between the orientation discrimination task and
the color discrimination task in the flash suppression condition was significantly
correlated with that in the monoptic masking condition (Spearman’s rank cor-
relation test, ρ = 0.93, p < 0.01; Fig. 4).

4 Discussion

We found that the orientation or form of the test grating was better discriminated
than the color of it in the flash suppression condition and for some observers in
the monoptic masking condition. Previous studies also reported loss of color
perception of visual stimuli. Hanson and Anderson [10] reported that, following
presentation of the monocular masking stimulus, observers failed to identify
the color of the detection-threshold test patch. Our results also showed that
color was more difficult to discriminate than orientation for two observers in the
monoptic masking condition. This suggests that orientation discrimination as
well as stimulus detection is easier than color identification.

The flash suppression condition is identical to the monoptic masking condi-
tion if the contralateral stimulus is removed. The loss of color discrimination in
the monoptic masking suggests a possibility that the inferiority of color discrim-
ination in the flash suppression condition was also caused by the masking effect
by the initial stimulus. If so, it is expected that the larger the discrimination per-
formance difference in the monoptic masking condition, the larger the difference
in the flash suppression condition. Actually, this was the case (Fig. 4).

Another study reporting loss of color perception was concerned with binoc-
ular rivalry. The binocular rivalry is a phenomenon that two dissimilar images
presented respectively to two eyes compete for perceptual dominance [13,14].
Smith et al. [15] measured the detection threshold of the colored test probe that
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was presented to the dominant or non-dominant eye. When the threshold test
probe was presented to the non-dominant eye, observers failed to perceive its
color. This suggests that interaction of signals between the two eyes may also
reduce capability of color discrimination. In our results, the dichoptic masking
condition did not show inferior color discrimination, suggesting that the con-
tralateral stimulus in the flash suppression condition was not involved in the
reduction of color discrimination.

As described above, the present data suggest that the inferior discrimination
of color in the flash suppression condition is produced by the monoptic masking
effect. However, the dichoptic masking effect still needs to be examined because
of the following reason. We determined the orientation discrimination thresholds
in the flash suppression condition and used the same threshold test gratings in
the dichoptic masking conditions. As a result, performances of the two discrim-
ination tasks were at the ceiling in the dichoptic masking condition (Fig. 2c).
There is a possibility that this eliminated possible difference in discrimination
performance between orientation and color [16]. Experiments in which the ori-
entation discrimination threshold is respectively determined in each condition
need to be conducted.

The flash suppression condition presented here differs from that previously
studied in two respects. First, although the initial stimulus was followed by the
test stimulus without delay in the previous studies [5,12], they were presented
with a delay of 40ms in the present experiment. Second, while the initial stimulus
was the same as the test stimuli in the previous studies, they were different in
the present study, just as in the experiment of Hanson and Anderson. Effects
of these differences on the discrimination performance are also issues for future
research.

Acknowledgments. We thank the reviewers for their valuable comments. This
work was partially supported by KAKENHI (19700215).

References

1. Kim, C.Y., Blake, R.: Psychophysical Magic: Rendering the Visible ‘Invisible’.

Trends Cogn. Sci. 9, 381–388 (2005)

2. Frith, C., Perry, R., Lumer, E.: The Neural Correlates of Conscious Experience:

An Experimental Framework. Trends Cogn. Sci. 3, 105–114 (1999)

3. Rees, G.: Neuroimaging of Visual Awareness in Patients and Normal Subjects.

Curr. Opin. Neurobiol. 11, 150–156 (2001)

4. Rees, G., Kreiman, G., Koch, C.: Neural Correlates of Consciousness in Humans.

Nat. Rev. Neurosci. 3, 261–270 (2002)

5. Ooi, T.L., Loop, M.S.: Visual Suppression and Its Effect upon Color and Luminance

Sensitivity. Vision Res. 34, 2997–3003 (1994)

6. Wolfe, J.M.: Reversing Ocular Dominance and Suppression in a Single Flash. Vision

Res. 24, 471–478 (1984)

7. Brascamp, J.W., Knapen, T.H.J., Kanai, R., van Ee, R., van den Berg, A.V.: Flash

Suppression and Flash Facilitation in Binocular Rivalry. J. Vision 7, 1–12 (2007)



Comparison of Near-Threshold Characteristics of Flash Suppression 25

8. Breitmeyer, B.G.: Visual Masking: An Integrative Approach. Oxford University

Press, New York (1984)

9. Kahneman, D.: Method, Findings, and Theory in Studies of Visual Masking.

Psychol. Bull. 70, 404–425 (1968)

10. Hanson, J.A., Anderson, E.M.S.: Studies on Dark Adaptation. VII. Effect of Pre-

exposure Color on Foveal Dark Adaptation. J. Opt. Soc. Am. 50, 965–969 (1960)

11. Levitt, H.: Transformed Up-Down Methods in Psychoacoustics. J. Acoust. Soc.

Am. 49, 467–477 (1971)

12. Tsuchiya, N., Koch, C., Gilroy, L.A., Blake, R.: Depth of Interocular Suppression

Associated with Continuous Flash Suppression, Flash Suppression, and Binocular

Rivalry. J. Vision 6, 1068–1078 (2006)

13. Leopold, D.A., Logothetis, N.K.: Multistable Phenomena: Changing Views in Per-

ception. Trends Cogn. Sci. 3, 254–264 (1999)

14. Blake, R., Logothetis, N.K.: Visual Competition. Nat. Rev. Neurosci. 3, 1–11 (2002)

15. Smith, E.L., Levi, D.M., Harwerth, R.S., White, J.M.: Color Vision is Altered

During the Suppression Phase of Binocular Rivalry. Science 218, 802–804 (1982)

16. Zolman, J.F.: Biostatistics: Experimental Design and Statistical Inference. Oxford

University Press, New York (1993)



C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 26–33, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Some Computational Predictions on the Possibilities of 
Three-Dimensional Properties of Grid Cells in Entorhinal 

Cortex 

Tanvir Islam and Yoko Yamaguchi 

Laboratory for Dynamics of Emergent Intelligence, RIKEN BSI, 
2-1 Hirosawa, Wako-shi, Saitama, Japan 
{tanvir,yokoy}@brain.riken.jp 

Abstract. The discovery of grid cells in the entorhinal cortex (EC) of the rat 
(Hafting et al. 2005) has provided many hints of the mechanism of spatial com-
putation in brain during animal movement. Since then, various experiments as 
well as computational modeling studies of grid cells have answered some of the 
key questions related to the properties of these cells. However, almost all of 
these studies are conducted on the rats and mice during their movement in hori-
zontal space, and it is not clear whether the grid cells possess a three-
dimensional firing field during movement in space that is either tilted or curved. 
In this paper, we make some predictions on the possibilities of three-
dimensional shapes of grid fields by hypothesizing that they indeed possess 
such properties, and produce such three-dimensional fields during movement in 
tilted space. We show several polyhedral shapes that can be generated by our 
computational neural network model, and in case of movement in horizontal 
plane, our three-dimensional grid cell model is reduced to a two-dimensional 
model to generate grid fields similar to experimental findings.  

1   Introduction 

Discovery of place cells [1]-[5] in the hippocampal regions of rats consolidated the 
idea that hippocampus probably represents a cognitive map of the local environment 
of an animal. Place cells, firing on specific locations of the environment encode the 
location of the animal, and possess the ability to represent and recall the spatial envi-
ronment with collective neural representation. However, the source of the input sig-
nals for place cells and the underlying mechanism of place fields was still an unsolved 
problem until Hafting et al. (2005) [6] discovered “grid cells” in EC layer II and III, 
which give major input to CA3 and CA1. Unlike the place cells, the firing fields of 
the grid cells create a regularly tessellating grid-like pattern in hexagonal formation, 
spanned over the horizontal environment where the animal is moving. The strict  
periodicity of the tessellating firing pattern of grid cells suggested that they are a key 
element of the spatial navigation system [6] [7]. Grid cells with fields of various spac-
ing, spatial phase, and angular orientations prompted the idea that their ensemble can 
compute the space, and are majorly responsible for place field formation. Now it is 
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widely believed that the combination of head direction cells and grid cells probably 
compute the functionality of path integration in the upstream of hippocampus, collect-
ing pivotal spatial information from sensory system.  

Since the discovery of grid cells, several computational models [7][10][11] have 
been proposed to explain the functional mechanism of the periodic tessellation of the 
firing patterns. These models are largely of two types: the intracellular oscillator 
models and the attractor dynamics-based models. We proposed a computational 
model of grid fields [11] that is based on column structures of HD units and grid cells, 
expanded over from the EC deep layers towards layer II. In this model, grid fields 
with various size, spatial phase, and angular orientation are calculated from only ve-
locity and head direction angle inputs to the EC deep layers. However, due to the lack 
of experimental data of grid cells during movement in environments not horizontal, 
i.e. tilted or curved space, these models do not assume the possibility three-
dimensionality of grid fields. In this paper, we hypothesize that grid fields are origi-
nally convex polyhedrons, and we provide a computational neural network model of 
grid cells in rat entrohinal cortex. 

2   Our Hypothesis and Model 

Experimental finding and theoretical modeling of grid fields have so far contributed 
substantially in understanding of the mechanisms behind the computation of space in 
entorhinal hippocampal network. Observation of the two dimensional hexagonal grid 
fields generated in rat entorhinal cortex cells raises an obvious question: Do grid 
fields have three-dimensional properties? What will be the response of the grid cells 
when an animal will move along a tilted space that constitutes movement in three 
dimensions? Because the natural movement of rat is restricted to mainly two dimen-
sions, there have not been many experimental studies to find out the three dimen-
sional property of grid cells. Some studies [9] of hippocampal place cells found that 
during movement of a rat on a tilted track, firing fields of many place cells remap 
even though the rat moves the same distance on a same track that was initially hori-
zontal. An earlier experiment conducted with rats travelling in a NASA space shuttle 
[8] showed similar remapping of place cells. In these experiments, the other envi-
ronmental cue was same in case of movement in both horizontal and tilted track. 
Because place cells receive their major inputs from EC layer II and III grid cells, 
these experimental findings now suggest that grid fields themselves may be three 
dimensional, with showing properties different from horizontal movement to tilted 
movement, thus causing the remapping of place cells. With not much experimental 
data published about the three dimensional properties of grid cells, this assumption is 
confined to the level of prediction at this moment. 

We hypothesize that grid fields are actually three dimensional, and the two dimen-
sional grid fields that we observe are special cases of a more generalized property of 
grid cells. It should be noted that by “three-dimension” we mean space that is not a 
horizontal plane. Therefore, a tilted conic space (used in the related simulations) or a 
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slope is three-dimensional in space in our definition because they are not horizontal 
planes. We assumed that the animal’s sense of a ‘tilt-angle’, which can be relayed 
from sensory system to EC, is additionally required in our extended model of three-
dimensional grid fields. In our 2D model [11], HD cells in the deep layer direction 
system have preferred directions in 2D space, denoted by a single angle. However, in 
the case of 3D space, two angles are necessary to express such direction vectors of the 
system. The first one is the “horizontal angle”, which is the angle formed by the 2D 
projection of a direction vector with the horizontal X-axis, and measured from the  
X-axis towards the projection of the vector. This angle is basically the same as the 
direction angles mentioned in the 2D model. The second angle is the “vertical angle”, 
which the direction vector forms with the vertical Z-axis, and is measured from the  
Z-axis towards the vector. To visualize it, we can think of a three-dimensional polar 
axis system, where the position of a point in space is defined by one horizontal and 
one vertical angle. Similarly, instead of a single “head direction angle” input, we can 
think of also another angle that jointly defines the movement: the “tilt angle” that 
corresponds to the animal’s sense of the slope of a tilted space. 

Taking the above into account, the internal calculation of the i th component of the 
direction system [11] can be expressed as below: 
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Where, at time t , t
iS is the internal state of the i th component of the direction system, 

tv is the velocity input to the system, ,t hor
Hθ is the head direction angle input, ,t ver

Hθ is 

the tilt angle input, A is the spacing of grid fields, ver
iφ is the angle of direction vector 

with vertical Z-axis, hor
iφ is the angle of direction vector with the horizontal X-axis, 

,
,

t ver
B Hθ is the vertical angle of spatial phase, ,

,
t hor
B Hθ is the horizontal angle of spatial 

phase, B is the amount of spatial phase. 

It can be noted that the amount t
iS corresponds to the modulus of displacement 

along the preferred direction of the i th component. The output of the component can 
be given as: 
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Where, r is the radius of the grid field. The output of the grid cell can be given as: 



 Three-Dimensional Properties of Grid Cells in Entorhinal Cortex 29 

   t t
i

i

D I=∏  
(3)

When the animal is moving in purely horizontal surface, tilt angle input to deep layer 
is 90 degrees, then, eq. (1) is reduced to: 

, 1[ sin( )cos( )   ]mod           t ver hor t hor t
i t i i H iS v spatial phase term S Aφ φ θ −= − + +  (4)

For simplicity, in eq. (4) the terms of spatial phase are not shown, but these terms can 
be assumed accordingly to 3D space. From eq. (4), we can see that the projections of 
3D direction vectors to the horizontal 2D surface are similar to the direction vectors 

mentioned in [11]. The value of sin( )ver
iφ varies from 0 to 1, which is also responsi-

ble for the change in width and spacing of grid fields in 2D environment, besides the 
parameters A and r . 

3   Possible Shapes of 3D Grid Fields 

The grid fields observed during 2D horizontal movement are patterned in the form of 
hexagons [6]. In our 2D model, direction vectors of the hexagonal direction systems 
have preferred angles along the 2D plane, which create 2D stripes (Fig. 1, left), nor-
mal to the vectors. The cross sections of these stripes are the computationally derived 
grid fields. In case of 3D, direction vectors have preferred angles (2 angles each) 
along the 3D plane, creating 3D solid disk-like patterns (Fig. 1, right), whose cross 
sections form the solid shapes of the 3D grid fields we consider.  

 

  

Fig. 1. Example of direction vectors in 2D and 3D model. Left: Stripe-like patterns are formed 
at normal to the direction of six vectors, with preferred angles 60 degrees apart. The cross 
sections of these patterns form hexagonal grids. Right: Example of the disk-like fields at  
normal to a direction vector of vertical angle 90 degrees (with Z-axis) and horizontal angle 0 
degree (with X-axis). 



30 T. Islam and Y. Yamaguchi 

The grid fields in our 2D model [11] are hexagon shaped polygons, expanded over 
the 2D surface in hexagonal formation. Considering the intersections of direction vec-
tors with vertical and horizontal preferred angles, we can assume the 3D grid fields to 
be polyhedral, with each face of the polyhedron being normal to the preferred direction 
of the direction vectors whose periodic disk-like fields form the convex polyhedron by 
intersecting with each other. There is one key constraint for such polyhedral, that is, in 
case of movement in the horizontal environment, where tilt angle , 90t ver

Hθ
°= , the 

resultant grid fields from our 3D model should be similar to hexagonal grid fields  
observed in experiments. Another constraint might be whether the polyhedron should 
be space-filling as well, that is, in case of 2A r= , the tessellation of the polyhedron 
covers the whole 3D space without any gap. Though some of the polyhedral we dis-
cuss here are space-filling, we consider only the first condition to be the only constraint 
for our model. For simulation, we used a spherical space with diameter of 900 cm, and 
also a 30 degrees tilted conic space. To simulate movement of an animal, we used 
velocity as 10cm/s, grid spacing =300 cm, and grid width=50 cm. The head direction 
angle and tilt angle are changed randomly in the spherical space.  

As shown in Fig. 2, the simplest of the 3D grid field we can think of is the hexago-
nal column, which is expanded continuously along the vertical Z-axis. The direction 
vectors in this case are ( hor

iφ , ver
iφ ) = (0, 90), (60, 90), (120, 90) degrees. The projec-

tions of the grid fields generated during simulation of movement on a conic space of 
30 degrees of tilt angle (Fig. 2) are exactly same as the grid fields generated by the 2D 
model expressed in eq. (4).  

 

  

Fig. 2. Left: Simulated hexagonal columns with the 3D grid model. Right: grid fields generated 
by hexagonal column during movement on a 30 degree tilted conic space. Projections on the 
XY horizontal plane are shown below. 

It can also be assumed that grid fields are discontinuous and aligned in layered for-
mations along the vertical Z-axis. We can think of layered structures of solids with 
every layer similar (hexagonal prism, hexagonal dipyramid etc.), every alternative 
layers similar (tetrahedron and octahedron couple), or every third layers similar 
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(Rhombic hexahedron) etc. Among these, the combination of tetrahedron and octahe-
dron is not a single solid, but their combination is space filling. In table 1, we show 
the direction vectors and other properties of these solids. Furthermore, in Fig. 3 (left 
column) we show the shapes of these 3D grid fields with simulating movement in 3D 
space. We also show that in case of all these solids, the 2D grid fields generated by 
setting tilt angle input as 90 degrees are similar to experimentally found grid fields 
(Fig. 3 middle column). Again, the firing fields during movement on a 30 degree 
conic space are illustrated in the right column of Fig. 3. It can be noted that in case of 
all four of these solids, the resultant grid fields are not hexagonal, unlike the case of 
hexagonal column. However, for all of these solids, grid fields remain very much 
hexagonal when the amount of tilt is only a few degrees (details not shown here). This 
corresponds well to the usual experimental conditions where the horizontal plane may 
include some small amount of tilt by chance. 

Table 1. Property of several polyhedrons that we consider possible shapes of 3D grid fields 

Solid name Direction vectors Number of faces Properties 
Hexagonal prism (0,90),(60,90),(120,90) 

(0,0) 
8  

Space filling, every 
layer is same along 
Z-axis 

Hexagonal  
bipyramid 

(0,60),(60,60),(120,60), 
(180,60),(240,60),(300,60) 

12  

Every layer along 
the Z-axis is same 

Combination of 
Tetrahedron and 
Octahedron 

(330.05,116.52),(90,116.525), 
(29.95,63.48),(0,180) 

4 8

Combination is 
space filling, and 
every alternate 
layers are same 

Rhombic  
hexahedron 

(0,60),(60,120),(120,60), 
(180,120),(240,60),(300,120) 

6  

Space filling,  
every third layer is 
same 

 
The simulation results showed in Fig. 3 suggest that though the grid fields we  

observe during horizontal movement are hexagonally formed, they may not be so 
when the plane of movement is tilted. In earlier experiments [8][9], it was found that  
remapping of place fields occur when rats move on either tilted space or a three-
dimensional environment like the space shuttle. As grid cells provide the major input 
to place cells, we can predict that in considerable amount of tilted space or in 3D 
space, the resultant grid fields may be of different shapes compared to 2D horizontal, 
causing remapping of place cells. However, due to the lack of experimental proof, we 
cannot single out any one of the above mentioned solids as the most probable shape of 
3D grid field. We believe that experiments on grid cell recording during rats move-
ments on tilted or curved space may reveal the true shape of the three dimensional 
grid fields, if they exist at all. 

 



32 T. Islam and Y. Yamaguchi 

 
 

 

 

 

  
 

  
 

Fig. 3. Simulation results of our 3D grid model for hexagonal prism, hexagonal bipyramid, 
tetrahedron-octahedron combo, and rhombic hexahedron. Left column: 3D grid fields in the 
shapes of these solids generated by our 3D model, with appropriately chosen direction vectors. 
Note that only one grid field in each case is shown for clarity. Middle column: All these poly-
hedrons generate hexagonal grid fields when tilt angle is 90 degrees. These fields correspond 
well with the experimentally found grid fields. Right column: Grid fields for the same polyhe-
drons during simulated movement on a 30 degree conic space. 
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4   Discussion and Conclusion 

In this paper, we made some predictions about the possibility of three-dimensional 
properties of grid cells. It should be noted that by “three-dimension” we mean space 
that is not a horizontal plane. Therefore, a tilted conic space (used in the related simu-
lations) or a slope is three-dimensional in space in our definition because they are not 
horizontal planes. We assumed that the animal’s sense of a ‘tilt-angle’, which can be 
relayed from sensory system to EC, is additionally required in our extended model of 
three-dimensional grid fields. With the assumption of the existence of three-
dimensional grid fields, we have showed some simulation results of possible 3D grid 
fields of various shapes, considering various possibilities of their layered formation 
along the 3D space. It is also shown that in case of movement in horizontal plane, our 
three-dimensional model is reduced to the original two-dimensional model to generate 
hexagonal grid fields. Without much experimental data to support our hypothesis, and 
given that the existence of 3D grid fields are yet to be found, we cannot conclude any 
one of these polyhedral shapes as the most probable one, but we believe our model 
can be helpful to make some predictions on the characteristics of EC grid cells in 
future.  
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Abstract. Adaptation is a hallmark of sensory processing. We studied neural
adaptation in intracellular voltage responses of the R1-R6 photoreceptors, of the
fruit fly Drosophila, subjected to light patterns of naturalistic distribution at vary-
ing intensity levels. We use experimental data in a stepwise empirical modelling
procedure to estimate a non-linear dynamical model (NARMAX) with variable
gain. This model can describe accurately the observed adaptation process at each
new level of changing light inputs. Generalized frequency response functions
were used to visualize and quantify adaptation in the frequency domain.

Keywords: Non-linear system identification; NARMAX; Generalized frequency
response functions; Neural adaptation; Gain adaptation; Drosophila; Naturalistic
stimulation.

1 Introduction

Adaptation enables efficient encoding of sensory information in single neurons or
neural chains. This it does by tuning the system’s input-output relationship so that the
neural output can best represent sensory information [1,2,3,4]. For example, although
light intensity in a natural scene can vary thousand-fold [5], photoreceptors have no
difficulties in encoding these patterns. Despite their limited dynamic range1, photore-
ceptors can discriminate contrast over the full extend of light levels [5]. Because our
understanding of the underlying physiological processes of phototransduction is lim-
ited, so are our biophysical models. Therefore, empirical modelling methods have a
great value in comprehending the system’s overall neural functions and in producing
hypothetical models that can be tested experimentally.

Starting with the pioneering work of Marmarelis and McCann in the early 1970s
[6,7], various authors have applied non-linear system analysis to study dynamics in
early visual neurons. The most common approach has been the identification of Volterra
kernels based on the Cross-Correlation method [8,9] or the sum-of-sinosoids method
[10,11]. Both methods have been strongly restricted in the selection of the stimuli, to
be either a mixture of sinosoids or Gaussian White Noise (GWN). The latter has been

1 Dynamic range: Here defined as the ratio of the maximum response and the noise level.
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shown to linearise fly photoreceptor outputs and does not excite its nonlinear dynam-
ics as natural scenes do [12,5]. Motivated by this observation, van Hateren developed
a model that is able to simulate fly photoreceptor responses to natural light statistics
[13]. However, in this study, the light stimuli was limited to a 2-3 log unit range and the
model itself had a fixed structure. To study adaptive mechanisms, a more flexible model
structure is desirable. Whilst new kernel based methods [14,15] are not restricted in the
input distribution anymore, large training data sets are still required for the estimation
of higher order kernels.

To overcome difficulties encountered in previous studies, we employ a well estab-
lished nonlinear system identification methodology developed for NARMAX (Nonlin-
ear Auto Regressive Moving Average with eXogenous inputs) models. The estimation
of a parametric NARMAX model requires a minimum on theoretical assumptions and
is therefore as flexible as kernel or neural network based methods. Apart from that, the
clear and concise parametric model structure allows systematic analysis of the under-
lying system dynamics. The modest number of NARMAX model parameters can be
reliably estimated from small data sets, independent of input data statistics. As such,
the NARMAX model allows to track and analyze neural adaptation to give new in-
sight into coding strategies of sensory neurons. Once a model has been identified, it
can be analytically transformed into generalized frequency response functions (GFRF).
The combined approach allows the study of the system dynamics in both, the time and
the frequency domain. Analysis on GFRF provide a tool for studying how adaptation
changes the frequency dependent interactions between the input and output.

Based on the NARMAX methodology, we estimated models that can accurately pre-
dict photoreceptors’ voltage responses to temporal light patterns of naturalistic distribu-
tion [5]. Individual models were estimated for light levels ranging in logarithmic steps
10,000 fold. Analysis on GFRF allowed us to find a combined model structure and a
single parameter set to approximate adaptive changes by a pure change in the input
gain.

The data for this study has been acquired from the “small” fly, Drosophila, rather
than from previously used “big” flies to make use of its extensive genetic and molecu-
lar toolbox [16]. Targeted manipulation at each neural layer of the flies visual system
will allow us in a later stage of this study to obtain more insight which neural interac-
tions (e.g. lateral synaptic connections, feedback from higher order cells, etc.) influence
adaptation and how.

2 Methodology

2.1 Measurements and Stimuli

Wild-type Canton-S strains of Drosophila were used in the experiments. The flies were
prepared in vivo as in [17]. Intracellular voltage responses of blue-green-sensitive
R1-R6 photoreceptor cells were recorded using sharp quartz microelectrodes. Photore-
ceptors were excited by a point of light at the center of their receptive field, as delivered
through liquid light guides, connected to high performance LEDs (Fig.3(a)). The mea-
sured linear light output of the LEDs was taken as the input to the photoreceptors. Light
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patterns were selected from the van Hateren’s natural-stimulus-collection [5]. The stim-
uli was played back at 2 kHz and measured by a photo diode circuit. Voltage responses
(output) and light stimuli (input) were low-pass filtered with a cutoff at 1 kHz before
sampling with 2 kHz, and stored for off-line analysis. Light input was attenuated by
neutral density filters. This attenuation was performed very rapidly (< 0.1 ms) during
the experiments (Fig. 1). To test the range of adapting inputs, the same temporal light
pattern was shown to the fly with 0, 1, 2, 3 and 4 log intensity units attenuation, allow-
ing 5 different adaptive levels, named as BG0-BG4; BG0 = very bright, BG4 = very
dim. Stimulation at each light level lasted for 20s (Fig. 1). Within this time, a 2s pattern
was repeated for us to quantify data variation.
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Fig. 1. (top) Relative light intensity values (top) and corresponding photoreceptor responses
(bottom). Sections of individual light levels are marked as BG0 (very bright) to BG4 (very dim).

2.2 Data Pre-processing

For system identification, it is necessary that the bandwidth of the excitatory signal does
not extensively exceed that of the system under study [18]. It has been shown before
that for white noise stimulation, Drosophila photoreceptors can follow inputs with �
100 Hz [17]. However, naturalistic stimuli evokes larger responses and might extend the
bandwidth [19]. For this reason the input and output data sequences were pre-filtered
by a Butterworth low-pass filter with a 200 Hz cut-off and resampled to 400 Hz [18].

2.3 Signal to Noise Ratio

Neural recordings are generally noisy because biochemical reactions are probabilistic
rather than deterministic processes. Additionally, recordings from Drosophila photore-
ceptors are particularly sensitive to measurement noise, because the tiny cell dimensions
make stable recordings difficult. Moreover, at low light intensity stimulation, photon
shot noise has a significant influence on the stimuli and therefore indirectly effects the
photoreceptor outputs [3].

The quality of modelling directly depends on the noise level in the data. Therefore,
we quantify the Signal-to-Noise Ratio (SNR) of the output for each input light level.
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Because the number of repetitions is limited, we apply an bias corrected SNR estima-
tion procedure [20,13]. We estimate the signal yraw = y by the ensamble average as

y = 1
J

J∑
i=1

yi(t) from measured responses yi, i = 1...J to J repeated stimuli. Adopting

the notation in [13], we obtain the raw signal and noise power in the voltage output by

PSraw = 1
T

T∫
0

y2(t)dt and PNraw = 1
J

J∑
i=1

1
T

T∫
0

(yi(t)− y)2(t)dt , (1)

and the bias corrected signal and noise power estimate by

P̂S = PSraw − 1
J P̂N and P̂N = N

N−1PNraw . (2)

Thus, the here applied SNR estimate is given by the ratio of the bias corrected signal
power over the power of noise

SNR = P̂S

P̂N
. (3)

2.4 NARMAX Modelling Methodology

NARMAX is a methodology to estimate and validate nonlinear difference equation
models purely from observations of a system’s response to its environmental stimuli.
Since the introduction of the NARMAX model by Billings and Leontaritis [21,22],
it has been successfully applied in the identification and analysis of a wide range of
engineering, biomedical and financial systems. The NARMAX model, is given as

y(t) = f(y(t− 1), ..., y(t− ny), u(t− 1), ...
..., u(t− nu), e(t− 1), ..., e(t− ne)) + e(t) , (4)

where y(t), u(t) and e(t) are the sampled system output, input and error sequences,
respectively. f(·) is the nonlinear mapping vector; ny , nu and ne are the maximum lags
in the output, input and noise. The noise variable e(t) is a zero mean independent se-
quence, which accommodates the effects of measurement noise, modelling errors and
unmeasured disturbances. e(t) is often referred to as the prediction error, which is de-
fined as e(t) = y(t)− ŷ(t), where ŷ(t) is the one step ahead prediction of f(·). In this
study, f(·) has a l-order polynomial structure with a single input and output (SISO),
such that equation (4) becomes

y(t) = θ0 +
n∑

i1=1

θi1xi1(t) +
n∑

i1=1

n∑
i2=i1

θi1,i2xi1 (t)xi2 (t) + ...

...+
n∑

i1=1

. . .
n∑

il=il−1

θi1,. . .,il
xi1 (t)...xil

(t) + e(t) ,
(5)

where x(t) denotes the lagged variables in y, u and e. n is the sum of variables n =
ny + nu + ne, and θi are scalar parameters to be estimated. Hammerstein, Wiener,
Bilinear and Volterra models that have been previously applied to model neural systems
are all subclasses of the polynomial NARMAX model and can be derived from (5) [23].
The prediction error terms e(.) are included in the NARMAX model to accommodate
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noise. Although in this paper we apply no further analysis on the noise model, it is
estimated to ensure the process model is unbiased.

In the here applied method , we employ parameter estimation, structure detection
and model validation in an interlinked procedure [24].

• Term Selection and Parmeter Estimation by the OLS Algorithm. The model
structure (5) is linear in its parameters θi, this allows the construction of a linear
regression model in matrix form,

y(t) =
M∑
i=1

pi(t)θi + e(t), t = 1...N or y = PΘ + ε , (6)

whereN denotes the length of the training data set, the pi(t) are monomials (terms)
of x1(t) to xn(t) up to degree l. The modelling error sequence ε is iteratively
obtained. Θ = [θ0, ..., θi1,...,il]

T is the M -dimensional parameter vector to be
estimated.

Under the condition that P has full rank, the Orthogonal Least Squares (OLS)
algorithm [25] applies an orthogonal decomposition of the regression matrix, such
that P = WA, with W being an orthogonal matrix, satisfying D = WTW,
where D is diag(d1, ..., dM ). Equation (6) is therefore equivalent to y = Wg + ε,
with g = AΘ. Instead of estimating Θ directly, ĝ is estimated as the linear least
squares solution that minimizes ||y − Wg||, where ||.|| is the euclidean norm.
W being orthogonal allows to calculate each element gi (for the ith term) in ĝ
independently. The error reduction ratio ERRi = g2

i di

yT ,y
is used to evaluate for

each gi, how much the corresponding term contributes to the output. In a forward
regression manner, terms are chosen first that contribute more to the output until the
selection is stopped, when all significant terms are selected. In general only a small
number of terms m << M is enough for approximating the systems dynamics
[25]. Eventually, the parameter estimates are calculated from Θ̂ = A−1ĝ.

• Model Validation. Cross validation was used to evaluate the model performance
on unseen data. This ensures that the model describes the underlying dynamical
process and not just the training data. Models are selected and validated, based on
the performance in the following complementary tests.

· Normalized Mean Square Error (NMSE)

NMSE =

Nd∑
t=1

(ŷ(t)−y(t))2

Nd∑
t=1

(y(t)−E[y])2
, (7)

where E[y] = 1
Nd

∑Nd

t=1 y(t) is the mean of the measured output, Nd is the
validation data length and ŷ(t) are the model predictions. Depending, if the
predictions are purely model predicted outputs, ŷ(t) = ŷ(t)MPO or one step
ahead predictions ŷ(t) = ŷ(t)OSA, the NMSEMPO or the NMSEOSA are
evaluated.
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· Final Prediction Error (FPE) [26]

FPE = Nd+mγ
Nd−mγσ

2
e , (8)

where σ2
e is the variance of the error sequence (residuals) e(t) = y(t) −

ŷ(t), t = 1...Nd andm is the number of selected terms. The measure is used
to reduce the spread of the error penalized by the model size.

· Higher order correlation tests
Residuals of adequately estimated nonlinear models should be uncorrelated
with all linear and non-linear combinations of past inputs and outputs, they
should be unpredictable and thus contain no information about the dynamics
of the system. This is tested by the following two higher order correlation tests,
[27],

Φ(ε2)′(yε)′(τ) = κδ(τ) ∀τ
Φ(u2)′(yε)′(τ) = 0 ∀τ , (9)

where κ is a constant 0 < κ < 1 and δ(.) is the delta function. Φvw is the
normalized correlation function of signal v and w. The dash, (.)′, denotes that
the mean level of the signal in brackets is removed. Shifts between v and w are
selected as τ = −100...100. The correlations are never exactly zero for all lags
and the 95% confidence bands, defined as ± 1.96√

Nd
, are used to indicate, if the

estimated correlations are significant or not [27].

Estimation and validation algorithms have been implemented in MATLAB�, allowing
a consistent modelling approach for all models, part of this study. Although, all models
are validated by each of the described measures, for clarity, in the results section only
the NMSE is shown.

2.5 Generalized Frequency Response Functions

The NARX model, a subset of the NARMAX, containing functionals of lagged inputs
and outputs alone, can (under some assumptions) be expanded into a Volterra functional
polynomial of the input u(t) only [28]. The discrete Volterra Series is defined as, [29],

y(t) =
∞∑

n=1

yn(t) , (10)

where yn(t) denotes the n-th order output of the system and is given by,

yn(t) =
t∑
0

...
t∑
0

hn(k1, ..., kn)
n∏

i=1

u(t− ki) , (11)

where hn(k1, ..., kn) is called the ’n-th order kernel’ or the ’n-th order impulse
response’ of the system. The multidimensional Fourier transform of the n-th order im-
pulse response hn(k1, ..., kn) yields the n-th order transfer function or the’n-th order
Generalized Frequency Response Function (GFRF)

Hn(jω1, jω2, ..., jωn) =
∞∑

ω1=−∞
...

∞∑
ωn=−∞

hn(k1, ..., kn)e−j(ω1k1+...+ωnkn). (12)
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The first order GFRF, H1(jω) explains linear effects, while the nonlinear GFRF’s,
Hn(jω1, ..., jωn) n > 1, give a measure of the nonlinear coupling of the input spectral
components and reveal energy transfer mechanisms to new spectral components in the
output [30].

For this study, GFRF have been analytically computed directly from identified dis-
crete time NARX models, applying the recursive algorithm developed by Peyton Jones
and Billings [31]. In contrast to the direct estimation of GFRF from input output data,
this method requires significantly less data samples.

3 Results

We measure voltage responses in Drosophila photoreceptors to naturalistically dis-
tributed light contrast time series (Fig. 3(a)). The same light pattern was repeated at
different light levels (BG0-BG4) to obtain a running account, how adaptation dynamics
change with illumination. BG0 is the brightest level; BG1 gives the same pattern but 10-
times less intense; BG2 is 100-times weaker than BG0, etc (Fig. 1). From correspond-
ing light input and photoreceptor voltage output, NARMAX models were estimated and
mapped into the frequency domain as GFRFs. Data analysis and model identification
are implemented as a four step procedure.

Step 1: SNR estimation of voltage outputs at each BG level.
Step 2: Identification of local NARMAX models, at each BG level separately (MBG0

toMBG3).
Step 3: Identification of a global model structure that can explain the complete data

set by adjusting its parameters (MG(ΘBG1) toMG(ΘBG3)).
Step 4: Identification of a global model that can explain the complete data set by

adjusting only its input gain, α (MG(ΘG, α1) toMG(ΘG, α3)).

Models are estimated from training data sets, containing 800 input/output samples. All
shown NMSE values are based on 6400 output predictions, simulated by models that
performed best in all validation tests. These values are used as a performance index to
compare models.

3.1 Data Variability Analysis

For each BG level, the SNR (3) has been calculated from voltage responses to J = 8
input repetitions. The results, summarized in Table 1 show a significant decay of signal
Power P̂S in comparison to noise Power P̂N , as the light intensity decreases. Con-
sequently, the SNR values drop in the same manner. At lower light intensities, less

Table 1. Signal power, noise power Signal to Noise Ratio (3) at distinct BG levels

BG0 BG1 BG2 BG3 BG4
P̂S 9.13 10.02 7.66 2.71 0.247
P̂N 0.37 0.53 0.69 0.80 0.68
SNR 24.91 18.87 11.03 3.40 0.36
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photons are available to activate the phototransduction cascade, which leads to smaller
voltage responses [32]. At the same time stochastic photon capture in the photorecep-
tors induces additional randomness and decreases the SNR at lower light levels. This
trend resembles the results shown previously in [33]. Because noise in the input or in
the output cannot be simulated, model predictions deviate from output measurements,
even if a model captures perfectly the underlying system dynamics. This has a direct
implication on any prediction error based validation test. Therefore, data with low SNR
values inevitably lead to higher NMSE values. For this reason models estimated from
input/output data at dimmer light levels inevitably show poorer performance than mod-
els at bright light intensities.

3.2 Individual Model Estimation at Each BG Level

In this part of the study, the structure and parameters of NARMAX models were indi-
vidually estimated from stimuli-response data BG0 to BG3 (cf. Fig. 1). For BG4, no
reliable model could be found. The low SNR = 0.558 suggests that for this dim in-
puts individual photoreceptors cannot discriminate light patterns anymore from noise
and produce mostly random quantum fluctuations [17]. Table 2 contains modelsMBG0

(bright input) toMBG3 (dim input) and their performance index (NMSE). NMSE val-
ues show that models estimated from responses to brighter inputs (MBG0 to MBG2)
predict remarkably well throughout the same light level, even for data sets that were
not used for estimation. The significant poorer performance of the MBG3 model is a
consequence of the low SNR at the dim light level.

Throughout all the tested light levels, second order polynomial models are suffi-
cient to model the observed dynamics of the underlying nonlinear system. Higher order
polynomial models were also investigated, but these did not improve the model per-
formance. Despite the input changes by 3 log units, the structures of modelsMBG0 to
MBG3 (Table 2) are very similar. Terms in models of different BG levels vary mostly
in +/− one lag. The strong similarity in the set of detected terms for models of differ-
ent light levels suggests that a global model structure can explain the data for all tested
input levels.

3.3 Parameter Estimated Models with Constant Structure

Various combinations of terms in Table 2 were tested to construct a global model
structure that performs well at all BG levels. The best structure was found to be the
previously detected MBG0 term set. Adopting the structure from MBG0, the global
structure is called MG(ΘBGi) with ΘBGi = [θ̂BGi

0 , ..., θ̂BGi
14 ], i = 0, ..., 3, being the

model parameters estimated individually at light levels BG0-3. Table 3 summarizes the
results for individually estimated parameter sets, from input/output data at light levels
BG0-3.

At all tested light levels, the model performance does not decrease for keeping
a global model structure, compared to values of models with individually estimated
structures. For dimmed inputs, parameter estimated models with a constant structure
even perform slightly better. This suggest that a single nonlinear model with varying
parameters indeed can be used to describe the input-output data set.
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Table 2. Independently estimated NARMAX models for different light levels. Model parameters
are presented in columns. The first column contains corresponding terms for each parameter. “-”
denotes that a term is not part of the model. The last column contains the global model structure
MG(Θ).

terms�models MBG0 MBG1 MBG2 MBG3 MG(Θ)

offset -58.42 -59.75 -66.39 -72.2423
c -2.026 -2.309 -1.792 -0.616 θ̂0

y(t-1) 0.964 1.009 1.089 0.949 θ̂1

y(t-2) – -0.154 -0.209 –
y(t-3) 0.173 – – – θ̂2

y(t-4) -0.348 – – – θ̂3

y(t-5) 0.093 – – 0.135 θ̂4

u(t-4) 0.165 1.551 17.15 – θ̂5

u(t-5) 0.279 3.857 27.06 – θ̂6

u(t-6) 0.257 3.523 21.90 132.83 θ̂7

u(t-7) 0.126 – – – θ̂8

y(t-1)u(t-5) – – -1.319 37.58
y(t-2)u(t-4) -0.030 0.311 – -12.778 θ̂9

y(t-2)u(t-5) – – – -38.5616
y(t-5)u(t-4) 0.051 0.671 – – ˆθ10

y(t-5)u(t-5) – – 0.487 –
y(t-6)u(t-4) -0.039 -0.635 -0.881 – ˆθ11

u(t-3)u(t-7) 0.012 – – – ˆθ12

u(t-4)u(t-5) -0.015 -0.399 -87.15 – ˆθ13

u(t-5)u(t-6) – -4.420 -89.13 -8602
u(t-6)u(t-7) -0.028 – – 2466 ˆθ14

NMSEMPO 0.094 0.083 0.096 0.254
NMSEOSA 0.016 0.018 0.027 0.067

Table 3. Performance of models with global structure and BG-dependent parameter estimates

Uni Model MG(Θ̂BG0) MG(Θ̂BG1) MG(Θ̂BG2) MG(Θ̂BG3)

NMSEMPO 0.094 0.067 0.096 0.23
NMSEOSA 0.016 0.017 0.025 0.064

To investigate adaptative changes in the frequency domain, the first and second
order GFRF’s H1,BGi(jω) and H2,BGi(jω1, jω2), i = 0..3 were computed for the
identified NARMAX models MG(ΘBG0) to MG(ΘBG3), respectively. Fig. 2 sum-
marizes the results in plots of the first-order functions (Fig. 2(a)) and selected slices
through second-order functions (Fig. 2(c), 2(d)). The location of slices is shown in Fig.
2(b). Analysis on the first and second order GFRF magnitude plots in Fig. 2 reveal that
the 3dB bandwidth of the system remains constant, at about 20 Hz, regardless of the
light level. An energy transference phenomenon like described in [30] is not eminent.
For decreasing intensity levels, the magnitude curves are shifted upwards whilst their
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Fig. 2. 1st order GFRF plots of and slices through 2nd order GFRF for models MG(ΘBG1)

to MG(ΘBG3). Changes between frequency responses of different light levels are indicated by
arrows.

shape remains almost the same. This suggests that the photoreceptor adaptation to lower
light intensities is manifested just through an increase of the input gain. If this hypothe-
sis is correct then we would expect that the second order magnitude plots will be shifted
upwards by an amount equal to the squared linear shift.

Indeed, assuming the Volterra Series in (10) is expanded up to the second order
kernel, then its Fourier transform yields, [34],

Y1(jω1, jω2) = H1(jω1)U(jω1) +H2(jω1, jω2)U(jω1)U(jω2) , (13)

where H1(.) and H2(.) are the first and second order GFRF in (12) and Y (.) and U(.)
are the Fourier Transforms of the output and input, respectively. Assuming, the input
signal is modified by a constant gain α, then (13) yields,

Y2(jω1, jω2) = H1(jω1)αU(jω1)) +H2(jω1, jω2)αU(jω1)αU(jω2)) (14)

⇔ Y2(jω1, jω2) = αH1(jω1)U(jω1)) + α2H2(jω1, jω2)U(jω1)U(jω2)) , (15)

where Y1(.) �= Y2(.). The underlines in equations (14) and (15) highlight that in a sec-
ond order Volterra Model, a change in the input signal by a constant gain α is equivalent
to a constant gain α inH1(.) and a quadratic gain α2 inH2(.). To test, if this is the case
for changes in GFRF’s of models MG(ΘBG0) to MG(ΘBG3), we calculated α as the
arithmetic mean EBGl|BGm of shifts between first order GFRF curves H1,BGl(.) and
H1,BGm(.) l,m = 0..3 as

E1(BGl|BGm) = 1
ωmax

ωmax∑
ω=1

H1,BGl(jω)−H1,BGm(jω) . (16)

These, we compared to corresponding mean shifts between second order GFRF surfaces
calculated as

E2(BGl|BGm) = 1
ω2

max

ωmax∑
ω1=1

ωmax∑
ω2=1

(H1,BGl(jω1, jω2)−H2,BGm(jω1, jω2) , (17)
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where H2,BGi(.) denotes the second order GFRF of model MG(ΘBGi), i = 0...3.
According to previous argumentation, for a pure change in input gain,E2(BGl|BGm) ≈
α2 needs to be satisfied for all combinations of l,m = 0...3. To test this, we transformed
the second order shift into αp with p = log(E1(BGl|BGm))

log(E2(BGl|BGm))
. As a measure, how much

curves deviate from being a pure shift, we additionally calculated the variance between
differences of GFRFs as

σ2
1(BGl|BGm) = 1

ωmax

ωmax∑
i=1

(H1,BGl(jω) − H1,BGm(jω) − EBGl|BGm)2 and (18)

σ2
2(BGl|BGm) = 1

ω2
max

ωmax∑
ω1=1

ωmax∑
ω2=1

(H1,BGl(jω1, jω2) − H2,BGm(jω1, jω2)−E2(BGl|BGm))
2.

Results of the evaluation of shifts between first and second order GFRF functions for
ωmax = 100Hz

2π are summarized in Table 4. The analysis of the 2nd order GFRF
magnitudes reveal that indeed the shifts in this case have a quadratic tendency rela-
tive to the linear shifts. Only shifts to GFRFs of modelMG(ΘBG3) deviate. The shift
between the linear GFRF ofMG(ΘBG2) and its 2nd order one is almost cubic (α2.75).
There could be two reasons for this deviation. If, the shifts to GFRFs for light level BG3
are accurate then, at very dim light levels the nonlinear contribution the output signal
enhances. Alternatively, if the high amount of noise at dim light levels leads to biased
parameter estimates, causing corresponding GFRFs to be inaccurate while the system
in fact would perform pure gain adaptation. In case of the latter, the system performs
a normalization of its frequency response at different input light levels, by holding on
to a constant spectral characteristic. By adjusting a gain, it maintains the response am-
plitude within the limited range of 50 mV, while the same frequencies in the output are
kept constant throughout all the tested BG levels.

Table 4. Evaluation of adaptive changes between GFRFs of models MG(ΘBGl) and
MG(ΘBGm), estimated from data at the lth and mth light level BGl and BGm (arrows Fig.2)

(l,m) (0, 1) (0, 2) (0, 3) (1, 2) (1, 3) , (2, 3)

α = E1(BGl|BGm) 22.66dB 41.37dB 53.95dB 18.70dB 31.29dB 12.58dB
αp = E2(BGl|BGm) 43.81dB 82.31dB 117.0dB 38.50dB 73.17dB 34.67dB
σ2

1(BGl|BGm) 2.05dB2 1.84dB2 0.60dB2 0.10dB2 0.95dB2 0.93dB2

σ2
2(BGl|BGm) 3.91dB2 4.94dB2 12.34dB2 1.38dB2 10.68dB2 5.93dB2

p 1.93 1.99 2.16 2.06 2.33 2.75

3.4 Global Model with Gain Adaptation

Frequency normalization in the form of a pure gain adaptation can be modelled by a
global model structure with a constant global parameter set ΘG and a variable input
gain α. Indeed, instead of a shifting the GFRFH1(.) → αH1(.) andH2(.) → α2H2(.)
as in (15), the input can be altered by a constant gain U(.) → αU(.) as in (14). The
same can be shown in the time domain, considering the inverse Fourier Transform of
αU(jω) = αu(t). Assuming, there exists a unique transformation between a Volterra-
Model and a polynomial NARX-Model [35,28], then it can be shown for a polynomial
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NARX model (5) that a change of the input variable by a constant α, such that u(t) →
αu(t), is equivalent to a shift by α, in its first order GFRF, by α2, in its 2nd order GFRF,
etc (cf proof in [28]).

Motivated by this finding and results, shown in Table 4, we constructed a global
model, to explain the full input-output data set by adapting only one parameter2, the
input gain α. The global model consists of the global model structure MG(ΘG) =
MBG0, with the best tested parameter set ΘG = ΘBG0 and an adjustable input gain
αi, such that u(t) → αiu(t), where the index “i” refers to the ith light level BGi.
MG(ΘG, αi) denotes the global model. Table 5 summarizes the performance of the
global model for predicting the output at each light level BG0-3. The parametersαi , i =
0...3 have been estimated using the MATLAB� implementation of the L-M algorithm.
The global ModelMG(ΘG, αi), i = 0...3 performs almost as good at each BG level,

Table 5. Performance of global model with BG-dependent input gain α

Uni Model MG(ΘG, α0) MG(ΘG, α1) MG(ΘG, α2) MG(ΘG, α3)

αi 1=0dB 11.80=21.4dB 79.14=38.0dB 290.4=49.3dB
NMSEMPO 0.094 0.081 0.106 0.239
NMSEOSA 0.016 0.018 0.028 0.07

as if the full set of parameters Θ̂ is estimated independently at each light level (cf
Table 3). Although, the 2nd order GFRF calculated from the parameter estimated model
MBG3(ΘBG3) was not exactly quadratic, however, forcing a quadratic change by a
global model, does not significantly decrease the models performance, measured by the
NMSE. It is therefore possible that even at very dim light levels, like BG3, the system
performs a frequency normalization. This result suggests that the input-output data can,
within its limitations at low light levels, be described by the suggested global model
with light level dependent adjusted input gain α.

4 Discussion

In this paper, nonlinear system identification and analysis techniques were used to in-
vestigated the adaptation of Drosophila photoreceptors to different light intensity levels.
Instant changes between light levels cause the system to respond in distinct adaptive
modes, so as to discriminate light patterns, which can vary 10,000 fold. Such coding
occurs reliably within the limited voltage range (50-60 mV) of photoreceptors.

For the first time, a unified nonlinear dynamical model of the photorecetor was de-
rived that explains adaptation at each level of dynamic light inputs as a simple gain
adjustment process. Utilizing nonlinear system identification, the new model is based
on experimental measurements of photoreceptor responses to naturalistic stimuli. The
use of generalized frequency response functions was instrumental in revealing the un-
derlying mechanism of this type of adaptation. The derived model was validated exten-
sively using data sets recorded for different light levels. The graph shown in Fig. 3(b)

2 Note: Adjustments to small variations in the output offset have been applied. Since these small
adjustments do not change the results they are not further discussed here.
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Fig. 4. Evaluation of model predicted outputs ŷMPO at different background light intensities for
gain- and parameter adjusted models

summarizes the performance of all the estimated models and highlights that the same
model performance could be achieved for individual estimated models, models with
fixed structure, and the global model with an adapted gain. The individual model per-
formances are remarkably good when compared to the natural data variation, measured
by its SNR. Fig. 4 shows the model predictions of parameter and gain adapted models
in comparison to the actual recorded voltage responses.

We showed that Drosophila photoreceptors adapt to changing light inputs to pre-
serve the spectral structure in its output to higher order neurons. These dynamics are
quite different from those shown previously for Gaussian White Noise inputs [17],
where the system integrated the dim and differentiated the bright inputs. Instead, when
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Drosophila photoreceptors adapt to naturalistic contrasts, it appears that they employ
a pure gain control. This was tested by simulating the system with fixed NARMAX
model, whilst only optimizing the input gain. These new findings have implications on
the understanding how insect eyes code visual information. To learn more about the
nature of adaptation, similar experiments, involving visually impaired fly mutants will
be carried out. By replacing the constant gain with a variable gain, we will be able to
use the derived global model in future studies to investigate the influence of stimulation
patterns with different statistics onto adaptation.
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Abstract. The hippocampus maintains the memory of object–place

associations and also produces the ability of a scene expectation at a

novel viewpoint. To implement such capabilities, an objects’ distances

and directions should be integrated as an allocentric space memory, while

its neural dynamics have not been discussed. In this paper, we propose

an object–centered scene representation as a component on object–place

memory in the hippocampus. By using the representation, an object’s

distance and direction at the imagery viewpoint can be calculated as

the difference between object–centered and imagery scenes. Moreover,

the object–centered scene is applicable for the object–place memory re-

trieval at the novel location. It is suggested that the object-centered scene

representation mediates between egocentric and allocentric space repre-

sentation and supports the spatial imagery at the voluntary viewpoint.

Keywords: hippocampus, object–place associative memory, frame of

reference, spatial cognition.

1 Introduction

The hippocampus is known to maintain the memory of the environment. In the
hippocampus, many place cells are selectively activated by a specific portion
of the environment, and these are expected to represent a map of the environ-
ment. This is called the ’cognitive map theory’ [1] which is applied to many
computational models [2] [3]. The model is further developed [4] with a recent
physiological evidence of ’grid cells’ [5]. In addition to the spatial memory, the
hippocampus is further associated with the memory of object–place associations
[6] [7] [8] and its theoretical models have also been proposed [9] [10] [11]. Based on
a theoretically predicted boundary vector cell (BVC) representation [12], Byrne,
Becker and Burgess (2007) [11] proposed a neural network model for memory
encoding and storage, retrieval and imagery of the environment. It is unique that
this model processes a spatial updating in the mental space. However, the scene
computation at novel viewpoints remains unsolved. Some neural representation
beyond BVC should be considered.

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 49–56, 2009.
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?

Fig. 1. Object arrangement and scene estimation at an imagery viewpoint

In this paper, we propose an object–centered scene representation as a com-
ponent of the object–place memory in the hippocampus. Scenes at objects’ lo-
cations are calculated by a simplified view–based homing algorithm [13], and
are applied to the object–scene associative memory encoding, storage, retrieval
and imagery. To evaluate the computational ability of the model, the estimated
object arrangement at each imagery viewpoints is compared with the object
arrangement at the real viewpoint.

2 Model

Figure 2 shows a basic structure of the model consisting of a visual system
and a memory system of the hippocampus. This paper focuses on dynamic of
object–centered scene transformation and comparison with memorized scenes.
The representation of object–centered scene is used to denote object location in
the environment and to produce a method for calculating distance and orienta-
tion of a voluntary object pair.

2.1 Visual Environment and Visual Input

The environment consists of several independent objects and surrounding walls.
A viewer is located in the environment that is encoded by a set of views fixating
on each object. When the viewer locates at x and fixates on an object, Oi of
which location is di − x, then a view, Sdi

(φ), is given by

Sdi
(φ) =

{
P (φ− θdi

) (−CF < φ < CF )
∅ (otherwise) , (1)

where φ denotes eccentricity, θdi
denotes an orientation to the object from the

viewer, P (φ) denotes a panoramic view at the viewer location x, and CF denotes
a size of visual field.
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Fig. 2. (a) The model consisting of the visual system, and the hippocampus. (b)

Viewer’s view and object–centered view under an equal distance assumption. Right

figure shows arrangement of viewer (cross), object (circle) and equally distant land-

marks (dots). Displacements of landmarks are simply given by d
R

sin(φ).

2.2 Transformation of the Viewer Scene into the Object–Centered
Scene

The viewer’s view is memorized as a combination between object and scene
(a background gray–scale luminance pattern) information where the scene is
perspectively translated to include information of object location itself. During
encoding, the scene is ’expanded’ according to distance to fixation location by
using an equal distance assumption [13] where distances to portions of wall is
assumed to be constant (Fig. 2b). When distances to object and wall portions are
respectively given by d and R, displacement of wall portions are simply described
by d

R sin(φ). This assumption works perfectly when the walls are sufficiently
distant from the object, and it is also shown to be available for navigation in
real environment [13]. Importantly, this translation is associated with optical flow
field caused by self–motion that is well investigated as a neuronal selectivity in
MST region, thus it could be expected to be biologically plausible. An expected
object–centered scene, E(φ |S,d), is given by

E(φ |S,d) = S(φ− θd −
|d|
R

sin(φ)), R� |d| (2)
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where d a fixation location from the viewer. Note that this translation is nonlin-
ear, i.e., E(S,d1) �= E (E(S,d2),d3) under d1 = d2 + d3. This is geometrically
inaccurate, while it is expected to be available for representing object’s location
in the environment as a neuronal representation.

2.3 Memory Storage

As demonstrated in our previous reports [10], multiple object–scene associations
are successively encoded and assumed to be stored in the CA3 associative net-
work in the hippocampus. When the environment includes n objects, n object–
scene associations will be stored.

2.4 Estimation of Displacement between Scenes

During retrieval and imagery, a displacement of object pair is calculated as a
comparison of two scenes by using the translation shown in eq.(2). When two
scenes, Sa and Sb, are given, their expected displacement vector, q, is given by

(q(Sa, Sb), ϕ) :
2π∑

φ=0

(Sa(φ− ϕ)− E(φ|Sb(φ− θq),q))2 → min . (3)

2.5 Experimental Procedure

Ability of mental imagery of object arrangement at voluntary location is tested
by a square environment consisting of three objects and walls having gradually
changing luminance in space (Fig. 3A). Viewer is fixed at (10, 70) and object
locations are (70, 120), (90, 80) and (120, 130). The mental imagery is defined by
a comparison of an imagery scene translated for a fixation location, r, and a
memorized object–centered scene. By this way, orientation and distance of each
object at the imagery location r is obtained. The ability of mental imagery is
evaluated by a difference between imagery and geometrical objects’ distance and
orientation. The error in the imagery of i-th object orientation in comparison
with a real orientation is given by

er
I(i) = (di − r)− q(E(φ|Sdi

,di), E(φ′|Sr, r)). (4)

wheredi is displacement of i-th object and r denotes imagery location from the
viewer location.

Furthermore, to evaluate perspective accuracy of object–centered scenes,
memorized object–centered scenes are compared with real scene at location r.
When the object–centered scene is perspectively correct, the resultant distance
and orientation will be identical with real object arrangement, otherwise the
object–centered scene is considered to be perspectively inaccurate, i.e., these
might include spatial information but not correspond with real scenes. The dis-
placement error of i-th object between recalled and real view is given by

er
R(i) = (di − r) − q(E(φ|Sdi

,di), Pr). (5)
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In the results, a mean direction error,
∑

i θer
I(i)/3, and a mean distance error at

each imagery viewpoints,
∑

i |er
I(i)|/3 were calculated for every novel locations.

3 Results

3.1 Object Arrangement and Scene Estimation at the Imagery
Viewpoint

Figure 3 shows a result of an expected view at an imagery viewpoint (80, 30).
During encoding, three object–scene association are memorized, where object–
centered scenes are generated by translating original viewer’s view. Each view is
shown as a shaded ring plot to represent their orientational relationship to the en-
vironment. Mental imagery is given by a comparison between an imaginary scene
fixated at (80, 30) and memorized object–centered scenes. By calculating opti-
mal transformation for matching to object–centered view (eq.(3)), displacement
to each object at the imagery location is obtained. In Fig.3, these displacement
is plotted as lines from the imagery location. It is shown that the displacement
errors are small and object arrangement is correctly reconstructed.

2

2

33

1

1

Viewer

Imergery

Error

Error

Error

x

y
10 unit length

Fig. 3. The result of an object arrangement estimation at an imagery viewpoint. The

red circle and numbers indicate the viewer and objects locations, respectively. The

circle and numbers in blue indicate the imagery viewer and estimated object locations,

respectively. The shaded ring plot shows the viewer’s panoramic view and the fan-

shaped plots represent expected scenes at each location.
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To evaluate the ability to generate object arrangement at imagery location,
we calculated the errors with changing imagery location with a spacing of 20
unit length. Figure 4 shows a result of errors in the imagery object arrangement.
In a wide area, direction errors are less than 0.5 radian and distance errors are
less than 50 unit length. At locations close to walls, the error increases, while
the distance to the wall does not appear critical for calculating imagery object
arrangement. These results indicate that the object–centered scene representa-
tion under the equal distance assumption can produce the ability to calculate
imagery object arrangement.

3.2 Retrieval of Object Arrangement at a Novel Viewpoint

In this section, a perspectively accuracy of object–centered scene representation
was evaluated by using a real scene at the novel location for the object arrange-
ment estimation. Figure 5 shows a result of errors in the retrieval of the object
arrangement. The errors in the object direction estimation (Fig. 5a) are large
around the objects’ locations. This is reasoned by that the neighbor objects
widely occlude the background scene and disturb the object displacement esti-
mation in eq.(3). On the other hand, the errors in the object distance estimation
(Fig. 5b) are large near the walls. It could be concluded that the absolute dis-
tance information is difficult to be conveyed by the object–centered scene under
the equal distance assumption in eq.(2).

4 Discussions

The object–centered scene representation was proposed as a component of the en-
vironmental memory in the hippocampus. The computational abilities of the rep-
resentation for the spatial imagery (Section 3.1) and the retrieval (Section 3.2)
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Fig. 5. Errors in the memory retrieval of object arrangement estimation by a real
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were evaluated by using an object arrangement estimation error at novel view-
point. The results demonstrate that the memory of object and object–centered
scene associations at a viewpoint could be available for generating a new object
arrangement at a novel viewpoint. It is shown that the object–centered scene rep-
resentation could play a fundamental role for mediating the egocentric space to
the allocentric space (Fig. 6). Such a memory representation has a similarity to a
conceptual model with fragments memory [15], while our model has advantage in
the calculation of orientation and distance between voluntary object pair.

Neurophysiological studies have demonstrated that the object–centered space
representation exists in the parietal region [16] [17]. More importantly the pari-
etal region has massive afferent connections to the hippocampus through the
parahippocampal region [18] which is known to represent environmental scene
information [19]. The object–centered scene representation used in our model
would be expected to be represented by the parahippocampal cortex.

Viewer-centered 

(egocentric) view

Object-centered 

view

Memory of 
object-scene assoc.
(allocentric space)

Fig. 6. Transformation of spatial information proposed by our computational model
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Abstract. It remains unclear how visual information is co-processed by

different layers of neurons in the retina. In particular, relatively

little is known how retina translates vast environmental light changes

into neural responses of limited range. We began examining this question

in a bottom-up way in a relatively simple fly eye. To gain understand-

ing of how complex bio-molecular interactions govern the conversion of

light input into voltage output (phototransduction), we are building a

biophysical model of the Drosophila R1-R6 photoreceptor. Our model,

which relates molecular dynamics of the underlying biochemical reactions

to external light input, attempts to capture the molecular dynamics of

phototransduction gain control in a quantitative way.

Keywords: Biophysical model, Drosophila photoreceptor, phototrans-

duction cascade, Gillespie algorithm, Hodgkin-Huxley model.

1 Introduction

There have been many approaches to model fly photoreceptors [17,15,14,13].
van Hateren produced a linear-nonlinear cascade model to compare phototrans-
duction in blowfly photoreceptors to that of primate cones [17]; Pumir and his
co-workers produced a biophysical model of fly phototransduction cascade [15];
Va̋ha̋sőrinki et al. developed a Hodgkin-Huxley model, which relates Light In-
duced Current (LIC) to voltage response, to study the effect of voltage-gated
potassium channels on visual information processing [10]. There are also mod-
els for intracellular calcium dynamics, such as the diffusion model introduced by
Postma et al. [14] and the calcium homeostasis model by Oberwinkler [11].

To begin to investigate how a network of photoreceptors and interneurons,
whose responses are shaped together through feed-forward and feedback synapses,

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 57–71, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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co-process visual information, we developed a new biophysical model for Droso-
phila photoreceptor, which will form the input stage for a more complex net-
work model that will be developed in the near future. Our model describes
both photo-sensitive and photo-insensitive membranes of the photoreceptor. The
photo-sensitive part of the model consists of linear and nonlinear differential
equations describing biochemical reactions involved in phototransduction cas-
cade. The photo-insensitive membrane is represented by an electrical circuit
model based on Hodgkin-Huxley formalism. The complete model can predict
quite well macroscopic current and voltage responses to varying light impulses
(patch-clamp data from whole cell recordings).

2 Structure of Drosophila Photoreceptor

The compound eye of Drosophila (Fig. 1A) contains 776 ommatidia, stereotypical
processing units that focus the light energy by a corneal lens onto the rhabdom,
the light-sensitive parts of the photoreceptors underneath. Inside of each omma-
tidium, the outer photoreceptors (R1-R6) are arranged in a ring, surrounding
the inner R7 and R8 photoreceptors, which are stacked on top of each other in
the center. This gives ommatidia a characteristic pattern of 7 disks when viewed
from the top or in cross-section (Fig. 1D). R1-R8 are arranged around a central
space, intraommatidial cavity. Fig. 1E shows that Drosophila photoreceptors
are thin elongated cells, 100 µm in length (excluding axon) and 5− 6 µm in di-
ameter. Their plasma membranes divide into photo-sensitive (rhabdomere) and

Fig. 1. Anatomy of Drosophila eye. (A) The head. (B) Slice of a compound eye. (C)

Vertical section of ommatidium. (D) Cross section of ommatidium. (E) Schematic single

photoreceptor. (F) Cross section of Rhabdomere. (G) Light pathway. (C) and (D) are

modified from [18]. (E) and (F) are modified from [3]. (G) is from D. G. Mackean

(http://www.biology-resources.com/drawing-ommatidium-refraction.html)
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photo-insensitive membrane (basal membrane). The rhabdomere transduce light
into current (LIC), while the basal membrane incorporates different species of
voltage-gated K+ channels, which help to convert LIC into a well-defined volt-
age response. Rhabdomere (cross-section shown in Fig. 1F) consist of 30,000
finger-like protrusions (microvilli) into the central space. Each microvillus in a
rhabdomere is believed to act independently as a phototransduction unit, cap-
turing photons and transducing light energy to a current, which is then used to
charge the plasma membrane to generate a voltage response (Fig. 1G).

3 The Model of Photoreceptor

3.1 Photoreceptor Model Structure

The proposed photoreceptor model can be decomposed to several modules, as
shown in Fig. 2. The first module (Fig. 2A) corresponds to a random photon
capture model, which accounts for the fact that the number of photons absorbed
by each microvillus varies across the rhabdomere. The input to this module is a
1 ms light impulse and the output represents the number of photons absorbed
by each microvillus. To prevent lateral interactions between microvilli and to
keep the integration of LIC linear, the light input was given the maximum
effective brightness of 1,000 absorbed photons (1,000,000 photons/s). For this
brief stimulation, all photons are assumed to be absorbed at the same time
instant. The randomness of photon capture is based on Poisson statistics [4]. It is
important to note that LIC/photon (average light induced current per photon)
produced in an individual microvillus changes with the number of photons it
absorbs. Consequently, it is crucial to have a random photon capture model to
produce the light input for each microvillus.

Fig. 2. Schematic structure of our model for impulse light response of Drosophila pho-

toreceptor. (A) Random photon absorption model. (B) Deterministic model for photo-

transduction cascade. (C) Stochastic model for latency dispersion. (D) LIC integration

by convolution to produce macroscopic current. (E) Hodgkin-Huxley model for the cell

body.

Similar to the anatomical division of the photoreceptor membrane, the pro-
cessing of light stimuli is performed in two stages. The first processing stage,
implemented in modules in Fig. 2B, C, and D, produces the macroscopic LIC
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from rhabdomere (photo-sensitive membrane). These signals then drive the sec-
ond processing stage, a model of the photo-insensitive membrane implemented
in Fig. 2E, which accounts for the dynamics of the known voltage-gated ion-
channels on the cell body. The processing within a rhabdomere is divided into
two parts. The first part (Fig. 2B) is a deterministic model for biochemical reac-
tions of phototransduction cascade within a single microvillus, based on coupled
differential equations. The second part (Fig. 2C) is a latency dispersion model
that accounts for variations in signal transduction between different microvilli.
The latency distribution is obtained through stochastic simulation (Gillespie al-
gorithm) of the phototransduction model. The macroscopic current injected to
the cell body is obtained from integration of LIC produced in all microvilli.
Under our linear current integration assumption, the integration is produced by
convolving the basic current bump (generated by deterministic phototransduc-
tion model) with the latency dispersion (Fig. 2D)[19,5].

3.2 Random Photon Absorbtion Model

The random photon absorbtion model is characterized in terms of the following
parameters: Nmicro: the number of microvilli in the whole rhabdomere; Nm: the
number of activated microvilli; Nphoton: the number of photons for the light
impulse; Np(mj): the number of photons captured by each activated microvillus
mj , mj = 1, 2, . . . , Nm; λM : The average number of light quanta absorbed per
microvillus; fx: the fractions of microvilli that absorb x = 0, 1, 2 . . . light quanta;
fe: the fraction of microvilli that escape photo-activation; fa: the fraction of
light activated microvilli; λp: the average number of photons absorbed by each
activated microvillus; p(k): the selection possibility to absorb k photons for each
microvillus; km: the maximum number of photons each microvillus could absorb;
q(k): the accumulation photon selection probability.

The calculation contains two steps. First, Nm is calculated iteratively.

1. Initialization. Nphoton (Nphoton < 1000), Nmicro = 30,000, Nm = Nmicro

(Nm is initially set to Nmicro, assuming all microvilli are activated).
2. Calculate λM = Nphoton

Nm
.

3. Assuming that fx follow a Poisson distribution: fx = e−λM ∗λM
x

x ! . Therefore,
fe = e−λM and fa = 1− e−λM .

4. Update Nm and return to 2 until Nm converged (the termination criteria is
heuristic, here, Nm(i + 1) − Nm(i) < 10, i is the index of current iteration
loop).

Then Np(mj) is determined based on Poisson distributed roulette rule.

1. Compute λp as λp = Nphoton

Nm
.

2. The probability that an activated microvillus mj can absorb k photons,

assuming Poisson distribution, is given by p(k) = e−λp∗λp
k

k ! . Here, because
Nphoton�Nmicro, we assume that p(k) = 0 if k > km, where km = 10 ∗
round(λp + 1) (round(x) obtains the nearest integer of x).
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3. Compute q(k) =
∑k

j=1 p(j)∑km
j=1 p(j)

, generate a random number r, if q(k) < r <

q(k + 1), Np(mj) = k.

Fig. 3 shows simulation results of random photon absorbtion model for a light
impulse that contains 600 photons. The number in the x-axis is the number of
’activated microvilli’, which is quoted because some of the ’activated microvilli’
might absorb 0 photons, meaning failures. The y-axis is the number of photons
absorbed by each microvillus. Then microvilli are grouped into different cate-
gories based on the number of photons they absorbed (C(Ph) stores the num-
ber of microvilli that absorb Ph photons), as the signal transduction properties
(LIC/photon) vary with this number (Ph = 1, 2, . . . ,max(Np)).
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Fig. 3. Simulation of random photon absorbtion model

3.3 Model for Phototransduction Cascade

Molecularbiology of Phototransduction cascade. Although the photo-
transduction cascade is not fully characterized, it is clear that the photopigment
- rhodopsin, thousands of which are densely packed on the microvillar mem-
brane - will change its conformation upon absorption of a photon. This acti-
vated rhodopsin (metarhodopsin) then activates a second messenger, G-protein.
While bound to metarhodopsin (M), G-protein exchanges inactive guanosine
diphosphate (GDP ) for active guanosine triphosphate (GTP ), which in turn
catalyzes phospholipase C (PLC). G-protein coupled PLC cleaves phosphatidyl
4,5-bisphosphate (PIP2) into two intracellular messengers: inositol trisphosphate
(IP3) and diacylglycerol (DAG). IP3 is soluble in the cytosol, while DAG is no-
soluble and remains bounded to the membrane of microvilli. It is believed that
DAG, or its metabolite Polyunsaturated Fatty Acids (PUFA), are the excita-
tion messengers to the cation selective ion channels TRP/TRPL. The opening
of these transduction-channels fluxes in permeable ions, Na+, Ca2+, Mg2+,
generating LIC inside a single microvillus (for review, see [3]). Fig. 4 shows a
simplified diagram for Drosophila phototransduction cascade.

Regulation of Drosophila phototransduction cascade. Molecular, ge-
netic, and physiological studies suggest that at least 20 different gene products
are dedicated to the functioning and regulation of this one signaling cascade
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in Drosophila [3]. There are positive feedback pathways to speed up excitation.
TRP channels have a ’all-or-none’ excitation property, arising from Ca2+ de-
pendent positive feedback to TRP channels. When the first TRP channel opens,
the fluxed in Ca2+ will excite other TRP channels inside microvillus, triggering
many TRP channels to open, untill free intracellular calcium ([Ca2+]i) inside
microvillus build up to a level that terminates responses. In addition to exci-
tation, photoreceptor neurons have evolved sophisticated mechanisms for quick
termination of LIC (deactivation) to maintain sensitivity. In LIC termination,
Ca2+ and calmodulin (CAM , Ca2+ binding protein, acting as a Ca2+ buffer in
cytosol) play important roles as negative feedback signals, acting on many target
molecules in the phototransduction cascade [2]. Not only can Ca2+ provide neg-
ative feedback signals to TRP , TRPL channels to facilitate the closure of the
channels, but it can also reduce PLC activity, facilitate the binding of arrestin
to metarhodopsin (the inactivation process of meta-rhodopsin) [7], etc.

Fig. 4. Phototransduction cascade illustration

3.4 Mathematical Description of Phototransduction Model: Kinetic
Equations

The phototransduction cascade model was modified from [15]. The main differ-
ence between the models is in Ca2+ homeostasis (Eq. 9 to Eq. 12 vs. Eq. 7 and
8 in [15]). The balances, or dynamics, in production and consumption of vital
molecules are modeled by nonlinear first-order differential equations. For some
of the molecules that are in small numbers, the units are counts of molecules,
otherwise, we use concentration (the two are related by the microvillus volume
factor, 3×10−12 µl). To ignore noise effects, all variables are calculated as expec-
tations. In the following equations, the notation X denotes the expected number
of molecules, and X� will refer to the active state of X , whereas [X ] denotes
concentration, [X ]i is for intracellular concentration and [X ]o for extracellular
concentration. Rates of activation are generically denoted as κ and rates of de-
activation denoted as γ.

dM�

dt
= −γM� × (1 + gM�fn)× 
M��. (1)

Eq. 1 (vs. Eq. 1 in [15]) is for Metarhodopsin (M). Since all photons are as-
sumed to be effectively absorbed at t = 0, there is one-to-one mapping between
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number of photons and the value of M . Hence, M is initialized as M�(0) = Ph.
This equation describes the decay of M�. Compared to [15], we have intro-
duced an additional operator (
·�) to avoid negative and non-integer numbers
of metarhodopsin. The notation 
M�� means the smallest integer that is bigger
than M� if M� > 0, otherwise 
M�� = 0. The fn term on the right-hand-side
(defined in Eq.8) is negative feedback from C� (Ca2+ bound CAM). This term
is introduced to represent the facilitation of M� inactivation by C�.

dG

dt
= −κG� ×G× 
M��+ γG × (GT −G−G�) + κPLC� × PLC� ×G�. (2)

dG�

dt
= κG� ×G× 
M�� − κPLC� × PLCT ×G�. (3)

Eqs. 2 and 3 describe activation of G-protein byM�. There are three states of G-
protein, GqGDP is denoted by G and G� represents GqGTP (active state of G-
protein), while the nucleotide-free state of G-protein is calculated as GT −G−G�

(GT is the total number of G-protein inside one microvilli). The first terms in
Eq. 2 and in Eq. 3 are modeling exchange from GDP to GTP of G, stimulated
by M�. The seconde term in Eq. 2 is for stabilizing nucleotide-free state G-
protein by GDP . The third term in Eq.2 is added on to Eq. 2 in [15] to model
the formation of G upon deactivation of G� by GTPase activity stimulated by
PLC�. The seconde term in Eq. 3 has two roles in forming the profile of G�.
One role is the conversion of G� to PLC complex (PLC�) by binding to PLC
(κPLC� × (PLCT −PLC�)×G�, the same with the first term in Eq. 4) and the
other role is the conversion ofGqGTP toGqGDP by PLC� (κPLC�×PLC�×G�,
the last term in Eq. 2).

dPLC�

dt
= κPLC�×(PLCT −PLC�)×G�−γPLC�×(1+gPLC�fn)×PLC�. (4)

Eq. 4 represents the dynamics of PLC�, active PLC complex formed by G� and
PLC. The last term in Eq. 4 describes deactivation of PLC�, which was also
assumed to be accelerated by negative nonlinear feedback from C�.

dD�

dt
= κD� × PLC� − γD� × (1 + gD�fn)×D�. (5)

PLC� then cleaves PIP2 into DAG and IP3. There is a recycling pathway for
PIP2, but it is much slower than a bump generation (∼ 1,000 times slower,
calculated from time constants of the two processes [3]). Hence the dynamics
of this recycling is omitted here, leading to a proportional relationship between
PIP2 consumption to number of PLC�. The response property of second mes-
senger (presumably DAG) could be related directly to PLC� and is described
by Eq. 5. The interpretation of this equation would be the dynamical balance
between the production of DAG from PIP2 and its degradation through action
of DAG-kinase.

dT �

dt
= κT �×(1+gT �,pfp)×(

D�

KD�

)m×(TT −T �)−γT �×(1+gT �,nfn)×T �. (6)
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Eq. 6 describes opening of TRP and TRPL channels (as in [15], we use one equa-
tion to describe these two types of channels for simplicity), with T � denoting
the number of open state channels and TT the total number of channels, which
is conserved inside one microvillus. The precise mechanism of TRP/TRPL ac-
tivation is not known, but it is likely that 2nd messenger molecules (e.g. DAG)
act cooperatively to open one channel. Hence, in Eq.6, the activation rate of T �

is in proportion to ( D�

KD�
)m, where m is the cooperativity parameter for DAG

molecules and is set to be 4 here).

fp([Ca2+]i) =
([Ca2+]i/Kp)mp

1 + ([Ca2+]i/Kp)mp
. (7)

In the dynamics of activation of TRP/TRPL channels, positive feedback signal
from Ca2+ is included because of the ’all or none’ activation properties of these
channels. This feedback is formulated as a Hill function of [Ca2+]i inside microvil-
lus (Eq. 7), where Kp is the dissociation constant, which is [Ca2+]i that provide
half occupancy of Ca2+ binding sites for the channels. mp is the Hill coefficient,
describing the cooperativity of Ca2+ in exciting the channels. For the accelera-
tion of TRP/TRPL deactivation (refractory transition from open to closed state
of the channels), negative feedback is also provided from C�, the same as the neg-
ative feedbacks to other signalling components in the cascade (M�, PLC�, D�,
etc). This negative feedback is a sigmoidal shaped function of C�:

fn([C�]) =
([C�]/Kn)mn

1 + ([C�]/Kn)mn
. (8)

where Kn is the dissociation constant and mn Hill coefficient for C�. In reality,
the affinity of C� might vary for different feedback targets, leading to differ-
ent values of parameters Kn and mn. However, for simplicity, we look at the
whole pool of available C� binding sites as the same affinity properties. Feed-
back strengths are parameterized by gi. This simplification provides a practical
initial approximation, in absence of more complete mechanistic knowledge about
the different underlying processes.

The spontaneous activities of all the molecules in the dark, which act as
a noise source for the real system, are ignored. Hence, the initial values for
the differential equations (Eq. 1 to Eq.6) are set as G(0) = 50, G�(0) = 0,
PLC�(0) = 0, D�(0) = 0, T �(0) = 0.

The dynamics of [Ca2+]i are of particular interests since [Ca2+]i serves as
feedback signal to many targets in the phototransduction cascade. The driv-
ing force for [Ca2+]i is Ca2+ entry through TRP/TRPL channels during light
response. This Ca2+ influx (ICa) into a microvillus is modeled by Eq. 9:

ICa = PCa × IT � × T �. (9)

IT � is the average current fluxed into the cell per TRP channel (∼ 0.68 pA/TRP )
and PCa (∼ 40%) represents the percentage of Ca2+ out of the total current in-
flux (∼ 10 pA). At peak response, the Ca2+ influx is as high as 107 ions/s.
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Owing to the small volume of a single microvillus, local [Ca2+]i can rise dramat-
ically. It could peak, for example, at 100 mM during a 20 ms quantum bump, if
no other processes were counterbalanced with the influx. In comparison, [Ca2+]i
is about 0.16 µM in the dark state. However, it is important to maintain [Ca2+]i
homeostasis because Ca2+ is toxic to the cell in high concentrations.

Apart from Ca2+ entry, we model three other processes that modulate [Ca2+]i
dynamics: (i) Ca2+ extrusion through Na+/Ca2+ exchanger; (ii) Ca2+ buffer-
ing by calmodulin; (iii) Ca2+ diffusion to the cell body. Na+/Ca2+ exchanger
is a conventional transport system with a stoichiometry 3:1, i.e. 3 Na+ ions
are exchanged for 1 Ca2+ ion. This ratio results in a net charge imbalance,
which produces a weakly depolarizing current. The Ca2+ current, extruded by
the exchanger, is two times the net exchanger current. The net Ca2+ influx is
obtained by subtracting Ca2+ extrusion (through Na+/Ca2+ exchanger) from
total Ca2+ influx (through TRP channels): ICa,net = ICa − 2 × INaCa, where
INaCa denotes net inward current through Na+/Ca2+ exchanger. The formu-
lation for Na+/Ca2+ exchanger current is adapted from Luo-Rudy model for
cardiac cells [8] and is comparable to other models for cardiac myocyte [16]. The
model is derived based on thermodynamics of electro-diffusion [9], which assume
that the sole source of energy for Ca2+ transport is the Na+ electrochemical
gradient.

INaCa = KNaCa × 1
Km,Na

3+[Na]o
3 × 1

Km,Ca+[Ca]o
×

exp(η V F
RT )[Na]i

3[Ca]o−exp((η−1) V F
RT )[Na]o

3[Ca]i
1+dNaCaexp((η−1) V F

RT )
.

(10)

where KNaCa, dNaCa are scaling factors, η denotes the (inside) fractional dis-
tance into the membrane of the limiting energy barrier. V is the transmembrane
potential in volts, ideally this should be from the membrane potential of the cell
body. However, as in the simulation, the membrane potential is generated off-line
by a separate cell body model, this was approximated by the membrane poten-
tial generated by a single Quantum bump. F is the Faraday constant, (96,485
C×mol−1). R is the gas constant (8.314 J×K−1×mol−1) and T is the absolute
temperature, measured in kelvins.

Another Ca2+ extruding option might be through the Ca2+ uptake by buffer-
ing proteins, such as CAM (0.5 mM), which are abundant inside microvillus.
The diffusion of buffer molecules over the time scale of interest could be omit-
ted because of the relatively large molecular weight. This binding dynamic was
modeled as a first-order process [16]:

dOc

dt
= KU [Ca2+]i(1− Oc)−KROc. (11)

where, Oc is the buffer occupancy, i.e. the fraction of sites already occupied by
Ca2+ ions, and therefore unavailable for Ca2+ binding. dOc

dt is the temporal rate
of change of occupancy of Ca2+ binding sites. KU and KR are the rate constants
for Ca2+ uptake and release, respectively. The initial condition for Oc is set, so
that dOc

dt is zero in darkness.
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Diffusion between microvillus and somata might also act as a fast free Ca2+

shunting. The rate of Ca2+ flux from microvillus to somata could be calculated
as DA

L [Ca2+]i, whereas D = 220 µm2/s is diffusivity; L = 60 nm is length of
somata-microvillus membrane neck; A = 962 nm2 is crossing area of somata-
microvillus membrane neck. The rate of Ca2+ flux could come out as 106 ions/s
if [Ca2+]i were to rise above 10 mM (coinciding with previous published es-
timations 8 µM -22 mM [14]). Although there are physiological measurements
showing that [Ca2+]i can peak at 200 µM , decaying with characteristic time
scale of 100 ms [12], these experiments were done with blowfly in bright condi-
tion. Furthermore, [Ca2+]i may be underestimated by the assumption that all
microvilli were stimulated. The amount of diffused Ca2+ is comparable to the
rate of Ca2+ influx at the peak response, so Ca2+ diffusion to somata could not
be omitted. Ca2+ inside microvillus could diffuse ∼ 1 µm in 1 ms. Here, the dif-
fusion time is estimated as 2

√
D∆t: D is the diffusivity, and ∆t is the diffusion

time interval, which is much less than light response interval. Thus, [Ca2+]i is
assumed to be uniform in the volume of microvillus during light response. Ca2+

diffusion is included in the Ca2+ dynamics as a regression term, therefore we
have our Ca2+ dynamics formulated as in Eq. 12:

d[Ca2+]i
dt

=
ICa,net

2νCaF
− n[B]i

dOc

dt
−KCa[Ca2+]i. (12)

where [Ca2+]i dynamic is a balance between net Ca2+ influx (first term), Ca2+

uptake by Ca2+ buffer, calmodulin (seconde term), and Ca2+ diffusion (third
term). In the second term, n is the number of Ca2+ binding sites for calmodulin,
here n = 4. [B]i denotes concentration of calmodulin inside the microvillus.
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Fig. 5. Signal transduction capability at different light level. (A) Basic bump shape

when a single microvillus is absorbing 1, 2, 3, 4 photons, the inset shows peak of bump

as a function of number of photons absorbed. (B) Average latencies when a single

microvillus is absorbing 1, 2, 3, 4 photons. (A) and (B) share the same legend.

Figs. 5A and Fig. 5B, are to show the different signal transduction capability
of a single microvillus when it is absorbing different numbers of photons at
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Fig. 6. Electrical circuit of the photoreceptor cell body. Abbreviations: ksh, Shaker

channel; dr, delayed rectifier channel; novel, Novel K+ channel; Kleak, potassium leak

conductance; cl, chloride leak conductance.

the same time. It shows that the more photons are absorbed, the less current is
produced per photon (the stronger negative feedbacks at brighter light condition;
this enables the photoreceptor to effectively use its limited voltage range) and
the briefer the latency (the faster are the reactions).

3.5 Model for Latency Dispersion

To overcome the limitations of the deterministic model, which can not describe
the variations of signal transduction in different microvilli, we simulated the pho-
totransduction model (Eq. 1 to Eq. 6) stochastically using Gillespie’ algorithm.
This gives a latency dispersion (time variations in generation of single bumps in
different microvilli). For simplicity, we ignore the randomness of the amplitude
of different transduction events and assume the randomness only reside in the
latencies. The algorithm is from [15]. After simulating phototransduction cas-
cade stochastically for many times, a statistical latency, which is defined as the
time for the opening of the first TRP channel, can be obtained. For this, we
count the number of emerged bumps in each time bin (histogram of latencies),
and use a log-normal function to approximate the statistical latency. Latency
distribution is obtained by normalizing the log-normal fit.

3.6 Hodgkin-Huxley Model for Photoreceptor Cell Body

Drosophila photoreceptor express three dominant voltage-sensitiveK+ channels
in their photo-insensitive membrane (cell body): shaker and two classes of de-
layed rectifier that differ in their voltage dependency and rate of inactivation [1].
The resulting activation of voltage-sensitive K+ channels will extrude K+ out,
and thus oppose light-induced depolarization, driving the membrane toward the
dark resting potential.

The model for the photoreceptor cell body was based on Hodgkin-Huxley-
formalism (for derivation and validation of the model, refer to [10], supplemen-
tary material). The model incorporated Shaker and slow delayed rectifier K+
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Fig. 7. Simulation results for the model at different light level. (A) Simulated macro-

scopic current response at light impulse stimuli of 6, 40, 90, 240, 600 photons. (B)

Macroscopic voltage responses by the cell body at different level of light impulse stim-

uli. (C) Experimental macroscopic current responses (patch-clamp data from whole cell

recordings) at the same light level shown in Fig. 7A. (D) Voltage response predictions

by the model when stimulated by experimental current data.

conductances, in addition to K+ and Cl− leak conductances. The voltage-
dependent parameters (including time constants and steady-state functions for
activation and inactivation of K+ conductances) were obtained from published
data of dark adapted cells [10,1]. Although the properties of delayed rectifier
(shab) K+ channels are regulated by PIP2 [6], this modulation is much slower
than the impulse response of our model. Other photoreceptor membrane proper-
ties - i.e. the maximum values of the active conductances, resting potential, leak
conductances, and membrane capacitance - were estimated from in vivo record-
ings. Though never been measured physiologically, the leak conductances were in-
cluded to have the right resting potential. It is possible that the leaks could mimic
mean inputs from synaptic feedbacks that currently remain uncharacterized. The
voltage-dependent properties of the ion channels, the reversal potentials for each
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Fig. 8. Scaled voltage responses for comparison. (A) Voltage responses scaled by an

logarithmic gain. S 700 depicts the voltage response under 700 photons stimuli. S 400,

S 200, S 50 are the 400, 200, 50 photons stimulated voltage responses that are scaled

by ln(700)/ln(400), ln(700)/ln(200), ln(700)/ln(50) respectively. (B) Voltage responses

scaled by squared root gain under relatively dim light condition (below 200 photons).

S 200 shows the voltage response under 200 photons stimuli. S 100, S 50 are the

100, 50 photons stimulated voltage responses that are scaled by sqrt(200)/sqrt(100),

sqrt(200)/sqrt(50) respectively.

ion species, and the membrane area were kept fixed within the model. Fig. 6 shows
the equivalent electrical circuit for the model, where membrane is modeled as ca-
pacitor, the equilibrium potential of different species of ion channels as voltage
sources, and different kinds of voltage-gated ion channels as adjustable conduc-
tances. Leak channels were modeled as non-adjustable conductances.

The simulated current responses (Fig. 7A) and experimental current (Fig. 7C)
responses are very similar in shape. However, the activation and inactivation of
the simulated responses are somewhat faster than the experimental ones. This
discrepancy might result from the left-shift when approximating the statistical
latency with log-normal function, leading to a faster estimate. Nonetheless, the
peak of simulated macroscopic current is quite linear with light input (num-
ber of photons), about 3 − 4 pA/photon, which is in consistent with published
data [3]. Whilst the experimental macroscopic current response to 600 photons
stimulation appear nonlinear, this compression might be induced by inefficient
voltage-clamp control for large currents. The voltage range is almost the same
as in Fig. 7B and Fig. 7D, indicating that the cell body model contains the
essential nonlinear parts of the cell body. The faster inactivation phase of the
estimated voltage response (Fig. 7B) suggests that a log-normal shaped light-
induced current might lack a slower boosting component during the inactivation
of light response.

Under our simulation, the macroscopic current is quite linear with light inten-
sities, whereas it is the cell body membrane that is highly nonlinear, contributing
the most to the compression of voltage responses under relatively bright light
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condition. In Fig. 8A, we compared the voltage responses at different light inten-
sities by scaling them with a logarithmic gain. It could be seen that, above 200
photons stimulation, gain scaled voltage responses are quite similar in amplitude.
This means that in relatively bright light condition, in logarithmic scale, voltage
responses are linear to light intensities. This logarithmic compression under rel-
atively bright light condition help the cell to use efficiently the relatively small
voltage range for coding large different light intensities. From our simulation,
this compression could be caused mostly by the properties of the voltage gated
K+ conductances. The logarithmic gain control coding is not obtained under
relatively dim light condition (under 200 photons/ms), but can be substituted
by a square root relationship (Fig. 8B), indicating that cell body membrane
could help to shift the gain control mechanism under different light conditions
to help using voltage range effectively.

4 Conclusion

We constructed a mathematical model of Drosophila R1-R6 photoreceptor to
mimic the relationship between voltage outputs and light impulse inputs. The pa-
rameters introduced in the model were fixed, if known from electrophysiological
experiments, to make physiological sense. Different parts of the models were vali-
dated by comparing simulation results with experimental data. The LIC part of
the model was validated by comparing the simulation results with in vitro patch-
clamp data [2] and the cell body model was validated by in vivo current injection
experiments [10]. Even in this relatively basic form, our model can predict well the
waveforms of macroscopic light induced current responses. In the future research,
naturalistic light input sequences will be introduced to access the proposed dy-
namics. The fact that we need to enlarge potassium leak conductance in the cur-
rent clamp mode to keep voltage responses to light in the right range, indicates
there are uncharacterized conductances that facilitate adaptation to varying light
levels. Nonetheless, from a practical and systemic point of view, this model can
serve as a foundation to a preprocessing module for higher order models of the
Drosophila visual system that we intend to build due course.
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Abstract. Trust dynamics can be modelled in relation to experiences. Both 
cognitive and neural models for trust dynamics in relation to experiences are 
available, but were not yet related or compared in more detail. This paper 
presents a comparison between a cognitive and a neural model. As each of the 
models has its own specific set of parameters, with values that depend on the 
type of person modelled, such a comparison is nontrivial. In this paper a com-
parison approach is presented that is based on mutual mirroring of the models in 
each other. More specifically, for given parameter values set for one model, by 
automated parameter estimation processes the most optimal values for the pa-
rameter values of the other model are determined to show the same behaviour. 
Roughly spoken the results are that the models can mirror each other up to an 
accuracy of around 90%. 

Keywords: trust dynamics, cognitive, neural, comparison, parameter tuning. 

1   Introduction 

A variety of computational models has been proposed for the dynamics of human 
trust in relation to experiences; see e.g., [1-4]. Usually such models consider expe-
riences and trust as cognitive concepts, and depend on values for a set of parameters 
for specific (cognitive) characteristics of a person, such as trust flexibility vs. rigidity. 
Recently also neural models for trust dynamics have been introduced. An example of 
such a neural model, in which in addition a role for emotional responses is incorpo-
rated, is described in [5]. Also the latter model includes a specific set of parameters 
for (neurological) characteristics of the person modelled. As the set of parameters of 
this neural model has no clear connection to the parameters in cognitive models such 
as in [4], and the behaviour of such models strongly depends on the values for such 
parameters, a direct comparison is impossible.  

Therefore in this paper, a more indirect way to compare the models is used, by mu-
tual mirroring them in each other. This mirroring approach uses any set of values that 
is assigned to the parameters for one of the models to obtain a number of simulation 
traces. These simulation traces are approximated by the second model, based on au-
tomated parameter estimation. The error for this approximation is considered as a 
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comparison measure. In this paper this mirroring approach is applied to the two mod-
els for the dynamics of relative trust described in [4] and [5]. It is applied in two di-
rections, and also back and forth sequentially by using the estimated parameter values 
for the second model to estimate new parameter values for the first.  

In the paper, first in Section 2 the cognitive model is briefly summarised, and in 
Section 3 the neural model. In Section 4 the mirroring approach is discussed and the 
automated parameter estimation method. Section 5 reports the outcome of some of the 
experiments performed. Finally, Section 6 is a discussion. 

2   A Cognitive Model for the Dynamics of Relative Trust 

The cognitive model taken from [4] is composed from two models: one for the posi-
tive trust, accumulating positive experiences, and one for negative trust, accumulating 
negative experiences. First the positive trust is addressed. The human’s relative  
positive trust on an option i at time point t is based on a combination of two parts: the 
autonomous part, and the context-dependent part. For the latter part an important indi-
cator is : the ratio of the human’s trust of option i to the average human’s trust 
on all options at time point t. Similarly the human’s relative negative trust of option i 
at time point t (τ-

i(t)) is the ratio between human’s negative trust of  the option i and 
the average human’s negative trust of the options at time point t. These are calculated 
as follows: 

   ∑                       ∑   

Here the denominators express the average positive and negative trust over all options 
at time point t. The context-dependent part is designed in such a way that when the 
positive trust is above the average, then upon each positive experience it gets an extra 
increase, and when it is below average it gets a decrease. This principle is a variant of 
a ‘winner takes it all’ principle, which for example is sometimes modelled by mutual-
ly inhibiting neurons. This principle has been modelled by basing the change of trust 
upon a positive experience on 1, which is positive when the positive trust is 
above average and negative when it is below average. To normalise, this is multiplied 
by a factor 1 .  For the autonomous part the change upon a positive 
experience is modelled by 1 . As η indicates in how far the human is auto-
nomous or context-dependent in trust attribution, a weighted sum is taken with 
weights η and 1-η respectively. Therefore, using the parameters defined in above 
change in is modelled by the following differential equation: 

 

 =  β * [ η 1    1 1 1   1  / 2   γ 1 1   
 

Similarly, for negative trust: 
 

  =  β  η 1  1 1 1  1  / 2  γ 1 1  
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The trust  of option i at time point t is a number between [-1, 1] where -1 and 1 
represent minimum and maximum values of the trust respectively. It is the difference 
of the human’s positive and negative trust of option i at time point t:   . For more details, see [4]. 

3   A Neural Model for Relative Trust and Emotion 

Cognitive states of a person, such as sensory or other representations often induce 
emotions felt within this person, as described by neurologist Damasio [6] and [7]. 
Emotion generation via a body loop roughly proceeds according to the following 
causal chain: 
 

cognitive state   →  preparation for the induced bodily response  →   induced bodily response   →   
sensing the bodily response  →  sensory representation of the bodily response  →  induced feeling 

 
As a variation, an ‘as if body loop’ uses a direct causal relation preparation for the in-
duced bodily response  → sensory representation of the induced bodily response  as a shortcut 
in the causal chain. The body loop (or as if body loop) is extended to a recursive body 
loop (or recursive as if body loop) by assuming that the preparation of the bodily re-
sponse is also affected by the state of feeling the emotion: feeling  →  preparation for the 
bodily response  as an additional causal relation. Such recursiveness is also assumed by 
Damasio ([7], pp. 91-92), as he notices that what is felt by sensing is actually a body 
state which is an internal object, under control of the person. Another neurological 
theory addressing the interaction between cognitive and affective aspects can be 
found in Damasio’s Somatic Marker Hypothesis; cf. [7-10]. This is a theory on deci-
sion making which provides a central role to emotions felt. Within a given context, 
each represented decision option induces (via an emotional response) a feeling which 
is used to mark the option. For example, a strongly negative somatic marker linked to 
a particular option occurs as a strongly negative feeling for that option. Similarly, a 
positive somatic marker occurs as a positive feeling for that option. Somatic markers 
may be innate, but may also by adaptive, related to experiences ([8] p. 179). In the 
model used below, this adaptive aspect is modelled as Hebbian learning; cf. [11-13]. 
Viewed informally, in the first place it results in a dynamical connection strength ob-
tained as an accumulation of experiences over time (1). Secondly, in decision making 
this connection plays a crucial role as it determines the emotion felt for this option, 
which is used as a main decision criterion (2). As discussed in the introduction, these 
two properties (1) and (2) are considered two main functional, cognitive properties of 
a trust state. Therefore they give support to the assumption that the strength of  
this connection can be interpreted as a representation of the trust level in the option 
considered. 
 

The neural model 
An overview of the model for how trust dynamics emerges from the experiences is 
depicted in Fig. 1. How decisions are made, given these trust states is depicted in  
Fig. 2. These pictures also show representations from the detailed specifications ex-
plained below. However, note that the precise numerical relations between the indi-
cated variables V shown are not expressed in this picture, but explained below. 
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Activation level for preparation of body state: non-competitive case 
The emotional response to the person’s mental state in the form of the preparation for 
a specific bodily reaction (see label LP4 in Figure 1) is modelled in the non-
competitive case as follows. Here the mental state comprises a number of cognitive 
and affective aspects: options activated, experienced results of options and feelings. 
This specifies part of the loop between feeling and body state. This dynamic property 
uses a combination function g(σ, τ, V1, V2, V3 ,ω1, ω2, ω3)  including a threshold function. For 
example, 

 

g(σ, τ, V1, V2, V3,ω1, ω2, ω3)  = th(σ, τ, V1 + ω2V2 + ω3V3) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 1.  Overview of the neurological model for dynamics of trust and emotion 

with V1, V2, V3 activation levels and ω1, ω2, ω3  weights of the connections to the prepara-
tion state, and th(σ, τ,V)  = 1/(1+e-σ (V-τ) ) a threshold function with threshold τ  and 
steepness σ. Then the activation level V4 of the preparation for an option is modelled by 
 

dV4/dt = γ (g(σ, τ, V1, V2, V3, ω1, ω2, ω3) - V4) 
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Activation level for preparation of body state: competitive case 
For the competitive case also the inhibiting cross connections from one represented 
option to the body state induced by another represented option are used. In this case a 
function involving these cross connections can be defined, for example for two consi-
dered options 
 

h(σ, τ, V1, V2, V3, V21,ω1, ω2, ω3, ω21) = th(σ, τ, ω1V1 + ω2V2 + ω3V3 - ω21V21) 
 

with ω21  the weight of the suppressing connection from represented option 2 to the 
preparation state induced by option 1. Then  
 

dV4/dt = γ (h(σ, τ, V1, V2, V3, V21,ω1, ω2, ω3, ω21) - V4) 
 

with V4 the activation level of preparation for option 1.  
 

Activation level for preparation of action choice 
For the decision process on which option Oi to choose, represented by action Ai, a 
winner-takes-it-all model is used based on the feeling levels associated to the options; 
for an overview, see label LP10 in Fig. 2.  
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Fig. 2. Overview of the neurological model for trust-based decision making 

This has been realised by combining the option representations Oi with their related 
emotional responses Bi in such a way that for each i the level of the emotional re-
sponse Bi has a strongly positive effect on preparation of the action Ai related to option 
Oi itself, but a strongly suppressing effect on the preparations for actions Aj related to 
the other options Oj for j ≠ i. As before, this is described by a similar function h(σ, τ, 
V1, … ,Vm, U1, … ,Um,ω11, …,ωmm) as before, with Vi  levels for representations of options 
Oi and Ui levels of preparation states for body state Bi related to options Oi and ωij  the 
strength of the connection between  preparation states for body state Bi and prepara-
tion states for action Aj. Based on this, activation level Wi for the preparation of action 
Ai, is determined by 
 

dWi  /dt  =  γ (h(σ, τ, V1, … ,Vm, U1, … ,Um,ω11, .. ωmm) - Wi) 
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The Hebbian adaptation process 
From a neurological perspective the strength of a connection from an option to an 
emotional response may depend on how experiences are felt emotionally, as neurons 
involved in the option, the preparation for the body state, and in the associated feeling 
will often be activated simultaneously. Therefore such a connection from option to 
emotional response may be strengthened based on a general Hebbian learning me-
chanism [11-13] that states that connections between neurons that are activated simul-
taneously are strengthened, similar to what has been proposed for the emergence of 
mirror neurons; e.g., [14] and [15]. This principle is applied to the strength ω1  of the 
connection from an option to the emotional response expressed by the related body 
state. The following Hebbian learning rule takes into account a maximal connection 
strength 1, a learning rate η, and an extinction rate ζ. 

 

dω1 /dt = ηV1V2(1 - ω1) - ζω1 
 

Here V1 is the activation level of the option o1 and V2 the activation level of prepara-
tion for body state b1. A similar Hebbian learning rule can be found in ([13] p. 406). 
By this rule through their affective aspects, the experiences are accumulated in the 
connection strength from option o1 to preparation of body state b1, and thus serves as 
a representation of trust in this option o1.  

4   The Mirroring Approach to Compare the Models 

The mirroring approach used to compare the two parameterised models for trust dy-
namics works as follows: 

 

• Initially, for one of the models any set of values is assigned to its parameters  
• Next, a number of scenarios are simulated based on this first model.  
• The resulting simulation traces for the first model are approximated by the 

second model, based on automated parameter estimation.  
• The error for the most optimal values for the parameters of the second model 

is considered as a comparison measure.  
 

Parameter estimation can be performed according to different methods, for example, 
exhaustive search, bisection or simulated annealing [16]. As the models considered 
here have only a small number of parameters exhaustive search is an adequate option. 
Using this method the entire attribute search space is explored to find the vector of 
parameter settings with maximum accuracy. This method guarantees the optimal solu-
tion, described as follows: 

 

for each observed behaviour B 
for each vector of parameter value settings P 

calculate the accuracy of P 
end for 
output the vector of parameter settings with maximal accuracy 
end for 

 

In the above algorithm, calculation of the accuracy of a vector of parameter setting P 
entails that agent predicts the information source to be requested and observes the 
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actual human request. It then uses the equation for calculating the accuracy described 
before. Here if p parameters are to be estimated with precision q (i.e., grain size 10-q), 
the number of options is n, and m the number of observed outcomes (i.e., time points), 
then the worst case complexity of the method can be expressed as О ((10)pq nm2), 
which is exponential in number of parameters and precision. In particular, when p=3 
(i.e., the parameters β, γ, and η), q=2 (i.e., grain size 0.01), n=3 and m=100, then the 
complexity will result in 3 x 1010 steps. 

5   Comparison Results 

A number of experiments were performed using the mutual mirroring approach de-
scribed in Section 4 to compare the two parameterised models for trust dynamics. 
Experiments were set up according to two cases: 

 

1. Two competitive options provide experiences deterministically, with a con-
stant positive, respectively negative experience, alternating periodically in a 
period of 50 time steps each (see Fig. 3).  

2. Two options provide experiences with a certain probability of positivity, 
again in an alternating period of 50 time steps each.  

The first case of experiments was designed to compare the behaviour of the models 
for different parameters under the same deterministic experiences while the second 
case is used to compare the behaviour of the models for the (more realistic) case of 
probabilistic experience sequences. The general configurations of the experiment that 
are kept constant for all experiments are shown in Table 1. 

Table 1. General Experimental Configuration 

Parameter Neural Model Cognitive Model 

Number of competitive options 2 2 
Time step (difference equations) 0.1 0.1 
Number of time steps 500 500 
Initial trust values of option 1 and option 2 0.5, 0.5 0, 0 
Strength of connection from option to emotional 
response (ω1) 

0.5 not applicable 

Strength of connection between preparation state of 
body and preparation state of action (ωij) 

0.5 not applicable 

Strength of connection between feeling  
and preparation of body state 

0.25 not applicable 

Value of the world state 1 not applicable 
Grain size in parameter estimation 0.05 0.01 

 
Three experiments were performed for each case: after some parameter values as-

signed to the cognitive model, its behaviour was approximated by the neural model, 
using the mirroring approach based on the automatic parameter estimation technique 
described in Section 4. The best approximating realization of the neural model was 



 Comparing a Cognitive and a Neural Model for Relative Trust Dynamics 79 

used again to approximate the cognitive model using the same mirroring approach. 
This second approximation was performed to minimize uni-directionality of the mir-
roring approach that might bias the results largely if performed from only one model 
to another and not the other way around. 

An instance of a parameterized model can uniquely be represented by a tuple con-
taining the values of its parameters. Here the cognitive and neural models described in 
Section 2 and 3 are represented by tuples (γ, β, η) and (σ, τ, γ, η, ζ) respectively. For 
the sake of simplicity, a few parameters of the neural model, namely ω1, ω12 and ω21, 
were considered fixed with value 0.5, and were not included in model representation 
tuple. Furthermore, the initial trust values of both models are assumed neutral (0.0 
and 0.5 for cognitive and neural model resp.), see Table 1. 
 

Case 1 
In this case the behaviour of the models was compared using the experiences that 
were provided deterministically with positive respectively negative, alternating pe-
riodically in a period of 50 time steps each (see Fig. 3).  
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Fig. 3. a) Experience sequence for cognitive model, b) Experience sequence for neural model 

Here three different experiments were performed, where the parameters of cogni-
tive model are assigned with some initial values and then its behavior is approximated 
by the neural model. The best approximation of the neural model against the initially 
set cognitive model was reused to find the best matching cognitive model. Results of 
the approximated models and errors are shown in Table 2 while the graphs of the trust 
dynamics are presented in Fig. 4. Note that for the sake of ease of comparison and 
calculation of standard error the trust values of cognitive model are projected from  
the interval [-1, 1] to [0, 1] (see Fig. 4). In Table 2, the comparison error ε is the aver-
age of the root mean squared error of trust of all options, as defined by the following 
formula, 

 

ε
1

 

 

In the above formulation, n is the number of options, m is the number of time steps 
while T(j)1i and T(j)2i  represent trust value of option i at time point j for each model, 
respectively.  
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In Table 2 for experiment 1 initially the cognitive model was set with parameters 
(0.99, 0.75, 0.75) which was then approximated by the neural model. The best ap-
proximation of the neural model was found to be (0.55, 10, 0.15, 0.90, 0.50) with an 
approximate average of root mean squared error of all options ε value 0.074050.  

Table 2. Results of Case 1 

Exp. Initial Model Approximating Model using the 
mirroring approach 

Comparison 
Error (ε) 

1 Cog. Mod. (0.99, 0.75, 0.75) Neu. Mod. (0.55, 10, 0.15, 0.90, 0.50) 0.074050 

 Neu. Mod. (0.55, 10,0 .15, 0.90, 0.50) Cog. Mod. (0.96, 0.20, 0.53) 0.034140 

2 Cog. Mod. (0.88, 0.99, 0.33) Neu. Mod. (0.35, 10, 0.60, 0.95, 0.60) 0.071900 

 Neu. Mod. (0.35, 10, 0.60, 0.95, 0.60) Cog. Mod. (0.87, 0.36, 0.53) 0.059928 

3 Cog. Mod. (0.75, 0.75, 0.75) Neu. Mod. (0.30, 10, 0.95, 0.90, 0.60) 0.138985 

 Neu. Mod. (0.55, 10,0 .15, 0.90, 0.50) Cog. Mod. (0.83, 0.37, 0.55) 0.075991 

 
Then this setting of neural model was used to approximate cognitive model pro-

ducing best approximate with parameter values (0.96, 0.20, 0.53) producing ε  
0.034140. Similarly the results of other two experiments can be read in Table 2.  
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Fig. 4. Dynamics of the Trust in Case 1 a) Experiment 1, b) Experiment 2, c) Experiment 3 

Fig. 4 represents the dynamics of the trust in the two options over time for the de-
terministic case. The horizontal axis represent time step while vertical axis represent 
the value of trust. The graphs for each experiment are represented as set of three fig-
ures, where the first figure shows the dynamics of the trust of both options by  
the cognitive model with an initial setting as described in the second column of the 
first row of each experiment of Table 2. The second figure shows the traces of the 
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dynamics of trust by the neural model as described in the third column of the first row 
of each experiment of Table 2. Finally the third figure shows the approximation of the 
cognitive model by the neural model, where the neural model is described in the 
second column of the second row of each experiment of Table 2 (which is similar to 
third column of the first row of each experiment), and the approximated cognitive 
model is presented in the third column of the second row of each experiment. From 
Table 2 and Fig. 4 it can be observed that the mirroring approach based on automatic 
parameter estimation when used in bidirectional way gives a better realization of both 
models in each other, resulting in a smaller comparison error and better curve fit. 
 

Case 2 
In the second case the behaviour of the models was compared when experiences are 
provided with a certain probability of positivity, again in an alternating period of 50 
time steps each. Also here three different experiments were performed, where the 
parameters of the cognitive model were assigned with some initial values and then its 
behaviour was approximated by the neural model. The best approximation of the 
neural model against initially set cognitive model was reused to find the best match-
ing cognitive model. In experiment 1, 2 and 3 the option 1 and option 2 give positive 
experiences with (100, 0), (75, 25) and (50, 50) percent of probability, respectively. 
Results of approximated models and errors for this case are shown in Table 3 while 
the graphs of trust dynamics are presented in Fig. 5. Note that for the sake of ease of 
comparison and calculation of the standard error, again the trust values of the cogni-
tive model are projected from the interval [-1, 1] to [0, 1] (see Fig. 5). In Table 3 for 
experiment 1 initially the cognitive model was set with parameters (0.99, 0.75, 0.75) 
which was then approximated by the neural model. 

Table 3. Results of Case 2 

Exp. Initial Model Approximating Model using the 
mirroring approach 

Error (ε) 

1 Cog. Mod. (0.99, 0.75, 0.75) Neu. Mod. (0.85, 10, 0.95, 0.20, 0.05) 0.061168 

 Neu. Mod. (0.85, 10, 0.95, 0.20, 0.05) Cog. Mod. (0.97, 0.99, 0.18) 0.045562 

2 Cog. Mod. (0.99, 0.75, 0.75) Neu. Mod. (0.40, 20, 0.90, 0.20, 0.15) 0.044144 

 Neu. Mod. (0.40, 20, 0.90, 0.20, 0.15) Cog. Mod. (0.83, 0.05, 0.99) 0.039939 

3 Cog. Mod. (0.99, 0.75, 0.75) Neu. Mod. (0.10, 20, 0.45, 0.10, 0.10) 0.011799 

 Neu. Mod. (0.10, 20, 0.45, 0.10, 0.10) Cog. Mod. (0.99, 0.50, 0.99) 0.011420 

 

The best approximation of the neural model was found to be (0.85, 10, 0.95, 020, 
0.05) with an approximate average of root mean squared error of all options ε of value 
0.061168. Then this setting of neural model was used to approximate cognitive model 
producing best approximate with parameter values (0.97, 0.99, 0.18) and ε  0.034140.  
Similarly the results of other two experiments could also be read in Table 3.  

Fig. 5 represents the dynamics of the trust in the two options over time for the 
probabilistic case. The horizontal axis represents time while the vertical axis 
represents the values of trust. Here also the graphs of each experiment are represented 
as set of three figures, where the first figure shows the dynamics of the trust in both 
options by the cognitive model with an initial setting as described in the second col-
umn of the first row of each experiment of Table 3.   
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Fig. 5. Dynamics of the Trust in Case 2, a) Experiment 1, b) Experiment 2, c) Experiment 3 

The second figure shows the traces of the dynamics of trust by the neural model as 
described in the third column of the first row of each experiment of Table 3. Finally, 
the third figure is the approximated cognitive model by the neural model, where the 
neural model is described in the second column of the second row of each experiment 
of Table 3 (which is similar to third column of the first row of each experiment), and 
the approximated model is presented in the third column of the second row of each 
experiment. 

As already noticed in case 1, also here it can be observed that the mirroring ap-
proach based on automatic parameter estimation when used in bidirectional way gives 
a better realization of both models in each other, resulting smaller comparison error 
and a better curve fit. Furthermore, it can also be noted that as the uncertainty in the 
options behaviour increases, both models show more similar trust dynamics produc-
ing lower error value in comparison. 

6   Discussion 

In this paper two parameterised computational models for trust dynamics were com-
pared: a cognitive model and a neural model. As the parameter sets for both models are 
different, the comparison involved mutual estimation of parameter values by which the 
models were mirrored into each other in the following manner. Initially, for one of the 
models any set of values was assigned to the parameters of the model, after which a 
number of scenarios were simulated based on this first model. Next, the resulting simu-
lation traces for this first model were approximated by the second model, based on 
automated parameter estimation. The error for the most optimal values for the parame-
ters of the second model was considered as a comparison measure. It turned out that 
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approximations could be obtained with error margins of about 10%. Furthermore the 
results for the (more realistic) case of probabilistic experience sequences have shown 
much better approximation than for the deterministic case. This can be considered a 
positive result, as the two models have been designed in an independent manner, using 
totally different techniques. In particular, it shows that the cognitive model, which was 
designed first, without taking into account neurological knowledge, can still be 
grounded in a neurological context, which is a nontrivial result. 
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Abstract. To understand the details of brain function, a large scale

system model that reflects anatomical and neurophysiological character-

istics needs to be implemented. Though numerous computational models

of different brain areas have been proposed, these integration for the de-

velopment of a large scale model have not yet been accomplished because

these models were described by different programming languages, and

mostly because they used different data formats. This paper introduces

a platform for a collaborative brain system modeling (PLATO) where

one can construct computational models using several programming lan-

guages and connect them at the I/O level with a common data format.

As an example, a whole visual system model including eye movement, eye

optics, retinal network and visual cortex is being developed. Preliminary

results demonstrate that the integrated model successfully simulates the

signal processing flow at the different stages of visual system.

Keywords: Neuroinformatics, Model integration, Large scale modeling,

Visual system, Common data format.

1 Introduction

The brain presides essential roles of human life and fulfills precise and flexi-
ble processing generated by its complicated network. To elucidate the signal
processing carried out by the network, numerous neuroscience researches have
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been conducted in a large variety of the field such as anatomy, neurophysiol-
ogy, molecular biology, immunochemistry, and computational science. The mul-
timodal approaches in the neuroscience research have revealed a great deal of
function in the brain network. However, the resources obtained in experiments
and modeling studies have not been shared among neuroscientists, but mainly
as published articles. To further elucidate the brain function systematically, it
should be replicated as a precise large scale system model; for instance the nu-
merous resources in the field mentioned above and related computational models
should be integrated.

A primary role for neuroinformatics is to archive numerous digital resources
in neuroscience — for instance, experimental data and scripts of computational
models — and to share them among worldwide neuroscientists using open access
databases [1,2,3,16,17]. Under the International Neuroinformatics Coordinating
Facility (INCF), we have also established the neuroinformatics Japan-node and
neuroscience platforms [2] where physiological data, analysis tools, and compu-
tational models are registered and shared among neuroscientists. In order to
support this trend, a simulation server platform is being developed [4] as one
of the Japan-node platforms. On the simulation server platform, researchers
can simulate and confirm results of models stored in the platforms. As described
above, the neuroscience databases and the use of them are being developed; how-
ever, a framework for the integration of models registered in the neuroscience
databases for the developing the whole brain system has not yet been designed.

Here we propose a next generation modeling environment named PLATO
(Platform for a coLlaborative brAin sysTem mOdeling) [6]. In the PLATO, com-
putational models can be constructed by using several resources (e.g. experimen-
tal data, articles, and models), several programming languages, and connecting
them at the I/O level with the Network Common Data Form (netCDF) [7] to
build a large scale system model. In developing the model, the resources are col-
lected from among neuroscience databases including the neuroinformatics Japan-
node and neuroscience platforms with a data management tool (Concierge) [5].
In the present work, we introduce more detail of the system configuration of
PLATO and a novel function library which assists to program model I/Os. As a
test case for the PLATO, a large scale visual system model including eye move-
ment, eye optics and retinal network, is being developed. Preliminary results are
introduced bellow.

2 Framework of the PLATO

2.1 System Configuration of PLATO

The PLATO consists of a data management tool (Concierge), modeling tools
and simulation servers (Fig.1A). The Concierge is a personal database tool for
managing digital research resources [5]: articles, physiological data, analysis pro-
grams and computational models, including those registered data on servers such
as the neuroinformatics platforms in Japan-node [2]. Once the resources for de-
veloping a model (e.g. articles and experimental data) are collected with the
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Fig. 1. System configuration of the PLATO and an example of modeling on the PLATO

environment. A: The PLATO consists of data management tool (Concierge), modeling

tools (simulators and NetCDF-NI) and simulation server. B: Procedure of modeling

and simulation on the PLATO divided into creation and editing a common I/O data

format by NetCDF-NI, coding a model with a NetCDF-NI access header library and

its high-level library and simulation.

Concierge, the user can develop a model using several programming languages
(e.g. C/C++, MATLAB, Python and Java) and simulators on the PLATO, and
run them on the PLATO simulation server.

2.2 Network Common Data Form and NetCDF-NI

In order to integrate models developed by different programming language to
construct a large scale model, model I/Os should be described in the same man-
ner: that is, simulation step size, data dimension and data unit. The PLATO
recommends and produces a common I/O data format known as netCDF. The
netCDF format can include data and metadata such as simulation step size, data
dimension, data units, and equations of a model; therefore the netCDF file itself
produces all the necessary information about the input or output of a model.
Moreover, models can be pluggable by using the netCDF format. The netCDF
format is independent of the operating system, and libraries for fast parallel data
access are also available. These schemes will be essential to integrate models de-
veloped by different programming languages in different computer architectures
and run it on a parallel-processor computer system.

To facilitate the use of netCDF, we are developing the NetCDF-NI: a GUI
based software that can create a netCDF access header library including variables
and its metadata (e.g. variables, its unit and data formats) that are required for
a model and its I/O configuration. It also contains several functions to access
the netCDF data files.
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Fig. 2. An example of model development and integration on the PLATO. (A) the

schematic diagram of model integration; (B) simulation results: (a) rotation snake

stimulus and eye movement (red dots: fixating point, cyan line: scan path), a snapshot

of (b) retinal image, (c) X-type ganglion cells response and (d) Y-type ganglion cells

response.

2.3 Procedure for Modeling on the PLATO

Fig.1B illustrates a procedure for developing a model on the PLATO. It consists
of (1) creating and editing of a netCDF file by using the NetCDF-NI, (2) coding a
model with a netCDF access header and its high-level library, and (3) simulation.
In creating and editing the netCDF file, users can generate a netCDF access
header library using the NetCDF-NI by defining variables and its metadata,
which are used in a model and its I/O. The models can be developed by C/C++,
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MATLAB, Python and Java on the PLATO environment. The variables and I/O
configurations (e.g. data form, unit and simulation step size) are loaded from a
netCDF file via the netCDF access header library. The developed models also
tested on the PLATO simulation server.

3 Evaluation of the PLATO

To demonstrate our image of the PLATO, we preliminarily constructed a vi-
sual system model including eye movement, eye optics, and retinal network.
Fig. 2A [6] illustrates a schematic diagram of the visual system model con-
structed on the PLATO. In the model, each of the system, an eye movement
model or data, an eye optics model and a retinal network model, were connected
with the netCDF format. Due to the characteristics of the netCDF format either
the eye movement model output or the experimental eye movement data could
be plugged in. In other words, the PLATO supports the use of physiological data
into the computational model. The eye optics model was improved basing upon
Artal’s model [8] taking account of recent evidences for the eye ball: architec-
tures [9] and optic characteristics such as accommodation [10], pupil diameter
[11] and spectral transmittance [12,13] to calculate a retinal image. The retinal
image was further processed in a retinal network model. We utilized the virtual
retina [14] as a preliminary model. The virtual retina replicated the functions of
the retinal network and computed the activities of X-type and Y-type ganglion
cell output.

Fig.2B summarizes the simulation results produced by the visual system
model. A rotating snake stimulus [15] and eye movements (red dots: fixating
point, cyan line: scan path) are summarized in Fig.2B (a), and a snapshot of
model outputs in Fig.2B (b-d). These results demonstrated that the model suc-
cessfully reproduced the signal processing at the different stages of the visual
system: an external image which was acquired by eye movements is successfully
converted to a retinal image by the eye optics model (b); then the retinal net-
work model could generate on/off X type ganglion cells (c) and Y type ganglion
cells (d) output.

4 Summary and Conclusion

In the present work we proposed a novel modeling environment PLATO and
demonstrated that the large scale visual system model was successfully inte-
grated, as confirmed by the visualization of the signal processing flow at the
different stages of the visual system. These results indicated that the netCDF
data format could be a good bridge of the model I/O described by different
format in the integration of models.

For further improvements of the PLATO, we are currently developing a func-
tion library of the netCDF format to automatically adjust the simulation step
size between the model I/Os. We hope that the function library will allow users
to freely integrate their models on the PLATO.
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The PLATO tightly collaborates with the neuroinformatics platforms avail-
able in the Japan-node, because numerous models and physiological data are
continuously being registered. Likewise, it can be made possible to utilize the
resources registered on the other neuroscience databases by implementing plug-
ins to the Concierge. That is, the PLATO can provide multidisciplinary modeling
environment by this collaboration. Finally, we hope that the PLATO will help
researchers to develop models and to integrate them for constructing a large
scale brain model in near future.
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Modeling Geomagnetospheric Disturbances with
Sequential Bayesian Recurrent Neural Networks
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Abstract. Sequential Bayesian trained recurrent neural networks (RNNs) have
not yet been considered for modeling the dynamics of magnetospheric plasma.
We provide a discussion of the state-space modeling framework and an overview
of sequential Bayesian estimation. Three nonlinear filters are then proposed for
online RNN parameter estimation, which include the extended Kalman filter, the
unscented Kalman filter, and the ensemble Kalman filter. The exogenous inputs
to the RNNs consist of three parameters, bz , b2, and b2

y , where b, bz , and by

represent the magnitude, the southward and azimuthal components of the inter-
planetary magnetic field (IMF ) respectively. The three models are compared
to a model used in operational forecasts on a severe double storm that has so far
been difficult to forecast. It is shown that some of the proposed models signifi-
cantly outperform the current state of the art.

Keywords: Geomagnetic Storms, Recurrent Neural Networks, Filtering.

1 Introduction

It has been well established that changes in the Sun’s magnetic field influences
the structure of the magnetic field surrounding the earth (Geo-magnetosphere) [1,3,8].
The solar wind1 expands the reach of the Sun’s magnetic field to form what is known
as the Interplanetary Magnetic Field (IMF ). The IMF can cause energetic particles
to be injected into the Earth’s magnetic field, resulting in Geo-magnetospheric distur-
bances. Disruption of the Geo-magnetosphere takes place when a transfer of energy
from the solar wind opposes the Earth’s magnetic field. A magnetospheric storm occurs
if this transfer of energy persists for several hours [8]. Geomagnetic storms can have
many negative effects on technical systems in space and on Earth, such as a change in
a spacecraft orientation, terrestrial power generation and transmission2.

Forecasts of the earth’s magnetic field can give vital information about the
intensity of future magnetospheric disturbances. At mid-latitudes, magnetic storms are
measured in terms of the horizontal component of the Earth’s magnetic field [8]. This
horizontal component is averaged to form an index known as Dst. Studies have shown

1 Solar winds are a stream of charged particles, mostly electrons and protons, that are ejected
from the upper atmosphere of the sun.

2 A nuclear generator belonging to the OKG utility company in Sweden was heated from
geomagnetically induced current caused by the magnetic storm of March 13-14, 1989.

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 91–99, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a correlation between the intensity of magnetic storms and the value of the Dst in-
dex [9,6], where the more negative the Dst index the greater the intensity of the mag-
netic storm. The physical interaction (transfer of mass, energy and momentum) between
the IMF and the Geo-magnetosphere takes place at the magnetopause boundary. The
interaction itself is not fully understood and thus previous researchers have built non-
parametric predictive models usually based on recurrent neural networks (RNNs) to
forecast the Dst index [12,13]. Recurrent neural networks were found to uncover some
of the relationships between the IMF and Dst well enough for real time
forecasts [14].

Previous work in modeling the relationship between IMF and Dst with RNNs
have relied heavily on first-order gradient based methods for parameter estimation of
the model which has resulted in long training times [12,19], uncertain convergence,
and possibly vanishing gradients. This has been a bottleneck in the area (and may stifle
future progress in neural based forecasting of geomagnetic phenomena), as well per-
forming models are difficult to obtain, and new events can not readily be incorporated
into the model for improved forecasts. In this paper we investigate solutions to this prob-
lem through the use of the sequential Bayesian framework of which nonlinear Kalman
filters are utilized for RNN training [20]. The advantage of our approach is a frame-
work based on second-order [22] online estimation of model parameters, resulting in
fast convergence and accurate forecasts. The main results of the paper are as follows: 1)
an efficient framework to reliably obtain RNN parameters for Dst forecasts, 2) the abil-
ity to sequentially incorporate new measurements into the model, 3) improved forecast
accuracy over previously demonstrated results.

2 Recurrent Neural Networks

In this study, the recurrent architecture known as the Elman network (RNN) [4] is chosen
as previous studies have found a successful results with RNNs. Feed-forward networks
are not considered in this study due to poor performance in modeling the recovery phase
dynamics [7]. This is mostly likely due to the limitation of the feed-forward architec-
ture, i.e. limited temporal memory, bounded by the dimension of the input window.

The Elman RNN consists of a feed-forward multi-layer perceptron architecture, aug-
mented with a context layer which connects every hidden neuron output to every hidden
neuron input. The context layer allows for a memory of past states of the network. The
network weights for the hidden layer of size H can be represented as a matrix defined
as

Wh = [w1,w2, . . . ,wH ]T (1)

where wi = [wi,0, wi,1, . . . , wi,j ]T i = 1, 2, . . . , H , j = I +H , and I is the size of the
input layer. The hidden state s(t) is connected to the network output y(t) ∈ R1 via the
output weight vector

wout = [w0, w1, . . . , wH ]T (2)

The operation of the Elman network is described by the following discrete time
equations:
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s(t) = g
(

Wh[b, x(t)T , c(t)T ]
)

y(t) = f(wT
out[b, s(t)

T ]T )
(3)

where c(t) = s(t− 1) ∈ RH is the context vector, x(t) is the exogenous IMF inputs,
and b is the bias. The functions g(·) and f(·) are typically logistic sigmoidal nonlinear-
ities σ(a) = 1/(1 + exp(−a)) which map the input a from R into a bounded interval
Ω = (0, 1) of length |Ω| = 1 where Ω ⊂ R. All weights 1 and 2 can be arranged into
one vector as follows

w(t) = [wT
1 ,w

T
2 , . . . ,w

T
H ,w

T
out]

T (4)

2.1 State Space Modeling with RNNs

Weight estimation of the RNN can be formulated in a sequential Bayesian filtering
framework: given a hidden state represented by RNN weights and a noise contaminated
measurement, the task is to re-estimate the weights so as to factor in the newly arrived
information. The weights in the recurrent neural network, w(t) ∈ Rp, are considered
as the discretized state of the system. The RNN weights w(t) are treated as a random
vector whose time evolution is specified by the following nonlinear discrete time state
space model

w(t) = w(t− 1) + ω(t− 1) process equation
d(t) = h(t,w(t), x(t)) + νt measurement equation

(5)

where ω(t) ∈ Rp represents a stochastic perturbation assumed to be an i.i.d.
(independent and identically distributed) Gaussian process with zero mean and covari-
ance Q, i.e. ω(t) ∼ N (0,Q), and t ∈ N is the time index. This error ω(t) repre-
sents the discrepancy between the RNN and the underlying state transition function.
The noise νt ∈ R1 is assumed to be independent, zero-mean, uncorrelated, Gaussian
with variance R: ν(t) ∼ N (0, R), and d(t) are the targets from the provided data set
D = {x(t), d(t)}τ

t=1. The measurement equation represents the overall behavior of
the RNN, and the associated error, represented by ν(t), models the noise in the obser-
vations.

In the sequential filtering framework, it is assumed that past information
P (w(t − 1)|d(t − 1)) is available and can be used to find two quantities of interest:
P (w(t)|d(t− 1)),the forecast (prior) distribution and P (w(t)|d(t)), which is the anal-
ysis (posterior) distribution. The forecast distribution is specified via the integral

P (w(t)|d(t− 1)) =
∫
P (w(t)|w(t− 1))P (w(t− 1)|d(t− 1))dw(t− 1) (6)

The posterior distribution is filtered using the Bayes rule, which combines the prior in-
formation P (w(t)|d(t− 1)) with the most recently observed information P (d(t)|w(t))
to compute the analysis distribution

P (w(t)|d(t)) ≈ P (d(t)|w(t))P (w(t)|d(t− 1)) (7)

A sequential estimation of the two distributions is achieved through iteration of this
cycle at each time step.
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3 EKF Training of the RNN

For RNN training, the state space equations are highly nonlinear, and must be linearized
before the Klman filter equations can be computed at each time step [10]. This lin-
earization before applying the Kalman filter is known as the Extended Kalman Fil-
ter (EKF). The real time recurrent learning algorithm was used for the linearization of
the RNN through computation of the Jacobian matrix H(t) = ∂h(·)/∂w(t) consisting
of partial derivatives of the output y(t) with respect to the weights of the network. The
Jacobian H(t) is evaluated at each time step. EKF filtering for RNN weight estimation
leads to faster convergence [21] than gradient based algorithms, and also may resolve
issues with vanishing gradients [10]. For neural networks, The EKF solution to the
parameter estimation problem is given by the following recursion

kg(t+ 1) = P(t)H(t+ 1)[R+ H(t+ 1)T P(t)H(t+ 1)]−1

w(t+ 1) = w(t) + kg(t+ 1)(d(t)− h(t,w(t), x(t)))

P(t+ 1) = P(t+ 1)− kg(t− 1)H(t+ 1)T P(t).

(8)

Since the EKF is a suboptimal estimator based on linearization of a nonlinear mapping,
w(t) is only an approximation of the expectation, P(t) is an approximation of the state
covariance, and the matrix kg(t) is the Kalman gain. It is well known that the EKF may
experience instabilities as a result of this approximation, especially in situations of high
nonlinearity.

4 UKF Training of the RNN

The shortcomings of EKF [10] have lead many researchers to develop a number of
closely related Gaussian approximate filters based on novel deterministic sampling
methods used to propagate Gaussian random variables. [11] have introduced a more
robust alternative, the Unscented Kalman filter (UKF). Unlike the EKF, UKF propa-
gates mean and covariance information through nonlinear transformation using the un-
scented transform (UT). Let x be an L-by-1 random variable with x̂ and Pxx its mean
and covariance respectively. Let y be the transform of x through a nonlinear function,
y = f(x). Let χ be a matrix of 2L+1 sigma vectors χi used to approximate the random
variable x.

The weights for the calculation of the posteriori mean and covariance as follows

W(m)
0 = λ

L+λ

W(c)
0 = λ

L+λ + (1 − α2 + β)
W(m)

i = W(c)
i = 1

2(L+λ) i = 1 . . . 2L
(9)

where W(m)
i and W(c)

i represent the mean and covariance weights respectively. The
parameter λ = α2(L + k) − L represents a scaling parameter where L is the length
of the state vector and the value of α is often between 0.001 and 1. The parameter
k represents a secondary scaling parameter, usually set to 3 − L. The parameter β
represents information about prior knowledge of the distribution of x.
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After each iteration of the the UKF the sigma points are calculated as follows

Γ (t) = (L+ λ)(P(t) + Q(t)) (10)

φi(t) = [(ŵ(t))i=0, (ŵ(t) +
√
Γ (t))1≤i≤L, (ŵ(t)−

√
Γ (t))L<i≤2L] (11)

Di(t) = h(t, φi(t), x(t)) y(t) = h(t, ŵ(t), x(t)) (12)

where P(t) and Q(t) represent L-by-L approximate error covariance and process noise
covariance matrices, respectively.

The sigma points {χi}2L
i=0 are propagated through the nonlinear function yi = f(χi),

where i = 0, · · · , 2L. We then use weighted average of the transformed sigma points
to approximate the mean of y, ŷ, as follows

ŷ =
2L∑
i=0

W(m)
i yi (13)

The weighted average of the difference between each transformed sigma point and the
overall average is used to calculate the predicted error covariance as follows

Pyy =
2L∑
i=0

W(c)
i (yi − ŷ)(yi − ŷ)T (14)

The RNN-UKF weight vector is then updated online as follows

– The filtered measurement estimate error covariance matrix and the cross covariance
between the state and measurement

Pyy(t) =
∑2L

i=0 W(c)(Di(t)− y(t))(Di(t)− y(t))T

Pwy(t) =
∑2L

i=0 W(c)
i (φi(t)− ŵ(t))(Di(t)− y(t))T

(15)

– The gain matrix, the filtered state estimate and the error covariance are computed
as follows

kg(t) = Pwy(t)(Pyy(t) +R)
−1

ŵ(t+ 1) = ŵ(t) + kg(t)(d(t) − h(t, ŵ(t), x(t)))
P(t+ 1) = P(t)− kg(t)Pyykg(t)

T

(16)

5 Ensemble Kalman Filter Training of the RNN

The EnKF is a Markov Chain Monte Carlo approach to estimating the Fokker-Plank
equation for the time evolution of the PDF of the RNN weights [5]. The EnKF sam-
ples the PDF by a random ensemble of RNN weights, which approximates the ensem-
ble density [16]. The EnKF algorithm can be broken down in to two phases, the
prediction step and the analysis step. In the prediction step, the state gets propagated
forward in time via Equation 5. As stated in Section 2, the state vector is defined as
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w(t) = [w1, w2, . . . , wn]T , where n is the number of parameters of the RNN. An en-
semble of size m is formed by drawing m of these wt vectors from N (0,Q) to form
the ensemble matrix θ(t) = [w1(t),w2(t), . . . ,wi(t), . . . ,wm(t)], θ(t) ∈ R(n×m) in
which θ(i)(t) = wi(t). The ensemble mean can then be written as θ(t) = θ(t)·1(m×m)

where 1(m×m) is a (m×m) matrix where all elements in 1(m×m) are set to the value of

1/m. Furthermore, yi
t = h(θ(i)(t)) where y(t) = [y1(t), y2(t), . . . , yi(t), . . . , ym(t)].

The mean of the forecast ensemble can then be defined as y(t) = y(t)1(m×m) and, the
covariance matrixes are estimated as

Pwy(t) =
1

m− 1
(θ(t)− θ(t))(y(t)− y(t))T (17)

Pyy(t) =
1

m− 1
(y(t)− y(t))(y(t)− y(t))T (18)

The mean weight vector is computed as w(t) = θ(t) · 1(m×1) where again 1(m×1) is a
(m× 1) matrix where all elements in 1(1×m) are set to the value of 1/m. The weights
are then updated by

w(t+ 1) = w(t) + Pwy(t)(R + Pyy(t))−1(d(t) − h(w(t), x(t))) (19)

Finally, to update the ensemble, a random matrix Z ∈ R(m×n) is created where each
element zij is drawn from N (0, R). The mean of the sample is computed via Z =
Z · 1(m×m), and the variance is computed via

D =
√

m

m− 1
(Z− Z) (20)

where the ensemble is then updated as

G(t) = (θ(t)− θ(t)) + Pwy(t)(R + Pyy(t))−1(D − (y(t)− y(t))) (21)

θ(t+ 1) = G(t) + w(t+ 1)c(1×m) (22)

and c(1×m) is a (1 ×m) matrix of ones. The analysis step adds a random component
and perturbs the ensemble that will be used as the starting point for the next iteration
of the algorithm. This update step propagates the mean and variance of the ensemble
forward, updated in light of the new observation.

6 Experimental Results

We compare the forecast performance of the three proposed models and an operational
model [14] on one hour ahead forecasting of the Dst index. The data set consisted of
216 hourly measurements taken from 7-Nov-2004 to 15-Nov-2004.

In all simulations, the weights of the networks were initialized with random uni-
formly distributed weights in the range of [−1, 1]. Each of the Kalman trained recurrent
networks were initialized with 3 hidden neurons and 3 input neurons for each factor
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Fig. 1. Prediction ofDst from 7-Nov-2004 to 15-Nov-2004

(bz, b2, by
2). All RNNs had one output neuron corresponding to the one hour ahead

value of the Dst signal. In all filters, the initial diagonal elements of the covariance
matrix of the [Q]ii and R were set to 1.0e−3 and 1.0e−2.

Figure 1 show that the forecasts of the RNN-EnKF and the RNN-UKF are similar and
the top two graphs of Figure 2 show that the errors of the RNN-EnKF and RNN-UKF are
clustered around zero, with few large errors. The EKF trained RNN and Lundstedt of-
fline model [15] resulted in the least accurate predictions, with Lundstedt’s model pro-
ducing the largest errors, as shown in the bottom graph of Figure 2. The relatively poor
performance of the RNN-EKF is most likely due to filter divergence, as large errors
are committed during the sharp downward spike of the Dst index. However, the sam-
ple based filters captured this sudden change with little error. Lundstedt’s model is not
dynamically updated and has resulted in poor forecast performance [14]. From these
simulations it is clear that online training of RNNs with nonlinear Kalman filters can
significantly improve Dst forecasts respectively.

7 Future Work

Neural networks have shown encouraging results in modeling Dst. The research pre-
sented here demonstrate the ability of dynamically trained RNNs to accurately capture
the behavior of Dst. However, on the main limitations of the work is the static topology
of the network (parameters are adapted, but not the topology), which does not allow for
fully adaptive adjustment of the neural model to the underlying process. Further work
will evaluate more flexible models such the removal of weights or basis functions [17],
and generating topologies to suit the data [2,18].
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Fig. 2. Distribution of errors

8 Concluding Remarks

This paper introduced a framework for recursive estimation of geomagnetic activity
through sequential Bayesian training of RNNs. The proposed filters implement a sta-
ble online equivalent of second-order Newtons Method for parameter estimation [21].
Through a comparison between the proposed models and [15], we have observed a sig-
nificant increase in prediction accuracy of the Bayesian filtered RNNs. The advantage
of the online filters is due to second order training of the RNN with precisely adapted
learning rates computed in the Kalman gain of the filters. It is known that Kalman
based training methods contain second order information of the scaled inverse Hessian
of the cost function, which results in increased learning, and robustness to local minima
during weight optimization. The geomagnetic forecasting literature has heavily utilized
first order gradient based methods. This paper has shown significant improvements with
second order Kalman filter trained RNNs.
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Abstract. Belief revision is the problem of finding the most plausible explanation 
for an observed set of evidences. This has many applications in various scientific 
domains like natural language understanding, medical diagnosis and computa-
tional biology. Bayesian Networks (BN) is an important probabilistic graphical 
formalism used widely for belief revision tasks. In BN, belief revision can be 
achieved by setting the values of all random variables such that their joint prob-
ability is maximized. This assignment is called the maximum a posteriori (MAP) 
assignment. Finding MAP is an NP-Hard problem. In this paper, we are proposing 
finding the MAP assignment in BN using High Order Recurrent Neural Networks 
through an intermediate representation of Cost-Based Abduction. This method 
will eliminate the need to explicitly construct the energy function in two steps,  
objective and constraints, which will decrease the number of free parameters  
to set. 

1   Introduction 

Belief revision is the problem of finding the most plausible explanation for an observed 
set of evidences. Belief revision falls under the broader domain of reasoning under 
uncertainty where information is not complete or contradictory; thus, probabilistic 
handling seemed the best candidate for those tasks. However, probabilistic reasoning 
was described as being “epistemologically inadequate” by McCarthy and Hayes in 
their basic paper in 1969 [1]. They showed that the number of parameters needed to 
compute the joint probability distribution is exponentially proportional to the size of 
the given dataset which yields the whole mathematical computations intractable. As a 
result, researchers avoided using probabilistic reasoning until the notion of independ-
ence assumption appeared.  

In 1988, Pearl standardized the independence assumption notion and formally pre-
sented Bayesian Network (BN) where each variable is conditionally independent of 
its ancestors given its parents [2]. BN is fully specified by two components: a Di-
rected Acyclic Graph (DAG), whose vertices represent random variables, and a set of 
parameters that describe the conditional probability distribution of each variable given 
its parents. These two components together fully specify a unique joint distribution 

over all random variables in the graph. Let G be a DAG, and let 
1
, ,

n
X X…  denote the 

set of random variables, vertices of G. The BN encodes the Markov assumption: Each 
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variable is independent of all its non-descendants variables given its parents. Thus, 
the full joint distribution can be composed of the product form: 

( , , ) ( | ( ))1 1

n
P X X P X Xi in

i
π= ∏

=
…  (1)

( )Xiπ  is the set of parents of Xi  in G .  For a specific assignment, A , over all nodes, 

(1) can be rewritten as: 

( ) ( ( )| ( ( )))
1

n
P A P A X A Xi i

i
π= ∏

=
 (2)

BN saves a considerable amount of memory and calculations which enables us to 
calculate joint distributions otherwise impossible to calculate. For example, to specify 
the full joint distribution for 10 binary random variables we need 210 = 1024 values to 
be stored and used during computation. If we used BN with each variable depending 
on no more than three other variables, we end up having 10×23=80 parameters only.  

Given a BN with an observed set of evidence nodes ε  we are looking for values 
assignment A for the rest of the network nodes, such that ( | )P A ε  is maximized, using 

Bayes rule: 

( ) ( | )
( | )

( )

P A P A
P A

P

ε
ε

ε
=  (3)

Because we have observed the values of evidence nodesε , ( )P ε  is constant, so it 

ends up maximizing P(A) that represents the joint probability distribution in (1) and 
(2). This assignment is called the maximum a posteriori assignment (MAP). Once this 
assignment is found, we can do all kinds of probabilistic inference needed. 

Finding MAP is shown to be NP-hard [4]. For multiply-connected BN, existing al-
gorithms suffer from exponential complexity, so new heuristics and algorithms are 
always needed. In this paper, we propose finding MAP using High Order Recurrent 
Neural Networks (HORN) through an intermediate representation of Cost-Based 
Abduction (CBA). We first transform BN into CBA system using the algorithm men-
tioned in [6]. To our knowledge, this is the only algorithm in literature that does such 
a transformation, so it is crucial to analyze and discuss it step by step. Then, we will 
fill in the gap between BN and HORN by solving the resultant CBA system using 
HORN through the method mentioned in [7]. Finally, we will provide the mathemati-
cal framework to derive the energy functions equivalent to logical rules with more 
than 3 hypotheses and present our results. 

1.1   Cost-Based Abduction (CBA)  

CBA was first introduced by Charniak et al [9]. Formally, a CBA system is a 4-tuple 
(H, R, c, G), where H is a set of hypotheses or propositions, c is a function from H to 
a nonnegative real c(h) called the assumability cost of h ∈ H , R is a set of rules of 
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the form:
1 2

:( ... )
n k

i i i i
R p p p p∧ ∧ ∧ → for all 

1

, ...,
n

i i
p p H∈ , and G ∈ H is the goal 

or the evidence set [6].  
Objective: finding the least cost proof (LCP) of the goal. Proof cost is the sum of 

all costs of the hypotheses needed to be assumed to complete the proof. Any given 
hypothesis pi ∈ H can be true either by proving it or by assuming it to be true and 
paying its assumability cost.  Hypotheses that can be assumed have assumability costs 
less than∞ , we call them “assumables”.  Consequent hypotheses that are proven 
through the assumables are called “provables”. 

Finding the optimal solution for a CBA system is proven to be NP-hard [11] [14]. 
Previous approaches to CBA can be found in [12] [13] [14]. The only Neural Net-
works (NN) approach to CBA was introduced in [7], where the authors found the 
optimal solution of CBA system by transforming it into HORN through an intermedi-
ate representation of Penalty Logic (PL).  

Finding the LCP in CBA system is equivalent to finding the MAP in BN [11] [14]. 
Despite their equivalency, it is believed that finding LCP is more efficient than find-
ing MAP and it may be easier to find heuristic for CBA system than finding one for 
BN [6] [11]. Santos found the necessary and sufficient conditions under which CBA 
is polynomially solvable [15]. On the other hand, polynomial solvability for finding 
MAP in BN is not available even with applying restrictions on the graphical represen-
tation [4] and even for trying to find an alternative next-best explanation [5]. 

1.2   High Order Recurrent Networks (HORN) 

A recurrent NN is one whose underlying inter-neural connections contain at least one 
cycle. The Hopfield network is perhaps the most famous recurrent NN [16]. The  
underlying topology is a graph and each weighted connection is either a binary con-
nection, Tij, that connects two neurons (i, j) or a unary connection Ii which is the bias 
of a single neuron i. Each neuron is trying to minimize the energy function which is 
usually composed of two energy functions: 

Obj ConstE E Eβ= +  (4)

EObj  describes the objective function to be either maximized or minimized while the 
EConst  ensures the feasibility of the optimized solution by enforcing the set of the con-
straints. β is a problem dependant free parameter to be experimentally tuned. We can 
think of β as a tradeoff knob between solution optimality and solution feasibility. 
Depending on the NN order, E can be either quadratic or higher order. 

HORN is a recurrent network whose underlying topology is a hypergraph, allowing 
weighted hyperedges that connect more than two neurons. The degree of the edge is 
the number of neurons it connects. The order of the network is the highest degree in 
the topology.  In a Kth-order HORN a neuron with an activation level ui and an output 
Vi is governed by: 

( )

1 , ,d

k
di

s j
d s S i s j s j i

du
T V

dt = ∈ ∈ ∈ ≠

=∑ ∑ ∏  (5)
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Where ( )
i i

V g u= , and g is typically a sigmoidal activation function. k  is the order 

of the network. ( )d

s
T  is the weight of the dth-degree edge connecting neurons 

1
...

d
ii . 

d
S denotes the set of all neuron sequences 

1
...,,

d
J J , such that 1,...,

1
d

j n≤ ≤ ; where 

n is the number of neurons and 
a b

J J≠ if a b≠  [3]. Each unit minimizes the follow-

ing Kth-order energy function:  

1 2

1 11 1

1 2 1

1 1
1 ...

( 1) (1)
...

1 ... 1

( )
...

... ...

...
k

k k

k

k k
i i i n

k
i i i i i

i i i n i n

k
i i i iT

T V V T V

K V V

− −
−

≤ < < < ≤

−

≤ < < < ≤ ≤ ≤

= −

− − −

∑

∑ ∑
 (6)

1.3   Related Work 

To our knowledge, the only attempt to find MAP using HORN is in [3]. However, 
this method requires deriving the energy function in two steps: EObj and EConst ; then, 
the two functions need to be combined into one function as in (4). This method  
requires extensive experimentation to set the network parameter β among other  
parameters [3]. In this work, we will create the full energy function in one step from 
the CBA system equivalent to the given BN. That will eliminate the need for creating 
and combining two energy functions and the need for tuning the free parameter β. 

2   Transforming BN into CBA 

In this section we will follow and analyze the linear time transformation algorithm 
mentioned in [6] to transform the multiply-connected BN in fig.1 into an equivalent 
CBA system. This example can be found in Murphy’s BN tutorial [17].     

Our objective is to explain 
why the grass is wet. So we 
want to reach an assignment 
A for the random variables 
such that P(A|W) is maxi-
mized. Using Bayesian infer-
ence we can see that: 

( 1 | 1) 0.430P S W= = =     

( 1 | 1) 0.708P R W= = =  

So, the best explanation for 
the wet grass is because it is 
raining rather than because of 
having the sprinkler on. 
 

Fig. 1. Multiply-connected BN example 
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The transformation to CBA goes as follows: 

1. Transform the CPT of each random variable  v  to a linear table 
v

P , tables 1 to 4. 

Each line 
v

l P∈  is a hypothesis that the premises of that line are satisfied. V(l) de-

notes the probability corresponding to line l in the table. The cost of the hypothesis 

lh  that represents each  line  is : ( ) log ( )c h V l Ql = − +  where:   log
v

v V

Q Q
∈

= − ∏  

and min{ ( ) | }
v v

Q V l l P= ∈  So: 0.5 , 0.1, 0.2 , 0.9
C S R W

Q Q Q Q= = = =  

When calculating Q , we ignore the line ( | , ) 0P W S R =  because W is our goal and 

we are trying to explain why the grass is wet, so 2.0458Q =  

Table 1. Cloudy , C 

Value P(C) hl  ( )c h
l

 

0 0 . 5 
1C

h l  2.3468  

1 0 . 5 
2C

h l  2 .3468 

 

 
 
 

Table 2. Sprinkler , S 

Value 

C S 

( | )P S C   hl  ( )c h
l

 

0 0 0.5 
1S

h l  2.3468 

0 1 0.5 
2S

h l  2.3468 

1 0 0.9 
3S

h l  2.0915 

1 1 0.1 
4S

h l  3.0458 
 

Table 3. Rain , R 

Value 

C R 

( | )P R C hl  ( )c hl  

0 0 0.8 
1R

h l  2.1427 

0 1 0.2 
2R

h l  2.7447 

1 0 0.2 
3R

h l  2.7447 

1 1 0.8 
4R

h l  2.1427 
 

Table 4. Wet grass, W. The goal 

Value 

S R W 

( | , )PW S R hl  ( )c h
l

 

0 0 1 0.0 
1W

h l  ∞  

1 0 1 0.9 
2W

h l  2.0915 

0 1 1 0.9 
3W

h l  2.0915 

1 1 1 0.99 
4W

h l  2.0501 
 

2. For every variable v V∈ , create 
v

h  representing that proposition v is assigned 

some truth value; ( )
v

c h = ∞ . Result is a set of hypothesis { , , , }
C S R W

h h h h    

3. For every v V∈ and for every ( )t D v∈ , where ( )D v  is domain of v, 

o Construct a hypothesis 
tvh denoting that proposition v is assigned a value t. Add 

tvh to the system hypothesis and assign ( )
tvc h = ∞ ;  
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Result is a set of new hypothesis: { , , , , , , }
t f t f t f tC C S S R R Wh h h h h h h , we ignore 

fWh . 

o Construct a rule 
tvR with { }

t t

A
v vR h=  and { }

t

C
v vR h=  

Where AR refers to the set of R’s antecedents and CR  refers to R’s consequent. 
Result is this set of rules:  

: , : : , :
: , : : , :

;
;

t t f f t t f f

t t f f t t f f

C C C C C C S S S S S S

R R R R R R W W W W W W

R h h R h h R h h R h h
R h h R h h R h h R h h

→ → → →
→ → → →  

4. For every v V∈  and every 
v

l P∈ : 

o Construct a rule 
l

R  where: { }A

l l
R h=  

o For every { } , ( ) ( )u t l whereu v and t D uπ′ ′→ ⊆ ∈ ∈ , set { }
t

A A

l l uR R h
′

= ∪  

o Let ( )t D v∈ be the value from v’s domain that satisfies{ }v t l→ ⊆ , 

set { }
t

C
vlR h= . Result is the following sets of rules: 

1 1

1 1

2 2

3 3

4 4

:
:
:
:
:

f

f f

f t

t f

t t

c c C

R R C R

R R C R

R R C R

R R C R

R l h l h
R l h l h h
R l h l h h
R l h l h h
R l h l h h

→
∧ →
∧ →
∧ →
∧ →

 

2 2

1 1

2 2

3 3

4 4

:
:
:
:
:

t

f f

f t

t f

t t

c c C

S S C S

S S C S

S S C S

S S C S

R l h l h
R l h l h h
R l h l h h
R l h l h h
R l h l h h

→
∧ →
∧ →
∧ →
∧ →

    

1 1

2 2

3 3

4 4

:
:
:
:

f f t

t f t

f t t

t t t

W W S R W

W W S R W

W W S R W

W W S R W

R l h l h h h
R l h l h h h
R l h l h h h
R l h l h h h

∧ ∧ →
∧ ∧ →
∧ ∧ →
∧ ∧ →

 

Finally, the goal set { , , , , }
t

C W R S W
G h h h h h=   and :

t
G C W R S W

R h h h h h G∧ ∧ ∧ ∧ →  

As discussed above, finding the LCP for this derived CBA system will be the same as 
finding MAP for BN in fig.1. In other words, the values assigned to CBA variables to 
reach the LCP are the same values that achieve MAP for the equivalent BN. Section 3 
will illustrate how HORN can be used to find LCP for the CBA which will be the 
same as finding MAP for BN. 

2.1   Discussion 

The algorithm did a linear time transformation from BN to CBA. However, we have 
the following comments: 

1. There is no analysis in terms of the size ratio between the BN as an input to the 
CBA system as an output.  

2. While the algorithm generates an equivalent CBA system in terms of solution, it 
might not be the most optimal system in terms of size. We did an experiment 

where we shrank the RG to be 
tW

h G→ and we obtained the same LCP, but with 

more computational effort.  
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3. The algorithm does not remove the redundant CPT entries to save memory space. 
Also, we do not need to create rules for the entire CPT of the evidence nodes. We 
only need to create rules for the values observed.  

4. It is not clear from the algorithm how we should deal with CPT entries with prob-
ability equal to 0. Considering such probabilities will cause all assumables to have 
costs of ∞, which means we cannot afford explaining our goal. 

3   Finding LCP Using HORN 

Here, we will summarize how to solve the CBA system using HORN. The reader is 
directed to [7] [8] for full details. The process goes as follows:  

1. Without loss of generality, we start by processing the CBA system such that all 
consequents are provable. Also, we make sure that every provable appears only 
once as a consequent in the system. 

2. Given the preprocessed CBA, we reverse the implication direction of all rules to 
avoid the null antecedent proofs. 

3. We transform the CBA into PL pairs. PL is an extension of propositional logic; the 
reader is directed to [10] for a complete review of PL. 

4. We generate the equivalent energy function for all PL formulas using the following 
characteristic function provided by Pinkas [10]: 

1 2

1 2 1 2

1 2

1 2

                                   if  is atomic proposition        

1                             if 

                       if 

    if 

i ix x

H
H

H H

H H H H

σ

σ
σ σ

σ σ σ σ

σ
σ σ
σ σ σ

σ σ σ

′

=
′− = ¬

=
× = ∧

+ − × = ∨

⎧
⎪
⎪
⎨
⎪
⎪⎩

 (7)

This function maps every propositional sentence σ into a characteristic algebraic term 
H σ that has its maximal points at the truth assignments that satisfy the clause. The 
equivalent energy function for a given proposition sentence σ is the characteristic 

function of the sentence negation H σ¬ . The Energy function for PL pairs 
i

n
iψ σ= ∧  is 

defined by (8); this energy function fully specifies the equivalent HORN. 

n

i

E H σ¬Ψ =∑  (8)

3.1   Deriving Energy Functions for Logical Rules with More Than 3 Variables 

In this section we provide derivations of the energy functions for logical rules with 

more than 3 variables. We start by OR rule; consider
1 2 3 1

...
n n

x x x x xβ −= → ∨ ∨ ∨ ∨ : 

1 2 3 1

1 2 3 1

( ... )
...

n n

n n

x x x x x
x x x x x

β −

−

¬ = ∧ ¬ ∨ ∨ ∨ ∨
≡ ∧ ¬ ∧ ¬ ∧ ¬ ∧ ∧  
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1 2 3 1[(1 )(1 )(1 )...(1 )]n nH x x x x xβ¬ −∴ = − − − −
 

1 2

1

1
1

1 1 .... 1

( 1) ...
k

k

n
k

n n i i i
k i i n

E x x x x xβ

−
+

= ≤ < < ≤ −

⎛ ⎞⎛ ⎞
∴ = − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑  (9)

For AND rule, consider 
1 2 3 1

...
n n

x x x x xβ −= → ∧ ∧ ∧ ∧  

1 2 3 1

1 2 3 1

( ... )
(1 ... )

n n

n n

x x x x x
x x x x x

β −

−

¬ ≡ ∧ ¬ ∧ ∧ ∧ ∧
≡ −  

1 2 3 1...n n nH x x x x x xβ¬ −∴ = −
 

1

n

n i
i

E x xβ
=

∴ = −∏  (10)

4   Solution Quality and Size Complexity 

For the example traced in this manuscript, it is clear that the network reached the LCP 
and assigned values which give the maximum joint probability for the random vari-
ables of the BN in Fig.1. In general, we judge if the network reached the global  
minima by benchmarking the solution against the results obtained by the popular 
public domain lp-solve engine which solves the CBA system after converting it to the 
equivalent Linear Programming (LP) form.  

The example above showed that HORN solved a problem of size 26-hypothesis, 
22-rule. However, previous work [7] [8] showed that HORN constantly found feasible 
solutions for a CBA system with 300-hypothesis, 900-rule with high difficulty. Prob-
lem size is not the only factor which determines the CBA instance difficulty and its 
search space complexity. Other factors, like solution depth, rules length, and ratio 
between the number of rules to the total number of hypotheses are taken into consid-
eration when considering a CBA instance difficulty level.  

5   Results Summary 

Using the previously mentioned transformations, we constructed the energy function 
which represents the CBA system derived in section 2. Then, we used HORN simula-
tor to minimize this energy function. The LCP was found through the following  
assignments{ , , , }C T R T S F W T→ → → → . Total cost of 8.6725 by assuming the 

following hypotheses
2C

h l ,
3S

h l ,
4R

h l and 
3W

h l . This is the same solution we reached 

using Bayesian inference for BN in fig.1. Table 5 summarizes the results of the 
HORN which solved this example.  
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We can also find the LCP by backtracking the rules starting from the goal rule. We 

only need to calculate towards 
tW

h because all other hypotheses in the goal rule are 

provables with assumability cost of ∞. By backtracking rules
lWR ’s, it is clear that we 

cannot use 
1W

R l  which costs us ∞, because it explains that the grass is wet while there 

is neither rain nor sprinkler. That leaves us with rules
2W

R l ,
3W

R l and
4W

R l  with costs : 

8.9278, 8.6725 and 9.4884, respectively. That means the best explanation for the 

observation that the grass is wet is 
3W

R l  which assumes that the sprinkler is off and 

there is rain. The LCP assignment of the constructed CBA system is the same assign-
ment for the variables in the BN to achieve MAP.  

Table 5. Results summary 

RG network order network iterations cost 

tC W R S W
h h h h h G∧ ∧ ∧ ∧ →  9 98489 8.6725 

tW
h G→  9 136128 8.6725 

6   Concluding Remarks and Future Work 

In this paper we showed how to find MAP in BN using HORN through an intermedi-
ate representation of CBA. This method creates the full integrated energy function 
directly without explicitly setting the objective and constraint functions. We traced 
and analyzed the only algorithm in literature that transforms BN to CBA. Future work 
would be to invent new algorithms that transform BN to CBA while taking care of the 
size ratio between both systems.  Finding MAPs for BN with continuous probability 
distribution will be an interesting follow up for this work.  Also, we can study which 
classes of BN can create polynomially solvable CBA systems. 
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Abstract. Linear dynamical systems are widely used in such fields as

system control and time-dependent data analysis. Such a system can be

regarded as a statistical parametric model, where the coefficients of the

state space equations are unknown and given as parameters. The prop-

erties of parameter learning have not yet been established, in spite of a

wide range of applications. Therefore, this paper investigates the system

from the viewpoint of learning theory. It is revealed that the system has

singularities in the parameter space. The generalization error measured

by the prediction accuracy for unseen data sequences is reduced, due to

the presence of these singularities.

Keywords: Kalman Filter, Bayesian Learning, Time-Series Data

Analysis.

1 Introduction

Linear dynamical systems are widely used for modeling practical complex sys-
tems with hidden variables such as object tracking in image processing [1], and
position detection in car navigation systems [2]. The system is described via state
space equations containing both observable and hidden variables. The Kalman
filter [3] is an algorithm to estimate the hidden variables from coefficients given
preliminarily .

It is important to be able to estimate coefficients using the observable data
when the coefficients are unknown. The system is regarded as a parametric
learning model, in which the coefficients correspond to parameters. As seen in
Section 2, the system is expressed as a generative probability model of the data
because the process and observation noises are taken into account.

Parametric models generally fall into two types, regular and singular. If the
relation between the parameter and the expressed probability function is one-
to-one, a model is referred to as regular. Otherwise, it is singular. Therefore, a
singular model has a set of parameters indicating the same function, in which
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there are singularities. Because of the singularities, conventional analysis is not
applicable; model selection criteria for regular models such as AIC [4] and BIC
[5] are inappropriate. An algebraic geometrical method has been developed for
Bayesian learning to reveal the asymptotic generalization error and the marginal
likelihood for several singular models [6]. According to its application to several
models, the presence of singularities results in unique properties of the learning
process [7,8].

In spite of a wide range of applications, properties of a linear dynamical system
are still unknown in terms of a learning model. Therefore, the present paper
investigates such a system both theoretically and experimentally. We confirm
that the system is a singular model and analyze the Bayesian generalization
error based on the algebraic geometrical method. Here, the error is defined as the
prediction accuracy for unseen time-sequence data. This prediction is different
from that of the conventional Kalman situation in which the primary concern is
the set of hidden variables rather than the observable sequences. Nevertheless,
our analysis can also provide an insight into hidden variable estimation.

The remainder of the paper is organized as follows. Section 2 formulates the
system. Section 3 introduces Bayesian learning and summarizes the algebraic
geometrical method. Section 4 contains our main contributions, deriving a theo-
retical upper bound of the generalization error and showing experimental results
for the error. Section 5 contains a discussion and our conclusions.

2 Linear Dynamical Systems

Linear dynamical systems can be described by state space models with hidden
state variables:

zt+1 = Azt +Dwt, (1)
xt = Czt + vt, (2)

where zt ∈ Rq is the hidden state vector at time t, xt ∈ Rp is an output vector,
wt ∈ Rq and vt ∈ Rp are process and observation noises, respectively. These
noises are assumed follow a standard normal distribution. A ∈ Rq×q is the state
matrix , C ∈ Rp×q is the output matrix and the elements of D ∈ Rq×q are the
coefficients of the process noise.

The Kalman filter is known as an efficient recursive filter that estimates hid-
den states from a series of outputs. In what follows, the notations ẑn|m and Pn|m
represent the estimates of z at time n and its error covariance matrix, respec-
tively, when observations from t = 1 to t = m are given. The Kalman filter has
two phases: Predict and Update. The algorithms are described as follows:

Predict

ẑt|t−1 = Aẑt−1|t−1 (3)

Pt|t−1 = APt−1|t−1A
� +DD� (4)
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Update

Kt = Pt|t−1C
� (
I + CPt|t−1C

�)−1
(5)

ẑt|t = ẑt|t−1 +Kt

(
xt − Cẑt|t−1

)
(6)

Pt|t = (I −KtC)Pt|t−1 (7)

where I is a unit matrix and Kt is called the Kalman gain. Firstly, the current
state zt is estimated as ẑt|t−1 from the estimated state of the previous time t−1
(Eq.3). Then, a more refined value for ẑt|t is calculated on the basis of ẑt|t−1

after an observation xt is provided (Eq.6).
From the viewpoint of machine learning, a linear dynamical system can be

regarded as a learning model whose parameters are A,C,D and z1. The variable
z1 indicates the initial state. Let X = (x1, x2, . . . , xT ) ∈ Rp×T be the vector of
observations. The probability p(X |w), where the parameters w = (A,C,D, z1),
can be calculated as follows:

p(X |w) = p(x1|w)
T∏

t=2

p(xt|x1, . . . , xt−1, w). (8)

Using the hidden state zt,

p(xt|x1, . . . , xt−1, w) =
∫
p(xt|zt, w)p(zt|x1, . . . , xt−1, w)dzt. (9)

Let N (·|µ,Σ) be a multivariate normal distribution with mean µ and covari-
ance matrix Σ. By the definition of a linear dynamical system (Eq.2) and the
derivation of the Kalman filter,

p(xt|zt, w) = N (xt|Czt, I), (10)
p(zt|x1, . . . , xt−1, w) = N (zt|ẑt|t−1, Pt|t−1). (11)

Therefore, p(xt|x1, . . . , xt−1, w) is also a normal distribution described by

p(xt|x1, . . . , xt−1, w) = N (xt|Cẑt|t−1, I + CPt|t−1C
�). (12)

Eq.8 can be expressed as

p(X |w) =
T∏

t=1

N (xt|Cẑt|t−1, I + CPt|t−1C
�). (13)

where we define ẑ1|0 = z1 and P1|0 = 0.
Let Xn = (X1, X2, . . . , Xn) be a set of i.i.d. training samples. Each Xi is a

time sequence defined by Xi = (xi
1, x

i
2, . . . , x

i
T ). The likelihood of the parameter

w = (A,C,D, z1) can be calculated as

L(w) =
n∏

i=1

p(Xi|w) =
n∏

i=1

T∏
t=1

N (xi
t|Cẑi

t|t−1, I + CP i
t|t−1C

�) (14)

where ẑi
t|t−1 and P i

t|t−1 are evaluated using the Kalman filter.
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3 Bayesian Learning and the Generalization Error

This section describes Bayesian learning for time series data and the theoretical
analysis of the generalization error.

Let Xn = (X1, X2, . . . , Xn) be a set of training samples taken independently
and identically from the true distribution q(X), where n is the number of training
samples. Each Xi (i = 1, . . . , n) is a sequence whose length is T , i.e. Xi =
(xi

1, . . . , x
i
t, . . . , x

i
T ). Note that the sequence data Xn are taken as i.i.d. whereas

each sequenceXi is not. Let p(X |w) be a learning model, and ϕ(w) be an a priori
probability distribution. The a posteriori probability distribution is defined by

p(w|Xn) =
1

Z(Xn)
ϕ(w)

n∏
i=1

p(Xi|w) (15)

where Z(Xn) is a normalizing constant. The Bayesian predictive distribution is
defined by

p(X |Xn) =
∫
p(X |w)p(w|Xn)dw. (16)

The Bayesian generalization error G(n) is defined by

G(n) = EXn

[∫
q(X) log

q(X)
p(X |Xn)

dX
]
, (17)

which is the average Kullback information from the true distribution to the
predictive distribution.

The remainder of this section summarizes the algebraic geometrical method
for deriving the asymptotic form of the error [6]. Let H(w) be the Kullback
information from the true distribution q(X) to the learner p(X |w),

H(w) =
∫
q(X) log

q(X)
p(X |w)

dX. (18)

The function ζ(z) of one complex variable z, defined by

ζ(z) =
∫
H(w)zϕ(w)dw, (19)

is referred to as the zeta function. It is known that this zeta function is holomor-
phic in the region Re(z) > 0, and can be analytically continued to the meromor-
phic function on the entire complex plane. Then the poles are all real, negative
and rational numbers. Let 0 > −λ1 > −λ2 > . . . be a sequence of poles, and
m1,m2, . . . be the respective orders. The asymptotic form of the generalization
error is expressed as

G(n) =
λ1

n
− m1 − 1
n logn

+ o
( 1
n logn

)
(20)
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for n→∞. In many cases, it is not straightforward to find the largest pole −λ1

and its order m1 [7]. When a pole z = −λ and its order m have been calculated,
an upper bound is derived as

G(n) ≤ λ
n
− m− 1
n logn

+ o
( 1
n logn

)
. (21)

4 Analysis of the Generalization Error

This section analyzes the Bayesian generalization error for linear dynamical sys-
tems. In order to investigate the effect of redundant hidden states, we study an
essential case, in which the learning model has a hidden variable and the true
model generates i.i.d. sequences. This is the simplest setting for singularities to
exist in the parameter space because the i.i.d. model can be regarded as a model
with no hidden states. For simplicity, we assume that the output vector is one
dimensional, where zt, xt, A, C, and D are all scalar. Moreover, we assume that
the first hidden state is fixed as z1 = 0. Formally, the learning model is defined
as

zt+1 = azt + dwt, (22)
xt = czt + vt, (23)

where zt, xt ∈ R1 and wt and vt are distributed from N (·|0, 1). The parameter
is expressed as w = (a, c, d). The true model is a one-dimensional normal distri-
bution N (xt|0, 1) for all t, i.e. xt = vt. Following Eq. 13, the true model is given
by

q(X) =
T∏

t=1

N (xt|0, 1). (24)

4.1 Theoretical Analysis

Based on the algebraic geometrical method, the error has the following bound:

Theorem 1. When the true model and a learning model are defined by Eq.24
and Eqs 22-23, respectively, the Bayesian generalization error is bounded above
as follows:

G(n) ≤ 1
2n

− 1
n logn

+ o
( 1
n logn

)
, (25)

where z1 = 0 and the training sample size n is sufficiently large.

Sketch of Proof: Because the parameter set {c = 0} attains p(X |w) = q(X),
there is a function fc(w) such that H(w) = c2fc(w). The set {d = 0} ensures the
same property for H(w). Thus, there is a polynomial f(w) such that H(w) =
c2d2f(w). We can find a limited support W of the parameter space, such that
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H(w) ≤ Cc2d2. Here C is a positive constant. Considering the following zeta
function

ζ1(z) =
∫

W

{Cc2d2}zdw, (26)

the pole z = −µ is a lower bound of z = −λ1 [6]. We can find a pole µ = 1/2
and its order m = 2. Combining with Eq. 21, we derive the following leading
terms for the bound,

1
2n

− 1
n logn

, (27)

which completes the proof.
End of Proof
If the initial state is unknown and is regarded as a parameter such as w =
(a, c, d, z1), we can extend Theorem 1 as follows.

Corollary 1. Under the same setting as Theorem 1, the error has an upper
bound

G(n) ≤ 1
2n

+ o
( 1
n

)
. (28)

We omit the proof for lack of space.

4.2 Experimental Results

We experimentally evaluate whether the bound is valid when finite training data
are given. Sampling from the a posteriori distribution, the predictive distribution
is given by

p(X |Xn) � 1
M

M∑
j=1

p(X |wj), (29)

where (w1, . . . , wM ) are sampled from p(w|Xn). We use the Markov chain Monte
Carlo (MCMC) method for the sampling technique [9]. The generalization error
is approximated by

G(n) � EXn

[ 1
N

N∑
i=1

log
q(Xi)

p(Xi|Xn)

]
. (30)

The experimental settings are as follows. The length of the time sequence is
T = 10. The number of test data sequences is N = 1, 000. The number in the
MCMC sample is M = 500. We obtain the expectation EXn [·] over 100 sets of
training data. The a priori distribution is a normal distribution for a, c and d.

Figure 1-(a) describes an example of sampling from the a posteriori distribu-
tion in the parameter space (a, c, d). The vertical and horizontal planes indicate
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Fig. 1. An example of the a posteriori distribution and the generalization error

{c = 0} and {d = 0}, respectively. The points are located around the subspace
{c = 0} ∪ {d = 0}, for which the parameters express the true model.

Figure 1-(b) summarizes the error values corresponding to n = 250, 500, 750
and 1, 000. The horizontal and vertical axes describe the number of training data
sequences and the error value, respectively. The heavy line depicts experimental
values for G(n). The dotted line is the upper bound of Theorem 1. The upper
bound is valid as seen in the graph.

5 Discussions and Conclusions

First, let us discuss the upper bound of the generalization error. In the regular
case, the error has the following asymptotic form,

G(n) =
dimw

2n
+ o

( 1
n logn

)
, (31)

which means that λ1 = dimw/2 and m1 = 1. Note that even a singular model
has this asymptotic form if the true and learning models have the same dimension
of the hidden state vector. The asymptotic form indicates that the cost to fit
all parameters determines the error as the dimension dimw appears. Comparing
Theorem 1 with the regular case, we can derive the result that the error is much
smaller, i.e.

G(n) ≤ 1
2n

− 1
n logn

+ o
( 1
n logn

)
<

3
2n

+ o
( 1
n logn

)
, (32)

which confirms that the fitting cost for redundant parameters is not strongly
reflected in the error.

Thus far, we have focused on prediction of the unseen observable data sequence
X . Next, we consider estimation of the hidden states zt. According to the a
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posteriori distribution, there are two regions for the optimal parameters; one is
around c = 0 and the other is around d = 0. They imply completely different
behaviors of the hidden state. The former, c = 0, indicates that a and d can
take any value, by which q(X) = p(X |w). Thus, there are no constraints on
the movement of the hidden state. By taking into account z1 = 0, the latter,
d = 0, contrarily implies that there is no movement because zt = 0 for all times
t. If several hidden variables in the true model stop moving due to disorder in a
practical situation, the desired estimation is d = 0. However, c = 0 can also be
an estimated result; these variables move on the basis of arbitrarily-estimated
a and d. This adverse estimation can occur along any dimension of the hidden
state vector. Therefore, detection of hidden variable size is an essential problem
to solve.

Finally, we state our conclusions. The present paper establishes that linear
dynamical systems are singular models. The singularities ensure that the upper
bound of the Bayesian generalization error is small. The experimental results
indicate that the bound is valid. Moreover, the a posteriori distribution implies
that estimation of hidden states cannot be appropriate if there are redundant
hidden variables.
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Decoding Characteristics of D/A Converters

Based on Spiking Neurons
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Abstract. This paper studies spike-based D/A converters and effects of

a control parameter on the worst error for the encoding. First, we intro-

duce spike-based A/D converters and analyze their dynamics through

1-D linear map. Next, we present spike-based D/A converters whose

architectures is based on inverse operation of the A/D converters. We

consider effects of a parameter for decoding function. A simple circuit

model of the D/A converter is also presented.

1 Introduction

Spiking neurons (ab. SKNs) are known as simple artificial neuron models [1]-[4].
Repeating integrate-and-fire behavior between base and threshold signals, the
SKNs can generate a spike-train [5]. Depending on the shape the base signal, the
SKNs can output a variety of spike-trains and can exhibit interesting bifurcation
phenomena. Analysis of the bifurcation phenomena is an important nonlinear
problem. If we fix a parameter of the base signal, the SKNs have functions as
A/D converter (ab. ADC) [6]-[7]. For the ADC, an analog input is applied as
an initial value and the spike-train is transformed into a digital output. The
architectures of D/A converter (ab. DAC) are based on inverse operation of the
ADC. For the DAC, digital input is the inverse sequence of digital output of
ADC and an analog output is given as phase of final spike within a given limited
time [8]-[9].

This paper studies the spike-based DAC and effects of a control parameter
on the decoding function. First, as a preparation, we introduce the ADCs based
on SKNs. It has periodic base signal and outputs spike-trains governed by a
spike-position map. The map is one dimensional piecewise linear and we can
analyze ADC dynamics precisely. Next, we present the DACs based on SKNs.
We introduce a parameter that changes a shape of the base signal and the digital
output of the ADC. We analyze effects of the parameter on the decoding function.
This parameter corresponds to parameter miss match in realistic systems and
cause error in the decoding. Such analysis is important to consider basic DAC
performance, however, the analysis has not been sufficient in our previous works.
We also present a simple circuit model of SKN for the DAC. The circuit consists
of a current source, a capacitor and a firing switch. The digital input switches
the base signal and the switching base is a key to realize the SKN-based DAC.

ADCs and DACs are crucial systems in order to communicate between real
analog world and digital signal processing system. As compared with existing

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 118–125, 2009.
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Fig. 1. Basic maps for SKN-based ADC. (a) SKN dynamics, (b) Spike-position map.

architectures, SKN-based ADC and DAC have some advantages such as con-
suming lower power, avoiding divergence of state variable [6] [7]. This paper
may contribute to bridge between neuro dynamics and signal processing.

2 A/D Converters

ADCs convert a constant analog input x ∈ I ≡ (0, 1] to a digital output sequence
Y ≡ (Y1, Y2, · · · , Yl),Yn ∈ {0, 1} where l is code-length. Here we introduce a
SKN-based ADC [2]. As shown in Fig. 1(a), the SKN dynamics is described by
Eq. (1). ⎧⎨⎩

dx
dτ = 1, y = 0, for x(τ) < 0

x(τ+) = b(τ+), y(τ+) = 1, if x(τ) = 0
(1)

where τ and x are normalized time and state variable, respectively. b(τ) is a
base signal with period 1. The state x rises to a threshold 0. When x reaches 0,
x jumps to the base b(τ) instantaneously and the SKN outputs a spike y = 1.
Adjusting the shape of b(τ), the SKN can output a variety of spike-trains. In
this section, we use the following shape:

b(τ) =

⎧⎨⎩ (1− 1
α )τ − 1, for 0 ≤ τ < α,

2−α
1−ατ −

1
1−α − 1, for α ≤ τ < 1,

b(τ + 1) = b(τ). (2)

where α changes a slope of the base b(τ).
Let τn denote the n-th spike-position. Let an initial pulse position τ1 be in

[0, 1) ≡ I1. Since present spike-position determines the next position, we can
define a spike position map (Fig. 1 (b)):
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Fig. 2. Key maps for Gray ADC (l = 3, α = 0.5, θ1 = 0.3). (a) spike-phase map, (b)
encoding characteristics. θn+3 denotes the 3 fold compositions of θn.

τn+1 = τn − b(τn), τn+1 =

⎧⎨⎩
1
ατn + 1, for 0 ≤ τn < α

1
1−α (1− τn) + 1, for α ≤ τn < 1

(3)

Let us introduce subintervals of time In ≡ [n−1, n). This map is piecewise affine
and transforms In onto In+1. Let θn denote phase of the n-th spike position:
θn = τn mod 1. The phase sequence is described by the following spike-phase
map (Fig. 2 (a)).

θn+1 =

⎧⎨⎩
1
αθn, for 0 ≤ θn < α

1
1−α (1− θn), for α ≤ θn < 1

(4)

This map corresponds to usual return map. In order to characterize spike-trains,
we introduce spike-phase modulation (ab. SPM).

Yn =
{

0, for 0 ≤ θn < α
1, for α ≤ θn < 1 (5)

The spike-phase map functions as ADC by the SPM. When α = 0.5, it gives
gray encoding as suggest in Fig. 2. If α � =0.5, it changes the code sequence by
the initial value in ADC (Fig. 3). α changes the shape of return map and the
appearance probability of the Gray code.

3 D/A Converters

The DAC is required to realize inverse operation of the ADC. That is, the DAC
converts a digital input Y ′ ≡ (Y ′

1 , Y
′
2 , · · · , Y ′

l ),Y ′
n ∈ {0, 1} into an analog output
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Fig. 3. Skew tent maps for ADC (l = 3, α = 0.3, θ1 = 0.2). (a) spike-phase map, (b)
encoding characteristics.

x′. where Y ′ is the inverse sequence of Y with code length l: (Y ′
1 , Y

′
2 , · · · , Y ′

n) =
(Yn, Yn−1, · · · , Y1). We present the SKN-based DAC in this section. As shown in
Fig. 4(a), the SKN dynamics is described by Eqs. (6) and (7).⎧⎨⎩

dx
dτ = 1, y = 0, for x(τ) < 0

x(τ+) = b(τ+), y(τ+) = 1, if x(τ) = 0
(6)

b(τ) =

⎧⎨⎩ (1− α)τ − 1, if Y ′
n = 0,

(2− α)τ − 2, if Y ′
n = 1,

b(τ + 1) = b(τ). (7)

It should be noted that the digital input (Y ′
1 , · · · , Y ′

l ) switches the base signal.
In a likewise manner as the ADC, we can derive the spike-position map. Let τ ′n
denote the n-th spike-position and let an initial pulse position τ ′1 be in [0, 1).
Since present spike-position determines the next position τ ′n+1, we can define a
spike-position map (Fig. 4 (b)):

τ ′n+1 = τ ′n − b(τ ′n), τ ′n+1 =

⎧⎨⎩ατ
′
n + 1, if Y ′

n = 0

−(1− α)τ ′n + 2, if Y ′
n = 1

(8)

Let θn denote phase of the n-th spike position: θn = τn mod 1. The phase
sequence is described by the following spike-phase map.

θ′n+1 =

⎧⎨⎩αθ
′
n, if Y ′

n = 0

−(1− α)θ′n + 1, if Y ′
n = 1

(9)
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Fig. 4. Basic maps for SKN-based DAC. (a) SKN dynamics, (b) spike-position map.
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Fig. 5. Key maps for Gray ADC (l = 3, α = 0.5, Y ′
n = (1, 1, 0), θ′

1 = 0.3). (a) spike-

phase map, (b) decoding characteristics.

The spike-phase map works as DAC based on the SPM. It is the inverse map of
ADC. Note that the decoding sequence {θn} is determined by the digital inputs
Y ′

n, and the initial value θ′1 is optional. When α = 0.5, it gives gray decoding as
suggest in Fig. 5(a). α changes a shape of map and an analog output. Fig. 5(b)
and Fig. 6(b) show spike-phase θ′3 for all the initial value θ′1 in (0, 1]. θ′3 is the
analog output for l = 3. Note that range of the DAC in Fig. 6(b) is consistent
with the domain of the ADC in Fig. 3(b).
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Let the worst error εw in decoding. εw is the worst error in all decoding and
calculated by Eq. (10):

εw = max
θ1∈I1

|θ′l − θ1| (10)

where θ1 is the initial value in ADC. The worst error εw is defined by

εw ≤ αr(1− α)l−r (11)

where r is the frequency of code 0 in the code sequence. Fig. 7 shows the worst
error in changing α. As l increases, εw tends to be small. α = 0.5 gives the
smallest εw.
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Fig. 8. (a) SKN-based DAC circuit, (b) base signals

4 Circuit Model

Fig. 8 shows the circuit model of the SKN-based DAC. Integrating the current I0
the capacitor voltage v(t) rises. When it reaches a threshold Th(t), the compara-
tor triggers the monstable multivibrator MM to output a pulse Y . The pulse
Y closes the switch SW and v is reset to the base B(t), that is controlled by
digital input Y ′

n. Repeating this integrate-and-fire behavior this circuit outputs
a spike-train Y (t). For simplicity the circuit operation is assumed to be ideal:
the current source is lossless and the switching is instantaneous without time
delay. The circuit dynamics is described by Eq. (12), (13) and (14).⎧⎨⎩C

dv
dt = I0, Y (t) = −E, for v < Th

v(t+) = B(t+), Y (t+) = E, if v(t) = Th
(12)

B(t) =

⎧⎨⎩B1(t) = I0
C (1− α)t− I0T

C , if Y ′
n = 0,

B2(t) = I0
C (2− α)t− 2I0T

C , if Y ′
n = 1,

for 0 < t < T. (13)

B(t+ T ) = B(t). (14)

They are transformed into Eq. (7) using the following dimensionless parameters
and variables. ⎧⎨⎩ τ = t

T , x = C
I0T v, th(τ) = 0, y = Y +E

2E ,

b(τ) = C
I0TB(t).

(15)

Adjusting shapes of B(t) and Th(t), this circuit can also realize ADC: it is a
reconfigurable circuit.
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5 Conclusions

We studies spike-based DAC and effects of a control parameter on the worst error
for the encoding. We present spike-based ADC and DAC. The architectures of
DAC is based on inverse operation of the ADC. We consider effects of a parameter
for decoding function. A simple circuit model of the DAC is also presented. In
order to develop these results, we have many future problems including detailed
error analysis for circuit parameters, generalization of encoding function and the
hardware experiments.
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Abstract. A novel hybrid or separable recursive training strategies are derived 
for the training of feedforward neural networks which incoporates a switching 
module. This new technique for updating weights combines nonlinear recursive 
training algorithms for the optimization of nonlinear weights with recursive 
least square type algorithms for the training of linear weights in one integrated 
routine. The proposed new variant of hybrid weight update includes switching 
mechanism based on the condition of input data to the system (correlated or 
noncorrelated). Simulation results demonstrate the improvement of the new 
proposed switching mode training scheme. 

Keywords: Recursive Prediction Error, Multilayer Layer Perceptron (MLP), 
FeedForward Network, System Identification. 

1   Introduction 

The training of feedforward neural networks like the multilayer perceptron (MLP) can 
be considered as an optimization problem where the objective is to minimize cost 
function, such as the sum-squared error (SSE), with respect to the network parameter 
(w) which is. 

E w( ) εk
2

k 1=

Nv

∑ yk dk–( )
2

k 1=

Nv

∑= =

 

(1)

where Nv is the number of training data and yk and dk are the actual network output 
and the desired output respectively for kth training data. The instantaneous error, εk , is 
the difference or error between yk and dk.  

The MLP-network, g wt ut,( ) , is formed by a hidden layer of sigmoidal units and a 
layer of linear output unit [5], which can be described as 

y g wt ut,( ) wj
L

f wi j
NL

ui bj+

i 1=

Ni

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

d+

j 1=

Nh

∑==

 

(2)
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 and  f γj( )
1

1 γj–( )exp+
-------------------------------= γj wi j

NL
ui bj+

i 1=

Ni

∑= (3)

where Ni and Nh are the number of inputs and hidden layer neurons respectively, ui is 
the ith element of the input vector u. 

The training strategy employed  depends on whether the cost function is minimized 
with respect to all  weights using full nonlinear optimization or by using separable 
approach in which the nonlinear optimization is applied to weight which are nonlin-
ear-in-weights and the linear training is adopted to the single output neuron which are 
linear-in-parameter. In offline-training, better minimization can be obtained if the 
problem is separated with respect to weight orientation (linear/nonlinear) in the net-
work [3][7][10]. Research work in the literatures, including by the present author, on 
recursive learning techniques for MLP-network showed separable scheme for online 
neural network (MLP) training significantly outperform the non-separable approaches 
[1][8]. Recently a new training procedure scheme known as Extreme Learning  
Machine [6], which is subset of separable learning, simplifies the learning rules to 
updating (only) the weights that are linear-in-parameter by keeping weights connected 
to nonlinear neuron constant. 

This paper proposed an enhancement of hybrid or separable learning technique us-
ing a switching module based on the orientation of the input data, correlated or ran-
dom form. The motivation came from the work by Tae-Hoon et al. [11] which pro-
poses a two way training techniques for a offline system using MLP network. This 
motivates using similar technique on a hybrid MLP network for recursive (or online) 
weights update. 

The paper is organized as follows, section 2 explains on batch algorithms for off-
line training which form the basis for recursive weight update. Section 3 outlines 
some recursive trainings while section  4 describes hybrid recursive trainings which 
includes the variants proposed in this paper with switching module. Finally section 5 
presents simulation results using two bechmark problems to demonstrate the im-
provement gained with the new proposed separable recursive training schemes.  

2    Batch Training 

The measurement of fit between dk and yk can be obtained by the minimization of sum 
squared of the prediction error, given in equation (1). Assume if batch of data, 

yk dk,{ }k 1=

N
v  is available then the near optimal weight w* vector may then be obtained 

by minimizing the prediction error[4]. This is usually attained by iterative weight vec-
tor update procedure given by 

wt 1+ wt λts wt( )+=  (4)

Where λt and s(wt) are the learning rate and search direction for the tth iteration. Using 
backpropagation algorithm[9] which sets the search direction as the negative gradient 
of the cost function, E(w).  
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 where s wt( ) ∇E wt( )–=    ∇E wt( ) ∇εk
2

wt( )
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∑ wt∂

∂εk
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k 1=

Nv
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Equation (5) can also be written as 

∇E wt( ) ∇yk wt( ) εk⋅

k 1=

Nv

∑ wt∂

∂yk
εk⋅

k 1=

Nv

∑= =
 

(6)

The steepest decent normally yields poor convergence rate. In order to improve the 
minimization of the cost function, a second order properties in form of matrix, H(wt), 
added to the gradient direction to modify the search direction, s(wt). One efficient 
approach is to approximate the inverse of the hessian matrix, H(wt), which is known 
as Gauss-Newton method 

  where  M wt( ) H
1–

wt( )= H wt( ) ∇yk wt( )∇yk
T

wt( )

k 1=

Nv

∑=

 

(7)

3   Recursive Training 

The recursive training of MLP-network is based on minimization of cost function, 
E(w), by accumulating information about the distribution given by successive presen-
tation of the training data which are chosen on-line from the training set. Using the 
one data point available at each tth sample instant, an instantaneous estimate of E(w) is 
derived as 

ε
2

wt( ) y wt( ) dt–( )
2

=  (8)

The stochastic backpropagation (SBP) algorithm performs weight update, w, at each 
iteration during the training compared to batch backpropagation which does after run-
ning through the entire set of training data. Hence the weight update is given as 

wt 1+ wt λt– ∇ε
2

wt( )=  (9)

Where λt  is the learning rate which can be a constant or time varying variable. The 
random nature of the input data introduces noise during the training of SBP and one 
possible remedy is to introduce momentum term (the effect of past weight correction).  

One disadvantage of SBP is that it shows poor convergence similar to it’s batch 
counterpart and the other main drawback is the tendency of model parameters (espe-
cially the bias weights) to continually adapt so that the model output, y, tracks the 
desired output, d, instead of converging to the desired model weight, w*.  

The second order algorithms for the recursive approximation of prediction error 
method are well investigated for network with linear-in-weight.. The same idea can be 
utilized for identifying time varying nonlinear system by linearizing the network out-
put yt about the weight wt, using equation (2)  
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∇y wt( )
wt∂

∂
g wt ut,( )=

 
(10)

The Hessian matrix for tth training vector  can be derived in recursive form as 

Rt αtRt 1– 1 αt–( ) ∇y wt( )∇y
T

wt( )( )+=  (11)

wt 1+ wt Rt 1–
1–

∇y wt( )ε wt( )+=
 (12)

where αt is the forgetting factor which is usually set to the value between 0.9 αt 1≤ ≤ . 

Equation (11)-(12) can thus be considered as recursive approximation of the Gauss 
Newton search direction or usually known as recursive prediction error (RPE) [4]. In 
real time implementation the inverse of R is computationally expensive O N w

3
( ) to 

compute and in practice  the inverse of the matrix is computed directly as 

Pt
1
αt
----- Pt 1– Pt 1– ∇y wt( )S

1–
wt( )∇y

T
wt( )Pt 1––[ ]=

 

(13)

Where S wt( ) αt ∇y
T

wt( )Pt 1– ∇y wt( )+=  (14)

wt 1+ wt Pt∇y wt( )ε wt( )+=  (15)

4    Hybrid Training 

The hybrid recursive training is implemented by separating the training into two cate-
gories based on the nature of the neuron (nonlinear/linear). One is to optimize the 
weights which are nonlinear-in parameter using recursive nonlinear training, de-
scribed in the earlier section. The second is to implement recursive linear optimization 
on the output neuron weights which are linear-in-parameter. From equation (6), the 
decomposed   output gradient, ∇y w( ), about the w can be derived as  

NL NL∇y(w ) ∇y(w )∇y(w) = = r = r … r d1 NhL r∇y(w )  

(16)

where r is the vector of hidden layer outputs and the bias of the hidden neuron. Thus  
the decomposed covariance matrix of estimate w, P, is given as follows 

   PNwxNw

PNNLxNNL

NL
0

0   PNLxNL

L
≅

        NNL Ni 1+ Nh⋅=

NL Nh 1+=
 

(17)

By decomposition of gradient and covariance matrix based on neural network layer 
which separate the learning to linear/nonlinear parameters three (3) different types 
(variants) of hybrid training techniques can be derived. 
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4.1    Type I 

The first type (Type I) which is proposed by the present author [1] and Ngia et al. [8] 
does the weight update simultaneously, both weights which are linear and nonlinear-
in parameter. The hybrid recursive  prediction error (HRPE) training algorithm is 
compose of RPE and recursive least square (RLS) algorithm for training of nonlinear 
and linear weights respectively. The training of nonlinear weights using RPE can be 
summarized as in equation (13)-(15) using the weight vector wt

NL. The linear weights 

adaptation using RLS can  then described as  

S wt
L

( ) αt
L

rt
T

Pt 1–
L

rt+=  
(18)

Pt
L 1

αt
L

------ Pt 1–
L

Pt 1–
L

rtS
1–

wt
L

( )rt
T

Pt 1–
L

–[ ]=

 

(19)

wt 1+
L

wt
L

Pt
L

rtε wt( )+=  
(20)

4.2    Type II 

The term Extreme Learning Machine (ELM) coined by Guang[6] is actually a subset  
of hybrid form training techniques for feedforward network where weights of the hid-
den layer of the neural network are set constant thus the hidden layer of the feedfor-
ward network act as a nonlinear transformation for the linear output weights to do the 
global optimization finally. In the ELM technique implementation only the linear 
weights are updated, which involves equation (18)-(20). 

4.3    Type III 

A new proposed technique involves the hybrid recursive training which switches ac-
cording to the correlation of the input data. The switching based training involves 
decision making module which is, 

ζ cos
1– uk 1–

T
uk

uk 1– uk
----------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

ε<=
 

(21)

where it will test the correlation of the input data over each sample instant. The recur-
sive hybrid weight update method proposed in this work will switch between linear 
and nonlinear update based on the orientation of the input data by using the correla-
tion measure in equation (21). There are two variants of switching module imple-
mented in this paper which are described as follows: 
 

1. Hybrid RPE (HRPE) with switching module I (HRPE-sw(i)) 
 

if ζ ε<  then 
  update only the weights linear-in-parameter 
else 
  update the nonlinear neuron associated       
  weights 
end 
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2.  HRPE switching module II (HRPE-sw(ii)) 
 

if ζ ε<  then 
 update only the linear-in-parameters weights 
else 
 update both linear AND nonlinear neuron    
  associated weights 
end 

 

Thus the second variant of the proposed switching module always updates the output 
neuron neuron weights (weights which are linear-in-parameter). 

5    Simulation Results 

5.1    Test Case I 

The following dynamic time series test problem [10] will be used in the evaluation of 
the hybrid recursive training algorithms. The test case consist of a (3,10,1) MLP-
network which is trained to represent a non-linear dynamic system governed by the 
equation: 

yk 0.3yk 1– 0.6yk 2– 0.6 πuk( ) 0.3 3πuk( ) 0.1 5πuk( )sin+sin+sin+ +=  (22)

The network input vector uk is given by: 

uk yk 1–  , yk 2–  , xk 1–[ ]=  (23)

The identification process is run over 10,000 iterations with the plant input defined as 

xk 2π
k

250
---------⎝ ⎠

⎛ ⎞ 2π
k

200
---------⎝ ⎠

⎛ ⎞sin+sin=
 

(24)

5.2    Test Case II 

A two tank system (shown in Fig. 1) used for neural modeling purpose as it contains 
nonlinear dynamic (contains both correlated and randon data) and hence a  good ex-
ample for testing the proposed training algorithms. The system try to predict the level 
of the second tanks, output h2 based on the input flow in the first tank, Q2, The training 
set consists of 400 vectors  and the MLP network being trained is a (2,20,1) network. 

 

Open

OpenH
h2

h1
K1

K2

Q1

Q3

Q2

Tank 1

Tank 2

 

Fig. 1. Two-tank system 
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5.3    Results Summary and Discussion 

The performance measure was evaluated using normalized squared error (NMSE) of 
batch data by recursively updating the weight vector wt, given as 

/yk wt( ) dk–( )

k

Nv

∑ dk
2

k

Nv

∑
 

(25)

Some of the important user defined parameters are initialized where  the MLP neural-
net weights are set to symmetrical initialization [wNL wL] = [(0.001+)(Ni+1)xNh,  
(0.001)(Nh+1)x1], the number of hidden neuron is set to 5,  recursive training forgetting 
factors are set to αNL = 0.99, αL = 0.99 and correlation value threshold ε  = 0.05. 

Fig. 2 depict various learning curves obtained by recursively minimizing batch test 
data, as in equation (32), for dynamic time series- Testcase 1. From the figure plot it 
is clear that the hybrid training algorithms for MLP neural-net outperform the tradi-
tional full nonlinear counterparts (by comparing the RPE). The extreme learning 
technique (ELM*) did show good convergence at the initialize stage but tend to di-
verge to infinite value as it reaches the 3000th iteration (sample instant t). Two of the 
proposed hybrid neural-network training algorithms with switching module perform 
better than the conventional hybrid technique. Out of the two proposed techniques the 
second variant (HRPE-sw(ii)) edge slightly better than the first one with faster initial 
convergence.   
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Fig. 2. Learning curves of various hybrid training 

Table 1 summarize the performance measure of the various hybrid training algo-
rithms which was discussed in the earlier section of the paper, the RPE methods is 
included as control measure. The two proposed hybrid methods show the best results 
in the overall average (mean) and the minimum value for the NMSE measure. The 
two proposed hybrid methods show the best results in the overall average (mean) and 
the minimum value for the NMSE.   
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Table 1. Performance Measure-Learning Curve 

Algorithms %NMSE

Mean Std.-dev Minimum
RPE 0.6898 0.0022 0.6869

HRPE 1.167e-04  2.554e-05 9.236e-05

ELM 0.0676* 0.1095* 0.0294*

HRPE-sw(i) 4.404e-05 6.241e-06 3.781e-05

HRPE-sw(ii) 4.11e-05 3.229e-06 3.723e-05  
  ELM*- Stop at 2900th iteration 

 
Fig. 3 and Table 2 summarize the performance of recursive neural-net training algo-

rithms on control benchmark Testcase 2 (using level tank system). The nonlinear sys-
tem benchmark problem seems difficult to model using RPE and ELM techniques due 
to its continuous settling and change behaviours. Whereas for the case hybrid training 
methods a steep convergence in the learning curves being observed. The best results is 
obtained using the second variant of switching hybrid procedure (HRPE-sw(ii)). 
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Fig. 3. Learning curves of various hybrid training  

Table 2. Performance measure for Testcase II 

Algorithms %NMSE

Mean Std.-dev Minimum
RPE 0.9006 0.0257 0.8736

HRPE 0.0453  0.0574 0.0108

ELM 4.0513 2.8468 0.8981

HRPE-sw(i) 0.1002 0.1548 0.0141

HRPE-sw(ii) 0.0778 0.1402 0.0082  
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6    Conclusions 

The enhanced form separable recursive least square algorithms for training of feed-
forward neural network have been proposed in this work. Two new form of separable 
learning methods with a switching module, tested on MLP-networks show better  
performance (especially the hybrid second variant)  compared to conventional hybrid 
(or separable) training techniques. The proposed hybrid techniques will only update 
the weights which are nonlinear-in-parameter if the current input data are uncorrelated  
to previous input.  

Future work will look into the influence of magnitude of prediction error to the lin-
ear-in-parameter weights update which can be inverstigated by looking into the dis-
placement of input vector together with the correlation angle.  By limiting the weight 
correction of recursive linear optimization (RLS) for output neuron weights, a more 
robust hybrid training method can be obtained, which is in the current stage of inves-
tigation by the present author [2] for second order recursive training when the sample 
arrive at a irregular time interval. 
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Abstract. In this paper, a method is introduced in order to qualify the

performance of dynamic neural fields (DNF). The method is applied to

Amari’s DNF equations, in order to drive the tuning of its free param-

eters. An original evaluation procedure is presented, and then applied

to some input evolution scenarios. Such scenarios define an applicative

context, for which the parameters with the lowest evaluation are optimal.

Keywords: dynamic neural field, parameters tuning.

1 Introduction

In the brain of primates, the cortex is a wide neural structure that deals with
different kind of information, as vision, audition or motor planning, while it is a
quite homogeneous tissue from an anatomical point of view [1]. What may appear
as a contradiction is indeed the result of some extremely flexible self-organizing
property of the cortical information processing [2,3], allowing computational ele-
ments in this neural substrate to be dynamically recruited to cope with everyday
behavioral needs, when new skills are to be learnt, or when the body is severely
damaged. Understanding this property would allow to design autonomous sys-
tems from generic architecture, thus avoiding to face the problem of designing a
dedicated module for every single skill needed for the agent’s behavior.

In the field of computer science, cortically-inspired self-organization has been
addressed by Kohonen, and has lead since then to the famous Self-Organizing-
Maps (SOM) [4] vector quantization technique. This exhibits the central role of
soft competition in the cortical processing, that can be summarized as follows.
At each place of the cortex, an input is provided, that is analysed by some
adaptive band-pass filter. The distribution, across the cortical surface, of such
filter responses is a rich information, that has to be reduced in order to retain
the locally best matching filters. This reduction is a soft competition mechanism,
analysed further in the paper. Filters in the winning places adapt slightly in
order to increase their matching to current input, and Kohonen has shown that a
topologically organized vector quantization emerges from such a learning system.
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The soft competition is reported to be the result of some lateral connections
in the cortical substrate, made of short range excitatory synapses and longer
range inhibitory ones. It emerges from the dynamics of such a neural population
of filters, from both their response to the input they receive and the influence of
their neighbors. In an attempt to formalize the interaction between the cortical
neuronal activities, multiple theoretical models have been proposed, generically
being called as dynamic neural fields (DNF). The DNF theory has been founded
as a specific research field [5]. While many new proposals have been released
since then [6,7,8], the Amari model is still regarded as a reference model, and
consequently has been successfully used in numerous applications. Nevertheless,
the computational power of neural fields has mainly been used for stimuli selec-
tion [9] and only few attempts have been made to exploit their properties for
self-organization [10], since SOM rather use a computational short-cut for this
point. The reason is that parameter tuning for such fields is crucial, and not
easy to achieve in such non-linear dynamical systems. This problem motivates
the work presented in this paper. Since it is commonly used, our approach is
illustrated here, without loss of generality, on the Amari neural field formalism,
that is briefly described now. At every time instance t, the evolution of the mem-
brane potential, u(x, t) for each neural unit x of the population (or field) X is
expressed by equation 1 introduced in [5]:

τ
du(x, t)

dt
= −u(x, t) +

∫
x′
w(|x − x′|)f(u(x′, t))dx′ + i(x, t) + h (1)

where f is a non-linear function (usually a sigmoid), τ and h are real constants,
and w is the lateral connections weighting kernel, usually a Mexican-hat function
as below:

w(r) = A+e−ar2 −A−e−br2
(2)

The field conceived in this way reacts to the filter response distribution i(x, t).
Typically, the global field response of the Amari model is characterized by the
formation of so-called neural “bumps” in some places throughout X , therefore
only some patches of neuronal units being highly activated at a given moment
in time. In our experiments, the distribution i(x, t) is given a priori, since we
rather analyse the field behavior, i.e. the rising of u bumps. In the next section,
a quantitative criterion for measuring the field response quality u, in regard to
the current i distribution, is introduced. Then, in sections 3 and 4, the measure
is applied to Amari fields, and the experimental results are presented, in order
to be discussed in section 5.

2 Measuring the Quality of a Field Response

Extending previous work by Mikhailova et al. [11], we formulate here an optimal-
ity criterion regarding the dynamics of a neural field, described by the following
(P) and (Q) properties :
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Property P. Bumps of a stabilized field response emerge in regions where the
input stimuli are locally the strongest and their amplitudes do not depend on
the amplitudes of the input stimuli.

Property Q. The distance between the center positions of any two bumps of
a stabilized field response should stay within bounding limits bmin and bmax,
with bmin < bmax, in order for the bumps to be neither too sparse, nor too
dense in the field.

A field satisfying (P ∧ Q) develops a selective behavior in any input conditions.
Even if such criterion may be regarded rather restrictive, it actually has a strong
background motivation. In [12], we show how a field ideally satisfying such prop-
erties can support the implementation of self-organizing mechanisms. We present
in the following paragraphs a measuring instrument to evaluate whether a field
response is satisfying the (P ∧ Q) optimality criterion, in order to drive the
parameters choice.

The following analysis is performed for any time instance t, that is omitted
for the sake of simplicity. Let us note RX the set of functions from X to R. Both
u(x) and i(x) belong to RX . The Euclidian distance d on this set is given by
equation 3.

a ∈ RX , b ∈ RX , d(a, b) =

√∫
x∈X

(a(x) − b(x))2 (3)

The (Q) property states that the distance between any two bumps of the field
has to lay in the interval (bmin, bmax). Thereby, let us define B ⊂ RX as the set
of all possible field distributions obtained by placing bumps throughout the field
as to satisfy the (Q) condition. In particular, if bmin is very large (bmin → ∞),
B is the set of distributions formed by a single bump placed at position x, for
whichever x ∈ X .

The set of distributions u that satisfy both properties (P ∧ Q) is obviously
a subset of B. Therefore, the functional distance from u to B (i.e. d(u,B) =
minu′∈B d(u, u′)) should be ideally zero, or practically as small as possible. On
the other hand, the (P) property states that u(x) should be high when i(x)
is locally the strongest, thus the two distributions should be correlated. This
implies that the distance d(u, i) should also be as small as possible. It may also
be impossible to have d(i, u) = 0, since u should belong to B and i may not,
thus d(i, u) should be reduced to d(i,B). Unless i itself is an element of B (i.e.
d(i,B) = 0), fulfilling the two conditions (P ∧ Q) implies satisfying two opposite
constraints, i.e. minimize two different interrelated distances at the same time.

Let us define ∆B
i (u) as the residual error of u minimizing the two above

distances, a measure of performance of u in regard to i and B:

∆B
i (u) =

√
(d(i, u)− d(i,B))2 + d2(u,B) and ∆̄B

i (u) = ∆B
i (u)/d(0,B) (4)

To illustrate the intuition behind the introduction of ∆B
i (u), let us outline

here a geometrical interpretation of this performance measuring instrument. In
figure 1, we represent RX as the bi-dimensional Euclidian plane. In this plane,
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d(i,B)

Bi

i
u

B

d(i,B)

Bi

i
u

B

*

*

Fig. 1. Geometrical interpretation of ∆B
i (u). The thick line represents the set Bi =

{i′ ∈ B, d(i, i′) = minu′∈B d(i, u′)} of field responses satisfying (P ∧ Q) in respect to i,
and it indicates a quality reference. u is nearly as qualitative if both following distances

marked with the symbol ∗ in the figure are small: (d(i, u) − d(i,B)) (see the left side

of the figure) and d(u,B) (see the right side of the figure). (P ∧ Q) is the intersection

of the two dotted lined regions in the figure. The proximity of u to Bi increases while

this intersection shrinks around Bi, i.e. while ∆B
i (u) reduces towards zero.

the points stand for a particular distribution of activity over the field, and the
Euclidian distance between two points represents the actual distance d defined
in equation 3.

In order to implement this theoretical method into a measuring instrument,
one has to define the procedure of computing the distance from a distribution (i.e.
u or i) to a set of distributions (i.e. B). Here, this is done by a parametrization
of the B set and then a search through a stochastic gradient descent algorithm.
This procedure, that combines a combinatorial exploration for visiting the initial
states given to the gradient descent, is not detailed here.

3 Case Study of the Amari Equation

The previously introduced ∆̄B
i (u) value allows to drive the parameter settings

of some neural fields, taking into account pragmatically the applicative context
where soft competition properties are expected. Let us first keep only three
degrees of freedom α1, α2, α3 from equations 1 and 2, by setting τ = 0.3, h =
0, f(x) = (F (x)−F (0))/(F (1)−F (0)), F (x) = 1/(1 + e−α1(2x−1)), a = 0.35, b =
0, A+ = α2, A

− = α3, where α1 ∈ {1, 3, 5, 7, 9}, α2 ∈ [0.2, 1.2] (10 steps), α3 ∈
[0, 0.3] (30 steps). A grid search exploration of the parameters configurations is
made from the previous discrete values. The second element in our experiment
is a scenario, that is a succession of i distributions over the field. As we are not
in an on-line use of the field, but rather in some experimental and controlled
framework, i distribution has to reflect the ones the field would actually have to
cope with. This makes the parameter study presented in this section pragmatic,
i.e driven by the perspective of the actual usage of the soft competition provided
by the field in some applicative context. Here, let us consider that we want the
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Fig. 2. Scenarios for attention and self-organization. Horizontal axis defines the suc-

cession of the time steps. The 1D field X is represented vertically. Each vertical slice

represent the input distribution i intensity using a gray scale. In the first 100 time

steps, i is a random noise. Then, in the next 100 steps, i has the shape of a noisy

Gaussian distribution, whose center changes in the last 100 steps. The two scenarios

differ only by the height of the Gaussians.

field to be able to raise a bump in noisy conditions (i.e. start competition from
scratch), but also able to reconsider the bump position if some patch of activity
exists in the i distribution (i.e. track groups of locally best matching filters). The
second requirement is suitable for attentional mechanisms, and both concern self-
organization, since competition has to be started from scratch at the beginning
of the learning process, where no localized group of filters is dedicated to the
current input. The filters have random heterogeneous sensitivities in such initial
conditions, a fact that translates into a low and noisy input of the neural field
(we do not enter here into the details). This pragmatic context is translated into
scenarios in figure 2.

The B set used to define well formed neural field responses is set to single-
bumped fields, i.e. bmin = ∞ in the (Q) property. The equation of the bump
shape β is β(x, r) = (e4(1−|x−r|/r) − 1)/(e4(1−|x−r|/r) + 1), where x ∈ [0, 2r] and
r is the radius of the bump (in our simulations r = 4). Allowing several bumps
would correspond to have several places able to learn in parallel in the field,
which is a challenge for future work, and thus not addressed here.

4 Experiments

Let us first, and mainly, consider here experiments based on the scenario plotted
on the left of figure 2. Let us consider all the combination of α1, α2, α3 values,
when each of them takes the values specified in the previous section (i.e grid
search). The performance ∆(α1, α2, α3) of a field with those parameters is com-
puted as the average, taken over the 300 steps of the scenario, of the ∆̄B

i (u) value
of the u response of the field. A response that satisfies (P ∧ Q) during the whole
scenario would have ∆(α1, α2, α3) = 0, and it would reach ∆(α1, α2, α3) = 1 if
the field performs as bad as the null field (u = 0, ∀x, t) (see section 2). As the
considered scenario consist of three 100-steps parts, note that performing as bad
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Fig. 3. Left, the value of the quality indicator ∆(1, α2, α3) for all discrete α2 ∈
[0.2, 1.2], α2 ∈ [0, 0.3] recorded while running the 1D scenario shown in figure 2-left.

The best parameters α�
2 , α�

3 are the ones at the crossing of the two thick lines. Right,

the specific parameters considered in figure 4. A is the optimum.

as the null response on one of these parts would penalize ∆(α1, α2, α3) by 0.33.
Simulation is made by discretizing equation 1 in time and space, and evaluating
each position in a random order, i.e using an asynchronous update.

The global minimum is reached for α�
1 = 1, α�

2 = 0.6, α�
3 = 0.09. However, if

the same evaluation procedure is done for a fixed value of α1 that is greater
than 1, a minimum is obtained for α2 = 0.3, α3 = 0.03 each time. There-
fore, non-linearity has a slight influence on the value of this optimum, since
∆(1, α�

2, α
�
3) = 0.40 and ∆(α1, 0.3, 0.03) ≈ 0.49 for all other values of α1. This

means that reducing the non-linearity of the synapses in the Amari model helps
for appropriate bump formation. Figure 3-left shows the influence of α2, α3 when
α1 = 1, and figure 4-upper-left shows the response of the field with optimal
α�

1, α
�
2, α

�
3 parameters.

Let us consider non optimal fields on the same scenario, to illustrate the need
for accurate parameter settings, for α1 = 1. Figure 4 shows the behavior of the
field for different parameter settings. The upper-right frame shows a field that
just copies the input. The lower-left one shows a field that is able to raise a bump
from noise (i.e. able to trigger learning from scratch), but that is incapable to
reconsider the bump position when input changes. The lower-right frame shows
a field that can track bumps of input, but that is not able to raise a bump when
i is made of a uniform noise. Therefore points B and D from figure 3-right show
a similar behavior. As all the ∆(α1, α2, α3) values are quite close to the optimal
ones, since they stand in the flat region of figure 3-left, this shows the difficulty of
parameter settings, that needs an accurate search of the right parameter values.

Figure 5-left shows that the quality measurements is robust to different in-
stantiations of the problem (they differ since a random noise is used, as well
as a random asynchronous update). This shows that the dramatic input change
produces an increase of ∆B

i (u), since the field is still in the state fitting previ-
ous input, but that it can recover after few steps, due to the change of the u
response. The time for recovery could also be measured and then optimized if
some application needs highly reactive fields. This point is not investigated here.



Application-Driven Parameter Tuning Methodology for DNF Equations 141

 0

 0.5

 1

 0  30  60  90  120  150  180  210  240  270  300
 0

 10

 20

 30

 0

 0.5

 1

 0  30  60  90  120  150  180  210  240  270  300
 0

 10

 20

 30

 0

 0.5

 1

 0  30  60  90  120  150  180  210  240  270  300
 0

 10

 20

 30

 0

 0.5

 1

 0  30  60  90  120  150  180  210  240  270  300
 0

 10

 20

 30

Fig. 4. From upper-left to lower-right, u, the evolution of the field’s response to the

first scenario, for α1 = 1 and (α2, α3) corresponding to the A,B,C and D points from

figure 3-right. For point E, the field is not inhibited enough and u(x, t) = 1,∀x, t (not

shown).
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Fig. 5. Left, the scenario is re-run 50 times for the optimal field, allowing to plot at

each time step t the mean and standard deviation of ∆B
i (ut). Right, the behavior of

the optimal field for the other scenario (plotted in figure 2-right).

5 Discussion

In this paper, an original method that measures the quality of a neural field has
been presented. It is based on some controlled scenarios. For Amari equation, the
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method appears to be robust to the very scenario instance, and thus significant
to the general behavior of the field on such a scenario. Experiments have shown
why parameter tuning for Amari equation is hard, since figure 3-left has a flat
region where behaviors of the field differs and where optimal parameter stand.
Moreover, it appears that the linear synapses, for that equation, helps the field to
behave in suitable way. One can notice on figure 5-right that the best field on the
second scenario (see figure 2-right) fails in tracking weak bumps of input. This
makes the Amari equation unsuitable for driving self-organization [12], whereas
first scenario supports its use for attention. This has motivated us to propose a
new equation [13] whose extensive analyse by the method presented here is at
work.

The authors wish to thank the Region Lorraine for its substantial support to
this work.
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Abstract. The lengths of interspike intervals between two successive

spikes in a neural spike train often vary both within and across trials.

In order to describe and analyze neuronal firing, statistical models and

methods of probability theory and stochastic point process have been

widely applied.

In this study, we compare several non-homogeneous gamma processes

on the basis of reproducing the wide distribution of the irregularity statis-

tics in vivo and show some conditions for reproducibility. We conclude

that the changes of firing rates are not sufficient for describing the fluc-

tuations of the statistics.

Keywords: interspike interval, gamma process, irregularity.

1 Introduction

Firing patterns of cortical neurons look very noisy [1, 2]. Therefore, probabilis-
tic models are necessary to describe such patterns [3, 4]. Baker and Lemon
showed that the firing patterns recorded from motor areas can be explained using
a continuous-time rate-modulated gamma process [5]. The probability density
function of gamma process is depicted as

p(T ) =
λκT κ−1exp(−λT )

Γ (κ)
, (1)

where T denotes an interspike interval, λ denotes a mean firing rate, κ denotes
a shape parameter, and Γ (κ) =

∫∞
0 T κ−1exp(−T )dT is the gamma function.

When κ = 1, gamma process corresponds to Poisson process, and spike train
looks irregular. When κ is large, gamma process is approximated by a normal
distribution, and when κ→∞, gamma process corresponds to perfectly-regular
firing. Thus, κ is a shape parameter related to regularity.

In examining the model plausibility, reproducibility of the characteristics of
real spike train variability is a central problem in the study of brain functions.
For quantifying the variability of spike trains, the coefficient of variation CV is
a very common measure which has been widely employed by many researchers
[1, 6, 7]. CV is defined as
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CV =
1
T

√√√√ 1
n− 1

n∑
i=1

(Ti − T )2, (2)

where Ti represents the ith ISI, and n the number of ISIs. CV is a dimensionless
index which indicates the spiking irregularity and takes a value 1 for infinitely
long purely Poisson series of events, in which event intervals are independently
exponentially distributed, and a value 0 for a perfectly periodic sequences.

2 Wide Statistical Distribution

2.1 Statistics of the Data in Vivo

CV depends on κ in the case of constant firing rate. Baker and Lemon assumed
κ to be unique to individual neurons and constant over time [5]. The assumption
that κ is unique to individual neurons is also supported by other studies [8, 9].
Unique κ makes the rate of CV constant in the case of homogeneous gamma
process.

However, in vivo, CV distributes widely even though they are recorded from
same neuron during same experimental condition in several studies [7, 9]. In
our former study [9], CV distributes widely (0.82− 1.8) for same neuron under
same experimental task (see [9] for a detail) as in Fig. 1. The range of CV ,
0.82 ≤ CV ≤ 1.8 is also valid in other experimental analyses [7].

CV

T (sec)

Fig. 1. CV values obtained from the ISI sequences of the rat gustatory cortex [9]

May this seemingly contradictory phenomenon be explained by varying the
mean rate λ which makes the statistics CV variable? In this paper, we address
the question whether the gamma process can reproduce such wide distribution
which is often observed in in vivo spike data only by changing mean firing rates.
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2.2 Mechanisms of Wide CV Distributions

There are three mechanisms for making the distribution of CV wide in vivo: rate
fluctuation, irregularity fluctuation, and statistical fluctuation.

Rate fluctuation is a change of the mean firing rates during the experiment,
which may make CV distribution wide. The value of CV is measured within a
time bin with a certain bin size. If the time scale of the rate change is longer
than the bin size, CV can exhibit various values depending on the bins.

Irregularity fluctuation is a change of irregularity factor of a spike generator
during the experiment, which may also make CV distribution wide. It is known
that the irregularity measure varies with time [10, 11]. If the irregularity is
fluctuating during the experiment, the statistical values can take various values
depending on the bins.

Finally, statistical fluctuation may make CV distribution wide. Due to sta-
tistical fluctuation by finite bin size effect, statistical values can take various
values.

According to the study of Baker and Lemon [5], fluctuations of the statistics
in vivo is reproduced by non-homogeneous gamma process which is a gamma
process with time-varying firing rate. We confirm whether this is true only by
changing λ in equation (1).

3 Numerical Analysis

3.1 Sinusoidally Varying Firing Rate Gamma Process

We first vary the firing rate sinusoidally with period s and its amplitude σ:

λ(t) = λ0 + σsin(
2πt
s

). (3)

We set the bin size ∆, and obtained the statistical values CV from equation (1)
and (3). The results for different parameters σ are shown in Fig. 2 and 3.

In Fig. 2, the time scale s of over 3000 millisecond is needed to reproduce
the range of CV from the data in vivo. Such long time scale can be seen in
delta wave which is a high amplitude brain wave recorded with an EEG and is
usually associated with slow-wave sleep [12]. However, delta wave activity during
the waking state is not common phenomenon for awake animals [12] and it is
impractical to assume the presence of such long time scale dynamics in every
experimental data.

If we increase σ from σ = 0.4 to 0.8 (Fig. 3), the time scale s needed to repro-
duce the supremum of CV will be decreased. However, CV ≤ 1.0 is irreproducible
since large amplitude of rate fluctuation make the rate of CV large.

From the observation of Fig. 2 and Fig. 3, if we assume the sinusoidally rate
modulated gamma process, the dynamics which has fairly long time scale is
needed to reproduce the wide CV distribution, which is an implausible assump-
tion for the real experimental condition.
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Fig. 2. CV values obtained from gamma process with sinusoidally varying rate. Hun-

dred CV rates are obtained from equation (1) and (3), and their means and variances

are presented as plots and error bars with different time scale s respectively. The pa-

rameters are set as κ = 1, λ0 = 1(Hz), Δ = 1000(ms), σ = 0.4, respectively. Colored

area corresponds to the area 0.82 ≤ CV ≤ 1.8 which is observed in vivo (see Fig. 1). If

time scale is about s ∼ 3600, the model can cover the colored area.

Fig. 3. CV values obtained from gamma process with sinusoidally varying rate. Hun-

dred CV rates are obtained from equation (1) and (3), and their means and variances

are presented as plots and error bars with different time scale s respectively. The pa-

rameter σ is set as σ = 0.8, and the other parameters are set as the same as in the

Fig. 2. Colored area corresponds to the area 0.82 ≤ CV ≤ 1.8 which is observed in vivo

(see Fig. 1). If time scale is about s ∼ 800, the model can cover CV = 1.8, however,

CV ≤ 1.0 is irreproducible.
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3.2 Doubly Stochastic Gamma Process

Next, we consider the doubly stochastic gamma process in which the firing rate
is modulated [13]. We consider the case that the random modulation of the firing
rate is given by the Ornstein-Uhlenbeck process,

dλ

dt
= −(λ − λ0)/s + Dξ(t), (4)

where λ is the rate of the gamma process, λ0 is the mean rate, s is the time
scale of the rate change, D is the amplitude of the noise, and ξ(t) is a Gaus-
sian noise with ensemble-averaged quantities < ξ(t) >= 0 and < ξ(t)ξ(t′) >=
δ(t− t′). The result of the case of doubly stochastic gamma process is shown in
Fig. 4.

Fig. 4. CV values obtained from doubly stochastic gamma process. Hundred CV rates

are obtained and their means and variances are presented as plots and error bars with

different time scale s respectively. The parameters are set as κ = 1, λ0 = 0.02, Δ =

1000, D = 0.01, respectively. Colored area corresponds to the area 0.82 ≤ CV ≤ 1.8
which is observed in vivo (see Fig. 1). If the time scale s is about s ∼ 900, the model

can cover the colored area.

Same as in the case of sinusoidally rate modulated gamma process, the
dynamics which has fairly long time scale is needed in doubly stochastic gamma
process. According to our observation in this subsection and the previous sub-
section, an assumption of κ to be unique to individual neurons and constant over
time is a strict condition in non-homogeneous gamma based model. Therefore,
we consider the non-homogeneous gamma process with non-unique κ in the next
subsection.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000

Cv

s (ms)



148 K. Fujiwara, K. Aihara, and H. Suzuki

3.3 Non-homogeneous Gamma Process with Varying Shape Factor

We consider the non-homogeneous gamma process with non-unique κ. The firing
rate λ and the shape factor of gamma process κ are both modulated sinusoidally
with time.

λ(t) = λ0 + σλsin(
2πt

sλ
), κ(t) = κ0 + σκsin(

2πt

sκ
). (5)

The result is shown in figure 5.

Fig. 5. CV values obtained from non-homogeneous gamma process with fluctuating

κ. Hundred CV rates are obtained and their means and variances are presented as

plots and errorbars with different time scale sλ respectively. The parameters are set

as λ0 = κ0 = 1, Δ = 1000, σλ = σκ = 0.4, sκ = 100, respectively. Colored area

corresponds to the area 0.82 ≤ CV ≤ 1.8 which is observed in vivo (see Fig. 1). If time

scale s is about s ∼ 80, the model can cover the colored area.

In Fig. 5, time scale s of near 80 millisecond is needed to reproduce the CV

rate from the data in vivo. Such time scale can be seen in alpha waves, which
is widely observed oscillations in the frequency range of 8 to 12 Hz arising from
synchronous and coherent electrical activity [14]. It is plausible to assume the
presence of such time scale dynamics in every experimental data. Reproducing
the firing statistics of the experimental data is realized by modulating both firing
rate λ and the shape factor κ of gamma process with a plausible stochastic
model.

4 Discussion

We compared several non-homogeneous gamma processes on the basis of repro-
ducing the wide distribution of the irregularity statistics in vivo. We conclude
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that the assumption of κ to be unique to individual neurons and constant over
time is too strict in non-homogeneous gamma based model as in the section 3.1
and 3.2. Instead, we proposed the gamma process based model in which both
rate and shape factor modulate with time, and in fact it has broaden the range
of the statistics CV with short time scale.

It has been shown in vivo that the changes in the average excitatory synaptic
conductance are balanced with those of inhibitory ones in cortical and spinal
cord neurons and make irregular firing [15]. Additionally, constant κ is achieved
when the ratio of the excitatory and inhibitory activities is constant [16].

According to our result, such ratio may fluctuate with time under the condi-
tion of neural balances. Several experimental evidences for such time-changeable
balances can be found in recent physiological studies [17, 18]. Time-changeable
neural balance enables neuron to assign wide range of statistical values, and may
have a possible relationship to robust neural computation in the cortex. It is a
future problem to evaluate the effect of such mechanism for improving neural
information processing.
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Abstract. In this paper, we propose LZ_MSA, a novel method for progressive 
multiple sequence alignment based on Lempel-Ziv. The vector space is con-
structed by 10 types of copy modes. Under this approach, sequence alignment is 
converted into vector alignment and the guide tree can be dynamically amended. 
Finally we use five subsets in the standard dataset of BAliBASE to validate the 
proposed algorithm. Compared to ClusatalW, MAFFT, LZ_MSA reduces the 
alignment time without sacrificing accuracy. 

Keywords: Multiple Sequence Alignment, Time Complexity, LZ_MSA. 

1   Introduction 

The Biological problem of multiple sequence alignment has been proved to be an 
NP-complete problem [1]. The bottleneck of this method is the large amount of calcu-
lation in pairwise sequence alignment. Therefore, how to do effective pairwise sequence 
alignment is the main issue in this paper. 

Currently, there have been many algorithms to solve the multiple sequence alignment 
problems. One is based on the random search strategy such as hidden Markov model [2], 
simulated annealing algorithm [3, 4], genetic algorithm [5-8], and etc. These algorithms 
have been proved to be flexible and effective. However, they are not very stable and the 
computation time is long. The progressive alignment algorithm has been introduced into 
multiple sequence alignment problems. The basic idea of these algorithms is the iterative 
use of the two dynamic programming sequence alignment algorithms. The alignment 
begins with two sequences, and then new sequence will be gradually added until all 
sequences are added in. However, adding new sequences in different order will produce 
different results. Therefore, the identification of suitable alignment order is a key issue. 
Thompson etc. proposed a ClustalW algorithm, which is the most widely used progres-
sive multiple sequence alignment algorithm [9]. The evolutionary information was 
introduced into the alignment process - through the construction of the guide tree to 
make multiple sequence alignment a gradual pairwise alignment process. In this way, 
the amount of calculation will be reduced and it is very practical. Generally, ClustalW is 
a successful method for multiple sequence alignment. Nevertheless, it can easily be 
                                                           
* Corresponding author. 
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trapped into local optimal solution since it greedily follows the guide tree to add all the 
sequences together. Later, many algorithms have improved the ClustalW algorithm. 
Gotoh proposed the idea of iteration to improve the multiple sequence alignment accu-
racy [10]. Kazutaka Katoh proposed MAFFT algorithm which combined the fast Fourier 
transform and the guide tree [11]. 

Lempel-Ziv algorithm (LZ) is a dictionary compression algorithm proposed by 
Lempel and Ziv in 1976 [12]. The complexity of the symbolic sequence they defined 
refers to the minimum steps to generate the sequence through the adoption of the most 
copied and additional "adding" a character from the null string [13-14]. The complexity 
of symbolic sequence reflects the similarity situation of sequences. 

This paper introduces LZ_MSA, a novel method for progressive multiple sequence 
alignment based on Lempel-Ziv. In the pairwise sequence alignment, it converts the 
sequence alignment into vector alignment, which can prevent the complicated  
calculation. In this way, the calculation time is reduced. And then the dictionary 
strategy is applied, which also helps to reduce the calculation time. The dynamically 
amending of the guide tree can avoid trapping into local optimal solution. It also im-
proves the accuracy of the algorithm. Finally the time complexity of LZ_MSA is 

( log )O N N compared to ClustalW’s 2 2( )O N L . Therefore, our method effectively 

improves the speed of pairwise sequences alignment without scarifying the accuracy. 

2   The Progressive Multiple Sequence Alignment LZ_MSA 

ClustalW is a classical progressive multiple sequence alignment method. It constructs 
the distance matrix first and then generates the guide tree in accordance with the cal-
culation of the distance matrix. With the guidance of guide tree from the beginning of 
most closely two sequences, it gradually introduces a new sequence until all the  
sequences are added in. The method makes the guide tree remain unchanged and the 
generated sequence can only be compared by the fixed order. However, because of its 
large amount of calculation in pairwise sequence alignment and the greed alignment 
strategy, its speed and accuracy is limited. In order to overcome the above-mentioned 
limitations, a novel progressive multiple sequence alignment LZ_MSA is developed. 
The process of LZ_MSA is as follows: 

Step 1. Convert the DNA sequences into a vector space  

Assume the set of aligned sequences are
1{ ,....., }NS s s= , where is  is the ith  

sequence and {1,...., }i N∈ . We convert the sequence to the vector space. Now we  

introduce the specific vector conversion process: the positive replication of DNA  
sequences is a kind of identical permutation on the set { , , , }M A G C T= : 

(1) ( ) , ( ) , ( ) , ( )p A A p T T p G G p C C= = = = ; 

while the complementary of DNA sequences is another kind of permutation:    

(2) ( ) , ( ) , ( ) , ( )p A T p T A p G C p C G= = = = ; 

Based on the effective combination of positive replication and complementary for DNA 
sequences, we can get the other eight kinds of replication as follows: 
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Sequence sets

Vector conversion

Results output

Dictionary extension

Distance matrix calculation

Guide tree amendment

Sequence alignment

 

Fig. 1. LZ_MSA flowchart 

Each replication is based on the above identical and complementary transformation, 
the replication only contains complementary transformation also have two kinds: 

(3) ( ) , ( ) , ( ) , ( ) ;p A G p G A p C T p T C= = = =  

(4) ( ) , ( ) , ( ) , ( ) ;p A C p C A p G T p T G= = = =  
The following replications are the combination of identical and complementary  
transformation: 

(5) ( ) , ( ) , ( ) , ( ) ;p A A p G G p T C p C T= = = =  

(6) ( ) , ( ) , ( ) , ( ) ;p A A p C C p G T p T G= = = =  

(7) ( ) , ( ) , ( ) , ( ) ;p A A p T T p G C p C G= = = =  

(8) ( ) , ( ) , ( ) , ( ) ;p G G p T T p A C p C A= = = =  

(9) ( ) , ( ) , ( ) , ( ) ;p G G p C C p A T p T A= = = =  

(10) ( ) , ( ) , ( ) , ( ) ;p C C p T T p A G p G A= = = =  
Among the four bases of the six kinds of replications above, there are two for identical 
transformation, two for complementary transformation. 

Thus, any DNA sequence may be achieved from a null sequence. Hence, there are ten 
time complexities for a particular DNA sequence, which constitutes a vector with ten 

components, denoted as ))(),...,(),(( 1021 scscsc . Considering the corresponding 

relationship between DNA sequences and vectors above, the comparison of DNA se-
quences may be transformed to comparison of vectors. The correlated value of any two 

given species 1s and 2s  can be computed by cosine of their corresponding vectors: 
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(1) 

Where 1 1 1 2 1 10 1( ( ), ( ).... ( ))s c s c s c s= ， 2 1 2 2 2 10 2( ( ), ( ).... ( ))s c s c s c s= . Then we can 

get the distance of 1s and 2s :  

1 2 1 2( , ) 1 ( , )d s s c s s= −  (2) 

For example, Sequence
1 :s ACGGTC ,

2 :s ACGATC  and 3 :s GGTGTT can be con-

verted into vector space: 

'
1(5, 4,4,4,5,5,5,5,5,5)s , '

2 (5,4,4, 4,5,4,5,5,5,5)s , '
3 (3,4,3, 4,3,3,3,3,3,3)s . From 

Equation 2, ' '
1 2( , ) 0d s s = and ' '

1 3( , ) 0.03d s s = . It is obvious to observe that the dis-

tance between 1s and 2s is closer and the distance between 3s and 1s is further. 

Step 2. Expand the dictionary, compute the distance matrix, construct and amend the 
guide tree 

Following step 1, we can get the vector set ' '
1{ ,....., }NS s s′ = . Initially, the dictionary 

1
mG = Φ is empty and a random fragment '

1s is set to be the first residue of the corre-

sponding sequence. According to Equation 2, 1 2 1 3 1( , ), ( , )..... ( , )nd s s d s s d s s can be 

calculated as the residue of sequences 2 3, ,..... ns s s . These directories are ordered from 

small to large. Then the maximum value is max 1( , )xd s s and the initial dictionary 

directory is from 0 to max 1( , )xd s s .Thus, the LZ dictionary is created. To further 

reduce the execution time, D is only partially calculated as follows: an initial sequence 
is selected and compared to all the other sequences. The resulting distances are split 
evenly into two groups based on d, one containing the smallest distances, denoted 
by max 1( , )

2
xd s s

d ≤ , and the other containing the largest distances, denoted 

by max 1( , )

2
xd s s

d > . The process is repeated recursively on each group until the number of 

sequences in a group is two. The benefit is that only log( )N N distances need to be 

calculated. 

When a new sequence '
xs is added, it is considered to be a new directory element. It is 

necessary to expand the existing dictionaries, which indicates that the new dictionary is 
1 '{ }N N

m m xG G s+ = ∪ . Then reset '
xs = Φ . In accordance with this situation, followed by 

the addition of new sequences, the evolutionary distance matrix will be updated by the 
newly added sequence. 
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Distance matrix method is a mature algorithm to develop guide tree. The common 
methods are: UPGMA [17] �Fitch-Margoliash [18] and NJ (Neighbor-joining Method) 
[19]. All of these methods can generate root trees, and NJ algorithm is the most efficient 
algorithm. In this paper, we use the NJ algorithm which is based on the distance method 
to construct the guide tree. The distance matrix is calculated by step 2. Next we put the 
distance matrix into the Neighbor program in PHYLIP. Finally the results of the evo-
lutionary relationship - the guide tree will be produced. LZ_MSA will dynamically 
amend the guide tree and avoid trapping into local optimal solution. 

Step 3. Sequence alignment in accordance with the guide tree 
Followed by step2, in terms of the selection of the alignment scoring system in the 

process of sequence alignment, the normalized similar matrix and gap penalty proposed 
by MAFFT have achieved good results in practical applications [11]. Therefore, this 

method will be used in this paper. Similarity matrix ˆ
abM can be represented as: 

ˆ [( 2) /( 1 2)] n
ab abM M average average average S= − − +  

Where
0

1
a

a aaaverage f M=∑ , 2
b

a b ab
a

average f f M=∑ , abM is raw similar matrix, 

af is the frequency of occurrence of amino acids A, and aS is a parameter that functions 

as a gap extension penalty. Gap penalty can be represented as 

( , ) {1 [ ( ) ( )] / 2}op start endG i x S g x g i= ⋅ − + , Where opS  corresponds to gap 

opening penalty, ( )startg x  is the number of the gaps that start at the x the site, and  

( )endg i  is the number of the gaps that end at the x the site. 

The program of LZ_MSA has been carried out in the Windows system in VC + + 
language, and the program also integrates ClustalW, MAFFT with LZ_MSA for com-
parison. 

3   Results and Discussions  

The proposed algorithm is tested using the standard dataset in Bali BASE. The Bali 
BASE is a protein multiple sequence alignment sets, which contain 144 test cases with 
more than 1000 sequences. According to the different characteristics of sequences, the 
alignment cases were divided into five subsets [19], as shown in Table 1. 

The test results are evaluated by Bali score [19]. Bali score is a program to evaluate 
the merits of the alignment, which belongs to Bali BASE. It evaluates the alignments 
based on measured values of the SPS (residue of the number). Assume that the  
sequence number is N, each sequence has M columns, and the column of reference 
sequence is rM , the ith residue is expressed as 1 2, ,...,i i iNc c c . Then the calculation of 
two values is respectively described as follows: 
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Table 1. The features of five subsets in Bali BASE 

Bali BASE Each feature of subsets 
Ref1 The lengths of the sequences are the same 
Ref2 One set includes more than 15 close kin  

sequences and an orphan sequence 
Ref3 The sequences include more than one family 

and each family is far between genetic sequence 
of number 

Ref4 The sequences have N/C terminal extension 
feature (reach 400 residues) 

Ref5 The sequences have long internal insertion 

SPS: For each pair residues ijc and ikc in one column, define ijkP , if ijc can match the 

same as ikc , we set ijkP to 1, or else to 0. The formula of iS in each column is as  

follows: 

1, 1

N N

i ijkj j k k
S P

= ≠ =
=∑ ∑  (3) 

Assuming the value of rS corresponds to the value of iS  in reference data, so the 

formula of SPS is as follows: 

1 1
/ rM M

i rii i
SPS S S

= =
=∑ ∑  (4) 

At the same time, Thompson has also provided the scores of other popular alignment 
evaluation methods. Bali score and these scores can be downloaded free of charge from 
the web site: 
(http://bips.ustrasbg.fr/en/Products/Databases/BAliBASE/progscores.html) 

Table 2. Comparison of the SPS average and the running time for each subset 

 ClustalW MAFFT LZ_MSA 
Ref1 0.871 0.782 0.735 
Ref2 0.498 0.766 0.767 
Ref3 0.517 0.631 0.608 
Ref4 0.672 0.574 0.598 
Ref5 0.683 0.633 0.585 
Time(s) 2202 1466 530 

Table 2 shows the comparison of alignment results and running time. It can be ob-
served that LZ_MSA can test all test cases in the five subsets. Overall, the results with 
LZ_MSA are better than ClustalW. In general, it has the same effect as MAFFT. For 
comparison, for Ref1, Ref4 and Ref5, LZ_MSA is slightly worse than ClustalW, which 
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shows that for the continuous insert circumstances, LZ_MSA may not produce the best 
results. For Ref2 and Ref3, LZ_MSA is obviously superior to ClustalW, which indicates 
that for a family protein (or high similarity sequence), no matter whether the alignment 
is between families or between family and orphans, LZ_MSA can produce superior 
results. The quality of the alignment results was mainly due to the fact that whether the 
guide tree is reasonable. From the above, it shows that LZ_MSA reduces the alignment 
time without sacrificing the accuracy. 

4   Conclusion 

It can be seen from the above analysis that LZ_MSA reduces the running time of 
pairwise comparison compared to other methods such as ClustalW and MAFFT. At the 
same time, it can keep the same accuracy level and under some occasions the accuracy 
level is higher. More importantly, it converts the sequence alignment into vector 
alignment, which can prevent the complicated calculation. It can also avoid trapping 
into local optimal solution by dynamically amending of the guide tree. Finally, com-
bining the LZ algorithm with the multiple sequence alignment method is closer to the 
biology truth. Moreover, there is still some room for improvement. The possible future 
work includes how to convert sequence, and how to calculate similar matrix and the gap 
penalty. 
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Abstract. Gaussian mixture model (GMM) is one of the important

models to approximate probability distributions. There are various meth-

ods for Gaussian mixture estimation such as the EM algorithm, sampling

method, and the Bayes method. In this paper, we are concerned with the

Gaussian mixture estimation problem using the variational Bayes (VB),

which is an approximation of the Bayes method. In the VB, it is impor-

tant to choose its initial values carefully since the objective function of

the problem is multimodal. In this paper, we propose a method which

employs primitive initial point (PIP) as an initial value of the VB and

performs multi-directional search from the PIP. We present the moti-

vation and rationale of our method and demonstrate its effectiveness

through numerical experiments using real data sets.

Keywords: Gaussian mixture estimation, variational Bayes, primitive

initial point, deterministic annealing.

1 Introduction

Gaussian mixture model (GMM) is widely used in many applications because
it can approximate various forms of probability distributions [1]. Many ap-
proaches have been proposed for GMM estimation problem, such as EM algo-
rithm, sampling method and Bayesian method. Recently, the variational Bayes
(VB) method which is an approximation of the Bayes method based on the mean
field approximation [2,3,4,5]. In this paper we apply the VB method [6] to GMM
estimation problem. In the VB, one can only find a local optimum because the
free energy function of the problem is multimodal with respect to the param-
eters. Therefore, we should choose initial points carefully to find an excellent
solution. Deterministic annealing is often useful for finding a better local solu-
tion [7]. Recently, Katahira et al [8] adapted deterministic annealing approach
to the VB, which is called the DAVB method. They empirically demonstrated
that the DAVB has the ability to find an excellent solution.

In this paper we propose an alternative method to challenge the local optimal-
ity problem. The starting search point of our algorithm is the same as that of the

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 159–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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DAVB. We define the optimal solution of the DAVB at the highest temperature
as the primitive initial point (PIP). We investigate the curvature of the free en-
ergy function at the PIP. As we will see later, the Hessian matrix of the original
(not annealed) free energy function at the PIP has both positive and negative
eigenvalues, showing the PIP is a saddle point. In addition, we obtained empirical
evidence [9] that the PIP is an excellent starting point. In particular, we exam-
ined how the negative free energy function changes along the straight path from
the PIP to excellent solutions, and found that the negative free energy function
is monotonically increasing through the path in most (but not all) cases. These
results imply that we can obtain excellent solutions without annealing if we start
searching from the PIP in the direction of increasing the negative free energy func-
tion. Using these empirical results, we develop an efficient multi-directional search
strategy for VB-based GMM estimation problem. The computational cost of our
approach is comparatively small because it does not need an annealing process.
Another advantage of our approach is that the algorithm is deterministic, while
other approaches, including the DAVB, have random feature.

This paper is organized as follows. Section 2 describes the variational Bayes
(VB) method and the deterministic annealing VB (DAVB) method for Gaussian
mixture model. In section 3, we define the PIP and analyze the curvature of
the free energy function at the PIP. Using the implication from the analysis,
we develop a multi-directional search algorithm from the PIP. In section 4, we
evaluate the performance of our method using real data sets. Finally, we conclude
the paper in section 5.

2 Background

2.1 Gaussian Mixture Model

Let us formulate Guassian mixture model (GMM) estimation problem. Con-
sider D-dimensional K-class Gaussian mixture model. Let {xn|xn ∈ RD, n =
1, . . . , N} be an observed data set. In GMM, we assume that xn is generated
from the mixture of multivariate Gaussian distributions:

p(xn|θ) =
K∑

k=1

πkN (xn|µk,Λ
−1
k ),

where πk,µk and Λk are the mixing coefficient, the mean vector and the precision
matrix of the kth component, respectively. The objective is to estimate model
parameters θ = {πk,µk,Λk}, k = 1, . . . ,K from the given data set.

2.2 Variational Bayes Method

In GMM estimation, the number of mixture componentsK is generally unknown.
The variational Bayes (VB) method provides a convincing way to estimate the
appropriate number of mixture components from data [2,3]. The VB method is
an approximation of the Bayes method using the mean field approximation [4,5].
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In the VB framework, the lower bound of a marginal log-likelihood ln p(X) is
maximized. The lower bound L(Q(Z,θ)) is derived as

ln p(X) =
∑
Z

ln
∫
p(X ,Z,θ)dθ =

∑
Z

ln
∫
Q(Z,θ)

p(X ,Z,θ)
Q(Z,θ)

dθ

≥
∑
Z

∫
Q(Z,θ) ln

{
p(X,Z,θ)
Q(Z,θ)

}
dθ

≡ L(Q(Z,θ)), (1)

where Z denotes latent variables and Q(Z,θ) is an arbitrary distribution called
the variational posterior distribution. Through the maximization of the lower
bound eq.(1), we approximate the true posterior distribution by Q(Z,θ). To
apply the VB method to GMM estimation, the joint distribution p(X ,Z,θ) is
decomposed as [10]:

p(X ,Z,θ) = p(X,Z,π,µ,Λ) = p(X|Z,µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ). (2)

In general, conjugate priors are employed as prior distributions; the Dirich-
let distribution for p(π) and the Gaussian-Wishart distribution for p(µ,Λ) =
p(π|Λ)p(Λ), i.e.,

p(π|α0) = Dir
(
{πk}K

k=1|α0

)
, (3)

p(µ|Λ)p(Λ) =
K∏

k=1

N
(
µk|m0, (η0Λk)−1

)
W(Λk|W0, ν0), (4)

where α0, η0,m0,W0 and ν0 are hyper-parameters. In addition, we assume that
Q(Z,θ) can be factorized as Q(Z,θ) = Q(Z)r(θ). Substituting this equation
and eq.(2) into eq.(1), we obtain the free energy function of the VB method
for Gaussian mixture estimation. In the VB method, the free energy function is
maximized with respect to Q(Z) in the VB-E step and maximized with respect
to r(θ) in the VB-M step.

2.3 Deterministic Annealing VB Method

The VB enables us to find a local solution because the free energy function of
the problem is multimodal. Deterministic annealing is often useful for finding
an excellent local solution [7]. Recently, Katahira et al [8] adapted deterministic
annealing approach to the VB method, which is called the DAVB method. In
the DAVB, the free energy function is modified to fit into the basic equation
of the statistical mechanics: F = U − TS, where F is free energy, U is internal
energy, T is temperature and S is entropy. Using the analogy, the negative free
energy is represented as

−Fβ(Q(Z,θ)) = −
∑
Z

∫
Q(Z,θ) ln p(X,Z,θ)dθ

+
1
β

∑
Z

∫
Q(Z,θ) lnQ(Z,θ)dθ, (5)
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where β represents the inverse temperature. Note that Fβ(Q(Z,θ)) = −F in
physical meaning, therefore, we refer to Fβ(Q(Z,θ)) as the negative free energy.
Setting the derivatives of eq.(5) with respect to Q(Z) and r(θ) to 0, we obtain
posterior distributions. In the DAVB framework, the free energy function eq.(5)
is maximized under various levels of temperature from β = 0 to β = 1. Note that
the update equations are identical with the standard VB method when β = 1.

3 Multi-directional Search from the PIP

The DAVB has a potential to find excellent solutions mainly because of the fol-
lowing two reasons. First, it starts searching from the PIP, i.e., the solution at
the highest temperature. The underlying idea is that the solution space at the
highest temperature would approximate its global structure. Second, it employs
annealing, anticipating that a very good local optimum at a certain temperature
would be located around a very good local optima at a bit higher temperature.
However, the computational cost of the annealing is rather heavy because we
must solve the maximization problem many times at various levels of temper-
ature. In this paper, we propose an alternative method to challenge the local
optimality problem using only the first property of the DAVB method.

3.1 Primitive Initial Point and Its Properties

Let us call the DAVB solution at the highest temperature (β = 0) primitive
initial point (PIP). We obtain the PIP θpip = {αpip, ηpip,mpip,Wpip, νpip} by
substituting β = 0 into the update equations of the DAVB method. Note that,
all the mixture components have the identical parameters at the PIP. Using the
PIP as the starting point, we can obtain some efficiency in the development of
the method. In the next subsection, we will show some empirical evidence that
the PIP has some good properties as the starting point for the VB method.

Here, we empirically investigate the properties of the PIP for GMM using 10
real data sets shown in Table 1. Hereafter, we symbolize these data sets as #1,

Table 1. Data set

Data D N Source

australian 11 689 Statlog

bodyfat 14 252 StatLib

breast-cancer 10 683 UCI

diabetes 7 768 UCI

heart 11 270 Statlog

iris 4 137 UCI

liver-disorders 5 345 UCI

mpg 6 383 UCI

space-ga 6 3107 StatLib

wine 13 175 UCI

Table 2. # of eigenvalues and their multiplicity

Data Negative Positive

#1 1f × 1, 4f × 1, 5f × 113, 50f × 1 5f × 11

#2 1f × 1, 4f × 1, 5f × 184, 65f × 1 5f × 15

#3 1f × 1, 4f × 1, 5f × 93, 45f × 1 5f × 10

#4 1f × 1, 4f × 1, 5f × 45, 30f × 1 5f × 7

#5 1f × 1, 4f × 1, 5f × 113, 50f × 1 5f × 11

#6 1f × 1, 4f × 1, 5f × 14, 15f × 1 5f × 5

#7 1f × 1, 4f × 1, 5f × 23, 20f × 1 5f × 5

#8 1f × 1, 4f × 1, 5f × 33, 25f × 1 5f × 6

#9 1f × 1, 4f × 1, 5f × 32, 25f × 1 5f × 7

#10 1f × 1, 4f × 1, 5f × 159, 60f × 1 5f × 13
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#2 · · · #10. For each data set, each variable was normalized to [−1, 1]. We set
the number of the components K to be 5 in our experiments.

First, we empirically verify that the PIP forms a saddle point when β = 1.
For each data set, we calculate the Hessian matrix at the PIP and investigate
its eigenvalues. The results are shown in Table 2. Note that a superscript f
means −fold; i.e. 50f × 1 means that the Hessian matrix has one 50-fold eigen-
values. When β = 1, the Hessian matrix of the negative free energy function
at the PIP for each data set has both negative and positive eigenvalues and
they have some multiplicities related to the number of components K = 5. The
results indicate that the PIP actually forms a saddle point of the free energy
function when β = 1, which tells that we need to carefully choose the search
directions in order to increase the negative free energy function. In particular,
we should perform the searching in the directions in the subspace spanned by
the eigenvectors corresponding to positive eigenvalues. In addition, if there are
many positive eigenvalues, it is reasonable to choose directions with larger posi-
tive eigenvalues. We should search toward eigenvectors corresponding to positive
eigenvalues because our aim is to increase the negative free energy function.

Furthermore, all the positive eigenvalues have some degrees of multiplicity
related to the number of components K, whose property indicates that only one
of the K eigenvectors corresponding to K-fold eigenvalue should be examined,
because the multiplicity of eigenvalue represents the redundancy of the mixture
component-labeling, and searching in the label-permutated direction only results
in label-permutated solutions. We can avoid this redundancy and reduce the
computational cost by searching toward only one of multiple eigenvectors.

Next we investigate the negative free energy function along the straight path
from the PIP to excellent solutions for all the 10 data sets. The solutions we use
here are the best solutions obtained in Experiment I in section 4. Fig. 1 shows the
negative free energy function along the straight path from the PIP to the best
solution for 8 out of 10 data sets. In eight out of the ten data sets, the negative
free energy function monotonically increases along the path. It indicates that,
except #1 and #4, there is a path to reach the best DAVB solution just by
monotonically increasing the negative free energy function from the PIP. This
property indicates that hill climbing from the PIP without annealing might be
able to find many (not all) excellent solutions. Note that, even if the negative
free energy does not monotonically increase, there might be another good path
to an excellent solution.

3.2 Multi-directional Search

Exploiting the properties described above, we propose a multi-directional search
algorithm from the PIP. In our approach, we first calculate the PIP estimate
θpip = {αpip, ηpip,mpip,Wpip, νpip}, the Hessian matrix ∂2L/∂θ∂θT |θ=θpip and
its eigenvectors and eigenvalues. Second, we select positive eigenvalues whose
cumulative contribution ratios are less than 80%. We introduce this selection
heuristic in order to select the eigenvectors corresponding to the eigenvalues
significantly larger than 0. Then we generate search directions using the selected
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Fig. 1. Cross-section views between the PIP and the best solution

eigenvectors (the details are described later.) Finally, search tokens are generated
in the directions around the PIP and perform the VB estimation for each token.
We call this PIP-based VB method the VB-PIP method.

The general flow of the VB-PIP is as follows:

VB-PIP method

1: Initialize the hyper-parameters of the prior distribution.
2: Calculate the PIP estimate θpip = {αpip, ηpip,mpip,Wpip, νpip}.
3: Calculate the Hessian matrix of the negative free energy function eq.(1) at

the PIP and perform its eigen-decomposition.
4: Select R largest positive eigenvalues according to the contribution ratio.
5: Generate search directions using the selected eigenvectors (see below).
6: For each direction, iterate the VB-E and VB-M steps until convergence.

In VB-PIP method, we need to specify a set of search directions in the subspace
spanned by the selected eigenvectors. We employ the following approach. Let
U ≡ {ur}R

r=1 be the set of normalized selected eigenvectors and Ũ ≡ {−ur}R
r=1.

Let U be the matrix whose r-th column is ur, r = 1, . . . , R, and an R × 2R

matrix S whose columns are all possible combinations of the R-dimensional
column vector of +1 or −1. Then, compute V = US/

√
R, and let V denote the

set of column vectors of V . In the VB-PIP algorithm, the set of search directions
is given by U ∪Ũ ∪V . Thus, the VB-PIP algorithm has 2R+2R search directions
in total. We introduced this approach because we want to cover the subspace as
uniformly as possible.

4 Performance Evaluation

We evaluate the performance of the VB-PIP using ten real data sets. We compare
the VB-PIP with the DAVB and the VB whose initial points are generated by the
k-means clustering (VB(kmeans)). In our preliminary experiments (we omit the
results here because of space limitation), the DAVB finds good solutions with the
small number of initial points, which means many runs are not needed. This fact
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Table 3. Performance evaluation

Data Method Best Average Computational Time Initial K∗

Init. Est. Total Points

VB(kmeans) -4840 -7082 1.21 298.30 299.51 243 3

#1 DAVB -4984 -5889 0.03 293.84 293.87 6 4

VB-PIP -4049 -5726 12.42 284.34 296.76 97 3

VB(kmeans) 143 -192 0.42 299.07 299.49 202 3

#2 DAVB -65 -149 0.03 287.59 287.62 12 5

VB-PIP 148 -235 24.68 226.84 251.52 142 4

VB(kmeans) 2342 1970 0.69 298.89 299.58 141 3

#3 DAVB 1744 1744 0.01 247.36 247.37 3 5

VB-PIP 2289 1863 4.97 100.27 105.24 42 3

VB(kmeans) 834 427 0.31 296.84 297.15 68 3

#4 DAVB 834 834 0.01 239.54 239.55 2 3

VB-PIP 834 747 2.49 296.74 299.23 71 3

VB(kmeans) -575 -1786 0.77 298.96 299.73 479 1

#5 DAVB -537 -1099 0.04 298.15 298.19 28 2

VB-PIP -447 -730 6.36 70.46 76.82 76 2

VB(kmeans) 319 293 0.65 289.10 289.75 500 5

#6 DAVB 301 244 0.04 294.45 294.49 31 5

VB-PIP 319 274 0.06 6.59 6.65 14 5

VB(kmeans) 1092 1079 0.33 298.08 298.41 151 3

#7 DAVB 1039 1039 0.01 250.14 250.15 5 3

VB-PIP 1092 1062 0.39 64.19 64.58 24 3

VB(kmeans) 42 -173 0.66 297.75 298.41 301 4

#8 DAVB 42 42 0.03 281.74 281.77 13 4

VB-PIP 54 -27 0.42 32.49 32.91 24 5

VB(kmeans) -28032 -28088 0.21 288.57 288.78 13 5

#9 DAVB -28139 -28139 0.05 248.23 248.28 3 5

VB-PIP -28032 -28099 1.96 239.24 241.20 14 5

VB(kmeans) 288 59 0.55 292.62 293.17 500 2

#10 DAVB 252 -39 0.07 295.89 295.96 60 2

VB-PIP 288 -13 17.66 159.19 176.85 272 2

is actually an advantage of the DAVB, that is, the DAVB finds good solutions
more stably than the others. Considering this property of the DAVB, we compare
the performances of three methods limiting the computational time rather than
running them with the same number of initial points. In each experiment, the
hyper-parameters {α0, η0,m0,W0, ν0} for the prior distributions eqs.(3) and (4)
are set to be {1, 1, x̄, 10× I, 50}, where x̄ is the mean vector. The temperature
scheduling for the DAVB is set to be β(0) = 0.1, and β(t+1) = β(t) × 1.2.

Here, we limit the maximum computational time to be 300 seconds and com-
pare the best solutions obtained within the time. The results are shown in
Table 3. The quality of solutions is measured by the negative free energy; the
larger, the better. In the table, “Init.” indicates computational time spent to
generate initial points, while “Est.” denotes that spent to estimate parameters,
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and “Total” = “Init.” + “Est.”. Moreover, “Initial Points” and “K∗” means the
number of initial points and the estimated number of components, respectively.

The VB-PIP finds the best solutions in nine out of ten data sets; it finds
the strictly best in four data sets, and finds the tying best in five data sets. In
addition, the VB-PIP finds those excellent solutions with the smaller number of
initial points compared with the VB(kmeans), which indicates the VB-PIP per-
forms more stably than the VB(kmeans). We think this is because the VB-PIP
inherits the stability of the DAVB even without annealing process. This result
indicates that the initial directions generated by the VB-PIP have significant
influence over obtaining excellent solutions.

5 Conclusion

In this paper, we defined the primitive initial point (PIP) for the VB framework
using the DAVB method. We empirically examined the properties of the PIP.
Exploiting the results, we proposed a multi-directional search VB method with
the PIP as its starting point. In our experiments, the proposed method showed
performance comparable with or better than the other two VB methods. In
the future, we need to further investigate the properties of the PIP in order to
understand the rationale for efficiency of generating initial directions starting
from the PIP.
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Abstract. Newman et al. proposed a stochastic graph clustering ap-

proach using a mixture model with an assumption that a group of vertices

is regarded as a class when the vertices have a similar connection pattern.

Kuwata et al. recently adopted a nonparametric Bayesian approach and

improved Newman’s one in such a way that the number of classes can

also be empirically estimated. In this paper, we propose a new approach

that can incorporate the degree distribution of the network structure as

priors for Bayesian estimation. We show the effectiveness of our method

through experiments using both artificial and real data.

Keywords: complex networks, graph clustering, variational Bayes

method.

1 Introduction

Network structures observed in a variety of fields had been independently stud-
ied in each literature. Recently, however, the existence of common structural
feature was revealed in many different types of networks such as the World
Wide Web, co-authorship of scientific papers and protein interaction networks
[1][2]. Studying the common structures in various networks is now recognized as
an important step to understand many complex real-world problems, and a term
“complex network” is often used to represent the research area. Graph cluster-
ing is one of the effective ways to analyze complex networks [3][4]. By clustering
a network based on its connecting patterns, a group structure of the network
may be identified. In this paper, we are concerned with the problem of graph
clustering.

Newman et al. proposed a stochastic graph clustering method using a mixture
model with an assumption that a group of vertices is regarded as a class when
the vertices have a similar connection pattern [5]. One practical difficulty in this
method is that we have to provide the true or appropriate number of classes
which is hardly known in general. To solve this problem, Kuwata et al. recently
adopted a nonparametric Bayesian approach and improved Newman’s method
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in such a way that the number of classes can also be empirically estimated [6].
This nonparametric Bayesian approach works well if we can specify appropriate
prior distributions of the model parameters. On the other hand, if the provided
prior distributions are not appropriate, the estimation would fails.

In this paper, we propose to use a degree distribution of the network for spec-
ification of the prior distributions in nonparametric Bayesian estimation. The
degree distribution is a histogram of the number of edges that each vertex has
(i.e., degree) and it is important prior information about the existence of edges
(See Figs.1 and 2 for two examples of degree distributions). In the literature of
complex networks, various types of degree distributions are observed and con-
sidered since the degree distribution has important information to characterize
the network property. We first provide a simple alternative model for graph clus-
tering and then suggests a heuristic to incorporate the degree distribution of the
network into the prior distributions. We demonstrate the effectiveness of our
approach through artificial and real data experiments.

In Section 2, we briefly review the related studies. In Section 3, we describe our
proposed method. Then, in Section 4, we evaluate our method using computer
generated test networks and a real network. Finally, we close in Section 5 with
concluding remarks.

2 Background

2.1 Graph Clustering Problem

Suppose we have a network with N vertices connected by directed edges. The
network can be represented as an adjacency matrix A where Aij is 1 if there is
an edge from vertex i to j and 0 otherwise. This N × N matrix is observable.
Suppose also that C is the number of classes or groups in the network and gi
denotes the group which vertex i belongs to. The graph clustering is defined as
the problem of estimating the latent group memberships gi from the observable
adjacency matrix A. In stochastic approaches, we estimate qir = P (gi = r|A),
i = 1, · · · , N , r = 1, · · · , C, the probability that the vertex i belongs to group
r given the adjacency matrix A. Note that C is generally unknown and should
also be estimated.

2.2 Related Works

Newman et al. proposed a probabilistic mixture model [5]. They defined two
kinds of parameters θrj and πr. θrj is the probability that a directed edge from
a particular vertex in group r connects to vertex j and satisfies

∑N
j=1 θrj = 1.

πr is the fraction of vertices in group r and satisfies
∑C

r=1 πr = 1. Using these
parameters, the likelihood is defined as

P (A, g|π, θ) =
N∏

i=1

⎡⎣πgi

N∏
j=1

θ
Aij

gi,j

⎤⎦ . (1)
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Using the EM algorithm, the likelihood (1) is maximized with respect to the
probability of group memberships qir and parameters {θrj, πr}. In this method,
we need to manually specify the appropriate number of classes C.

Kuwata et al. [6] proposed to use a nonparametric Bayesian approach for
Newman’s probabilistic mixture model. This approach enables us to estimate the
number of classes C. They implemented the approach using the Stick-breaking
representation of Dirichlet process. The parameters in Newman’s model are re-
placed as

P (θ) =
∞∏

r=1

Dirichlet(θr1, · · · , θrN : φr1, · · · , φrN ) (2)

πgi = P (gi|v1, · · · , v∞) = vgi

gi−1∏
k=1

(1 − vk) (3)

where Dirichlet is a Dirichlet distribution and all vr are generated from a beta
distribution Beta(vr|1, α). And the parameter α follows a gamma distribution
Gamma(α; c1, c2) where {c1, c2} is a set of constant values ({c1, c2} = {1.0, 1.0}
in the experiments described later). The probability of group memberships qir
and approximate posteriors of parameters are calculated by the variational Bayes
method.

2.3 Variational Bayes Method

The variational Bayes method is an approximation of the Bayes method. In Vari-
ational Bayesian framework, the lower bound of marginal log likelihood lnP (D)
is maximized. The lower bound F [Q] called variational free energy is derived as

lnP (D) = log
∑
Z

∫
P (D,Z,Θ)dΘ

= log
∑
Z

∫
Q(Z,Θ)

P (D,Z,Θ)
Q(Z,Θ)

dΘ

≥
∑
Z

∫
Q(Z,Θ) ln

P (D,Z,Θ)
Q(Z,Θ)

dΘ ≡ F [Q] (4)

where D denotes the observable data set, Z is the latent variables, Θ is the pa-
rameters and Q(Z,Θ) is an arbitrary distribution called the variational posterior
distribution. The relationship between lnP (D) and F [Q] is also expressed as

lnP (D) = F [Q] +KL[Q(Z, θ)||P (Z,Θ|D)]. (5)

From this equation, since lnP (D) is constant under the given observable data D,
maximizing the lower bound F [Q] corresponds to minimizing the KL divergence
KL[Q||P ]. Hence,Q obtained after maximizing F [Q] is the best approximation of
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the true posterior P (Z,Θ|D). As we noted above, Q is an arbitrary distribution,
so we assume that it can be factorized as

Q(Z,Θ) = Q(Z)Q(Θ). (6)

In many cases, the joint distribution P (D,Z,Θ) can be decomposed as

P (D,Z,Θ) = P (D|Z,Θ)P (Z)P (Θ). (7)

Substituting Eq.(6) and Eq.(7) into Eq.(4), we obtain F [Q]. The variational
Bayes method repeats, what is called, VB-E step and VB-M step. In VB-E step,
F [Q] is maximized with respect to Q(Z), and in VB-M step, F [Q] is maximized
with respect to Q(Θ).

3 The Proposed Method

The performance of Bayesian estimation highly depends on how to specify the
prior distributions. Since the optimal priors are unknown in general, conjugate
priors are usually used for its mathematical convenience. In addition, there are
no systematic way to specify the hyper-parameters of the prior distributions,
although they have a large influence on the estimation. In this paper, we propose
a heuristic that enables us to use the degree distribution of the network for
the specification of more appropriate priors in nonparametric Bayesian graph
clustering.

3.1 Alternative Model for Graph Clustering

To incorporate the proposed heuristic, we consider an alternative model for graph
clustering. Let us define Erj as the probability that a directed edge exists from
a vertex in group r to a vertex j. Unlike θrj in [5], we assume that Erj are
independent each other. The distribution of A given g and E is the product of
binomial distributions and defined as

P (A|g, E) =
N∏

i=1

N∏
j=1

E
Aij

gij
(1 − Egij)

1−Aij . (8)

To incorporate nonparametric Bayesian approach in this model, we set the prior
distribution of E as

P (E) =
T∏

r=1

N∏
j=1

Beta(Erj;φrj1, φrj2). (9)

Note that a beta distribution is the conjugate prior of a binomial distribution.
The joint distribution of our model is decomposed as

P (A, g, V,E, α) = P (A|g, E)P (g|V )P (V |α)P (α)P (E). (10)

Applying the variational Bayes method to this model, we can obtain a good ap-
proximation of P (g, V, E, α|A) which includes the distribution of group
memberships for each vertex.
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Fig. 1. A single-peaked de-

gree distribution

Fig. 2. A long-tailed dis-

tribution
Fig. 3. Various shapes of

beta distribution

3.2 Setting of Priors Based on Degree Distribution

The advantage of the model (8) is that it is easy to introduce the degree distri-
bution of the network into the prior distributions of the model parameters. In
particular, the degree distribution of the network can be directly incorporated
to the hyper-parameters of the prior distributions P (E). We divide the degree
distributions into two patterns by its shape, single-peaked and long-tailed. In
this paper, we use the term “single-peaked” for a distribution which has a peak
(occasionally peaks) such as Poisson distributions in random networks (Fig.1).
In contrast, we use the word “long-tailed” for a distribution which has a long
tail such as power-law distributions and exponential distributions that is often
observed in complex networks (Fig.2). Since the prior distribution P (Erj) is
modeled by a beta distribution, its shape is controlled by the hyper-parameter φ
(See Fig.3 for two examples of beta distribution with different φ). By adjusting
φ, we can approximate the shape of P (E) close to the degree distribution. In
particular, for the single-peaked degree distribution, we set the prior distribution
as

P (Erj ;φrj1, φrj2) = Beta
(
Erj ; 1+

kj

T
, 1+

N−kj

T

)
. (11)

For the long-tailed degree distribution, we set the prior distribution as

P (Erj ;φrj1, φrj2) = Beta
(
Erj ; 1,

N−kj

kj

)
, (12)

Here, kj is the number of incoming edges of vertex j and T is the maximum
number of classes we have to set in advance. In the experiments described later,
we use large enough T so that its choice does not affect the final model.

4 Experiments

We examine the performance of our method using three kinds of networks: two
artificial networks and one real network. Artificial networks in experiment 1
show assortative mixing. In experiment 2, networks also show disassortative
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Fig. 4. Benchmark of Girvan and New-

man: Each network corresponds to the

conditions, (a) Zout =2 and (b) Zout =

8. These networks show assortative

mixing. In case of Zout = 8, the four

groups are almost mixing each other

and difficult to be divided into.

Fig. 5. The comparison result of the com-

puter generated benchmark: Our proposed

method VBEM2a which has suitable prior

distributions for the networks shown in

Fig.4 could correctly classify more than

80% vertices even in the case of Zout =8

mixing besides assortative mixing. Both of two kinds of networks have single-
peaked degree distributions. In experiment 3, we deal with a real network with
a long-tailed degree distribution. In these experiments, “EM1” and “VBEM1”
represent the methods proposed in [5] and [6] respectively, while “VBEM2a” and
“VBEM2b” are our methods. In VBEM2a, the hyper-parameters which control
the prior distributions are adjusted to a single-peaked degree distribution. In
contrast, the hyper-parameters of VBEM2b are adjusted to a long-tailed degree
distribution. The maximum number of classes T is set to 20 in experiments 1
and 2, and 100 in experiment 3.

4.1 Experiment 1

First, we focus on the networks with assortative mixing in which vertices divide
into groups such that the members of each group are mostly connected to other
members of the same group (also called “community structure”). We adopt one
of the most famous computer generated benchmarks designed by Girvan and
Newman [7] to evaluate the performance of each method. Each graph consists
of 128 vertices and 4 equivalent size groups. The average degree is set to 16. A
parameter Zout denotes the average number of edges that a vertex connects to
the vertices in different groups (Fig.4). A typical degree distribution is shown
in Fig.1. In this experiment, we consider three situations Zout = 6, 7 and 8. 10
networks are generated under the same value of Zout and all four methods are
applied 30 times with different initial values to each network. We collect the best
score (the fraction of vertices correctly identified: FCI) among the 30 estimations
for each network. The results are shown in Fig.5 where each bar and a line across
the bar represent the mean and standard deviation of the best FCIs among 10
samples respectively.

Our proposed method VBEM2a shows better result than EM1 in spite of
estimating the same things as VBEM1, while VBEM1 is not as precise as its
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Table 1. A class-wise probability matrix

C∗ = 5 (e.g., the element (C1, C2) is the

probability that a vertex in C1 attaches

an edge to another vertex in C2)

C1 C2 C3 C4 C5

C1 0.33 0.33 0.32 0.01 0.01

C2 0.48 0.01 0.01 0.01 0.49

C3 0.33 0.01 0.33 0.32 0.01

C4 0.01 0.01 0.33 0.33 0.32

C5 0.01 0.48 0.01 0.49 0.01

Table 2. The result of clustering C∗ = 5

artificial networks: Each element shows

mean and standard deviation of 100 sam-

ples (the best score among 10 estimations

for each network)

FCI estimated C

EM1 0.872 ± 0.082 5.00 (fixed)

VBEM1 0.933 ± 0.110 5.54 ± 1.06

VBEM2a 0.942 ± 0.094 5.07 ± 0.41

VBEM2b 0.854 ± 0.079 8.82 ± 1.93

original method EM1 because of estimating the number of classes. The point
to be focused on is not only its high mean value but also its small standard
deviation which means this method is robust against the subtle difference of
networks.

4.2 Experiment 2

In experiment 2, we compare the four methods using artificial networks which
have more complex structure than what we considered in experiment 1: mixture
of assortative and disassortative (opposite to “assortative”), i.e., a number of
edges are generated among the vertices in different groups as well. 100 networks
with the same number of vertices and average degree as experiment 1 are gener-
ated. They contain five classes of almost equal size. Directed edges are generated
according to the probability in Table 1. Even in this case, since the vertices in
the same group have a similar connecting pattern, it is possible to discover the
original groups in the networks. The results are shown in Table 2.

Again, VBEM2a shows the best solutions from the both viewpoints of FCI
and the estimated number of classes. In contrast to the result in experiment 1,
VBEM1 shows better result than EM1 even though the true number of classes
is given to the latter. From these results, we conjecture that the nonparametric
Bayesian approach enable us not only to estimate the appropriate number of
classes, but also to find out complex structures in networks.

4.3 Experiment 3

Finally, we evaluate the performance of our methods using a real data set: co-
authorship of papers adopted in NIPS [8]. We picked up the biggest component
(a connected part of network) of the data which contains 1061 vertices and 2080
undirected edges. The degree distribution of this network is shown in Fig.2.
Different from artificial networks, real networks don’t provide us with the correct
answer (the true memberships of each vertex). Therefore we show the result of
clustering as clustered adjacency matrix (Fig.6).

VBEM2b found a meaningful group structure from the network thanks to the
appropriate prior setting. On the other hand, VBEM2a which showed the best
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Fig. 6. The clustered adjacency matrices with the highest F [Q] (See section 2) in 50

times application of each method: A black point corresponds to the element Aij = 1.

(a) VBEM2a found 3 groups structure but it seems meaningless. On the other hand,

(b) VBEM2b which has suitable setting prior distributions found 22 group structure

and it shows strong assortative mixing.

performance in the previous two experiments did not work well because of the
mismatch between its prior distributions and the network’s degree distribution.
This result tells us that we should carefully consider the setting of the prior
distributions to obtain good performance.

5 Conclusion

In this paper, we proposed a graph clustering method that can incorporate the
degree distribution of the network. Numerical experiments demonstrate that our
method can work better than conventional methods. As a future work, we plan
to investigate the applicability of our approach to wider range of real-world
networks.
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Abstract. Community detection in networks involves grouping nodes

on a graph into clusters such that connections between groups are sparse

while nodes within groups are densely connected. Despite the success of

clustering based community detection methods, there have been few ef-

forts to devise similarity metrics between nodes for clustering algorithms

that measures the likeliness of two nodes belonging to the same com-

munity. In this paper we present a new similarity measure based on the

density of a sub-graph constructed by common neighbors of two nodes

in question. The proposed metric is referred to as common neighborhood
sub-graph density (CND) and is combined with affinity propagation to

detect communities from network data. We apply community detection

algorithms with CND to real-world benchmark data sets to demonstrate

its useful behavior in the task of community detection in networks.

1 Introduction

Complex systems take the form of networks, where relationships among a set of
entities are represented by graphs. Exemplary systems include living organisms,
ecosystems, economy, world wide web, and social networks.

One of important issues in understanding networked data is the detection and
characterization of community structure in networks. Community detection in
networks is to group nodes in a graph into clusters within which the network
connections are dense but between which they are sparser [9].

Various approaches for community detection including graph partitioning and
clustering have been developed [2]. Due to the similarity between community
detection and clustering problem, attempts to tackle the community detection
problem using pre-existing clustering algorithms arouse naturally [5]. The key
idea of converting community detection into clustering problem is to define a
similarity measure that effectively reflects connection between nodes in a net-
work. Although there are many similarity measures that are already used in the
area of graph theory, there has been few similarity measure that is specifically
designed for the task of community detection.

In this paper we present a new similarity measure which is designed for the
task of community detection, referred to as common neighborhood sub-graph den-
sity (CND). CND aims to directly estimate whether two nodes are in a same
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community or not by examining the connection between the common neighbors
of them. As a clustering method, we used affinity propagation [3]. We investigate
the relationship of CND and affinity propagation, and investigate the effective-
ness of the combination of CND and affinity propagation through experiments
on real-world network data.

2 Proposed Similarity Measure

If we know the community that a node belongs to, it would be ideal to give
infinite similarity for nodes from the same community and zero for the nodes
from different communities. Although it is oviously not possible in real problems,
we can try to predict if a pair of nodes belongs to the same community or not.

To define a appropriate similarity measure that indicates that a pair belongs to
a same community or not, we start from an insight about communities in a social
network. A community is defined as a group of nodes with dense connections
within the group. It means that we will have dense edge distributions among
any set of nodes from a same community.

(a) Two nodes from different communi-

ties connected by an edge

(b) Two nodes from different communi-

ties share many common neighbors

Fig. 1. Cases that direct connection between nodes and Jaccard’s index fails as an

indicator of two nodes denoted as black circles belonging to same community. Common

neighbor nodes are denoted as grey circles.

It is possible that a pair of nodes being connected by an edge even if they
belong to different communities (Fig. 1-(a)). However, it is unlikely that two
nodes from different communities have many common neighbors. It is because if
two nodes belong to the different communities, then the nodes would be mostly
connected to nodes from their own communities.

We go one step further from this idea. If the edges of two nodes are spreaded
to several communities, they may share many common neighbors even if they
are from different communities (Fig. 1-(b)). As the connection among nodes
from different communities are sparse according to definition of a community,
the connection among such common neighbors will still be sparse if they are
from several different communities. In the other hand, the connection among
the common neighbors will be dense if they are from the same community.
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Fig. 2. Example graph for description of CND. Given node i and j, the common

neighbor Cij is {i, j, 1, 3} and the value of CND Kij is sum of the weights of the edges

that are depicted as solid lines on figure. Note that Kij has nonzero value even though

edge connecting node i and j does not exist.

Therefore, density of edges connecting the common neighbors of two nodes
is better choice than the number of common neighbors of them for community
detection task.

Formally, the edge density Kij of a subgraph formed by common neighbors of
two nodes i and j is defined as the ratio of the number of existing edges between
nodes and maximum possible number of edges between nodes (Fig. 2):

Kij =

∑
k∈Cij

∑
l∈Cij

Akl

|Cij |(|Cij | − 1)
, (1)

where Cij is index set of common neighbors of node i and j:

Cij = {i, j} ∪ {k|Aik �= 0 and Ajk �= 0} , (2)

and adjacency matrix A is defined to be a matrix which has nonzero elements
when there exist an edge connecting two nodes. Although the relation between
nodes can be asymmetric, we only focus on the symmetric case (i.e. Aij = Aji).

The sub-graph density Kij is sensitive to the existence of noisy edges. If the
number of common neighbors of two node is small, the effect of noisy connection
between the common neighbors significantly affects Kij . For example, if two
nodes are connected with one common neighbor with noisy edges, similarity
measure K between them never falls below 2/3.

Therefore, we modifyK to give higher similarity for nodes with bigger number
of common neighbors and less similarity for nodes with small number of common
neighbors to suppress the effect of noisy connections. This can be done by simply
multiplying |Cij |γ . The resulting definition of our proposed similarity measure,
CND becomes as below:

Kij = |Cij |γ
∑

k∈Cij

∑
l∈Cij

Akl

|Cij |(|Cij | − 1)
, (3)

where γ is a constant parameter. Greater value of γ gives higher similarity to
the nodes with more common neighbors.
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3 Comparison to Existing Similarity Measures

Independent to the problem of community detection, many measures of ’distance’
between nodes has developed in the field of graph theory: including geodesic
distance, resistance distance [6], and Jaccard’s index.

Similar to CND, Jaccard’s index also considers common neighbors of node i
and j for calculating similarity. Jaccard’s index J(i, j) is the number of common
neighbors of node i and j divided by the union set of neighbors of the two nodes.
Using Jaccard’s index for community detection has been shown to be effective
in detecting communities from complex networks than competiting algorithms
[10].

(a) (b) (c)

Fig. 3. Difference among similarity measures defined for two nodes (notated as black

filled circles) in a graph. edge weight (a), Jaccard’s index (b), and CND (c). Dark-

colored edges or nodes are taken account when calculating similarity measures.

Although Jaccard’s index and CND looks similar, the critical difference be-
tween is that Jaccard’s index only takes care about the common neighbor nodes
and CND considers the connectivity among them (Fig. 3).

4 Combination with Affinity Propagation

To detect communities in a graph using a similarity measure, one needs a clus-
tering algorithm to partition a graph according to the given similarity measure.
The most critical problem of well-known clustering algorithms including k-means
and hierarchical clustering is that the number of cluster must be given by user.
Affinity propagation is a clustering algorithm that automatically decides number
of clusters [3].

Basically, affinity propagation finds clusters by identifying data points called
exemplars that represent their own clusters. The algorithm is basically the pro-
cedure of determining exemplars and points that are in the same clusters of the
exemplars. In determining exemplars, the input preference s(k, k) for each data
points plays an important role. Higher value of input preference s(k, k) for a
data point k gives higher likelihood of a point k being selected as an exemplar
of a cluster.

Therefore, the number and accuracy of clusters detected by affinity propaga-
tion is strongly affected by the choice of input preference of each nodes s(k, k),
which represents the likelihood of kth node being an exemplar of a cluster. Giving
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(a) (b)

Fig. 4. Comparison between a node’s degree and its self-CND as a input preference.

Each oval-shaped shaded area means a natural community. (a) is more likely to be an

exemplar of a community than (b).

higher values for s(k, k) results into more number of clusters. Although setting
s(k, k) as a constant value for all nodes k is a fairly working heuristic, there is a
room for further improvement.

The most straightforward improvement would be choosing a degree of a node
as its input preference. However, this may not work on some situations. If a node
is connected to many communities, its neighbors will be sparsely connected to
each other. If two nodes have same number of neighbors and only densities of
connection among their neighbors are different, using degree of a node will not
be able to catch the difference of two nodes(Fig. 4). It would be better to give
higher input preference to a node whose neighbors are more densely connected
to each other, because it means the node is more likely to be connected to a
single community and therefore more preferrable as a exemplar of a community
than other one. CND provides us a nice way of detecting nodes that are highly
connected to small number of communities.

When we recall the definition of a community - a group of nodes densely con-
nected to each other, it will be safe to assume that if there are dense connection
between the a set of nodes, then they are members of a same community. Kii

measures the density of connections among the neighbors of node i and itself. If
Kii is low, we can assume that its neighbors are spreaded to multiple communi-
ties, or it simply has small number of neighbors, which in both of the cases the
node is not suitable as an exemplar.

5 Experiments

5.1 Effect of Parameter γ on Noisy Networks

In definition of CND, we introduced a term |Cij |γ to prevent giving high similarity
values for node pairs from different communities that share small number of
common neighbors in noisy networks. To examine the effect of the introduced
term, we tested our method by varying parameter γ of CND in synthetically
created noisy network data.
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Fig. 5. Pictorial description of noisy 4-community network data with different value

of p

As a noisy network data, we created a network data with 128 nodes and
divided them into 4 equal communities with 32 nodes. After creating nodes, we
randomly added the links connecting nodes. Every node was connected to 32
other nodes in average.

Among N links allocated for a node, we added pN links to connect a node to
its own community and (1 − p)N nodes to connect it to different communities
(0 ≤ p ≤ 1). By varying p we could control the ratio of links connecting different
communities. In other words, the level of noise in network data. Larger value of
p leads to less connection among communities (Fig. 5).

We created three random networks with different noise levels by setting p to
0.2, 0.5, and 0.8. To see the effect of parameter γ of CND on the accuracy of
community detection, we varied γ from 0.1 to 3.0.

The accuracy of detecting communities from network was measured in terms
of average purity of detected communities, which is defined as

1
K

∑
k

∑
i
=j and i,j∈Ck

δ(i, j)/
∑

k

|Ck|2, (4)

0 0.5 1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1

gamma

pu
rit

y 
of

 d
et

ec
te

d 
co

m
m

un
iti

es

Fig. 6. Effect of parameter γ on noisy 4-community network data. (Blue solid line:

p = 0.8, green dotted line: p = 0.5, red dashed line: p = 0.2).
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where K is number of detected communities, δ(i, j) = 1 if node i and j belongs
to the same ground-truth community and also same detected community, and
|Ck| is a size of kth detected community [10].

Every choice of γ gave the correct number of community. However, the purity
of detected communities was differed by change on γ and noise level of net-
work. When noise level of the network was relatively low, the purity of detected
communities slightly decreased as γ increased. However, when level of noise get
higher, purity of detected communities increased as value of γ increased, until the
value reached the optimal value, which was around 1.0 (Fig. 6). When γ grew
larger than the optimal value, purity of detected communities also decreased.
From this result, we can conclude that parameter γ becomes more important
as the noise level of increases and larger value of γ gives more correct detection
result than small value of γ.

However, as purity decreased as γ grew larger than the optimal value, finding
the optimal value of γ becomes important. We decided to use modularity [9] Q as
a measure for finding optimal value of γ. Modularity is a widely used performance
measure of community detection methods which measures the difference between
number of links within a detected communities and links within a random graph
with equal degrees for each nodes. Given an affinity matrix A and detected
communities, modularity is defined as:

Q =
1

4m

∑
i

∑
j

s(i, j)
(

Aij −
kikj

2m

)
, (5)

where A is an affinity matrix, m is a total number of links, ki is degree of node
i, and s(i, j) = 1 if node i and j belongs to a same detected community, and
-1 otherwise. On further experiments, γ was set to a value that gives highest
modularity of detected communities.

5.2 Input Preference for Affinity Propagation

We compared various choice of input preferences s(i, i), which includes constant
value (CND-const), degree of nodes (CND-degree), and diagonal elements K(i, i)
of CND (CND-autosim). As a constant input preference, we used a median value
of entries in similarity matrix, which is a nice-working choice. Finally, as affinity
propagation takes the negative similarity values, we subtracted the maximum
value of similarity values multiplied by 2.5 as below:

s(i, i) := s(i, i)− 2.5 max
i,j

(s(i, j)). (6)

We calculated the number of detected communities and purity of the detected
communities detection methods.

For every data set, using diagonal elements of CND gave the most correct
number of communities to show that it was the best choice for input preference
for affinity propagation(Table 1). Although using constant value (CND-const)
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Table 1. Performance comparison of input preference measures for affinity

propagation

Data Set (# communities) CND-const CND-degree CND-autosim

College Football(12) # of communities 15 11 11

purity 0.8507 0.8368 0.8529

Political Blogs(3) # of communities 12 2 2

purity 0.8397 0.8215 0.8238

Political Books(2) # of communities 7 4 3

purity 0.7136 0.6768 0.7098

got the highest purity on two of three data sets, it failed to detect correct num-
ber of communities. As purity of detected communities is likely to be higher
when detected communities are small, we can still say that CND-autosim most
correctly detected communities on every data sets.

5.3 Performance Comparison

To test the effectiveness of our proposed community detection method, we
applied our method on real-world data sets. We used a combination of Jac-
card’s index and affinity propagation as a method to be compared. Combination
of raw data (edge weights as a similarity measure) and affinity propagation was
compared as a baseline.

We also performed experiment using Newman’s leading eigenvector method.
Newman’s leading eigenvector method is one of the most successful community
detection method. This methods finds a partitioning that maximizes modularity
of a partitioned graph [7]. The algorithm recursively divides the graph while the
division increases the modularity of overall graph.

Another state-of-art method compared to our method was influence-based
modularity devised by R. Ghosh et al. [4], which is an generalization of modu-
larity based on measure of influence of a node to another nodes. The influence
matrix is calculated as A(I − αA)−1, where A is an affinity matrix.

We used College football [8], Political books1, and Political blogs[1] data that
are widely used to evaluate community detection methods. Parameters γ for
CND and α for Ghosh’s method were chosen to a value that gives the highest
modularity.

CND showed highest purity on College football data, and second, third highest
purity on Political blogs and Political books data. CND showed competitive
results compared to other methods, but the superiority of the method might
seem not significant enough in some sense (Table 2).

However, the situation changes when we also consider the number of com-
munities detected by community detection methods. Although Jaccard’s index
combined with affinity propagation showed high purity, the method failed to
detect correct number of communities from data sets. The rest of methods
1 http://www.orgnet.com/
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Table 2. Purity of communities detected by affinity propagation and Newman’s leading

eigenvector method

Data Set CND Jaccard’s Index Edge Weight Newman’s Ghosh’s

College Football 0.8345 0.8340 0.4739 0.5865 0.5808

Political Blogs 0.8357 0.8664 0.7776 0.8920 0.6457

Political Books 0.7548 0.7892 0.7471 0.5867 0.6351

Table 3. Number of communities detected by affinity propagation and Newman’s

leading eigenvector method

Data Set (# communities) CND Jaccard’s Index Edge Weight Newman’s Ghosh’s

College Football (12) 11 16 14 12 6

Political Blogs (2) 2 118 61 2 4

Political Books (3) 2 17 12 6 3

except R. Ghosh’s method also failed to detect correct number of communi-
ties on some of data sets(Table 3). In conclusion, CND combined with affinity
propagation was the only method that finds correct number of communities with
high accuracy from every data set tested.

6 Conclusion

We have presented a new similarity measure for social network analysis, referred
to as CND from a simple intuition on communities in social networks. CND was
devised to be used as an indicator for a pair of nodes whether they belong to
a same community or not, using density of subgraph formed by their common
neighbors. In addition, CND of a node and itself was interpreted as a measure of
the likelihood of the node being an exemplar of a community. It gave a reasonable
heuristic of choosing parameters for affinity propagation algorithm. Community
detection using CND combined with affinity propagation showed higher purity
of detected communities in multiple real-world data sets than other methods
including Newman’s leading eigenvector method. The algorithm also detected
the number of communities of data in a fair accuracy.
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Abstract. Measures of divergence are used in many engineering prob-

lems such as statistics, mathematical programming, computational vi-

sion, and neural networks. The Kullback-Leibler divergence is its typical

example which is defined between two probability distributions, and is

invariant under information transformations. The Bregman divergence

is another type of divergence, which are used often in optimization and

signal processing. This is a class of divergences having dually flat ge-

ometrical structure. Divergence is often used for minimizing discrep-

ancy between observed evidences and an underlying model. Projection

to the model subspace plays a fundamental role. Here, geometry is im-

portant and dually flat geodesic structure is useful, because a generalized

Pythagorean theorem and projection theorem hold.

1 Introduction

A divergence function is used in many engineering problems to show discrepan-
cies between two objects and then to minimize a cost function having various
constraints [1,10]. When probability distributions are discussed, the Kullback-
Leibler (KL) divergence is a typical example of divergence, but there are many
others divergences. For vision analysis, a picture is a two-dimensional array hav-
ing non-negative components. Hence a divergence function of elements between
two positive arrays will play an important role. We also treat positive-definite
matrices, and a divergence function between two such matrices is used. In lin-
ear programming problems or more generally convex programming, a divergence
between elements of a positive cone is important.

Let us show a simple problem: Given an element p from observed evidences,
we search for an element q that is closest to p, among those satisfying constraints.
Let M be a submanifold consisting of elements satisfying constraints. Then the
candidate we search for is the minimizer of D[p : q] under the constraint of
q ∈M , where D[p : q] is a divergence between p and q.

When the entire space is Euclidean and the divergence is Euclidean distance,
the optimal q is given by the projection of p toM . However, when geometry of the
underlying space is not Euclidean and the divergence function is not Euclidean
distance, we need a new geometrical framework.

A divergence provides a geometrical structure to the underlying manifold
of engineering problems. We search for its differential geometrical background
[5,3]. There are two types of divergence: One is invariant under information

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 185–193, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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transformation and the other is dually flat in the sense of geometry. Bregman
divergence is of this latter type [6,7].

When the underlying space is dually flat, a generalized Pythagorean theorem
and projection theorem hold. They provide useful tools for solving many engi-
neering problems in computational vision, machine learning, mathematical pro-
gramming, neural networks and others. See, for example, [6], [10], [19], [22], [24].

2 Divergence Function

A function D[z : y] is called a divergence function defined in a space S, where
z,y ∈ S are two points in S, when it satisfies the following conditions:

1) D[z : y] ≥ 0.
2) D[z : y] = 0, when and only when z = y.
3) For small dz, Taylor expansion gives

D[z + dz : z] ≈ 1
2

∑
gijdzidzj , (1)

where (gij(z)) is a positive-definite matrix.
A divergence is not necessarily symmetric with respect to z and y, and it does

not satisfy the triangular inequality. Hence, it is not a distance.
The square of the Euclidean distance

D [z : y] =
1
2

∑
|zi − yi|2 (2)

is a trivial example of divergence. The Kullback-Leibler divergence

KL[p : q] =
n∑

i=0

pi log
pi

qi
, (3)

defined in the space Sn of probability distributions, p = (p0, p1, · · · , pn) ,∑
pi = 1, is another example.

3 Invariant Divergences

The invariance principle for defining geometry of Sn was proposed by Chentsov
[9]. It is further developed in information geometry (Amari and Nagaoka, [5]).
Here, we show its version used by Csiszár [12,13,11].

3.1 Information Monotonicity

For a probability distribution p = (p0, p1, · · · , pn) over X = {x0, x1, · · · , xn},
we divide X into m subsets, G1, G2, · · · , Gm(m < n+ 1). It is a partition of X ,

X = ∪Gi, (4)
Gi ∩Gj = φ. (5)
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Assume that we do not know xi but know which subset Gj it belongs to. This
is coarse-graining of X .

The coarse-graining generates a new probability distributions p̄= (p̄1, · · · , p̄m)
over G1, · · · , Gm,

p̄j = Prob{Gj} =
∑

xi∈Gj

Prob{xi} . (6)

Let D̄ [p̄ : q̄] be an induced divergence between p̄ and q̄. Since detailed informa-
tion is lost by coarse-graining, it is natural to assume

D̄ [p̄ : q̄] ≤ D [p : q] . (7)

For two distributions p and q, assume that the outcome xi is known to belong
to Gj . How much information is obtained to distinguish the two probability
distributions p and q by knowing further detail? Since xi is known to belong to
subset Gj , we consider the conditional probability distributions

p (xi |Gj ) , q (xi |Gj ) . (8)

If they are equal, we cannot obtain further information to distinguish p from q
by observing the outcome xi inside Gj . Hence,

D̄ [p̄ : q̄] = D [p : q] (9)

holds, when and only when

p (xi |Gj ) = q (xi |Gj ) . (10)

A divergence satisfying the above requirements is called an invariant divergence,
and such a property is termed as information monotonicity.

3.2 f-Divergence and Information Monotonicity

When a divergence is written as a sum of functions of two variables pi and qi:
D[p : q] =

∑n
i=0D (pi, qi), it is called a separable divergence.

Given a convex function f(u), f -divergence is defined by

Df [p : q] =
n∑

i=0

pif

(
qi
pi

)
, (11)

where we assume that f(1) = 0, f ′(1) = 0, f ′′(1) = 1 [11,23]. This is a separable
divergence.

Csiszár [12,13] found that an f -divergence satisfies information monotonicity.
Moreover, the class of f -divergences is unique in the sense that any separable
divergence satisfying the information monotonicity is an f -divergence.

Theorem 1.An f -divergence satisfies the information monotonicity. Conversely,
any separable information monotonic divergence is written in the form of f -
divergence.

The proof is found, e.g., in Amari [4].
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3.3 α-Divergence in Sn

The α-divergence is a special case of f -divergence, defined by the following f -
function.

fα(u) =
4

1− α2

(
1− u

1+α
2

)
− 2

1− α (u− 1). (12)

It is given by

Dα[p : q] =
4

1− α2

(
1−

∑
p

1+α
2

i q
1−α

2
i

)
. (13)

The α-divergence was introduced by Havdra and Charvát [17], and has been
studied extensively by Amari and Nagaoka [5]. Its applications were described
earlier in Chernoff [8], and later in Matsuyama [18], Amari [2], etc. to mention
a few. It is the squared Hellinger distance for α = 0, and the KL-divergence and
its reciprocal are obtained in the limit of α→ ±1,

KL[p : q] =
∑
pi log

qi
pi
. (14)

3.4 α-Divergence in Mn+1

LetMn+1 is a space of positive measures, m = (m0,m1, · · · ,mn), where mi > 0
and we do not require

∑
mi = 1. Sn is its subspace satisfying the condition∑

mi = 1. Then, an f -divergence is defined similarly in Mn+1 [5], and the
α-divergence is

Dα[m : n] =
4

1− α2

∑(
1− α

2
mi +

1 + α
2
ni −m

1+α
2

i n
1−α

2
i

)
. (15)

4 Dually Flat Divergences —Bregman Divergence

4.1 Bregman Divergence

Let ϕ(z) be a strictly convex differentiable function. Then,

Dϕ(z,y) = ϕ(z)− ϕ(y)−∇ϕ(y) · (z − y) (16)

satisfies the conditions of a divergence, where ∇ϕ(y) is the gradient of ϕ. This
is called the Bregman divergence [3,6,7].

In the case of probability distributions Sn, when we put

ϕ(z) =
∑
zi log zi, (17)

we then obtain the KL-divergence as the corresponding Bregman divergence.
When ϕ(z) = (1/2)

∑
z2i , we have the squared Euclidean distance.
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4.2 Manifold Mn+1 of Positive Measures

Let us put

rα(u) =

{
2

1−α

(
u

1−α
2 − 1

)
, α �= 1,

log u, α = 1.
(18)

Consider
zi = rα (pi) (19)

and use z = (zi) as a new coordinate system of Mn+1. We define

ϕα(z) =
2

1 + α

∑
i

r−1
α (zi) (20)

=
2

1 + α

∑(
1 +

1− α
2
zi

) 2
1−α

,

α �= ±1. (21)

Then, this is a convex function of z. This generates the α-divergence in Mn+1.

Theorem 2. The α-divergence is unique in the same that it is an f -divergence
and Bregman divergence at the same time.

4.3 Manifold of Positive-Definite Matrices

When |P | is the determinant of P ,

ϕ(P ) = − log |P | (22)

is a convex function of P in the set Pn of n × n positive-definite matrices. Its
gradient is

∇ϕ(P ) = −P−1. (23)

Hence, the induced divergence is

D[P : Q] = − log
∣∣PQ−1

∣∣ + tr
(
PQ−1

)
− n, (24)

where the operator tr is the trace of a matrix.
Quantum information geometry (Amari and Nagaoka [5], Grasselli [15],

Hasegawa [16], Petz [20]) uses the convex function

ϕ(P ) = tr (P logP − P ) . (25)

Its gradient is
∇ϕ(P ) = logP. (26)

The divergence is

D(P : Q) = tr {P (logP − logQ) + P −Q} , (27)

which is the von Neumann divergence.
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We further define the following function by using a convex function f ,

ϕf (P ) = trf(P ) =
∑
f (λi) , (28)

where λi are the eigenvalues of P . Then, ϕf is a convex function of P , from which
we derive a dual geometrical structure depending on f (Dhillon and Tropp [14]).

More generally, by putting

ϕα(λ) =
−4

1− α2

(
λ

1+α
2 − λ

)
, (−1 < α < 1) (29)

we have the α-divergence,

Dα[P : Q] =
4

1− α2
tr
[
1− α

2
P +

1 + α
2
Q− P

1+α
2 Q

1−α
2

]
(30)

(Hasegawa, [16]). This is a generalization of the α-divergence defined in the space
of positive measures.

4.4 Dual Structure Derived from Bregman Divergence

We search for a pair of dual affine coordinate systems with a Bregman divergence,
by using the Legendre transformation. Given a convex function ϕ(z), we consider
z as an affine coordinate system, so that a geodesic z(t) is of the form z(t) =
ta + b. Let us define z∗ by

z∗ = ∇ϕ(z). (31)

We can then define the dual function of ϕ by

ϕ∗ (z∗) = max
z

{z · z∗ − ϕ(z)} , (32)

which is a convex function of z∗. We can describe the geometry of S by using the
dual convex function ϕ∗ and the dual coordinates z∗. The coordinate system z∗

is considered as a dual affine coordinate system. Obviously, z and z∗ are dual,
since we have

z = ∇ϕ∗ (z∗) . (33)

The dual function ϕ∗ (z∗) induces a divergence,

D∗ [y∗ : z∗] = ϕ∗ (y∗)− ϕ∗ (z∗)−∇ϕ∗ (z∗) · (y∗ − z∗) . (34)

Theorem 3. The two divergences D and D∗ are mutually reciprocal in the
sense

D∗ [y∗ : z∗] = D [z : y] . (35)

This shows that the two divergences are essentially the same, and z∗ is the dual
affine coordinate system. The divergence is written in the dual form

D[z : y] = ϕ(z) + ϕ∗ (y∗)− z · y∗. (36)
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5 Optimization and Projection

A divergence function is used in many applications. One is to define the center
of points z1, · · · , zk which form a cluster. The center is defined by

z̄ = arg min
z

{D (z, z1) , · · · , D (z, zk)} (37)

or

z̄ = argmin
z

k∑
i=1

D (z, zi) . (38)

Another problem is the following: Given a point z0, we search for the point z̄
that minimizes the divergence D [z0 : z], where z belongs to a submanifold M ,

z̄ = argmin
z∈M

D [z0 : z] . (39)

This is solved by the projection of z0 to M in a dully flat manifold.
To solve this problem, we show the following theorem.

Pythagorean Theorem [5]. Let P,Q,R be three points in a dually flat man-
ifold S whose coordinates (and dual coordinates) are represented by zP , zQ, zR(
z∗

P , z
∗
Q, z

∗
R

)
, respectively. When the dual geodesic connecting P and Q is or-

thogonal at Q to the geodesic connecting Q and R, then

D[P : R] = D[P : Q] +D[Q : R]. (40)

Dually, when the geodesic connecting P and Q is orthogonal at Q to the dual
geodesic connecting Q and R, we have

D[R : P ] = D[Q : P ] +D[R : Q]. (41)

Proof. By using (36), we have

D[R : Q] +D[Q : P ]
= ϕ (zR) + ϕ∗ (z∗

Q

)
+ ϕ (zQ) + ϕ∗ (z∗

P )
− zR · z∗

Q − zQ · z∗
P (42)

= ϕ (zR) + ϕ∗ (z∗
P ) + zQ · z∗

Q − zR · z∗
Q

− zQ · z∗
P (43)

= D [zR : z∗
P ] + (zQ − zR) ·

(
z∗

Q − z∗
P

)
. (44)

The tangent vector of the geodesic connecting Q and R is zQ − zR, and the
tangent vector of the dual geodesic connecting Q and P is z∗

Q − z∗
P in the dual

coordinate system. Hence, the second term of the right-hand side of the above
equation vanishes, because the primal and dual geodesics connecting Q and R,
and Q and P are orthogonal.

The following projection theorem [5] is a consequence of the generalized
Pythagorean theorem. Let M be a smooth submanifold of S. Given a point P
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outside M , we connect it to a point Q in M by geodesic (dual geodesic). When
the geodesic (dual geodesic) connecting P and Q is orthogonal to M (that is,
orthogonal to any tangent vectors of M), Q is said to be the geodesic projection
(dual geodesic projection) of P to M .

Projection Theorem. Given P andM , the point Q (Q∗) that minimizes diver-
gence D(P : R), R ∈ Q (D(R : P ), R ∈M), is the projection (dual projection)
of P to Q.

This theorem is useful, when we search for the point belonging to M that min-
imizes the divergence D(P : Q) or D(Q : P ) for preassigned P . In many engi-
neering problems, P is given from observed data, and M is a model to describe
the underlying structure.

6 Conclusion

We have studied various types of a divergence functions. The f -divergences are
unique information-monotone divergences, which gives the α-structure of infor-
mation geometry. On the other hand Bregman divergences are characterized
by the dually flat geometrical structure. The Kullback-Leibler divergence is the
unique intersection of classes of f -divergences and Bregman divergences in the
manifold of probability distributions. However, the α-divergences are unique in-
tersection of these classes in the manifold of positive measure. We have also
shown applications of divergences, in particular the projection structure.
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Abstract. In the paper, a new exponentially robust stability criterion

for interval fuzzy Cohen-Grossberg type neural networks with time-

varying delays is obtained by using Lyapunov-Krasovskii functional with

the differential inequality and linear matrix inequality technique. The

new criterion is easily verifiable.
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1 Introduction

In the past decades, the dynamics of Cohen-Grossberg neural networks (CGNN),
a generalized type of cellular neural networks [1-26] without delay or with delays
have been extensively studied due to their promising potential applications in
classification and parallel computing. The qualitative analysis of these dynamical
behaviors is important to the practical design and applications of neural networks
since such applications depend on the existence and uniqueness of equilibrium
points and the qualitative properties of stability.

At the same time, T. Yang et al. [21-23] introduced fuzzy neural networks
which combine the fuzzy logic with the traditional neural networks. Fuzzy neural
networks could be used in image processing and pattern recognition. In prac-
tice, the stability of fuzzy neural networks is very important as that of tradi-
tional neural networks. T. Yang et al. [21-23] have investigated the existence
and uniqueness of the equilibrium point and the stability of fuzzy neural net-
works without any delays. Realistic modeling of many large neural networks with
non-local interaction inevitably have connection delays which naturally arise as
a consequence of finite information transmission and processing speeds among
the neurons. Thus, it is natural to consider delayed neural networks. Instability
of the delayed neural networks could be caused by time-delays, so lots of deep
investigations have been done on the stability of delayed neural networks. Liu
et al. [17] have investigated fuzzy neural networks with time-varying delays and
Huang et al. [10] have investigated the stability of fuzzy neural networks with

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 194–203, 2009.
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diffusion term. Song et al. [19] introduced and investigated the impulsive effects
on the stability of fuzzy Cohen-Grossberg neural networks with time-delays.

The stability of CGNN could become unstable because of the existence of
the unavoidable modeling errors, external disturbance and parameter fluctua-
tion during the implementation on very large scale integration chips. This im-
plies that a nice neural network should have certain robustness to against such
errors, disturbance and fluctuation. To deal this problem faced by neural net-
works with uncertainty, Liao et al. [15] introduced interval neural networks. After
that, some researchers obtained some criteria for robust stability of neural net-
works with delays or without delays. Recently, Liao et al [14] and Li et al. [12]
further investigated interval neural networks with time delays using Lyapunov-
Krasovskii functional with the differential inequality and linear matrix inequality
techniques. However, to the best of our knowledge, no result on robust stability
of interval fuzzy Cohen-Grossberg type neural networks has been reported in
the literature so far. In this paper, we would present some sufficient conditions
to guarantee the interval fuzzy neural networks being robustly stable.

The rest of the paper is as follows. In Section 2, problem formulation and pre-
liminaries are given. In Section 3, several sufficient criteria are obtained. Finally,
conclusions are drawn in Section 4.

2 Problem Formulation and Preliminaries

In this paper, we would like to consider fuzzy neural networks with time-varying
delay described by the following form:

dxi

dt
= ai(xi(t))[−ci(xi(t)) +

n∑
j=1

ξijfj(xj(t)) +
n∧

j=1

γijfj(xj(t− τj(t)))

+
n∑

j=1

bijµj +Gi +
n∧

j=1

Tijµj

+
n∨

j=1

δijfj(xj(t− τj(t))) +
n∨

j=1

Hijµj ], i = 1, · · · , n, (1)

where ai(xi) represents the amplification function; γij , δij , Tij and Hij are el-
ements of fuzzy feedback MIN template, fuzzy feedback MAX template, fuzzy
feed forward MIN template and fuzzy feed forward MAX template, respectively;
bij are elements of feed forward template;

∧
and

∨
denote the fuzzy AND and

fuzzy OR operation, respectively; xi, µi and Gi denote state, input and bias of
the ith neuron, respectively; fi is the activation function; τi(t) ≥ 0 is the the
transmission delay vector with τi(t) ≤ τ where τ is a positive constant.

For the above model (1), we can write it as the following matrix-vector form:

dx(t)
dt

= A(x(t))[−C(x(t)) + Ξf(x(t)) + Γ
∧
f(x(t− τ(t))) +Bµ+G

+T
∧
µ+∆

∨
f(x(t− τ(t))) +H

∨
µ] (2)
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where x(t) = (x1(t), x2(t), · · · , xn(t))T , µ(t) = (µ1(t), µ2(t), · · · , µn(t))T ,Ax(t) =
diag(a1(x1(t)), a2(x2(t)), · · · , an(xn(t))), Cx(t) = diag(c1(x1(t)), · · · , cn(xn(t))),
Ξ = (ξij)n×n, B = (bij)n×n, G = diag(G1, · · · , Gn), Γ = (γij)n×n, ∆ =
(δij)n×n, T = (Tij)n×n, H = (Hij)n×n,

∧
is a diagonal matrix with diago-

nal elements: fuzzy AND operation
∧

,
∨

is a diagonal matrix with diagonal
elements: fuzzy OR operation

∨
.

In this paper, we assume the following:

(H1): the activation function, f = (f1, . . . , fn)T , fi are bounded functions
defined on R and satisfy

|fi(x) − fi(y)| ≤ li|x− y|, i = 1, · · · , n, (3)

for any x, y ∈ R, where li are positive constants.
(H2): ai(·), i = 1, · · · , n, are continuous and there exist positive constants m

and M , such that m ≤ ai(x) ≤M for all x ∈ R.
(H3): c′i(x) ≥ di > 0 for all x ∈ R.

For convenience, we use AT , A−1, λm(A), λM (A) to denote the transpose of, in-
verse of, the minimum eigenvalue, the maximum eigenvalue of a square ma-
trix A, respectively. The vector norm is taken to be Euclidian, denoted by
||.||. And A > 0(< 0,≤ 0,≥ 0) denotes symmetrical positive (negative, semi-
negative, semi-positive) definite matrix A. Moreover, if A = (aij)n×n, then
|A| = (|aij |)n×n.

In the practical implementation of neural networks, in general, the deviations
and perturbations of the weights of the connections are bounded. Therefore, the
quantities of the coefficients di, ξij , γij and δij may be intervalized as follow:

DI := [D,D] = {D = diag(di) : D ≤ D ≤ D, i.e., di ≤ di ≤ di, i = 1, · · · , n}
ΞI := [Ξ,Ξ] = {Ξ = (ξij)n×n : Ξ ≤ Ξ ≤ Ξ, i.e., ξ

ij
≤ ξij ≤ ξij , i = 1, · · · , n}

ΓI := [Γ , Γ ] = {Γ = (γij)n×n : Γ ≤ Γ ≤ Γ , i.e., γ
ij
≤ γij ≤ γij , i = 1, · · · , n}

∆I := [∆,∆] = {∆ = (δij)n×n : ∆ ≤ ∆ ≤ ∆, i.e., δij ≤ δij ≤ δij , i = 1, · · · , n}
(4)

Moreover, for convenience, we define, for i, j = 1, · · · , n,

ξ∗ij = max{|ξ
ij
|, |ξij |}, ω∗

ij = max{|γ
ij
|+ |δij |, |γij |+ |δij |}

ξ∗i =
n∑

j=1

(ξ∗ij
n∑

k=1

ξ∗kj), ω
∗
i =

n∑
j=1

(ω∗
ij

n∑
k=1

ω∗
kj),

Ξ∗ = diag(ξ∗i ), Ω∗ = diag(ω∗
i ). (5)

It is noted that bounded activation functions always guarantee the existence of
an equilibrium point for model (1). Let x∗ = (x∗1, · · · , x∗n)T be an equilibrium
point of model (1) for a given µ. To simplify the proof, we shift the equilibrium
point x∗ of (1) to the origin by using the transformation y(t) = x(t)−x∗. Model
(1) becomes the following form:
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dyi
dt

= ai(yi(t) + x∗i )[−(ci(yi(t) + x∗i )− ci(x∗i )) +
n∑

j=1

ξij(fj(xj(t))− fj(x∗j ))

+
n∧

j=1

γijfj(xj(t− τj(t)))−
n∧

j=1

γijfj(x∗j )

+
n∨

j=1

δijfj(xj(t− τj(t)))−
n∨

j=1

δijfj(x∗j )], i = 1, · · · , n (6)

or matrix-vector form:

dy(t)
dt

= A(y(t) + x∗)[−(C(y(t) + x∗)− Cx∗) +Ξ(f(x(t)) − f(x∗)) +

Γ
∧
f(x(t− τ(t))) − Γ

∧
f(x∗) +∆

∨
f(x(t− τ(t))) −∆

∨
f(x∗)](7)

Definition 1. The equilibrium point x∗ of (1) is said to be globally exponentially
stable if there exist constants λ > 0 and K > 0 such that

|ui(t)− x∗i | ≤ K max
1≤i≤n

‖ ϕi − x∗i ‖ e−λt (8)

for all t ≥ 0, where ‖ ϕi − x∗i ‖= sups∈(−τ,0] |ϕi(s)− x∗i |, i = 1, · · · , n.

Definition 2. Model (1) is said to be robustly exponentially stable if its unique
equilibrium point u∗ ∈ Rn is globally exponentially stable for any D ∈ DI ,
Γ ∈ ΓI , ∆ ∈ ∆I .

Definition 3. For any continuous function f : R→ R, its Dini’s time-derivative
is defined as

ḟ(t) = lim
∆t→0

sup
f(t+∆t)− f(t)

∆t

In order to get the main result regarding the robustly exponential stability of
model (1), we would like to present several lemmas first.

Lemma 1. ([21]). For any aij ∈ R, xj , yj ∈ R, i, j = 1, · · · , n, we have the
following estimations,

|
n∧

j=1

aijxj −
n∧

j=1

aijyj | ≤
∑

1≤j≤n

(|aij | · |xj − yj|) (9)

and

|
n∨

j=1

aijxj −
n∨

j=1

aijyj | ≤
∑

1≤j≤n

(|aij | · |xj − yj|) (10)

Lemma 2. ([13]). Given any real matrices A,B,C with appropriate dimensions
and C is a positive symmetric matrix. Then, for any scalar ε > 0, the following
inequality holds:
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ATB +BTA ≤ εATCA+ 1
εB

TC−1B

Lemma 3. (Schur complement, Boyd et al. [27]). The following LMI:

0 <
[
A(x) B(x)
BT (x) C(x)

]
where A(x) = AT (x), C(x) = CT (x), and B(x) depend affinely on x, is equiva-
lent to one of the following conditions:

(i) A(x) > 0, C(x) −BT (x)A(x)−1B(x) > 0;
(i) C(x) > 0, A(x) −B(x)C(x)−1BT (x) > 0;

Lemma 4. For any Ξ = (ξij)n×n ∈ ΞI , Γ = (γij)n×n ∈ ΓI , ∆ = (δij)n×n ∈ ∆I ,
we have ΞΞT ≤ Ξ∗, (|Γ | + |∆|)(|Γ | + |∆|)T ≤ Ω∗, where Ξ∗, Ω∗ are defined
by (5).

It is clear that Ξ∗, Ω∗ are positive matrix and Ξ∗− ξξT , Ω∗− (|Γ |+ |∆|)(|Γ |+
|∆|)T diagonally dominant. Thus, Ξ∗ − ξξT , Ω∗ − (|Γ | + |∆|)(|Γ | + |∆|)T are
positive matrices, the above lemma results follow.

3 Robust Stability Criterion

In this section, we will use the Lyapunov method, LMI matrix inequality tech-
niques to obtain the sufficient condition for the robust stability of the equilibrium
point of fuzzy neural networks with time-varying delays. The main result is pre-
sented as the following theorem.

Theorem 1. Suppose that there exist positives: u, v, w and positive diagonal
matrix P such that

(i) The LMI holds:

0 <
[
2mPD − wP − M

u Ξ
∗ − M

v Ω
∗ √MuPL√

MuLP In

]
(ii) c ≡ Mv

w λM (P )max1≤i≤n{l2i } < 1

where In is an nth-order identity matrix, L = diag(li)n×n and li being the Lips-
chitz constants in (3), D,Ξ∗, Ω∗ defined in (4). Then, model (1) is exponentially
robustly stable under the assumption H .

Proof: It is clear that the origin is an equilibrium point of system (6). We
consider the following Lyapunov-Krasovskii functional:

V (y(t)) = yT (t)Qy(t), (11)

where Q = P−1 and y(t) = x(t) − x∗.
It is obvious that

λm(Q)||y(t)||2 ≤ V (y(t)) ≤ λM (Q)||y(t)||2 (12)
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To simplify the notation, we define

aτ = sup
−τ≤t≤τ

{||y(t)||}, a2τ = sup
−τ≤t≤2τ

{||y(t)||}.

Since the solution y(t) of system (6) is continuous, the existence of aτ ,a2τ is
guaranteed. To obtain the inequalities of the Dini’s time derivative of V (y(t))
along the trajectory of system (6), we need to use Lemma 1 to Lemma 4 and
the assumptions (H1)− (H3) in the following process:

V̇ (y(t)) = 2yT (t)QA(y(t) + x∗)[−(C(y(t) + x∗)− Cx∗) +Ξ(f(x(t)) − f(x∗))

+Γ
∧
f(x(t− τ(t))) − Γ

∧
f(x∗) +∆

∨
f(x(t− τ(t))) −∆

∨
f(x∗)]

≤ −2myT (t)QDy(t) + 2yT (t)QA(y(t) + x∗)Ξ(f(x(t)) − f(x∗)) +
2M |yT (t)|Q|Γ ||f(x(t)) − f(x∗)|+ 2M |yT (t)|Q|∆||f(x(t)) − f(x∗)|

≤ −2myT (t)QDy(t) +
M

u
yT (t)QΞΞTQy(t) +Mu(f(x(t))− f(x∗))T

×(f(x(t)) − f(x∗)) +
M

v
yT (t)Q(|Γ |+ |∆|)(|Γ |+ |∆|)TQy(t)

+Mv(f(x(t− τ(t))) − f(x∗))T × (f(x(t− τ(t))) − f(x∗))

≤ −2myT (t)QDy(t) +
M

u
yT (t)QΞΞTQy(t) +Muy(t)TL2y(t)

+Mvy(t− τ(t))TL2y(t− τ(t))

+
M

v
yT (t)Q(|Γ |+ |∆|)(|Γ |+ |∆|)TQy(t)

≤ yT (t)[−2mQD +
M

u
QΞΞTQ+MuL2 +

M

v
Q(|Γ |+ |∆|)(|Γ |

+|∆|)TQ]y(t) +Mvy(t− τ(t))TL2y(t− τ(t))

= yT (t)[−2mQD +
M

u
QΞΞTQ+MuL2 +

M

v
Q(|Γ |+ |∆|)(|Γ |

+|∆|)TQ]y(t) +Mvy(t− τ(t))TL2y(t− τ(t))

≤ −wV (y(t)) + yT (t)Q[−2mPD+ wP +
M

u
ΞΞT +MuPL2P

+
M

v
(|Γ |+ |∆|)(|Γ |+ |∆|)T ]Qy(t) +Mvy(t− τ(t))TL2y(t− τ(t))

≤ −wV (y(t)) + yT (t)Q[−2mPD+MwP +
M

u
Ξ∗ +MuPL2P

+
M

v
Ω∗]Qy(t) +Mvy(t− τ(t))TL2y(t− τ(t))

≤ −wV (y(t)) +Mvy(t− τ(t))TL2y(t− τ(t))
≤ −wV (y(t)) +Mv max

1≤i≤n
{l2i }y(t− τ(t))T y(t− τ(t))

= −wV (y(t)) +Mv max
1≤i≤n

{l2i }||y(t− τ(t))||. (13)
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By the above inequality (13), we have, for t > τ ,

V (y(t)) ≤ V (y(τ))e−w(t−τ) +Mv max
1≤i≤n

{l2i }
∫ t

τ

e−w(t−s)||y(s− τ(s))||2ds

≤ λM (Q)a2τe
−w(t−τ) +Mv max

1≤i≤n
{l2i }

∫ t

τ

e−w(t−s)||y(s− τ(s))||2ds (14)

By Eq. (12) and Eq. (14), we have

||y(t)||2 ≤ 1
λm(Q)

[λM (Q)a2τe
−w(t−τ)

+Mv max
1≤i≤n

{l2i }
∫ t

τ

e−w(t−s)||y(s− τ(s))||2ds] (15)

In order to prove that the origin of system (6) is robustly exponentially stable,
it is enough to show that the solution to system (6) has the following property:

||y(t)|| ≤
(

1
1− c∗

) 1
2

Ke−
ε
2 (t−τ), t ≥ τ, (16)

where K =
(

1
λm(Q) [λM (Q)a2τ + M

w vmax1≤i≤n{l2i }a22τe
wτ ]

) 1
2

and ε is a selected

constant satisfying 0 < ε < w and c∗ = 1
λm(Q)

1
w−εvmax1≤i≤n{l2i }eετ < 1. Notice

that the condition (ii) of this theorem implies the existence of ε.
Obviously, the inequality (16) is equivalent to the following inequality holding

for any ρ > 1,

||y(t)|| ≤ ρ
(

1
1− c∗

) 1
2

Ke−
ε
2 (t−τ), t ≥ τ. (17)

From the inequality (15), it is clear that when t = τ , inequality (16) holds. Now,
we assume that there exist t0 > τ and ρ0 > 1 such that

||y(t0)|| = ρ0
(

1
1− c∗

) 1
2

Ke−
ε
2 (t0−τ), (18)

and, for any t ∈ [τ, t0),

||y(t)|| ≤ ρ0
(

1
1− c∗

) 1
2

Ke−
ε
2 (t−τ), (19)

Case 1: t0 ∈ (τ, 2τ ]. By the inequality (15), we have

||y(t0)||2 ≤
1

λm(Q)
[λM (Q)a2τe

−w(t0−τ)

+Mv max
1≤i≤n

{l2i }
∫ t0

τ

e−w(t0−s)||y(s− τ(s))||2ds]
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≤ 1
λm(Q)

[λM (Q)a2τe
−ε(t0−τ) +Mv max

1≤i≤n
{l2i }a22τ

∫ 2τ

τ

e−w(t0−s)ds]

≤ 1
λm(Q)

[λM (Q)a2τe
−ε(t0−τ)

+
M

w
v max

1≤i≤n
{l2i }a22τ (e−w(t0−2τ) − e−w(t0−τ))

=
1

λm(Q)
[λM (Q)a2τe

−ε(t0−τ) +
M

w
v max

1≤i≤n
{l2i }a22τ (ewτ − 1)e−w(t0−τ)

≤ 1
λm(Q)

[λM (Q)a2τe
−ε(t0−τ) +

M

w
v max

1≤i≤n
{l2i }a22τe

wτe−ε(t0−τ)]

= K2e−ε(t0−τ)

<
ρ20

1− c∗K
2e−ε(t0−τ) (20)

It is contradicted to the equation (18).

Case 2: t0 ∈ (2τ,∞). From the inequality (15), we have

||y(t0)||2 ≤
1

λm(Q)
[λM (Q)a2τe

−w(t0−τ) +Mv max
1≤i≤n

{l2i }a22τ

∫ 2τ

τ

e−w(t0−s)ds

+Mv max
1≤i≤n

{l2i }
∫ t0

2τ

e−w(t0−s)||y(s− τ(s))||2ds]

≤ 1
λm(Q)

[λM (Q)a2τe
−ε(t0−τ) +Mv max

1≤i≤n
{l2i }a22τ

∫ 2τ

τ

e−w(t0−s)ds

+Mvρ20

(
1

1− c∗

)
K2 max

1≤i≤n
{l2i } ×

∫ t0

2τ

e−w(t0−s)e−ε(s−τ(s)−τ)ds]

≤ 1
λm(Q)

[λM (Q)a2τe
−ε(t0−τ) +Mv max

1≤i≤n
{l2i }a22τ

∫ 2τ

τ

e−w(t0−s)ds

+Mvρ20

(
1

1− c∗

)
K2 max

1≤i≤n
{l2i }

∫ t0

2τ

e−w(t0−s)e−ε(s−2τ)ds]

≤ 1
λm(Q)

[λM (Q)a2τe
−ε(t0−τ) +

1
w
ewτMv max

1≤i≤n
{l2i }a22τe

−ε(t0−τ)

+Mvρ20

(
1

1− c∗

)
K2eετ max

1≤i≤n
{l2i }

1
(w − ε)e

−ε(t0−τ)]

≤ [K2 +
ρ20

1− c∗K
2c∗]e−ε(t0−τ)

<
ρ20

1− c∗K
2e−ε(t0−τ) (21)

It is contradicted to the assumption (18). So far, we have proved that (17) is
correct, thus, (16) is correct, i.e., the system (6) is robustly stable. The proof of
the theorem is completed

Let u = v = 1, then we have the following corollary.
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Corollary 1. Suppose that there exist a diagonal matrix P =diag(p1, · · · , pn)>0
and a positive w such that

(i) The LMI holds:

0 <
[

2mPD− wP −MΞ∗ −MΩ∗ √MPL√
MLP In

]
(ii) c ≡ M

w max1≤i≤n{pi}max1≤i≤n{l2i } < 1

where In is an nth-order identity matrix, L = diag(li)n×n and li being the Lips-
chitz constants in (3), D,Ξ∗, Ω∗ defined in (4). Then, model (1) is exponentially
robustly stable under the assumption H .

4 Conclusion

In this paper, based on the Lyapunov method and linear matrix inequalities tech-
nique, a new criterion for the robust stability of interval fuzzy Cohen-Grossberg
neural networks with time-varying delays has been obtained. It is believed that
that the robust stability is very important in designing Cohen-Grossberg neural
networks. Thus, the results present in this paper are useful in the application
and design of neural networks since the conditions are easy to check in practice.
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Abstract. Joint approximate diagonalization is one of well-known

methods for solving independent component analysis and blind source

separation. It calculates an orthonormal separating matrix which diago-

nalizes many cumulant matrices of given observed signals as accurately as

possible. It has been known that such diagonalization can be carried out

efficiently by the Jacobi method, where the optimization for each pair of

signals is repeated until the convergence of the whole separating matrix.

The Jacobi method decides whether the optimization is actually applied

to a given pair by a convergence decision condition. Generally, a fixed

threshold is used as the condition. Though a sufficiently small threshold

is desirable for the accuracy of results, the speed of convergence is quite

slow if the threshold is too small. In this paper, we propose a new decision

condition with an adaptive threshold for joint approximate diagonaliza-

tion. The condition is theoretically derived by a model selection approach

to a simple generative model of cumulants in the similar way as in Akaike

information criterion. In consequence, the adaptive threshold is given as

the current average of all the cumulants. Only if the expected reduction

of the cumulants on each pair is larger than the adaptive threshold, the

pair is actually optimized. Numerical results verify that the method can

choose a suitable threshold for artificial data and image separation.

Keywords: signal processing, independent component analysis, joint

approximate diagonalization, Akaike information criterion.

1 Introduction

Independent component analysis (ICA) is a widely-used method in signal pro-
cessing [1,2]. It solves blind source separation problems under the assumption
that source signals are statistically independent of each other. In the linear model
(given as X = WS), it estimates the N ×N mixing matrix W and the source
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signals S from only the observed signals X. N is the number of signals. Joint
approximate diagonalization (called JADE in [3,4]) is one of efficient methods
for estimating W . Now, ∆pq is defined as an N ×N matrix whose (i, j) element
is κijpq . Here, κijpq is the 4-th order cumulants of X. It is easily proved that
∆̃pq = V ∆pqV

′ is a diagonal matrix for any p and q if V is the accurate sepa-
rating matrix. Therefore, W can be estimated as V which diagonalizes ∆pq as
accurately as possible for many p’s and q’s. Besides, because X is assumed to be
pre-whitened, V is constrained to an orthonormal matrix. Then, the estimated
separating matrix V̂ is given as

V̂ = argminV

∑
p,q≥p

∑
i,j>i,k

(κ̃ijpq)
2 (1)

where ∆̃pq = (κ̃ijpq) Though the original JADE algorithm in [3] uses the sum-
mation over

∑
p,q=p instead of

∑
p,q≥p for reducing computational costs, Eq.

(1) is employed in this paper for achieving more accurate results. Because it is
relatively difficult to calculate V̂ directly, the Jacobi method is often used. The
method optimizes the objective function Ψ =

∑
p,q≥p

∑
i,j>i (κ̃ijpq)

2 only for
each pair (i, j). By sweeping the optimizations over all the pairs repeatedly, the
whole V can be estimated. Because V is an orthonormal matrix, each pair opti-
mization is given as a 2×2 rotation matrix (cosφ, sinφ;− sinφ, cosφ) which has
only a single parameter φ. Because the optimal φ̂ can be calculated analytically
and efficiently, JADE is known to be efficient.

Now, we focus on the decision condition in the Jacobi method. Generally, each
pair optimization has to decide whether the “actual” rotation is needed. Only
if every pair does not need any actual rotations, the convergence of the whole
estimated matrix is declared. The classical Jacobi method employs a simple
decision policy using a fixed small threshold ε. That is, only if φ̂ > ε, the actual
rotation is applied. In order to obtain accurate results, an extremely small ε
has been used in many cases. However, the convergence is quite slow if ε is
too small. In this paper, an “optimal” decision condition is proposed, which is
given by minimizing an information criterion on an approximate probabilistic
model of cumulants. Its concrete form is derived in the similar way as in the
model selection theory and Akaike information criterion (AIC) [5,6]. Though the
information criteria such as AIC are widely used in order to estimate the number
of sources [7], they give a criterion for estimating the “goodness” of the whole
separating matrix. On the other hand, the proposed method focuses on each
pair optimization. In our previous works [8], a fixed threshold was automatically
determined by a model selection approach, but the threshold was too large at the
convergence phase. In this paper, we propose a new method, which is effective
even at the convergence phase. It determines the best threshold adaptively for
each pair optimization with little additional costs.

This paper is organized as follows. In Section 2, the model selection theory is
introduced and the derivation of AIC is explained in brief. In Section 3, a new
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adaptive threshold for the decision is proposed by minimizing an information
criterion. Section 4 shows the results of numerical experiments. Lastly, this paper
is concluded in Section 5.

2 Model Selection and Akaike Information Criterion

The model selection problem is defined as follows. x represents samples which
are generated from a “true” probabilistic distribution f (x). The purpose is to
estimate f (x) as accurately as possible from given samples xi through a prob-
abilistic model g (x|θ). Here, θ = (θk) is the vector of parameters of the model.
One of well-known estimators of θ is the maximum likelihood estimation (MLE)
θ̂, which is given as

θ̂ = argmaxθL (x,θ) (2)

where L (x,θ) = log (g (x|θ)). Given a sufficiently large number of samples,
MLE maximize the log-likelihood Ex (L (x,θ)) (Ex () is the expectation opera-
tor over f (x)). Though MLE is effective for discovering approximately optimal
parameters in a single model, it is not useful for comparing multiple models
because Ex (L (x,θ)) can be arbitrarily large by giving a model with many pa-
rameters. Akaike information criterion [5] is a method for solving this model
selection problem. It employs the following criterion T ,

T = Ey

(
Ex

(
L
(
x, θ̂ (y)

)))
, (3)

instead of the log-likelihood. Though x and y are given according to the same
distribution f (x) (and f (y)), they are generated independently. T is consis-
tent with the cross validation method. It is difficult to estimate T accurately.
However, if θ̂ (y) is sufficiently close to the vector of true (and optimal) parame-
ters θo (“true” means g (x|θo) = f (x)), the approximation of T can be derived
analytically. In consequence, T is approximated as

T � Ex

(
L
(
x, θ̂ (x)

))
−K (4)

where K is the number of parameters in θ (see [6] for the details of the deriva-
tion). The estimator of Ex

(
L
(
x, θ̂ (x)

))
for a given sample x is given as

L
(
x, θ̂ (x)

)
. So, the estimator of T is given as

T � L
(
x, θ̂ (x)

)
−K (5)

which is the general form of AIC. It tends to prefer a simple model with fewer
parameters, so it can suppress the increase of unnecessary parameters of the
model. AIC gives a mathematical framework explaining “Occam’s razor.”
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3 Adaptive Threshold for Pair Optimization

Each term (κ̃ijkk)2 in the JADE objective function Ψ is denoted by cp ∈ c
(p = 1, . . . ,M = N2 (N − 1) /2). Assume that the current V is near to the
optimum. The key idea in our proposed approach is to regard each cp as an
independent sample from a generative probabilistic model g (cp). In general, a
square cumulant cp depends on cq each other. However, at the optimum, each
cp is approximated as an independent noise to the ideal value “0”. Therefore, it
is assumed here that every cp are independent of each other. Because cp is non-
negative, the following exponential distribution is employed as the generative
model:

g (cp|λ) =
e−

cp
λ

λ
(6)

where λ is a parameter and is equal to the mean of the distribution. Then, the
log-likelihood w.r.t. the rotation φ for a given pair (i, j) is given as

∑
cp∈c

L (cp, φ, λ) =
∑

i,j>i,k

(
− log (λ)− (κ̃ijkk (φ))2

λ

)

= −M log (λ)− Ψ (φ)
λ
. (7)

Therefore, MLE φ̂ on this log-likelihood is completely equivalent to the opti-
mal φ̂ for each pair optimization of Ψ in JADE (see Section 1). It shows that
the proposed simple generative model is consistent with the JADE algorithm.
Now, AIC of this generative model is utilized for deciding whether the actual
rotation of φ̂ is needed for each pair in JADE. For this purpose, AIC of the
current state is compared with that of the state after the actual rotation. Only
if AIC increases by the rotation, the actual rotation is preferable. The current
information criterion Tcurr before the actual rotation is given as

Tcurr = Ec

(
Ec′

(
L
(
cp ∈ c, φ = 0, λ̂curr (c′)

)))
(8)

where cp ∈ c and c′p ∈ c′ are generated independently according to the same
distribution, and λ̂curr (MLE of λ) is determined by maximizing Eq. (7):

λ̂curr =
Ψ (φ = 0)
M

(9)

which corresponds to the mean of the current square cumulants. Because the
free parameter is only λ, Tcurr is approximated as

Tcurr � L
(
cp ∈ c, φ = 0, λ̂curr (c)

)
− 1, (10)

where K = 1 in Eq. (5). On the other hand, the information criterion after the
rotation (Trot) is given as

Trot = Ec

(
Ec′

(
L
(
cp ∈ c, φ̂ (c′) , λ̂rot (c′)

)))
(11)
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where λ̂rot is given as

λ̂rot =
Ψ
(
φ̂
)

M
, (12)

which corresponds to the mean of the square cumulants after the rotation. Be-
cause φ and λ are the free parameters, Trot is approximated as

Trot � L
(
cp ∈ c, φ̂ (c) , λ̂rot (c)

)
− 2, (13)

where K = 2. The actual rotation should be done only if δT = Trot−Tcurr > 0.
By Eq. (7), δT is transformed into

δT = −M log (λrot)−
Ψ
(
φ̂
)

λrot
− 2

+M log (λcurr) +
Ψ (0)
λcurr

+ 1. (14)

It is shown by Eqs. (9) and (12) that
Ψ(φ̂)
λrot

and Ψ(0)
λcurr are the same constant M .

Then, δT is transformed further into

δT = −M log
(
λrot
λcurr

)
− 1. (15)

Now, δΨ
(
φ̂
)

= Ψ (0)−Ψ
(
φ̂
)

is introduced, which corresponds to the reduction

of Ψ by the rotation φ̂. Then, log
(

λrot
λcurr

)
is rewritten as

log
(
λrot
λcurr

)
= log

⎛⎝Ψ
(
φ̂
)

Ψ (0)

⎞⎠ = log

⎛⎝1−
δΨ

(
φ̂
)

Ψ (0)

⎞⎠ . (16)

Because δΨ is related to only the terms on i and j, it is generally quite smaller
than the total summation Ψ if N is large. So, by assuming that δΨ

(
φ̂
)
� 1,

the following approximation holds:

log

⎛⎝1−
δΨ

(
φ̂
)

Ψ (0)

⎞⎠ � −
δΨ

(
φ̂
)

Ψ (0)
. (17)

Thus, δT > 0 is given as

M
δΨ

(
φ̂
)

Ψ (0)
− 1 > 0, (18)

which is rewritten as the following final decision condition:

δΨ
(
φ̂
)
>
Ψ (0)
M

. (19)
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It means that the actual rotation is necessary if the reduction of Ψ by φ̂ is larger
than the mean of the current square cumulants. It gives an adaptive threshold
Ψ
M , which is smaller when the current state is closer to the optimum. Regarding
computational costs, the costs of each estimation of φ̂ are only 1

N as high as
those of each actual rotation. Besides, the costs of calculating the total value of
Ψ is negligible because Ψ is easily updated at each actual rotation [3]. Therefore,
the costs of decisions are much less than those of actual rotations if N is large.

4 Results

Here, JADE with the proposed adaptive threshold is compared with the previous
fixed ones ε in blind source separation of artificial data and an image separation
problem. Regarding artificial data, The number of sources was set to 20 and 40
(N = 20, 40). A half of the sources were generated by the Laplace distribution
(super-Gaussian) and the other half by the uniform distribution (sub-Gaussian).
The number of samples was set to 50000, and the mixing matrix W was randomly
generated. Regarding the image separation, the sources were 12 grayscale images
of 256 × 256 pixels from the USC-SIPI database and a 12 × 12 mixing matrix
was given randomly, where N = 12 and the number of samples is 65536.

Fig. 1 shows the decreasing curves of Amari’s separating errors [9] along the
number of the actual rotations by the adaptive threshold and fixed ones (ε =
10−1, 10−2, and 10−6). The separating error is defined as the sum of normalized
non-diagonal elements of the product of the estimated separating matrix and the
given mixing one. If the error is equal to 0, the estimated separating matrix is
equivalent to the inverse of the mixing one except for scaling factors. They were
averaged over 10 runs. It shows that the method with the adaptive threshold
converged to the results which are almost equivalent to those with a sufficiently
small threshold ε = 10−6. In addition, the convergence speed was relatively
faster than or almost equivalent to the results with ε = 10−2. Therefore, the
result shows that the adaptive threshold is suitably chosen. In order to inspect
more closely the results at the convergence, Fig. 2 shows the trade-off curves of
the final error and the number of actual rotations until convergence. They were
calculated by numerical experiments with various fixed thresholds from 10−

1
4 to

10−6. It shows that the final error decreases and the number of actual rotations
increases as the fixed threshold decreases. It also shows that the error is approx-
imately a constant once the fixed threshold is below a critical point. The results
of the adaptive threshold are shown by the black dots in the figures. Surprisingly,
they are placed nearly at the critical points where the decreasing curves of the
final error converge to the optimal values. In other words, the adaptive threshold
gives approximately the most accurate estimation of the separating matrix by the
minimum number of actual rotations. Fig. 3 shows the trade-off curve on the im-
age separation problem. The adaptive threshold gives a result near to the critical
point for this practical application also. Those results verify the effectiveness of
the adaptive threshold.
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Fig. 1. Decreasing curves of separating errors on a log scale along the number of the

actual rotations (N = 20 and 40) for artificial data. Solid curves: adaptive threshold.

Dashed: fixed threshold ε = 10−1. Dotted: ε = 10−2. Dot-dashed: ε = 10−6.
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Fig. 2. Comparison of the final error with the number of rotations until convergence

for artificial data: the curves show the trade-off between the accuracy and the required

number of actual rotations. The curves were calculated by changing fixed threshold ε

gradually from 10− 1
4 to 10−6. The black dots show the results of the adaptive threshold.
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for image separation: the settings are the same as in Fig. 2.
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5 Conclusion

In this paper, we propose a new decision condition for each pair optimization in
the Jacobi method of joint approximate diagonalization. The condition is based
on an adaptive threshold, which is derived theoretically by applying a model
selection approach to a simple generative model. In consequence, the threshold
is equivalent to the mean of the current square cumulants, and it is calculated
easily. Numerical results verified that the proposed method could choose the
optimal threshold for artificial data and an image separation problem.

In this paper, some experiments on artificial data and image separation were
carried out. We are going to apply the proposed method to other practical data.
Besides, the proposed approach is expected to be applicable to many cumulants-
based algorithms as well as JADE. So, we are going to apply this approach to
other algorithms in blind source separation. In addition, it has been known that
the model selection theory is effective for solving the overlearning problems. So,
we are planning to compare the proposed method with other method in such
overlearning problems [10]. This work is partially supported by Grant-in-Aid for
Young Scientists (KAKENHI) 19700267.
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Abstract. A new algorithm named probabilistic polar self-organizing

map (PPoSOM) is proposed. PPoSOM is a new variant of Polar SOM

which is constructed on 2-D polar coordinates. Data weight and feature

are represented by two variables that are radius and angle. The neu-

rons on the map are set as data characteristic benchmarks. Projected

data points are trained to get close to the neurons with the highest sim-

ilarities, while weights of neurons are updated by a probabilistic data

assignment method. Thus, not only similar data are gathered together,

data characteristics are also reflected by their positions on the map. Our

obtained results are compared with conventional SOM and ViSOM. The

comparative results show that PPoSOM is a new effective method for

multidimensional data visualization.

Keywords: SOM, ViSOM, probabilistic polar SOM (PPoSOM),

visualization.

1 Introduction

Data visualization, which is the graphical presentation of data information, has
been widely used to solve many problems, e.g. signal compression, pattern recog-
nition, image processing, etc. Principal component analysis (PCA) [1] and mul-
tidimensional scaling (MDS) [2] are two classical methods for data reduction and
visualization. PCA is an effective method of linear reduction, but it is not suit-
able for highly nonlinear data. MDS is capable of preserving data structure and
inter-point distances, but its computational complexity is heavy and it requires
re-computation when new data points are added.

Self-organizing map (SOM) [3-5], a widely used visualization method pro-
posed by Kohonen, is an unsupervised learning neural network to visualize high-
dimensional data in a low-dimensional map. SOM is able to present the data
topology by assigning each datum to a neuron with the highest similarity. But
because of the uniform map grid, SOM cannot preserve the data relationship
between clusters or within one cluster. Also, the requirement of pre-defining the
map size is another disadvantage of SOM. Visualization-induced SOM (ViSOM)

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 212–220, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



PPoSOM: A Multidimensional Data Visualization 213

[6-8] and Probabilistic Regularized SOM (PRSOM) [9] hybridize SOM and MDS
in order to preserve the data topology as well as the inter-neuron distances. But
they have the same disadvantage as SOM.

In this paper, a new algorithm, Probabilistic Polar SOM (PPoSOM), is
proposed for data visualization. It is derived from the concept of a new polar
structure [10] with a probabilistic assignment. Instead of Cartesian coordinates,
PPoSOM visualizes data in a 2-D polar coordinates map with two variables:
radius and angle. These two variables represent data weight and feature respec-
tively. The neurons learn data feature by a probabilistic data assignment method
in [9], and the projected data points approach the neurons with similar features.
As a result, the data topology as well as the inter-data distance is preserved. Sim-
ulation results and the comparisons with SOM and ViSOM show that PPoSOM
exhibits remarkable performance on data visualization.

2 Background

2.1 Self-Organizing Map (SOM)

SOM [3-5] consists of N neurons on a low-dimensional map, usually a 2-D grid.
Each neuron j, which has the same d-dimensions as input data, is denoted by
wj = (wj1, wj2, · · · , wjd)T . During each training process, an input datum xi

is randomly chosen from the input space. The winning neuron c which weight
vector is the most similar to this datum is determined by

c = arg min
j
‖xi − wj‖ , j ∈ {1, · · · , N} . (1)

The neighborhood function of winning neuron c, taken as a Gaussian function,
is defined by

hjc(t) = exp(−‖Posj − Posc‖
2

2σ(t)2
), j ∈ Nc. (2)

where Nc is the neighboring set of the winning neuron c, Posj and Posc are the
coordinates of neuron j and c respectively.

The weight updating formula is

wj(t+ 1) =
{
wj(t) + ε(t)hjc(t)(xi(t)− wj(t)), ∀j ∈ Nc

wj(t), otherwise
(3)

Both the learning rate ε(t) and the neighborhood σ(t) monotonically decrease
with time.

After training, similar input data are projected onto adjacent neurons on
the output map. But several input data may be projected onto a single neuron
making data relationship between clusters or within one cluster difficult to be
preserved.
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2.2 Visualization-Induced SOM (ViSOM)

ViSOM [6-8] is proposed to preserve the inter-data distances as well as the data
topology. ViSOM use the similar map structure as SOM, but the training of
winning neuron’s neighbors is different. Weight updating formula in ViSOM is
defined by

wj(t+1) = wj(t)+ε(t)hjc(t)((x(t)−wc(t)+(wc(t)−wj(t))
dcj −∆cjλ

∆cjλ
)), j ∈ Nc

(4)

where dcj and ∆cj are the distances between nodes c and j in the input space
and output space respectively. λ is a positive pre-specified resolution parameter.

ViSOM decomposes the updating force Fjx = x(t) − wj(t) into two forces:
Fjx = [x(t) − wc(t)] + [wc(t) − wj(t)] = Fcx + Fcj . Fcx is the updating force
from the winning neuron c to the input data x; Fcj is a lateral contraction force
bringing neighboring neuron j to the winner c. The second force regularizes the
inter-neuron distance in the output space to resemble that in the input space.
But ViSOM has the same drawback as SOM, that some input data points are
mapped on the same neuron, making the relationship of these data difficult or
even impossible to be preserved.

3 Probabilistic Polar Self-organizing Map (PPoSOM)

PPoSOM is a new self-organizing algorithm designed to provide better visu-
alization. It is constructed on 2-D polar coordinates, and the projected data
points on the map are expressed by two variables: angle and radius, repre-
senting the data feature and weight respectively. The whole circular map is
divided into different angles and radii. Each angle represents an attribute of
the data feature and the radius is related to the data weight. Neurons on the
map are set as benchmarks of data characteristics. Their weight initializations
are determined by their positions on the map in a way that the angle repre-
sents the most significant attribute of the neuron weight and the radius reflects
the weight value. The PPoSOM employs a kind of probabilistic assignment [9]
which connects an input datum to a neuron with a certain probability. The
noised probabilistic assignment pi(x(t)) of neuron i is introduced as follows, and
the term “noised” means that pi(x(t)) is affected by probabilistic assignments of
neighboring neurons.

pi(x(t)) =
N∑

j=1

hijPj(x(t)) (5)

where Pj(x(t)) is the probabilistic assignment of neuron j for input x(t), and

hij is a neighborhood constant satisfying
N∑

j=1

hij = 1. They can be taken as:
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Pj(x(t)) =
1
C

⎛⎜⎜⎜⎝ 1∥∥∥∥ N∑
k=1

hjk(x(t) − wk)
∥∥∥∥2

⎞⎟⎟⎟⎠ (6)

hij =
exp(− ‖Posi−Posj‖2

2σ2 )
N∑

k=1

exp(− ‖Posi−Posk‖2

2σ2 )
(7)

where C is a normalization constant and the neighborhood radius σ is a con-
stant. A probabilistic data assignment makes PPoSOM effective for dimension
reduction and visualization.

Define Nr(i) and Nα(i) as neuron i’s radius and angle respectively, and rx
and αx as an output datum x’s radius and angle respectively. The executing
steps of PPoSOM are as follows:

Step 1. Initialize each neuron according to its position. Normalize the input
data, and initialize the polar coordinates of their corresponding output data
by setting the radii proportion to their weights and the angles with random
values.

Step 2. Randomly select an input datum x and find the winning neuron ac-
cording to Eq. (1). Update the weights of all neurons by

wi(t+ 1) =

⎧⎨⎩
wi(t) + η1(x(t)− wi(t)), for i = c

wi(t) + η2
M

M∑
k=1

pi(x(k))(x(k) − wi(i)), otherwise
(8)

where η1 and η2 are the constant learning rates, M is the number of input
data.

Step 3. Update the polar coordinates of this datum.

rx(t+ 1) = rx(t) + β1(t)(Nr(c)− rx(t)) (9)

αx(t+ 1) = αx(t) + β2(t)(Nα(c)− αx(t)) (10)
where β1 and β2 are the learning rates that monotonically decrease with
time.

Step 4. If the iteration is not over, then go to Step 2. Otherwise, the neural
network which exhibits precise data characteristics is obtained.

Upon the completion of training process, the visualization map is created so
that each input datum is represented by a radius and an angle on the map.
Data with similar features are grouped together, and their common feature is
also reflected by their positions on the map. Since the data are not projected
onto neurons, the data relationships between different clusters and within one
cluster are preserved. Also, PPoSOM does not require re-computation when new
instances are presented to it, since there are the benchmark neurons representing
data characteristics.



216 Y. Xu et al.

4 Simulation Results

We use two synthetic data sets, iris data set [11] and wine data set [12] to
illustrate the advantages of PPoSOM. The visualization results are compared
with SOM and ViSOM. The map size of SOM is 20 × 20, the number of itera-
tions is 1000 and the learning rate monotonically decreases from 1 to 0.018 with
time. The neighborhood range also monotonically decreases from 14.78 to 2. In
ViSOM, the map size is the same as that of SOM, and λ is set to 0.1. In PPoSOM,
η1 and η2 are set to 0.05 and 0.1 respectively.

4.1 Three-Dimensional Synthetic Data Sets

In order to demonstrate the characteristics of representing data with radii and
angles, two types of 3-D synthetic data sets are used in this section. Each of
them consists of two classes named Class 1 and Class 2, and each class is formed
by 100 three-dimensional data points.

In the first data set, the mean vector weights of two classes are
[0.45 0.54 0.54]T and [2.48 2.48 2.52]T respectively. The data weights in Class
1 are smaller than those in Class 2. The simulation results of PPoSOM, SOM
and ViSOM are presented in Fig. 1.

As shown in Fig. 1, Class 1 and Class 2 are well separated from each other
in PPoSOM, SOM and ViSOM. In PPoSOM map Fig. 1(a), the radii of the

Fig. 1. Visualization of the first 3-D synthetic data set. (a) PPoSOM. (b) SOM. (c)

ViSOM.
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projected data from Class 1 are smaller than those from Class 2. This is in
the agreement with the fact that the average data weight of Class 1 is smaller
than that of Class 2. Besides, that evenly distributed data angles indicates the
attributes in every data are similar. However, these important characteristics
cannot be exhibited in SOM and ViSOM.

In the second data set, the second attributes in Class 1 and the third attributes
in Class 2 are larger than the rest. Their mean vectors are [0.48 2.49 0.54]T and
[0.44 0.50 2.49]T respectively. The visualizations of PPoSOM, SOM and ViSOM
are shown in Fig. 2.

Fig. 2. Visualization of the second 3-D synthetic data set. (a) PPoSOM. (b) SOM. (c)

ViSOM.

In Fig. 2, it shows that the two classes are well separated in all the three
algorithms. In PPoSOM, data from Class 1 and data from Class 2 are located
around 120 degree and 240 degree respectively, representing the significantly
large value in the second and the third attribute respectively. It is worth noting
that this important characteristic cannot be provided by SOM and ViSOM.

4.2 Iris Data Set

Iris data set [11], one of the well known benchmark data sets for pattern recog-
nition, consists of 3 classes of iris plants, each classes has 50 four-dimensional
instances. The first class is clearly separated from the other two. These two are
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Fig. 3. Visualization of iris data set. (a) PPoSOM. (b) SOM. (c) ViSOM.

overlapped in some extent and not linearly separable from each other. The mean
vectors of these three classes are [0.20 0.59 0.08 0.06]T , [0.45 0.32 0.55 0.51]T

and [0.64 0.41 0.77 0.80]T respectively after normalization.
The visualization results of PPoSOM, SOM and ViSOM are shown in Fig. 3.

The characteristics of iris data are clearly shown in Fig. 3(a). The average radius
of the first class is the smallest, and that of the third class is the largest. In addi-
tion, Fig. 3(a) illustrates different significant attributes in the three classes: the
second attribute in Class 1, the third attribute in Class 2 and the fourth attribute
in Class 3. The visualization is in agreement with the iris data characteristics.
However, the above characteristics cannot be shown in SOM and ViSOM.

4.3 Wine Data Set

The wine data set [12] consists of 178 13-D data points which are divided into
three classes. The number of data points in each class is 59, 71 and 48 respec-
tively. These three classes are not well separated.

The visualization results of PPoSOM, SOM and ViSOM are presented in Fig.
4. The characteristics of wine data set are clearly shown in Fig. 4(a). The average
radius in Class 1 is the largest, and the average radii in Class 2 and Class 3 are
similar. It means that the data weight of Class 1 is larger than other two classes.
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Fig. 4. Visualization of wine data set. (a) PPoSOM. (b) SOM. (c) ViSOM.

Moreover, PPoSOM demonstrates different significant attributes in three classes
by angular coordinate. However, in Fig. 4(b) and (c), SOM and ViSOM are
incapable to exhibit these data characteristics.

Our results show that the PPoSOM not only can group similar data, it can
also make use of the data positions to reflect the characteristics. In other words,
PPoSOM is capable of preserving data topology and exhibiting data characteris-
tics. Compared with SOM and ViSOM, which map data on Cartesian coordinates
by using Euclidian distance as the only variable, PPoSOM can manifest more
precise data characteristics.

5 Conclusion

In this paper, a new self-organizing map called Probabilistic Polar SOM
(PPoSOM) is developed for providing a new type of visualization. The design
of the PPoSOM was motivated by exhibiting precise data characteristics. Each
datum is represented by radius and angle on the polar coordinates. These two
variables reflect data weight and feature respectively. Compared with the tradi-
tional algorithms which only use Euclidian distance as the variable, PPoSOM
provides more characteristics of data. Based on the simulation results, it has been
shown that PPoSOM is effective to obtain better visualization, while maintains
the topology preservation property.
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Abstract. In this paper we apply a novel tensor decomposition model

of SOD (slice oriented decomposition) to extract slice features from the

multichannel time-frequency representation of EEG signals measured for

MI (motor imagery) tasks in application to BCI (brain computer inter-

face). The advantages of the SOD based feature extraction approach

lie in its capability to obtain slice matrix components across the space,

time and frequency domains and the discriminative features across differ-

ent classes without any prior knowledge of the discriminative frequency

bands. Furthermore, the combination of horizontal, lateral and frontal

slice features makes our method more robust for the outlier problem.

The experiment results demonstrate the effectiveness of our method.

Keywords: Tensor decomposition, EEG, BCI.

1 Introduction

Tensors (also known as n-way arrays) are used in a variety of applications ranging
from neuroscience and psychometrics to chemometrics [1–3]. From a viewpoint
of data analysis, tensor decomposition is very attractive because it takes into
account spatial and temporal correlations between variables more accurately
than 2D matrix factorizations, and it usually provides sparse common factors
or hidden components with physiological meaning and interpretation. In most
applications, especially in neuroscience (EEG, fMRI), the standard PARAFAC
and Tucker models were used [4–6].

Feature extraction for high dimension data and high noise data plays an im-
portant role in machine learning and pattern recognition. In the real world,
� Corresponding author.

�� On leave from Engineering Faculty, University of Buenos Aires, Argentina.
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the extracted feature of an object often has some specialized structures and
such structures are in the form of 2nd or even higher-order tensor. Recently,
multilinear algebra, the algebra of high-order tensors, was applied for analyz-
ing the multifactor structure image ensembles, EEG signals [7] and etc. These
methods, such as tensor PCA [8], tensor LDA [9, 10], tensor subspace analysis
[11–13], treat original data as second- or high-order tensors. For supervised fea-
ture classification [14], the tensor factorization can lead to structured dimension-
ality reduction by learning multiple interrelated subspaces. In the most existing
tensor decomposition models, high-dimension tensors are decomposed to many
rank-1 vector components on each mode. Unlike most existing models such as
PARAFAC, Tucker and HOSVD, our SOD model is to represent a 3D tensor by
outer product of slice matrices and corresponding vectors on each tensor mode
rather than rank-1 components. Therefore, the structure of tensor data associ-
ated to its horizontal, lateral and frontal slices can be captured. Based on the
SOD model, we developed a feature extraction framework for single-trial EEG
classification.

This paper is organized as follows: in section 2, SOD model and its main
properties are introduced briefly, then the feature extraction framework based on
SOD are proposed; in section 3, data analysis results on EEG data are presented
and discussed; in section 4, the main conclusions and future perspectives of
improvement are presented.

2 Method

2.1 SOD Model

In [15], the Slice Oriented Decomposition (SOD) model was recently proposed
as a decomposition method of 3-way tensors that captures the structure of data
slices providing also a compact representation. SOD takes into account the in-
teractions among the three modes of a tensor Y ∈ �I×J×K by decomposing it
as a sum of elemental (simple) tensors:

Ŷ =
P∑

p=1

Hp +
Q∑

q=1

Lq +
R∑

r=1

Fr =
P∑

p=1

Hp ◦1 up +
Q∑

q=1

Lq ◦2 vq +
R∑

r=1

Fr ◦3 wr, (1)

where matrices Hp, Lq and Fr are called matrix components, vectors up, vq and
wr are called vector components, H, L, F ∈ �I×J×K and ◦n is the n-mode
outer product (n = 1, 2 or 3) defined as follows:

[H]ijk = [H ◦1 u]ijk = hjkui, (2)
[L]ijk = [L ◦2 v]ijk = likvj , (3)
[F]ijk = [F ◦3 w]ijk = fijwk. (4)

The effect of the n-mode outer product is to create simple tensors where slices
are scaled versions of a basic matrix. In Fig. 1-(a) the equation (1) is illustrated
while in Fig. 1-(b) the SOD compact representation is shown.
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Fig. 1. Slice Oriented Decomposition (SOD) model

When vector and matrix components are constrained to be nonnegative we
arrive to the Non-negative SOD (NN-SOD) for which an Alternate Least Squared
(ALS) Newton based algorithm is available [15].

2.2 Feature Extraction

To apply SOD for extracting slice features along horizontal, lateral and frontal
directions, the class-averaged EEG tensor data Yc, c ∈ {1, 2} were decomposed
according to Eq.(1) and reorganized as

Yc = Hc ×1 Uc + Lc ×2 Vc + Fc ×3 Wc, (5)

where c denotes class label, H,L,F are slice tensors that are composed of slice
matrix components Hp, Lq and Fr respectively. Correspondingly, U,V,W are
matrices composed of up,vq,wr, p = 1 . . . P, q = 1 . . .Q, r = 1 . . . R respectively.

Thus, the new EEG tensor data X with unknown class label can be repre-
sented by giving class-specific slice tensors obtained from Eq.(5) and the coeffi-
cient matrices Û, V̂,Ŵ estimated by the SOD with fixed H,L,F. However, SOD
is based on iterative algorithm that starts from random matrices, which leads to
the non-uniqueness problem. To further simplify this problem, we project X on
horizontal, lateral or frontal slice tensors separately by

Û = X(1)H
T
(1)(H(1)H

T
(1))

−1, (6)

V̂ = X(2)LT
(2)(L(2)LT

(2))
−1, (7)

Ŵ = X(3)FT
(3)(F(3)FT

(3))
−1, (8)
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where H,L,F are class-specific slice tensors obtained by Eq.(5). Finally, we
calculate the correlation coefficients of corresponding vectors between Û, V̂,Ŵ
and U,V,W as features by

f = [rûpup , rv̂qvq , rŵrwr ]p=1...P,q=1...Q,r=1...R. (9)

For the classification of two classes EEG tensors, we first obtain class-specific
slice tensors by applying SOD on the c-th class averaged tensor data Yc. Thus,
the f for each of two classes are calculated by Eq.(6-9) with giving class-specific
Hc,Lc,Fc and combined into one feature vector that are used to train a linear
classifier.

ChannelsFrequency

T
im

e

(a) Left hand

ChannelsFrequency

T
im

e

(b) Right hand

Fig. 2. Averaged 3-way tensors of space-frequency-time representation for EEG signals

during MI tasks. The size of tensor data is 5×49×1024 (i.e., channels×frequency×time).

(a) for left hand class and (b) for right hand class.

3 Experiments and Results

In our application, EEG signals with only 5 electrodes (i.e., C3, Cp3, Cz, Cp4,
C4) over the motor cortex were recorded from the scalp at a sampling rate of
256Hz for 2 classes MI-based BCI experiments. In the experimental sessions used
for the present study, labeled trials of EEG signals were recorded in the following
way: the subjects were sitting in a comfortable chair with arms lying relaxed
on the armrests. Each trial consists of 2s for relaxation and 4s for movement
imagination (i.e., left hand or right hand) tasks following visual cue stimulus.

The EEG data are transformed from the time-domain to the time-frequency
domain using a complex Morlet continuous wavelet transform (CWT) with cen-
ter frequency ωc = 1 and bandwidth parameter ωb = 2. The frequency range
from 6Hz to 30Hz at 0.5Hz step are focused in our application. Thus, we ob-
tain EEG tensor representation X ∈ RNd×Nf×Nt which is a 3-way time-varying
EEG wavelet coefficients array, where Nd, Nf , Nt are the number of channels,
frequency bins, and time points respectively. In our application, we only con-
sider the time-frequency power features of EEG trials, hence a square operation
is performed on X in advance. In order to find the invariable feature structure
through all trials, we first preprocessed EEG tensors by averaging the same class
as Yc = 1

MΣi∈classcXi, M is the trial number of c-th class. Fig. 2 shows the 3D
averaged tensors for each class.
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Fig. 3. Results of NN-SOD with P = Q = R = 2 applied to class-specific EEG

tensors. (a)(c)(e) are slice components for left class, (b)(d)(f) are slice components for

right class. (a)(b) are horizontal slice matrix Hp and combination vector up; (c)(d)

are Lateral slice matrix Lq and combination vector vq; (e)(f) are frontal slice matrix

Fr and combination vector wr. The tensor size is 5 × 49 × 1024, i.e., 5 channels, 49

frequency bins and 1024 sample points.

The SOD model with non-negative constraints was performed for slice decom-
position on each of class-specific 5× 49× 1024 tensors (i.e., the space, frequency
and time domain). In order to represent the tensor data by slice components
with the number as smaller as possible, the fitting error of 0.1 is used for se-
lection of components number. To simplify this procedure, we choose the same
number for horizonal, lateral and frontal slice components. Fig. 3 presents the
decomposition results with 2 components on each mode, i.e., P = Q = R = 2.
In the horizontal slice components (Fig. 3(a)) for left class, the time-frequency
matrix H1 mainly focuses around 10Hz (µ-rhythm) throughout the whole 4s
duration of one trial. Then the vector u1 which represents the space distribu-
tion of the corresponding slice demonstrates that the slice H1 is decreased from
channel C3 to C4. This is the ERS phenomena. Meanwhile the slice H2 and
corresponding vector u2 demonstrate the ERD phenomena of decreasing power
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of µ-rhythm on right motor area of brain. Similar to left class, Fig. 3(b) shows
the time-frequency slice components and the distribution on channels domain,
H1 denotes interrupt of µ-rhythm on left and right hemisphere of brain, H2

denotes low β-rhythm on left hemisphere of brain. Therefore, the significance
of ERD/ERS for left hand and right hand are not same for specific subject.
Similar to the horizontal slices, Fig. 3(c),3(d) present the space-time lateral slice
components and distribution vectors in the frequency domain. Fig. 3(e),3(f)
present the space-frequency frontal slice components and distribution vectors
in the time domain. In Fig. 3(e), F1 denotes the β-rhythm focused on the left
hemisphere of brain.
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Fig. 4. r2-value of slice components. The first 6 components are obtained by left class

tensor, and the last 6 components are obtained by right class tensor. The order of each

6 components are H1,H2,L1,L2,F1,F2.

In order to find the most discriminative slice components for two mental tasks,
the r2-value are calculated for each slice components. Based on this, the 4 most
discriminative slice components are selected for classification. Fig. 4 shows r2-
value along slice components, the first 6 components for left class and the last 6
components for right class. It can be clearly seen that H1 of left class and H2 of
right class have most discriminative ability, which illustrates that most discrim-
inative information between left and right class lies in the space distribution of
time-frequency slices. This just demonstrated why we can obtain high perfor-
mance only by spatial filters, e.g., CSP method. However, the CSP algorithm
is also known for its tendency to overfit, i.e., to learn the non-discriminative
brain rhythm which has an overlapping frequency range with most discrimina-
tive brain rhythm. Especially in the small training samples case, CSP is suffered
for the outlier problem because of high dependence upon the distribution prop-
erties of training data. As compared with CSP, our method are more stable in
case of small training samples and more robust to deal with the nonstation-
ary of EEG signals. To prove that, we has trained a SOD model and SVM
classifier on first experiment run and tested our method on several subsequent
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runs. Fig. 5 presents the classification performance of 10 runs for subject A and
8 runs for subject B. The results demonstrate that the relative stable perfor-
mance can be obtained by our method when compared with CSP. Therefore, the
generalization ability of our method seems to be more suitable for online BCI
system.
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Fig. 5. The classification performance of subsequent runs based on the model

trained on the first run. One experiment run contains only 20 trials for each class

and the duration of mental tasks is 4s for each trial. (a) for subject A and (b) for

subject B.

4 Conclusions

In this study, we have presented a novel tensor feature extraction framework for
EEG classification based on SOD algorithm. Through applying the non-negative
SOD, the slice features on each tensor mode can be easily obtained. Data analysis
on EEG signals from BCI experiments demonstrates the effectiveness of our
method. Compared with traditional tensor learning methods, our method is
able to extract slice matrices from tensor data on multi-mode simultaneously,
hence the space-frequency, space-time, and time-frequency structure features
can be captured from 3D tensor data. Classification performance on several
experiment runs also confirmed the robustness of our method. To further improve
the discriminative ability, the class information will be additionally considered
in the cost function and the semi-supervised feature extraction method will be
studied in the next step.
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Abstract. Matching two points in distinguished images is one of the

actual challenges in digital image processing. The currents techniques of

stereo imaging are not ideal and slow, not offering a valuable solution for

practical scenarios like real time robotics vision or vehicles navigation.

This paper will presents a approach for optimization of disparity calcu-

lus, introducing a sparse matching of stereo disparity maps and surface

reconstruction by RBFs interpolation of empty spaces.

Keywords: Neural Networks, RBF, Computer Vision, Stereo Matching.

1 Introduction

The acquisition of an image on a modern digital camera records the light per-
ception that reaches the internal sensors of that camera. This acquisition is a
projection of a three-dimensional scene on a two-dimensional plan, which is the
lens of the camera. Remember that the mapping of a three-dimensional scene on
a image plane is a “many-to-one” transformation, ie, one point on the picture
doesn’t determines a single position in the world [1], what makes necessarily
some techniques to make this information acessible somehow.

In applications such as: robotic navigation, geographic mapping, et al., Where
the depth information (Z coordinate) of scene points are often necessary, we
must use a technique known as stereoscopic imaging (or stereo) to recover the
lost information.

The stereoscopy, or stereo vision, is the particular case of computer vision
processing that uses a basics two-dimensional images, acquired by a system of
two or more cameras, to estimate the dimension of depth on a scene [6]. In
this case, each device sees the scene from two different references, allowing the
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Fig. 1. A common scenario of stereo vision

computer system to combine the information obtained from the pair of images
in order to obtain a three-dimensional representation. This model has strong
biological inspiration and is the way of our human vision works.

The combination of two or more two-dimensional images, which aims to locate
the corresponding points between an image and another isn’t a trivial task. It
is required adjustments of parameters that are dependent of the scene and the
computational time is extremely high. Two main techniques commonly used to
find this correlation are based on the technical areas [7][8] and techniques based
on characteristics [9].

The techniques based in areas uses the correlation between the values of in-
tensity of a window on the left image, and another on the right image, producing
a dense map of disparities. The size of window on this algorithm and the search
area, influences the accuracy of the match and also the complexity of processing
[10].

The techniques based on features uses the characteristics removed from the
images, such as segments of the edge, gradients, etc., performing simple compar-
isons between attributes these characteristics. Such techniques have enhanced
speed and accuracy than the techniques based in area, however, have the disad-
vantage of generating a disparity map of sparse, being necessary to make use of
interpolation techniques to generate dense maps [5].

Besides these two techniques, it shows, as a powerful alternate, the techniques
based on Artificial Neural Networks to solve the problem of correspondence. In
this field of work we can cite the work of Hsiao and Wang [4], which makes use
of MLPs with supervised training to find the points correspondents.

The problem of stereo vision matching is extremely complex and not always
provide definitive solutions. Many are the dificulties of such processing, which
among others can quote geometric distortions, radiometric, regions of occlusions
and similarities between points [11]. Another dominant factor is the high com-
putational cost of current techniques.

This work aims to combine the simplicity of technique of area based stereo
matching using color images, but without making an ostensible calculation for
all points of the image, thus making the algorithm very slow. To fill the gaps
left by the algorithm of matching, take a rather consolidated technic of points
interpolation using Artificial Neural Networks with Radial Base Function (RBFs)
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in order to find the other points of the surface that were not calculated. We
thus reconstruct the map of the depths of the original scene with some gain in
performance and with minimum possible error.

This paper is organized as follows: First, set the basic concepts to understand-
ing the techniques used, then talk on the proposed method, its characteristics
and propositions, then present the results and, finally, finished with the conclu-
sions and proposals for future work.

2 Stereo Vision

The requirement for stereo vision is the existance of two separate views of a
scene of an object.

For the proposed scenario we assume that the cameras are identical and that
coordinate systems of both cameras are perfectly aligned, differing only in the
position of their origins. We noticed that the camera and world coordinate sys-
tems coincide, the plan xy of the image is aligned with the plane (X,Y ) of
the world coordinate system. So, in these conditions, the coordinate Z of w is
exactly the same for both coordinate systems of cameras.

2.1 Stereo Images Correlation

The correlation can be used as a matric for finding a matching subimagem w(x, y)
with size of J ×K insida an image f(x, y) of size M ×N , assuming that J ≤M
and K ≤ N .

The correlation between f(x, y) and w(x, y) can be expressed by:

c(s, t) =
∑

x

∑
y f(x, y)w(x − s, y − t)

where s = 0, 1, 2, . . . ,M − 1 and t = 0, 1, 2, . . . , N − 1, and the sum is realized
over a region of the image with f and w are placed.

We assume that the origin of f(x, y) is the top left and for w(x, y) in its center.
As s and t are scanned, the w(x, y) are moved in the image, providing a function
c(s, t). The maximum value of c(s, t) indicates the position in which x(x, y) has
better matching with f(x, y).

3 Artificial Neural Networks

The architecture of an Artificial Neural Network can be approached in several
ways. As an example we can cite the case of the back-propagation algorithm
that can be used to train MLP supervised networks (networks with multiple
layers of perceptrons), which is applied to stochastic approximation of a function,
however, when the dimensionality of the curve are very high, the algorithms
convergence are extremely slow.
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Fig. 2. RBF schematics

In contrast, networks of radial basis functions (RBFs), illustrated above, [12],
can be seen as an approach of curve-fitting, or approximation, but with high-
dimensional data [2]. In this context, the learning process consists to create an
n-dimensional surface that offers the best fit to the training data, which the
stop criterion is a statistical measure. Similarly, the generalization is equivalent
to creating a hyper-surface to interpolate the training data. Its architecture has
a hidden layer of neurons with a characteristic different from traditional MLP,
which is exactly the presence of the radial basic functions in the entry standards
of data used for training.

Thus, we can say that the RBF networks are suitable to interpolate large
masses of data with extreme efficiency.

4 Proposed Method

Our work has developed a technique to overseed the complexity of classical
stereo matching algorithms [13], and to improve the performance of an area
stereo matching, a short explanation can be follow on Fig. 3.

Image
Reading

RBF
training

Disparity Grid
Generation

Interpolation
grid

generation

Stereo Image
Matching

RBF
simulation

Interpolated
Surface

Fig. 3. Block diagram of proposed method

The approach adopted was to reduce the number of points calculated intro-
ducing in the algorithm a jump parameter (step), in pixels, that is the intervals
that will be considered in the calculus of matching pixels. The result is the cre-
ation of an imaginary grid of spacing where only in crosses of the lines is that
the differences are calculated.

After the imaginary mesh has been created, the processing of stereo matching
is started. For purposes of matching, we consider a point w into (x1, y1) on the
right image is similar to v at (x2, y2) from the left image, by the correlation of
the vector formed by points included in a window of size J1 for a vector of the
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search space of S in the image on the right is the highest possible. It is therefore,
that the pair P (w, v) are related. Note that due to the parameter of the jump,
the result here will be a sparse map the gaps, and needs to be interpolated.

After this stage, we began the neural interpolator using the technique of RBF
to reconstruct the lost area, so we choose to put all coordinates of map of the
calculated differences as a centers of the neural network.

After training the network we create a second mesh of points with resolution
equal to the original image. This mesh is used to simulate the outcome data of
interpolated data calculated by RBF.

5 Results

For comparison, we tested running a traditional area based stereo matching
algorithm on a set of images, this algorithm creates disparity maps, without
interpolation, using various values for window and search parameters. We ran-
domly selected two images from this set to use on this paper, as we can see on
Fig. 4 and Fig. 5. These images will reference to what would be an ideal state.

Fig. 4. Example 1 disparity map with-

out the interpolation with stereo pa-

rameters 15px for window and 50px for

search

Fig. 5. Example 2 disparity map with-

out the interpolation with stereo pa-

rameters 18px for window and 30px for

search

We’re calling here window a collection of pixels that are in the region of
the central pixel, this collection describes the central pixel itself in this unique
position. And the search parameter describes the range of seek that we will
search for a pixel in the right image for a match pixel of the one on the left
image. Those two parameters are very important to get a good result, and those
two values were choosed after severals experiments tests.

This map of disparities were found through the matching of the original images
below in Fig. 6 and Fig. 7.

Our experiment consists in, using the proposed method, significantly increase
the step, in the way that, for each iteration, less data is calculated from the stereo
pair, being necessary that the RBF interpolates an increasing range of pixels,
until we notice that the interpolated image no longer retains the characteristics
of the original disparity map.
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Fig. 6. Left image of stereo pair for Ex-

ample 1 disparity map

Fig. 7. Left image of stereo pair for Ex-

ample 2 disparity map

The RBF has been calibrated to work efficiently for our objective, which
is, to interpolate data that are similar in a three-dimensional geometry. The
parameters used were chosen based on the best responses after a wide range of
tests. The geometric values of X and Y are loaded using the size of the resulting
mesh of sparse stereo map, the RBFFunction are the multiquadric function,
for better results on edges areas, the RBFConstant are the expression y =
prod(max(x′) −min(x′))/nXCount)(1/nXDim) which means the approximated
average distance between the nodes, and the RBFSmooth is set to zero.

We run our method for each image using the values of step from 1 to 100
pixels, but for visualization we’ll show three states for the two examples images,
which are with step 10, step 15 and with step 50, respectively.

Fig. 8. Surface rebuilded by RBF of

Example 1 using a step of 10 pixels

Fig. 9. Surface rebuilded by RBF of

Example 2 using a step of 10 pixels

Note that after a certain amount of steps, as expected, the surface no longer
has the characteristics of the real disparity information. This is because too much
interpolated data are created and the calculated stereo map no longer has the
caracteristics of the original map of disparities.

Comparing the interpolated data with the initial stereo map of disparitics,
we’ll get the error diferences of this method, and as result we obtained the
graphs below on Fig. 14 for Example 1 and Fig. 15. They shows two curves each
of analyzed data on experiments. The x-axis are the steps, and the y-axis the
values of the time and the error. The solid curve represents how the CPU time
are decreased as the steps are increased, and the dashed curve is the error.

We can see the the results are similar for diferents values of window and
search, and for diferents images.



Stereo Map Surface Calculus Optimization Using RBFs 235

Fig. 10. Surface rebuilded by RBF of

Example 1 using a step of 15 pixels

Fig. 11. Surface rebuilded by RBF of

Example 2 using a step of 15 pixels

Fig. 12. Surface rebuilded by RBF of

Example 1 using a step of 50 pixels

Fig. 13. Surface rebuilded by RBF of

Example 2 using a step of 50 pixels
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Fig. 14. The Error X Time graph for

Example 1
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Fig. 15. The Error X Time graph for

Example 2

The same data in tabular form for Example 1:

Table 1. The comparison table between step and interpolation error

STEP (pixels) TOTAL TIME (sec) ERROR

1 1999,59 0

10 58,46 0,03

30 18,99 0,07

100 17,66 0,16

6 Conclusions

Solving the problem of stereo matching is extremely computationaly expensive,
but with some approaches we can reduce significantly the CPU time required to
produce a near optimal maps of depth informations.
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We realize that with a small jump in the calculation of the disparities, we
gain significant performance with almost no error, and that the RBF networks
are extremely useful in bringing the original surface.

References

1. Gonzalez, R.C., Woods, R.E.: Processamento de Imagens Digitais. In: Blcher, E,

ed. (1992)

2. Haykin, S.: Neural Networks, a comprehensive foundation, 2nd edn. Pearson Edu-

cation, London (2001)

3. Calin, G., Roda, V.O.: Real-time disparity map extraction in a dual head stereo

vision system. Lat. Am. Appl. Res. Mar. 37(1), 21–24 (2007)

4. Wang, J.H., Hsiao, C.P.: On Disparity Matching in Stereo Vision via a Neural

Networks Framework. Natl. Sci. Counc. ROC (1999)

5. Fernandes, R.G., Silveira, R.W., Dria Neto, A.D.: On Disparity Matching in Stereo

Vision via a Neural Networks Framework. Departamento de Engenharia de Com-

putao e Automao - UFRN (2004)

6. Marr, D.: Vision: A Computational Investigation into the Human Representation

and Processing of Visual Information. Henry Holt and Co., Inc., New York (1982)

7. Marapane, S.B., Trivedi, M.M.: Region-based stereo analysis for robotic appli-

cations. IEEE Transactions on Systems, Man and Cybernetics 19(6), 1447–1464

(1989)

8. Li, G., He, Y.: A hierarchical combined feature and area-based stereo matching

algorithm. In: IEEE International Symposium on Circuits and Systems, ISCAS

2002, vol. 2, pp. II-277–II-280 (2002)

9. Goulermas, J.Y., Liatsis, P.: Feature Based Stereo Matching via Coevolution of

Epipolar Subproblems. In: Seventh International Conference on Image Processing

And Its Applications, vol. 1 (1999)

10. Sunyoto, H., Mark, W.V.D., Gavrila, D.M.: A comparative study of fast dense

stereo vision algorithms. In: 2004 IEEE Intelligent Vehicles Symposium, June 2004,

pp. 319–324 (2004)

11. Lin, J.H., Parhi, K.K.: VLSI architectures for stereoscopic video disparity matching

and object extraction. In: IEEE International Symposium on Circuits and Systems,

ISCAS 2005, May 2005, vol. 3, pp. 2373–2376 (2005)

12. Rahmatulloh, F.: Radial Basis Function Networks for Modeling Option (last seen

June 2009),

http://statistikawan.org/radial-basis-function-

networks-for-modeling-option.html

13. Zhang, W., Zhang, Q., Qu, L., Wei, S.: A stereo matching algorithm based on mul-

tiresolution and epipolar constraint. In: Proceedings of Third International Con-

ference on Image and Graphics, 2004, December 18-20, 2004, pp. 180–183 (2004)

http://statistikawan.org/radial-basis-function-networks-for-modeling-option.html
http://statistikawan.org/radial-basis-function-networks-for-modeling-option.html


Quasi-Deterministic Partially Observable Markov
Decision Processes

Camille Besse and Brahim Chaib-draa

Department of Computer Science, Laval University, Quebec, Canada
{besse,chaib}@damas.ift.ulaval.ca

Abstract. We study a subclass of POMDPs, called quasi-deterministic POMDPs
(QDET-POMDPs), characterized by deterministic actions and stochastic obser-
vations. While this framework does not model the same general problems as
POMDPs, they still capture a number of interesting and challenging problems and,
in some cases, have interesting properties. By studying the observability available
in this subclass, we show that QDET-POMDPs may fall many steps in the com-
plexity classes of polynomial hierarchy.

1 Introduction

AI planning was initially conceived as a deterministic problem where a sequence of
actions has to be decided in order to achieve a goal state with desirable values from an
original state. This problem was thoroughly studied in AI with important contributions
as A�, GRAPHPLAN, and others [1].

However, this deterministic model has strong limitations on the type of problem
that can be represented. Thus, one cannot represent situations where actions have non-
deterministic outcomes or where states are not completely observable. In such cases,
one must resort to Markov Decisions Processes (MDPs) and Partially Observable
Markov Decisions Processes (POMDPs). However, with this expressiveness of the model
comes an increase of complexity, specially for POMDPs, and this gain in generality in-
volves a cost in the ability to solve the sustained problems by such model. For instance,
POMDPs offer one of the most expressive frameworks and are thus widely used for
sequential decision making under partial observability [2], but the current known algo-
rithms scales very poorly as the planning horizon grows.

Nevertheless, numbers of problems that involve partial observability have a common
characteristic: they have actions with deterministic outcomes and the observation gen-
erated is also deterministic. Indeed, these problems have recently been used in many
proposals for planning with incomplete information, e.g. [3], and are used for learning
partially observable models [4].

These models were briefly discussed in [5], under the name of deterministic POMDPs
(DET-POMDPs) for which some important theoretical results were obtained. Littman [5]
first showed that a DET-POMDP can be mapped into an MDP with an exponential number
of states and then be solved with standard algorithms for MDPs. He also showed that op-
timal non-stationary policies of polynomial size can be computed in non-deterministic
polynomial time and finally that optimal stationary policies can be computed in poly-
nomial space. Since then, up to our knowledge, no publications were made on this
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subject except [6] that extends these results by defining a specific subclass of DET-
POMDPs, that have the so-called polynomial diameter property, that can be solved in
non-deterministic polynomial time. Bonnet [6] also linked the DET-POMDP framework
to the AND/OR tree search algorithms, arguing that this type of algorithm is more
efficient than standard POMDP algorithms for this subclass of POMDPs.

Given this role of DET-POMDPs in recent research and motivated by the quest of
amenable models for decision making under partial observability, we extend the work
of Littman and Bonnet in order to bridge a part of the gap between DET-POMDPs
and POMDPs, by studying the subclass of POMDPs with deterministic transition but
with stochastic observations. We thus present a specific subclass of widely used DET-
POMDPs, called quasi-DET-POMDPs (QDET-POMDPs) and show that ε-approximating
this subclass falls many steps in complexity in the polynomial hierarchy.

This paper is organized as follows. First, examples of challenging problems are given
that motivate our research. Second, a formal definition of the model and the variants
are given. In Sect. 4, main theoretical results are described and the complexity of the
subclass is presented. Finally, the significance of this work is discussed in Sect. 5.

2 Examples

Many problems had been modeled as POMDPs and DET-POMDPs and had been used
to develop and evaluate various algorithms for planning under uncertainty and partial
information. For space reasons, we present only few examples of some problems that
may be modeled as a QDET-POMDP:

Robot Navigation: Consider an indoor robot in am× n grid that must navigate from
an initial position to a goal position while avoiding obstacles using only some noisy
sensors on its position. The robot’s moves are deterministic but the observation of
its current state is distorted by the noise on the sensors. The goal is to find a strategy
for guiding the robot to its destination.

Diagnosis: The aim of diagnosis is to identify one of the m states of a system (e.g.
a patient) using n noisy binary tests. An instance consists of a m × n stochastic
matrix T where each Tij represent the probability that test j is positive in the state
i. The goal is to find the sequence of tests that will identify almost surely the state
of the studied system [7].

Sensor Management: Consider multiple sensors situated on a single platform where
each sensor can be activated solely (e.g. Figure 1). The problem is to track a con-
cealed or distant target by interrogating the sensors. The target is modeled by a
set of states, each state representing a contiguous set of target-sensor orientations
over which the scattering physics is relatively stationary. The goal is to find a
tracking policy for the target while observing only noisy relative sensor angular
positions [8].

All of these problems can be modeled as QDET-POMDPs. Let us now see the formal
definition of the proposed framework.
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Fig. 1. Multi-aspect sensing of a hidden target. The kth state sk is a contiguous set of target-
sensor orientations over which the scattered fields are approximately stationary (K = 8 states
are shown). Here T observations are performed, {o1, o2, ..., oT }, as performed at a sequence of
relative sensor angular positions, where ∆ϕt+1 = ϕt+1 − ϕt are orientations. Figure from [8].

3 Model and Variants

Deterministic POMDPs were initially defined as follows [5]:

Definition 1. [5] A Deterministic Partially Observable Markov Decision Process
(DET-POMDP) is a tuple 〈S, A, Ω, T , O, R, γ, b0〉, where:

– S is a finite set of states s ∈ S;
– A is the finite set of actions of the agent and a ∈ A, denotes an action;
– Ω is the finite set of observations of the agent and z ∈ Ω, denotes an observation;
– O(z, a, s′) : Ω × A × S �→ {0, 1} is the deterministic observation function indi-

cating wether or not the agent gets observation z when the world falls in state s′

after executing action a;
– T (s, a, s′) : S ×A×S �→ {0, 1} is the deterministic transition function indicating

wether or not making action a in state s results in state s′;
– R(s, a) : S × A �→ � is the reward perceived by the agent when the world falls

into state s after agent executes action a;
– γ is the discount factor;
– b0 is the a priori knowledge about the state, i.e. the initial belief state, assumed

non-deterministic.

The variant proposed by [6] considers a set of absorbing goal states that provide no
rewards nor costs but is semantically similar.

Note that the initial belief state b0, which describes the different possibilities for the
initial state, is crucial. Indeed, if the initial state were known, and since the transition
function is deterministic, then all the future states will also be known, and the model
reduces to the well studied problem of deterministic planning in AI [1].

Compared to deterministic POMDPs, the proposed extended model presents changes
on the observability function. This model, so called Quasi-deterministic Partially Ob-
servable Markov Decision Process, is defined as follows:



240 C. Besse and B. Chaib-draa

Definition 2. A Quasi-deterministic Partially Observable Markov Decision Process
(QDET-POMDP) is a tuple 〈S, A, T , O, R, b0〉, where:

– S,A, T ,R, b0 are the same as in Definition 1;
– O(z, a, s′) : Ω ×A× S �→ [0, 1] is the observation function indicating the proba-

bility of getting observation z when the world falls in s′ after executing a;
Moreover, ∀ s′ ∈ S, a ∈ A, ∃ z ∈ Ω, s.t. O(z, a, s′) ≥ θ > 1

2 , i.e. the world
is minimally observable and the probability of getting one of the observations is
lower bounded in each state by at least one half;

First, let us notice that θ is just a lower bound on observability of each state and thus
that in some states the probability the observation can be greater. Notice also that the
planning horizon is not set a priori. This is due – as we will see in Section 4 – to an
interesting convergence property of this model to a ε-deterministic belief state after a
fixed number of steps.

Optimality Criteria and Variants

As our goal is to compute a policy that permits our agent to perform optimally, we
consider the maxexp optimality criteria that maximizes the expected discounted reward
of a policy. The value of a policy π is thus computed using:

Vπ(b0) = E
s∼b0

[ ∞∑
t=0

γtR(st, π(st))
∣∣s0 = s, π

]

The variants of the model are related to the observation model:

Unobservable models in which |Ω| = 1 and thus no information is retrieved about the
state. This class is a subclass of the so-called conformant problem in planning [9].

Fully Observable models in which Ω = S and O(z, a, s′) = 1 iff z = s′. This class
is exactly the classic fully observable MDPs where only the initial state is unknown.

Non-unobservable models in which |Ω| > 1. This class is exactly the complement of
unobservable problems. Among this class of problems, we distinguish:
Enough-observable models in which Ω = S. This class regroups all the linear

but noisy observation problems where the state itself is perceived but with an
additive noise. This class regroups for example all control problems where the
state is perceived through noisy sensors.

Factored-observable models in which |Ω| = |X | × |DX|. Where X is the set of
state variables andDX is the domain of variable X. The state space is then given
by S = ×X∈X DX. This class is similar to the previous one using additive
noise but restrain the number of observations along the “dimensions” of the
state space. Indeed, as the state space is assumed structured, the agent can
use this structure to learn about at least one dimension at each time step. The
previous class of models is a restriction of this class with only one dimension.

General models which includes previous cases, does not assume anything on the ob-
servation function.
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As the fully observable, the unobservable and the general cases were extensively stud-
ied in the literature [3,2], we will not consider them in the remaining of the paper.
However, the enough-observable and the factored-observable cases present an interest-
ing avenue since many of the quasi-deterministic problems mentioned earlier are very
often factored or at least enough-observable. We will show in the next section that these
problems actually are easier than the general problems by bounding the history needed
to identify almost surely the underlying state.

4 QDET-POMDP Theoretical Analysis

In this section, a lower bound on the number of steps to ensure convergence to a certain
belief is given and induced complexity results are explained.

As mentioned earlier in the paper, a way to represent compactly the full history of
observations during the planning process is the belief state [10]. This is a probability
distribution over the states that represents the belief of the agent to be in each state
through probabilities. We denote by bt(s) = Pr(s|zt, at, bt−1) the probability of being
in state s at step t given that observation zt was perceived and action at was performed
in the belief state bt−1. This probability is computed using Bayes’ rule:

bt(s) =
O(zt, at, s)

∑
s′∈S T (s′, at, s)bt−1(s′)∑

s′′∈S O(zt, at, s′′)
∑

s′∈S T (s′, at, s′′)bt−1(s′)
(1)

Using a matrix representation, Equation (1) can be rewritten:

bk(s) =
DkTak · · ·D1Ta1b0

��DkTak · · ·D1Ta1b0 (2)

Where b0 is the initial belief, Tat are transition matrices according to action at, Di are
diagonal matrices with the terms on the diagonal corresponding to the probability to
observe zi given each state, and � a |S|-dimensional vector of ones.

In order to show the convergence of the belief state to a single state with high
probability, let us first state that this probability depends on the number n of suc-
ceeded observations among k steps in a non-unobservable context. Nevertheless, non-
unobservability is not a sufficient condition to ensure this convergence. Let us now
study how n varies regarding to the proposed variants on the observability.

4.1 Enough-Observable Models

Enough-observable models ensure that there is only one most likely observation (MLO)
in each state and that each state’s MLO is not the MLO of any other state:

Definition 3. An enough-observable QDET-POMDP is a QDET-POMDP where follow-
ing assumption holds:

∃o1 ∈ Ω, ∀a ∈ A, ∀s ∈ So1 ,

So1 = {s ∈ S, o1 ∈ Ω|P (o1|s, a) > P (o|s, a), ∀o �= o1},
|Ω| = |S| and |So1 | = 1
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Here, So1 is the set of states where o1 is the MLO.
Considering this definition, one can state our first main result:

Theorem 1. Under the enough-observability assumption, bk(s) ≥ 1− ε iff

n ≥ 1
2 ln νθ

(1−θ)

ln
[
1− ε
ε

(
1 + ν1− k

2

)]
+
k

2
(3)

Where ν = maxs,a

∑
z∈Ω I(θ > O(z, a, s) > 0) < |Ω| the maximum number of

“bad” observations that can be perceived in a state.

Proof (Sketch). In the worst case, the probability of observing the real underlying state
is always minimal and equals to θ at each step. Moreover, if the failed observations
obtained always support the second most likely state, it results in an increasing of the
probability to potentially be in this state. According to Equation (2) and using deter-
minism of transitions, which induces that transition matrices are permutation matrices,
one must show that:

θn (1−θ)p

νp

θn (1−θ)p

νp + θp (1−θ)n

νn + (ν − 1) (1−θ)k

νk

≥ 1− ε (4)

Where n is the number of successful observations of the real underlying state and p =
k− n the number of failures. The numerator is obtained by obtaining n times a “good”
observation and p times a “bad” one during the execution. The denominator sum over
all states the same sequence of observation where the first term if for the most likely
state, the second term for the second most likely state and the third term for the rest of
possible states according to the number of “bad” observations ν. We assume here that
the probability to get a “bad” observation is uniform. This assumption is justified by the
maximum-entropy principle which states that according to the current knowledge, the
highest entropy distribution – the uniform in our case – is the best one. Solving1 this
inequality leads to Equation (3).  !

Roughly speaking, ν represents also the way the error spreads over the false states.

4.2 Factored Models

In a more general way than enough-observable models, factored-observable models
ensure that each value of each variable is sufficiently often observed so that the factored
state can de determined in a finite number of steps:

Definition 4. A factored-observable QDET-POMDP is a QDET-POMDP where following
assumption holds:

– The state space is factored in µ state variables: S =×X∈X DX and observations
possible are Ω =

⋃
X∈X DX.

– The sum of probabilities of observing one state’s variables’ real values is lower
bounded by θ > 1

2 .

1 An extensive derivation of the equations is given in Appendix A.
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This definition implies that, in the worst case, for each state variable, there is a proba-
bility θ

µ to observe its real value and a probability 1−θ
|Ω|−µ to observe anything else. Note

also that this definition is a generalization of Definition 3 which is the case µ = 1. This
statement leads to the following theorem:

Theorem 2. Under the factored-observability assumption, bk(s) ≥ 1− ε iff

n ≥ 1

2 ln (|Ω|−µ)θ
µ(1−θ)

ln
[
1− ε
ε

(1 + |S| − µ)
]

+
k

2
(5)

Proof (Sketch). The proof follows exactly the same arguments as in Theorem 1.  !
Once the number n of most likely observation is lower bounded, finding the probability
to achieve at least this number is simply an application of the binomial distribution to
have at least n successes on k trials:

Corollary 1. In any QDET-POMDP and under Theorem 1 or Theorem 2 assumptions,
the probability that a belief state bk(s) is ε-deterministic after k steps is:

∃s,Pr(bk(s) ≥ 1− ε) =
k∑

i=n

(
k
i

)
θi(1 − θ)k−i (6)

Table 1. Enough-Observable bound

θ ν k n ≥
0.6 3 75 40
0.6 10 59 31
0.6 100 50 26
0.7 3 22 13
0.7 10 19 11
0.7 100 14 8
0.8 3 9 6
0.8 10 6 4
0.8 100 6 4

Table 2. Factored-observable bound

θ µ |D| |S| k n ≥
0.6 2 10 100 84 44
0.6 3 5 125 98 52
0.6 6 10 106 112 60
0.7 2 10 100 30 17
0.7 3 5 125 33 19
0.7 6 10 106 39 23
0.8 2 10 100 13 8
0.8 3 5 125 16 10
0.8 6 10 106 20 13

4.3 Experimentations

To give an idea of the efficiency of the proposed PAC bound, we define δ > 0 such
that Pr(bK(s) ≥ 1 − ε) ≥ 1 − δ. Table 1 and 2 give, for ε = 10−3, δ = 10−1 and
different values of θ, ν, µ and the domains’ size of variables, the value of the bound
on the horizon k and the number of successes needed n given that the probability of
having both is above 1 − δ. As expected, horizons needed to converge are greater in
the factored case than in the enough-observable case for similar state and observation
spaces since the agent, at each time step, get less information about the current state.
Actually, observations discriminate among subsets of states but not among states them-
selves like in the previous case. However, as the number of observations is much less
than the previous case, current algorithms may have much less difficulty in this type
of problems. An empirical study of their difference should be interesting as a research
avenue. Let us now derive the worst case complexity from these bounds.
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4.4 Impact on Complexity

A major implication of Theorems 1 and 2 is the reduction of the complexity of general
POMDPs problems when a QDET-POMDP is encountered. Indeed, [11] have shown that
finite-horizon POMDPs are PSPACE-complete. However, fixing the horizon T to be con-
stant, causes to complexity to fall down many steps in the polynomial hierarchy [12].
In the case of constant horizon POMDP, one can state:

Proposition 1. Finding a policy for a finite-horizon-k POMDP, that leads to an expected
reward at least C is ΣP

2k−1.

Proof. To show that the problem is in ΣP
2k−1, the following algorithm using a ΣP

2k−2

oracle can be used: guess a policy for k − 1 steps with the oracle and then verify that
this policy leads to an expected reward at least C in polynomial time by verifying the
|Ω|k possible histories, since k is a constant.  !

As QDET-POMDPs are a subclass of POMDPs and since fixing δ induces a constant
horizon under Theorem 1 or Theorem 2 assumptions:

Corollary 2. Finding a policy for a QDET-POMDP, under Theorem 1 or 2 assumptions,
that leads to an expected reward at least C with probability 1− δ, is ΣP

2k−1.

Practically, finding a probably approximatively correct ε-optimal policy for a QDET-
POMDP thus implies using a k-QMDP algorithm that computes exactly k exact backups
of a POMDP and that then uses the policy of the underlying MDP for the remaining steps
(eventually infinite).

5 Conclusion and Future Work

To summarize, we proposed in this paper an extension of the DET-POMDP framework
to stochastic observability, called QDET-POMDP, that bridges a part of the gap between
DET-POMDPs and general POMDPs. A study of their convergence properties leads to
a significant improvement in terms of computational complexity. A sketch of an algo-
rithm is also proposed, opening the avenue of multiple applications. As future work,
many avenues can be explored. First, efficient and specific algorithms could be devel-
oped that exploit the determinism of transitions and error bounds can be found using
the presented bounds on the horizon. Second, an extension to the multiagent case can
also lead to major improvements in terms of complexity. Finally, adding some white
noise on the transition may help to find more general but still tractable models.
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Appendix A

Proof (Proof of Theorem 1)

θn (1−θ)p

νp

θn (1−θ)p

νp + θp (1−θ)n

νn + (ν − 1) (1−θ)k

νk

≥ 1− ε

⇔ νnθn(1− θ)p

νnθn(1 − θ)p + νpθp(1 − θ)n + (ν − 1)(1− θ)k
≥ 1− ε

⇔ νpθp(1− θ)n

νnθn(1 − θ)p
+

(ν − 1)(1− θ)k

νnθn(1− θ)p
≤ 1

1− ε − 1

⇔ νk−2nθk−2n(1− θ)2n−k + (ν − 1)
θ−nν−n

(1− θ)−n
≤ ε

1− ε

⇔ νk−2nθk−2n

(1 − θ)k−2n

[
1 + (ν − 1)

ν−pθ−p

(1− θ)−p

]
≤ ε

1− ε

⇔ (k − 2n) ln
νθ

(1− θ) + ln
[
1 + (ν − 1)

ν−pθ−p

(1 − θ)−p

]
≤ ln

ε

1− ε

⇔ (k − 2n) ln
νθ

(1− θ) ≤ ln
ε

1− ε − ln
[
1 + (ν − 1)

(1− θ)p

νpθp

]
⇔ (2n− k) ln

νθ

(1− θ) ≥ ln
1− ε
ε

+ ln
[
1 + (ν − 1)

(1− θ)p

νpθp

]
⇔ (2n− k) ≥

ln 1−ε
ε

ln νθ
(1−θ)

+
1

ln νθ
(1−θ)

ln
[
1 + (ν − 1)

(1− θ)p

νpθp

]

⇔ n ≥
ln 1−ε

ε

2 ln νθ
(1−θ)

+
1

2 ln νθ
(1−θ)

ln
[
1 + (ν − 1)

(1− θ)p

νpθp

]
+
k

2
(7)

but since 2 ≤ ν ≤ |S| − 1, n > k
2 and 1−θ

θ < 1,

ln
[
1 +

|S| − 2
νk−n

(1 − θ)k−n

θk−n

]
≤ ln

[
1 +

|S| − 2

ν
k
2

(
1− θ
θ

) k
2
]

≤ ln
[
1 + ν1− k

2

]
From which, ensuring Eqn. (3) also ensures Eqn. (7),
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Abstract. To classify large-scale text corpora, an incremental learning method 
for hierarchical text classification is proposed. Based on the deep analysis of 
virtual classification tree based hierarchical text classification, combining the 
two application models of single document adjustment after classification and 
new sample set learning, a dynamic online learning algorithm and a sample set 
incremental learning algorithm are put forward. By amending classifiers and 
updating the feature space, the algorithms improve the current classification 
models. Hierarchical text classification experiments on Newsgroup datasets 
show that the algorithms can enhance the classification accuracy effectively and 
reduce the storage space and the learning time cost of the history sample  
datasets.  

Keywords: machine learning, incremental learning, hierarchical text classifica-
tion, text mining. 

1   Introduction 

Text classification is the automatic assignment of a category label to a text document. 
Classification, a widely used means to organize a large number of text information, is 
able to position the information in an accurate and effective way and makes informa-
tion browsing and searching handily. A number of classification methods have been 
applied to text classification, including nearest neighbor classification, neural net-
works, derived probability classification, Boosting and SVM (Support Vector Ma-
chine, SVM), etc. [1]. Using the hierarchical relationships among categories and 
combining with divide-and-conquer thinking, the hierarchical classification decom-
poses large-scale classification problems. The hierarchical classification, non-linear, 
data skew and tagging bottleneck are the key questions in current text classification 
field [2]. Because of the advantages of maintaining accuracy, reducing history data 
storage space and significantly decreasing the data learning time, the incremental 
learning method has become the key technology in the intelligent information discov-
ery when dealing with the rapid updating digital text information. 

Incremental learning methods are generally applicable for the case involving very 
large amounts of data or the ever-changing data, such as the log data and the intelli-
gence data. Decision tree and neural network are the mostly used algorithms for the 
realization of the existing incremental learning methods [3], [4], [5]. These realiza-
tions have some problems to certain degrees in practice: the lack of anticipant risk 
control to the entire sample set causes over fitting; the lack of selective oblivion and 
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elimination mechanism for the training data affects the classification accuracy to a 
large extent. The related research has been addressing by many researchers [6], [7], 
[8], and [9]. However, most of the methods above do not involve the hierarchical 
structure and most of them apply to the small support vector set or need to select 
many parameters values of which are uncertain [10]. Thus follow-up classification 
results are affected. It is better to adjust the hierarchical structure among categories 
than those methods mentioned above; the hierarchical classification will receive 
wilder applications. However, due to the difference between the hierarchical classifi-
cation approach and traditional single-level one, the incremental learning methods 
requires re-design in accordance with the characteristics of the categories. Study of 
the incremental learning method for the hierarchical classification is relatively little 
by now.  

On the base of hierarchical text classification approach and incremental learning 
algorithms available, dynamic online learning and batch incremental learning algo-
rithms for hierarchical text classification are proposed for two application schemas of 
single document adjustment after classification and new sample set learning. The 
experiment indicates that the algorithm is effective in enhancing the classification 
accuracy and reduces the learning time cost on the history sample datasets. 

2   Virtual Classification Tree 

In the learning process of text classification the potential associations existing be-
tween documents and categories are extracted from training data collection by the 
probability statistics or machine learning algorithm, and the classification model is 
generated for the follow-up classification process. The classification tree [12], [15] 
and the directed acyclic graph (including Yahoo! and Open Directory Project, etc.) 
are two basic forms of categories applied in proposed hierarchical text classification 
approaches [11], [12], [13], [14], [15], [16]. In the former form the categories of 
documents is structured as a tree and categories is top-down determined level by  
level in the classification process; In the latter form nodes in the directed acyclic 
graph is travel searched based on graphic theory and method of directed acyclic graph 
for the determination of document classifications. A virtual class tree, proposed by  
S. Dumais and H. Chen [12], is used in this paper to represent the classification 
model, the leaf-nodes of which express categories. 

Definition 1. VCTree is defined as ( ,{ },{ },{( , )})root inner class
ij k f sN N N N N . 

 rootN is the ancestor of all nodes, namely, a virtual category aggregated by all 
categories; 

 inner
ijN is the jst virtual category at the depth of i in the VCTree, represented as 

the all non-leaf nodes except the root node;
 

 class
kN is the kst actual category, represented as the leaf nodes in VCTree; 

 ( , )f sN N is the father-son relationship between nodes, represented as the 

branches in VCTree. { } { }root inner
f ijN N N∈ ∪ , { } { }inner class

f ij kN N N∈ ∪ . 
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An instance of VCTree is shown in Fig.2. There are three types of nodes: 
 

 Root node: Newsgroup represents virtual categories of all the documents;  
 Inside nodes: {alt, comp, rec, talk, sci} is virtual category set; 
 Category nodes: {atheism, graphics, windows, autos, motorcycles, politics, 

religion, crypt, electronics, med, space} is actual category set to which the 
documents are to be assigned. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 1. The structure of virtual category tree    Fig. 2. Sample of two level virtual category tree 

3   Incremental Learning for Hierarchical Text Classification 

In the running process of the text classification systems, the semantic center of the 
non-categorized document set changes with the passage of time and the creation 
number of samples compared with the original training document set, but the classifi-
cation model remains, thus the accuracy of the classification is reduced. One solution 
is to re-learn the classification model. While it is difficult to construct a large-scale 
sample set and keep the forward compatibility of the classification model at the same 
time. Besides large time overhead, the effect is not very satisfactory. 

Incremental learning is able to modify the classification model through a continu-
ous addition of new sample set in the using of the text classification system, so as the 
accuracy of classification is achieved. 

Though an analysis of the application environment of the incremental learning in 
practice, we have found that two situations are suitable for the incremental learning 
algorithm:  

1) Incremental learning for one single document: class modification occurs in 
single document. When document cd  is categorized into class class

mN by a mis-

take, domain experts will modify the class as class
nN , thus an incremental 

learning behavior is arose.  
2) Incremental learning for document set: New learning sample set is brought in. 

History learning sample set has a corresponding classification model VCtree. 
New arrived learning sample set needs a new classifier VCTree* built on the 
base of VCtree, which resulting in the incremental learning behavior. 

Newsgroup

alt comp scitalkrec

rootN

,
inner
i jN

…

…
class
kN

, 1
inner
i jN +
…

1
class
kN +
…
…

…
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3.1   Dynamic Online Learning 

Because the accuracy of the current text classification system could not be guaranteed 
completely, the domain experts will usually modify the mistaken documents after the 
automatic classification by the system. The modified result is hoped to work as a learn-
ing sample for the performance improvement of the current system. According to SVM 
classification theory, most of these modified documents are usually at the position near 
by the hyper-plane. If those documents could be learning as samples and corresponding 
feature set as the support vectors of the classification model, a slight moving of the 
SVM classification model will generated by the modification of those documents. 

An effect of one single modified document on the classification model is revealed in 
Figure 3. In the linearly separable space, h 
expresses the hyper-plane of the classifica-
tion model, document M was categorized 
into a category below h, the experts then 
adjusted M to the category above h. If M is 
learned as a sample, hyper-plane h will 
move to h ', thus causing changes in the 
classification model. If M is used as a test 
samples, it will be categorized into the 
category above h next time. Consequently 
classification result will be more accurate. 

Fig. 3. Moving of SVM hyper-plane 

An adjustment for one document category corresponds an adjusting of the node clas-
sification path on VCTree, which means to transfer one document from one leaf node to 
another at other branches. History sample set is signed as trainD , the modified document 

is signed as cd ( c traind D∉ ), class
mN and class

nN are two leaf nodes with which trainD is corre-

sponds in VCTree. cd is adjusted from the category of class
mN to that of class

nN and the 

binary classifier are re-trained. VCTree* is updated according to algorithm 1. 

Definition 2. Class path sequence is expressed as the virtual category list of the direct 
ancestor nodes of one category in VCTree in order of a top-down sequence. The class 
path sequence of class

tN  is: 

1( ) , ,..., ,class root class
t i mi tPath N N N N N=< >  

{ }inner
ijN N∈ ; m is the depth of the father node of class

tN  in VCTree. 
 

Definition 3. Correct (Wrong) sub-path sequence Tpath ( Fpath ) is the path composed 
by the nodes in the correct (wrong) class path of the document without existing in the 
wrong (correct) class path. They can be expressed as: 
 
 

( , ) ( ) ( ( ) ( ))class class class
n m nTpath m n Path N Path N Path N= − ∩  

( , ) ( ) ( ( ) ( ))class class class
m m nFpath m n Path N Path N Path N= − ∩  

( )class
nPath N is the correct class path, ( )class

mPath N is the wrong class path. 
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Definition 4. Path node function ( )first path  is defined as the calculation of the first 
node return of the path. 
 

Algorithm 1. Single Document Adjustment Incremental Learning 
Input: VCTree, document cd , source class node class

mN  and target node class
nN . 

Output: VCTree*. 
Step 1. Depth-first search of VCTree according to class

mN  and class
nN  respectively 

in order to determine class path sequences ( )class
mPath N  and ( )class

nPath N ; 

Step 2. Define variable ( , )tpath Tpath n m= , ( , )fpath Fpath m n= ; 
Step 3. If tpath fpath≠<> ≠<>∩ , implement following steps in a loop: 

a) If tpath ≠<> , add cd  as a positive sample into support vector set and re-

train the binary classifier with which the first node corresponds, 
( , ) ( ( , ))tpath Tpath n m first Tpath n m= − ; 

b) If tpath ≠<> , add cd  as a negative sample into support vector set and re-

train the binary classifier with which the first node corresponds, 
( , ) ( ( , ))fpath Fpath m n first Fpath m n= − ; 

Step 4.  Output VCTree*, the one built after the update of the node classifier. 

 
The re-train process to 

class
nN  corresponding binary classifier is to change the rela-

tive support vector coefficient so as for the original support vectors to meet the KKT 
constraint condition. The differential equation for KKT is expressed as: 

   , { }
j

i ic i ij j i i
d S

L Q Q y b d S cα α
∈

∆ = ∆ + ∆ + ∆ ∀ ∈∑ ∪                                      (1) 

              0
j

c c j j
d sv

y yα α
∈+

∆ + ∆ =∑                                                                 (2) 

S is the history sample set, C is newly added sample vector, cα  is the coefficient with 

the initial value of 0. +sv is the boundary support vector. When the non-boundary 
support vector for the history sample vectors 1 2( , ,..., )msv v v v− =  and 0iL ≡ , differential 

equation (1) can be expressed as a matrix: 

1

1 11 1 1 1

1

0
m

m

m mm m m m

v v c

v v cv v v v v
c

v v cv v v v v

y y b y

Qy Q Q

Qy Q Q

α
α

α

⎡ ⎤ ∆⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − ∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

…

…

…

                                   (3) 

 

Let Q be the (m +1)-order symmetric non-positive definite Jacobian matrix of the left 
side of the equation. For the balance keeping, let:  

, ,c j j c jb d svβ α α β α∆ = ∆ ∆ = ∆ ∈−                                                    (4) 
 

, iβ β  are the coefficient sensitivity. For jd sv∉−  there is 0jβ ≡ . Equation (2) can be 

transferred as: 



252 S. Song, X. Qiao, and P. Chen 

1 11

m m

c

v v c

v v c

y

Q
Q

Q

β
β

β

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                                             (5) 

 

Bringing equation (4) in to equation (1), following equation is got: 
 

{ }i i c iL g d S cα∆ = ∆ ∀ ∈ ∪                                                         (6) 
 

ig is the boundary sensitivity, which can be expressed as: 

j

i ic ij j i i
d sv

g Q Q y d svβ β
∈+

= + + ∀ ∉+∑                                             (7) 

For i sv∈− , 0iL ≡ , so 0ig ≡ .Adding non-boundary support vector -sv into c, 1Q−  is 

updated as: 

1

1

0 0

0 1
1

0

0 0 0
1

m

m

v

v v
c

v

Q
Q

g

β
β

β β β
β

−

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡ ⎤= + ⋅ ⎣ ⎦⎢ ⎥ ⎢ ⎥
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⎣ ⎦
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…

                              (8) 

, ,c ig β β  can be obtained from equation (4) and (7). 

3.2   Batch Incremental Learning 

With the increasing number of documents, changes will happen to the semantic center 
of each category, which result a reduction in the accuracy of the classification system. 
Through a volume increase in learning samples, the category model could be adjusted 
to the semantic center of the samples; therefore the accuracy of the classification 
system can be maintained or even increased. 

During the incremental learning process, new document vector will occur in the 
documents feature vector set of the sample set, which is able to work as a support 
vector of the category model to impact the classification result. Therefore, the effect 
of the sample set incremental learning for single document cannot be revealed merely 
by means of adjusting the values of the support vectors. A newly re-built support 
vector set of the classification model and a change to the original vector space are 
needed in order to enhance the accuracy of the classification. Feature selection and 
hierarchical incremental learning are involved in sample set incremental learning. 

For incremental learning, a judgment that whether the KKT condition is satisfied is 
carried out to newly added sample set by the benefit of the original classification 
model. The sample meeting the KKT condition will not change the support vector set 
of the classifier, while the one contrary to the KKT conditions will change the set. 

( )f x  is the SVM classification decision function, newly added sample ( , )j c cd x y= , 

,c cx y  are the hyper-plane coordinates of cd . Classification interval is [-1, 1]. Classifi-

cation hyper-plane is ( ) 0f x = . Samples that contrary to the KKT condition are di-
vided into three categories:  
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1)  Samples are located in the classification interval and in the same side of the 
classification interval with their categories. These samples are correctly cate-
gorized by the original classifier, and satisfied 0 , ( ) 1;c cy f x≤ <  

2)  Samples are located in the classification interval and in the other side of the 
classification interval with their categories. These samples are not correctly 
categorized by the original classifier, and satisfied 1 , ( ) 0;c cy f x− ≤ <  

3)  Samples are located out of the classification interval and in the other side of 
the classification interval with their categories. These samples are not correctly 
categorized by the original classifier, and satisfied ( ) 1c cy f x < − . 

Considering the fact that samples which satisfied the KKT condition could be cor-
rectly categorized, a neglect of the impact of these samples on the classification 
model is adopted in this paper. Samples that violate the KKT condition and could 
result in classification errors are used for the incremental learning. In this way, the 
number of samples is effectively reduced and the incremental learning is accelerated. 

One important factor that impacts the accuracy of the classification system during 
its running process is the inaccurateness of the support vector set of the classification 
model. Based on the support vector set of the classification model, incremental fea-
ture selection is the increment of high weight support vectors and the elimination of 
part of the low weight support vectors in order to form a new support vector set.  

Feature words selection is an important factor which affects the accuracy of text 
classification. Especially in the incremental learning environment, with the continu-
ously addition of documents, changes will happen in feature space set and weights, 
while sample data of the original feature space cannot be added in for calculation. So 
before the incremental learning, an incremental feature selection is necessary to adjust 
the effect of the feature space on the incremental learning.  

Definition 5. Term word FW is defined as a five- dimension array ( , , , , )ID TX TF DF WT : 
 

 ;TX Dict∈ Dict is the word item set in the dictionary;  
 ( ) ;ID Dict TX= ∈ ( )Dict TX  is the identifier of TX in the dictionary; 

 1 2( , ,..., ), | | ;class
jj i

K i dd N
TF tf tf tf tf TX

∈
= =∑ TF is the frequency of word TX in 

every category training document set, namely the frequency in which the 
word TX  occurs in document set; K is the number of the actual categories;  

 1 2( , ,..., ), |{ | }|;class
K i j j i jDF df df df df d d N TX d= = ∈ ∈∩ DF is the frequency of 

documents in each category in which the word TX is exist, namely, the num-
ber of documents the feature words of which have word TX; 

 ( );WT Dictf TX= ( )Dictf TX  is the frequency factor of the word TX in the 
document. 

Definition 6. Feature space spaceF  is defined as the set of the key feature words; the 

key feature words are selected
 
from the training document set by the weight calcula-

tion through information gain or mutual information approach. 

Definition 7. Feature word set of document jd
 

 {( , ) | . , . log(| | . ); : }jd train
i i i j i i i iS fw v fw tx d v fw tf D fw df fw FW= ∈ = ⋅ , iv  is the weight of the feature 

word ifw  in document jd
 
through the calculation of tf idf⋅ . 
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Definition 8. Feature word set of sample set D { | }jdD
iS S d D= ∈ . 

 
Algorithm 2. Document Feature Incremental Selection 

 

Input: Feature space 
spaceF  and fresh sample set 

newD  

Output: Updated feature space 
*

spaceF  
Step 1. Execute hierarchical HMM-based Chinese word segmentation and  

dimensionality reduction to all the samples in fresh sample set newD , obtain the new 

feature word set newDS  of newD ; 

Step 2. For each new
jd D∈ , define document count sign df false∆ = : 

For each ( ) jd
i ifw ,c S∈ : 

 If there is t spacefw F∈ and . .t ifw id fw id=  is satisfied, then .tfw tf  += ic ; 

. 1t dffw df if false+ = ∆ = ; 

 Else, define new feature word . , . ,1,1, .new t t tfw fw id fw tx fw wt=< > ; 

{ }space space newF F f= ∪ . 

Step 3. For each feature word in spaceF , calculate the weight by the feature selec-

tion algorithm; re-select features to get new feature space *
spaceF . 

 
Fresh sample set has been addressed by incremental feature selection to form a new 

feature space. Weights of the feature words in original feature space need a second 
calculation to adjust the new feature space. Fresh sample set incremental learning is 
described in Algorithm 3. 

Definition 9. Feature space mapping function is defined as: 
 

      
* * * * *( , ) { . . : . . , . . }

spacet space t t t t t t tfw F fw F fw id fw id fw tf fw tf fw df fw dfΦ ∈ ∈ = = + = + =
    

(9) 
 

In the above function, key feature word set in original feature space is united with the 
fresh one. Feature words are selected or eliminated according to the value of weight. 
The weight of remaining feature words is the summation of the history weight and 
new one. 
 
Algorithm 3. Fresh Sample-Set Incremental Learning 

Input: VCTree, fresh sample set newD  
Output: VCTree* , the updated VCTree 
Step 1. Update the feature word space according to newD  by incremental feature 

selection algorithm; 
Step 2. Introduce feature space mapping function *: space spaceF FΦ → , re-calculate 

weights of feature words in feature space spaceF  of VCTree using tf idf⋅ and map them 

to new feature space *
spaceF ; 
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Step 3. Top-down update each classifier of each node in VCTree according to the 
result of re-calculation to feature word id and wt; 

Step 4. Generate *VCTree  based on *
spaceF . 

 
By the second feature selection, fresh sample set incremental learning algorithm 

has the ability to combine history samples with fresh ones and re-build VCTree. Per-
formance of the hierarchical text classification is guaranteed. Furthermore, sample set 
incremental learning algorithm saves the storage space and speed up training to classi-
fiers by the benefit of non-keeping of history sample set as while as reduction of time 
overhead for repeat learning. 

4   Experiment and Result Analysis 

4.1   Experiments Setup  

Newsgroup20 is used as the data set in the following experiment. The category struc-
ture is revealed in figure 2. Preprocess is completed including text extraction, which is 
done by semantic structure-based web page text extraction tool developed by the text 
processing research group of Software Engineering Institute of Xidian University, and 
Chinese word segmentation, which is done by Chinese word segmentation system 
ICTCLAS developed by Computing Technology Institute of Chinese Scientific Re-
search Institute. SVM has been proved to be an effective way for text classification 
[18], [19]. Dumais and Chen have proved the good performance of SVM in classifica-
tion tree structures [12]. SVMlight classifier [20], developed by Joachims is inte-
grated in the system.  

Throughout the experiments, information gain is used for feature selection. We use 
TF·IDF to compute the feature’s weight. The size of feature space is 1000, which 
means we choose 1000 features globally. Linear kernel functions are chosen for 
SVMs, in which the penalty parameter C=1. The precision rate, recall rate and F1 
value are used to evaluate the classification result.  

4.2   Experiments Results  

Experiment 1. Incremental learning after single document adjustment. According to 
the structure revealed in figure 2, 300 documents were selected as the training sample 
set for each category in Newsgroup, while another 700 documents as the test sample 
set for each category. After the classification process, documents {53150, 53152, 
53153, 53155, 53156}, which were wrongly classified into talk.religion, are dragged 
into the correct category alt.atheism through the GUI operation. This behavior trig-
gered the single document adjustment incremental learning for five times, followed 
by re-classification for the same test sample set. A comparison for the two classifica-
tion result is revealed in table 1. 
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Table 1.  Results of dynamic online learning of single document adjustment 
 

Documents Before adjustment(%) After adjustment(%)  Category 
 Train Test 

 

Recall Precision F1 Recall Precision F1  

 alt.atheism 300 700  68.6 94.3 79.4 68.9 94.1 79.6  
 comp.graphics 300 700  95.4 97.5 96.5 95.4 97.5 96.5  
 comp.windows 300 700  97.6 95.3 96.4 97.6 95.3 96.4  
 rec.autos 300 700  97.9 98.8 98.3 97.9 98.8 98.3  
 rec.motorcycles 300 700  99.4 99.0 99.2 99.4 99.0 99.2  
 sci.crypt 300 700  98.6 98.6 98.6 98.6 98.6 98.6  
 sci.electronics 300 700  97.6 97.9 97.7 97.6 97.9 97.7  
 sci.med 300 700  98.4 98.4 98.4 98.4 98.7 98.6  
 sci.space 300 700  98.1 98.7 98.4 98.1 98.7 98.4  
 talk.politics 300 700  83.3 95.7 89.1 83.3 95.7 89.1  
 talk.religion 300 700  94.6 66.9 78.3 94.6 67.0 78.4  
 ALL 3300 7700  93.6 94.6 93.6 93.6 94.7 93.7  

 

Table 2. Results of fresh sample set incremental learning 

First (200+)(%) Second (200+)(%) Category 
 

 

Recall Precision F1 Recall Precision F1 
alt.atheism  74.7 91.8 82.4 78.6 90.6 84.2 

comp.graphics  96.7 97.1 96.9 97.7 97.4 97.6 
comp.windows  97.1 96.9 97.0 98.0 97.9 97.9 

rec.autos  99.3 98.0 98.7 99.7 99.1 99.4 
rec.motorcycle  99.3 99.7 99.5 100 100 100 

sci.crypt  99.3 98.4 98.9 99.6 98.9 99.2 
sci.electronics  98.0 99.3 98.6 98.1 99.9 99.0 

sci.med  98.6 98.4 98.5 99.4 98.0 98.7 
sci.space  98.1 98.6 98.4 99.4 99.0 99.2 

talk.politics  86.9 94.6 90.5 88.6 95.2 91.8 
talk.religion  89.4 70.7 79.0 87.4 73.9 80.1 

ALL  94.3 94.9 94.4 95.1 95.5 95.2 
 

 
Fig. 4. Comparison between two steps of sample dataset incremental learning 
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Table 1 shows that the classification model has been improved by the effort of the 
dynamic single document adjustment, and the recall rate, the precise rate and the F1 
value of the classification have been elevated slightly. 

Experiment 2. Sample set incremental learning. Based on the experiment 1, the in-
cremental learning method is validated by the two-step incremental learning. The first 
step of the this validation is to add 200 documents to the original training set which 
contained 300 documents of each category, and then the re-classification is carried 
out. The second step is similar to the first step, except for the augment of the newly 
200 training documents to 500 ones. Results of these two classifications after the 
incremental learning is shown in table 2. Data in this table indicates that the F1 value 
was increased from 93.6% to 94.4% after the first step learning, and the F1 value was 
increased from 94.4% to 95.2% after the second step. Performance of the before and 
after incremental learning tests is given in figure 4. To some degree, the precision rate 
and recall rate of other categories are enhanced. 

4.3   Results Analysis 

Results from Experiment 1 and Experiment 2 indicate that single document or fresh 
sample set incremental learning will impact the performance of the hierarchical classi-
fication in a positive way. Single document incremental learning will make the hyper-
plane of SVM binary classifier move slightly. In the following classification, the 
document that has the similar semantic center with the learned single document will 
be correctly categorized, thus improvement on the classifier is completed. The feature 
re-selection in fresh sample set is to make the history samples a representation by the 
feature item index in classifiers and a compare with the feature representation of the 
fresh sample set. By the re-selection and elimination of feature items, the classifica-
tion feature space will be more accurate. The classification accuracy will be guaran-
teed without a re-learning of history samples. 

Through the experiment for the first incremental learning, the time we need is 
34.4s (F1=94.4%). If we train all the dataset including history and fresh samples, the 
time consumed is 44.6s (F1=94.6%). For the second incremental learning experiment, 
the time cost can be decreased by 32.4%, that are 39.4s (F1=95.2%) and 58.3s 
(F1=95.4%) respectively. So, the incremental learning can reduce the time cost  
evidently. 

5   Conclusion 

The existing text classification approach is analyzed and the incremental learning 
method is designed in this paper. Elevating the classification performance, incre-
mental learning algorithm reduces the storage space for history samples and save the 
time for re-learning of historical samples. Experiment shows that the hierarchical 
classification approach and the incremental learning method could achieve the desired 
objective and meet the requirements in applications. In future work, the tolerant hier-
archical classification approach and the balance algorithm for VCTree would be main 
research directions. 
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Abstract. This paper is concerned with the global asymptotic stability

analysis problem for a class of stochastic neural networks with interval

discrete and distributed delays. The parameter uncertainties are assumed

to be norm bounded. Based on Lyapunov-Krasovskii stability theory and

the stochastic analysis tools, sufficient stability conditions are established

by using an efficient linear matrix inequality(LMI) approach. It is also

shown that the result in this paper cover some recently published works.

A numerical example is provided to demonstrate the usefulness of the

proposed criteria.

Keywords: Stochastic neural networks, Lyapunov functional, Linear

matrix inequality, asymptotic stability.

1 Introduction

In the past 20 years, neural networks have found fruitful applications in numerous
areas such as combinatorial optimization, signal processing, pattern recognition
and many other fields [12,13,20]. However, all successful applications are greatly
dependent on the dynamic behaviors of neural networks. As is well-known now,
stability is one of the main properties of neural networks, which is a crucial
feature in the design of neural networks. On the other hand, time-delays have
been known to exist naturally in neural processing and signal transmission, and
are frequently the sources of instability. Various types of time-delays have been
investigated, including constant or time-varying delays, discrete and distributed
delays, see for example [1,4,22], and the references therein. The corresponding
stability criteria can be classified as delayed-independent or delay-dependent
conditions, and the former is more conservative than the latter especially for
small size delays.

It is worth noting that in real nervous systems, the synaptic transmission is a
noisy process brought on by random fluctuations from the release of neurotrans-
mitters and other probabilistic causes. It has been revealed in [3] that a neural
network could be stabilized or destabilized by certain stochastic inputs. Con-
sequently, the stochastic stability analysis problem for various neural networks
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260 S. Zhu, Y. Shen, and G. Chen

has stirred increasing research interests, and relevant results have begun to be
published [5,7,8,10,11,18]. On the other hand, in hardware implementation of
neural networks, the network parameters of the neural system may be subjected
to some changes due to the tolerances of electronic components employed in the
design. Therefore, it is important to investigate the robust stability of neural
networks with parameter uncertainties.

It is known that both discrete and distributed delays should be taken into
account when modeling a realistic neural network [14-16,19,21]. Most of the ex-
isting results related to time-varying delay systems are based on the assumption
0 < d(t) ≤ h2, where d(t) is delay and h2 is a constant. However, in many prac-
tical systems, the typical delay may exist in an interval (0 < h1 ≤ d(t) ≤ h2 ),
Typical examples of systems with interval time-delaying delay are cellular neural
networks [8-10].

In this paper, we investigate the global asymptotic stability analysis prob-
lem for a class of uncertain stochastic neural networks with interval discrete
and distributed time-delays. The parameter uncertainties are norm-bounded.
Different from the commonly used matrix norm theories, a unified linear ma-
trix inequality(LMI) approach is developed to establish sufficient conditions for
neural networks to be globally, asymptotically stable. Note that LMIs can be
easily solved by using the Matlab LMI toolbox, and no tuning of parameters is
required [2,6]. An example is provided to show the usefulness of the proposed
global stability condition.

Notations: The notations are quite standard. Throughout this paper, | · | is
the Euclidean norm in Rn. λmax(A) (respectively, λmin(A) ) means the largest
(respectively, smallest) eigenvalue of A. Moreover, let (Ω,F , {Ft}t≥0, P ) be a
complete probability space with a filtration {Ft}t≥0 satisfying the usual con-
ditions (i.e. the filtration contains all p-null sets and is right continuous). The
shorthand diag{M1,M2, · · ·,Mn} denotes a block diagonal matrix with diagonal
blocks being the matrices M1,M2, · · ·,Mn. The notation � always denotes the
symmetric block in one symmetric matrix.

2 Problem Formulation

Consider the following stochastic neural networks with interval discrete and
distributed delays can be described by:

dx(t) =
[
− (A+∆A)x(t) + (W0 +∆W0)f(x(t)) + (W1 +∆W1)f(x(t− d(t)))

+(W2 +∆W2)
∫ t

t−τ

f(x(s))ds
]
dt+ σ(x(t), x(t − d(t)), t)dB(t) (1)

where x(t) = [x1(t), x2(t), · · ·, xn(t)]T is the neural state vector, the diagonal
matrix A = diag[a1, a2, · · ·, an] has positive entries ai > 0. W0,W1 and W2

are, respectively, the connection weight matrix, the discretely delayed connec-
tion weight matrix, and the distributively delayed connection weight matrix, and
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the matrices ∆A,∆W0, ∆W1, ∆W2 represent the time-varying parameter uncer-
tainties. f(x(t)) = [f1(x1(t)), f2(x2(t)), · · ·, fn(xn(t))]T is the neuron activation
functions vector with f(0) = 0, and d(t) denotes the discrete time-delay range in
interval h1 to h2. τ > 0 is the known distributed time-delay, which is less than
h2. σ(x(t), x(t − d(t)), t) is a matrix valued function, B(t) = [B1(t), B2(t), · ·
·, Bm(t)]T ∈ Rm is a Brownian motion defined on a complete probability space
(Ω,F , P ) with a natural filtration {Ft}t≥0. In following, we will use y(t) denotes
x(t− d(t)). In order to obtain our main results, the assumptions are always made
throughout this paper.

Assumption 1. The activation function f(·) is bounded, and satisfy the
following Lipschitz condition:

|f(x)| ≤ |Gx| ∀x ∈ Rn (2)

where G ∈ Rn×n is a known constant matrix.

Assumption 2. The time delay d(t) is a time-varying differentiable function
that satisfies

0 < h1 ≤ d(t) ≤ h2, ḋ(t) ≤ µ < 1, (3)

where h1, h2, µ are constants.
Assume that σ(x(t), y(t), t) is locally Lipschitz continuous and satisfies the

linear growth condition, and the matrices ∆A,∆W0, ∆W1, ∆W2 are of the fol-
lowing structure:

[∆A,∆W0, ∆W1, ∆W2] =MF [N1, N2, N3, N4] (4)

where A,Wi(i = 0, 1, 2),M,Nj(j = 1, 2, 3, 4) are known real constant matrices
with appropriate dimensions, and the uncertain matrix F , which may be time-
varying, is unknown and satisfies

FTF ≤ I (5)

Let x(t, ξ) denote the state trajectory of the neural network (1) from the initial
data x(θ) = ξ(θ) on −h2 ≤ θ ≤ 0 in L2

F0
([−h2, 0];Rn). It can be easily seen that

the system (1) admits a trivial solution x(t; 0) ≡ 0 corresponding to the initial
data ξ = 0.

Definition 1. For the neural network (1) and every ξ ∈ L2
F0

([−h2, 0];Rn), the
trivial solution is globally asymptotically stable in the mean square if for all
admissible uncertainties

lim
t→∞E|x(t, ξ)|

2 = 0 (6)
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3 Main Results and Proofs

The following lemma will be essential in establishing the desired LMI-based sta-
bility criteria.

Lemma 1. (i) Let x ∈ Rn, y ∈ Rn and ε > 0. Then we have 2xT y ≤ εxTx +
ε−1yT y.
(ii) For any constant matrix M ∈ Rn×n,M = MT > 0, a scalar ρ > 0, vector
function ω : [a, b] → Rn such that the integrations are well defined, the following
inequality holds:(∫ b

a

ω(s)ds

)T

M

∫ b

a

ω(s)ds ≤ (b− a)
∫ b

a

ωT (s)Mω(s)ds.

(iii) (Schur complement) Given constant matrices Ω1, Ω2, Ω3 where Ω1 = ΩT
1

and 0 < Ω2 = ΩT
2 , then Ω1 +ΩT

3 Ω
−1
2 Ω3 < 0 if and only if(

Ω1 Ω
T
3

Ω3 −Ω2

)
< 0, or

(
−Ω2 Ω3

ΩT
3 Ω1

)
< 0

Theorem 1. Assume that there exist matrices P > 0, D0 > 0 and D1 > 0 such
that

trace[σT (x(t), y(t), t)Pσ(x(t), y(t), t)] ≤ xT (t)D0x(t) + xT y(t)D1y(t) (7)

the uncertain stochastic neural network(1) is robustly, globally, asymptotically
stable in the mean square, if there exist positive definite matrices Q1, Q2, Q3, Z1,
Z2, and scalar εi(i = 1, · · ·, 7) > 0 such that the LMI holds

Π =
(
Π1 Π

T
2

Π2 Π3

)
< 0 (8)

where

Π1 = diag{Π11, Π22,−Q1,−Q2,−(h2 − h1)−1Z1}

ΠT
2 =

⎛⎜⎜⎜⎜⎝
PW0 PW1 PW2 PM PM PM PM

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎠
Π3 = diag{−ε1I,−ε2I,−ε3I,−ε4I,−ε5I,−ε6I,−ε7I}

Π11 = −PA−AP +
3∑

i=1

Qi + (h2 − h1)Z1 +D0 + ε1GTG+ ε3τ2GTG

+ε4NT
1 N1 + ε5λmax(NT

2 N2)GTG+ ε7τ2λmax(NT
4 N4)GTG

Π22 = (µ− 1)Q3 +D1 + ε2GTG+ ε6λmax(NT
3 N3)GTG
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Proof. To obtain the result, the Lyapunov functional of system (1) is defined
by

V (xt, t) = xT (t)Px(t) +
2∑

i=1

∫ t

t−hi

xT (s)Qix(s)ds+
∫ t

t−d(t)

xT (s)Q3x(s)ds

+
∫ −h1

−h2

∫ t

t+θ

xT (s)Z1x(s)dsdθ +
∫ 0

−τ

∫ t

t+θ

xT (s)Z2x(s)dsdθ (9)

By Itô’s formula, we can calculate along the trajectories of the system (1), we
have

L V = 2xT (t)P [−(A+∆A)x(t) + (W0 +∆W0)f(x(t)) + (W1 +∆W1)f(y(t))

+(W2 +∆W2)
∫ t

t−τ

f(x(s))ds] + trac[σT (x(t), y(t), t)Pσ(x(t), y(t), t)]

+xT (t)Q1x(t)− xT (t− h1)Q1x(t− h1) + xT (t)Q2x(t) − xT (t− h2)Q2

x(t− h2) + xT (t)Q3x(t) − (1− ḋ(t))yT (t)Q3y(t) + (h2 − h1)xT (t)Z1x(t)

−
∫ t−h1

t−h2

xT (s)Z1x(s)ds+ τxT (t)Z2x(t)ds−
∫ t

t−τ

xT (s)Z2x(s) (10)

Here we note that, for positive εi(i = 1 · ··, 7) it follows from Lemma 1 that

2xT (t)PW0f(x(t)) ≤ xT (t)(ε1GTG+ ε−1
1 PW0W

T
0 P )x(t) (11)

2xT (t)PW1f(y(t)) ≤ ε2yT (t)GTGy(t) + ε−1
2 x

T (t)PW1W
T
1 Px(t) (12)

2xT (t)PW2

∫ t

t−τ

f(x(s))ds

≤ ε3τ
∫ t

t−τ

xT (s)GTGx(s)ds+ ε−1
3 x

T (t)PW2W
T
2 Px(t) (13)

−2xT (t)P∆Ax(t) ≤ xT (t)(ε4NT
1 N1 + ε−1

4 PMM
TP )x(t) (14)

2xT (t)P∆W0f(x(t))≤xT (t)(ε5λmax(NT
2 N2)GTG+ε−1

5 PMM
TP )x(t) (15)

2xT (t)P∆W1f(y(t))
≤ ε6λmax(NT

3 N3)yT (t)GTGy(t) + ε−1
6 x

T (t)PMMTPx(t) (16)

2xT (t)P∆W2

∫ t

t−τ

f(x(s))ds

≤ ε7τλmax(NT
4 N4)

∫ t

t−τ

xT (s)GTGx(s)ds+ ε−1
7 x

T (t)PMMTPx(t) (17)

Using (7), (11)-(17), and let Z2 = (ε3τ + ε7τλmax(NT
4 N4))GTG, from (10) we

have

L V ≤ xT (t)
[
− 2PA+

3∑
i=1

Qi + (h2 − h1)Z1 +D0 + ε1GTG+ ε−1
1 PW0W

T
0 P

+ε−1
2 PW1W

T
1 P + ε3τ2GTG+ ε−1

3 PW2W
T
2 P + (ε−1

4 + ε−1
5 + ε−1

6 + ε−1
7 )
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PMMTP + ε4NT
1 N1 + ε5λmax(NT

2 N2)GTG+ ε7τ2λmax(NT
4 N4)GTG

]
x(t)

+yT (t)
[
(µ− 1)Q3 +D1 + ε2GTG+ ε6λmax(NT

3 N3)GTG

]
y(t)

−x(t− h1)Q1x(t − h1)− x(t − h2)Q2x(t− h2)

−(h2 − h1)−1

(∫ t−h1

t−h2

x(s)ds

)T

Z1

∫ t−h1

t−h2

x(s)ds (18)

Thus

L V ≤ ξT (t)Π∗ξ(t)

where

Π∗ = diag{Π∗
11, Π

∗
22,−Q1,−Q2,−(h2 − h1)−1Z1}

Π∗
11 = −PA−AP +

3∑
i=1

Qi + (h2 − h1)Z1 +D0 + ε1GTG+ ε−1
1 PW0W

T
0 P

+ε−1
2 PW1W

T
1 P + ε3τ2GTG+ ε−1

3 PW2W
T
2 P +

7∑
j=4

ε−1
j PMM

TP + ε4NT
1 N1

+ε5λmax(NT
2 N2)GTG+ ε7τ2λmax(NT

4 N4)GTG

Π∗
22 = (µ− 1)Q3 +D1 + ε2GTG+ ε6λmax(NT

3 N3)GTG

and ξT (t) =
[
xT (t) yT (t) xT (t− h1) xT (t− h2)

(∫ t−h1

t−h2
x(s)ds

)T
]

From the Schur Complement Lemma, it is easy to knowΠ∗ < 0 holds if and only
if Π < 0. Hence for ensuring negativity of L V for any possible state, it suffices
to require Π be a negative definite matrix. This implies that the system (1) is
globally, asymptotically stable in the mean square. The proof is completed.

If F = 0, that is to say there are no uncertainty in stochastic neural networks.
So Eq.(1) becomes:

dx(t) =
[
−Ax(t) +W0f(x(t)) +W1f(y(t)) +W2

∫ t

t−τ

f(x(s))ds
]

dt

+σ(x(t), y(t), t)dB(t) (19)

Then we have the following corollary

Corollary 1. Assume that there exist matrices P > 0, D0 > 0 and D1 > 0 such
that

trace[σT (x(t), y(t), t)Pσ(x(t), y(t), t)] ≤ xT (t)D0x(t) + yT (t))D1y(t)

the stochastic neural network (19) is globally, asymptotically stable in the mean
square, if there exist positive definite matrices Q1, Q2, Q3, Z1, Z2, and scalar
ε1, ε2, ε3 > 0 such that the LMI holds
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Ξ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ11 0 0 0 0 PW0 PW1 PW2

� Ξ22 0 0 0 0 0 0
� � −Q1 0 0 0 0 0
� � � −Q2 0 0 0 0
� � � � −(h2 − h1)−1Z1 0 0 0
� � � � � −ε1I 0 0
� � � � � � −ε2I 0
� � � � � � � −ε3I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0 (20)

where

Ξ11 = −PA−AP +
3∑

i=1

Qi + (h2 − h1)Z1 + ε1GTG+ ε3τ2GTG+D0

Ξ22 = (µ− 1)Q3 +D1 + ε2GTG

4 A Numerical Example

Consider a two-neuron stochastic neural network (1), where

A =
(

6.5 0

0 5.5

)
,W0 =

(
1.5 −1.6
−1.6 1.5

)
,W1 =

(
−0.5 0.5
0.5 0.5

)
,W2 =

(
1.2 0.3
0.3 0.9

)
,

D0 = D1 =
(

0.4 0
0 0.15

)
, P =

(
2 1
1 3

)
,M =

(
0.1 0.1
0 0.2

)
, N1 =

(
0.1 0
0 0.1

)
,

N2 =
(

0.3 0
0 0.2

)
, N3 =

(
0.1 0
0 0.2

)
, N4 =

(
0.1 0
0 0.3

)
, µ = 0.5, h1 = 0.02,

h2 = 0.52, τ = 0.2

f1(x) = f2(x) = 0.5(|x + 1| − |x − 1|). We assume that G = I, d1(t) = d2(t) =
0.5 sin2 t+0.02 and σ(x(t), x(t−d(t)), t) = [0.2x1(t)+0.2x1(t−d1(t)) 0.1x2(t)+
0.1x2(t−d2(t))]T . Solving the LMI in Theorem 1, the feasible solution is obtained
as

Q1 = Q2 =
(

2.7297 2.5443
2.5443 3.1904

)
, Q3 =

(
5.4659 2.0960
2.0960 5.3587

)
, Z1 =

(
5.1100 4.7404
4.7404 5.9677

)
,

Z2 =
(

4.6277 0
0 4.6277

)
, ε1 = 4.6516, ε2 = 0.9789, ε3 = 15.9691, ε4 = 41.9973,

ε5 = 6.0939, ε6 = 7.0486, ε7 = 79.6593
Therefore, it follows from Theorem 1 that the two-neuron network (1) is robustly,
globally, asymptotically stable in the mean square.
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Abstract. This paper presents a neurogenetic approach for solving

nonlinear programming problems. Genetic algorithm must its popular-

ity to make possible cover nonlinear and extensive search spaces. Neural

networks with feedback connections provide a computing model capable

of solving a large class of optimization problems. The association of a

modified Hopfield network with genetic algorithm guarantees the conver-

gence of the system to the equilibrium points, which represent feasible

solutions for nonlinear programming problems.

Keywords: Hopfield network, genetic algorithms, nonlinear program-

ming.

1 Introduction

The nonlinear optimization plays a fundamental role in many problems involved
with the areas of sciences and engineering, where a set of parameters is optimized
subject to inequality and/or equality constraints [1].

In the neural networks literature, there exist several approaches used for
solving constrained nonlinear optimization problems. The first neural approach
applied to optimization problems was proposed by Tank and Hopfield in [2],
where the network was used for solving linear programming problems. More
recently, it was proposed in [3] a recurrent neural network for nonlinear opti-
mization with lossy dynamics and time-varying activation functions. In [4] was
developed a multilayer perceptron for nonlinear programming, which converts
constrained optimization problems into a sequence of unconstrained ones by
incorporating the constraint functions into the objective function of the uncon-
strained problem. In [5] was proposed a Hopfield neural network for constrained
nonlinear optimization associated with Lagrange multipliers, which introduce the
constraints into the objective function. The authors reported that the computa-
tion efficiency of the model is relatively low by using Lagrange multipliers, even
so using parallel processing. In [6] was developed a new recurrent neural network
for solving nonlinear optimization problems. The proposed neural network has

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 267–276, 2009.
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a one-layer structure and uses two penalty parameters that are experimentally
obtained for each problem.

Basically, most of these neural networks presented in the literature for solving
nonlinear optimization problems contain some penalty parameters. The stable
equilibrium points of these networks, which represent a solution of the con-
strained optimization problems, are obtained only when those parameters are
properly adjusted, and in this case, both the accuracy and the convergence pro-
cess can be affected. In this paper, we propose a neurogenetic architecture for
solving nonlinear programming problems.

2 The Modified Hopfield Neural Network

As introduced in [7], Hopfield networks are single-layer networks with feedback
connections between nodes. In the standard case, the nodes are fully connected,
i.e., every node is connected to all others nodes, including itself. The node equa-
tion for the continuous-time network with N -neurons is given by:

u̇i(t) = −η · ui(t) +
N∑

j=1

Tij · vj(t) + ibi . (1)

vi(t) = g(ui(t)). (2)

where ui(t) is the current state of the i-th neuron, vj(t) is the output of the j-th
neuron, ibi is the offset bias of the i-th neuron, η · ui(t) is a passive decay term,
and Tij is the weight connecting the j-th neuron to i-th neuron.

In Equation (2), g(ui(t)) is a monotonically increasing threshold function that
limits the output of each neuron to ensure that network output always lies in
or within a hypercube. It is shown in [7] that the network equilibrium points
correspond to values v(t) for which the energy function (3) associated with the
network is minimized:

E(t) = −1
2
v(t)T · T · v(t) − v(t)T · ib. (3)

The mapping of nonlinear programming problems using a Hopfield network con-
sists of determining the weight matrix T and the bias vector ib to compute
equilibrium points. A modified energy function Em(t) is used here, which is
defined by:

Em(t) = Econf(t) +Min f(v). (4)

where Econf(t) is a confinement term that groups all the constraints imposed by
the problem, and Min f(v) refers to the minimization of the objective function
associated with the constrained optimization problem in analysis, which con-
ducts the network output to the equilibrium points. Thus, the minimization of
Em(t) of the modified Hopfield network is conducted in two stages:
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i) Minimization of the Term Econf(t).

Econf(t) = −1
2
v(t)T · T conf · v(t) − v(t)T · iconf . (5)

where: v(t) is the network output, T conf is weight matrix and iconf is bias vec-
tor belonging to Econf . This corresponds to confinement of v(t) into a valid
subspace that confines the inequality constraints imposed by the problem. An
investigation associating the equilibrium points with respect to the eigenvalues
and eigenvectors of the matrix T conf shows that all feasible solutions can be
grouped in a unique subspace of solutions. A detailed description of this tech-
nique can be found in [8,9].

ii) Minimization of the Objective Function f(v). After confinement of
all feasible solutions to the valid subspace, a Genetic Algorithm (GA) is applied
in order to optimize the objective function by inserting the values v(t) into the
chromosomes population. The operation of this hybrid system consists of three
main steps as shown in Fig. 1:

 

 v   

v
out

 ← v 

(I) 

(II) 

(III) 

Min f(v) ← GA 

v ← T
conf

.v  + i
conf

 

g(v) 

v 

v

Fig. 1. The neurogenetic architecture for solving nonlinear programming

Step (I): Minimization of Econf , corresponding to the projection of v(t) in the
valid subspace defined by:

v(t+ 1) = T conf · v(t) + iconf . (6)

where: T conf is a projection matrix (T conf · T conf = T conf and (T conf · iconf =
0). This operation corresponds to an indirect minimization process of Econf(t)
using orthogonal projection de v(t) on the feasible set.

Step (II): Application of a symmetric-ramp activation function constraining
v(t) in a hypercube, i.e.
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g(vi) =

⎧⎨⎩ lim
inf
i , if vi < lim

inf
i

vi , if liminf
i ≤ vi ≤ limsup

i

limsup
i , if vi > lim

sup
i

(7)

where vi(t) ∈ [liminf
i , limsup

i ].

Step (III): Minimization of f(v), which involves the application of a genetic
algorithm to move v(t) towards an optimal solution that corresponds to network
equilibrium points, which are the solutions for the constrained optimization prob-
lem considered.

As seen in Fig. 1, each iteration represented by the above steps has two distinct
stages. First, as described in Step (III), v is updated using the genetic algo-
rithm. Second, after each updating given in Step (III), v is projected directly
in the valid subspace by the modified Hopfield network. This second stage is an
iterative process, in which v is first orthogonally projected in the valid subspace
by applying Step (I) and then thresholded in Step (II) so that its elements lie
in the range defined by [liminf

i , limsup
i ]. The convergence process is concluded

when the values of vout during two successive loops remain practically constant,
where the value of vout in this case is equal to v.

3 Genetic Algorithm for Objective Function Optimization

The algorithm begins by randomly developing the first population, where each
individual is a possible solution for the problem. From this point, the fitness value
in relation to each individual is computed. Based on this value, the elements that
will belong to the next generation are selected (by election based on probabilis-
tic criteria). To complete the population, the selected parents are reproduced
through the implementation of genetic operators (crossing and mutation).

Codification: In this stage, the chromosomes Ci = (ci1, ci2, ..., cim) are encoded
into sequences of binary digits and have a fixed size m, which represents the
number of bits necessary to codification of a real number into the interval [liminf

i ,
limsup

i ]. In our simulations, the value of m was assumed as 16.

Population Size: The population size used here was 100 individuals, which
allowed for a better coverage of the search space and was efficient in our exper-
iments.

Initial Population: The initial population is generated by introducing a chro-
mosome that represents the values v(t) previously obtained from Steps (I) and
(II) described in Section 2. The remaining chromosomes are generated randomly.

Number of Generations: As stop criterion, it is verified the variation of the
best individual from a generation to another one, and when there is no variation,
the algorithm must finish its execution. Associated to this criterion, a maximum
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number of 100 generations was also established, being enough for reach the
minimum value to the objective function of a nonlinear programming problem.

Fitness Function: The fitness function for constrained optimization problems
is the own objective function to be minimized. The most adapted individual will
have the minimum fitness value.

Intermediate Population: Given a population in which each individual has
received a fitness value, there are several methods to select the individuals upon
whom the genetic algorithms of crossing and mutation will be applied. The se-
lected individuals will make up a population called intermediate population.
The selection method used here to separate the intermediate population was
the roulette method [10] and the crossing and mutation rates were defined, re-
spectively, at 70% and 1%, as recommended in the literature [10]. An elitism
percentage of 10% was also used.

4 Formulation of the Nonlinear Programming Problem

Consider the following constrained optimization problem, with m-constraints
and n-variables, given by the following equations:

Minimize f(v). (8)

subject to: hi(v) ≤ 0 , i ∈ {1..m} . (9)

zmin ≤ v ≤ zmax. (10)

where v, zmin, zmax ∈ "n, f(v) and hi(v) are continuous, and all first and second
order partial derivatives of f(v) and hi(v) exist and are continuous. The vec-
tors zmin and zmax define the bounds on the variables belonging to the vector
v. The parameters T conf and iconf are calculated by transforming the inequal-
ity constraints in (9) into equality constraints by introducing a slack variable
w ∈ "N for each inequality constraint:

hi(v) +
m∑

j=1

qij · wj = 0. (11)

where wj are slack variables, treated as the variables vi, and qij is defined by
the Kronecker impulse function:

qij =
{

1 , if i = j
0 , if i �= j (12)

After this transformation, the problem defined by equations (8), (9) and (10)
can be rewritten as:

Minimize f(v+). (13)
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subject to: h+(v+) = 0. (14)

zmin
i ≤ v+i ≤ zmax

i , i ∈ {1..n} . (15)

0 ≤ v+i ≤ zmax
i , i ∈ {(n+ 1)..N} . (16)

where N = n+m, and v+T = [vT wT ] ∈ "N is a vector of extended variables.
Note that f(v) does not depend on the slack variables w. In [11] has been shown
that a projection matrix to the system (9) is given by:

T conf = I −∇h(v+)T · (∇h(v+) · ∇h(v+)T )−1 · ∇h(v+). (17)

where:

∇h(v+) =

⎡⎢⎢⎢⎢⎢⎢⎣

∂h1(v+)

∂v+
1

∂h1(v+)

∂v+
2

· · · ∂h1(v
+)

∂v+
N

∂h2(v+)

∂v+
1

∂h2(v+)

∂v+
2

· · · ∂h2(v
+)

∂v+
N

...
...

. . .
...

∂hm(v+)

∂v+
1

∂hm(v+)

∂v+
2

· · · ∂hm(v+)

∂v+
N

⎤⎥⎥⎥⎥⎥⎥⎦ . (18)

Inserting the value of (17) in the expression of the valid subspace in (6), we have:

v+ ← [I −∇h(v+)T · (∇h(v+) · ∇h(v+)T )−1 · ∇h(v+)] · v+ + iconf . (19)

Results of the Lyapunov stability theory [12] should be used in (19) to guarantee
the stability of the nonlinear system, and consequently, to force the network con-
vergence to equilibrium points that represent a feasible solution to the nonlinear
system. By the definition of the Jacobean, when v leads to equilibrium point
implicates in ve = 0. In this case, the value of iconf should also be null to satisfy
the equilibrium condition, i.e., ve = v(t) = v(t + 1) = 0. Thus, h(v+) given in
equation (19) can be approximated as follows:

h(v+) ≈ h(ve) + J · (v+ − ve). (20)

where J = ∇h(v+) and h(v+) = [h1(v+) h2(v+) ... hm(v+)]T .
In the proximity of the equilibrium point ve = 0, we obtain the following

equation related to the parameters v+ and h(v+):

lim
v+→ve

‖h(v+)‖
‖v+‖ = 0. (21)

Finally, introducing (20) and (21) in equation given by (19), we obtain

v+ ← v+ −∇h(v+)T · (∇h(v+) · ∇h(v+)T )−1 · ∇h(v+). (22)
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Therefore, equation (22) synthesizes the valid-subspace expression for treating
systems of nonlinear equations. In this case, the valid-subspace equation given in
(6), which is represented by Step (I) in Fig. 1, should be substituted by equation
(22).

5 Simulation Results

Problem 1. Consider the following constrained optimization problem, which is
composed by inequality and equality constraints:

Min f(v) = v31 + 2 · v22 · v3 + 2 · v3. (23)

subject to: v21 + v2 + v23 = 4. (24)

v21 − v2 + 2 · v23 ≤ 2. (25)

v1, v2, v3 ≥ 0. (26)

The optimal solution for this problem is given by v∗ = [0.00 4.00 0.00]T , where the
minimal value of f(v∗) at this point is equal to 0. Figure 2(a) shows the trajectories
of the system variables starting from the initial point v0 = [1.67 1.18 3.37]T .

The trajectory of the objective function starting from initial point presented
above is illustrated in Fig. 2(b). The system has also been evaluated for different
values of initial conditions. All simulation results obtained by the neurogenetic
system show that the proposed architecture is globally asymptotically stable
at v∗.

Problem 2. Consider the following constrained optimization problem, which is
also composed by inequality and equality constraints:

(a) (b) 

Fig. 2. Neurogenetic system output evolution (a), and objective function behavior (b)
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Fig. 3. Neurogenetic system output evolution (a), and objective function behavior (b)

Min f(v) = −v1. (27)

subject to: v2 − v31 − v23 = 0. (28)

v21 − v2 + v24 = 0. (29)

v2 − v31 ≥ 0. (30)

v21 − v2 ≥ 0. (31)

The optimal solution for this problem is v∗ = [1.00 1.00 0.00 0.00]T and the
minimal value of f(v∗) equal to 1.00. Figure 3 presents the evolution of the
neurogenetic architecture output and objective function behavior, respectively.

The system has also been evaluated for different values of initial conditions.
All simulation results show that this architecture is globally asymptotically
stable at v∗.

Problem 3. Consider the following constrained optimization problem, which is
just composed by inequality constraints:

Min f(v) = v21 + 2 · v22 − 2 · v1 · v2 − 2 · v1 − 6 · v2 (32)

subject to: v1 + v2 ≤ 2. (33)

− v1 + 2 · v2 ≤ 2. (34)

This problem has an optimal solution v∗ = [0.8 1.2]T and f(v∗) = 7.2. Figure
4 presents the evolution of the neurogenetic architecture output and objective
function behavior, respectively.
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Fig. 4. Neurogenetic system output evolution (a), and objective function behavior (b)

The system has also been evaluated for different values of initial conditions. All
simulation results show that this architecture is globally asymptotically stable
at v∗.

6 Conclusions

This paper presented a neurogenetic approach for solving nonlinear program-
ming problems. In contrast to the other neural approaches used in these types
of problems, the main advantages of using the proposed approach in nonlinear
optimization are the following: i) consideration of optimization and constraint
terms in distinct stages with no interference with each other, i.e., the modified
Hopfield network performs the optimization of constraints and the genetic al-
gorithm is responsible for minimizing the objective function, ii) unique energy
term (Econf ) to group all constraints imposed on the problem, iii) the inter-
nal parameters of the modified Hopfield network are explicitly obtained by the
valid-subspace technique of solutions, which avoids the need to use training al-
gorithm for their adjustments, and iv) optimization and confinement terms are
not weighted by penalty parameters.

Some particularities of this neurogenetic approach in relation to primal meth-
ods normally used in nonlinear optimization are the following: i) it is not nec-
essary the computation, in each iteration, of the active set of constraints; ii)
the initial solution used to initialize the network can be outside of the feasible
set defined from the constraints. The simulation results demonstrate that the
neurogenetic system is an alternative method to solve nonlinear programming
problems efficiently.
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Abstract. In multilayer feedforward networks (MFNs), when open

weight fault exists, many potential faulty networks should be consid-

ered during training. Hence, the objective function, as well as the cor-

responding learning algorithm, would be computationally complicated.

This paper derives an objective function for improving the fault tolerance

of MFNs. With the linearization technique, the objective function is de-

composed into two terms, the training error and a simple regularization

term. In our approach, the objective function is computational simple.

Hence, the conventional backpropagation algorithm can be simply ap-

plied to handle this fault tolerant objective function. Simulation results

show that compared with the conventional approach, our approach has

a better fault tolerant ability.

1 Introduction

The implementation of neural networks on physical hardware cannot be per-
fect [1, 3]. If special training methods are not taken, the fault situation could
lead to a drastic performance degradation. Therefore, we would like to have a
trained network with an ability to handle network faults. One of important fault
models is the open weight fault [2, 4, 5]. In this fault model, some connected
weight are disconnected. There were several algorithms for handling this fault
model.

One technique is to limit the weight magnitude [6,7]. One deficiency of limiting
weight magnitude is that the theoretical justification on the underlying objective
function is not so clear. In [6], the way to set the weight decay constant is not
discussed even the fault statistics is available. Besides, we can also formulate
the training process as solving a minmax problem [8, 9]. Their drawback is that
solving a minmax problem is very complicated. Zhou et al. [4] defined a similar
objective function and developed the corresponding learning algorithm. In the
Zhou’s approach, the objective function consists of two terms. One is term is the
training error of a fault–free network. Another term is the sum of the training er-
rors of some potential faulty networks. In [4], Zhou et al. empirically showed that
the proposed objective function can improve generalization and fault tolerance.

The above formulations are effective to handle small networks and single
weight fault. However, when the network size is large and the multi-weight fault
appears, the number of possible faulty network is very large. For example, in a

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 277–284, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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multilayer feedforward network (MFN) [10,11] withM weights, for multi-weight
fault, the number of potential faulty networks is Nnetworks =

∑n
i=1 C

M
n , where

n is the maximum number of faulty weights that we considered. Also, in [4], the
theoretical guideline to set the weighting factors was not addressed.

This paper develops an objective function for multilayer feedforward networks
(MFNs) for multi-weight open fault. We use the average error to build the ob-
jective function. Afterwards, with the linearization on the objective function, a
regularizer is identified in the objective function. With the proposed objective
function, we can develop gradient based learning methods, such as the stan-
dard backpropagation [10] and fast backpropagation [11], for the fault tolerant
objective function.

The organization of this paper is as follows. In Section 2, we review the concept
of BP networks and fault tolerance. In Section 3, the objective function for
multi-weight open fault and the corresponding regularizer are defined. Section 4
presents our simulation results. Conclusion is presented in Section 5.

2 Background

In this paper, we assume that the training data set

DT = {(xi, yi) : xi ∈ RK , yi ∈ R, i = 1, · · · , N.}, (1)

is generated by an unknown stochastic system [12] [13], given by

yi = f(xi) + ei (2)

where xi and yi are the input and output samples of the system system, respec-
tively, K is the input dimension, f(·) is the unknown system, and ei’s are the
random measurement noise. The noise ei’s are independent zero-mean Gaussian
random variables with variance equal to σ2

e . Now, our problem is to construct a
model for approximating the mapping f(·).

In the MFN approach with M weights, we would like to approximate the
mapping f(·) by an MFN, given by

f(x) ≈ h(x,w) (3)

where h(x,w) is the network output function, and w is the weight vector that
contains allM weights in the MFN. The classical training objective is the train-
ing error, given by

Et(w) =
1
N

N∑
i

(yi − h(xi,w))2 . (4)

In the multi-weight open fault model, the faulty weight vector is described by a
weight multiplicative model, given by

w̃j = bjwj , (5)
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where wj is the j-th element in weight vector w; and the fault factor bj describes
whether the j-th weight operates properly or not. If bj = 0, the j-th weight is out
of work. Otherwise, the j-th weight operates properly. Define b = [b1, · · · , bM ]T

as the fault vector. In vector-matrix notation, (5) can be rewritten as

w̃ = b⊗w (6)

where ⊗ is the element-wise multiplication operator. For a particular fault vector
b, the training error is given by

Eb(w,b) =
1
N

N∑
i=1

(yi − h(xi, w̃))2 . (7)

In [4], the following objective function is used

J (w)z = αEt(w) + β
1
Nb

∑
b∈Sb

Eb(w,b) (8)

where Sb is the set of all possible fault vectors considered, and Nb is the number
of elements in Sb. The parameters α and β are the weighting factors. In [4], it
is shown that the training algorithm, based on (8), can improve fault tolerant
as well as generalization. However, when the number of faulty weights is greater
than one, the number of potential faulty networks is very large. Also, the rule
to set the two weighting factors was not theoretically discussed [2,4].

3 Objective Function and Regularizer

Consider the linearization on the network output h(xi,w) around ŵ,

h(xi,w) = HT
i w + ξi (9)

where

Hi =
∂h(xi,w)
∂w

∣∣∣∣∣
w=ŵ

. (10)

In the above, ŵ denotes the approximation value of w in the last iteration, and
ξi is the residual in the expansion of h(xi,w) given by

ξi = h(xi, ŵ)−HT
i ŵ + ρi (11)

where ρi is the higher order residual. Our learning task is to find out the weights
that best fits the observations. Recall that for a faulty network, the average error
is given by

Eb(w,b) =
1
N

N∑
i=1

(yi − h(xi, w̃))2 , (12)
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where w̃ = b⊗w. Consider the linearization in (9), (12) can be rewritten as

Eb(w,b) =
1
N

N∑
i=1

(yi −HT
i w̃ − ξi)2 . (13)

Assume the fault rate is equal to p. The average of Eb(w,b) over all fault vector
is given by

Eb(w,b) =
1
N

N∑
i=1

⎡⎣(yi − ξi)2 − 2(yi − ξi)
〈

M∑
j=1

bjwj H
j
i

〉
Sb

+

〈⎛⎝ M∑
j=1

bj wj H
j
i

⎞⎠2〉
Sb

⎤⎥⎦ (14)

where Hj
i denotes the jth element of Hi, and Sb denotes the set of all possible

fault vectors when the fault rate is equal to p. Since 〈bj〉 = 〈b2j 〉 = 1 − p and
〈bjb′j〉 = (1 − p)2 for j �= j′, we have〈∑M

j=1 bj wj H
j
i

〉
Sb

= (1− p)
∑(M

j=1 wj H
j
i

1
N

∑N
i=1

〈(∑M
j=1 bjwj H

j
i

)2
〉

Sb

= wT ((1 − p)G + (1− p)2(Hφ −G))w,

where Hφ = 1
N

∑N
i=1 HiHT

i and G = diag(Hφ). Now, the objective function
Et(w,b) can be rewritten as

Eb(w,b) =
1
N

N∑
i=1

(yi − ξi)2 − 2(1− p) 1
N

N∑
i=1

(yi − ξi)HT
i w

+(1− p)wT {(1− p)Hφ + pG}w. (15)

Since the term 1
N

∑N
i=1(yi − ξi)2 in (15) is independent of w, we can re-scale

this term by a constant (1− p). Thus we have

Eb(w,b) =
1
N

N∑
i=1

(yi −HT
i w− ξi)2 + wT Rw

=
1
N

N∑
i=1

(yi − h(xi,w))2 + wT Rw

= Et(w) + wTRw, (16)

where
R = p(G−Hφ). (17)
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Fig. 1. Training data for the sinc function

In (16), the second term is similar to the conventional regularization term in
regularization techniques. Hence, we could define the multi-weight open fault
regularizer as

wT Rw, (18)

where R is the so-called regularization matrix. The objective in (16) can be used
to training the MFNs with the popular backpropagation rule [10, 11].

4 Simulation

4.1 Fault Tolerance

Sinc function. The sinc function is a common benchmark example [13, 14].
The output is generated by

y = sinc(x) + e, (19)

where the noise term e is a mean zero Gaussian noise with variance σ2
e = 0.01. A

training data set (100 samples), shown in Fig.1, is generated. Also, a noise-free
testing data set (100 samples) is generated. The MFN has one hidden layer with
25 hidden nodes. For each fault rate, we use the fast training algorithm [11]
to train five MFNs with different initial weights. For each trained MFN, we
randomly generate 10,000 faulty networks.

The training and testing MSEs are depicted in the Fig.2. The standard BP
method with the classical objective function gives out a very poor result on
the training and test errors. The Zhou’s method and our robust method can
greatly improve fault tolerance. For faulty networks (p > 0), among those three
algorithms, our algorithm gives out the best fault tolerance.

Nonlinear time series example. We consider the following nonlinear autore-
gressive (NAR) time series [13], given by

yi =
(
0.8− 0.5 exp

(
−y2i−1

))
yi−1 −

(
0.3 + 0.9 exp

(
−y2i−1

))
yi−2

+0.1 sin(πyi−1) + ei (20)
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Fig. 2. MSEs of faulty networks for the noisy sinc function approximation, where

σ2
e = 0.01. (a) Training error, (b) Testing error.
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Fig. 3. MSEs of faulty networks for the NAR prediction. (a) Training error, (b) Testing

error.

where ei is a mean zero Gaussian random variable that drives the series. Its
variance is equal to 0.09. One thousand samples were generated given y0 =
y−1 = 0. The first 500 data points, were used for training and the other 500
samples were used for testing. Our MFN model is used to predict yi based on
the past observations, yi−1 and yi−2. The MFN model has one hidden layer with
25 hidden nodes. For each fault rate, we train five MFNs with different initial
weights. For each trained MFN, we randomly generate 10,000 faulty networks.
The performance of the trained BP networks are depicted in Fig.3. Similar to
the previous example, our algorithm gives out the best fault tolerance.

4.2 Incorrect Training Fault Rates

With our robust learning, we can optimize the weight vector with respect to
the fault tolerance if we know the exact fault rate, i.e., fault statistics. In some
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Fig. 4. MSEs of faulty networks with incorrect guess fault rate for the noisy sinc

function example

practical situations, there may be a difference between the training fault rate
and the exact fault rate. Hence, it is interesting to study the degradation due to
this deviation.

The examples we considered here are the noisy sinc function with σe = 0.01.
The setting of the MFN model used here is the same as before. In the simulation,
for our robust method, we use two training fault rates, p′ = 0.02 and 0.1, to train
BP networks. The MSEs of the BP networks trained with training fault rates
are then measured on various true fault rates. For trained MFN, we randomly
generate 60,000 faulty networks. The MSE performances are depicted in Fig.4.

For the training error, the degradation of our robust method due to using
an incorrect training fault rate is not so large. For a small training fault rate
p′ = 0.02, the degradation becomes larger as the true fault rate increases. For
a large training fault rate p′ = 0.1, the degradation is large when the true fault
rate is small. For the testing error, the result is quite similar to that of training
error.

5 Conclusion

This paper addresses the fault tolerance of BP networks where all weights have
the same fault rate and their fault probabilities are independent. We have derived
an objective function for robustly training a BP network. Moreover, our method
can handle the multi-weight open fault, compared with Zhou’s method [4]. Var-
ious simulation studies confirm that in terms of fault tolerance our approach is
better than other methods being tested.
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Abstract. This paper aims at developing a new criterion for quantitative as-
sessment of prediction intervals. The proposed criterion is developed based on 
both key measures related to quality of prediction intervals: length and coverage 
probability. This criterion is applied as a cost function for optimizing prediction 
intervals constructed using delta technique for neural network model. Optimiza-
tion seeks out to minimize length of prediction intervals without compromising 
their coverage probability. Simulated Annealing method is employed for read-
justing neural network parameters for minimization of the new cost function. 
To further ameliorate search efficiency of the optimization method, parameters 
of the network trained using weight decay method are considered as the initial 
set in Simulated Annealing algorithm. Implementation of the proposed method 
for a real world case study shows length and coverage probability of con-
structed prediction intervals are better than those constructed using traditional 
techniques.  

Keywords: prediction interval, neural network, simulated annealing, delta 
technique. 

1   Introduction 

Neural Networks (NNs) have achieved great success on many regression and classifi-
cation problems in the last two decades. No matter how NNs are trained or used, they 
suffer from some basic deficiencies. One of the biggest concerns about NNs is how 
well they do point prediction task under presence of uncertainty. Source of uncertainty 
can be in data (e.g., measurement noise or some missing data), or in operation of the 
underlying system (e.g., occurrence of probabilistic events in complex systems).  
Although both of these types of uncertainties are common, the second type has more 
severe impacts on targets. It often leads to multiple realities for future of a system even 
under fixed conditions. For instance, in manufacturing enterprises, probable failure of 
some machines can originate formation of long queues before bottlenecks. This condi-
tion will significantly increase the lead time of products. Because NNs only generate a 
conditional mean of the training samples, there point prediction error for stochastic 
systems will be always big (regardless of NN type or size). The second problem of NN 
models for point prediction is lack of a measure about their estimation accuracy. In 
literature, often smallness of an error-based measure like Mean Squared Error (MSE) 
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or Mean Absolute Percentage Error (MAPE) computed for training or validation sets is 
claimed as an indication of reliability of NN models. Unfortunately, those measures 
carry no information about accuracy of point prediction and its reliability for unseen 
observations. 

These two deficiencies have encouraged many researchers to construct Prediction 
Intervals (PIs) for outputs of NN models. Because different sources of uncertainty are 
covered in construction of PIs, they are practically more useful than confidence inter-
vals and more reliable than point prediction. Mathematically, a prediction interval 
with confidence level of 1 α % is a random interval based on past observations x x , x , … , x  and built for unseen observations X , h 1, I h, x L x , U x  (1)

so that P L x X U x 1 α. Without construction of prediction inter-
vals, the validity of decisions made based on point prediction is always questionable. 

In literature, a variety of techniques has been proposed and examined for PI con-
struction. A good review of Bayesian, bootstrap, and delta techniques can be read in 
[1]. Although implementation of bootstrap technique has become feasible largely due 
to availability of powerful computers, it suffers from a high computational burden. 
Work done by Hwang et al. [2] showed that asymptotically valid PIs for NNs can be 
constructed based on theories of nonlinear regression. To avoid problems related to 
NN over-fitting, De Veaux et al. [3] developed a PI construction technique based on 
regularization and weight decay. Bayesian technique requires calculation of the Hes-
sian matrix which makes it computationally expensive [4]. Application of PIs  
constructed using NNs has proliferated in recent years and many have used them 
instead of point predictions in different fields, among others, including temperature 
prediction [5], boring process prediction [6], paper curl prediction [7], modeling of 
solder paste deposition process [8], and time series forecasting [9].  

Despite all these attempts, construction of PIs for NN models and their assessment 
still require more attention. The main focus of literature is on construction of PIs. 
Often, there is no discussion about assessment of constructed PIs in terms of both 
their length and coverage probability [6] [7] [8]. Very often only coverage probability 
and upper and lower bounds of PIs are stated, without any discussion on how wide or 
reliable these intervals are. Furthermore, the research and practice literature is void of 
papers about how PI construction techniques can be optimized. The purpose of such 
an optimization can be minimization of length of PIs without compromising their 
coverage probability. 

Motivated by these gaps in literature, this study first attempts to develop a practi-
cally useful measure for quantitative evaluation of PIs in term of their length and 
coverage probability. This measure is mainly composed of indices about how well PIs 
cover the underlying targets and how wide they are compared with the range of  
targets. Secondly, a new cost function is developed based on these measures and is 
minimized in order to find the optimum values of some critical parameters of NN 
models. Through a case study, it is shown that constructed PIs based on the proposed 
optimization technique, will yield narrower PIs with the same nominal coverage 
probability (confidence level)  

The rest of this paper is organized as follows: Section 2 briefly describes back-
ground required for this study. The assessment measure is introduced in Section 3. 
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The optimization procedure is discussed in Section 4. Section 5 represents numerical 
experiments conducted in this research and reports the results. Finally, the paper  
concludes with our observations and plans for future work. 

2   Background 

2.1   Delta Technique 

Because this research is about PIs constructed using the delta technique, here we 
briefly introduce this technique. Its mathematical discussion and fundamental theories 
can be found in [2] and [3]. 

The original delta technique is based on Taylor series expansion of NN model 
around its optimal parameters, determined by minimization of Residual Sum of 
Squares (RSS). The error terms associated with the modeling function are assumed to 
be independently and identically distributed (iid) with variance δ . According to theo-
ries of nonlinear regression, a 1 α % asymptotic prediction interval for y  will be 
as follows, y t  s 1  y J J y i 1,2, … , m (2)

where J is the Jacobian matrix of NN, w is the set of network parameters,  is the 

unbiased estimate of δ , and t  is 1   quantile of a cumulative t-distribution 

function with d degrees of freedom. In case of using a weight decay regularizer to 
avoid over-fitting problem (RSS λ w w), the PIs will be constructed as follows [3], y t  s 1 y J J λI J J J J λI y i 1,2, … , m. (3)

Construction of PIs based on (3) appropriately solves problems related to singularity 
of J J  in (2). Therefore, we will use this equation for construction of PIs, as it has 
been recommended in literature [10]. 

2.2   Simulated Annealing 

The Simulated Annealing (SA) is a Monte Carlo technique that can be used for 
seeking out the global minimum. The effectiveness of SA is attributed to the nature 
that it can explore the design space by means of neighborhood structure and escape 
from local minima by probabilistically allowing uphill moves. Compared with tradi-
tional mathematical optimization techniques, SA offers a number of advantages: 
first, it is not derivative based, which means that it can be used for optimization of 
any cost function, regardless of its complexity or dimensionality, and secondly, it 
can explore and exploit the parameter space without being trapped in local optima 
(minima). SA has been shown to perform well for optimizing a wide variety of 
complex problems [11]. More information about SA and its optimization procedure 
can be found in [12] and [13].  
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3   The Proposed Assessment Measure for PIs 

PIs can be characterized based on their length and coverage probability. One approach 
for quantitative assessment of PI lengths is to normalize each interval length with 
regard to range of targets. Following this, a measure called Normalized Mean Predic-
tion Interval Length (NMPIL) can be obtained as follows: 

NMPIL 1m U x L xt t  (4)

where U x  and L x  are upper bound of PI, lower bound of PI. t  and t  are 
also extreme values of targets. Normalization of PI length by the range of targets 
makes objective comparison of PIs possible, regardless of techniques used for their 
construction or magnitudes of the underlying targets. 

The PI Coverage Probability (PICP) indicates the probability that the underlying 
target will lie within the constructed PIs. It can be calculated through counting cov-
ered targets by PIs: 

PICP 1m c  (5)

where, c 1 y L x , U x0 y L x , U x  (6)

It is always desirable to construct PIs whose PICP is the highest possible value. Such 
high PICP can be simply achieved through considering target ranges as PIs for all 
samples. Needless to say, wide PIs like these ones are practically useless. This argu-
ment makes clear that judgment about PIs based on PICP without considering length 
of PIs is always subjective and biased. It is essential to evaluate PIs simultaneously 
based on their both key measures: length and coverage probability.   

Generally, PI lengths and PICP have a direct relationship. The wider the PIs, the 
higher the corresponding PICP. This means that as soon as PIs are squeezed, some 
targets will lie out of PIs, which results in low PICP. According to this discussion, the 
following Coverage-Length-based Criterion (CLC) is proposed for comprehensive 
evaluation of PIs in term of their PICP and lengths: 

, ,  (7)

where ·  is the sigmoidal defined as follows,  , , 11 e  (8)



 Integrating Simulated Annealing and Delta Technique 289 

 
Fig. 1. The sigmoidal function for different values of  and  

 and  are two hyperparameters determined by modeler. Theoretically, PICP should 
be as close as possible to its nominal value, 1 α %, the confidence level that PIs 
have been constructed based on. This level of confidence can be appropriately used as 
a guide for selecting hyperparameters of CLC. One reasonable principle is that we 
highly penalize PIs that their PICP is less than 1 α %. This is based on the theoret-
ical concept of PIs that their coverage probability in an infinite number of replicates 
will approach towards 1 α %.  

Fig. 1 demonstrates ·  for different values of η and µ. It can be seen that the 
sigmoidal function sharply drops immediately after some values of PICP. These val-
ues are determined based on the confidence level of PIs, 1 α %. According to 
curves in Fig. 1, if PICP is less than some nominal thresholds, CLC will highly  
increase, no matter what the length of PIs is. In this way, PIs with not satisfactorily 
high coverage probability are highly penalized. 

4   Optimization of PIs 

In literature, PIs are constructed for NNs that have been trained based on minimiza-
tion of an error-based cost function [2] [3]. In contrast to that research, the proposed 
method here on minimization of some measures/cost functions that are directly related 
to PI lengths and coverage probability. The cost function used in this research for 
optimization purposes is CLC defined in (7).  In mathematical terms, the formulation 
is given as min CLC, where w are NN parameters. To avoid problems related to 
over-fitting, data samples are split in two training sets. The first set is used for training 
NN in order to minimize an error-based cost function. The current NN parameters are 
then considered as the initial set in optimization process. 

There are several options for minimization of CLC and, consequently, optimization 
of PIs. Mathematical analysis and minimization of CLC is quite difficult, mainly due 
to presence of very complex derivatives of NN output with respect to its parameters. 
Even if mathematical analysis of (7) is carried out, it is highly likely that the globally 
optimal solution is remote. This is mainly due to the fact that traditional techniques 
for training NNs, including backpropagation, are vulnerable to being trapped in local 
optimums of the multimodal search space. Those local optimums are inevitably  
present in many practical optimization problems, including NN parameter adjustment. 
Instead of these techniques, stochastic optimization methods can be employed for 
readjusting NN parameters based on (7). SA is a very powerful candidate for finding 
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the optimal values of NN parameters. Its stochastic nature allows it to explore differ-
ent corners of the search space and escape the local optimums. Its application (with 
sufficient iterations) guarantees that NN parameters will move towards global opti-
mality (or at least pareto optimal solutions) without being trapped in local optima. 
Optimization technique continues until one of the stopping criteria is met. Maximum 
number of iterations of the optimization, low speed of convergence, or satisfactory 
smallness of CLC are some stopping criteria used in our experiments. The procedure 
explained above can be summarized as follows: 
 

Step 1: split data into two training sets, 
Step 2: train the NN model in order to minimize a prediction error-based func-

tion, 
Step 3: use the current NN parameters as the initial set and employ SA for 

minimizing CLC and readjusting NN parameters, 
Step 4: examine performance of the trained NN for test samples. 

 

Step 3 (which includes some sub-steps not reported here due to lack of space) is 
the key step in finding the optimal parameters of NNs. As the search space for NN 
parameters is multimodal, completion of this step is time-consuming. Computation 
mass is not a big deal in our study, as all steps can be carried out off-line. 

Because the proposed method readjusts NN parameters based on minimization of 
CLC for a new set (2nd training set), not the one used for training NN for minimization 
of error-based cost functions (1st training set), it systematically includes avoidance of 
NN over-fitting. In this method, from one side, it is necessary to keep MSE for training 
set small as much as possible. From the other side, NN parameters are readjusted based 
on minimization of CLC evaluated for the 2nd training set. Because the optimization 
technique takes care of both MSE and CLC for two different sets, it is less likely that 
final NN will be over-fitted. Besides, as MSE is an important component used in the 
delta technique, it is always guaranteed that the modified NN yields a lower MSE for 
training set than does the original NN. This means that assumptions made in delta 
technique will remain all valid [3] [2]. Finally, because the proposed technique consid-
ers parameters obtained using minimization of the error-based cost function as its ini-
tial set, its superiority over traditional delta technique is guaranteed. 

5   Simulation Results and Discussion 

In this section, the proposed method is implemented for a real world case study  
described in [14] [15]. The underlying system is a medium-sized Baggage Handling 
System (BHS) with several autonomous and non-autonomous components, which are 
highly linked. The target in this study is time required for processing 90% of each 
flight bags. Database includes 272 samples which are divided in three sets: first train-
ing set (50%), second training set (25%), and test set (25%). Our experiments show 
that NN models are not appropriate for point prediction for these samples, due to 
presence of uncertainty in operation of BHS (probabilistic events including a bag 
being cleared in different levels of security check). Therefore PIs are constructed for 
these targets. A two layer NN with 7 neurons in the first layer and 4 neurons in 
second layer (72 parameters) is trained using the Levenberg–Marquardt algorithm. 
After completion of training (step 2), SA is implemented with the following  
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Fig. 2. CLC evolution during optimization process 

parameters: the initial temperature is set to 10; a geometric cooling schedule is im-
plemented by a cooling factor of 0.95; and in each temperature 100 rejection and 
success are allowed.  and  in (8) are set to 100 and 0.875 respectively. 

Fig. 2 represents how CLC varies during the optimization procedure (step 3) for 
the second training set. Optimization stops after around 39000 iterations. In the early 
iterations, because temperature is high (around 10), SA acts like a random search to 
enable exploration. Therefore, increase in CLC is welcomed. As temperature slowly 
decreases (through more iterations), SA behaviour becomes similar to a greedy  
hill-climbing algorithm (after iteration 7000) and converges to the optimal solution. 
Demonstrated results in Fig. 2 indicate that optimization technique makes it possible 
to reduce the cost function by more than 16.85%, without any loss in PICP. In fact, 
PICPs for 2nd training set computed using original NN and the optimized one are 
91.18% and 88.23%. This growth again strongly confirms optimality of the set of new 
parameters (72 weights of NN model).  

Performance of the proposed technique is also examined for unseen observations 
(step 4). PIs are constructed for NN retrained in step 3 using test samples. For the pur-
pose of comparison, we also develop PIs using NN trained in step 2. Obtained results 
have been summarized in Table 1. These results show that NMPIL computed for the 
retrained NN is 7.19% less than NMPIL computed for the NN trained in step 2. This is 
an indication that performance of the delta technique can be improved through minimi-
zation of CLC rather than minimization of traditional error-based cost functions. Slight 
reduction in PICP from its nominal value is mainly due to dissimilarities of training and 
test sets. Also training set MSE for the original and optimized NN are 7.01 and 7.04, 
respectively. As these two quantities are quite close, assumptions made when develop-
ing theories of the delta technique have been remained valid in our experiments.  

Table 1. Summary of results for test samples 

 NN obtained in Step 2 NN obtained in Step 3 
NMPIL 41.80 34.61 
PICP 90.24 85.37 

MSE (training samples) 7.01 7.04 
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6   Conclusion 

In this paper, a novel criterion based on length and coverage probability of prediction 
intervals was developed for quantitative assessment of prediction intervals. This new 
criterion was appropriately applied for retraining neural network models that were 
used for constructing prediction intervals. Simulated annealing was integrated into the 
delta technique for readjusting neural network parameters in order to minimize the 
proposed measure. Demonstrated results for a real world case study showed that  
the proposed optimization method greatly improves quality of constructed prediction 
intervals not only for training samples, but also for future observations. 
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Abstract. This paper investigates noise manifold learning problem,

which is a key issue in applying manifold learning to practical prob-

lem. A robust version of LTSA called RLTSA is proposed. The proposed

RLTSA algorithm makes LTSA more robust from three aspects: firstly

robust PCA algorithm is used instead of the standard SVD to reduce

influence of noise on local tangent space coordinates; secondly RLTSA

chooses neighborhoods that are approximated well by the local tangent

space coordinates to align with the global coordinates; thirdly in the

alignment step, the influence of noise on embedding result is further re-

duced by endowing clean data points and noise data points with different

weights into local alignment errors. Experiments on both synthetic data

sets and real data sets demonstrate the effectiveness of our RLTSA when

dealing with noise manifold.

Keywords: manifold learning, robust PCA, local tangent space

alignment.

1 Introduction

Local Tangent Space Alignment(LTSA) is an effective nonlinear dimensional
reduction method proposed by Z. Zhang [3]. It shares the basic assumption of
manifold learning [1,2,4,5] that high-dimensional data lie on a low-dimensional
manifold. It can obtain expected result when this basic assumption for sampled
data is true. Unfortunately, like other classical manifold learning algorithms, its
sensitiveness to noise embarrasses it in real world applications. We illustrate its
sensitiveness to noise by the following example.

Example 1. Considering 1500 examples sampled from the 2-D Swiss Roll man-
ifold, we select 150 examples at random, and impose uniformly distributed noise
to them. The fig. 1(a) plots these data points, where the black points are points
with noise, and the colored point are clean data points. As can be seen from the
fig. 1(b), due to noise, LTSA algorithm can’t recover the manifold structure well.

Since the importance of robust manifold learning in real world application, some
manifold learning algorithmshave been extended to deal with the noise [6,7,8,9,10].
Most of these existing extensions work as an additional preprocess to detect noise
and to reduce their influence before embedding algorithm performs. To our best

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 293–301, 2009.
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Fig. 1. Results of three algorithms on noise corrupted data set sampled from Swill Roll

manifold. (a)data sets; (b)LTSA result; (c)RLLE result; (d)RLTSA result.

knowledge, there has no extension of LTSA to address the noise problem. Al-
though MLTSA [11] proposed by J. Wang has the ability of dealing with noise
on some local patches, since it mainly addresses LTSA’s failure modes on large
curvature manifold, it has no ability to deal with noise distributed on whole man-
ifold. This paper investigates noise manifold learning problem in context of LTSA
and proposes a robust version of LTSA algorithm called RLTSA based on robust
PCA. The main difference of our RLTSA with the previous robust manifold al-
gorithm is that our denoise process is integrated seamlessly into the embedding
algorithm and becomes part of it.

2 Reviews on LTSA

The basic idea of LTSA is that neighborhood of each point can be approxi-
mately represented by local tangent space coordinates. Given a data set X =
[x1, x2, . . . , xn] sampled from a d-dimensional manifold M where xi ∈ RD(D >
d) is column vector represented a sample and n is the number of samples. The
basic steps of LTSA are as follows:

1. (Extracting local information) For each xi(i = 1, 2, . . . , n)
(1) Constructing neighborhood Xi = [xi1 , xi2 , · · · , xik

] (here we use k near-
est neighbors including itself in terms of Euclidian distance in input
space).

(2) By SVD of centered matrix Xi − x̄ie
T where x̄i = (1/k)

∑k
j=1 xij and e

is a column vector of all 1’s with suitable dimensionality, the orthogonal
basis Vi of d-dimensional tangent space consists of the d left singular
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vectors of matrix Xi − x̄ie
T corresponding to the first d largest singular

values. Then the local tangent space coordinates of neighborhood Xi can
be computed as X̂i = [x̂i1 , x̂i2 , · · · , x̂ik

] = V T
i (Xi − x̄ie

T ).
2. (Constructing local alignment matrix) Denote the d-dimensional embedding

coordinates by Y = [y1, y2, . . . , yn], and Yi = [yi1 , yi2 , . . . , yik
] which consists

of the subset of column of Y is the corresponded d-dimensional embedding
coordinates of neighborhood Xi. The local alignment matrix can be com-
puted by minimizing the following local alignment error:

minEi = min
ci∈Rd

Li∈Rd×d

k∑
j=1

‖yij − (ci + Lix̂ij )‖2 (1)

= min
ci∈Rd

Li∈Rd×d

‖Yi − (cieT + LiX̂i)‖2
F = ‖YiΦi‖2

F = ‖Y SiΦi‖2
F (2)

where Si is the 0-1 select matrix such that Yi = Y Si and ‖ · ‖F is the matrix
Frobenius norm, we call Φi the local alignment matrix.

3. (Aligning global coordinates)Computing the embedding coordinates Y by
minimizing the following sum of local alignment error:

n∑
i=1

minEi =
n∑

i=1

‖Y SiΦi‖2
F =

n∑
i=1

tr(Y SiΦi(Y SiΦi)T ) = tr(Y ΦY T ) (3)

where Φ =
∑n

i=1 SiΦiΦ
T
i S

T
i is the global alignment matrix. The solution is

given by the eigenvectors of Φ.

From the basic steps of LTSA, one can see that recovering the real local tangent
space is the key issue that relates to whether LTSA can discover the true manifold
structure faithfully. In the presence of noise, however, the recovered tangent space
by standard SVD technique will deviate from the real one due to its sensitivity
to noise, then it will further influence embedding result of LTSA.

Note that the left singular vector ofXi−x̄ie
T corresponding to the j-th largest

singular value is the very eigenvector v(i)j of covariance matrix (Xi− x̄ie
T )(Xi−

x̄ie
T )T corresponding to the j-th largest eigenvalue, then the orthogonal basis of

tangent space can be represented as Vi = [v(i)1 , v
(i)
2 , · · · , v

(i)
d ], so one can conclude

that LTSA algorithm in fact uses the leading d-dimensional principal subspace
to approximate the tangent space at each neighborhood. Therefore, robust PCA
algorithm, which can find the robust principal subspace in presence of noise, can
reduce the influence of noise on recovering the local tangent space.

When computing local alignment error, LTSA gives each point the same
weight in equation (1). Obviously, in noise case, we should make distinction be-
tween clean points and noise points, and this can be implemented by specifying
different weights to them.

In addition, there is no need to minimize the local align error sum of all
neighborhoods [12,13,14] in equation (3). On the one hand, in no noise case
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local tangent space coordinates derived from each neighborhood can character
local geometric well, they are heavily redundant. On the other hand, in noise
case, forcedly aligning the local coordinates of neighborhoods that are not well
approximated will result in fatal error in the final embedding. Therefore, to
make LTSA robust, one should discard the neighborhoods whose local coordi-
nates can’t character the local geometric well due to dominant effect of noise, and
select neighborhoods that are approximated well by the local tangent space coor-
dinates, then minimize the alignment error sum of these selected neighborhoods
in equation (3).

According to the above analysis, our RLTSA algorithm will make LTSA more
robust from three aspects: 1. robust PCA algorithm is used instead of the stan-
dard SVD to reduce effect of noise on local tangent space coordinates; 2. RLTSA
selects neighborhoods that are well approximated by the local tangent space co-
ordinates to align with the global coordinates, 3. in the alignment step, the
influence of noise on embedding result is further reduced by specifying different
weights to clean data points and noise data points in local align error.

3 The RLTSA Algorithm

Our RLTSA algorithm works as follows:

step 1: Construct neighborhood of each data point as the original LTSA algo-
rithm does.

step 2:

1. Perform robust PCA on each neighborhood to obtain local tangent coordi-
nates X̂i;

2. determine weight wi for each point in local alignment error formula (1);
3. select a neighborhood subset RN ;

step 3: For each neighborhood Xi in RN , obtain its local alignment matrix Φi

via minimizing the following weighted local alignment error instead of equation
(1):

min
ci∈Rd

L̂i∈Rd×d

Ei = min
ci∈Rd

L̂i∈Rd×d

∑
xj∈Xi

wj‖yj − (ci + L̂ix̂
(i)
j )‖2 (4)

It can be rewritten as the following matrix form:

min
ci∈Rd

L̂i∈Rd×d

Ei = min
ci∈Rd

L̂i∈Rd×d

∥∥∥(Y Si − (cieT + L̂iX̂i)
)
WSi

∥∥∥2

F
(5)

where W = diag(
√
w1,

√
w2, . . . ,

√
wn). As the same way in the original LTSA

algorithm, the minimal weighted local alignment error can be also expressed as
following form:

minEi = ‖Y Φi‖2
F (6)
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Then RLTSA obtain the global embedding coordinates via minimizing local
alignment error sum of neighborhoods in RN :

min
∑

Xi∈RN

Ei = min
∑

Xi∈RN

‖Y Φi‖2
F = min

∑
Xi∈RN

tr(Y ΦiΦ
T
i Y

T ) (7)

The solution can be obtained by the eigendecomposition of the global alignment
matrix Φ =

∑
Xi∈RN ΦiΦ

T
i .

In the following, we will give details of the key issues in our RLTSA algorithm:
how to determine the weights and subset RN .

After performing robust PCA on each neighborhood, denote the local tan-
gent coordinates, robust principal subspace and robust mean of neighborhood
Xi by X̂i, Vi and µi respectively. Then for data point xij (j = 1, 2, . . . , k) in
neighborhood Xi, its principal reconstruction error is:

εij = ‖xij − µi − Vix̂ij‖ (8)

Then a normalized error can be computed as ε∗ij
= εij/

∑k
j=1 εij . For each point

xj , we then compute its mean normalized error αj over the neighborhoods that
it is in. Set Nj = {i : xj ∈ Xi}, then αj = 1/(!Nj)

∑
i∈Nj

ε∗iji
where ε∗iji

is xj ’s

normalized error in neighborhood Xi. For each point xj , its mean normalized
error αj can be serve as its likelihood as noise point. Set ᾱ =

∑n
i=1 αi as the

mean value of mean normalized errors. Then our RLTSA algorithm exploits the
following formula to compute the weight of point xj :

wj =
{

1, αj ≤ ᾱ;
ᾱ/αj, else.

(9)

A natural request for selected neighborhoods is that they should contain more
clean data points. Therefore we should select neighborhoods that contains rel-
ative more clean points. If we serve the points whose αi ≤ ᾱ as clean points,

the percentage of clean points in neighborhood Xi is βi =
!clean points in Xi

!Xi
.

Then the selected neighborhoods set1 can be expressed as:

RN = {Xi|βi ≥ 0.6} (10)

4 Experimental Results

Extensive experiments on both artificial data sets and real world data sets have
demonstrated the effectiveness of our RLTSA algorithm. In our implementation
1 Although a few data points may be not covered by the selected neighborhoods,

these points depart too far from the manifold, so that obtaining their embedding

coordinates is meaningless, therefore removing it from the data set will not influence

performance of our algorithm. Hereafter for brevity, we always assume all data points

can be covered by the selected neighborhoods.
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of RLTSA, we adopted the ROBPCA algorithm [15], which is an effective robust
PCA technique and is extremely suitable for high-dimensional data, to perform
robust PCA. Of course, other robust PCA method is also suitable.

4.1 Synthetic Data

We apply our RLTSA to data sets sampled from Swiss Roll manifold. To show
the effectiveness of our RLTSA algorithm on noise manifold. we compare three
algorithms LTSA, RLLE and our RLTSA. The results are shown in fig. 1. For
data set sampled from Swiss Roll manifold which are embedding from R3 to R2,
the performance of algorithms can be seen by taking into account the coloring
of the data points in the plots. From fig. 1, we can see that only the embed-
ding results obtained by RLLE and our RLTSA vary the color smoothly, this
means that only RLLE and RLTSA algorithm can recover the manifold struc-
ture well. So we can conclude that RLTSA algorithm can significantly improve
the performance of the LTSA algorithm on noise corrupted data sets.

To evaluate the performance of RLTSA algorithm on different types of noise,
we perform more experiments on data set sampled from Swill Roll manifold. This
time we use Gaussian noise instead of the uniformly distributed noise. Mean-
while, we further study how the performance of RLTSA varies as the level of
noise increases. Fig. 2 shows results of RLLE and RLTSA on data set with dif-
ferent level Gaussian noise respectively. We can see that when there has more
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Fig. 2. Results of RLLE and RLTSA on Gaussian noise corrupted data sets sampled

from Swiss Roll manifold. The data set contains 1500 points where we select different

number of points at random and impose Gaussian noise with mean µ = 0 and standard

deviation σ = 2 on them.(a)RLLE result, 150 noise points; (b)RLTSA result, 150 noise

points; (c)RLLE result, 300 noise points; (d)RLTSA result, 300 noise points; (e)RLTSA

result, 450 noise points; (f)RLTSA result, 600 noise points.
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than 20% noise points, RLLE is incapable of recovering the manifold structure.
However, for our RLTSA, even if there has 40% noise points, it can still re-
cover the manifold structure well. This demonstrates that our RLTSA algorithm
outperform the state-of-the-art RLLE algorithm for noise corrupted data set.

4.2 Rendered Face Data Set

To illustrate the effectiveness of our RLTSA algorithm on high-dimensional real
word data, we conduct experiments on rendered face data set2 which is another
benchmark data set used by many manifold learning algorithms. To generate
noise images, we first randomly select 70(≈ 10%) images and for each selected
image we change the value of randomly chosen 410 pixels(≈ 10%) by inverting
each value(i.e., pixel value v is replaced by 1− v). Fig. 3 shows ten original face
images and their corresponding noise images. And the 2-D embedding result
of RLTSA is shown in fig. 4. One one see from it that the poses and light of
embedding images(including noise images) vary smoothly, this means that our
RLTSA algorithm preserves the intrinsic structure well.

Fig. 3. Ten face images and their corresponding noise images

Fig. 4. 2-D embedding result of RLTSA algorithm. The “.” represents clean images,

and red “+” represent noise images. Images correspond to the circled points linked by

solid line.

2 http://isomap.stanford.edu

http://isomap.stanford.edu
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To further quantitatively compare the performance of LTSA, RLLE and
RLTSA, we use these algorithms to obtain 3-D embedding results of this face
data set under different neighborhood size. Denote the matrix that consists
of light parameters and poses parameters by P , and its centered matrix by
P̂ = P − (1/n)PeeT , then we can use the following relative reconstruction error
to quantitatively evaluate performance of embedding algorithm:

error =
min

L∈R3×3
‖P̂ − LY ‖F

‖P̂‖F

(11)

where Y is the embedding coordinates obtained by algorithm. Fig. 5 plots the
relative reconstruction error of the 3-D coordinates computed by LTSA, RLLE
and RLTSA under different neighborhood size respectively. One can clearly see
that our RLTSA algorithm leads to significantly smaller relative reconstruction
errors than others, this means our RLTSA can recover the pose and light pa-
rameter with higher accurately even in presence of noise. However, the relative
errors of LTSA is close to 1, this means that in the presence of noise, LTSA can’t
recover the intrinsic parameters of the data set.
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Fig. 5. Relative reconstruction errors of three algorithms under different neighborhood

size

5 Conclusion

In this paper, a robust version of LTSA algorithm called RLTSA is proposed. Ex-
tensive experiments on artificial data sets and real world data set demonstrates
the effectiveness of our RLTSA algorithm when dealing with noise corrupted
data sets. Moreover the mechanism dealing with different types of neighborhoods
and different data points can be used in other manifold learning algorithm to
make them robust.
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Abstract. In pattern recognition systems, data fusion is an important

issue and evidence theory is one such method that has been successful.

Many researchers have proposed different rules for evidence theory, and

recently, a variety of averaging rules emerged that are better than others.

In these methods, the key issue becomes how to give the weights to

the multiple contributing factors, in order to calculate the average. To

get better weights for the multiple bodies of evidence, we propose the

use of structural information of the evidence. The bodies of evidence

lie on a certain informational structure which can be described by a

probability distribution and the probability of each evidence can serve

as a weight for the evidence. Our experimental results show that our

method outperforms other previous methods.

Keywords: Evidence Theory, Data Fusion, Decision Making, Probabil-

ity, Belief Function.

1 Introduction

The nature and pace of advances in machine learning techniques is dramatically
enhancing the effectiveness of pattern recognition methods. Many algorithms
have been proposed for pattern recognition (see [1,2] and references therein).
However, usually these algorithms are suitable to handle only one input signal
source, even though the signal might be a mixture from multiple sources (i.e., a
multivariate variable). When humans recognize some kind of pattern, they use
multiple sensors and merge them together, or multiple persons might recognize
something and then combine their opinions. This is because one sensor or a single
person may not be good enough to unambiguously recognize something, and in
this case more sensors or persons may lead to clearer and more stable recognition.
Furthermore, the multiple sources (signals or humans) may have different levels
of uncertainty associated with them. Therefore, in pattern recognition systems,

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 302–311, 2009.
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we need to handle such different levels of uncertainties from multiple sources
or multiple recognition systems which could be implemented as neural networks
(NNs) [3]. In this case, data fusion becomes an important issue, where Bayesian
theory, fuzzy logic, and evidence theory are known to be effective, even though
there is no consensus on which method is more universally applicable [4,5,6,7].

Evidence theory (ET) is a mathematically well defined theory for handling
conflict between different bodies of evidence. It is conceptually the same as
Bayesian theory except that it uses epistemic (subjective) uncertainty [8]. The
advantages of ET include its flexibility in theory and easy implementability. In
ET, a set of elements can be considered as a hypothesis with an associated degree
of belief, and the sum of all beliefs does not have to be 1.0, unlike Bayesian
methods where the sum of all probabilities should equal 1.0. After the initial
introduction of ET by Dempster [5], it has been improved [6,9,7] because in
some cases the original ET’s combination rule is against our intuitive reasoning.
Many researchers have proposed different rules to address this issue, and recently,
some effective averaging rules have emerged, and in these rules, how to assign
the weights becomes an important issue [9,10,11]. These extensions of ET have
been applied to many pattern recognition problems [12,13].

In this paper, we focus on an averaging method for the combination rule as
proposed in [9,10,11]. We use the fact that multiple bodies of evidence give a
probability distribution, and the probability of each piece of evidence on this dis-
tribution can serve as a weight for that evidence. Here, we simply use a Gaussian
distribution as an approximation, to get the weights, and in turn calculate the
average for the multiple bodies of evidence. We used the same data set from pub-
lished averaging methods, and compared our method to those previous methods.
Our experimental results are promising since our proposed method uses more
information than other previous methods.

The rest of this paper is organized as follows. First, we briefly review ET
and some averaging rules for ET in section 2. Then, in section 3, we propose
a new probabilistic combination rule with discussions about its merit against
the previous methods and its potential application to neural network systems.
Section 4 shows two experimental results with analysis. Finally, we conclude our
work with a brief outlook in section 5.

2 Related Work

2.1 Dempster-Shafer Theory

Dempster [5] proposed evidence theory and Shafer [6] developed it which led to
Dempster-Shafer theory (D-S theory). Here, we give a brief review of the D-S
theory. For details, see [7] and references therein.

Let Θ be a set of hypotheses, andm be a basic belief assignment (BBA) which
is a function from a subset of Θ to [0, 1] with the following properties.

m(φ) = 0,∑
A⊆Θ

m(A) = 1. (1)
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When two evidence bodies m1 and m2 are given, the Dempster’s combination
rule for m̃(A) is defined by

m̃(A) =
∑

B∩C=Am1(B)m2(C)
1−K , (2)

where
K =

∑
B∩C=φ

m1(B)m2(C). (3)

Here, K indicates basic probability associated with conflict. This can be easily
expanded to more than two evidence bodies.

As pointed out in [9], in some cases Dempster’s combination rule is against
our intuitive reasoning. For example, when only one evidence has 0 belief but all
others have 1 belief, still the combination is 0. To overcome this weakness, ET
has been improved in some directions such as Yager’s modified Dempster’s rule,
Inagaki’s unified combination rule, Zhang’s center combination rule, Dubois and
Prade’s disjunctive consensus rule, mixing or averaging, convolutive X-averaging
and so on [7]. Among all these approaches, the averaging approach is known to
be better than others [7,11].

2.2 Averaging Rules

In [9], Murphy proposed an averaging rule to avoid the nonintuitive combination
in D-S theory as shown in the previous section. When there are N evidence
bodies, Murphy’s rule first calculates the average of each hypothesis for the
evidence. After calculating the averages, it applies the D-S combination rule
with the averages N − 1 times. That is, Eq. (2) is modified as follows.

m̃(A) =
∑

B∩C=A m̄(B)m̄(C)
1− K̄ , (4)

where
K̄ =

∑
B∩C=φ

m̄(B)m̄(C). (5)

Here, m̄(B) and m̄(C) are the averages of evidence for B and C, respectively.
Note that it started using a first order statistics which is the average of the
evidence. Here, all bodies of evidence have the same importance with the same
weight in calculating the average, which is not always the case.

As in human decision making, each evidence needs to be assigned with a
different weight. If one evidence is in harmony with other evidence, then it can
be considered with high importance. Likewise, if one evidence is in high con-
flict, it can be considered less important. So, instead of a simple averaging rule,
some other researchers have tried a weighted sum of evidence bodies [11,10].
Although their methods can not be easily summarized in a few equations, gener-
ally speaking, they use distances between evidence bodies for different weights,
which can be interpreted as a second statistics of the evidence. These methods
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have better performance than Murphy’s simple averaging method. However, the
distance-based weight methods do not use all the information of the structure
where the evidence bodies lie on. Also, they are not plugged into probability
theory seamlessly and they are complex to implement.

3 Probabilistic Combination Rule

In this paper, we propose a new probabilistic combination rule for ET. Basically,
as in [9] and [11,10], we calculate a weighted sum of evidence bodies for the
representative value for each hypothesis from all the evidence. However, it is
natural to assume that evidence bodies make a structure as in other data sets
(see manifold learning methods [14,15,16]) and this structure can be described
by a probability distribution. Then, we can use the probability of evidence on
the distribution for different weights. Here, we calculate a new weighted sum
which uses probability of the evidence.

Let mj(Ai) be the jth evidence of ith hypothesis, where i = 1, ..., C and j =
1, ..., N . µi and σ2

i are the mean and the variance of ith hypothesis, respectively.
As in the maximum likelihood (ML) estimate, we use a biased variance instead of
an unbiased one, since the mean is also estimated. Moreover, the biased one gives
more informative result especially with the small number of data points, even
though the unbiasedness is a very attractive property [17, chap 4]. We assume a
Gaussian distribution for the evidence bodies of each hypothesis to get a weight
wij for mj(Ai) as follows.

wij =
1
Zi

exp{−(mj(Ai)− µi)2

σ2
i

}, (6)

where Zi is a normalization term so that
∑

j wij = 1. Note that we cannot
use a multivariate Gaussian model which might be able to use correlations be-
tween hypotheses, because the number of evidence might be less than that of
the hypotheses. Now, the weight for each evidence is given by

w̃j =
1
N

∑
i

wij . (7)

Then, the weighted sum of the evidence bodies for the hypothesis Ai is obtained
by

m̄p(Ai) =
∑

j

w̃jmj(Ai). (8)

After calculating the weighted sums for all the hypotheses, we apply D-S
combination rule N − 1 times as other averaging methods do. With Eq. (8),
Eq. (2) is modified as follows.

m̃p(A) =
∑

B∩C=A m̄p(B)m̄p(C)
1− K̄p

, (9)
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where
K̄p =

∑
B∩C=φ

m̄p(B)m̄p(C). (10)

So, if one evidence has low probability in the evidence distribution, a very low
weight is assigned to that evidence according to the probability. Likewise, an
evidence with a high probability has high importance. In such a way, we use
the information of the structure where the evidence bodies lie on and this is
mathematically well defined even though the distribution model we assume here
is simple.

Our proposed method uses probability of evidence instead of just mean or
distances. Although the probability is based on corresponding Mahalanobis dis-
tance between the evidence and the mean when we use a simple Gaussian model,
it is simply calculated by the distribution. We can expand this approach to more
complicated distributions with many other density estimation methods such as
a mixture of Gaussian model rather than a simple Gaussian distribution. So, our
method is conceptually different from others, and physically this probability is
more meaningful than the normalized distance for weights [18,19]. Also, proba-
bility is better than distance in terms of performance, which is confirmed in the
next section.

In addition to combining the results from multiple recognition systems, our
technique can be used for data fusion to help develop a more efficient and robust
neural network system. For example, given two sets of measurements, the number
of input nodes have to be doubled, making the system more complex. However,
we can use our technique to combine the measurements, thus reducing the input
layer size. Furthermore, our method can help remove noise or outliers through
the data fusion process. As a result, the neural network can converge faster
(fewer input nodes) and be more robust (noise resistent).

4 Experiments

In order to show the useful behavior of our method, we carried out experiments
with two different data sets used in the previous published methods: (a) the
data set in [11] (Data A) and (b) the data set in [10] (Data B). We compared
our proposed method to their methods proposed in each paper. We implemented
D-S theory, Murphy’s averaging method and Chen’s averaging method in [11]
but we simply used Yong’s results from the paper [10], for comparison with our
results. Actually both cases are for target recognition systems where there is one
true target (for both cases, the hypothesis A is the true target) with multiple
evidence.

4.1 Data A

The belief table used in [11] is in Table 1. There are 5 evidence bodies and 3
BBAs for 3 hypotheses. Note that the second BBA for the hypothesis A is zero
which is seriously conflicted with other evidence and evidence bodies 3, 4 and 5
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have the same belief values. Intuitively, the hypothesis A should have a dominant
belief after the combination rule and the hypothesis B should go close to zero.
Also the influence of the second evidence is expected to be decreased as evidence
bodies are added.

Table 1. Evidence of Data A

Belief m1 m2 m3 m4 m5

m(A) 0.50 0 0.55 0.55 0.55

m(B) 0.20 0.90 0.10 0.10 0.10

m(C) 0.30 0.10 0.35 0.35 0.35

Table 2. Comparison of combinations for Data A

Methods Belief m1,2 m1,2,3 m1,...,4 m1,...,5

Chen’s m(A) 0.1543 0.6026 0.8276 0.9048

m(B) 0.7469 0.2239 0.0355 0.0061

m(C) 0.0988 0.1735 0.1369 0.0891

Prob. Weights m(A) 0.1543 0.7194 0.8594 0.9107

m(B) 0.7469 0.0945 0.0078 0.0010

m(C) 0.0988 0.1861 0.1327 0.0884

Table 2 shows the combination results of two methods as evidence bodies are
added. We can see both methods have the hypothesis A going over 0.9 and the
hypothesis B converging to almost zero after 5 evidence bodies are combined,
which accords with our intuition. However, our proposed method converges faster
than Chen’s method as well as Murphy’s, which we can see more easily in
Fig. 1. In this figure, we can see that Murphy’s method converges in a linear way
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Fig. 1. The belief assignments of the hypothesis A from several methods for Data A



308 H. Choi et al.

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of additional evidence bodies

W
ei

gh
ts

 

 

Murphy
Chen
Prob. Weights

(a)

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evidence bodies

W
ei

gh
ts

 

 

Murphy
Chen
Prob. Weights

(b)

Fig. 2. The weights of three averaging methods: Murphy, Chen and Probabilistic

Method. (a) The changing weight of the second evidence as the number of evidence

increases, (b) The weights of all evidence bodies when 5 evidence bodies are given.

because it uses uniformly distributed weights, while Chen’s and our proposed
method converge much faster than Murphy’s because they use the structure of
evidence based on distances and probabilities, respectively. Note that the results
of D-S combination for the hypothesis A are zero after evidence 2 no matter how
high other BBAs are because it ignores all the conflicting evidence which can be
interpreted as an AND operation as mentioned in [7].

Fig. 2 shows the weights for the evidence in three methods: Murphy’s, Chen’s
and our proposed method. Fig. 2(a) shows how the weight for the second evidence
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changes as other evidence bodies are added. The second evidence is seriously
conflicted with others, so we want to minimize the effect (or weight) for it.
Our proposed method depress the weight much faster so the effect of the second
evidence gets more minimized than in other methods. Fig. 2(b) shows the weight
of all evidence bodies after all evidence bodies are combined in three methods.
In our proposed method, evidence 2 has less weight and evidence 3,4 and 5
have higher weights than other methods, which means our method finds out the
proper weights aligned with our intuition.

4.2 Data B

The belief table used in [10] is in Table 3. As mentioned earlier, ET can have
a set of elements as one hypothesis. In this table, there are 3 elements (A,B
and C) and 4 hypotheses with ({A,C}) in addition to the 3 elements. There are
5 evidence bodies and the second one is seriously conflicted as in the previous
data.

Table 3. Evidence of Data B

Belief m1 m2 m3 m4 m5

m(A) 0.5 0 0.55 0.55 0.6

m(B) 0.2 0.9 0.1 0.1 0.1

m(C) 0.3 0.1 0 0 0

m(A,C) 0 0 0.35 0.35 0.3

Table 4. Comparison of combinations for Data B

Methods Belief m1,2 m1,2,3 m1,...,4 m1,...,5

Yong’s m(A) 0.1543 0.4861 0.7773 0.8909

m(B) 0.7469 0.3481 0.0628 0.0086

m(C) 0.0988 0.1657 0.1600 0.1005

Prob. Weights m(A) 0.1543 0.4768 0.9119 0.9879

m(B) 0.7469 0.4518 0.0556 0.0031

m(C) 0.0988 0.0656 0.0210 0.0039

In Table 4 and Fig. 3, our method converges faster than any other methods.
Actually, Yong’s method seems slightly better than ours and much better than
Chen’s when only 3 evidence bodies are combined, because the distribution is
not well developed yet. However, from 4 evidence bodies, our method works
much better than Yong’s as well as any other methods. More interestingly, when
5 evidence bodies are combined, Yong’s method is worst compared to all other
methods, still our method is the best.
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Fig. 3. The belief assignments of the hypothesis A from several methods for Data B

5 Conclusion

In this paper, we proposed a new way to calculate weights for the averaging
method in evidence theory. Our proposed method uses the informational struc-
ture of evidence in the form of a probability distribution. Our method is well
supported mathematically and conceptually, and is simple to implement. The
performance of our method turned out to be superior to other existing methods.

A promising future direction is to replace the simplistic Gaussian distribution
for the evidence to a more complex distribution. This will be especially necessary
when the number of bodies of evidence is great.
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Abstract. In this paper, we consider the problem of frequent elements over data 
stream seeks the set of items whose frequency exceeds σN for a given threshold 
parameter σ. We refer to this model as the sliding window model. We also use a 
user specified error parameter, ε, to control the accuracy of the mining result. 
We also propose an FIA (Frequent Itemsets mining based on an Approximate 
counting) algorithm based on the Chernoff bound with a guarantee of the output 
quality and also a bound on the memory usage. The proposed algorithm show 
that runs significantly faster and consumes less memory than do existing  
algorithms for mining approximate frequent itemsets. 

Keywords: Frequent itemsets, Window Sliding, Chernoff bound, Approximate.  

1   Introduction 

In many applications, mining frequent itemsets on data streams is needed. It is thus of 
great interest to mine itemsets that are currently frequent. Several applications natu-
rally generate data streams as opposed to data sets. In telecommunications, for exam-
ple, call records are generated continuously. Typically, most processing is done by 
examining a call record once or operating on a “window” of recent call records, after 
which records are archived and not examined again. One of the challenging aspects of 
processing over data streams is that, while the length of a data stream may be  
unbounded, making it impractical or undesirable to store the entire contents of the 
stream, for many application [1]. Due to the constraints on both memory consumption 
and processing efficiency of stream processing, together with the exploratory nature 
of frequent itemsets mining, research studies have sought to approximate frequent 
itemsets over streams [2]. In the past few years, previous studies have been proposed 
to the efficient mining of frequent itemsets over data streams. The frequent elements 
problem over data stream seeks the set of items whose frequency exceeds σN for a 
given threshold parameter σ. Approximate mining algorithms use a related minimum 
support threshold (also called a user-specified error parameter), ε , where 0 ≤ ε < σ ≤ 1, 
                                                           
*  This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant 

funded by the Korea government(MEST) (No. 2009-0075771). 
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to obtain an extra set of itemsets that are potential to become frequent later. A sliding 
window over a stream is a bag of last N elements of the stream seen so far, for some 
nonnegative integer N. This model captures recent pattern changes and trends. By the 
use of ε, we obtain highly accurate mining results and the mining efficiency is signifi-
cantly improved. Existing approximation techniques for mining frequent itemsets are 
mainly false-positive approach [4-9]. Yu et al. proposed a false-negative approach [3]. 
The method focuses on the entire history of a data stream and does not distinguish 
recent itemsets from old ones. In this paper, we propose a false-negative approach in 
order to handle on recent data in a sliding window model. We also propose an FIA 
(Frequent Itemsets mining based on Approximate counting) algorithm based on the 
Chernoff bound with a guarantee of the output quality and also a bound on the mem-
ory usage. Therefore, our algorithm is controlled by two parameters ε and δ for error 
bounds and reliability. We can set a reasonable value for ε, accurate result, fast com-
putation and low memory utilization can be achieved.  

2   Problem Statement 

In this section, we will prove a fairly general form of the Chernoff bound to mine 
frequent itemsets over data stream.  

2.1   Preliminaries 

Let X be a sum of n independent random variables {Xi}, with E[Xi] = pi such that Xi 

∈{0,1} and |Xi| ≤ 1 for all i ≤ n.  Let 
1

n

ii
X X

=
=∑ and 2σ  be the variance of X and let 

μ denote the expected value of X. Then we have 

E E[ ]i i iX X pµ ⎡ ⎤= = =⎣ ⎦∑ ∑ ∑  (1)

Then  

2
4Pr 2 ,X e

λλσ −
⎡ ⎤≥ ≤⎣ ⎦           For any 0 2λ σ≤ ≤                         (2) 

Proof. By the above formula (2), we will prove as follows. 
 

2
4Pr 2X e

λλσ −
⎡ ⎤≥ ≤⎣ ⎦  (3)

The argument is symmetric for [ ]Pr X λσ− ≥ . Let t be a real number between 0 and 1, 

to be determined later. Note that 

[ ] E[ ]
Pr Pr Pr

tX
tX t

t

e
X tX t e e

e
λσ

λσλσ λσ ⎡ ⎤⎡ ⎤≥ = ≥ = ≥ ≤⎣ ⎦ ⎣ ⎦  (4)

By the Markov inequality, we establish a bound on E[ ]tZe . Let 1t ≤  andE[Z]= 0 , for 

all 1 Z 1− ≤ ≤ . By the definition of expectation, since 1ktz ≤ , we can upper bound C. 
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Let 2(1 Var[ ])it X+  be a sum of variance of Z.  In equation (4), 2t λ
σ=

 

1 2

2 2 2

( ... )

1 1

Var[ ]2
1 i 1

E[ ] E[ ]

E[ ] E[ ]

(1 + Var[X ])

n

i i

i

t X X XtX

tX tXn n
i i

t Xn n t
i i

e e

e e

t e e σ

+ + +

= =
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=

= ∏ = ∏

≤ ∏ ≤ ∏ =

 (6)

Thus, we get that the expected value of X. 

[ ]
2 2

2
( ) 4Pr

t
t t

t

e
X e e

e

σ λσ σ λ
λσλσ

−−≥ ≤ = ≤  (7)

2.2   Chernoff Bound 

Suppose there is a sequence of elements, 1 2, ,..., ,..., ,i Ne e e e in data stream and consider 

the first n ( )n N observations as independent Bernoulli trails(coin flips) such that 
( )Pr head p=  and ( ) 1Pr tail p= −  for a probability p. Let k be the number of heads in 

the n coin flips. Then, the expectation of k is np. Chernoff bound states, for any 
0.σ > From equation (7), 

[ ]
2

4 2
2| | 2

np
Pr k np np e e

σ σσ
− −− ≥ ≤ ≤  (8)

By substituting kk n

−
=  and ,pε σ=  

2
2

2
22 22 2

| | 2 ( )

| | 2 2 2

n p

p

n p
nn p p

P r k n n p n e b y

= P r k p e e e

σ ε

ε
εσ

ε σ

ε

− −

−
− −−

⎡ ⎤⋅ − ≥ ≤ =⎢ ⎥⎣ ⎦

⎡ ⎤− ≥ ≤ ≤ ≤⎢ ⎥⎣ ⎦

 (9)

Let
2

22
n pe
ε

δ
−

= .  We obtain the following equation. 

2
2

2
2 2 22 2
2 2 22

2

log 2 log
log log , log , 2 log ,

2 log 2

n
pe e

e ee

n p
n p

p e n

ε

δ

ε δ δδ ε δ ε
−
⋅ ⋅

⋅ ⋅⋅

− ⋅= = = − = ⋅ =
−

 (10)

2
2 2 ln( )2 log e pp

n n
δδε ⋅ ⋅⋅= =  

By s p= , the minimum support s as the probability p. 
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22 ln( )s

n
δε ⋅

=  (11)

Then, from equation (9), we can produce k
−

 satisfying: 

[ ] 1Pr s - s +kε ε δ
−

≤ ≤ ≥ −  (12)

In other word, for a itemset X, true support of X is within ε± of s with reliability1 δ− . 
In order to test whether our false negative oriented approach decrease error propaga-
tion, setting minimum support and reliability in Table 1. We can see that, our bound 
does not rely on the user-specified σ, but on a chernoff bound ε which decreases 
while the number of observations n increases. As a result, we believe that our method, 
promising to solve our algorithm.  

Table 1. Error propagation of false negative (ε) and false positive( /10sσ= ) with stream size(n) 
in the range [ , ]s δ  

[ s,   δ ] Size (n) ε /10sσ=  [ s,   δ ] Size (n) ε /10sσ=  
[0.1, 0.1] 3518 0.0131 0.01 [0.2, 0.1] 3518 0.0185 0.02 

[0.1, 0.1] 5991 0.0100 0.01 [0.2, 0.1] 5991 0.0141 0.02 

[0.1, 0.1] 11278 0.0073 0.01 [0.2, 0.1] 11278 0.0103 0.02 

[0.1, 0.1] 64085 0.0031 0.01 [0.2, 0.1] 64085 0.0043 0.02 

[0.1, 0.1] 93263 0.0025 0.01 [0.2, 0.1] 93263 0.0036 0.02 

[0.1, 0.1] 1182911 0.0007 0.01 [0.2, 0.1] 1182911 0.0010 0.02 

3   Proposed Algorithm 

In this section, we develop an algorithm based on the chernoff bound for mining  
frequent itemsets, called FIA. This algorithm offer to devise techniques for storing 
summary or synoptic information about previously seen portions of data stream. 
Hence the proposed method give a tradeoff between the count of some approximate 
frequent itemsets and the count of real frequent itemsets to provide precise answers to 
involve past data. We refer to this model as the sliding window model.  

3.1   Basic Concept of FIA Method 

Assume that the current data stream, 1 2,{ , ... }m mDS e e e=  when the current size of the 

stream is m and the current size of window is N. In addition, when the size of a sliding 
window is denoted by W, the current window ( , ) 1 2{ , ,..., }W N m N m N mDS e e e− + − +=  in the 

current data stream mDS  is defined by the set of N transactions that are most recently 

generated. In our algorithm, we divide the itemsets into three groups – frequent 
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 itemsets in a current window of size N, potential frequent itemsets and unpromising 
infrequent itemsets in a current widow of size N. Basically, the process of FIA algo-
rithm is shown as follows. In step 1, window initialization phase, is activated that 
after ( )m N W≥ =  elements of the stream. In this phase, each element of the new in-
coming transaction is approximately counted. A ( , )W NDS allow ie

N
ε ⋅  approximate 

counts to be computed over the current window. In step 2, Frequent itemsets genera-
tion phase, by the user support threshold σ (0 ≤ σ ≤ 1) and computed chernoff bound 
ε (0 ≤ ε < σ) in a current window find frequent itemsets.  For any a approximate fre-
quent itemset iF , (1) iF is frequent if a_count ( iF )≥σN,  (2) is potential frequent if εN 

≤a_count( iF )≤σN, and (3) iF is infrequent if a_count( iF ) < εN.  The potential fre-

quent itemset may become frequent later. We are only interested in frequent itemsets, 
and infrequent itemsets will discard because the number of infrequent itemsets is 
really large over data stream. Hence, the error will be no more than ε because of the 
loss of support from infrequent itemsets. It is guarantees that no false negative.  
Finally, in step 3, Updating window, the arrival of a new block also triggers in current 
window, which are differently executed in three cases: (1) New itemset insertion (2) 
Old itemset update (3) Itemset discounting. 

3.2   Mining of Potential Frequent Itemsets within a Current Sliding Window 

The frequent itemsets generation is described as follows. First of all, our algorithm 
FIA read every transaction from the current block of current window. Then, we keep 
the potential frequent itemsets in the active table with respect to σ in each block B. 
For the first block B, after finding the potential frequent itemsets, it is set to the  
support of each itemsets. For example, in Fig 1, the first sliding window W1 contains 
the three blocks: B1, B2, B3. Let the user-defined minimum support threshold σ be 0.5. 
First, FIA reads the first block B1 and support counter is set in the active table. Then, 
the itemsets is frequent if a_count( iF )≥σN where itemset “a” is 6≥0.5*10. In initiali-

zation step, the p_count in potential table is set to be 0. If a_count( iF ) < σN  then we 

keep frequency counts into potential table. After pruning all infrequent information 
from the active table, and its support counter contains into potential table. The pro-
posed algorithm is performed using apriori property in order to find the frequent  
k-itemsets. The candidate generation process is stopped until no new candidates  
frequent itemsets with k+1 itemsets are generated. The result is shown in Fig 1.  

Next, when the current sliding window W1 is becomes full, merged to itemsets 
with support of longest frequent itemsets in each blocks as Fig 2. 

Therefore, the generated frequent itemsets in current window W1 becomes {a, b, c, 
ab, bc} as shown in Fig 3 and we know there are at most a equation (6) support count 
of frequent itemsets in the current window. 

| | | |

1 1

max[ _ ( )]/ | |
W W

i i
i i

B a count B Wσ
= =

⋅ =∑ ∑  (13)
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active table                                   potential table 
itemset a b c d e  itemset a b c d e 
a_count 6 9 7 3 7  p_count 0 0 0 03 0 

frequent itemsets  
itemsets a b c e ab ac ae bc be ce 
a_count 6 9 7 7 5 4 4 7 6 4 

active table                        potential table 
itemset a b c e  itemset a b c d e ad ac ae ce 
a_count 6 9 7 7  p_count 0 0 0 3 4 4 4 4 4 

(b) Frequent itemsets generation in block 2 after sliding 
BLOCK [B3] 

active table                                    potential table 
itemset a b c d e  itemset a b c d e 

a_count 7 8 7 1 6  p_count 0 0 0 01 0 
frequent itemsets              

itemsets a b c e ab ac ae bc bc ce 
a_count 7 8 7 6 5 5 4 5 4 4 

active table                  potential table 
itemset a b c e  itemset a b c d e ad ac ae ce be 
a_count 7 8 7 6  p_count 0  0  0  3+1=4  4    4    4   4+4=8  4+4=8  4 

(c) Frequent itemsets generation in block 3 after sliding 

TID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
items bc ace abc abe bce ace abd abc be abce 

 
BLOCK [B1] 

active table                              potential table 
itemset a b c d e itemset a b c d e 
a_count 6 9 8 8 4 p_count 0 0 0 0 04 

frequent itemsets              
itemsets a b c d ab ac ad bc bd cd abc bcd 
a_count 6 9 8 8 5 5 4 6 7 6 5 6 

active table                              potential table 
itemset a b c d itemset a b c d e ad 
a_count 6 9 8 8 p_count 0 0 0 0 4 4 

(a) Frequent itemsets generation in block 1 after sliding 
BLOCK [B2] 

TID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
items abcd abcde bc bcde abcde bcd ad abcd bde abc 

TID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
items bcd abe abc bce abce bce ade abc be abcde 

 

Fig. 1. Steps of frequent itemsets generation to each sliding block in current window W1 
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MERGE  B1+ B2+ B3 

 

[B1: frequent itemsets] 
itemsets a b c d ab ac bc bd cd abc bcd 
a_count 6 9 8 8 5 5 6 7 6 5 6 

[B2: frequent itemsets]     
itemsets a b c e ab bc be 
a_count 6 9 7 7 5 7 6 

[B3: frequent itemsets]  
itemsets a b c e ab ac bc 
a_count 7 8 7 6 5 5 5 

 
[ Merge: B1+ B2+ B3 ] 

a 5 + 5 + max[5,5] = 15/|W| =5 
b max[5,6] + max[5, 7, 6] + max[5,5,5] = 18/|W| = 6 
c max[5,6] + 7 + max[5,5] = 18/|W| = 6 
d 6 + 0 + 0 = 6/|W| = 2 
e 0 + 6 + 0 = 6/|W| = 2 
ab 5 + 5 + max[5,5] = 15/|W| = 5 
ae 5 + 5 = 10/|W| = 3.3 
bc max[5,6] + 7 + max[5,5] = 18/|W| = 6 

 

Fig. 2. Steps of block merge in current window W1 

 [Current window (W1): frequent itemsets]
itemsets a b c ab bc 
a_count 5 6 6 5 6  

Fig. 3. Generated frequent itemsets in current window W1 

3.3   Mining Frequent Itemsets Insert and Delete Phase 

The problem of mining frequent itemsets in recent data streams is to mine the set of 
all frequent itemsets by one scan. In our algorithm, after the oldest block is removed 
from the current sliding window, a new incoming block is appended to the window. 
As shown Fig 4, in insert states, each frequent itemset is accumulated approximate 
count and the potential count in the current block. Then, we estimate the maximum 
possible sum of its approximate support counts in the subsequent block based on the ε 
value. For each itemset that is in current window but not frequent in iB , we compute 
its support count in iB  by scanning the buffer to update its _a count . In Fig 5, after an 
itemset in current window is deleted if its sum of _a count  and _p count  is less than 

iBε ⋅∑ . Since, the transactions in | |i WB −  will the expired, the support counts of the 
itemsets kept by current window are discounted accordingly. 

3.4    Pruning Strategy 

In the FIA algorithm, the constant value Nσ ⋅  is the frequent threshold of itemsets, 

where σ is the user-defined minimum support threshold. It is important to note that ε 
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is not the user specified parameter but a running variable. The running error ε  de-

creases, while the size of window W increases. Therefore, iF sN≈ .  

[Insert: B4] 

 [Current window (W1): frequent itemsets]    
itemsets a b c ab bc 
a_count 5 6 6 5 6 

active table   
itemset a b c d e 
a_count 8 + 5 = 13 7 + 6 = 13 6 + 6 = 12 2 9 + 4 = 13 

[W1+B4: frequent itemsets] 
itemsets a b c e ab ac ae bc bc ce 
a_count 13 13 12 13 10 4 7 10 6 6 

potential table 
itemsets a b c d e ad ac ae ce be 

p_count 0 0 0 4+2=6 40 4 4+4=8 4+4=8 4+4=8 4 

TID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
items abe ace abce ade bce ace abe abe bce abce 

 

Fig. 4. Steps of insert to new block in current window W1 

[B1: frequent itemsets] 
itemsets a b c d ab ac bc bd cd abc bcd 
a_count 6 9 8 8 5 5 6 7 6 5 6 

 
[W1+B4-B1: frequent itemsets] 
active table   

itemset a b c d e 
a_count 13 - 5 = 8 13 - 6 = 7 12 – 6 = 6 2 13 – 0 = 13 

[frequent itemsets] 
itemsets a b c e ab ac ae bc bc ce 
a_count 8 7 6 13 7 6 8 6 7 6 

[potential table] 
itemsets a b c d e ad ac ae ce be 
p_count 0 0 0 6 0 4 0 0 0 0 

[Delete: B1] 

[W1+B4: frequent itemsets] 
itemsets a b c e ab ae bc bc ce 

a_count 13 13 12 13 10 7 10 6 6 

 

Fig. 5. Steps of delete to first b2lock in current window W1 

The pseudo code of algorithm FIA is outlined below. Our algorithm is conducted 

the impacts of a large number itemsets in the range of [ ],σ ε σ ε− +  on frequent item-

sets mining over active window. We obtain ε based on the chernoff bound and both  
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are initialized potential frequent itemset support count p_count, and use a_count for 

approximate count in active window. When iB  arrives, where 1 | |i W≤ ≤ , three condi-

tions are executed one by one from 4 to 14.  

 
Algorithm: FIA 

Input: dbDS (a transaction data stream), σ (a user-defined minimum support threshold in the  

range of [0,1] ), δ (a user-defined probability), |W| (window size) , ε (chernoff bound) 

Output: A set of frequent itemsets iF  

 
1.  Begin 
2.  a_count = 0; p_count = 0; W = NULL; 
3.  for each new transaction Ti in W do 
4.    if W = FULL then 
5.      for all itemset e in Ti do  
          a_count.cnt = a_count.cnt + 1; 
6.    if (a_count.cnt < σ) 
7.      delete a_count.table(e) 
8.      p_count.cnt = a_count.cnt; 
9.  end for 

10. iF (k=1) = {frequent 1-itemsets}; 

 

4   Experimental Results    

In this section, we will describe the experimental evaluation of the proposed algo-
rithms, FIA. We evaluate the performance of our FIA algorithm by varying the usage 
of the memory space. We also analyze the execution time. The simulation is imple-
mentation in Visual C++ and conducted in a machine with 3GHz CPU and 1GB 
memory. We use two sets of synthetic databases by using IBM Quest data generator. 
Two synthetic data streams, denoted by T10I4D1000K and T40I10D1000K are gen-
erated, where some of the parameters mean that the average size of the transaction T, 
the average size of the frequent itemsets I, and the total number of transaction D. In 
the following experiments, the minimum support threshold σ vary from 0.1% to 1.0%, 
δ = 0.05 in data sets. The size of the sliding window is 20K transactions. We compare 
our algorithm FIA with Lossy Counting and FDPM algorithm. As shown in Fig 6, 
FIA significantly outperforms LC. From the figures we can see that the memory re-
quirement of proposed algorithm in the frequent itemset mining process is less than 
that of LC and FDPM. Fig 7 shows the processing time on two data sets.  

We can see that as the support increases, the processing time of frequent itemsets 
mining for all algorithms decreases. The processing time of our FIA algorithm is faster 
than that of LC and FDPM. Therefore, the proposed our algorithm is a time and mem-
ory efficient method for frequent itemsets mining from data streams based on window 
sliding. Our experimental results support false negative approach.  

11.  for (k=2; iF (k-1) ≠ NULL; k++) do 

         Generate the frequent k-itemsets; 
12.  end for 
13.  for each new block do  

/* A new incoming block */ 
14.  current window.a_count + new block.a_count 
15          if (a_count.cnt < σ) 
16.            delete a_count.table(e) 
17.             p_count.cnt = a_count.cnt; 
18.  end for 
19.  delete oldest block. a_count, p_count; 

20.  Output iF ( _ )a count Nε≥  
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(a) T10I4D1000K                                      (b) T40I10D1000K 

Fig. 6. Comparisons of memory usages in varying support σ 

 
(a) T10I4D1000K                                               (b) T40I10D1000K 

Fig. 7. Comparisons of processing time in varying support σ 

5   Conclusion 

In this paper, we study the problem a false-negative approach in order to handle on 
recent data in a sliding window model. We also propose an FIA algorithm based on 
the Chernoff bound with a guarantee of the output quality and also a bound on the 
memory usage. Therefore, our algorithm is controlled by two parameters ε and δ for 
error bounds and reliability. We can set a reasonable value for ε, accurate result, fast 
computation and low memory utilization can be achieved. We evaluate the perform-
ance of our FIA algorithm by varying the usage of the memory space. We can see that 
the memory requirement of proposed algorithm in the frequent itemset mining process 
is less than that of LC and FDPM.  
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Abstract. Parallel factor analysis (PARAFAC) is a multi-way decom-

position method which allows to find hidden factors from the raw tensor

data with many potential applications in neuroscience, bioinformatics,

chemometrics etc [1,2]. The Alternating Least Squares (ALS) algorithm

can explain the raw tensor by a small number of rank-one tensors with

a high fitness. However, for large scale data, due to necessity to compute

Khatri-Rao products of long factors, and multiplication of large matrices,

existing algorithms require high computational cost and large memory.

Hence decomposition of large-scale tensor is still a challenging problem

for PARAFAC. In this paper, we propose a new algorithm based on the

ALS algorithm which computes Hadamard products and small matrices,

instead of Khatri-Rao products. The new algorithm is able to process

extremely large-scale tensor with billions of entries in parallel. Extensive

experiments confirm the validity and high performance of the developed

algorithm in comparison with other well-known algorithms.

1 Introduction

PARAFAC [3] can be formulated as follows,1 “Factorize a givenN -th order tensor
Y ∈ RI1×I2···×IN into a set ofN component matrices:A(n) = [a(n)

1 ,a
(n)
2 , . . . ,a

(n)
J ]

∈ RIn×J , (n = 1, 2, . . . , N) representing the common (loading) factors”, that is,

Y ≈
J∑

j=1

a
(1)
j ◦ a

(2)
j ◦ . . . ◦ a

(N)
j

= �A(1),A(2), . . . ,A(N)� = �{A}� = Ŷ (1)

with unit-length components ‖a(n)
j ‖p = 1 for n = 1, 2, . . . , N−1, j = 1, 2, . . . , J ,

and p = 1, 2 (see Fig. 1). Tensor Ŷ is an approximation of the data tensor Y.

� Also from Dept. EE Warsaw University of Technology and Systems Research Insti-

tute, Polish Academy of Science, Poland
1 For convenience, tensor notations used in this paper are adopted from [2].

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 323–330, 2009.
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Fig. 1. Illustration for the standard PARAFAC (dash arrow), and grid PARAFAC for

large-scale tensors (solid arrows) in two stages

The well-known PARAFAC algorithm is the Alternating Least Squares (ALS)
algorithm [2] which minimizes the squared Euclidean distance (Frobenius norm)

D(Y||Ŷ) =
1
2
‖Y − Ŷ‖2

F (2)

with its learning rule for factor A(n) given by

A(n) ← Y(n) {A}�−n

({
ATA

}�−n
)−1

, (n = 1, 2, . . . , N). (3)

where {A}� and
{
AT A

}� respectively denote Khatri-Rao and Hadamard prod-
ucts of all the matrices inside the curly brackets, whereas {A}�−n and

{
ATA

}�−n

are also products but except the n-th factor.
The mode-n matricized version Y(n) is an In ×

(∏
k 
=n Ik

)
matrix, and the

Khatri-Rao product {A}�−n returns a tall matrix of size
(∏

k 
=n Ik

)
× J in

each iteration step. Hence, for large scale tensor, this learning rule demands
high computational cost, and large memory.2 The ALS algorithm is relatively
slow, and it is impossible to process a dense tensor having billions of entries. To
deal with such large dataset, we can reduce number of columns in Y(n) by some
sampled vectors (tubes) along each mode-n which satisfy specific criteria [4, 1].
Recently, the CUR decomposition [5] gives a fast approximation for a raw matrix
based on some sampled rows, columns, and their intersection. This method was
also extended to tensor to select tubes along each modes. However, both block-
wise and CUR approaches have not completely resolved the very large scale
2 For a symmetric tensor (I1 = . . . = IN = I), the computational cost and space cost

of the ALS algorithm are O(JIN ), and O(2IN ).
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problem for long factors, and high computational cost due to computation of
Khatri-Rao product. In this paper, we present a new factorization scheme dealing
with large-scale tensor and suitable for parallel implementation. We divide the
tensor Y into a grid of multiple sub-tensors Y(k̄) of size Ik1 × Ik2 × · · · × IkN ,∑Kn

kn=1 Ikn = In, where vector k̄ = [k1, k2, . . . , kN ] indicates sub-tensor index,
1 ≤ kn ≤ Kn, and Kn is the number of subtensors along the mode-n (see Fig. 1).
We factorize all the subtensors to give sub-factors U(n)

(k̄)
, then estimate the full

factors A(n) for the whole tensor using fast learning rules via parallel computing.
This model is called the grid-tensor factorization (gTF). The proposed al-

gorithm calculates Hadamard products, multiplication of small matrices, and
avoids Khatri-Rao products. Especially, this new algorithm opens new perspec-
tives to find nonnegative factors for the very large-scale tensors that could be
useful in many applications, such as neural science, data mining. Extensive ex-
periments confirm the validity and high performance of the developed algorithm.

2 ALS Algorithm for Grid PARAFAC

Assuming that N factors A(n) can explain the tensor Y, sub-tensors Y(k̄) can
also be factorized by a set of N sub-factors {A(k̄)} = {A(1)

(k1)
, A(2)

(k2), . . . ,A
(N)
(kN )}:

Y(k̄) = �{A(k̄)}�, where factor A(n) comprises Kn sub-factors A(n)
(kn) ∈ RIkn×J :

A(n) = [A(n) T
(kn) ]Tkn=1,...,Kn

.
The ALS algorithm for grid PARAFAC minimizes the standard Euclidean

distance for all the sub-tensors

D =
1
2

K1∑
k1=1

· · ·
KN∑

kN =1

‖Y(k̄) − �{A(k̄)}�‖2
F

=
1
2

∑
k̄

‖Y(k̄)
(n) −A(n)

(kn) {A(k̄)}�−n T ‖2
F (4)

whose gradient components with respect to sub-factors A(n)
(kn) are given by

∇
A

(n)
(kn)
D =

∑
k1,...,kn−1,
kn+1,...,kN

(
−Y(k̄)

(n) A
�−n

(k̄)
+ A(n)

(kn) A
�−n T

(k̄)
A�−n

(k̄)

)

=
∑

k1,...,kn−1,
kn+1,...,kN

(
−Y(k̄)

(n) A�−n

(k̄)
+ A(n)

(kn)

{
AT

(k̄) A(k̄)

}�−n
)
. (5)

This leads to the learning rule for sub-factor A(n)
(kn)

A(n)
(kn) ←

⎛⎜⎜⎝ ∑
k1,...,kn−1,
kn+1,...,kN

Y(k̄)
(n) A�−n

(k̄)

⎞⎟⎟⎠
⎛⎜⎜⎝ ∑

k1,...,kn−1,
kn+1,...,kN

(
AT

(k̄) A(k̄)

)�−n

⎞⎟⎟⎠
−1

. (6)
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Due to relatively small sizes of subtensors, Y(k̄)
(n) A

�−n

(k̄)
,
(
AT

(k̄)
A(k̄)

)�−n

can be
quickly calculated on parallel workers (labs) or sequentially on a single com-
puter.3 Moreover, we can eliminate the sub-tensors involving in estimation of
sub-factors A(n)

(kn) to those built up from tubes sampled by CUR decomposition.
The next section presents optimized algorithm which avoids Khatri-Rao prod-

ucts A�−n

(k̄)
in (6).

3 Optimized ALS Learning Rules

For sub-tensor Y(k̄), we factorize this tensor using the ALS algorithm (3) for
PARAFAC with Jk̄ components

Y(k̄) ≈ �U(1)

(k̄)
,U(2)

(k̄)
, . . . ,U(N)

(k̄)
�. (7)

The number of rank-one tensors Jk̄ should be chosen so that factors U(n)

(k̄)
explain

as much as possible the sub-tensor Y(k̄). Because sub-tensor Y(k̄) has small-size,
this factorization can easily achieve high fitness. For a subtensor, we have

Y(k̄)
(n) A�−n

(k̄)
≈U(n)

(k̄)
U�−nT

(k̄)
A�−n

(k̄)
= U(n)

(k̄)

(
UT

(k̄) A(k̄)

)�−n

= U(n)

(k̄)

(
P(k̄) %

(
U(n)T

(k̄)
A(n)

(kn)

))
, (8)

where P(k̄) =
(
UT

(k̄)
A(k̄)

)�
∈ RJk̄×J . Let Q(k̄) =

(
AT

(k̄)
A(k̄)

)�
∈ RJ×J , from

(6), and (8), we obtain the fast update rule for sub-factors A(n)
(kn)

A(n)
(kn) ←

⎛⎜⎜⎝ ∑
k1,...,kn−1,
kn+1,...,kN

U(n)

(k̄)

P(k̄)

U(n)T

(k̄)
A(n)

(kn)

⎞⎟⎟⎠
⎛⎜⎜⎝ ∑

k1,...,kn−1,
kn+1,...,kN

Q(k̄)

A(n)T
(kn) A

(n)
(kn)

⎞⎟⎟⎠
−1

. (9)

The expression (9) calculates Hardamard products, and performs all operations
on small-sized matrices, instead of Khatri-Rao products for long matrices. Ma-
trices P(k̄) ∈ RJk̄×J and Q(k̄) ∈ RJ×J can be calculated only once time, and

can be quickly updated after estimating sub-factors A(n)
(kn). For a symmetric ten-

sor, the complexity of (9) is O(3J2KN−1I/L), where L is the number of labs
in a parallel system . The pseudo-code of the new ALS algorithm is given in
Algorithm 1.4 Parallel FOR-loop denoted by “parfor” loop is available with the
Matlab Parallel Computing Toolbox.
3 Using block multiplication [Y1 Y2] [A1; A2] = Y1A1 + Y2A2, the learning rule (6)

can be directly derived from (3).
4 The normalization of components to unit-length vectors is not explicitly displayed

in Algorithm 1.
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Algorithm 1. Fast ALS for large scale PARAFAC

begin1

initialization A(n)
(kn), ∀n, ∀kn2

parfor sub-tensor Y(k̄) do3

[U(1)

(k̄)
, . . . ,U(N)

(k̄)
] = parafacALS(Y(k̄), Jk̄)4

P(k̄) =
N∏

n=1

(
U(n)T

(k̄)
A(n)

(kn)

)
, Q(k̄) =

N∏
n=1

(
A(n)T

(kn) A
(n)
(kn)

)
5

endfor6

repeat7

for n = 1 to N do8

foreach kn = 1 to Kn do9

T = 0, S = 010

parfor [k̄]n = kn do11

P(k̄) = P(k̄) %
(
U(n)T

(k̄)
A(n)

(kn)

)
, T = T + U(n)

(k̄)
P(k̄)12

Q(k̄) = Q(k̄) %
(
A(n)T

(kn) A
(n)
(kn)

)
, S = S + Q(k̄)13

endfor14

A(n)
(kn) ← TS−1 /* Update A(n)

(kn) */15

end16

parfor each k̄ do17

P(k̄) = P(k̄) �
(
U(n)T

(k̄)
A(n)

(kn)

)
, Q(k̄) = Q(k̄) �

(
A(n)T

(kn) A
(n)
(kn)

)
18

endfor19

end20

until a stopping criterion is met21

end22

4 Stopping Criterion

Stopping criterion takes an important role in identification of convergence of
a factorization. For simplicity, the cost function value (2) is usually used as
stopping criterion.5 However, for a large tensor, an explicit computation of the
cost function value (2) is impossible due to so much memory requirement to build
up the approximate tensor Ŷ. In this section, we derive a fast computation for
stopping criterion applied to the grid PARAFAC. The Frobenius norm of a raw
sub-tensor and its approximation is given by

D(k̄) = ‖Y(k̄) − Ŷ
(k̄)
‖2

F = ‖Y(k̄)‖2
F + ‖Ŷ

(k̄)
‖2

F − 2 〈Y(k̄), Ŷ
(k̄)
〉 (10)

where 〈Y, Ŷ〉 is the inner product of two same-sized tensors

〈Y(k̄), Ŷ
(k̄)
〉 =

I1∑
i1=1

· · ·
IN∑

iN =1

y
(k̄)
i1···iN

ŷ
(k̄)
i1···iN

= vec
(
Y(k̄)

(N)

)T

vec
(
Ŷ(k̄)

(N)

)
. (11)

Each terms in the expression (10) can be computed as follows

‖Ŷ
(k̄)
‖2

F = 1T {AT
(k̄)A(k̄)}� 1 = 1T Q(k̄) 1, (12)

5 FIT rate (FIT(%) = 1 − ‖Y−Ŷ‖2
F

‖Y‖2
F

) can also be used. However, due to similar

computation, we only mention the Frobenius norm.
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〈Y(k̄), Ŷ
(k̄)
〉 = 1T {U(k̄)}�T {A(k̄)}� 1

= 1T
{
UT

(k̄)A(k̄)

}�
1 = 1T P(k̄) 1 . (13)

From (10), (12) and (13), we obtain a convenient and fast computing for the
cost function

D =
1
2

∑
k̄

D(k̄) =
1
2

∑
k̄

(
‖Y(k̄)‖2

F + 1T Q(k̄) 1− 21T P(k̄) 1
)

=
1
2
‖Y‖2

F +
1
2

∑
k̄

(
1T Q(k̄) 1− 2 1T P(k̄) 1

)
. (14)

The first term ‖Y‖2
F is constant, hence can be neglected. The rest terms are

additions of all the entries of matrices Q(k̄), and P(k̄).

5 Experiments

5.1 Synthetic Benchmark

In the first example, we factorized a synthetic tensor Y ∈ R5000×5000×5000 built
up from 15 nonnegative components (shown in Fig. 2(a)), and next degraded by
an additive Gaussian noise at SNR = 0 dB.6 A partial data with 200 sam-
ples along each dimension is illustrated in Fig. 2(b), the 45-th slice of this
noisy tensor is also given in Fig. 3(a). This dense tensor with 125 billions of
entries could consume 500 GB of memory. Factorizing such tensor using exist-
ing PARAFAC algorithms is impossible because of large tensor size. However,
the proposed algorithm can quickly deal with this problem. In the approxi-
mate step, we divided this tensor into 8000 sub-tensors of size 250× 250× 250,
and simultaneously factorized them with Ja = 25 PARAFAC components in
a parallel system with 16 labs to obtain 8000 sub-factors U(n)

(k̄)
∈ R250×25,

n = 1, 2, 3, k̄ = [k1, k2, k3], kn = 1, . . . , 20. This step took 3680 seconds. The
experiment was run on MATLAB ver 2008b and its Distributed Computing
Server and Parallel Computing toolboxes. The full factors were estimated in two
stages to reduce inter-communication between labs. In the first stage, 16 groups
of 500 consecutive sub-factors in sub-tensors of size 1250×1250×5000 were used
to simultaneously estimate 16 sets of sub-factors. Then from these sub-factors,
we built up the full factors for tensor 5000× 5000× 5000. The whole step 2 took
56.51 seconds. With these estimated PARAFAC factors, we can quickly retrieve
the nonnegative factors under the data by applying the fast LS algorithm [6].
This step only took 2.78 seconds. The 15 estimated factors achieved high SIR
indices in a range of [43.64, 54.97] dB, and are depicted in Fig. 2(a). Fig. 3(b) is
the reconstruction of the noisy slice in Fig. 3(a).

6 The standard deviation of noise is given by σ2
n = E[Y2] = 1T {AT A}�1/

∏
In.
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components for the Graz benchmark

5.2 Graz EEG Dataset for BCI

The Graz dataset [7] contains EEG signals involving left hand, right hand, foot,
tongue imagery movements acquired from 60 channels in a duration of 7 seconds
(4 seconds after trigger). The dataset was recorded from 3 subjects, and had 840
trials. All the EEG signals were transformed into the time-frequency domain
using the complex Morlet wavelet, to have a spectral tensor 60 channels × 25
frequency bins (6-30 Hz) × 250 time frames × 840 trials. Due to meaningful
factorization, the hidden factors under this EEG spectral tensor require non-
negative constraints, and are considered as useful features for successful EEG
classification [8]. Therefore, we firstly estimated PARAFAC factors of this tensor,
then extracted nonnegative factors from them using the fast LS algorithm [6].
This dense tensor had a total of 315 millions of entries, and consumed 1.26 GB
of memory. Factorization of this full tensor with 10 components took 3900 sec-
onds on a quad core computer (2.67 GHz, 8 GB memory), and achieved FIT =
78.95%. However, the grid ALS algorithm for a grid of 16 sub-tensors divided
from the EEG tensor along the 4-th dimension (trials) only took 112 seconds
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to extract the same number components with FIT = 78.55 %. The nonnega-
tive factors quickly derived from both approaches only took 0.41 seconds, and
respectively explain 77.08 % and 77.07% of the raw tensor for the full and grid
processing. The components of the spectral and temporal factors are shown in
Fig. 4. The 3 factors A(1),A(2),A(3) can be used as bases to extract feature in
EEG classification which is out of scope of this paper due to space limit.

6 Conclusions

We present the new fast and robust ALS algorithm for large-scale PARAFAC.
The validity and high performance of the proposed algorithm have been con-
firmed even for noisy data, and also for the large scale BCI benchmark. The
new fast stopping criterion is proposed for this algorithm. Variations of the ALS
algorithm for PARAFAC with regularized terms such as total variation, spar-
sity, smoothness, nonnegativity, orthogonality constraints can be applied to the
grid PARAFAC with some modifications on the learning rule (9). Strategy for
grid division of a tensor can affect to the performance of factorization, and the
running time of parallel computing. Basically, sub-tensors’ sizes should satisfy
unique conditions of PARAFAC [2]. Moreover, sub-tensor should have maxi-
mum possible number of entries in its working lab. The total data transferred
between client and all labs is briefed here as: 2J

∑
n In + N J2

∏
nKn. This

means that it is better to have a minimum number of sub-tensors. Finally, inter-
communication between labs should be limited as much as possible. To deal with
this, we can estimate the full factors in multistage as illustrated in Example 1.
Due to the page limit, we presented briefly some discussion points for grid tensor
factorization and its ALS algorithm.
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Abstract. Despite the success of Gaussian Processes (GPs) in machine  
learning, the range of applications and expressiveness of GP models are  
confined by the limited set of available covariance functions. This paper  
presents a new non-stationary covariance function which allows simple  
geometric interpretation and depends on the angle at which points can be seen 
from an observation centre. The construction of the new covariance function 
and the proof of its positive semi-definiteness are based on geometric reasoning 
combined with analytic computations. Experiments conducted with both  
artificial and real datasets demonstrate the advantages of the developed  
covariance function. 

Keywords: Gaussian Process, covariance function, non-stationary stochastic 
process, Mercer kernel. 

1   Introduction and Related Work 

During the past decade Gaussian Processes (GPs) have been successfully employed 
for regression in supervised machine learning. The range of applications includes 
geophysics, mining, hydrology, finances, reservoir engineering and robotics. How-
ever, as learning with Gaussian Processes is equivalent to identifying correlations 
between points, the predictive qualities of GP models fully depend on the choice of 
the covariance functions (kernels). The set of already developed kernels is quite lim-
ited and Rasmussen and Williams [1] suggested that an important area of future  
developments for GP models is the construction and use of more sophisticated and 
expressive covariance functions.  

Although the properties of the known kernels can be combined by considering their 
products and weighted sums, development of new covariance functions that increase 
the predictive quality and expressiveness of GPs is a challenging task. 

Williams [2] derived a covariance function for GPs corresponding to neural  
networks with sigmoidal and Gaussian hidden units. It supports efficient predictions 
using GPs for neural networks with an infinite number of hidden units.  

Sugiyama et al. [3] proposed Gaussian kernels which are defined on the non-linear 
manifolds for value function approximation. These kernels are smooth along the 
graph, robust against the graph estimation error and easy to compute. 
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Melkumyan and Ramos [4] recently developed the Sparse covariance function 
which naturally provides sparse covariance matrices and enables exact GP inference 
even for large datasets, providing both storage and computational benefits.  

In the present work a new non-stationary covariance function is developed based 
on geometric reasoning and closed form calculation of integrals. The new covariance 
function depends on the angle at which points can be observed from an observation 
centre and therefore is named the Observation Angle Dependent (OAD) covariance 
function. The numerical evaluations presented in the experiment section show that the 
predictive qualities of the OAD covariance function compare favorably with the  
predictive qualities of other popular covariance functions. 

This paper is organized as follows. Section 2 reviews the basics of GP regression 
and introduces notation. In Section 3 the new Observation Angle Dependent (OAD) 
covariance function and its main properties are derived. Section 4 presents the partial 
derivatives for learning. The predictive quality of the OAD covariance function is 
evaluated in Section 5 via experiments on both artificial and real datasets. Finally, 
Section 6 concludes the paper and discusses further developments. 

2   Gaussian Processes 

This section briefly reviews GPs and introduces notation. Detailed information on 
different aspects of Gaussian processes for machine learning is available in [1]. Con-
sider the supervised learning problem with a training set ( ),i iD x y= , 1:i N= , consist-

ing of N  input points D
i ∈x  and the corresponding outputs iy ∈ . The objective is 

to compute the predictive distribution ( )f ∗x  at a new test point ∗x . A GP model 

places a multivariate Gaussian distribution over the space of function variables ( )f x  

mapping input to output spaces. The model is specified by defining a mean function 
( )m x  and the covariance function ( ),k ′x x  of the GP. Assuming Gaussian noise ε  

with variance 2σ  in observations, so that ( )y f x ε= + , and denoting 

( ) ( ) 1:, , { },{ },{ }i i i i NX y f y ==f x , ( ) ( ) 1:, , { },{ },{ }i i i i NX y f y∗ ∗ ∗ ∗ ∗ ∗ ==f x
 

for the training and 

testing sets respectively, the joint distribution with ( ) 0m =x  becomes 

( ) ( )
( ) ( )

2, ,
~ 0,

, ,

y K X X I K X X
N

K X X K X X

σ ∗

∗ ∗ ∗ ∗

⎛ ⎞⎡ ⎤+⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠f

. (1)

Here ( ),N µ Σ  is a multivariate Gaussian distribution with mean µ  and covariance Σ , 

and K  is the covariance matrix computed between all points in the set. 
By conditioning on the observed training points, the predictive distribution for new 

points can be obtained as ( ) ( )| , , ,p f X X N∗ ∗ ∗ ∗=y µ Σ
 
where 

( ) ( )

( ) ( ) ( ) ( )

12

12 2

, , ,

, , , , .

K X X K X X I

K X X K X X K X X I K X X I

σ

σ σ

−

∗ ∗

−

∗ ∗ ∗ ∗ ∗

⎡ ⎤= +⎣ ⎦

⎡ ⎤= − + +⎣ ⎦

µ y

Σ
 (2)
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Learning a GP model is equivalent to determining the hyper-parameters of the covari-
ance function from some training dataset. In a Bayesian framework this can be  
performed by maximizing the log of the marginal likelihood (lml) w.r.t. θ : 

( ) ( ) ( )12 21 1
log | , , log , log2

2 2 2
T N

p X K X X I K X X Iσ σ π
−

⎡ ⎤= − + − + −⎣ ⎦y θ y y  (3)

Eq. (3) has three terms (from left to right) representing the data fit, complexity  
penalty (encoding the Occam’s Razor principle) and a normalization constant. It is a 
non-convex function on the hyper-parameters and its local maxima can be obtained 
with gradient descent techniques by using multiple starting points. However, this 
requires the computation of partial derivatives of lml resulting in: 

( ) 1 1 11 1
log | , tr

2 2
T

j j

K K
p X K K K

θ θ
− − −∂ ∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂ ∂⎝ ⎠

y θ y y
θ

. (4)

which requires computation of partial derivatives of the covariance function  w.r.t. θ . 

3   Observation Angle Dependent (OAD) Covariance Function 

The desired OAD covariance function must depend only on the angle at which points 
can be observed from an observation center cx . As that observation angle depends not 

on the difference ′−x x  but on the spatial location of the points x and ′x  with respect 
to cx , the resulting covariance function will be non-stationary. 

The OAD covariance function will be first constructed in isotropic form in the case 
of two dimensions as this is the most convenient case for visual demonstration of the 
main ideas. Then it will be extended to arbitrary dimensions and made anisotropic. A 
proof of positive semi-definiteness will be provided for the most general case. 

3.1   Construction of the OAD Covariance Function 

Consider the piecewise constant transfer function 

( ) ( )
( )

0

0

, if , ; 2
, ;

, if , ; 2

c

c

c

a
h

b

α π
α π

⎧ <⎪= ⎨
>⎪⎩

x u x
x u x

x u x
 

, (5)

where ( ), ; cα x u x  represents the angle between the points x  and u  as seen from the 

observation centre cx . Conducting derivations analogous to those presented in [1] and
 

using the transfer function ( ), ; ch x u x
 
the following covariance function is obtained:  

2

2
2 1

, , ; , ;
c

c ck h h d
u x

x x x u x x u x .u
 

(6)

Here 
2
⋅  is the two dimensional Euclidian norm and the integration is conducted 

through the circumference of the unit circle with centre cx . 

The integral in Eq. (6) can be analytically evaluated (see Appendix A) to result in: 
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 ( ) ( )2
0

1 sin
, ; 1 , ;c cK

ϕσ α
π
−⎛ ⎞′ ′= −⎜ ⎟

⎝ ⎠
x x x x x x  , (7) 

where 
0σ , ϕ  are scalar hyper-parameters of the covariance function and ( ), ; cα ′x x x  is 

the angle between the points x  and ′x  as seen from the observation centre cx . 

3.2   Arbitrary Dimensions and Anisotropy 

In the case of arbitrary dimensions D  the definition of the transfer function Eq. (5) 
remains unchanged, but now ( ), ; cα x u x  represents the angle between D  dimensional 

points x  and u  as observed from the D  dimensional centre cx . The observation 

angle ( ), ; cα x u x  can be analytically calculated using the properties of the dot product 

for vectors: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

, ; arccos
T

c c
c T T

c c c c

α
′ ′− −

=
′ ′ ′ ′− − − −

x x x x
x u x

x x x x x x x x
 . (8) 

Definition of the covariance function Eq. (6) in the D  dimensional case becomes 

 2

1
, , ; , ;

c D
D c ck h h d

u x
x x x u x x u x ,u  (9) 

where 
D
⋅  is the D  dimensional Euclidian norm and the integration is conducted on 

the surface of the D  dimensional unit sphere with centre cx . Using D  dimensional 

spherical coordinate system, calculations analogous to the ones in two dimensional 
case can be carried out for Eq. (9). The result is again Eq. (7) where ( ), ; cα x u x  is now 

the angle between D  dimensional vectors and can be calculated using  Eq. (8). 
The resultant covariance function (7)-(8) can be made anisotropic by applying a 

non-singular linear transformation to the multi-dimensional space. The transformation 
will result in replacing the vectors x , ′x  and cx  by Ax , ′Ax  and cAx  where A  is 

the non-singular transformation matrix. Using Eqs. (7), (8) and the transformation 
matrix A , the following multi-dimensional anisotropic form of the OAD covariance 
function is obtained: 

( ) ( ) ( )
( ) ( ) ( ) ( )

2
0

1 sin
, ; , , 1 arccos

T

c c
c T T

c c c c

K
ϕϕ σ

π

⎛ ⎞′− −−⎜ ⎟′ = −⎜ ⎟⎜ ⎟′ ′− − − −⎝ ⎠

x x Ω x x
x x x Ω

x x Ω x x x x Ω x x
 (10)

where T=Ω A A  is a symmetric positive semi-definite matrix.  
The hyper-parameters of the OAD covariance function (10) are the scalars 

0σ  and 

ϕ , D  dimensional vector cx  and D D×  symmetric positive semi-definite matrix Ω . 

The resulting total number of scalar hyper-parameters is equal to ( )2 3 / 2D D+ + .  

If Ω  is diagonal, it can be expressed via the characteristic length-scales: 

 ( )2 2 2
1 2diag , ,..., Dl l l− − −=Ω  (11) 
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and the number of scalar hyper-parameters in this case decreases to ( )2 1D + . 

As the number of hyper-parameters in the fully anisotropic case is greater by 
( )1 / 2D D−

 
than in the case of diagonal Ω , the learning stage of the GP can have 

high computational cost if high dimensional problems are considered with full matrix 
Ω . If information is available about the anisotropic characteristics of the problem, 
pre-processing the data bringing it into a form suitable for using Eq. (11) can provide 
significant computational savings for the learning stage. 

In Eq. (10) the vectors x , ′x  and cx  can be replaced by the corresponding aug-

mented vectors ( )11, ,...,
T

Dx x=x , ( )11, ,...,
T

Dx x′ ′ ′=x  and ( ),1 ,0, ,...,
T

c c c Dx x=x  where the 

first entries correspond to the bias. 
Using Eq. (9) and the linear transformation matrix A , one has that for any points 

ix  and any real numbers ic  where 1,2,...,i n=  the inequality 

( ) ( )( )22

, 1 11
, , ; 0

c D

n n

i j D i j i i ci j i
c c k c h dσ

= =− =
= ≥∑ ∑∫ u Ax

x x Ax u Ax u  (12)

holds, which proves the positive semi-definiteness of the OAD covariance function. 

4   Partial Derivatives for Learning 

Learning the GP requires the computation of covariance function’s partial derivatives 
w.r.t. the hyper-parameters (Eq. (4)). Based on Eq. (10) the following expressions for 
the partial derivatives of the OAD covariance function can be calculated: 

                     0 0

2K
K

σ σ
∂ =
∂

,      ( )2
0

cos
1 sin

K
K

ϕ σ
ϕ ϕ
∂ = −
∂ −

 , (13) 

( ) ( ) ( ) ( )
2
0

21 sin
c

c c
T T

c c c c

K
ϕσ

π
⎡ ′+ − −−∇ = +⎢

′− − − −⎢⎣
x

x x x x xΩ
x x Ω x x x x Ω x x

 

      ( ) ( )
2
0

2
0

cot
1 sin

c
T

c c

Kπ σ
ϕ σ

⎤ ⎛ ⎞′− −+ ⎥ ⎜ ⎟−′ ′− − ⎥ ⎝ ⎠⎦

x x

x x Ω x x
 , (14) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2
, , , ,0 1 sin

1
i c i j c j i c i j c j

T T
ij ij c c c c

x x x x x x x xK σ ϕ
π δ

⎡ ′ ′− − − −∂ − ⎢= +
∂Ω + ′ ′⎢ − − − −⎣ x x Ω x x x x Ω x x

 

( )( ) ( )( )
( ) ( )

2
, , , , 0

2
0

cot
1 sin

i c i j c j j c j i c i

T

c c

x x x x x x x x Kπ σ
ϕ σ

⎤′ ′− − + − − ⎛ ⎞−− ⎥ ⎜ ⎟−′− − ⎥ ⎝ ⎠⎦x x Ω x x
 , (15) 

where ( ),1 ,2 ,, ,...,
c

T

c c c DK K x K x K x∇ = ∂ ∂ ∂ ∂ ∂ ∂x and 1ijδ =  if i j= , 0ijδ =  if i j≠ . 

If Ω  is diagonal, then Eq. (11) with characteristic length-scales can be used and 
the corresponding partial derivatives can be obtained from Eq. (15): 
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i i
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l l x x l x x l

ϕσ
π

= =

⎡ ⎡ ⎤ ⎡ ⎤′− −∂ − ⎣ ⎦ ⎣ ⎦⎢= − +⎢∂ ⎡ ⎤ ⎡ ⎤′− −⎢ ⎣ ⎦ ⎣ ⎦⎣∑ ∑
 

 
( ) ( )
( ) ( )

2 2
, , 0

22
0, ,1

2
cot

1 sin
i c i i c i i

D

k c k k c k kk

x x x x l K

x x x x l

σπ
ϕ σ

=

⎤′− − ⎛ ⎞−⎥− ⎜ ⎟−⎥′− − ⎝ ⎠⎦∑  

. (16) 

5   Experiments 

This section provides empirical comparisons between the proposed OAD and the 
popular squared exponential (SqExp), Matérn and neural network (NN) covariance 
functions [1] using both artificially created and real datasets. 

5.1   Artificial Dataset 

The dataset for this experiment is constructed by sampling from the step function with 
Gaussian noise with standard deviation 0.1nσ = . SqExp and Matérn covariance func-

tions are both known to be poor models for discontinuous functions [1], therefore 
only the OAD and NN covariance functions are considered here. It can be observed 
from Fig. 1 that both the OAD and NN covariance functions model the data correctly 
if the discontinuity happens at the origin 0x = . However, the predictions using NN 
become oscillatory and provide poor model for the data when the point of discontinu-
ity moves away from the origin. The OAD covariance function models the data  
correctly in all the considered situations. 

 

 

Fig. 1. Modeling discontinuities via the OAD and NN covariance functions. The predictive 
quality of the NN covariance function becomes poor if the discontinuity happens away from the 
origin, while the OAD covariance function correctly models all the considered situations. 
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5.2   Rainfall Dataset 

In this experiment the predictive qualities of the OAD, SqExp, Matérn and NN co-
variance functions are compared on the Spatial Interpolation Comparison dataset [5] 
(SIC) 1 which is popular in geostatistics for comparing predictive models. The dataset 
consists of 467 points measuring rainfall in 2D space. The points are divided into two 
sets, inference and testing. The inference set contains the points used to perform in-
ference on the testing points. For each case the experiment is repeated 2000 times 
with randomly selected inference and testing sets. Fig. 2a shows the normalized mean 
squared error (MSE) for the different covariance functions and the standard deviation 
(one sigma for each part of the bar) as a function of the number of inference points. 
The results demonstrate that the OAD covariance function systematically leads to 
better predictions regardless of the chosen inference and testing sets. Fig. 2b shows 
the percentage of additional MSE that other covariance functions produce compared 
with the OAD covariance functions. From Fig. 2b it can be observed that in the case 
of 30 inference points the NN covariance function leads to 35% greater MSE and 
SqExp, Matérn 3/2 and Matérn 5/2 lead to about 60% greater MSE than the OAD 
covariance function. When the number of inference points increases, more informa-
tion becomes available for the GP regression and less sophistication is requires from 
the covariance function to model the data correctly. This is why the percentage of the 
additional MSE monotonically decreases with the increase of the number of inference 
points in Fig. 2b. However, even with 200 inference points NN leads to about 13% 
and SqExp, Matérn 3/2 and Matérn 5/2 lead to about 20% greater mean square error 
than the OAD covariance function does. 

 

 

Fig. 2. (a) Normalized Mean Square Error (MSE) and (b) percentage of additional MSE com-
pared to OAD MSE for the SIC dataset. The OAD covariance function systematically results in 
better estimates regardless of the chosen inference and testing sets. 

                                                           
1 The SIC dataset can be downloaded at: http://www.aigeostats.org 
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6   Conclusions 

This paper proposed a new non-stationary covariance function which allows simple 
geometric interpretation and depends on the angle at which points can be seen from 
an observation centre. Numerical evaluations with both artificial and real datasets 
demonstrate better predictive qualities for GP regression with the OAD covariance 
function than with other popular covariance functions. Although the main focus of 
this paper was on GPs, it is important to emphasize that the covariance function pro-
posed is also a Mercer kernel and therefore can be applied to kernel machines such as 
support vector machines, kernel principal component analysis and others [6], [7]. The 
application of the derived covariance function to other kernel methods is an area of 
future work. 
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Appendix A: Detailed Derivation of the OAD Covariance Function 

The covariance function is constructed 
by evaluating the integral in Eq. (6) 
where ( ), ; ch x u x  is defined in Eq. (5). 

The unit circle of integration 

2
1c− =u x  is shown in Fig. 3 where 

diameters AB  and A B′ ′  are introduced 
which are perpendicular to the vectors 

cx x  and c ′x x , respectively. From Eq. (5) 

it follows that 

( ) 0

0

if arc
, ;

if arcc

a u AB B
h

b u BA A

′∈⎧
= ⎨ ′∈⎩

x u x  , 

( ) 0

0

if arc
, ;

if arcc

a u A AB
h

b u B BA

′ ′∈⎧′ = ⎨ ′ ′∈⎩
x u x  , 

so that the integrand ( ) ( ), ; , ;c ch h ′x u x x u x  is equal to 2
0a , 0 0a b , 2

0b  and 0 0a b  on the 

arcs AB′ , B B′ , BA′  and A A′ , respectively. As the lengths of the arcs B B′  and A A′  
are equal to ( ), ; cα ′x x x  and the lengths of the arcs AB′  and BA′  are equal to 

( ), ; cπ α ′− x x x , the integral in Eq. (6) can be calculated in closed form resulting in 

 ( ) ( ) ( ) ( )
2 2

0 0 0 02 2 2
2 0 0

1 2
, 1 , ; c

a b a b
k a bσ π α

π

⎛ ⎞− +
⎜ ⎟′ ′= + −
⎜ ⎟
⎝ ⎠

x x x x x

 

. (17) 

Defining ϕ  from the equations ( ) 2 2
0 0 0cos 2 a a bϕ = + , ( ) 2 2

0 0 0sin 2 b a bϕ = +  and 

denoting ( ) 1/2
2 2

0 0 0a bσ σ π⎡ ⎤= +⎣ ⎦ , the Eq. (17) becomes identical to Eq. (7). 

 

Fig. 3. Unit circle of integration 
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Abstract. Direction of arrival (DOA) estimation is a basic task in array signal 
processing. A method based on principal component analysis (PCA) is presented 
for estimating DOA of multiple sources mixed convolutively. Convolutive mix-
tures of multiple sources in the spatio-temporal domain are firstly reduced to in-
stantaneous mixtures by using the well-known short-time Fourier transformation 
(STFT) technique. From the time-frequency mixture in each frequency bin, one 
frequency respond matrix of the mixing system from sources to sensors is esti-
mated by the PCA based whitening. Furthermore, the DOAs of multiple sources 
are probed by using a whole estimating strategy. Consequently, all mixtures in total 
frequency bins contribute to a final estimation set, in which the source directions 
are shown as several direction clusters and/or local maxima. Experimental results 
indicate that the PCA based method has advantages over the well-known MUSIC 
(MUltiple SIgnal Classification) method, especially under such conditions as the 
same number of sensors as sources, and closely placed sensors. 

Keywords: MUSIC (MUltiple SIgnal Classification), Principal Component 
Analysis (PCA), Short-Time Fourier Transformation (STFT), Direction of  
Arrival (DOA), Frequency Response Matrix, Whole Estimation Strategy. 

1   Introduction 

Direction of arrival (DOA) estimation is a basic and important task in array signal 
processing involved in many application fields such as wireless communication, au-
dio/speech processing and radar signal processing [1]. Many source localization 
methods have been proposed. For example, the well-known MUSIC (MUltiple SIgnal 
Classification) algorithm and its variants are popularly used for DOA estimation [2]. 
The MUSIC method is based on principle of subspace analysis. It identifies the noise 
subspace with second order statistics and search for location parameters that orthogo-
nalize the steering vector and the noise subspace. However, the MUSIC method can 
only be applied under such hypothesis that there are fewer sources than sensors in an 
array. More unfortunately, its estimation performance for multiple source directions 
markedly deteriorates when sensors are closely placed. 

                                                           
∗ Corresponding author. 
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Principal component analysis (PCA) is an essential technique in data compression 
and feature extraction. It provides a way of reducing the number of input variables 
entering some data processing system so that a maximal amount of information is 
retained in the mean-square error sense; in addition, PCA provides uncorrelated 
components [3]. In this paper, we propose a PCA based frequency-domain method for 
DOA estimation of multiple sources mixed convolutively. In the proposed method, 
PCA is used for prewhitening mixture data in every frequency bin. Furthermore, the 
frequency response matrix from sources to sensors is approximated, followed by a 
whole estimation on all source directions at a clustering manner. Experimental results 
show that the PCA based method has advantage over the MUSIC based method, es-
pecially under such condition as the same number of sensors as sources and closely 
placed sensors. 

2   Convolutive Mixing Modeling of Multiple Spatio-temporal 
Sources 

Suppose that N  source signals ( )js t  are mixed and observed at a linear array with M  

sensors, i.e. 
1

( ) ( ) ( )
=

= −∑∑
N

i ij jk
j

x t h k s t k , where ( )ijh k  represents the impulse re-

sponse from source j  to sensor i . Let id  be the position of sensor i , and θ j  be the 

direction of source js  (we suppose the direction orthogonal to the array is 90° ). 

Theoretically, the mixing process of multiple sources in a reverberant environment 

should be modeled as a convolutive mixture model [4]: 

( ) ( ) ( ) ( )t t t t= ∗ +x A s n  (1)

where ∗  denotes the convolution operation. { }, , 1, 2ijA i j= =A  is an unknown  

linear filter matrix, depending on transferring medium. ( )tn  is an additive noise vector. 

We implement DOA estimation in the frequency domain. By L -point short time  

Fourier transformation (STFT), time-domain signals ( )ix t  are converted into fre-

quency-domain time-series signals ( , )iX f m , where 0, , , ( 1)= −s sf f L f L L ( sf : 

sampling frequency), and m  is the window frame index of filter. Thus, the convolutive 

mixtures in (1) are reduced to instantaneous mixtures in every frequency bin, i.e. 

1

( , ) ( ) ( , )
=

=∑
N

i ij j
j

X f m H f s f m . Although in a reverberant condition, the frequency re-

sponse ( )ijH f  can also be approximated as 
12 sin( )( ) e π θ−

= i jj fc d

ijH f , Considering the 

direction of source θ j  as spatio-directional variable θ , we have a steering vector 
1 1

1
T

2 sin( ) 2 sin( )( , ) e e Mj fc d j fc df π θ π θθ
− −⎡ ⎤= ⎣ ⎦a  (2)
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where c  is the propagation velocity. Then, the sensor observations can be modeled as 
[5] 

1

( , ) ( , ) ( , ) ( ) ( , )θ
=

= =∑
N

j j
j

f m f s f m f f mX a H s  (3)

where ( , )f mX  is a M -dimensional vector and [ ]T1( , ) ( , ) ( , )= Mf m X f m X f mX . 

The present task is identifying the frequency response matrix ( )fH  (or the steering 

vector ( , )θ jfa , 1, 2, ,j N= ) from the frequency-domain mixtures ( , )f mX  using 

some techniques such as PCA, and finally estimating the directions 1, ,θ θN  of all 

source signals. 

3   The MUSIC Based DOA Estimation 

In the well-known MUSIC algorithm [2], the correlation matrix H( , ) ( , )= ⋅
m

f m f mR X X  

of sensor observations ( , )f mX  is calculated, where H( )⋅  represents a conjugate transpose 

and ⋅
m

 denotes the averaging operator. Then, implement the eigenvalue decomposition 

on the correlation matrix R  which producing H=R VΛV , [ ]1= MV v v , 

[ ]1λ λ= MdiagΛ , where kv  is an eigenvector ( M -dimensional column vector) 

and λk  is the eigenvalue of kv  sorted as 1λ λ≥ ≥ M . The N  points where the function 
2

H

1
( ) ( , )θ θ

= +
=∑M

kk N
U fv a approaches zero correspond to the directions 1, ,θ θN  of 

the source signals [5]. It is obvious that the MUSIC based method requires more sensors 

than sources in number. 

4   The PCA Based DOA Estimation 

4.1   Principal Component Analysis (PCA) 

The basic goal in PCA is to reduce the dimension of the data. Indeed, it is well-known 

that the representation given by PCA is an optimal linear dimension reduction tech-

nique in the mean-square sense [6]. For an observed vector x , the whitening means 
that the x  is linearly transformed to a vector =z Qx  such that the covariance matrix 

of z  equals unity: { }TE =zz I . This transformation is always possible. For example, it 

can be accomplished by classical PCA [7]. In addition to whitening, PCA may allow us 
to determine the number of sources when there are more sensors than sources in an array 

(i.e. M N> ). Its principle is that if noise level is low, the energy of x  is essentially 
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concentrated on the subspace spanned by the N  first principal components, with N  the 

number of sources in model (1). 

According to the model (3), the time-frequency mixture in the k th frequency bin is 

written as 

1

( , ) ( , ) ( , ) ( ) ( , )θ
=

= =∑
N

k k j j k k k
j

f m f s f m f f mX a H s  (4)

where 
1 1

1
T

2 sin( ) 2 sin( )( , ) e ek j k M jj f c d j f c d

k jf
π θ π θθ

− −⎡ ⎤= ⎢ ⎥⎣ ⎦
a  is the steering vector from the 

j th source to all M  sensors. ( , )kf mX  is a M -dimensional mixture vector in the 

k th frequency bin, and with 

12 sin( )

1

( , ) e ( , )k i j

N
j f c d

i k j k
j

X f m s f m
π θ−

=

=∑  (5)

where 1, ,=i M , 1, ,=j N . 

The PCA based whitening processing on the mixture ( , )kf mX  gives 

12 sin( )

1 1

( , ) ( ) ( , ) ( ) e ( , ) ( ) ( , )k i j

M N
j f c d

k k k k j k k k
i j

f m f f m f s f m f f m
π θ−

= =

= = =∑∑Z Q X Q B s (6)

where ( )kfQ  is a ×M M  whitening-transform matrix. Accordingly, ( )kfB  can be 

looked as a ×M N  global-transform matrix. 

4.2   Identification of the Frequency Response Matrix by the PCA Based 

Whitening 

In DOA estimation of multiple spatio-temporal sources, the PCA based whitening is 

used not as a preprocessor to improve convergence performance of further data analysis 
(for example of independent component analysis [6]), but as an identificator to identify 

the frequency response matrix ( )kfH  (or the steering vector ( , )θk jfa ) from the k th 

bin mixture ( , )kf mX . 

It has been proved that the PCA based whitening transformation is orthogonal. That 

is, the global-transform ( ) ( ) ( )k k kf f f=B Q H  in (9) is an orthogonal matrix. Fur-

thermore, we have 

† 1( ) ( ) ( ) ( ) ( ) ( )k k k k k kf f f f f f−= ⇒ =Q B H Q H C  (7)

where †( )⋅  is pseudo inverse operator. Obviously, the matrix †( ) ( )k kf f=C B  is also 

orthogonal, which implies the frequency response ( )kfH  can be orthogonally trans-

formed into the inverse whitening matrix 1( )kf
−Q . Under orthogonal transformations, 
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both Euclidean distance and direction of a vector are invariant. Also, the singular values 

of a matrix are invariant. [8]. Thus, we may say that the columns of 1( )kf
−Q  span the 

same space as the columns of ( )kfH , and the approximation 1ˆ ( ) ( )k kf f −=H Q  may be 

used for DOA estimation of multiple spatio-temporal sources. Alternatively, some 

other second-order methods such as factor analysis can also be used for identification 

the frequency response matrix, and be further used for DOA estimation of multiple 

sources. 

4.3   DOA Estimation by Using a Whole Estimation Strategy 

In PCA, there does exactly exist the inherent scaling and permutation ambiguities, just 

as that in ICA [9], which lead to the approximated ( )ˆ fH  columns can have arbitrary 

scales and be permuted arbitrarily compared with the real frequency response of the 

mixing system. Furthermore, the element ( )ˆ
ijH f  of the matrix ( )ˆ fH  may have an 

arbitrary amplitude. Inspired by the literature [5], the mixing system is also remodeled 

with attenuation ijA  (real-valued) and phase modulation e ϕ jj  at the origin, which leads 

to ( )
12 sinˆ e ej i jj j fc d

ij ijH f A
ϕ π θ−

= . Therefore, the scaling ambiguity can be cancelled out 

by calculating the ratio between two elements ( )ˆ
ijH f  and ( )ˆ

i jH f′  corresponding to 

the same source j : ( )12 sinˆ ˆ i i jj fc d d

ij i j ij i jH H A A e
π θ−

′−
′ ′= . Then, taking the angle yields a 

formula for estimating θ j , i.e. ( ) ( )( )1 1ˆ ˆ ˆsin 2j ij i j i iangle H H fc d dθ π− −
′ ′= − . For the 

permutation ambiguities problem, a whole estimating strategy is proposed, its principle 

is described as follows: 

(a) Given an whitening matrix ( )fQ  by PCA, approximate the frequency response of the 

mixing system by ( ) ( )1ˆ f f−=H Q . The ( )ˆ fH  is further written as: ( ) { }ˆ ˆ ( )ijf H f=H , 

where ( )
1 ˆ2 sinˆ e ej i jj j fc d

ij ijH f A
ϕ π θ−

= , 1, 2, ,i M= , 1, 2, ,j N= . 

(b) Find all two-rows combinations of the M N×  frequency response matrix 

( )ˆ fH . Theoretically, 2
MC  combinations can be obtained. For any combination, for 

example the combination ( ), |p q p q≠  formed by the p th and q th rows of the 

( )ˆ fH , an estimated DOA set can be computed by 

{ }( )

( )
( )

1

1,

ˆ ˆ
ˆ sin , 1, ,

2

qj pj

j
p q

q p

angle H H
j N

fc d d
θ

π
−

−

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= =
⎢ ⎥⎜ ⎟−

⎝ ⎠⎣ ⎦

 (8)

(c) Consequently, the 2
MC  combinations can give 2

MC  estimated DOA sets. Al-
though ˆ

jθ  may not correspond to js  but to another source signal because of the per-
mutation ambiguity, all source directions can be obtained from the 2

MC  combinations. 
During the DOA estimation, ˆ

jθ  may becomes complex and only null direction is  
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obtained if the absolute value of the argument of 1sin−  is larger than 1. However, these 
null directions do not affect total DOA estimation of all sources under our whole  
estimation strategy. 

The PCA based DOA estimation consists of three processing steps, i.e. (1) Signal 
domain transformation using the STFT, by which convolutive mixtures in the time 
domain are transformed into instantaneous mixtures in the frequency domain; (2) 
Frequency response estimation using the PCA based whitening, by which the fre-
quency response matrix of a mixing system is approximated; (3) Whole DOA estima-
tion and local peak detection, in which the source directions are wholly estimated using 
the formulation (14) and finally determined by local peak detection. 

In order to evaluate the whole performance of a DOA estimation method, we use the 
Euclidean norm to define an error evaluator named Total Direction Mismatch (TDM), 
which is formulated as 

[ ]{ }
[ ]{ } ( )2 2

1 1

ˆnorm
ˆ

norm

N N

j j j
j j

TDM
θ θ

θ θ θ
θ = =

⎡ ⎤ −⎣ ⎦= = −∑ ∑  (9)

where θ j  is the 'true' direction of the j th source and. θ̂ j  is its estimate. norm( )i  is the 

operator for solving Euclidean norm. 

5   Experimental Results 

We use the MUSIC method and the PCA based method for performing experiments to 
estimate the DOAs of three simulated source signals which are convolutively mixed. 
The initially experimental conditions are summarized in Table 1. We use two DOA 
estimators (i.e. the MUSIC [2] and the PCA based whitening [6]) to implement fre-
quency response estimation of the convolutively mixing system. 

The DOA estimation results under the initial conditions in the Table 1 are shown in 
figure 1. 

Individual DOA estimation set by mixtures in each frequency bin is one by one 
described in the upper subplots whose x-coordinates and y-coordinates are all 'Fre-
quency Bin (Hz)' and 'Direction (Deg)'. By the use of the whole estimation strategy 
 

Table 1. Initially experimental conditions 

Model of Source Signals Coefficients of Sensor Array Algorithms for Data Analysis 

1 1 1

2 2 3 2

33

sin( ) 20
sin( ) sin( ) 18

6is a white Gaussian noise

s t
s t t
s

s

Sampling Frequency and Length: Fs = 2Hz 

Sampling Length: T = 1024  

True DOA of Sources: 1 = 15°, 2 = 18°, 3 = 21° 

Array Type: Linear 

Number of Sensors: M = 5  

Inter-element Spacing: 

 = 0.04 (in wavelength) 

Angle Resolution: = 0.5° 

Coefficients of the STFT: 

Length of Time Window: 32 

Length of overlap: 16 

Number of DFT: 256 

DOA Estimators: 

MUSIC, PCA 
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(a) MUSIC based DOA Estimation                          (b) PCA based DOA Estimation 

Fig. 1. DOA estimation result by the MUSIC and PCA based DOA estimators 

combined with the local peak detection, we finally estimate and show all sources di-
rections in the bottom subplots whose x-coordinates and y-coordinates are all 'Direc-
tion (Deg)' and 'TFNumber', i.e. abbreviation of 'Total Frequency Number', which 
enables one to evaluate total contribution of all DOA estimation sets synthetically. It 
can be seen that the two DOA estimators (i.e. the MUSIC and the PCA based whiten-
ing) both perform well, under the initially experimental condition shown in Table 1. 
Two DOA estimation groups is [15.5°, 18°, 21°] and [15.5°, 18.5°, 21°], and their total 
direction mismatch TDM is 0.0159 and 0.0225 separately. 

To further compare the two DOA estimators, we design some controlled conditions 
for experiment which are summarized in Table 2. Under the controlled conditions, total 
performances of the two DOA estimators, i.e. the MUSIC and the PCA based whit-
ening, are comparatively analyzed and shown in figure 2. 

In the figure 2, the two DOA estimators are, under different controlled conditions, 
compared to each other in different row-plots. In the upper row-plot (a), DOA estima-
tions under different Number of Sensors are shown. It can be seen that, when the 
number of sensors is changed to 3 (equal to the number of sources), remarkable esti-
mation error (TDM = 0.4767) is brought by the MUSIC estimator (see the red 
solid-square line '-□-'), because of unsuccessful estimation of the first source direction 
 

Table 2. Controlled conditions for further experiment 

Changed Coefficients Valued Range of the Changed coefficient 

Number of Sensors: M 3, 4, 5, 6, 7 

Angle Resolution: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1.0, 1.5, 2.0 Degree 

Inter-element Spacing: 0.00005, 0.00025, 0.0025, 0.01, 0.02, 0.04 (in wavelength) 

Note: When one controlled coefficients is used for performance evaluation of one DOA estimators, 

 the other coefficients keep unchanged just as that shown in TABLE 1. 
 



 DOA Estimation of Multiple Convolutively Mixed Sources Based on PCA 347 

3 4 5 6 7
0

0.2

0.4

0.6

Number of Sensors

T
D

M
MUSIC
PCA

0.4767

(a) DOA estimation error under different Number of 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1 1.5 2
0

0.5

1

Angle Resolution

T
D

M

MUSIC
PCA

0.7447
0.4778

(b) DOA estimation error under different Angle Resolution

5e-005 0.00025 0.0025 0.01 0.02 0.04
0

0.05

0.1

Inter-Element Spacing

T
D

M

MUSIC
PCA

0.06990.07150.0559

(c) DOA estimation error under different Inter-Element Spacing  

Fig. 2. Total performance of the two DOA estimators under the controlled conditions in Table 2 

θ1 = 15°. Contrastively, all three source directions are successfully captured by the PCA 
based method (see the blue solid-circle line '-○-'). When the number of sensors is larger 
than the number of sources (varying from 4 to 7), the two DOA estimators both work 
well and all source directions are estimated effectively. 

The second changed coefficient Angle Resolution has similar influence upon the two 
estimators, which is shown in the middle row-plot (b). When the angle resolution in-
creases up to ∆θ = 2°, the MUSIC estimator cannot estimate the first source direction, 
and its error reaches to 0.4778. For the PCA based estimator, two source directions are 
mistakenly estimated and its TDM error reaches to 0.7447. As the angle resolution 
decreases, good estimation result is obtained by whichever estimator, which implies the 
importance to select an appropriate angle resolution. 

Finally, we change the third controlled coefficient Inter-Element Spacing from 
0.00005 to 0.040 (in wavelength). The DOA estimation results are described in the 
bottom row-plot (c). It can be clearly seen that the Inter-Element Spacing coefficient 
has strong impact on performance of the MUSIC based estimator. When too small 
inter-element spacing (for example ∆ = 0.00005, 0.00025 or 0.0025) is chosen, re-
markable DOA estimation errors (i.e. TDM = 0.0559, 0.0715 and 0.0699) are brought 
by the MUSIC estimator. Whereas, the PCA based estimation is not interfered by dif-
ferent inter-element spacing at all, and all source directions are correctly estimated. 
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6   Conclusions 

The experimental results show the PCA based method has some advantages over the 
MUSIC method. Theoretically, the MUSIC method requires more sensors than sources 
in number. When such requirement is not satisfied, its performance for DOA estimation 
will deteriorate markedly. For the PCA based estimator, the above requirement can be 
loosed to some extent. That is, the number of sensors is not less than the number of 
sources in an array. Furthermore, the PCA based estimator can implement precise 
direction estimation of multiple sources mixed convolutively, even if the sensors are 
closely placed (i.e. with small inter-element spacing). All of these imply its wider 
potential applicability than the MUSIC based method. 

In the experiments, we notice that accurate DOA estimation of all sources is still 
accomplished within certain a controlled angle resolution, even if the whitening matrix 
by PCA is close to singular or badly scaled, which indicates strong numeric robustness 
of the propose method. In addition, it is very important to choose an appropriate angle 
resolution for all DOA estimators, because it does directly affect total performance of a 
DOA estimator. In practice, this coefficient should be carefully chosen according to 
different application purposes. 
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Abstract. Artificial neural network (ANN) is a very useful tool in solv-

ing learning problems. Boosting the performances of ANN can be mainly

concluded from two aspects: optimizing the architecture of ANN and

normalizing the raw data for ANN. In this paper, a novel method which

improves the effects of ANN by preprocessing the raw data is proposed.

It totally leverages the fact that different features should play different

roles. The raw data set is firstly preprocessed by principle component

analysis (PCA), and then its principle components are weighted by their

corresponding eigenvalues. Several aspects of analysis are carried out to

analyze its theory and the applicable occasions. Three classification prob-

lems are launched by an active learning algorithm to verify the proposed

method. From the empirical results, conclusion comes to the fact that

the proposed method can significantly improve the performance of ANN.

Keywords: Artificial neural network, Principle component analysis,

Weighted data normalization, Active learning.

1 Introduction

Artificial neural network (ANN), usually called “neural network” (NN), is an
information processing paradigm inspired by biological nervous systems. The
mathematical model of ANN is constructed by lots of “neurons” which often
work together, usually in the form of hierarchy, to solve learning problems. Each
neuron has a threshold function which can be continuous or discrete. ANN often
has several layers, the former layer’s outputs are weighted and used as the inputs
of the next layer. The function of the latter layer maps the inputs to its outputs
which will be weighted again and used as the inputs of the next layer. Therefore,
when the threshold functions are selected, all the efforts are to find the weights.

ANN has wide applications, and it also has its shortcomings. Almost all the
learning problems, such as classification, progression and multitask learning [1]
can be solved by ANN. Relative researches have show that ANN can solve not
only linear problems, but also nonlinear problems. Moreover, it has been proven
that ANN with three layers can fit any non-linear problems [2]. When an neu-
ron of the neural network fails, others can function without any problem by
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their parallel characteristics. Although ANN has lots of advantages, it has some
defects. Many kinds of ANNs are prone to step into local minimum problems,
which means a single ANN is not a stable learner. Ensemble techniques some-
times can overcome this kind of problem by combining several ANNs [3,4,5]. In
addition, the settings of ANN’s parameters, such as the number of hidden neu-
rons and the learning rate, are strongly depended on the characters of the data
set. Therefore, there is none fixed rule to set them. Usually, expert knowledge
plays an important role in setting those parameters for concrete issues.

The improvements for neural network can be mainly divided into two aspects:
changing ANN’s architecture and normalizing the original data. Changing the ar-
chitecture of neural network sometimes means constructing new types of ANNs.
Researches on ANN may start from the single-layer neural network. Single-layer
network has simple input-output relations, thus sheds light on the research of
multi-layer network [6]. Based on different theories and thoughts, different types
of ANNs have been put forward, such as feedforward neural network, radial basis
function (RBF) network, hopfield network and so on. They are based on different
mathematical models which are suitable to solve different learning problems.

Normalizing the data is another manner to improve the accuracy of ANN. In
many neural network applications, raw data (not preprocessed or not normal-
ized) is used. However, raw data suffer lots of problems including high dimen-
sional and time-consuming problems. By normalizing the data, ANN can get
better effects and save much time for training. Using correlation coefficients as
weights for input variables can significantly boost ANN [7]. Song and Kasabov
also presented their preprocessing data method WDN-RBF for radial basic func-
tion typed neural networks [8]. Furlanello and Giuliani have normalized raw data
by combining local and global space transformations [9].

This paper focuses on the data normalization approach for ANN. A new data
normalization method WDNE (Weighted Data Normalization based on Eigen-
values) which weights the data by eigenvalues is proposed. WDNE is different
from existing data normalization methods. It leverages the fact that the fea-
tures which have different potentials in learning problems should play different
roles. The data set is weighed by the eigenvalues, which means some features are
enhanced while others are weakened. WDNE firstly uses principle component
analysis (PCA) to rebuild the data set to ensure the features are uncorrelated.
Then all the features are weighted by their corresponding eigenvalues.

The rest of the paper is organized as follows. Section 2 describes our proposed
normalization process and gives the corresponding analysis. Section 3 reports
experimental results. At last, conclusions are drawn in Section 4.

2 WDNE and Analysis

WDNE is based on PCA. It can be regarded as a method that induces the
weights in ANN to change, and it can also be regarded as an approach which
preprocesses the data before applied.
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2.1 PCA

PCA is mathematically defined as an orthogonal linear transformation that
transforms a number of possibly correlated variables into a smaller number of
uncorrelated variables called principal components. PCA can be used to re-
duce the high dimensionality of dimensional data and improve the predictive
performance of some machine learning methods [10]. High dimensional data
often cause computational problems and run the risk of overfitting. Furthermore,
many redundant or highly correlated features may probably cause a degradation
of prediction accuracy. By simply discarding some features which have little
information, PCA can eliminate the problem of high dimensionality.

The process of PCA aims to transform a problem from its natural space into
another space, in which all the mapped features have irrelevant relationships.
Suppose that X = {x1, x2, ..., xn} is the data set which contains n examples,
and that the problem has d dimensions, which means every example has d ran-
dom variables. For example, a example can be expressed as xi = {x1

i , x
2
i , ..., x

d
i }.

When the data set X is available, covariance matrix can be calculated in the form
of

∑
= E{(x − µ)(x − µ)T }, where E means figuring out the mathematical

expectation, and µ is the mean of the examples.
∑

is usually figured out by
the way of

∑
= 1/n

∑i=n
i=1 (xi − µ)(xi − µ)T . By mathematical calculating,

the eigenvalues λ = {λ1, λ2, ..., λd} and the eigenvectors U = {u1, u2, ..., ud}
of the covariance matric Σ can be obtained. Subsequently, the initial example
x is mapped to a new space in the form of x′ = UT x. In the new space, every
feature of the example is uncorrelated. Unless stated otherwise, the kth prin-
ciple component will be taken to mean the principle components with the kth
largest eigenvalue [11]. By selectively choosing some principle components, the
high dimensional space is transformed into a fitting subspace.

2.2 Weighted Data Normalization Based on Eigenvalues

The basic idea of the proposed method is that the more useful a component is
the more important role it should play. The data are weighted by the eigenvalue
vector λ. Every component xj

i of the input xi which is processed by PCA has
a corresponding eigenvalue λj . λj has lots of potential contents, one of which is
that it indicates the variance of the component. The one which has the bigger
eigenvalue can clearly provide more information, and PCA mainly depends this
point for dimensionality reduction. However, if the data set is just processed by
PCA, all the selected components still have equal roles in the training process.
Actually, the component providing more information should play more decisive
role in solving learning problems. Therefore, all the components can be weighted
by their corresponding eigenvalues.

WDNE can be divided into two steps. Initially, it processes the data by PCA.
Then, the processed data are weighted by the eigenvalues which are figured out in
the first step. To avoid computational problems, the eigenvalues are normalized
before weighting the data. The eigenvalues are normalized in the form of λ′j =
λj/λ1, where λ1 is the biggest eigenvalue. Subsequently, each feature is weighted
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by the corresponding eigenvalue in the form of xj
i = xj

iλ
′
j . If the original data

set has high dimensionality, it can be reduced by discarding some features which
provide little information.

2.3 Analysis

WDNE reinforces the principle components with large eigenvalues and weakens
the others. If the PCA-processed data are directly used, all the components will
play an equal role in the training process. However, if the data are weighted by
WDNE, the principle components will play more important roles than the sub-
principle components. It can be apparently analyzed from the data processing.
The principle component multiplies a relative large constant, which means the
distance between elements will be enlarged. When applied into learning prob-
lems, the principle components will play a more important role in deciding the
final hypotheses. Similarly, the components which provide little information are
weakened, because they can not provide good decisions. From this point of view,
the PCA, in which the selected components are weighted by one while the un-
selected components are weighted by zero, can be seen as a special situation of
WDNE.

WDNE can also be regarded as a method which enhances the effects of ANN
by weighting some of the inputs. Initially, the output net = wT x =

∑d
j=1 wjxj

of the input layer is mapped to the function f of the hidden layer. If there is
no WDNE, the output of the hidden layer is y = f(net). When WDNE is used,
the output of the hidden layer will be y = f(net′) = f(wT Λx), where Λ is
a diagonal matrix with the eigenvalues as its values. WDNE apparently does
not change the architecture of ANN, instead, it improves the performance by
weighting the inputs. The process can be explicitly described in Fig. 1.

WDNE is probably sensible to noise. Suppose some noisy features are con-
tained into the learning problem. The noisy features would be transformed
into a new space after PCA processing. If many of the noisy ingredients are

Fig. 1. WDNE
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redistributed into the last several features, the noisy effect is obviously reduced.
However, if many of the noisy ingredients are transformed into the first few
features which correspond to the biggest eigenvalues, the noisy effect will be en-
hanced, and the performance of the recognition will be degraded. Consequently,
caution should be taken before WDNE is applied to the problem which may
contain noises.

3 Experiments

Back propagation neural network is applied in the implemented experiments. All
of the data sets come from the UCI repository1. The ANN has three layers, and
the number of hidden neurons is set as

neuron number =
√
n+m+ a , (1)

where n and m denote the number of input and output neurons of the networks
respectively, and a is a constant ranging from one to ten. In order to effectively
boost WDNE, five ANNs are used in every experiment, and the final hypothesis
is the voted result by the five committees.

Active learning algorithm and ten-fold cross validation (CV) are lunched on
the three experiments. Active learning aims to reduce the number of labeled
data for learning by selecting the most informative examples [12]. The active
learning algorithm used in this paper is for classification. Initially, only a few
labeled examples are prepared at hand. At every round of iteration α examples
are selected from β candidates which are the most valuable ones in the unlabeled
examples pool. In order to more objectively reflects the result, ten-fold CV is
applied. The data set is divided in to ten parts. One part is used as validation
set, another part is used as test data, and the others are used for training. The
final result is the average of the ten results.

3.1 Comparative Methods

In order to clearly evaluate the advantage of WDNE, three other representations
of data are implemented, and they are original data (raw data), PCA processed
data and negatively weighted data. The descriptions of them are listed as follows:

– Original data: This data set is the original (raw) data set.
– PCA processed data: This data set is just processed by PCA.
– Positively weighted data: This data set is processed by WDNE. In other

words, this data set is firstly processed by PCA, then all the components is
weighted by the corresponding eigenvalues.

– Negatively weighted data: This data set is firstly processed by PCA, then
each component is weighted by the reversed eigenvalue λ′j = λd−j+1/λ1.

All the compared data are trained by the back-propagation network under the
same setting of parameters.
1 http://archive.ics.uci.edu/ml/
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3.2 Heart Classification

This is a two-class classification problem and the data set contains 150 positive
examples and 120 negative examples. The initial dimension space consists of 13
features. The labeled data used for active learning algorithm initially contains
six positive examples and six negative examples. The size of the pool is 100. At
every round of iteration, four unlabeled examples are randomly selected from 16
candidates which are regarded as the most valuable ones. The final results can
be seen from Fig. 2 (a).
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Fig. 2. Classification performances

In Fig. 2 (a), the effect of the original data is almost equal to that of the data
which are just processed by PCA. Negatively weighted data set has the worst
performance, while positively weighted data set is clearly the best representation.

3.3 Spam Classification

This data set is composed of 4501 examples which contains 1813 spams. The
problem have totally 57 features without dimension reduction. Initially, the ac-
tive learning algorithm runs on 15 labeled examples which consists six positive
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ones and nine negative ones. Before sampling, 32 unlabeled example which are
seemed as the most informative ones are chosen from the pool whose size is 240.
Subsequently, 10 examples are chosen from the 32 candidates at random.

Fig. 2 (b) shows that WDNE is significantly superior to the other three kinds
of representations. As the results of last experiment, the data set of negative
weighted has the worst performance. Although there is difference between the
performances of original data and PCA processed data, they almost have the
same effect on the whole.

3.4 Waveform Classification

This data set is also a binary classification which contains 1653 positive examples
and 1655 negative examples. There are 40 features. It is worth noting that 19
of the 40 features are noises. Six positive examples and six negative examples
are labeled at first. At each round of iteration, the algorithm firstly chooses 32
most informative examples from a pool whose size is 200. Subsequently, eight
examples are randomly selected from the 32 candidates.

Fig. 2 (c) shows the results. It is apparent to tell that the WDNE performs the
best and the negatively weighted data set plays the worst. In this experiment,
it is obviously that PCA processed data are not as good as the original data.
There may be several possible causes of this phenomenon. (1) It is caused by the
noises. (2) The original representation of the data set is more suitable to solve
the learning problem in this experiment.

4 Conclusions

In this paper, a new data normalization approach WDNE which can be used
to improve the performances of neural networks is proposed. WDNE does not
optimize the architecture of the ANN. However, it boosts the performance of
ANN by preprocessing the data. PCA plays an important role in this method.
The components are weighted by the corresponding eigenvalues of the covariance
matrix. In order to verify the proposed method, three other representations of
data are implemented in the experiments. All the utilized data sets come from
the UCI repository. The empirical results clearly show that WDNE is an effective
method for optimizing the performance of ANN.

Researches on WDNE requires further investigation. In this paper WDNE is
used for ANN, it may be applied to combine with other approaches, such as
distance metric learning (DML) [13], support vector machines (SVM) [14], etc.
Moreover, WDNE may be regraded as a way for feature selection.
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Abstract. Cerebellar Model Articulation Controller (CMAC) has attractive 
properties of fast learning and simple computation. The kernel CMAC, which 
provides an interpretation for the classic CMAC from the kernel viewpoint, 
strengthens the modeling capability without increasing its complexity. However, 
the kernel CMAC suffers from the problem of selecting its hyperparameter. In 
this paper, the Bayesian Ying-Yang (BYY) learning theory is incorporated into 
kernel CMAC, referred to as KCMAC-BYY, to optimize the hyperparameter. 
The BYY learning is motivated from the well-known Chinese Taoism Yin-Yang 
philosophy, and has been developed in this past decade as a unified statistical 
framework for parameter learning, regularization, structural scale selection and 
architecture design. The proposed KCMAC-BYY achieves the systematic tuning 
of the hyperparameter, further improving the performance in modeling capability 
and stability. The experimental results show that the proposed KCMAC-BYY 
outperforms the existing representative techniques in the research literature. 

Keywords: Bayesian Ying-Yang learning theory, CMAC, kernel machine. 

1   Introduction 

The Cerebellar Model Articulation Controller (CMAC) [1] is a type of neural network 
based on a model of the mammalian cerebellum. Originally the CMAC was proposed as 
a function modeler for robotic controllers in 1975, but it has been extensively used in 
reinforcement learning and also as a classifier. As an associative memory neural  
network model, the CMAC has some attractive features of fast learning, simple compu-
tation, local generalization, and the fact that it can be realized by specialized high-speed 
hardware [2]. In addition, the application of the CMAC can be found in many areas 
such as robotic control, signal processing, and pattern recognition. Fig. 1 shows the 
architecture of CMAC model. 

Practically, a huge problem always constrains the application of CMAC: the mem-
ory requirement grows exponentially with respect to the input dimension. In order to 
reduce the complexity of the CMAC, Albus introduced hash coding into his model 
[1]. This approach effectively reduces the size of memory, but it can result in colli-
sions of the mapped weights and bring certain adverse impacts to the convergence of 
learning [3]. Another method, of decomposing a multivariate case into a group of 
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lower dimensional ones, is also widely used to reduce complexity in CMAC research. 
Although all the above architectures are less complex compared to the classic CMAC, 
they are more time consuming in the training process [3]. 

 

 
Fig. 1. Architecture of the Classic CMAC 

Interpreting the CMAC as a type of kernel machine, the Kernel Cerebellar Model 
Articulation Controller (KCMAC) can reduce the complexity of the CMAC, and 
strengthens its modeling capability remarkably [3]. In order to further improve the 
modeling capability of KCMAC, one hyperparameter is introduced to penalize the 
mis-regression. Such a hyperparameter must be optimized to suit a specific problem; 
however, it is always pre-defined based on empirical knowledge in the original 
KCMAC. To address this problem, in this paper we attempt to tune the hyperparame-
ter systematically using the Bayesian Ying-Yang learning theory. 

Bayesian Ying-Yang (BYY) learning [4], [5], [6], is a statistical learning theory for a 
two pathway intelligent system via two complementary Bayesian representations of the 
joint distribution on the external observation and its inner representation, with all  
unknowns in the system determined by a principle that two Bayesian representations 
become best harmony. In our previous work, BYY has been successfully applied to the 
fuzzification phase of the CMAC [11], which is further incorporated with an online 
expectation-maximization (EM) algorithm to process time series data [13]. In this re-
search, a novel KCMAC-BYY is proposed to achieve the systematic tuning the hyper-
parameter, and further improves the performance in modeling capability and stability. 

The remainder of this paper is organized as follows. The KCMAC is briefly  
described in the next section. Section 3 introduces the BYY supervised learning into 
the KCMAC. The hyperparameter optimization using BYY learning is proposed in 
Section 4. Experiments and the detailed analyses are presented in Section 5, followed 
by the conclusions and future work in Section 6. 

2   Overview of Kernel CMAC 

To improve modeling capability of CMAC without increasing model complexity, a 
kernel version of CMAC is introduced by G. Horváth. In KCMAC, the association 
space is treated as the feature space of a kernel machine [3]. Considering the fact that 
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the binary basis functions can be regarded as first-order B-spline functions of fixed 
positions, the higher-order B-spline kernel functions can be designed artifically to 
replace the binary basis functions of the CMAC.  

The weight vector  in the KCMAC is determined by the following constrained 
optimization using a quadratic loss function [10]: Min , ∑                                   (1) 

such that   (2)

where  is the mis-regression penalty parameter of model,   is the error of i th input 
point,  is the number of data points, and  corresponds to the mapping function 
in kernel machine to replace the “AND” operation of the classic. In addition to the 
classic binary CMAC, this kernel interpretation can also be used in higher order 
CMACs [7], [8], [9], with higher order basis functions. A CMAC with k th-order  
B-spline basis function corresponds to a kernel machine with 2k th-order B-spline 
kernels. 

Then introducing Lagrangian, the response of the network will be ∑ ∑ ,                         (3) 

where  are the lagrange multipliers. In addition, by adding a regularization term into 
(1) and (2) respectively, the KCMAC can be easily extended to a regularized version, 
which has a better generalization capability. 

In the KCMAC, the modeling capability can be reinforced greatly without increas-
ing its complexity, but the hyperparameter  , which is the mis-regression penalty 
parameter of the model, is introduced into the model. In the original KCMAC, this 
hyperparameter is always determined by empirical knowledge, while different values 
of   will result in quite different performances. To guarantee the modeling capability 
and stability, the BYY learning is embedded into the KCMAC in this paper, since it 
can optimize  systematically. 

3   The Kernel CMAC with BYY Learning 

In the BYY supervised learning [4], [5], [6], there are three primary elements: the 
inner representation , the external observations , and the output action .The u and 
z are known (visible), but the w is unknown (invisible). All of these elements are 
treated as random variants, and the joint distribution , ,  can be calculated in 
two ways:   , , | | , , , | | ,  (4)
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Practically, the results of these two equations are always not equal unless  is the 
optimal solution. Notice that  and  are dialectical: in training  and  are known 
but  is unknown, and   is obtained in terms of  and  , while in testing or 
ning,  is known but  and  are unknown, and  decides what  and  are. The core 
idea of the BYY learning is that the specification of a Ying-Yang pair above enhances 
best the so-called Ying-Yang harmony.  
 

 
Fig. 2. BYY learning in the KCMAC 

The KCMAC can be considered a system to obtain an optimal weight vector in 
terms of the training data. It is reasonable that in our work we design input data as the 
external observation , the desired output as the output action , and the weight vector 
as the inner representation , while the optimal value of hyperparameter  will make 
the model to be the best harmony.  Fig. 2 depicts the BYY learning in the KCMAC. 

4   Hyperparameter Optimization Using BYY Learning 

4.1   Architecture Design for the KCMAC-BYY 

The architecture design will be made by specifying the architecture of 
nents, , | , | , ,  , | , | ,  in the Ying-Yang pair of 
the KCMAC-BYY. 
•  and |  with a given training data, are usually fixed on the kernel esti-

mate [12] respectively. 
• | , , called the coordination terminal in the BYY supervised learning, makes 

the invisible representation space W coordinate with the two visible spaces U, Z. In 
this paper, we set | ,  to be free.  

To specify | , | ,  and , we return back to the constrained optimiza-
tion of the KCMAC in (1). Here we rewrite Eq. (1) as follows: 



 The Optimization of Kernel CMAC Based on BYY Learning 361 

Min ∑                                        (5) 

where  is replaced by two new hyperparameters,  and , correspondings to /
. To interpret the KCMAC probabilistically, one can regards the Eq. (5) as defining 

a negative log-posterior probability for the weight vector , given a training data : | , ln , ln ξ exp ∑                              (6) 

 

where | , ln , ln ξ | ln | , lnξ .  
Then we have 

•                                         | exp                                 (7) 

where  is the dimension of the weight vector or feature space. 

•                 | | , , | , lnξ exp                       (8) 

where  is the mis-regression penalty parameter of the model, and  is the error of the 
input point. 

4.2   Separation Functional of the KCMAC-BYY 

In this paper, the Kullback-Leibler (KL) divergence [14] is used as the separation 

functional. The KL divergence is a natural distance function from a "true" probability 

distribution to a "target" probability distribution. Using the KL divergence, the sepa-

ration functional of KCMAC-BYY, ,  is given by ∑ | | | , ln | | | ,| | ,,     . 
Considering the designed architecture, we have min , , max , ln ∏ , | , lnξ,         (9) 

From Eq. (9), minimizing the separation functional of the KCMAC-BYY is equiva-
lent to maximizing ∏ , | , lnξ, . It is noteworthy that, Suykens’ work in  
LS-SVM [10] obtained a similar result. This situation not only validates the correct-
ness of the novel KCMAC-BYY, but also provides a way to maximize the separation 
functional which is in common with that used by Suykens [10]. 

4.3   Hyperparameter Learning in the KCMAC-BYY 

In practice, we can rewrite the optimization problem in  and  into a scalar optimiza-
tion problem in / : 
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max ∑ ln , 1 ln ∑     (10) 

where ,  is the eigenvalues of Gram matrix,  is the solution of the constrained 
optimization (1) with the optimal value  of the last iteration. We can obtain the 
optimal hyperparameter  by solving the above optimization problem using the quasi-
newton method: ∆ , ∆  (11)

where  is the step size, which is done to ensure that the Wolfe conditions are satis-
fied at each step of the iteration;   is the gradient,   is the Hessian, and 

 (12)

∆ ∆ ∆∆ ∆ ,  (13)

5   Experimental Results 

In this section, we compare the performance of the KCMAC-BYY with original ker-
nel CMAC [3] and other versions of CMAC in regression. In our experiments, 1-D 
and 2-D  functions are approximated. The hardware configuration for our expe-
riments is: CPU = Intel Pentium IV 2.66GHz, operating system = Microsoft Windows 
XP, memory available = 2 Gbytes. 
 

 
(a)                                                                   (b) 

Fig. 3. Responses of the original KCMAC (a) and the KCMAC-BYY (b). Here the inputs are 
quantized into eight bits, while the number of levels, , is set 8. The training data are taken 
from the interval 3, 3 , and the distance between the neighboring samples is 0.1. Opti-
mizing systematically the hyperparameter 2.9164 10 , the KCMAC-BYY reduces the 
Mean Squared Error (MSE) to 7.3685 10  from 0.1211 in the KCMAC. 
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Similar results can be obtained in 2-D cases. In Table 1, the comparison of the root 
mean square (RMS) error of the KCMAC-BYY and other CMAC models for 2-D func-
tion approximation is given, where the inputs are sampled from the interval 5 , 5  
with different values of . Here 8, and the input is quantized into 48 48 discrete 
values. Above experimental results demonstrate the KCMAC-BYY provide better per-
formance than the other versions of CMAC in regression. 

Table 1. Comparison of RMSE of sinc approximation using KCMAC-BYY and other CMACs 

C=8 
Training 

data KCMAC-BYY KCMAC 
Albus 

CMAC 
HCMAC MS-CAMC 

FCMAC-
BYY 

d=2 576 0.0021 0.0029 0.0092 0.0058 0.0092 0.0032 

d=3 256 0.0124 0.0209 0.0233 0.0146 0.0233 0.0208 

d=4 144 0.0119 0.0124 0.0166 0.0254 0.0166 0.0122 

d=5 81 0.0495 0.0458 0.0480 0.0406 0.0480 0.0386 

d=6 64 0.0329 0.0658 0.0737 0.0398 0.0737 0.0681 

6   Conclusions and Future Work 

The proposed KCMAC-BYY, using the Bayesian Ying-Yang learning theory, which 
is motivated by the well-known Chinese ancient Yin-Yang philosophy, achieves the 
systematic tuning of the hyperparameter, and further improves performance in model-
ing capability and stability. The experimental results show that the proposed 
KCMAC-BYY outperforms the existing representative techniques in the research 
literature. In future work, we will study an online approach to improve the proposed 
KCMAC-BYY, so that it will be able to handle online data as well as self-adapt dur-
ing learning. 
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Abstract. This paper introduces a method for selecting a target source

of interest. The target source is assumed to be the closest to sensors

among all the other sources regardless of the target source not being

the dominant power at the sensors. In this paper, we propose a simple

method to select the closest source from signals separated by Independent

Vector Analysis (IVA). The proposed method is processed in two-stages.

Firstly, IVA is used to separate the mixed signals. Secondly, the mixing

channel characteristics are used to choose the closest source. Simulated

experimental results are presented to show how well the proposed method

works.

Keywords: Blind Source Extraction, Blind Source Separation(BSS),

Closest Source, Convolutive Mixture, Independent Vector Analysis.

1 Introduction

The process of separating mixed signals into original signals is known as blind
source separation(BSS) and ICA is a particular case of BSS when sources are
assumed independent. From the very beginning the main focus of this research
has been to do just that, separate the signals. Convolutive ICA algorithms are
introduced in order to solve the problems at hand with the main issue being the
permutation problem. Many techniques have been proposed to solve it, which
include smoothing the frequency domain filter [1,2], and the direction of arrival
estimation [3]. Although these methods provided a good solution, additional
algorithmic steps and computations were needed. The IVA method overcomes
these problems and works well with any ill-posed geometric arrangements among
sources and sensors [4].

All the separated sources may be important in some applications, such as
EEG signals, but not in others. In some special applications such as selecting
an order from multiple speech input, only one source is significantly impor-
tant compared to the others. Sawada et al. has introduced a method to ex-
tract dominant target sources which are assumed to be close to the sensors
[6]. The algorithm used in this method assumes the target sources have dom-
inant powers at the sensors. So if the power of a signal far from the sensor is

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 365–372, 2009.
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larger than the closer signal, the algorithm does not work properly. Our pro-
posed algorithm selects the source closest to the sensors whether or not the
target source has the dominant power. Fig. 1 shows the flow of the proposed

Fig. 1. Overall diagram of proposed method

method. Time-domain signals xi(t) are converted into time-frequency domain
signals xi(k, τ) by short-time Fourier transform (STFT). Then, we apply IVA to
the signal x(k, τ) = [x1(k, τ), ..., xM (k, τ)] and obtain unmixing filter and sep-
arated sources y(k, τ) = [y1(k, τ), ..., yM (k, τ)]. Basis vectors are used to select
the closest source. Inverse STFT is applied to the separated sources yi(k, τ) and
we can obtain time-domain output signals yi(t). For the last step, we re-order
the sequence of the output signals based on the closest constraint.

2 Independent Vector Analysis (IVA)

The first step is to separate the components of each sources. We apply IVA by
assuming that the number of independent component is equal to M

y(k, τ) = W::kx(k, τ) . (1)

where W::k = [w1k, ...,wMk]H is an M ×M separation matrix of kth frequency
bin.

In order to separate multivariate sources from multivariate observations, we
define Kullback-Leibler divergence between two functions as the measure of in-
dependence. One is a total joint probability, P (y1:, ..., yM :) and the other is the
product of marginal probabilities of individual source vectors,

∏M
i=1 P (yi:). The

object function that maximizes the independence of the output signal yi can be
written as

I(y) = KL[P (Y )||
M∏

i=1

P (yi:)]

=
∫
P (x1:, ..., xM :)logP (x1:, ..., xM :)dx1: · · ·dxM :

−
K∑

k=1

log|detW::k| −
M∑
i=1

E[logP (yi1, . . . , yiK)] . (2)
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P (x1:, ..., xM :)logP (x1:, ..., xM :)dx1: · · · dxM : is the entropy of the given obser-

vations, which is a constant. K is the number of frequency bins. The interesting
parts of these cost functions are that each source is a multivariate and it is
minimized when the dependency between the source vectors are removed but
the dependency between the components of each vector does not need to be
removed. Therefore, the object function preserves the inherent frequency depen-
dency within each source, but it removes the dependency between the sources.
By differentiating I(y) with respect to the coefficients of the separating matrices,
wijk, we can obtain the gradients for the coefficients as following.

∆Wijk ∝ −∂I(y)
∂wijk

= ĥ�
jik − E[Φk(yi1, · · · , yiK)y�

jk] . (3)

where ĥjik is jth row and ith column element of the matrix (W−1
::k ) in kth

frequency bin. � denotes complex conjugate. And the nonlinear function, Φk(·),
is given as

Φk(yi1, · · · , yiK) = −∂logP (yi1, · · · , yiK)
∂yik

. (4)

Note that the score function Φk is a multivariate function.
In our approach, we defined the complex-valued source distribution as a de-

pendent multivariate super-Gaussian distribution that is spherically symmetric
in all frequency bins. Most natural signals have inherent dependencies between
frequency bins. Nonetheless, each frequency bin is uncorrelated with the others,
because the Fourier bases are orthogonal bases. Thus, we can set the covariance
term as a diagonal matrix. Since Fourier outputs have zero means, we can write
the distribution as following.

P (yi:) = α · exp(−
√∑

k

| yik
σik

|2) . (5)

where σik is the variance of the ith source at the kth frequency bin, which
determines the scale of each element of a source vector. In the algorithm, we set
σik to 1, because we adjust the scale after learning the results of the separting
filters. Consequently, the multivariate score function we used is given as

Φk(yi1, . . . , yiK) =
∂

√∑K
k=1 |yik|2

∂yik
=

yik√∑K
k=1 |yik|2

. (6)

Although we used a fixed form of a multivariate score function as seen in the
equation above, we do not claim that only this form is appropriate for separating
source signals. Since the form of a multivariate score function is related to the
dependency of sources, the proper form of a multivariate score function may
vary with different types of dependency.

IVA avoids the permutation problem by exploiting the higher order frequency
dependencies, but the scaling problem still need to be solved. If the sources are
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stationary and the variances of the sources are known in all frequency bins, one
can solve it by adjusting the variances to the known values. However, natural
signal sources are dynamic, non-stationary in general, and the variances are
unknown. Instead of adjusting the source variances, we can solve the scaling
problem by adjusting the learned separating filter matrix. A well-known method
is obtained by the minimal distortion principle [5]. Once the learning algorithm
is finished, the learned separating filter matrix is an arbitrary scaled version of
the exact one, which is given as

W::k = D::kH
−1
::k . (7)

whereD::k is an arbitrary diagonal matrix. Therefore, by replacing the separating
filter matrix as,

W::k = diag(W−1
::k )W::k . (8)

where diag(X) denotes the diagonal matrix which has same diagonal entries of
the matrix X . After solving the scaling problem, we perform an inverse Fourier
transform and overlap add in order to reconstruct the time domain signal. After
IVA is performed, we can obtain not only separated source signals but also a
separation matrix. We can obtain corresponding mixing channels for each sources
from the separation matrix. By using the information of the mixing channels,
we can select the closest source from the separated signals.

3 Selecting the Closest Source

By using the results of IVA, we can select the closest source to the sensors by
a simple method. In this section, we discuss the characteristics of the closest
mixing channel and the method used to select the closest source.

3.1 Characteristic of Mixing Channels

Original speech signals pass through the acoustic channels and are recorded by
the microphones. Observed signal xj(t) from jth microphone can be represented
as

xj(t) =
N∑

i=1

xji(t), j = 1, . . . ,M . (9)

where

xji(t) =
L−1∑
l=0

hji(l)si(t− l) . (10)

xji(t) is the component of si measured at sensor j. And hji(l) is the impulse
response from source i to sensor j and L is the filter length of the impulse
response. The impulse response hji(l) changes according to the relative position
between source i and sensor j. An impulse response of the source close to a sensor
looks more like a delta function. The delta function in the time domain is equal to
the uniform function in the frequency domain. So if we can approximate a good
mixing channel, then we can select which source is the closest to the sensors.
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3.2 Selecting the Closest Source

From the IVA result, we can get the unmixing matrix W::k for all frequency bins
and separated signals yi(k, τ). In this case we only consider the case of equal
number of sources and sensors. So to obtain the mixing matrix, we calculate the
inverse of W::k

[a1k, . . . ,aMk] = W−1
::k , aik = [a1ik, . . . , aMik]T . (11)

By multiplying both sides of Eq. 1 by W−1
::k , the sample vector x(k, τ) is repre-

sented by a linear combination of basis vectors a1k, . . . ,aMk

x(k, τ) =
M∑
i=1

aikyi(k, τ) . (12)

If yi is well trained to be the original source si, aik can be one to one matching
to hik = [h1ik, . . . , hMik]T where hjik is the frequency response from source i
to sensor j at kth frequency bin. Since we know that aik is the mixing basis
from the ith source to each sensors, we calculate the flatness Fi of each basis as
following.

Fi =
M∑

j=1

vark(ajik)
||meank(ajik)|| . (13)

The separted source with smallest flatness value is the closest source. Then we
renumber the indexes of the separated components y1(k, τ), . . . , yM (k, τ) accord-
ingly that the closest source comes to the first.

4 Experiments

4.1 Experimental Setting and Performance Measures

We performed experiments to select the target source which was the closest to
the microphone arrays. Simulated room environments are shown in Fig. 2. We

Fig. 2. Simulated room environments
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set the room size to 7m x 5m x 2.75m and set all heights of the microphone and
source locations to 1.5m. A reverberation time was 50ms and the corresponding
reflection coefficients were set to 0.57 for every wall, floor, and ceiling.

The mixed speech signals we used were recorded speech signals generated in a
simulated room environment. Recorded speech signals were clean speech signals
8 seconds long sampled at 8kHz, and they were convolved with corresponding
room impulse response. 1024-point FFT and a 1024-tab long Hanning window
with the shift size of 256 samples were used.

Our proposed methods were applied to 2 x 2 speech separation problems. Two
array microphones are located in the middle of the room. The position of the
source signal Si is represented by the distance and the angle(ri, θi) from the
center of the microphone array. The separation performance was measured by
the signal to interference ratio in dB defined as

SIRs = 10log(

∑
t,k |sk2 [t]|2∑
t,k |sk1 [t]|2

) . (14)

SIRx =
1
M

M∑
i

10log(

∑
t,k |hk

i2s
k
2 [t]|2∑

t,k |hk
i1s

k
1 [t]|2

) . (15)

SIRy = 10log(

∑
t,k |rkq(2)2sk2 [t]|2∑
t,k |rkq(1)1sk1 [t]|2

) . (16)

where q(i) indicates separated source index that the ith source appears, and
rkq(i)j is an overall impulse response, which is defined by

∑
m w

k
q(i)mh

k
mj at kth

frequency bin.

4.2 Two Sources at a Same Direction

First, the proposed algorithm was applied to the problem with two sources lo-
cated at the same direction. The results are shown in Table. 1. The experiments
were done with various directions. Source signal S2 was defined as the target
signal. The goal of proposed algorithm is to select S2 as the closest source. S2

was well selected for when the other signal was at the same direction in most
of the cases. The angle between 10◦ and 20◦ failed to select the correct closest
source. This is because the performance of the proposed algorithm depends on
the result of the separating algorithm. This experimental setup is difficult to

Table 1. Two speakers are at same direction

S1 : (r1, θ1) S2 : (r2, θ2) SIRs(dB) SIRx(dB) SIRy(dB) IVA Proposed Method

(2m,0◦) (1m,0◦) 0 5.77 18.01 S1 S2

(2m,10◦) (1m,10◦) 0 5.87 -25.90 S1 S1

(2m,20◦) (1m,20◦) 0 5.84 -26.41 S1 S1

(2m,30◦) (1m,30◦) 0 6.03 18.96 S1 S2

(2m,45◦) (1m,45◦) 0 5.38 18.90 S1 S2
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Table 2. Target source S2 is positioned at (r2, θ2). Other source is at same direction

with different distance.

S1 : (r1, θ1) S2 : (r2, θ2) SIRs(dB) SIRx(dB) SIRy(dB) IVA Proposed Method

(1.1m,0◦) (1m,0◦) 0 0.92 10.60 S1 S2

(1.1m,0◦) (1m,0◦) -10 -9.08 3.61 S2 S2

(1.7m,0◦) (1m,0◦) -15 -10.28 2.97 S2 S2

Table 3. Target source S2 is positioned at (r2, θ2). Other source is at different distance

with various angles. Experiments are done with different SIRs.

S1 : (r1, θ1) S2 : (r2, θ2) SIRs(dB) SIRx(dB) SIRy(dB) IVA Proposed Method

(2m,−60◦) (1m,0◦) 0 5.66 30.29 S1 S2

(2m,10◦) (1m,0◦) 0 5.81 20.51 S1 S2

(2m,−60◦) (1m,0◦) -10 -4.34 22.58 S2 S2

(2m,0◦) (1m,0◦) -10 -4.25 9.72 S2 S2

(2m,10◦) (1m,0◦) -10 -4.19 13.59 S2 S2

(2m,−60◦) (1m,0◦) -20 -14.34 11.05 S2 S2

(2m,−25◦) (1m,0◦) -20 -14.16 9.91 S2 S2

(2m,25◦) (1m,0◦) -20 -14.17 9.76 S2 S2

(2m,40◦) (1m,0◦) -20 -14.38 7.01 S2 S2

solve, because the sources are located closely together on the same side and have
the same direction of arrival(DOA). Though the IVA succeed to separate each
sources, the unmixing filter estimation is still hard to solve and it may cause
some problems. If the separation method cannot estimate exact unmixing filter,
the proposed method also fails to select the correct target source. Except for the
angles between 10◦ and 20◦, the proposed method works well.

4.3 Refine Experiments

Next, we show the experiment results for the refinement. Although we have
performed experiments under various conditions, here we simply show the results
for some cases. Second experiment results are shown in Table. 2. The position
of target source S2 is fixed to (1m, 0◦). Though the target source power is not
dominant to the sensors, the proposed algorithm can select the correct closest
source. The results from the third experiment are shown in Table. 3. When SIRs

is 0 or -10, the system selected the correct answer wherever S1 was positioned.
For the case of SIRs equals to -20, the system fails to select the closest source
if the direction of two sources are similar.

5 Conclusions

We have proposed a simple method for selecting the target source from the
mixed signals. The target source is defined as the closest source from the sensors.
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The mixing channel characteristics were used to select the target source. The
impulse response from the source to sensor is more like an impulse function as
the source is closer to sensor. It means the frequency response is more uniform
in the frequency domain. Although the power of target source to the sensor is
relatively small, the proposed method choose the closest source very well.
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Abstract. In this paper, we propose a novel method for decomposing

mixed-pixels of remote sensing images, which integrates two-Dimensional

Wavelet Transform (2-DWT) and Kernel Independent Component Anal-

ysis (KICA) technique. In order to improve the signal and noise ratio of

the original mixed-pixel images, we apply wavelet analysis method to

reduce the noise of the images. High-frequency sub-image in wavelet do-

main is approximately represented by a kind of super-Gaussian Laplace

distribution, and KICA is adopted for this distribution with greater kur-

tosis for obtaining higher accuracy and faster convergence rate. The ex-

periments show that decomposition result with the proposed method is

much improved not only at accuracy but also remarkably robust to noise

compared those obtained with 2-DWT-ICA or KICA.

Keywords: Wavelet Transform, Kernel Independent Component Anal-

ysis, Remote Sensing Image, Mixed Pixel.

1 Introduction

Due to restrictions on spatial resolution of sensors, the complexity of the diversity
of features, as well as the impact factors such as the atmosphere, topography,
surface features, the second reflection, mixed pixels in remote sensing images
exist widely. Mixed pixels refer to the pixels that cover more than one constituent
material within the instantaneous field of view (IFOV) of the sensor [1]. The
decomposition of mixed pixels is a growing research area with a wide range
of applications such as sub-pixel object quantification, mineral identification,
area estimation [2], etc. Another emerging application developed recently in
biological microscopy is to analyze multi-spectral fluorescence microscopy for
discriminating different co-localized fluorescent molecule [3].

Many techniques for decomposition of mixed pixels for remote sensing images
have been developed in recent years, these techniques can mainly be catego-
rized into linear or nonlinear mixture model [4]. The linear mixture model has
gained significant popularity due to its effectiveness and simplicity. In recent
years, most decomposition methods have been developed based on linear mixed
models, which can be classified into three groups based on their specific focuses.
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The first group of algorithms focuses on end-member extraction. Various tech-
niques have been investigated, including spectral angle mapper, projection pur-
suit, convex hull geometry [5]. The second group performs abundance estimation
if end-member signatures are given, including maximum-likelihood estimation,
linear mixture analysis, fuzzy c-means [4] and artificial neural networks [2]. The
third group of methods attempts to take account of both procedures, using either
least squares or blind source separation methods, such as Independent Compo-
nent Analysis (ICA) [6], and Non-negative Matrix Factorization(NMF) [7].

The traditional ICA has some limitations in mixed-pixel decomposition since
its linear properties, while kernel ICA (KICA)has a nonlinear kernel mapping,
and could be adopted to improve the decomposition task under the circumstance
of Gaussian distribution [6,7,8,9]. However, the original remote sensing images
usually contain noise and signal to noise ratio(SNR) is low, applying KICA
directly can not obtain desired effects. Then we propose a novel mixed pixel
decomposition method which adopts Two-Dimensional Wavelet transform (2-
DWT) analysis and KICA technique, termed 2-DWT-KICA, to improve the
un-mixing pixel task in this paper.

2 Background

In this section, we briefly review the relative mathematic theory and background
knowledge.

2.1 Linear Model of Mixed Pixel

Assuming that there are m remote receivers, observation vector of each pixel is
x = (x1, x2, ..., xm)T . The basic assumption of linear mixing is that within the
IFOV [1] of a single pixel is given by,

x = As + n, xi =
c∑

j=1

aijsj + ni , (1)

where A is an m× c reflection coefficient matrix, whose column, aj , j = 1, ..., c,
corresponds to the spectral signature of the jth endmember, and c is the num-
ber of endmembers. The abundance vector is denoted by s, which satisfies two
physical constraints, sj ≥ 0 and

∑c
j=1 sj = 1. Noises are taken into account by

an m× 1 column vector n.
The target of decomposition is to find a matrix W, when applied to the

observation x, the true abundance can be gained s̃ = Wx according to some
algorithm [1].

2.2 Kernel Independent Component Analysis

The main idea of ICA is in search of a non-singular transformation for multi-
variate data and make the transformed component is independent to each other
as much as possible. More details about ICA algorithm can be found in [6]. As
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we known, ICA is a linear method, most of data is nonlinear distribution which
is too complex to be presented well by a linear model in practice. Harmeling et
al [10] presented a kernel-based algorithm in the blind separation of nonlinearly
mixed speech signals. One of the eye-catching characteristics of Kernel function
method is that it can use Mercer kernel functions in place of the linear inner
product algorithm to achieve nonlinear transformation without considering the
specific form of non-linear transformation [8]. The basic idea of their algorithm
is to map the input data into an implicit feature space F with kernel trick firstly:

x ∈ RN → Φ(x) ∈ F . (2)

then ICA is performed in F to produce a set of nonlinear features of input data.
Selecting an appropriate kernel function for a particular application area is very
important. Many functions can be chosen for the kernel such as Polynomial
kernel, Gaussian kernel , sigmoid kernel, cosine kernel and so on. In this paper,
we will adopt Gaussian Kernel [9]. A brief introduction of the algorithm is given
in the following:

Input Data: Observation vector x and Kernel function. Gaussian kernel func-
tion which is defined as expression (3):

k′(x, y) = exp(−(x− y)2/2σ2) . (3)

Step 1: Whitened the input data. The whitening matrix is:

XW
Φ = (W

′
Φ)TΦ(X) = (ΛΦ)−1αTK , (4)

where K is defined by kij = Φ(xi)Φ(xj). The kernel function k can be computed
instead of Φ. ΛΦ is the eigenvalue matrix of covariance matrix of X. α is the
eigenvector matrix of K.
Step 2: Compute W according to expression (4) by the following iterative al-
gorithm:

Y
′
Φ = (WΦXΦ) . (5)

∆WΦ = [I + (I− 2

1 + e−Y
′
Φ

)(Y
′
Φ)T]WΦ . (6)

W
′
Φ = WPhi + ρ∆WΦ → WΦ . (7)

Repeated the step 2, until WPhi converged, where ρ is a learning constant.

Output: W

2.3 Two-Dimensional Wavelet Transform

Wavelet transform can be applied to analyze the local characteristics of sig-
nal both in the time domain and frequency domain. Two-dimensional wavelet
transform was applied to decompose two-dimensional signal of images into high-
frequency and low frequency information in the following experiment. Univer-
sal threshold algorithm [11] was chosen to select the wavelet coefficient. The
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(a) (b)

Fig. 1. Wavelet Decomposition, (a) Original pseudo-color image of the AVIRIS data,

and (b) Sub-images of low frequency, horizontal, vertical and diagonal direction in the

wavelet domain after two wavelet decomposition

coefficient of low-frequency mainly reflects the information of signal, and the
coefficient of high-frequency mainly reflects the noise and the details of signal.

The feature distributions of most of images are Gaussian distribution. High-
frequency sub-image in wavelet domain is approximated for the Laplace distri-
bution which is a kind of super-Gaussian distribution with greater kurtosis [11].
The original image and its four sub-images in wavelet domain (low frequency,
horizontal, vertical and diagonal directions, respectively) are shown in Fig. 1, and
Table 1 shows the kurtosis of those sub-image in wavelet domain. Normalized
kurtosis is defined as follows [11]:

kurt(x) =
E{(x−X ′

)4}
[E{(x−X ′)2}]2 = E{x} . (8)

As shown in Table 1, the kurtosis of high-frequency sub-image is increased nearly
10 times. Other sub-images have the similar property.

3 Mixed Pixel Decomposition Based on 2-DWT-KICA

Following the analysis from above, the steps of performing the proposed method
can be summarized as follows:

a) A wavelet and the layer of decomposition are selected first. Then two-
dimensional wavelet transform is applied to mixed images.

b) High-frequency sub-image is chosen, and stack it into a matrix X′ according
its row.

c) Kernel ICA is applied to matrix X′, and then the separation matrix W
can be calculated by iterative methods described in subsection 2.2.

Table 1. The kurtosis of low frequency, high-frequency, vertical and diagonal direction

sub-image in wavelet domain

Original Low Horizontal Vertical Diagonal

kurt 2.14 2.19 20.7 19.8 19.6
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Fig. 2. Flowchart of the proposed method

d) Estimated signal source can be calculated by the expression: s̃ = Wx, x is
the mixed image matrix in time-domain.

e) Finally, restore every row of the estimation to the form of two-dimensional
images to obtain the independent source images. Fig. 2 shows the flowchart of
the proposed method.

4 Experiments

In order to verify the effectiveness of the proposed method, simulated images
as well as a real TM remote sensing images are used in the experiment. Both
2-DWT-ICA and KICA are compared with proposed method also. The programs
are run on the platform of PC with CPU 2.4Ghz.

4.1 Experiments with Simulated Images

In this part, synthetic images are generated based on the following steps:

a) Generate mixing coefficients matrix s with 128 × 128 pixels randomly and
satisfy two physical constraints sj ≥ 0 and

∑c
j=1 sj = 1.

b) Generate reflection coefficient matrix A randomly with the size of 128 ×
128.

c) Calculate the observation vector: x = As.
d) Add zero mean Gaussian random noise to x.

In the experiment, the proposed method, 2-DWT-ICA, and KICA are tested with
simulated image, respectively. We have chosen different direction high-frequency
sub-image of mixed images and different wavelet such as harr, bior4.4, coif3 and
sym4. After comparison, we found that horizontal sub-image and harr wavelet
has best separation accuracy. So the horizontal sub-image and harr wavelet are
chosen in the following experiment. Fig. 3 is the simulated image and its’ de-
composition results using 2-DWT-KICA.

Table 2 shows the proportion of four mixed pixels chosen randomly from the
simulated mixed image. From Table 2, we can see that the decomposition results
of the proposed method is approximate to the ratio of the real surface features.

Further, the root-mean-square error (RMSE) and correlation coefficient (CC)
are used to evaluate the performance of the algorithms [11]. The smaller RMSE
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(a) (b) (c) (d)

Fig. 3. Experiments with Simulated Images. (a) Simulated mixed image, (b), (c) and

(d) are decomposition results using the proposed method.

Table 2. The accuracy comparisons of different methods

Original Ratio The Proposed Method KICA 2-DWT-ICA

1 0.20 0.40 0.50 0.244 0.467 0.581 0.250 0.501 0.594 0.322 0.385 0.687

2 0.12 0.30 0.58 0.122 0.358 0.601 0.157 0.450 0.625 0.223 0.564 0.684

3 0.25 0.35 0.40 0.210 0.406 0.451 0.202 0.415 0.487 0.307 0.438 0.560

4 0.16 0.34 0.50 0.142 0.405 0.562 0.164 0.421 0.616 0.283 0.265 0.754

and greater CC represent the higher accuracy of the decomposition results. More
details can be found in [11]. Table 3 shows the results of these two indicators of
decomposition with different methods.

Table 2 and Table 3 show the unmixing results under additional Gaussian
noise. We can see that our method is more robust to noise and has higher de-
composition accuracy than 2-DWT-ICA and KICA.

4.2 Experiments with TM Remote Sensing Image

For the lack of standard criterion for real remote sensing images, we cannot eval-
uate the algorithm performance by objective numerical values. Here the only way
to evaluate the algorithm performance is by comparing the visual effects. The
image with the size of 128 × 128 used in the experiment, which is downloaded
form the website [12]. This image is often used for testing the performance of
un-mixing algorithm. Original image is in Fig. 1(a), as the ground truth in
[12] shows, the image consists of three major types of features: natural vegeta-
tion, artificial structures and hay. Images shown in Fig. 4(a), (b) and (c) are

Table 3. The accuracy indexes and different methods

RMSE1 RMSE2 RMSE3 CC1 CC2 CC3

2-DWT-KICA 0.1167 0.1135 0.1573 0.9435 0.9357 0.9287

2-DWT-ICA 0.1516 0.2132 0.2098 0.8705 0.8826 0.8559

KICA 0.1321 0.2018 0.1825 0.9124 0.8932 0.9024
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Experiments with TM remote sensing image. (a), (b), and (c)are decomposition

results of the proposed method. (a) Natural Vegetation, (b) Artificial Structures, and

(c) Hay. (d), (e), and (f) are decomposition results of applying KICA. (d) Natural

Vegetation, (e) Artificial Structures, and (f) Hay. (g), (h), and (i) are decomposition

results of 2-DWT-ICA. (g) Natural Vegetation, (h) Artificial Structures, and (i) Hay.

the decomposition results of applying proposed algorithm. We can see that the
proposed method can separate mixed pixels quite well. The profile of natural
vegetation, artificial structures and Hay are clearly visible. Fig. 4(d), (e) and
(f) show the results using KICA algorithm. It is obvious that the decomposition
results are affected by noise seriously. Fig. 4(g), (h), and (i) show the decom-
position results with 2-DWT-ICA method. The profile of natural vegetation is
blurred, and the details of hay was vague.

Above experimental results show that the proposed method has a better visual
effect than both KICA and 2-DWT-ICA, besides, it is robust to noise.

5 Conclusions and Future Work

In this paper, we proposed a new mixed pixel decomposition method which inte-
grates Two-Dimensional Wavelet transform and Kernel Independent Component
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Analysis techniques. The results showed that the proposed method has high
decomposition accuracy as well as robustness to noise, and it is an effective
solution for decomposing mixed pixels.

The proposed method still deserves further study. Selecting an appropriate
kernel function for a particular application area can be difficult and remains
largely an unresolved issue.
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Abstract. In many underwater applications, it is desirable to separate independ-
ent signals according to their sources, allowing targets to be distinguished from 
self-noise, ambient noise and clutter. The long-term goal of this work is to bet-
ter detect and model target echo under several location in real-ocean environ-
ments, and to develop signal processing techniques for echo energy estimation. 
This paper addresses echo energy estimation problem of active sonar in a set of 
sensors. This may be done by measuring a noiseless source signal echoed by a 
target whose acoustic properties are known. We propose an echo energy estima-
tion method based on the following two stages; One is the blind source separa-
tion using an independent component analysis (ICA) to separate the remaining 
mixture into its independent components. We use the principal component 
analysis (PCA), as a preprocessor, to increase the input signal-to-noise ratio 
(SNR) of the succeeding ICA stage and to reduce the sensor dimensionality, 
and followed by the fast Fourier transform (FFT). As the second, after finding 
an original target echo signal, the energy estimation solution is newly proposed 
by considering an inverse procedure of the first stage, where the estimated sonar 
source is used as input for the pseudo-inverse procedure of the ICA filter  
combined with PCA. Then, we can estimate noise-free energy information of a 
target echo, which is compared with conventional beam forming method. The 
real-ocean recorded data demonstrate the performance of the proposed algorithm. 

Keywords: Independent component analysis (ICA), active sonar system, echo 
energy estimation, signal separation. 

1   Introduction 

Systems employing the sound in underwater environment are known as sonar sys-
tems. Sonar, and an acronym for Sound Navigation and Ranging is a system used for 
the detection of objects [1, 2]. It is effective in underwater environment, and that is 
due to waters ability to propagate sound efficiently. Active sonar creates pulse of 
sound, often called a “ping”, and then listens for reflections (echo) of the pulse. The 
pulse may be at constant frequency or a chirp of changing frequency. In this paper, we 
use this target echo in active sonar. 
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The problem of target echo estimation has received considerable attention in the 
last few years. Many papers [3-5] have been published on the location of a target, by 
estimating the direction of arrival of a signal emitted by the target. However, little 
attention has been focused on the high-accuracy identification of targets by measuring 
time-delay and the Doppler companding factor in an active system, for instance, radar 
and active sonar. Moreover, there are many complicated noises in the ocean and it is 
very difficult work to estimate accurately the underwater target movement. So, in 
underwater applications, it is desirable to separate source signals to be distinguished 
from self-noises, ambient noises, clusters and so on for estimating target movement. 
Beam forming methods [6] which existing is representative to estimate energy are 
signal processing techniques used in sensor arrays for directional signal transmission 
or reception. This spatial selectivity is achieved by using adaptive or fixed re-
ceive/transmit beam patterns. It has found numerous applications in radar, sonar, 
seismology, wireless communications, radio astronomy, speech and biomedicine [6]. 
Adaptive beam forming is used to detect and estimate the signal-of-interest at the 
output of a sensor array by means of data-adaptive spatial filtering and interference 
rejection. But this method is a limit of removing various noises in real-ocean  
environment.  

Recently, blind source separation, or BSS, within the framework of independent 
component analysis (ICA) has attracted a great deal of attention in engineering field 
[7]. It has been widely noticed that there are many possible applications such as re-
moving additive noises from signals and images, separating crosstalk in telecommu-
nication, preprocessing for multi-probed radar-sonar signals. The ICA algorithm is the 
problem to separate independent sources given a mixed signal where the mixing proc-
ess is unknown [8, 9]. We want to extract each source from the mixed signals using 
some techniques. Even if the mixing process is unknown, we can separate the sources 
if they are independent to each other [10]. The major approaches of blind source sepa-
ration use higher order statistics but not the temporal structure of input signals. These 
algorithms also need iterative calculations for estimating the source signals because in 
most cases, they require non-linear optimization. This problem is encountered in the 
field of acoustics when M source signals of superposition are recorded by N micro-
phones in a reverberant environment. We can separate and estimate the source signal 
from several noises using this scheme. The aim of this study is to estimate the energy 
of a reconstructed target echo. The source i.e. target echo will be assessed as omnidi-
rectional, characteristic of a simple monopole point source, and there are many com-
ponents which are misunderstood as the source signal. So, it is very important work to 
separate signals and estimate the accurate energy of the target echo.  

This paper is organized as follows: in section 2, we describe some basic ap-
proaches to blind source separation of mixed signals and explain the experimental 
environment. In section 3, we propose a new energy estimation algorithm based on 
blind source separation of active sonar signals. In section 4, computation and experi-
mental results of the proposed algorithm will be shown. Finally, we give brief sum-
mary and conclusion remarks in section 5. 
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2   Problem Description 

There are many noises as the warship, the merchant ship and the clipper etc. various 
vessel flow in the ocean. In addition, the underwater vehicle makes not only self 
noises but also various environmental noises according to movement. So, it is very 
difficult work to estimate energy of target echo and detect the underwater object’s 
location and movement. Also, target echo from a sonar system is occurred with vari-
ous direction and stored reverberation signals other than target echo in the sensor 
array. Thus, it is necessary not only to separate source signal from noises but also 
estimate accurate arriving time of target echo. We assume that we know the ping 
generation and arriving times on a target. 

First, we use the blind source separation (BSS) to determine source signals that 
form a mixture. There is the assumption that each component of source signals s(t) is 
independent of each other and observations x(t) correspond to the recorded signals. In 
the basic blind source separation problem, we assume that observations are linear 
mixtures of source signals: 

( ) ( ),x t As t=  (1)

where A is an unknown linear operator. A typical example of linear operators is a m×n 
real valued matrix. This formulation represents non-delayed (instantaneous) linear 
mixing [7]. Given the N linearly mixed input signals, we need to recover the M statis-
tically independent sources as much as possible (N≥M). The goal of blind source 
separation is to find a linear operator W such that the components of the reconstructed 
signals 

( )  ( )y t Wx t=  (2)

are mutually independent, without knowing operator A and the probability distribution 
of source signal s(t). Ideally we expect W to be the inverse of operator A, but since we 
lack of information about the amplitude of the source signals and their order, their 
remains indefiniteness of permutation and dilation factors [6]. Then, we can calculate 
the arriving time of target echo from distance and extract the target echo range for 
reconstructing the pure target echo. We can calculate the ping delivery time (T) from 
measuring a delivery time from the signal receivers and detection time of the target. 
From this, we can calculate the relative distance (R) from sensor to target as 

,R T S= ×  (3)

where S is the average speed of sound. Finally we can extract the target echo range 
from raw data in the sensor array. After then we can separate the target echo from 
recorded mixtures of sensor array.  

Figure 1 demonstrates the method of acquisition data in a real ocean. We use the 
LFHUSS (low-frequency and high-power underwater sonar system) as source and 
1.5m length 10 channels @7kHz sonar sensor array. There are two ships for experi-
ment. One has the 10 channels sensor array and the other has the echo repeater. They 
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maintain the relative distance which is fixed during experiment. The sensor array  
is located at 42m from a test ship and the echo repeater is also located at similar 
position. The echo repeater can store and amplify the target echo. So, we can esti-
mate the energy increment and decrement of a target echo. There are two recorded 
data which are Arr data and ER data. The Arr data are the transmission ping signal 
and target echo signal, i.e. 1 and 4 as shown in Fig. 1. And the ER data are the recep-
tion ping signal and amplification signal, i.e. 2 and 3 as shown in Fig. 1. We can 
know energy decrement by ocean environment from comparison between 1 and 2 
signals. After we amplify the signal 2 to be the same energy level of signal 1, and 
send the amplified signal 3 to sensor array. Finally we estimate the energy of 4 as 
target echo. This experimental result will be shown in section 4. 

 

Fig. 1. Experimental data acquisition method in a real ocean: Use LFHUSS as source and 1.5m 
length 10ch @7kHz sonar sensor array 

3   Proposed Algorithm 

The proposed algorithm has two stages. The first stage is the source separation algo-
rithm. This consists of three steps such as the principal component analysis (PCA) 
followed by an independent component analysis (ICA) with the fast Fourier transform 
(FFT). The first step is preprocessing based on PCA for removing ill-posed problem. 
The second step performs an ICA to estimate of the source signal from the mixtures 
containing noises. The last step applies the FFT and distinguishes the source signal in 
which we assume that the frequency property of a target echo is already known. And 
the second stage, after finding an original target echo, the energy estimation solution 
is proposed by considering an inverse procedure of the first stage. The aim of pro-
posed algorithm is to reconstruct the target echo without noises and measure more 
pure energy of the reconstructed signal. 
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3.1   First Stage: Source Separation Algorithm 

Before source separation, we use the band pass filter [11] which has 7kHz center 
frequency and 800Hz bandwidth as preprocessing for improving performance of 
source separation algorithm. This can remove noise signals which have different fre-
quency range with the target echo. 

The source separation can be obtained by optimizing an objective function which 
can be a scalar measure of some distribution properties of the output y(t). More gen-
eral measures are entropy, mutual independence, divergence between joint distribu-
tion of y(t) and some given mode and higher order de-correlation. The ICA method 
can be formulated as optimization of a suitable objective function which is also 
termed as the contrast function. There are many available algorithms for ICA, but for 
this paper we present the results based on the Fast ICA algorithm [10].  

For independent sources, we want to de-correlate the sensor signals. So, we use 
PCA before ICA. The purpose of PCA is to derive a relatively small number of de-
correlated linear combinations of a set of random variables while retaining as much of 
the original information as possible. It can be used for dimensionality reduction in a 
data set by retaining those characteristics of the data set that contribute most to its 
variance, by keeping lower-order principal components and ignoring higher-order 
ones. The second order de-correlation means to make independence each other. We 
can solve ill-posed problem from this step. 

 

Fig. 2. The structure of source separation algorithm: This algorithm has three steps. The first 
step is a PCA for removing ill-posed problem. The second step is an ICA for separating signals 
and last step is FFT for distinguishing the source signal. 

Last, we apply FFT [12] of separated signals. The FFT is an efficient algorithm to 
compute the discrete Fourier transform (DFT). We use this method to select one sig-
nal that has the same frequency of target echo. Finally we can obtain the estimated 
signal without noises for energy measurement. Figure 2 shows the overall block dia-
gram for the source separation algorithm. 

3.2   Energy Estimation Solution 

The blind source separation algorithm has some constraints like amplitude and 
permutation indeterminacies [13]. Consequently, the energy of estimated signal is not 
maintained after applying first stage. Therefore we need to reconstruct the amplitude 
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which is changed for measuring more accurate energy. So we propose the energy 
estimation solution. We can solve this problem as calculating the pseudo inverse ma-
trix of following three matrices as shown in Fig. 3.  

 

Fig. 3. Method of calculating the pseudo inverse matrix: N is the reduced dimension after PCA 
step of the first stage 

Figure 3 shows the process of calculating the pseudo inverse matrix. N means the 
dimension which is reduced after PCA stage. The value of N can be controlled by 
setting a threshold. In reduction process of the principle components, we may loose 
the energy of original target echo. And then, we consider the ICA step of first stage 
and apply the whitening as preprocessing step. The indeterminacy associated with the 
ICA model is that the independent components and the columns of the mixing matrix 
A can be estimated up to a multiplicative constant, because any constant multiplying 
one independent component in the basic ICA model could be cancelled by dividing 
the corresponding column of the mixing matrix A by the same constant [14]. So, to 
make the independent components unique up to a multiplicative sign, the sources 
should have unity variance. This is whitening, and we must consider the whitening 
matrix Wt for estimating more accurate energy of target echo. And we also consider 
the de-mixing matrix W which is the inverse matrix of A. After calculating the pseudo 
inverse matrix as shown in Fig. 3, multiply that and the reconstructed signal which is 
estimated signal on third step of first stage. This time, remaining 9 channels signals 
except estimated signal put zero. After being this process, 10 channels signals are 
pure target echo without noises. Finally, we can reconstruct one signal of 10 channels 
signal average for energy measurement of target echo. 

4   Experimental Results 

In this section, we show some results of the proposed algorithm. We compare the 
result of proposed method with beam forming method [6]. In order to describe the 
performance of the proposed algorithm, we use the signal-to-noise ratio (SNR) as 

10( ) 10 log .signal

noise

P
SNR dB

P
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (4)

We calculate that the signal is the range of 500Hz bandwidth at center frequency of 
7kHz and the noises are the others. We obtain experiment data in real-ocean. We use 
the Arr data which are recorded signals at 10 channels sensor array. We synchronize 
each ping at sensor array and echo repeater, and estimate the target echo range. After 
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then we can decide the ICA input range. We apply the experiment twice without fil-
tering and after filtering as preprocessing. In this experiment, we don’t know the 
source signal precisely. The only way to evaluate the performance is to compare SNR 
of the beam forming results. Figures 4 (a) and (b) shows the separated results after 
filtering and the reconstructed signals by proposed method and beam forming method, 
respectively. 

 

Fig. 4. The result of real-ocean recorded data after filtering: (a) Source separation and FFT 
result (b) Performance of the proposed method and beam forming method 

Table 1 shows the SNR about 5 ping data that are recorded in the real ocean. The 
proposed method is the best performance at every ping. So we can efficiently reduce 
the noises and estimate more accurate energy of the source signal. 

Table 1. The SNR of each method 

without filtering after filtering 

Ping beamforming 

method (dB) 

proposed 

method (dB) 

beamforming 

method (dB) 

proposed 

method (dB) 

1 -0.6584 2.7689 10.0598 12.3519 

2 7.5725 10.5834 11.2264 13.7855 

3 6.7827 10.1284 9.3736 12.205 

4 5.8631 9.6867 10.6276 12.2378 

5 -0.3869 2.2493 11.437 13.3675 
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5   Conclusion 

We proposed echo energy estimation algorithm of active sonar in a sensor array. The 
source separation algorithm and the energy estimation solution have been proposed to 
solve pure energy estimation problem. This work describes a new application of ICA 
in an active sonar signal. In our experiments, our algorithm works well for the real-
ocean recorded data. The developed technique not only improves SNR but also suc-
cessfully distinguishes signals according to their sources of origins. In this study, we 
try to estimate more accurate energy level using basic signal processing algorithms. 
Although experimental data is not sufficiently, we approach new concept of sonar 
energy estimation using independent component analysis in underwater environment. 
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Abstract. In view of inconsistent problems caused by that Synthetic Minority 
Over-sampling Technique (SMOTE) and Support Vector Machine (SVM) work 
in different space, this paper presents a kernel-based SMOTE approach to solve 
classification with imbalance data set by SVM. The method first preprocesses 
the data by oversampling the minority instances in the feature space, then the 
pre-images of the synthetic samples are found based on a distance relation be-
tween feature space and input space. Finally, these pre-images are appended to 
the original dataset to train a SVM. Experiments on real data set indicate that 
compared with SMOTE approach, the samples constructed by the proposed 
method have the higher quality. As a result, the effectiveness of classification 
by SVM on imbalance data set is improved. 

Keywords: Imbalance, Classification, Support vector machine, Pre-image. 

1   Introduction 

Support vector machine (SVM) [1] is a new machine learning method which is based 
on the statistical learning theory developed by Vapnik et al., and it has gained wide 
acceptance because of the high generalization ability for a wide range of applications. 
Given a dataset, SVM aims at finding the discriminating hyperplane that maintains an 
optimal margin from the boundary examples called support vectors. An SVM, thus, 
focuses on improving generalization on training data. A number of recent works, 
however, have highlighted that the orientation of the decision boundary for an SVM 
trained with imbalance data, is skewed towards the minority class, and as such, the 
prediction accuracy of minority class is low compared to that of the majority ones (in 
the remainder of this paper negative is always taken to be the majority class and posi-
tive is the minority class). 

A popular approach towards solving these problems is to bias the classifier so that 
it pays more attention to the positive instances. This can be done, for instance, by 
increasing the penalty associated with misclassifying the positive class relative to  
the negative class [2]. The net effect is that the boundary is pushed more towards  
the negative instances. However, a consequence of this is that SVM becomes more 
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sensitive to the positive instances and obtains stronger cues from the positive in-
stances about the orientation of the plane than from the negative instances. If the posi-
tive instances are sparse, as in imbalance data set, then the boundary may not have the 
proper shape in the input space [3]. Another approach is to preprocess the data by 
undersampling the majority class or oversampling the minority class in order to bal-
ance out data set. In [4,5,6], Kubat and Matwin et al proposed an one-sided selection 
process which undersampled the majority class in order to create a balance data set. 
Though the approach does improve SVM performance, there is an inherent loss of 
valuable information in this process [7]. Chawla et al [8] devised a method called 
Synthetic Minority Oversampling Technique (SMOTE). This technique involved 
creating new instances through “phantomtransduction”. Experiments show that this 
technique to be more useful for SVM than undersampling or random oversampling. 
SMOTE has gained popularity in solving imbalance problem due to its performance, 
and researchers put forward a number of the new improved algorithms based on it. 
For instance, Akbani raised a method called SDC [3] which combines SMOTE with 
different costs, and Yang Liu proposed an approach named EnSVM [9] which con-
nects SMOTE with boost method. The experiments show that these improved algo-
rithms have achieved good results in imbalance data set. However, SVM works in the 
feature space, and SMOTE processes in the input space. This is somewhat unnatural. 
Because the kernel function usually implies an implicitly nonlinear mapping from the 
input space to the feature space, the optimal instance generated in input space is not 
necessarily the optimal one in feature space. Based on this, a novel SMOTE-type 
method called KSMOTE (Kernel-based SMOTE) is presented to overcome the prob-
lem in this paper. Different with original SMOTE, KSMOTE creates new positive 
instances in feature space, thereby, the inconsistency caused by processing instances 
in different space has been resolved. 

This paper is organized as follows. Section 2 gives a brief introduction to the 
theoretical background with reference to classification principles of SVM. Section 3 
introduces our proposed method in detail. Experimental results are demonstrated in 
Section 4 to illustrate the effectiveness of the proposed method. Conclusions are 
included in Section 5. 

2   Support Vector Machine 

Given training vectors xi∈Rh, i=1,…,l in two classes, and a vector y∈R such that yi∈

{-1, 1}, the support vector technique requires the solution of the following optimiza-
tion problem [1]: 

                                 
, ,

min
w b ξ

    
1

1

2

l

T

i

i

w w C ξ
=

+ ∑ , 

subject to   ( ( ) ) 1T

i i i
y w x bϕ ξ+ ≥ − ,                                              (1) 

     0, 1, ..., .
i

i lξ ≥ =  

where iξ for i=1,…l are slack variables introduced to handle the non-separable case. 
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The constant C>0 is the penalty parameter that controls the trade-off between the 
separation margin and the number of training errors, with higher value of C focusing 
more on minimizing error. Using the Lagrange multiplier method, one can easily 
obtain the following Wolfe dual form of the primal quadratic programming problem: 

, 1,...,

min
i

i lα =
  

, 1 1

1
, )

2
(

l l

i j i j i j i

i j i

y y k x xα α α
= =

−∑ ∑ , 

subject to    0 , 1, ...,
i

C i lα≤ ≤ = ,                                             (2)  

0Ty α =  . 

SVM works in the feature space F via some nonlinear mapping function : hR Fϕ , 

which can be defined implicitly by a kernel function ( , ) ( ) ( )T
i j i jk x x x xϕ ϕ= . At the 

optimal point for (2), either 0iα =  or 0 i Cα< <  or i Cα = . The input vectors for 

which 0iα > , are termed as support vectors. These are the only important information 

from the perspective of classification, as they define the decision boundary, while the 
rest of the inputs may be ignored. For a binary classification problem, the decision 
function of SVM takes the form [1]:  

                                  
1

( ) sgn( ( , ) )
N

i i

i

S

f x k x x bα
=

= +∑ ，                                            (3) 

where iα  is corresponding weight of  support vector xi, x is the input pattern to be 

classified, Ns is the number of support vectors and b is the bias.  

3   Proposed Approach 

In this section, a novel approach is presented to train SVM with imbalance data. This 
method consists of the following steps: First, the approach extends SMOTE algorithm 
to create new positive instances in the feature space F. Second, for each new instance, 
it finds the pre-image of the new instance in F. Finally in the third step, these pre-
images of the new instances are appended to positive data set to train a SVM 
classifier. Experiments on real data set show the effectiveness of the proposed method 
in solving classification with imbalance data. 

3.1   Kernel-Based SMOTE  

The SMOTE approach creates new instances through “phantomtransduction”. For 
each positive instance, its nearest positive neighbors were identified and new positive 
instances were created and placed randomly in between the instance and its neighbors. 
This technique is more useful for SVM than undersampling or random oversampling. 
However, SVM works in the feature space, and SMOTE processes in the input space. 
This is somewhat unnatural. Because the optimal instance generated in input space is 
not necessarily the optimal one in feature space. To resolve the inconsistency, we 
have to extend the original SMOTE algorithm into feature space by using kernel 
methods and develop the Kernel-based SMOTE (KSMOTE) algorithm to generate 
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new positive instances in feature space instead of in input space. The KSMOTE 
algorithm is described as following: 

   Suppose that the positive sample set is 1 2{ , ,..., }nD x x x+ = , , 1,...,h
ix R i n∈ = , ϕ  is 

a nonlinear mapping function to project xi into feature space F, which is associated 

with a kernel function ( , ) ( ) ( )T
i j i jk x x x xϕ ϕ= . 

KSMOTE(D+, N, k) 
Input: Positive sample set D+; Oversampling ratio N, namely 

number of synthetic samples to |D+|; Number of nearest neighbors 
k  
Output: Synthetic positive sample set Ds 
Function: 
getRandomPoint(S): return randomly an element from a collec-

tion S 
getFeatureNeighbors(x, S, k): return k nearest neighbors of 

point x from collection S in the feature space 
getRandomNumber(value1,value2): return an arbitrary value  

between value1 and value2 
getASCOrder(S, A): sort the collection S by ascend based on 

value of array A, 
getFirstPoints(S, k): return the first k elements from 

collection S 
Algorithm: 
1)  T := |D+|, :sD = ∅ ; 

2)  if  N < 1  then  

3)       :T N T= ×⎢ ⎥⎣ ⎦ , N := 1; 

4)  end if 

5)  N := N⎢ ⎥⎣ ⎦ , Z := D+; 

6)  for  i := 1  to  T 

7)       {  xi := getRandomPoint(Z); 

8)         iD+  := getFeatureNeighbors(xi, D+ – {xi}, k); 

9)         for  j := 1  to  N 

10)               { xj := getRandomPoint ( iD+ );  

11)                ijλ := getRandomNumber (0,1); 

12)            : ( ) ( ( ) ( ))ij i ij j iO x x xϕ λ ϕ ϕ= + × − ; //create new samples in 

feature space (4) 

13)               : { }s s ijD D O= ∪ ; 

14)               iD+
 := iD+  – {xj};} 

15)        Z := Z – {xi};} 

16)  return Ds 



 Improving SVM Classification with Imbalance Data Set 393 

Function: getFeatureNeighbors(x, S, k) 
17) for i := 1  to  |S| 

18) {  di := || ( ) ( ) || ( , ) 2 ( , ) ( , )i i i ix x k x x k x x k x xϕ ϕ− = − + ; // calculate 

the  distance between xi and x, where ix S∈              (5) 

19)        A[i] := di;} 
20) S := getASCOrder(S, A); 
21) B := getFirstPoints(S, k); 
22)   return B 

3.2   Solution of Pre-image Problem 

It is clear that the synthetic instances in F derived from KSMOTE algorithm cannot 
be used directly, thus, we must use their pre-images in input space. Because the 

inverse map 1 : hF Rϕ− →  is not available, it is impossible to get exact pre-image of 

synthetic instance by 1( )ijij Ou ϕ−= . Thus, we need to seek an approximate solution 

instead. In [10], Kwok and Tsang present a method to find the approximate pre-
images of patterns that are denoised in feature space via kernel principal component 
analysis (KPCA). We follow their strategy to seek the pre-images of synthetic 
samples generated by KSMOTE algorithm.  

The feature-space distance between synthetic sample Ok and an arbitrary point 

lx can be calculated as following: 

             2 2( , ( )) ( ( ) ( ( ) ( )), ( ))ij i ij j il l l ld O x d x x x xϕ ϕ λ ϕ ϕ ϕ= + × −                            (6) 

2|| ( ( ) ( ( ) ( ))) ( ) ||i ij j i lx x x xϕ λ ϕ ϕ ϕ= + × − −
 

(1 2 ) ( , ) 2 ( , ) 2 ( , )ij i ij jl l l lk x x k x x k x xλ λ= + − − +
2 2( 1) ( , ) 2 (1 ) ( , ) ( , )ij i i ij ij i j ij j jk x x k x x k x xλ λ λ λ− + − +  .          

Suppose the pre-image of Oij is uij in input space, for the Gaussian kernel, the 

following simple relation holds true between 2 ( ( ), ( ))l ij ld u xϕ ϕ  and 2 ( , )l ij ld u x [11]: 

         2 2( ( ), ( )) || ( ) ( ) || ( , ) 2 ( , ) ( , )ij ij ij ij ijl l l l l ld u x u x k u u k u x k x xϕ ϕ ϕ ϕ= − = − +   (7)  

= 2 2 2 22 2exp( || || /(2 )) 2 2exp( ( , ) /(2 ))ij ijl l lu x d u xσ σ− − − = − −  

                                                               2 2 21
( , ) 2 ln(1 ( ( ), ( )))

2ij ijl l l ld u x d u xσ ϕ ϕ⇒ = − − . 

Because the feature-space distance 2 ( , ( ))l ij ld O xϕ  is available from (6), the 

corresponding input-space distance between the desired approximate pre-image uij of 
Oij and xl can be calculated based on (7). Generally, the distances with neighbors are 
the most important in determining the location of any point. Hence, we will only 
consider the (squared) input-space distances between synthetic sample Oij and its t 
nearest neighbors 1 2{ ( ), ( ),..., ( )}ij ij ij

tx x x Dϕ ϕ ϕ +⊂  in F. Define a vector 

 
2 2 2 2

1 2[ , ,... ]T
td d d d=  ,                                                          (8) 
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where dl, l = 1,…,t, are the input-space distance between the desired pre-image of Oij 
and lx . In [12], one attempts to find a representation of a further point with known 

distance from each of other points. Thus, we can use the idea to transform Oij back to 
the input space. For the t neighbors 1 2{ ( ), ( ),..., ( )}ij ij ij

tx x xϕ ϕ ϕ of Oij in F, we will first 

center them at their centroid 
1

(1/ )
t ij

ll
x t x

=
= ∑ and define a coordinate system in their 

span. First, we construct the h t×  matrix 1 2[ , ,..., ]ij ij ij
tX x x x= and a t t× centering 

matrix 

                                                
1

11TH I
t

= − ,                                                            (9) 

where I is a t t×  identity matrix and 1=[1,1,…,1]T is a 1t ×  vector. The XH will 

center the ij
lx ’s at their centroid  

                              
1 2

...
t

ij ij ijXH x x x x x x⎡ ⎤
⎣ ⎦= − − − .                                       (10) 

Suppose that XH is of rank q, we can obtain the singular value decomposition (SVD) 
of the h t×  matrix XH as: 

             1 1
1 2 1 1 1 1

2

0
[ , ]

0 0

T
T

T

V
XH E E E V E

V

⎡ ⎤Λ⎡ ⎤= = Λ = Γ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

,                                (11) 

where 1 1 2[ , ,... ]qE e e e=  is a h q×  matrix with orthonormal columns el, and 

1 1 1 2[ , ,... ]T
tV c c cΓ = Λ =  is a q t×  matrix with columns cl being the projection of 

l

ijx x−  onto the E1. Note that, 2 2|| || || || , 1,...,
l

ij
lc x x l t= − = , and collect this into a t-

dimensional vector, as 2 2 2 2
0 1 2|| || ,|| || ,...,|| ||

T

td c c c⎡ ⎤= ⎣ ⎦ . It is clear that the location of 

the pre-image uij is obtained by requiring 2( , ), 1,...,
l

ij
ijd u x l t=  to be as close to those 

values in (8) as possible, i.e,  
                                  2 2( , ) , 1,...,

l

ij
ij ld u x d l t≈ = .                                               (12) 

Define 1qc R ×∈  via 1 ijE c u x= − , then 

2 2 2 2 2|| || || ( ) ( ) || || || || || 2( ) ( ), 1,...,
l l l

ij ij ijT
ij ij ijl ld u x u x x x c c u x x x l t≈ − = − − − = + − − − = .(13) 

We sum these equations over l, and the summation of cross-product term in (13) is 
zero because of centering of XH. Thus 

2
2 2 2 2 2

1 1 1

1
|| || || || || || ( || || ), 1,..., ,

t t t

l l l ll l l
d t c c c d c l t

t= = =
= + ⇒ = − =∑ ∑ ∑           (14) 

which can be substitute for 2|| ||c  in (13), giving after a little rearrangement  

               2 2 2 2
1

.
1

2( ) ( ) || || (|| || ), 1,...,
l

tij T
ij l l l ll

x x u x c d c d l t
t =

− − = − − − =∑              (15) 

Expressing (15) in terms of matrix form, we can obtain that 
2 2 2 2
0 0

1
2 ( ) 11 ( )T Tc d d d d

t
Γ = − − − .                                     (16) 

Now, 11 0TΓ =  because of the centering. Hence, we have that 
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                                 1 2 2 1 2 2
0 1 1 0

1 1
( ) ( ) ( )

2 2
T Tc d d V d d− −= ΓΓ Γ − = Λ − .                      (17) 

Finally, by transforming c  back to the original coordinated system in input space, the 
approximate pre-image of synthetic sample in F is 

                             1 2 2
1 1 1 0

1
( )

2
T

iju E V d d x−= Λ − + .                                               (18) 

3.3   The Main Algorithm 

The sketch of our proposed method can be summarized as following: 

1)    Synthesize positive samples in the feature space F by KSMOTE method 
2)   Find the pre-images of synthetic samples in F following the approach described 

in section 3.2. 
3) Regard these pre-images of synthetic instances as positive samples and append 

them to original data set to train a SVM classifier. 

4   Experiments and Discussions 

4.1   Experimental Settings 

The proposed method is implemented in Matlab 7.0 and VC++ 6.0. The LIBSVM 
[13] is used for SVM implementation. In our experiments, we compared the perform-
ance of our classifier with regular SVM, Biased SVM and SMOTE. Six imbalance 
data set from UCI machine learning repository [14] are used in experiments (Table 1). 
Each data set was randomly split into train and test sets in the ratio 3 to 1, while sam-
pling them in a stratified manner to ensure each of them had the same negative to 
positive ratio. The Gaussian kernel is used in all experiments. The parameter C and   
variance of Gaussian kernel are obtained by doing 10-fold cross validation on a small 
subset. 

Table 1. Statistics of experimental datasets 

Data Set Total 
Instances 

# of Positive 
Instances 

# of Negative 
Instances 

Imbalance 
Ratio 

Abalone 4,177 32 4,145 129.53 
Car 1,728 69 1,659 24.04 

Glass 214 29 185 6.38 
Phoneme 5,404 1,586 3,818 2.41 

Pima 768 268 500 1.87 
Segmentation 210 30 180 6 

 
In order to evaluate classifiers on highly imbalance data set, using accuracy as a 

metric is virtually useless. This is because with an imbalance of 99 to 1, a classifier 
that classifies everything negative will be 99% accurate, but it will be completely 
useless as a classifier. The medical community, and increasingly the machine learning 
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community [2], use two metrics, the sensitivity and the specificity, when evaluating 
the performance of various tests. Sensitivity can be defined as the accuracy on the 
positive instances (true positives / (true positives + false negatives)), while specificity 
can be defined as the accuracy on the negative instances (true negatives / (true nega-
tives + false positives)). Kubat et al [15] suggested the g-means metric defined as: 

g acc acc+ −= ⋅                                                              (19) 

Where acc+ = sensitivity and acc- = specificity. This metric has been used by several 
researchers for evaluating classifiers on imbalance data set [3, 6, 7]. We will also use 
this metric to evaluate our classifier. 

4.2   Results and Discussions 

Table 2 shows the performance of the four algorithms using g-means metric. For the 
SMOTE and KSMOTE, numbers included in bracket denote corresponding 
oversampling rate. The last line of the table is the arithmetic mean of each algorithm 
over all the g-means metrics. This arithmetic mean can be used to quantify the overall 
performance of each algorithm over all six data set. 

Table 2. Performance of the four algorithms using g-means metric 

Data Set SVM Biased SVM SMOTE (N) KSMOTE (N) 
Abalone 0 0.8137 0 (10) 0 (10) 

Car 0 0.3227 0.9884 (5) 0.9875 (5) 
Glass 0.8658 0.8814 0.9236 (1) 0.9328 (1) 

Phoneme 0.8276 0.8312 0.8347 (1) 0.8543 (1) 
Pima 0.7119 0.7326 0.7456 (1) 0.7833 (1) 

Segmentation 0.9184 0.9366 0.9773 (1) 0.9865 (1) 
Mean 0.5540 0.7530 0.7449 0.7574 

 
As shown in Table 2, mean value of SVM is the smallest among four algorithms, 

which indicates that performance of regular SVM on imbalance data set is poor. The 
mean value of Biased SVM is litter bigger than SMOTE. It is due to the fact that  
g-means of SMOTE is zero on, highly imbalance data set, Abalone, which signifi-
cantly degraded its corresponding mean value. Overall, apart from Abalone, g-means 
of SMOTE on five other data sets is much bigger than that of Biased SVM. It indi-
cates that SMOTE algorithms are superior to Biased SVM in whole. It also can be 
seen that mean value of KSMOTE is the biggest among all algorithms. On most of the 
data set, g-means of KSMOTE is bigger than that of SMOTE, which indicates that 
KSMOTE algorithm outperforms SMOTE algorithm under current oversampling rate. 

We also investigated the effect of varying oversampling rate on SMOTE and 
KSMOTE. Fig.1 presents the values of g-mean on three data set, corresponding to 
each oversampling rate. Results show that KSMOTE outperforms SMOTE over the 
whole range of oversampling rate. 

From Table 2 and Fig 1, it can be concluded that quality of synthetic instances gen-
erated by KSMOTE is superior to that created by SMOTE, consequently, KSMOTE 
algorithm is more efficient in solving classification with imbalance data set. 
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                 (a)  Car                                 (b)  Glass                                    (c)  Segmentation 

Fig. 1. G-mean for change of oversampling rate on Car, Glass and Segmentation datasets 

5   Conclusions  

In this paper, a new strategy is presented to improve prediction accuracy of SVM for 
imbalance data. The proposed strategy constructs minority instances in the feature 
space to balance out dataset, which yields better recognition performance for imbal-
ance data. In contrast to existing schemes like SMOTE which generates minority 
instances in the input space, the samples constructed by the proposed method have the 
higher quality. Experiments on real data set indicate that the effectiveness of classifi-
cation by SVM on imbalance data set is improved. 
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Abstract. In this paper a system is presented for object tracking based on the 
novel connection of the one-class SVM classifier with the mean shift tracker. 
An object for tracking is defined by feature vectors composed of the  
components of the orthogonal color space, as well as local phase and coherence 
components of the structural tensor which convey information on texture. The 
binary output of the SVM is mapped into a membership field with a proposed 
transformation function. Tracking is performed with the continuously adaptive 
mean shift method operating in the membership field. The method shows high 
discriminative power and fast run-time properties. 

1   Introduction 

Many computer vision systems rely on object tracking. This helps in detection and fol-
lowing of selected objects in a video stream. Such systems are used to track faces, road 
signs, cars, pedestrians, or any other object with sufficiently discriminative features. 

The proposed tracking system relies on the Support Vector Machine (SVM) clas-
sifier operating in the one-class mode (OC-SVM) [10]. This is rather rare mode of 
operation of SVM. This shows useful in some situations in which number of points 
defining an object is much lower than a number of all other points, which usually are 
also not known. OC-SVM was proposed and tested in a number of classification prob-
lems by Tax et al. [10]. OC-SVM was proposed by Cyganek in [4] to segment road 
signs. This type of classifier was also used by Jin et al. to face detection [6]. 

In the proposed tracking system OC-SVM is trained with features defining an ob-
ject to be tracked. The feature vector is proposed to be built from the components of 
the orthogonal IJK color space, as well as from the components of the structural ten-
sor (ST). The latter convey information on local structure around each pixel in an 
image. Tracking is done with the continuous adaptive version of the mean shift me-
thod. However, the method does not operate directly with the output of the SVM. 
Instead, its output is mapped to create a smooth membership field. This is obtained 
with the proposed transformation function. 

The paper is organized as follows. Architecture of the proposed system is de-
scribed in section (2). Structure of the OC-SVM used in our system is discussed in 
(3). Feature extraction and their postprocessing is dealt with in section (4). Then the 
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mean shift tracking method is outlined in (5). The paper ends with experimental re-
sults (6) and conclusions (7). 

2   Architecture of the Tracking System 

Fig. 1 depicts architecture of the proposed system for object tracking. The input con-
sists of the color video stream in which an object for tracking is selected by outlining 
with a rectangle. 

 

Fig. 1. Architecture of the tracking system based on the one-class SVM 

Then, features are extracted from thus defined region. These are proposed to be 
values of the orthogonal IJK space with the components of the ST, as discussed in the 
next section. The features are used to train the SVM classifier. In our system it oper-
ates in the one-class mode which is suitable for relatively small objects in the large 
background field. However, an output of the SVM is a binary value which indicates 
whether a pixel belongs to an object or to the background. Usually this is too restric-
tive for the consecutive mean shift tracking. Therefore output of the SVM needs to be 
softened. This is done with the proposed mapping function. Finally, the continuous 
adaptive version of the mean shift is used for tracking. 

3   Data Classification with Support Vector Machines 

Support Vector Machines (SVM) were proposed by Vapnik [11] for binary classifica-
tion. The most characteristic is transformation of data into so called feature space, in 
which the classification can be done with linear hypersurface. However, the new 
space is usually of higher dimension than the original one. The transformation is done 
with a kernel, frequently selected based on a type of data. In this realization, however, 
we propose to use the one-class SVM [10] in which the classifier is trained to recog-
nize objects belonging only to one class, i.e. which features fall into the special hyper-
sphere, depicted in Fig. 2.  

The hypersphere is entirely characterized by its centre a and a radius r. At the same 
time the volume of that sphere should be minimal to tightly encompass the class of 
interest. This volume is proportional to rn. Nevertheless minimization of rn means also 
minimization with respect to r2 which simplifies further discussion. Hence, the mini-
mization functional Θ is as follows 
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 (1)

with the constraint 

, (2)

where xi are data points. 

 

Fig. 2. The hypersphere enclosing inliers 
(black dots). Support vectors (SV) are on 
the border, outliers (gray) are outside. 

Fig. 3. Mapping of the distance d to the  
hypersphere into the object membership 
function f(d) 

However, to introduce a possibility of some outliers in the training set further dis-
tances that r can be allowed but with some additional penalty. To accomplish this the 
so called slack variables ξi are introduced, as proposed by Vapnik [11]. This yields 

 (3)

with the constraints that almost all objects are within the sphere, i.e. 

,  , (4)

where ξi are slack variables for each input data xi, and C is a parameter that controls 
the optimization process. The larger C, the less outliers are possible at the larger vo-
lume of the hypersphere. The summation in the above spans all N input data. Given a 
set of training points {xi}, solution to the equation (3) and (4) can be obtained with 
the Lagrange multipliers. From this a distance d from the centre a of the hypersphere 
to a test point xx can be computed. Then if d≤r, i.e. 

 (5)

then a point xx is classified as belonging to the class enclosed by this hypersphere. 
Otherwise, it is an outlier. It can be shown that a center a of the hypersphere is [10]. 

 (6)
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where αk is an (unknown) Lagrange multiplier associated with a data xk. For a dis-
tance d of the test point xx to the center a of the hypersphere the following holds 

, (7)

which after entering (6) leads to [4] 

, (8)

where K: ℜn×ℜn→ℜ is a kernel function [9][11]. This can be an inner product of 
vectors or some other nonlinear function, such as a polynomial or a radial base func-
tion as in (11). Idx(SV) denotes a set of indices of all the support vectors found for this 
problem. The summation in the above takes on only such xi which are support vectors 
(SVs), because for the inliers it holds that αi=0, whereas border support vectors do not 
fulfill the optimization criteria. The third term in (8) does not depend on the test point 
xx and therefore it can be precomputed. SVs are placed on the boundary of the hyper-
sphere and thus are equidistant to its center. Therefore the following holds 

 (9)

where xS is one of the support vectors, SV denotes a set of all found support vectors 
for this classification task, i.e. vectors that comply with (4). This yields  

, (10)

which for the RBF kernel  

, (11)

simplifies to    

. (12)

The right side of the above formula is constant in the recognition stage, thus it can be 
precomputed to a value δ which denotes a cumulative kernel-distance of a SV to all 
other SVs. Equation (12) is used to test a pattern xx if it belongs to a class represented 
by a set of SVs.  

An alternative but equivalent formulation of the OC-SVM was stated by Schölkopf 
et al. [8]. In this formulation, instead of a hypersphere, a hyperplane is searched 
which maximally separates data from the origin of the coordinate system. Also, in (3) 
instead of the parameter C the parameter ν is used. These are related by C=(νN)-1. 
Usually for tracking C is chosen close to 1 to indicate that all pixels defining an object 
are inliers. In other words in a definition of an object we do not expect outliers. 

Parameter γ in (11) controls the so called spread of the kernel. The larger this pa-
rameter, the higher adaptation of the model to the training data which results in larger 
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number of support vectors and finally in lower generalization properties. In our sys-
tem parameter γ is chosen based on some experiments and its useful range is 0.2 up to 
24. A default value in our software framework is 2.  

4   Feature Extraction and Preprocessing 

An area of an object to be tracked is outlined with a rectangle. This can be done by a 
user, or can be sent from other module of the system. Then features from this region-
of-interest are collected and processed for further tracking. The most natural are the 
RGB color components. However, during experiments other spaces showed to pro-
vide more descriptive information about regions-of-interests. This is for instance the 
orthogonal IJK space derived from the RGB proposed by Pătraşcu [7], in which 

, , and . (13)

Values or IJK are in the range of 0 to 255. However, in some cases good results are 
obtained if these are quantized. 

Nevertheless, in many real situations color information is not sufficient to discri-
minate an object from its background. Therefore in many systems texture and other 
image features are employed. However, if these are too specific to certain regions of 
an object to be tracked, then tracking can be lost. Therefore a novel proposition is to 
use quantized components of the following vector   

, (14)

where Tij are components of the ST. In the scale-space these can be computed as [5] 

, (15)

where Ri
(ξ) is a ξ-tap discrete differentiating operator, Fρ is a Gaussian smoothing 

kernel with scale ρ. In our experiments Ri
(ξ) was a 5x5 optimized derivative filter and 

Fρ was a 5x5 Gaussian smoothing mask [5]. Values of s were quantized into 32-128 
bins. Good results were obtained omitting the s1 component in (14). Finally, a feature 
vector is created which consists of the chosen color and ST components. This is used 
to train the OC-SVM, as well as in the run to check if a pixel belongs to an object. 

However, a missing link is to map the output of the SVM to the mean shift, since 
in its basic version a probability field is assumed in which a gradient of the pdf is 
traversed. It was shown that the mean shift can overcome the probability constraint 
and can also operate within the fuzzy membership function with values increasing for 
a tracked object [5]. However, output of the SVM does not follow either of the men-
tioned fields. In the worst case an output from the OC-SVM can be used which is ‘1’ 
for the object and ‘0’ for its background. However, this leads to the very sparse field 
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which in some cases can even impediment tracking. Therefore a transformation func-
tion needs to be designed which maps the SVM output into a field acceptable by the 
mean shift. For this purpose we propose the following function 

, (16)

where c is a parameter that controls falling rate, d and r are in (8) and (9). Plot of f(d) 
for c=3 is depicted in Fig. 3. Thus, all points that fall inside the hypersphere in Fig. 2 
are attributed 1, whereas all outliers obtain value falling exponentially toward 0 with a 
rate controlled by c. In our experiments good results were obtained with 3≤c≤15. 

5   Object Tracking with the Mean Shift Method 

In the mean shift method gradient of the pdf  is traced [3], i.e.  

. (17)

where k is a kernel of non-parametric estimation of the pdf, hl is a width of the kernel. 
Assuming L2 Euclidean distance between vectors the above expands as follows 

. (18)

where  

, (19)

is a derivative of the profile of a kernel used to assess the pdf. It is worth noticing that 
usually it is a different kernel than the one used to train the OC-SVM discussed in the 
previous section. For instance for the popular Epanechnikov kernel KE [3] we have 
the following derivative of its profile 

. (20)

The steepest ascent optimization employed by the mean shift method follows direc-
tion toward a stationary point. It is a point for which ∇P(x) tends toward 0. This way 
an extreme value of P(x) is reached at a point xm given by the following formula  
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. (21)

From the above we easily notice that xm actually is a weighted mean vector of the data 
samples with the weights being computed from the function g.  

A variant of the above, named a continuously adaptive mean shift – a CamShift, 
was proposed by Bradski basically for face tracking in video [1]. It differs from the 
basic formulation of the mean shift method firstly by assumption of a square kernel K 
in (17). It also assumes re-computation of densities in each frame (or a tracked part of 
it). Assuming the rectangular Epanechnikov kernel and the model-target concordance 
probability provided with a function W defined for each location xl, allows reformula-
tion of the mean shift (21), with xm formulated as follows 

. 
(22)

Thus, xm is simply a centroid of the “mass” expressed by the membership field W. 
Actually W can be any other nonnegative signal, as alluded to previously. Hence, (22) 
can be rewritten in terms of the statistical central moments m10, m01, and m00, as  
follows 

, assuming that m00≠0. (23)

(23) was used in our experiments. Details of the algorithm can be found in [1]. 

6   Experimental Results 

Computations were done in a software framework which is based on the HIL library, 
developed by the author and described in the book by Cyganek et al. [5]. Experiments 
were performed on the IBM PC with Pentium IV 3.4GHz and 2GB RAM. For train-
ing a modified version of the LIBSVM library was used [2]. Software allows choice 
of the features used for tracking (color space, color channels, structural tensor com-
ponents), as well as parameters for training of the OC-SVM which in practice is the 
spread value γ in (11) since the parameter C is usually set close to 1, indicating that all 
pixels should be equally important when defining an object to be tracked. The soft-
ware platform allows outline of the object with a rectangle. All pixels from this rec-
tangle are taken for training of the OC-SVM. The training process is controlled by 
measuring a ratio of a number of the found support vectors to the total number of 
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pixels which define an object. Heuristically it was found that if this ratio is close to 
0.1 then there is a compromise between accuracy and generalization properties of the 
tracker. After a number of frames the tracker needs to be retrained with a new appear-
ance of the tracked object. 

Fig. 4 depicts tracking of a warning road sign in a traffic sequence. The first row of 
Fig. 4 contains consecutive frames taken from the moving car. The middle row shows 
the confidence maps obtained from the trained OC-SVM exclusively with the IJK 
color components. Finally, the last row shows the confidence maps from the OC-
SVM trained with IJK color and structural tensor components. It is visible that adding 
ST increases discriminative properties of the tracker. However, this is at a cost of a 
number of support vectors, since in the middle row it was 32 whereas in the lower one 
its number was 51. The larger this number, the longer execution time. 
 

  

  

  

Fig. 4. Comparison of sign tracking in a traffic sequence. Upper row shows three frames. Mid-
dle row shows confidence maps for the IJK color features only. Lower row shows confidence 
maps for the IJK and ST features.  

Fig. 5 shows an example of a car tracking in a traffic sequence (white car in the left 
image). A confidence map with the RGB color components is shown in the middle of 
Fig. 5. The right image in Fig. 5 depicts a confidence map with the IJK and ST com-
ponents which together show the most discriminative properties. 
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Fig. 5. Car tracking example in a traffic sequence (left). A confidence map with the RGB color 
components (middle). A confidence map with the IJK and ST components.  

Fig. 6 shows another example of tracking of a red car in a traffic sequence (top 
row) with the IJK and ST features. Confidence maps obtained with the OC-SVM are 
in the lower row. Parameter γ in this experiments was automatically found to be 1.8 
using the mentioned method of measuring a ratio of support vectors to the data points. 
 

  

  

Fig. 6. Tracking of the red car in a traffic sequence (top row) with the IJK and ST features. 
Confidence map obtained with the OC-SVM (lower row).  

It is interesting to observe that in the proposed system we employ three levels of 
control of the ratio of pixels belonging to an object and to the background. The first 
level of control are slack variables (4) of the SVM. The second control constitutes 
quantization values of the IJK and ST components. The last level of control is the 
parameter c in (16), which in the shown experiments was set to 10. 

7   Conclusions 

In the paper a system for object tracking is proposed. Its central part is the SVM clas-
sifier operating in the one-class mode. This is trained with the features of the object to 
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be tracked. Based on many experiments the five element feature vector was found to 
be the best trade-off between accuracy and speed. These are composed from the quan-
tized components of the orthogonal IJK color space and two components of the struc-
tural tensor, i.e. the local orientation and the coherence factors. The binary output of 
the SVM is mapped by the proposed function into the membership field. This, in turn, 
is directly used to track objects with the continuous adaptive mean shift method. 

Execution of the method allows processing of few 320x240 frames per second in 
our software framework, depending on the number of support vectors necessary to 
model an object. In our experiments this varied from about ten up to few hundred, 
depending on the training parameters. The method is quite easy for control since in 
practice one needs to choose only a spread parameter of the kernel function. This, 
however, can be set automatically by controlling a ratio of a number of support vec-
tors to the amount of pixels which define an object to be tracked. 
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Abstract. Our goal is to develop a novel BCI based on an eye move-

ments system employing EEG signals on-line. Most of the analysis on

EEG signals has been performed using ensemble averaging approaches.

However,It is suitable to analyze raw EEG signals in signal processing

methods for BCI.

In order to process raw EEG signals, we used independent component

analysis(ICA). However, we do not know which ICA algorithms have

good performance. It is important to check which ICA algorithms have

good performance to develop BCIs. Previous paper presented extraction

rate of saccade-related EEG signals by five ICA algorithms and eight

window size.

However, three ICA algorithms, the FastICA, the NG-FICA and the

JADE algorithms, are based on 4th order statistic and AMUSE algorithm

has an improved algorithm named SOBI.Therefore, we must re-select

ICA algorithms.

In this paper, we add new algorithms; the SOBI and the MILCA.

The SOBI is an improved algorithm based on the AMUSE and uses at

least two covariance matrices at different time steps. The MILCA use

the independency based on mutual information. Using the Fast ICA, the

JADE, the AMUSE, the SOBI, and the MILCA, we extract saccade-

related EEG signals and check extracting rates.

Secondly, in order to get more robustness against EOG noise, we use

improved FastICA with reference signals and check extracting rates.

1 Introduction

Brain-computer interfaces (BCIs) have been the subject of research efforts for
a few decades. The capabilities of BCIs allow them to be used in situations
unsuitable for the conventional interfaces. BCIs are used to connect a user and
a computer via an electroencephalogram (EEG).

EEG related to fast eye movements (saccade) have been studied by our group
toward developing a BCI eye-tracking system based on saccade-related EEG
[1]. In previous research, EEG data were analyzed using the ensemble averaging
method. Ensemble averaging is not suitable for analyzing raw EEG data because
the method needs many repetitive trials.

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 409–416, 2009.
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Recording EEG data repetitively is a critical problem to develop BCIs. It is
essential to overcome this problem in order to realize practical use of BCIs for
single trial EEG data.

Recently, the independent component analysis (ICA) method has been intro-
duced in the field of bio-signal processing as a promising technique for separating
independent sources. The ICA method can process raw EEG data and find fea-
tures related to various one’s activity. Therefore, the ICA algorithm overcomes
the problems associated with ensemble averaging, and the ICA analyzes the
waveforms of the EEG data.

There are many algorithms to compute ICA [2]. It is important to check which
ICA algorithms have good performance of analysis on EEG signals. Researchers
check which ICA algorithms have good performance of extracting P300 and
EOG artifact. We would like not to extract P300 signals and EOG artifact but
to extract saccade-related EEG signals. Therefore, we must check which ICA
algorithms can extract saccade-related EEG signal effectively.

In previous studies [3], we used the FastICA [4], the NG-FICA [5], the
AMUSE [6], the JADE [7] to analyze saccade-related EEG signal. However,
we must re-select an ICA algorithm since three ICA algorithms: the FastICA,
the NG-FICA and the JADE algorithms are based on the 4th order statistic and
the AMUSE algorithm has an improved algorithm named SOBI [8].

In this research, we add new algorithms: the SOBI and the MILCA [9]. The
SOBI is an improved algorithm based on the AMUSE and uses at least two
covariance matrices at different time steps. The MILCA uses the independency
based on mutual information. Using the Fast ICA, the JADE, the AMUSE,
the SOBI, and the MILCA, we extract saccade-related EEG signals and check
extracting rates.

Secondly, we focus on window sizes of EEG signals to be analyzed. In order to
analyze EEG signals in on-line system, we must choose an appropriate window
size to extract continuous EEG signals. In this paper, we separate window sizes
into two groups: the windows excluding EEG signals after eye movements and
the windows include EEG signals after eye movements.

2 Independent Component Analysis (ICA)

The ICA method is based on the following principles (Fig. 1). Assuming that
the original (or source) signals have been linearly mixed, and that these mixed
signals are available, ICA recognizes in a blind manner a linear combination of
the mixed signals, and recovers the original source signals, possibly re-scaled and
randomly arranged in the outputs.

The s = [s1, s2, · · · , sn]T means n independent signals from mutual EEG
sources in the brain, for example. The mixed signals x are thus given by x = As,
where A is an n× n invertible matrix. A is the matrix for mixing independent
signals. In the ICA method, only x is observed. The value for s is calculated by
s = Wx (W = A−1). However, it is impossible to calculate A−1 algebraically
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Fig. 1. Conceptual ICA algorithms

because information for A and s are not already known. Therefore, in the ICA
algorithm, W is estimated non-algebraically. The assumption of the ICA algo-
rithm is that s is mutually independent. In order to calculate W, different cost
functions are used in the literature, usually involving a non-linearity that shapes
the probability destiny function of the source signals.

3 Experimental Settings

There were two tasks in this study. The first task was to record the EEG signals
during a saccade to a visual target that is either his/her right side or left side.
The second task was to record the EEG signals as a control condition when a
subject did not perform a saccade even though a stimulus has been displayed.
First task and second task were called visual experiments. Each experiment was
comprised of 50 trials in total: 25 on the right side and 25 on the left side.

The EEG signals were recorded through 19 electrodes (Ag-AgCl), which were
placed on the subject’s head in accord with the international 10-20 electrode posi-
tion system. The Electrooculogram (EOG) signals were simultaneously recorded
through two pairs of electrodes (Ag-AgCl) attached to the top-bottom side and
right-left side of the right eye.

Recorded EEG signals were calculated by five ICA algorithms: FastICA,
AMUSE, JADE, SOBI, MILCA. In order to calculate independent components,
we must decide the window length. In this paper, there were 8 size windows.

1. Window A: -999[ms] to 1000[ms]
2. Window B: -499[ms] to 500[ms]
3. Window C: -349[ms] to 350[ms]
4. Window D: -999[ms] to 0[ms]
5. Window E: -499[ms] to 0[ms]
6. Window F: -349[ms] to 0[ms]
7. Window G: -249[ms] to 0[ms]
8. Window H: -99[ms] to 0[ms]
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Fig. 2. Saccade-related EEG signals

0[ms] indicates the starting point of saccade. In order to observe influence of
noises caused by EOG signals on EEG signals, we separated window size into
two groups: Window A to C including EEG signals after saccade and window D
to H excluding EEG signals after saccade.

In using five algorithms and eight windows, we calculated saccade-related
independent components.

4 Saccade-Related EEG Signals

Fig. 2 indicates saccade-related EEG signals when a subject moves his/her eyes
to the right side target. When a subject moves his/her eyes to the right side
target, the EEG signal recorded on O2 (a electrode on right occipital lobe)
changes sharply just before eye movements.

In this paper, we would like to extract this sharply changed EEG signal before
eye movements.

5 Experimental Results

First, we define two words: an extracting rate and saccade-related IC. The ex-
traction rate is defined by the following ratio:

(the number of trials in which saccade-related IC are extracted)

/ (The total number of trials).

We make assumption that a saccade-related IC has a positive peak from -50 [ms]
∼ -1 [ms]. The peak-amplitude n is larger than 3; n = x̄−µ

s ; where x̄ is mean of
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EEG potential during 1000 [ms] before saccade, µ is maximum amplitude, and
s is standard deviation during 1000 [ms] before saccade.

Table 1 represents the rate for extracting saccade-related ICs from the raw
EEG data by each algorithm in the case of window E. From these results, the
FastICA and JADE got good performances in extracting saccade-related inde-
pendent components. However, the results of the AMUSE and SOBI and MILCA
algorithm were not good. From these results, in order to extract saccade-related
EEG signals, it is not suitable to use independency of 2nd order statistics and
the mutual information.

Next, we focus on extracting rate in each windows (see Table 2). From Table
2, extracting rates in category A were lower than those in category B. Therefore,
we should not use EEG signals after saccade. The signals in category A include
EOG noise. This is reason for low extracting rate in category A. In the case of
category B, the results of small window size is better. From these result, we can
get good results in the case of short window size excluding signals after saccade.

6 Problem of Normal ICA Algorithms

In previous results, normal ICA algorithms can not extract saccade-related EEG
signals in the case of using the window group A. In order to solve this problem,
we must use EEG signals in category B. However, in real processing, we must
calculate EEG signals influenced by EOG signals.

In order to calculate EEG signals influenced by EOG signals, we apply the
EEG signals to a modified ICA algorithm. The modified ICA algorithm is base
on Fast ICA because results of Fast ICA are better than results of another ICA
algorithm. Input signals of the modified ICA algorithm are EEG signals and a
reference signal. The modified ICA algorithm can extract an EEG signal related
to a reference signal. For this approach, modified ICA algorithm can extract
saccade-related EEG signals in the case of using the window group A.

7 Fast ICA with Reference Signal

The Fast ICA, one of the ICA algorithms, is based on a cost function minimiza-
tion or maximization that is a function of the kurtosis κ(wTx) = E(wTx)4 −
3[E{wTx}2]2) = E{(wTx)4} − 3||w||4); w is one of the row of W). Then Fast
ICA changes the weight w to extract an IC with the fixed-point algorithm.

Table 1. Extracted rate by four ICA algorithms

AMUSE FICA JADE SOBI MILCA

A 14% 98% 100% 70% 50%

B 18% 82% 94% 76% 46%

C 30% 94% 96% 80% 62%

D 30% 98% 98% 66% 50%

E 24% 94% 96% 70% 46%



414 A. Funase et al.

Table 2. Extracted rate by six window size

category Window size FastICA JADE

A -999 ∼ 1000 [ms] 37.2% 38%

-499 ∼ 500 [ms] 29.6% 27.2%

-349 ∼ 350 [ms] 22.4% 26.4%

B -999 ∼ 0 [ms] 90% 93.6%

-499 ∼ 0 [ms] 93.2% 96.4%

-349 ∼ 0 [ms] 99.4% 99.2%

-249 ∼ 0 [ms] 93.2% 93.6%

-99 ∼ 0 [ms] 99.4% 99.2%

From among the several ICA algorithms, we selected the ”Modified Fast ICA
with Reference signal (FICAR)” algorithm to use in this study [10]. This algo-
rithm can extract only the desired component by initializing the algorithm with
prior information on the signal of interest. The main advantage of our approach
is that users can give instructions to extract a desired signal correctly.

Fig.3 shows an overview of the procedures of the proposed algorithm. First,
the principal component analysis (PCA) outputs are calculated from original
recorded signals to speed up the convergence of the algorithm. Second, this al-
gorithm initializes wk (k = 0; k is the iteration number.) using some priori
information included in a signal, d, correlated with si, i.e. E[dsi] �= 0. This
algorithm estimates a weight vector w. Therefore, we calculate the error be-
tween d, which is a reference signal, and u = wTx; ε = d − u. The weights
are updated by the minimization of the mean-squared error (MSE) given by
E[ε2]. To calculate the MSE, the least mean square (LMS) is used in order to
calculate the MSE. After some calculations, the optimum weight (also called the
Wiener weight) to minimize the MSE was found to be w* = E[dx]. This algo-
rithm initialized w0 = E[dx]/||E[dx]||. Third, this algorithm calculates wk+1

by wk+1 = E[x(wT
k x)3]−3w to maximize kurtosis. Then this algorithm can ex-

tract an IC closest to a reference signal or strictly speaking IC which is correlated
with the reference signal.

8 Extraction Rate by FICAR

In the FICAR, the shape of the reference signal is that of an impulse signal
having one peak. This shape is caused for two reasons. First, the saccade-related
EEG has a sharp change like am impulse. Second, the main components of an
EEG signal are the neural responses, and the waveform of the neural responses
resembles an impulse.

We will determine the number of the saccade-related ICs obtained by using
the FICAR. Table 3 represents the rate for extracting saccade-related ICs from
the raw EEG data. The extraction rate is defined at the same as normal ICA
algorithms. In this case, we use window A to window F.



Suitable ICA Algorithm for Extracting Saccade-Related EEG Signals 415

Original Data

PCA

1st Stage: Pre-whiting

2nd Stage: Initializing w0

3rd Stage: Fixed Point Algorithm

PCA Outputs

PCA Outputs

Output initialized
by Wiener weight 

Output initialized
by wiener weight 

Reference Signal

2. Minimize MSE

Independent Component

3. Maximize kurtosis

Fig. 3. Conceptual three stage for extraction desired ICs

Table 3. Extracted rate by six window size in case of FICAR

Subject

category Window size A B C D E Ave.

A -999 ∼ 1000 [ms] 60% 60% 52% 80% 88% 68%

-499 ∼ 500 [ms] 68% 64% 60% 84% 88% 73%

-349 ∼ 350 [ms] 72% 68% 64% 88% 88% 76%

B -999 ∼ 0 [ms] 64% 68% 68% 84% 92% 75%

-499 ∼ 0 [ms] 72% 72% 72% 88% 96% 80%

-349 ∼ 0 [ms] 76% 80% 80% 92% 96% 85%

The lowest rate was 52%. However, the rates for most of the subjects were
over 60% and the highest one was 96%. The average rate was 76.2%. In case of
the window category B, extracting rates of the FICAR are better than extracting
rates of the AMUSE, SOBI, and MILCA. However, the FastICA and JADE is
better than extracting rate of the FICAR. In case of the window category A,
extracting rate of the FastICA and JADE is from 22.4% and 38.0%(See Table
2). These results show that FICAR can extract saccade-related EEG signals
much better than the FastICA and JADE, because the FICAR uses a reference
signal and the FICAR can extract saccade-related ICs without influence of EOG
noises.
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9 Conclusion

This paper presented extraction rates of saccade-related EEG signals by five
ICA algorithms and eight window sizes.

As results of extracting rate focused on ICA algorithms, The JADE and Fast
ICA had good results.

As results of extracting rates focused on window sizes, the window H (-99[ms]
∼ 0[ms]) had good results. In the case of the window A,B, and C, we could not
get good results because these windows included big EOG noise.

In order to improve extracting rates in case of the window category A, we use
improved FastICA with reference signal. In these results, we can confirm that
extracting rates in case of the window category A are much higher than normal
ICA algorithms.

In next step, we must check relationship between extracting rate and the
number of input channels. In order to develop BCI, we must select a few input
channels instead of present input channels; 19 channels.
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Abstract. It is known that a neural network can learn a Bayesian

discriminant function. Ito et al. (2006) has pointed out that if the inner

potential of the output unit of the network is shifted by a constant, the

output becomes a Mahalanobis discriminant function. However, it was a

heavy task for the network to calculate the constant. Here, we propose

a new algorithm with which the network can estimate the constant eas-

ily. This method can be extended to higher dimensional classificasions

problems without much effort.

1 Introduction

The Mahalanobis discriminant function is commonly used for classification as
alternative to the Bayesian discriminant function. The focus of this article relates
to neural network with a single hidden layer which outputs the value of the
Mahalanobis discriminant function.

Funahashi [2] proposed a single hidden layer neural network which can be
trained to output the Bayesian discriminant for the two-category normal distri-
bution case. We remarked in Ito et.al [7] that if the inner potential of the output
unit of his network or its modification, which we have proposed [3-6], [8], [9],
is shifted by a constant, then the resulting output can approximate the Maha-
lanobis discriminant function. The constant depends on the unknown covariance
matrices and has to be estimated from the training data. However, the task of
calculating the constant from the training data is difficult for the network and,
in the simulation in [7], the constant was computed outside the network.

The goal of this paper is to propose a new algorithm which enables the neural
network to estimate the constant easily. The network is equipped with an ad-
ditional node for the estimation, and the training of the network is performed
twice. The first training is to estimate the constant and the second to approxi-
mate the Bayesian discriminant function. The node stores the estimated constant
and outputs it as steady bias of the inner potential of the output unit in the

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 417–424, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



418 Y. Ito, H. Izumi, and C. Srinivasan

second training. If, upon the completion of the second training, the connection
from the node is removed then the inner potential is shifted by the constant and
the output approximates the Mahalanobis discriminant function. This method,
in principle, can be extended with ease to any higher dimensional case.

In our initial studies, the numerical optimization of the inner parameters as-
sociated with the activation functions of the hidden layer units turned out to be
difficult in the higher dimensional case when the teacher signals are dichotomous.
As a result, the simulations in our earlier articles [4-7] treated one-dimensional
problems. However, we have been able to overcome this by refining the network
to have fewer inner parameters, [3],[8],[9], and successfully extend the space of
patterns to higher dimensions. Though this causes the number of hidden layer
units to increase, the total number of parameters to be optimized is not consider-
ably increased. In this paper the experimental results treat the two dimensional
case.

2 Preliminaries

We treat the two-category normal-distribution case. The categories are denoted
by θ1 and θ2 and we set Θ = {θ1, θ2}. The patterns are from the d-dimensional
Euclidean space Rd. Denote by N(µi, Σi), i = 1, 2, the state-conditional prob-
ability distributions of the respective categories, where µi and Σi are the mean
vectors and covariance matrices of the normal distributions. Their probability
density functions are

p(x|θi) =
1√

(2π)n|Σi|
e−

1
2 (x−µi)

tΣ−1
i (x−µi), i = 1, 2. (1)

For simplicity, we suppose that the covariance matrices are not degenerate. Let
x, y ∈ Rd be two patterns. The respective normal distributions define the Ma-
halanobis generalized distances between the two vectors by

di(x, y) = |(x− y)tΣ−1
i (x− y)|1/2. (2)

In the case of Mahalanobis discriminant analysis, if d1(x, µ1) < d2(x, µ2), then
the vector x is allocated to the category θ1 and vice versa. Hence,

ψM (x) = −1
2
{d1(x, µ1)2 − d2(x, µ2)2} (3)

is a Mahalanobis discriminant function. If ψM (x) > 0, the vector x is allocated
to the category θ1. By (2) and (3), we have

ψM (x) = −1
2
{(x− µ1)tΣ−1

1 (x− µ1)− (x− µ2)tΣ−1
2 (x− µ2)}. (4)

In the case of the Bayesian decision, the posterior probabilities are compared.
Let P (θi) and p(x|θi), i = 1, 2, be the priors and the state-conditional proba-
bilities of the respective catagories. We set p(x) = P (θ1)p(x|θ1) + P (θ2)p(x|θ2).
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In the two-category case, one of the posterier probabilities, say P (θ1|x), and the
ratio P (θ1|x)/P (θ2|x) are Bayesian discriminant functions. Since a monotone
transform of a discriminant function is again a discriminant function [1],

ψB(x) = log
P (θ1|x)
P (θ2|x)

= log
P (θ1)
P (θ2)

+ log
p(x|θ1)
p(x|θ2)

. (5)

is also a Bayesian discriminant function. If ψB(x) > 0, x is allocated to the
category θ1. We remark that, though the discriminant functions (4) and (5) are
based on distinct concepts, they differ only by a constant

C = log
P (θ1)
P (θ2)

− 1
2

log
|Σ1|
|Σ2|

. (6)

Let σ be the logistic function: σ(t) = (1 + e−t)−1. Since this is monotone,

σ(ψB(x)) = σ
(

log
P (θ1|x)
P (θ2|x)

)
=

P (θ1|x)
P (θ1|x) + P (θ2|x)

= P (θ1|x), (7)

σ(ψM (x)) = σ
(

log
P (θ1|x)
P (θ2|x)

− C
)

(8)

are also a Bayesian discriminant function and a Mahalanobis discriminant func-
tion respectively. Note that the right-hand side of (7) is the posterior probability,
implying it is the logistic transform of the quadratic function ψB as was remarked
by Funahashi [3].

3 Training of the Neural Network

Let F (x,w) be the output of a neural network with weight vector w. For an
integrable function ξ(x, θ) defined on Rd×Θ, let E[ξ(x, ·)|x] and V [ξ(x, ·)|x] be
its conditional expectation and variance. The proposition below is proved in [11]
and has been used by many authors [2], [4-10], [12].

Proposition. Set

E(w) =
∫
Rd

2∑
i=1

(F (x,w) − ξ(x, θi))2P (θi)p(x|θi)dx. (9)

Then,

E(w) =
∫
Rd

(F (x,w) − E[ξ(x, ·)|x])2p(x)dx +
∫
Rd

V [ξ(x, ·)|x]p(x)dx. (10)

If ξ(x, θ1) = 1 and ξ(x, θ2) = 0, then E[ξ(x, ·)|x] = P (θ1|x). Hence, when E(w)
is minimized, the output F (x,w) is expected to approximate P (θ1|x).

Let G(x,w) be the inner potential of the output unit of the network. If
F (x,w) can approximate the posterior probability P (θ1|x) with any accuracy
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in L2(Rd, p), then G(x,w) can approximate the Bayesian discriminant function
ψB(x) in L2(Rd, p) with any accuracy:

G(x,w)=̃ − 1
2
{(x− µ1)tΣ−1

1 (x− µ1)− (x− µ2)tΣ−1
2 (x− µ2)} + C, (11)

where =̃ stands for approximation with any accuracy and C is defined by (6).
Accordingly, training of the network is carried out by minimizing

En(w) =
1
n

n∑
t=1

(F (x(k), w)− ξ(x(k), θ(k)))2, (12)

where {(x(k), θ(k))}n
k=1 ⊂ Rd ×Θ is the teacher sequence.

Since the teacher signals from the respective categories are paired with θi,
the mean vectors µi of the patterns from the respective categories θi can be
estimated by a simple gradient descent method. Set y = x − µi for x from the
category θi, i = 1, 2. If the Bayesian neural network is trained with the sequence
{(y, θi)}, the inner potential of the output unit approximates

ψC(y) = −1
2
{ytΣ−1

1 y − ytΣ−1
2 y}+ C, (13)

if learning goes well. Since

ψC(0) = C, (14)

we have
G(0, w0)=̃C, (15)

where w0 is the weight vector of the network when the learning with {(y, θ)} is
completed. Hence,

ψM (x)=̃G(x,w) −G(0, w0). (16)

We first train the network with {(y, θi)}. Then, the inner potential G(0, w0) is
stored in the additional node. The second training is with {(x, θi)}, during which
the node is connected to the output unit and the memorized constant G(0, w0),
an approximation of C, is fed into the output unit to bias the inner potential.
When the second training is successfully completed, the output F (x,w) of the
network approximates the posterior probability P (θ1|x) and the inner potential
the Bayesian discriminant function ψB(x). If the additional node is disconnected
at this stage, the inner potential is shifted by −G(0, w0) and approximates the
Mahalanobis discriminant function ψM (x). Hence, the output approximates an-
other Mahalanobis discriminant function σ(ψM ).

4 Simulations

Simulations are performed to confirm that the algorithm works well. By (1), (5)
and (7), it is obvious that if the inner potential of the output unit can approx-
imate any quadratic form, the network can approximate the Bayesian discrimi-
nant function P (θ1|x). A one-hidden-layer neural network having d + 1 hidden
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units has this capability, but we have experienced that optimization of the inner
parameters of such a network is very difficult when the teacher signals are di-
chotomous random data. Hence, we are currently using networks having smaller
numbers of inner parameters [3],[8],[9], for approximating Bayesian discriminant
functions.

We use such network here as their approximation capability is guaranteed by
our experience. The network is based on a theorem in [3]. The main theorem

Fig. 1. A one-hidden-layer neural network

having direct connections between the input

layer and the output unit, and an additional

node

states that any polynomial of de-
gree n in Rd can be approximated
by

P (x) =
n∑

i=0

Di∑
k=1

aikg(δiuk · x) (17)

in the sense of L2(Rd, p) if the
probability measure p is rapidly de-
creasing. Here, Di = i+d−1Ci, uk

are unit vectors which can be fixed
beforehand and g is an activation
function which satisfies a mild con-
dition. In (17) only δi are inner
parameters to be optimized.
In this equation, one term is to
approximate a constant and some
others are to approximate a linear
function. Hence, it is reduced to

Q(x) =
D∑

k=1

a2kg(δ2uk · x) +
d∑

k=1

vk · x+ c (18)

for n = 2, where D = d(d+1)
2 . The network illustrated in Fig.1 can realize (18)

without the annexed node Ĉ . We use this network with the annexed node. The
role of the node is to store the estimated value of the constant C as stated before.
The direct connections between the input units and the output unit realize the
linear sum Σvk · x.

Fig. 2. N1, N2: State-conditional probability density functions of the respective cat-

egories. TB: The Bayesian discriminant function theoretically obtained.



422 Y. Ito, H. Izumi, and C. Srinivasan

In each simulation, 1000 patterns are randomly chosen from the two cate-
gories according to the prior probabilities. We present here the result of one of
simulations we performed. Others will be presented elsewhere. In the simulation,
the prior probabilities, mean vectors and covariance matrices are P (θ1) = 0.4,

P (θ2) = 0.6, µ1 = (1,−1), µ2 = (0, 0), and Σ1 =
(

2 1
1 2

)
, Σ2 =

(
2 0
0 2

)
.

The state-conditional probability densities of the respective catgegories and
the theoretically obtained Bayesian discriminant function are illustrated in Fig-
ure 2. The teacher signals are pairs {(x(k), θ(k))}n

k=1, x
(k) ∈ Rd, θ(k) ∈ Θ,

n = 1000. They are generated independently according to the product prob-
ability meausre on Rd × Θ. Let {(x(k1i), θ(k1i))}n1

i=1 be a subsequence of the
teacher signals, which includes all pairs from the category θ1. The sample mean
vector of x(k1i) is µ̂1 = 1

n

∑n1
i=1 x

(k1i). We define {(x(k2i), θ(k2i))}n2
i=1 and µ̂2 =

1
n

∑n2
i=1 x

(k2i) in the same way. The centered teacher sequence is defined by re-
placing x(k) by y(k) = x(k) − µ̂i, where i = 1 if θ(k) = θ1 and i = 2 if θ(k) = θ2.
The network is trained first by {(y(k), θ(k))}n

k=1 and then by {(x(k), θ(k))}n
k=1.

Fig. 3. The initial (I0 and S0) and final (SI and SB)

patterns of the outputs at the two trainings

When the first training
is completed, its output is
F (y, w0), where w0 is defined
in Section 3, and the inner
potential of the output unit
is G(y, w0) for the input y.
The inner potential G(0, w0)
for y = 0, an approximation
of C, is memorized in the
additional node and used as
a bias of the inner potential
during the second learning.
When the second training is
completed, the connection to
the node is cut off. Then,
the inner potential approx-
imates ψM (x) and the out-
put approximates the Ma-
halanobis discriminant func-
tion σ(ψM (x))=̃σ(G(x,w) −
G(0, w0)).

Fig. 3 illustrates the outputs of the network: I0 and IB are the initial patterns
of the outputs at the first and second trainings, and S0 and SB are the outputs
when the respective learnings are completed. The initial patterns are rather
arbitrarily chosen. Even if they are interchanged, the patterns they converge to
are almost the same as S0 and SB.

Though the real value of C is -0.2616, the estimated value is G(0, w0) = -
0.2492. The small error may be due to the approximation error of the network
and the deviation of the empirical distribution from the given probability distri-
butions. In the simulation, this estimated value is stored in the additional node
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and used. Fig.4 illustrates the Mahalanobis discriminant functions σ(ψM ) (TM)
theoretically obtained, the Mahalanobis discriminant function (SM) obtained by
simulation, and their difference (TM-SM).

As a test sequence, we used 1000 pairs generated independently of the teacher
sequence. The test sequences contained 408 patterns from the category θ1 and
592 from the category θ2. The classification results by the four discriminant
functions are shown in Table 1a. The numbers in the TM, SM, TB and SB
columns in Table 1 are respectively the classification results by the Mahalanobis
dicriminant functions obtained theoretically (TM) and by simulation (SM),
and those by the Bayesian discriminant functions obtained theoretically (TB)
and by simulation (SB). The numbers in the first row (Alloc. to θ1) are those
of the patterns allocated to the category θ1, and the numbers in the second
row (Correct. Alloc.) are those of the patterns correctly allocated. Among 1000
allocations by SM (SB), 987 (989) coincided with those by TM (TB) as listed in
Table 1b. The allocation capabilities of the simulated discriminant functions are
comparable to the corresponding theoretical discriminant functions respectively.

Fig. 4. TM, SM: Mahalanobis discriminant functions obtained theoretically and by

simulation. TM-SM: difference between TM and SM.

Table 1. a: Allocation by neural networks. b: Numbers of identical allocations by

theoretical discriminat functions and neural networks.

TM SM TB SB

Alloc. to θ1 454 441 521 510

Correct Alloc. 704 699 707 704

TM = SM TB = SB

Ident. Alloc. 987 989

a b

5 Discussions

In Ito et al. [7] we have remarked that the inner potential of the output unit of
the trained Bayesian neural network can approximate a Mahalanobis discrimi-
nant function when shifted by the constant C. However, the calculation of C was
a heavy burden for the neural network, in particular, in the case of higher di-
mensional pattern classification. The algorithm proposed in this paper alleviates
this burden.
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In [7], simulations were done only in the case of one-dimensional patterns due
to the limited capability of the network. The limit came from the difficulty not
only in calculating C but also in optimizing the inner parameters. This time, we
used a neural network with a smaller number of inner parameters based on Ito
[3]. As a result, the space of the patterns are extended to the two-dimensional
space.

The network used here is a modification of Funahashi’s for the two-category
normal distribution case [2]. However, in applications, the data are not necessar-
ily from normal populations. In such cases, the discriminant function obtained
by sifting the Bayesian discriminant function can deviate from the Mahalanobis
discriminant function. One way to avoid this may be to restrict the space of
functions which the inner potential of the output unit can approximate. If the
activation function of the hidden layer units is replaced by a parabolic function
t2, the inner potential is restricted to quadratic forms.
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Abstract. Large-scale neural simulation requires high-performance

hardware with on-chip learning. Using SpiNNaker, a universal neural

network chip multiprocessor, we demonstrate an STDP implementation

as an example of programmable on-chip learning for dedicated neural

hardware. Using a scheme driven entirely by pre-synaptic spike events,

we optimize both the data representation and processing for efficiency

of implementation. The deferred-event model provides a reconfigurable

timing record length to meet different accuracy requirements. Results

demonstrate successful STDP within a multi-chip simulation contain-

ing 60 neurons and 240 synapses. This optimisable learning model il-

lustrates the scalable general-purpose techniques essential for developing

functional learning rules on general-purpose, parallel neural hardware.

Keywords: Neural, Spiking, SpiNNaker, Learning, Event-Driven, STDP.

1 Introduction

Neural networks are intrinsically learning systems. Therefore hardware designed
to support neural networks ought also to support learning. Nonetheless, many
neural network chips have opted not to support any on-chip learning, because
of scalability concerns revolving around complex update circuitry [1]. An even
more fundamental limitation of most fixed neural hardware model is that it can
support only one or at most a few selected families of neural network. A univer-
sal neural network device is necessary to develop large networks without prior
commitment to a particular model. Such a device must have general-purpose
support for on-chip learning. Furthermore as a result of not being “hard-wired”
it can mitigate scalability concerns, exchanging expensive update circuits for
simpler general-purpose synaptic logic. For such an architecture, there are three
principal requirements: 1) that the device have specific dedicated programmable
hardware that the model can use to implement learning, 2) that the learning
rule itself be purely software or configuration commands, 3) that the learning
implementation be efficient enough to realize the gains of hardware in a scalable

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 425–432, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cs.manchester.ac.uk/apt
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way. In the SpiNNaker chip, which is an example of a universal neural network
chip, the previously-introduced virtual synaptic channel circuitry [2] provides
generalized support for on-chip learning without constraining the learning rule.
Using deferred-event processing to reorder events makes possible an efficient
software-based, event-driven implementation of the well-known STDP learning
rule. The methodology has the further advantage of being efficient both in mem-
ory utilization and processing overhead, since it only requires update on receipt
of a presynaptic spike. The methods we show here translate theoretical learning
rules into efficient implementations, and provide a path for future development
of (possibly as yet undiscovered) learning rules in hardware.

2 Architecture and Models

2.1 The STDP Model

The model we consider is the Gerstner spike-timing-dependent-plasticity
(STDP) learning rule [3], a Hebbian model for spiking neural networks. We
use a simplified implementation (equation 1 and Figure 1(a)) [4].

F (∆t) =

{
A+e

∆t
τ+ ∆t < 0,

−A−e
−∆t
τ− ∆t ≥ 0.

(1)

∆W = ε
∑
pre

[γ +
∑
post

F (∆t)] (2)

Where ∆t is the time difference between the pre- and post-synaptic spike timing,
A+ and A− are the maximum amount of synaptic modification, τ+ and τ− are
the time windows determining the range of spike interval over which the STDP

(a) STDP rule

Local
Memory

Wij'

Neural
Processor

Core

Wij, t

New Event (Spike): Retrieve Last Synapse Data

Phase 2: Update Local Weights

Phase 3: Process

Phase 4: Write Back Updated Weights and Times

T1

T2

Wij' => Wij"  t' => t"
Phase 5: Next Event

Shared
Synapse
Memory

Local
Memory

Local
MemoryNeural

Processor
Core

Wij +
δWij(t)

Wij', t' Shared
Synapse
Memory

Local
Memory

(b) Update methods

Fig. 1. STDP update rule: theoretical update curves and conceptual implementation
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occurs. If the pre-synaptic spike arrives before the post-synaptic neuron fires
(i.e. t > 0), it causes long-term potentiation (LTP) and the synaptic weight is
strengthened according to A+e

−t/τ+ . If the pre-synaptic spike arrives after the
post-synaptic neuron fires (i.e. t < 0), it causes long-term depression (LTD)
and the synaptic weight is weakened according to A−et/τ− . The modification is
accumulated and the weight is updated according to equation 2.

2.2 SpiNNaker and the Event-Driven Model

As previously introduced [5], SpiNNaker is a universal neural network chip for
massively-parallel real-time large-scale simulation. Without attempting to de-
scribe all the features that have been the subject of previous publication, three
important design aspects are critical to the on-chip learning model. First, map-
ping of neurons to processors is many-to-one. Each ARM968 processor is capable
of modeling upto 1000 Izhikevich neurons [6] with 1 millisecond time resolu-
tion in 16-bit fixed-point arithmetic [7]. Second, local memory resources are
limited: a 64KB private data Tightly-Coupled Memory (TCM) is available to
each processor; but global memory resources are large: a 1Gb external shared
SDRAM is available to all 20 processors on a given chip. A dedicated DMA
controller makes global memory “virtually local” to each processor by swapping
data between SDRAM and TCM [2]. Most synaptic data therefore usually re-
sides off-chip (and off-processor), the synaptic channel providing “just-in-time”
local access.

Third, and most importantly, SpiNNaker uses an event-driven processing
model with annotated real-time model delays [8]. There are two important
events from the point of view of the model. A Timer event, occurring nom-
inally each millisecond, drives neural state update. A spike event, occurring
(asynchronously) whenever an input Address-Event-Representation (AER) spike
packet arrives at a neuron, triggers synaptic state update. This event model
makes it possible, by exploiting the difference between model “real” time and
electronic “system” time, to reorder processing and redistribute synaptic mem-
ory resources in order to achieve efficient, yet accurate, on-chip learning [8].

The earlier work [8] outlines the basic method of the deferred event model.
Key details of the implementation optimise learning for the hardware. Neurons
are mapped to cluster groups (fascicles) of postsynaptic target neurons connect-
ing to the same pre-synaptic source onto a single processor. Not only does this
improve routability, but it allows a single contiguous memory area (called the
synapse block) to contain all the synaptic information for the group. A synapse
block is a compressed line of 32-bit words containing a 4-bit synaptic delay, a
12-bit postsynaptic index and a 16-bit synaptic weight. A single event therefore
retrieves the entire group using a DMA operation and makes the entire block of
synapses locally available to its respective processor. This permits the charac-
teristic feature and most significant optimization of the method: synaptic update
occurs only upon presynaptic input events.
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3 Methodology

3.1 Mapping STDP to SpiNNaker

Most STDP implementations trigger weight update both on pre- and post-
synaptic spikes [9],[10]. In this approach, calculating the ∆t is simply a matter of
comparing the history records of spiking timings. This corresponds to examining
the past spike history (as in Figure 2(a)), at least within the STDP sensitivity
window. However, in SpiNNaker, since the synapse block is a neuron-associative
memory array, it can only be indexed either by the pre- or the post-synaptic
neuron. If synapses are stored in pre-synaptic order, LTD will be very efficient
while LTP plasticity will be inefficient, and vice versa - because one or the other
lookup would require a scattered traverse of discontiguous areas of the synaptic
block. Furthermore, because of the virtual synaptic channel memory model, a
given pre-synaptic indexed synapse block will only appear in the TCM when an
associated pre-synaptic spike arrives. As a result, a pre-post sensitive scheme
would double the number of SDRAM accesses and be only partially able to take
advantage of block-orientated contiguous burst transfers.

(a) Pre-post sensitive (b) Pre sensitive

Fig. 2. STDP implementation methods

To solve this problem, we develop an alternative scheme: pre-synaptic sensitive
update. The pre-synaptic sensitive scheme only triggers STDP with the arrival
of pre-synaptic spikes (Figure 2(b)). This guarantees that the synapse block is
always in the TCM when STDP is triggered, and makes accessing individual
synapses possible by efficient iteration through the array elements when the
synapse block is in pre-synaptic order. However, this requires examining not
only the past spike history records, but also the future records. Naturally, future
spike timing information is not available at the time the pre-synaptic spike arrives
since it has not yet happened. The deferred-event model solves this problem by
reordering the spike timing and performing STDP in the future (the current time
plus the maximum delay and the time window). This ensures accurate recording
and incorporation of future spike timings in the update.

3.2 Synaptic Delay and Timing Records

Synaptic delays (axonal conduction delays) play an important role in the
simulation of spiking neural networks with plasticity. In SpiNNaker, delays are
annotated as a post-process upon receipt of a spike, the individual delay values
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being a synaptic parameter. This makes the delay itself entirely programmable;
the reference model uses delays from 1 - 16 ms for each connection [7]. STDP
requires both pre-synaptic and post-synaptic spike timings. The SDRAM stores
a pre-synaptic time stamp with 2ms resolution at the beginning of each synapse
block (Figure 3) which is updated when an associated spike arrives. The time
stamp has two parts, a coarse time and fine time. Coarse time is a 32-bit digital
value representing the last time the neuron fired. Fine time is a bitmapped field
of 24 bits representing spike history in the last 48 ms. Post-synaptic time stamps
reside in local TCM (Figure 3) and have a similar format to pre-synaptic time
stamps except that they are 64 bits long (representing 128ms), allowing longer
history records to account for input delays. Post-synaptic time stamps are up-
dated when their corresponding neurons fire.

Fig. 3. Time stamps for STDP

3.3 Method and Model

Input pre-synaptic spikes trigger the learning rule following an algorithm that
proceeds in three steps: update the pre-synaptic time stamp, traverse post-
synaptic connections and update synaptic weights, as shown in Figure 1(b).

Step 1: Update the pre-synaptic time stamp. Firstly, the pre-synaptic
time stamp is updated. The fine time stamp is shifted left until bit 0 equals the
time of the current spike. If any ‘1’ is shifted out (going to bit 25), STDP starts.
Bit 25 then represents the pre-synaptic spike time used to compute the update.

Step 2: Traverse post-synaptic connections. This step checks the post-
synaptic connections one by one. First, the time of bit 25 is incremented by the
synaptic delay to convert the electronic timing to the neural timing T . Second,
the neuron’s ID is used as an index to retrieve the post-synaptic spike time
stamp from the TCM.

Step 3: Update synaptic weights. Next, the processor calculates the LTD
window [T − T−, T ] and the LTP window [T, T + T+]. If any bit in the post-
synaptic time stamp is ‘1’ within the LTD window or LTP window, the synaptic
weight is either potentiated or depressed according to the STDP rule.

Each of the three steps may run through several iterations. If there are n ‘1’s
shifted to bit 25 in step 1, m connections in the synapse block in step 2 and l
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bits within the time window in step 3, the computational complexity in Step 3
will dominate as O(nml). For the sake of performance, Step 3 updates should
be as efficient as possible.

3.4 Length of Time Stamps

The length of the time stamp effects both the performance and the precision
of the STDP rule. Longer history records permit better precision at the cost
of significantly increased computation time. Determining the optimal history
length is therefore dependent upon the required precision and performance. The
test model assumes peak firing rates of ∼10Hz. TCM memory limitations lead
to the choice of a 64-bit post-synaptic time stamp, able to record a maximum of
128ms. A 24-bit pre-synaptic time stamp with 2 ms resolution and a maximum
of 16 ms delay guarantees a 24 ∗ 2− 16 = 32ms LTP window for any delay. This
in turn permits a 1000/(128− 32) = 10.4Hz firing rate to guarantee the same
32ms time window for LTD. These lengths are reconfigurable (dynamically if
necessary) to any other value to meet different requirements.

4 Results

We implemented a neural network on a cycle accurate four-chip SpiNNaker sim-
ulator based on the ARM SOC designer [11] to test our model. The network
is largely based on the code published in [10], which was also used to test the

(a) Spike raster plot (b) Weight curves of connections from pre-

synaptic neuron 6. The synaptic weight go-

ing rapidly to 0 is a self-connection.

Fig. 4. STDP results. At the beginning of the simulation input neurons fire syn-

chronously, exciting the network which exhibits high-amplitude synchronized rhyth-

mic activity around 5 to 6 Hz. As synaptic connections evolve according to STDP,

uncorrelated synapses are depressed while correlated synapses are potentiated. Since

the network is small and the firing rate is low, most synapses will be depressed (as per

panel b), leading to a lower firing rate. The synaptic weight going rapidly to zero is

the self-connection of neuron 6: since each pre-synaptic spike arrives shortly after the

post-synaptic spike the synapse is quickly depressed.
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consistency of our results. It has 48 Regular Spiking Excitatory neurons (a =
0.02, b = 0.2, c = -65, d = 8) and 12 Fast Spiking Inhibitory neurons (a =
0.1, b = 0.2, c = -65, d = 2). Each neuron connects randomly to 40 neurons
(self-synapses are possible) with random 1-16 ms delays; inhibitory neurons only
connect to excitatory neurons. Initial weights are 8 and -4 for excitatory and
inhibitory connections respectively. We used τ+ = τ− = 32ms, A+ = A− = 0.1
for STDP. Inhibitory connections are not plastic [12]. There are 6 excitatory and
1 inhibitory input neurons, receiving constant input current I = 20 to maintain a
high firing rate. We ran the simulation for 10 sec (biological time). Figure 4 gives

Fig. 5. Weight modification caused by the correlation of the pre and post time. Modifi-

cation is triggered by pre-synaptic spikes. The weight curve in between two pre-synaptic

spikes is firstly depressed because of LTD window and then potentiated because of the

LTP window.

the results: the left part shows the raster plot and the right part the evolution
of synaptic weights of connections from pre-synaptic neuron id 6 (an input neu-
ron). Detailed modifications of the self-connection weight is shown in Figure 5
along with pre- and post-synaptic timing.

5 Discussion and Conclusion

Implementing STDP on SpiNNaker indicates that general-purpose neural hard-
ware with on-chip, real-time learning support is feasible. The pre-synaptic sen-
sitive scheme and the deferred-event model provide the core of the solution,
but nonetheless as we have seen it requires careful optimization and an efficient
implementation if it is to be effective. Implementing learning on any hardware
neural system is a trade-off between performance and functionality. With SpiN-
Naker, the user can choose that trade-off according to the needs of their model.

There is considerable work remaining to develop both additional rules and
additional extensions to the rule above. Besides maximizing performance and
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accuracy with parameter adjustments, we are also investigating methods to im-
plement chemical-dependent LTP and LTD (as well as methods for long-distance
chemical transmission). The long-term goal is to have a “library” of learning rules
that the user can instantiate on-chip or use as templates to modify in order to
fit their model.
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Abstract. It is generally assumed in the traditional formulation of supervised
learning that only the outputs data are uncertain. However, this assumption might
be too strong for some learning tasks. This paper investigates the use of Gaus-
sian Process prior to infer consistent models given uncertain data. By assuming
a Gaussian distribution with known variances over the inputs and a Gaussian
covariance function, it is possible to marginalize out the inputs’ uncertainty and
keep an analytical posterior distribution over functions. We demonstrated the
properties of the method on a synthetic problem and on a more realistic one,
which consist in learning the dynamics of the well-known cart-pole problem and
compare the performance versus a classic Gaussian Process. A large improve-
ment of the mean squared error is presented as well as the consistency of the
result of the regression.

Keywords: Gaussian Processes, Noisy Inputs, Dynamical Systems.

1 Introduction

As soon as a regression has to be done using a statistical model on noisy inputs, the
resulting quality of the estimated model may suffer if no attention is paid to the uncer-
tainty of the training set. Actually, this may occur in two different ways, one due to the
training with noisy inputs and the other due to an extra noise in the outputs caused by
the noise over the inputs.

Statisticians already have investigated this problem in several ways: “total least-
squares” [1] changes the cost of the regression problem to encourage the regressor to
minimize both error due to noise on outputs as well as noise on inputs; the “error-
in-variables” model [2] deals directly with noisy inputs by creating correlated virtual
variables that thus have correlated noises. Recent work in machine learning has also
addressed this problem, either by attempting to learn the entire input distribution [3],
by integrating over chosen noisy points using estimated distribution during training [4]
or by de-noising the inputs by accounting for the noise while training the model [5].

In this paper, we investigate an approach, pioneered by Girard [6], in which more
than trying to predict using noisy inputs, we learn from these inputs by marginalizing
out the inputs’ uncertainty and keep an analytical posterior distribution over functions.
This approach achieves two goals: First it shows that we are able to learn and make
prediction from noisy inputs. Second, this method is applied to a well-known problem

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 433–440, 2009.
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of balancing a pole over a cart where the problem is to learn the 5-dimensional nonlinear
dynamics of the system. Results show that taking into account the uncertainty of the
inputs make the regression consistent and reduce drastically the mean squared error.

This paper is structured as follows. First, we formalize the problem of learning with
noisy inputs and introduce some notations about Gaussian Processes and the regression
model. In section 3, we present the experimental results on a difficult artificial problem
and on a more realistic problem. Section 4 discusses the results and concludes the paper.

2 Preliminaries

A Gaussian Process (GP) is a stochastic process which is used in machine learning to
describe a distribution directly into the function space. It also provides a probabilistic
approach to the learning task and has the interesting property to give uncertainty esti-
mates while doing predictions. The interested reader is invited to refer to [7] for more
information on GPs.

2.1 Gaussian Process Regression

By using a GP prior, it is assumed that the joint distribution of the finite set of obser-
vations given their inputs is multivariate Gaussian. Thus, a GP is fully specified by its
mean and covariance functions. Assume that a set of training data D = {xi, yi}N

i=1 is
available where xi ∈ RD, y is a scalar observation such that

yi = f(xi) + εi (1)

and where εi is a white Gaussian noise. For convenience, we will use the notationX =
[x1, . . . ,xN ] for inputs and y = [y1, . . . , yN ] for outputs. Under the GP prior model
with zero mean function, the joint distribution of the training set is y|X ∼ N (0,K)
where K is the covariance matrix whose entries Kij are given by the covariance func-
tion C(xi,xj). This multivariate Gaussian probability distribution over the training ob-
servations can be used to compute the posterior distribution over functions. Therefore,
making prediction is done by using the posterior mean and its associated measure of
uncertainty, given by the posterior covariance. For a test input x∗, the posterior dis-
tribution is f∗|x∗, X,y ∼ N (µ(x∗), σ2(x∗)) with mean and variance functions given
by

µ(x∗) = k�
∗ K

−1y (2)

σ2(x∗) = C(x∗,x∗)− k�
∗ K

−1k∗ (3)

where k∗ is the N × 1 vector of covariance between x∗ and training inputs X . Al-
though many covariance functions can be used to define a GP prior, we will use for the
reminder of this paper the squared exponential which is one of the most widely used
kernel function. The chosen kernel function

C(xi,xj) = σ2
f exp((xi − xj)�W−1(xi − xj)) + σ2

ε δij (4)

is parameterized by a vector of hyperparameters θ = [W,σ2
f , σ

2
ε ], where W is the

diagonal matrix of characteristic length-scale, which account for different covariance
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measure for each input dimension, σ2
f is the signal variance and σ2

ε is the noise vari-
ance. Varying these hyperparameters influence the interpretation of the training data by
modifying the shapes of functions allowed by the GP prior. It might be difficult a pri-
ori to fix the hyperparameters of a kernel function and expect these to fit the observed
data correctly. A common way to estimate the hyperparameters is to maximize the log
likelihood of the observations y [7]. The function to maximize is

log p(y|X, θ) = −1
2
y�K−1y − 1

2
log |K| − N

2
log 2π (5)

since the joint distribution of the observations is a multivariate Gaussian. The max-
imization can be done using conjugate gradient methods to find an acceptable local
maxima.

2.2 Learning with Uncertain Inputs

As we suit in the introduction, the assumption that only the outputs are noisy is not
enough for some learning task. Consider the case where the inputs are uncertain and
where each input value comes with variance estimates. It has been shown by Girard [6]
that, for normally distributed inputs and using the squared exponential as kernel func-
tion, integrate over the input distribution analytically is feasible.

Consider the case where inputs are a set of Gaussian distributions rather than a set of
point estimates. Therefore, the true input value xi is not observable, but we have access
to its distribution N (ui,Σi). Thus, accounting for these inputs distributions is done by
solving

Cn =
∫ ∫

C(xi,xj)p(xi)p(xj)dxidxj (6)

where p(xi) = N (ui,Σi) and p(xj) = N (uj ,Σj). Since [8] involve integrations over
products of Gaussians, the resulting kernel function is computed exactly with

Cn((ui,Σi), (uj ,Σj)) =
σ2

f exp((ui − uj)�(W + Σi + Σj)−1(ui − uj))

|I +W−1(Σi + Σj)|
1
2

+ σ2
ε δij

(7)
which is again a squared exponential1. It is easy to see that this new kernel function
is a generalization of [3] by letting the covariance matrix of both inputs tends to zero.
Hence, it is possible to learn from a combination of noise-free and uncertain inputs.

Theoretically, learning from uncertain data is as difficult as in the noise-free case,
although it might require more data. The posterior distribution over function is found
using the same equations by using the new covariance function. The hyperparameters
can be learned with the log-likelihood as well, but it is now riddled with many local
maxima. Using standard conjugate gradient methods will quickly lead to a local maxima
that might not explain the data properly. An improper local maxima which occurs often
is to interpret the observations as highly noisy. In this case, the matrixW tends to have

1 In fact, the noise term is not a part of the integration since it models an independent noise
process, and thus it remains in the new kernel.
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large values on its diagonal, meaning that most dimensions are irrelevant, and the value
of σ2

ε is over estimated to transpose the input error in the output dimensions.
A solution to prevent this difficulty is to find a maximum a posteriori (MAP) estima-

tion of the hyperparameters. Placing a prior over the hyperparameters will thus act as a
regularization term to prevent improper local maxima. In the experiments, we chose to
use a prior of the exponential family in order to get a simpler log posterior function to
maximize.

3 Experiments

In our experiments, we compare the performance of the Gaussian Process using inputs’
uncertainty (noiseGP) and the standard Gaussian Process (classicGP) which use only
the point estimates. We first evaluate the behavior of each method on a one-dimensional
synthetic problem and then compare their performances on a harder problem which
consists in learning the nonlinear dynamics of a cart-pole system.

3.1 Synthetic Problem: Sincsig

In order to be able to easily visualize the behavior of both GPs prior, we have chosen a
one-dimensional function for the first learning example. The function is composed of a
sinc and a sigmoid function as

y =
{

sinc(x) if x ≥ 0
0.5 [1 + exp(−10x− 5)]−1 + 0.5 otherwise

(8)

and we will refer to it as the Sincsig function. The evaluation has been conducted on
randomly drawn training sets of different sizes. We uniformly sampled N inputs in
[−10, 10] which are the noise-free inputs {xi}N

i=1. The observations set is then con-
structed by sampling each output according to yi ∼ N (sincsig(xi), σ2

y). The compu-
tation of the uncertain inputs is done by sampling the noise σ2

xi
to be applied on each

input. For each noise-free xi, we sampled the noisy input according to ui ∼ N (xi, σ
2
xi

).
It is easy to see that xi|ui, σ

2
xi

∼ N (ui, σ
2
xi

) and therefore we have a complete training
set which is defined as D = {(ui, σ

2
xi

), yi}N
i=1. Figure 1 show a typical example of a

training data set (crosses), with the real function to be regressed (solid line) and the
result of the regression (thin line) for the noiseGP (top) and the classic GP (bottom).
Error bars indicate that the classicGP is not consistent with the data since it does not
take into account the noise’s variance on inputs.

The first experiment was conducted with an output noise standard deviation σy = 0.1
with different size of training sets. The input noises standard deviation σxi were sam-
pled uniformly in [0.5, 2.5]. We chose these standard deviations so that adding arti-
ficially some independent noise during the optimisation process over the outputs can
explain the noise over the inputs. All comparisons of the classicGP and the noiseGP
has been done by training both with the same random data sets2. Figure 2(a) shows the
averaged mean square error over 25 randomly chosen training sets for different values

2 Note that the standard Gaussian Process regression does not use the variances of the inputs.
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Fig. 1. The Sincsig function with classicGP and noiseGP regressions
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Fig. 2. Results on the Sincsig Problem

of N . Results show that when very few data are available, both processes explain the
outputs with lot of noise over the outputs. As expected, when the size of the data set
increases, the classicGP optimized its hyperparameters so as to explain the noisy inputs
by very noisy outputs while the noiseGP correctly explain the noise on the inputs and
selects the less noisy so as to minimize the mean squared error.
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In the second experiment, in order to emphasize the impact of noisy inputs, we
assumed that the Gaussian processes now know the noise’s variance on the observa-
tions. Therefore, the noise hyperparameters σ2

ε is set to zero since the processes exactly
know the noise matrix to be added when computing the covariance matrix. For each
output, the standard deviation σyi is then uniformly sampled in [0.2, 0.5]. Figure 2(b)
shows the performance of classicGP and noiseGP. Not allowing to explain noisy data
by the independent noise process has two effects: First, it does not allow the classicGP
to explain noisy inputs by noisy outputs when only few data are available, and it also
forces the noiseGP to use the information on input variance whatever the size of the
data set is.

Let us now see what the results on a real nonlinear dynamical system.

3.2 The Cart Pole Problem

We now consider the harder problem of learn-
ing the cart pole dynamics. Figure 3 gives a pic-
ture of the system from which we try to learn
the dynamics. The state is defined by the posi-
tion (ϕ) of the cart, its velocity (ϕ̇), the pole’s
angle (α) and its angular velocity (α̇). There is
also a control input which is used to apply lat-
eral forces on the cart. Following the equation
in [9] to govern the dynamics, we used Euler’s
method to update the system’s state:

Fig. 3. The cart-pole balancing problem

α̈ =
g sinα+ cosα

(−F−mplα̇2 sin α
mc+mp

)
l
(

4
3 −

mp cos2 α
mc+mp

)
ϕ̈ =

F +mpl(α̇2 sinα− α̈ sinα)
mc +mp

Where g is the gravity force, F the force associated to the action, l the half-length of
the cart,mp the mass of the pole andmc the mass of the cart.

For this problem, the training set were sampled exactly as in the Sincsig case. State-
action pairs were uniformly sampled on their respective domains. The outputs were
obtained with the true dynamical system and then perturbed with sampled noises as-
sumed known. Since the output variances are also known, the training set can be seen
as Gaussian input distributions that map to Gaussian output distributions. Therefore,
one might use a sequence of Gaussian belief state as its training set in order to learn a
partially observable dynamical system. Following this idea, there is no reason for the
output distributions to have a significantly smaller variance then the input distribution.

In this experiment, the input and output noises standard deviation were uniformly
sampled in [0.5, 2.5] for each dimensions. Every output dimensions were treated in-
dependently by using a Gaussian Process prior for each of them. Figure 4 shows the
averaged mean square error over 25 randomly chosen training sets for different N val-
ues for each dimension.
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Fig. 4. Mean Squared Error results on the Cart-pole problem

3.3 Learning the Kernel Hyperparameters

As stated at the end of Section 2.2, it is possible to learn the hyperparameters given a
training set. Since conjugate gradient methods performed poorly for the optimization of
the log likelihood in the noiseGP cases, we preferred stochastic optimization methods
for this task. In every experiments, we thus maximized the log posterior instead of the
log likelihood. A gamma Γ (2, 1) prior distributions as been placed over all characteris-
tic length-scale terms inW and a normalN (0, 1) prior distribution as been placed over
the signal standard deviation σf .

Comparing to previous work on the subject [6,10] which use isotropic hyperparame-
ters in the kernel function, we applied automatic relevance determination, that improves
considerably the performance while does not increase the complexity of the kernel.

4 Discussion

Results for the synthetic problem are presented in Figure 1, 2(a) and 2(b). These results
first show that using the knowledge of the noise on the inputs improve the consistency
of the regression more than the standard Gaussian Process since the error assumed by
the noiseGP includes completely the real function while the one of classicGP does not.
Second, the noiseGP is also able to discriminate which noise comes from the input and
which one come from the output as denoted in Figure 2(a) and 2(b). As the classicGP
does not assume any noise on the input, it always assumes that the noise comes from
the outputs, and thus learns a large hyperparameter for the noise, that also augments its
mean squared error.

Problems of this approach come as soon as an optimisation of the hyperparameters
have to be done. Indeed, the log-likelihood function is riddled of local maxima that
cannot be avoided using classic gradient methods. An interesting avenue would be to
look at natural gradient approaches [11]. Another future work concerns the application
of this work to the learning of continuous Hidden Markov Models, as well as continuous
POMDPs by using the belief state as a noisy input [12].

To conclude, we proposed a Gaussian Process Model for regression that is able to
learn with noise on the inputs and on the outputs as well as to predict with less mean
squared error than permitted by previous approaches while keeping consistent with the
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true function. Results on a synthetic problem explain the advantages of the methods
while results on the cart-pole problem show the applicability of the approach to the
learning of real nonlinear dynamical systems, largely outperforming previous methods.
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Abstract. This paper extends an inference test proposed in [1]. The

seminal paper proposes an artificial neural network (ANN) based panel

unit root test in a dynamic heterogeneous panel context. The ANN is

not complex, but it is not necessarily in the aim of modeling macroe-

conomic time series. However, it is applied in a difficult mathematical

context, in which the classical Gaussian asymptotic probabilistic theory

does not apply. Some asymptotic properties for the test were set, how-

ever, the small sample properties are not satisfactory. Consequently, in

this paper, we propose to use the simulation based numerical method

named “bootstrap” to compute the small sample distribution of the test

statistics. An application to a panel of bilateral real exchange rate series

with the US Dollar from the 20 major OECD countries is provided.

Keywords: Artificial neural network, panel unit root test, bootstrap,

exchange rates.

1 Introduction

The standard linear autoregressive (AR) framework used to test for unit roots1

in time series is increasingly viewed to be unsatisfactory and, as a result, alterna-
tive frameworks within which to test for unit roots are considered. For example,

� Corresponding author.
1 A stochastic process is said to have a “unit root” if the polynomial corresponding

to its AR structure has at least one of its roots equal to unity. This implies that the

process is non-stationary, that has special meanings in economics: in particular the

process is not mean-reverting, and thus the corresponding economic variable does

not go back to the equilibrium (stable regime) in case of shock.
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one alternative focuses on the use of panel data2 and its role in improving the
power of standard unit root tests. A good example is provided in [2], which uses
a panel data test to reject the joint hypothesis of unit roots in each of a group
real exchange rates against an alternative that they are all stationary. [3] pro-
vides a lucid general econometric discussion of panel methods. Another possible
alternative is to allow different forms of stationarity to simple autoregressive
moving average (ARMA) models. These include fractional integration (see [4])
and nonlinear transition dynamics (see [5]).

On one hand, using the likelihood framework, [6] proposes a testing procedure
based on averaging individual unit root test statistics for panels. This test is
referred to as the IPS test. On another hand, in [7] paper, the authors extend
work on testing for unit roots against particular nonlinear alternatives by [8,9,10].
The resulting testing framework has power against a wide variety of nonlinear
alternatives, which they established by using a Monte Carlo study. [1] proposes
a panel unit root test that can now be based on the averages of the individual
artificial neural network based Augmented DF (ADF) statistics proposed by [7].
In this paper, we propose bootstrap version of this test. The “bootstrap” we
propose to use is a simulation based numerical method named to compute the
small sample distribution of the test statistics.

The plan of the paper is as follows. Section 2 sets out the framework for neural
networks, and derives neural test statistics in the case where errors in individual
Dickey-Fuller regressions are serially uncorrelated. The cases of trended series is
also discussed. Section 3 presents the bootstrap procedures. An application to a
panel of bilateral real exchange rate series with the US Dollar from the 20 major
OECD countries is provided in Sect. 4. Finally, Sect. 5 provides some concluding
remarks.

2 Neural Unit Root Tests for Heterogeneous Panels

In this section, the test based on artificial neural networks of [1] is presented.

2.1 The Basic Framework

Consider a sample of N cross sections (industries, regions or countries) observed
over T time periods. Suppose that the stochastic process, (yit)it, is generated by
the nonlinear first-order autoregressive process:

yit = f̃i (yi,t−1) + εit, i = 1, . . . , N ; t = 1, . . . , T, (1)

2 Panel data are two dimensions datasets: one time dimension, and one individual

(firms, countries, stocks, . . . ) dimension. The panel models used to handle these

data are very difficult to treat: they have to account for the classical problem en-

countered in individual models, the autocorrelation problems in time series models,

plus additional cross section problems. In addition, in the case of non-stationary

panel models, there are almost no mathematical properties that are proved formally.
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where initial values, yi0, are given. It should be noted that this panel is hetero-
geneous: this formulation allows for f̃i to differ across groups. We are interested
in testing the null hypothesis of unit roots

P
{
f̃i (yi,t−1) = yi,t−1

}
= 1

for all i. Model 1 can be expressed as

∆yit = fi (yi,t−1) + εit, (2)

where fi (yi,t−1) = f̃i (yi,t−1) − yi,t−1. The null hypothesis of unit roots then
becomes

H0 : P {fi (yi,t−1) = 0} = 1 for all i, (3a)

against the alternatives

H1 :
{
P {fi (yi,t−1) = 0} < 1, i = 1, 2, . . . , N1,
P {fi (yi,t−1) = 0} = 1, i = N1 + 1, N1 + 2, . . . , N. (3b)

This formulation of the alternative hypothesis allows for some (but not all) of
the individual series to have unit roots under the alternative hypothesis.3

In this context, the great advantage of artificial neural networks arises out of
their potential to approximate arbitrary nonlinear functions. The general form
of an artificial neural network approximation applied in this context is given by

∆yit = αi +
qi∑

k=1

βikψik(xit) + εit, (4)

where qi is the number of ‘hidden nodes’ or ‘units’, (βik)k the unknown param-
eters, (ψik)k some scalar functions, and (xit)t the vectors of inputs. Work of
[11,12] suggests that radial basis functions may provide more powerful artificial
neural network tests in a number of circumstances. A radial basis function is
a function which is monotonic about some centers, ψik(xit) = ψ(xit; cik, ri). In
this case, xit = yi,t−1. A test for unit root can be provided by imposing the
following in Model 4:4

βi1 = βi2 = . . . = βiqi = 0 (5)

3 Formally, following [6], we assume the following assertion: under the alternative

hypothesis the fraction of the individual processes that are stationary is non-zero,

namely limN−→∞ N1
N

= δ, 0 < δ ≤ 1.
4 The treatment of deterministic terms such as a constant and a trend are handled

straightforwardly by demeaning or demeaning and detrending the series prior to

applying the test. Nevertheless, the constant term αi has to be kept in Model 4 since

the neural component is a nonlinear function of the inputs, and is not necessarily

zero-mean.
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2.2 Neural Unit Root Tests for Heterogeneous Panels

In this section, the artificial neural network based test in the context of the
panel data model 1 is recalled. The purpose is to test the hypothesis that the
series are random walks against the alternative of a proportion of them are being
stationary ergodic linear or nonlinear processes. The error terms are assumed to
be serially uncorrelated. For this purpose the following assumption is made:

Assumption 1:

εit, i = 1, . . . , N , t = 1, . . . , T , in Model 1 are independently and nor-
mally distributed random variables for all i and t, with zero means and
finite heterogeneous variances σ2

i .

In this case the relevant Radial Basis Function (RBF) regressions are given by
Model 4. Extending [7] to the panel context, an artificial neural network based
test can be developed as follows. Define qi centers cik, k = 1, . . . , qi, and a radius
ri. The Gaussian RBF is

ψ(yi,t−1; cik, ri) = exp

(
−
(
yi,t−1 − cik

ri

)2
)
, (6)

where || . || denotes a norm. See [13] for a nontechnical introduction to artifi-
cial neural networks in general, which covers RBF networks. [14] gives a more
thorough account.

The center vectors (cik)k, the radius vector ri, and the number of hidden units
used have to be determined. Data-based procedures are used for all (they can
be provided under request to the corresponding author). The RBF test used is
a standard Wald test to test the null hypothesis that βi1 = βi2 = . . . = βiqi = 0.
This takes the form:

t�i (T, qi) =
1
σ̂2

i

β̂′i
[
R′(W ′

iWi)−1R
]−1
β̂i, (7)

where β̂′i = (β̂i1, β̂i2, . . . , β̂iqi)′ is the estimated parameter vector, σ̂2
i is the es-

timated variance of the residuals, R is the selector matrix, Wi is the matrix of
regressors of Model 4 including the constant. In the case of stationary series,
t�i (T ) is asymptotically distributed χ2

qi
under the null.

The major problem with the unit root tests is that the test statistics do
not have a standard student or χ2 distribution under the null hypothesis of a
unit root. For instance, the Dickey-Fuller t-statistic does not have a student
distribution but a Dickey-Fuller distribution. In the case of the individual RBF
test, [7] proposes to use the bootstrap technique. Figure 1 displays the probability
density function of standardized t�i (T, qi) statistic for T = 200, qi = 2, and 10,000
Monte Carlo replications.5

5 It should be noted that even if bootstrap techniques are used, it should be checked

that at least the two first moments of the distribution exist. The two first moments

were examined in [1]. However, for small values of T , the use of asymptotic moment

values could lead to poor test results.
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Fig. 1. Probability density Function of the standardized t�
i (200, 2) statistic

Here, in the case of panel, we are not interested in the individual RBF test
statistic distribution (bootstrapped or not), but in constructing a panel RBF
test. Here we follow [6] and focus on a panel unit root test based on the average
of individual statistics. Therefore, for a fixed T (the focus of this section), the
following average statistic is considered:

t̄�(N,T ) =
1
N

N∑
i=1

t�i (T, qi). (8)

2.3 Case of Fixed N and T

When N , Ti and qi are fixed, the sample distributions of the test statistics,
under the null hypothesis 5 are non-standard, but do not depend on any nuisance
parameters. Exact sample critical values for the statistics in this case could be
computed via stochastic simulation. However, the distributions depend on N , Ti

and qi and it is not reasonable to provide such results, even if T1 = . . . = TN = T
and q1 = . . . = qN = q. It can be observed in [1] that the skewness of the panel
test statistic is still not negligible for values of N and T encountered in practice
(for instance, for N = 20 and T = 100, the skewness is between 0.3 and 0.5,
depending on q, and its kurtosis is between 3.13 and 3.26). Bootstrap techniques
can also be used as in [7]. Consequently, a bootstrap procedure for using this
neural test can be developed.

3 Bootstrap Test

In this section, we propose a bootstrap version of the neural test in the context
of the panel data model defined in 1. The purpose is to test the hypothesis
that the series are all non-stationary (in the sense of random walks) against
the alternative of a proportion of them are being stationary ergodic linear or
nonlinear processes (see 3a and 3b).
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We suggest a bootstrap procedure for the following reasons:

1. The normal approximation is not necessarily satisfactory enough for samples
sizes encountered in practice (see previous subsection).

2. The optimal number of hidden nodes estimated on the real data (determined
by a criterion as the AIC) is not necessarily realistic with the null hypothe-
sis that should should have a smaller number of nodes, and then provide a
smaller t� statistic. By allowing our bootstrap procedure to re-assess what
would be the optimal number of hidden nodes under the null, that permits
a better discrimination between the null hypothesis, and the alternative hy-
pothesis that provides a greater test statistic.

3. Finally, since in the case of cross sectional dependence the test statistic is not
asymptotically normal, the bootstrap procedure is an alternative to provide
numbers of tables of critical values with respect to N and T .

3.1 Bootstrap Procedure

1. The test statistic is computed on the original sample of panel data. Let
denote it τ . The optimal number of hidden nodes is assessed with the AIC
criterion for each individual time series in the panel.

2. The original data are estimated under the null hypothesis, that is an in-
dependent panel of unit root processes. Consequently, the standard devia-
tions for each series are estimated using simply the empirical standard error
estimator.

3. B simulated samples are generated following the estimated Data Generating
Process (DGP) under the null: a panel of independent unit root processes
with variances given by the estimates in step 2.6 The bootstrap can be para-
metric (for instance a Gaussian panel), or nonparametric (using resampling
in the vector of residuals).7

4. For each simulated sample, the test statistic is computed. Let denote it τb.
The important point is that the optimal number of hidden nodes found in
step 1 is not imposed. The optimal number of hidden nodes is re-assessed
using the AIC for each new simulated sample.

5. The bootstrap P value is then computed as follows: 1
B

∑B
b=1 I(τb > τ).

4 Application to a Panel of Bilateral Real Exchange
Rates

In this section, our test is applied to real exchange rates against the US Dollar
for twenty OECD countries over the period 1973Q1–1998Q2. The data set is the
same used by [16,17].
6 For generating individual unit root processes under the null, see [15].
7 Given the universal function approximation ability of artificial neural networks, the

sequence of residuals should converge to an i.i.d. sequence asymptotically if the

number of hidden units is allowed to grow with the sample size, both under the null

hypothesis and under the alternative hypothesis.
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Table 1. P values of the individual Unit Root Tests for Real Dollar Exchange Rates

Country p† ADF BK † q† BK ‡ q‡
Australia 0 0.6076 0.6146 3

Austria 0 0.3153 0.5185 1

Belgium 2 0.5155 0.5656 2

Canada 3 0.7427 0.8539 2

Denmark 2 0.4525 0.1091 3

Finland 3 0.0891 0.1341 2

France 0 0.3704 0.1471 3

Germany 2 0.4024 0.6937 1

Greece 4 0.1752 0.2733 2

Ireland 2 0.2472 0.4525 2

Italy 0 0.3483 0.2893 2

Japan 0 0.4474 0.6086 2

Netherlands 2 0.4254 0.6066 1

N Zealand 0 0.3333 0.3213 2

Norway 2 0.4254 0.1421 2 0.0090 *** 3

Portugal 0 0.5265 0.5566 2

Spain 1 0.3223 0.4164 2

Sweden 3 0.2192 0.0020 *** 3

Switzerland 1 0.2583 0.0140 ** 3

UK 2 0.2803 0.3794 3

† p is the number of lagged regressors,

BK denotes the [7] test P value.

q is the number of neural regressors.

‡ The BK test is rerun with one additional neural regressor (in case of the AIC

under-estimates the number of reural regressors).

* P value significant at 2% level,

** P value significant at 1% level.

Since the long run Purchasing Power Parity (PPP) relationship is one of the
main components of theoretical international macroeconomic models, a large num-
ber of studies have tested this relationship by applying unit root tests to real ex-
change rates. Most of these studies show evidence of unit root behavior in real
exchange rates, which has become a puzzle in international finance. The growing
literature on nonlinear exchange rates argues that transaction costs and frictions
in financial markets may lead to nonlinear convergence in real exchange rates.
Consequently, the non-mean reversion reported by linear unit root tests may be
due to the fact that these tests are based on a mis-specified stochastic process.

4.1 Univariate Unit Root Tests

First, the ADF test and the [7] test are applied to the separate individual time
series of exchange rates. An intercept, but no trend is included. The statistics
are bootstrapped with B = 999 bootstrap replications. The results are presented
in Tab. 1.



448 C. de Peretti, C. Siani, and M. Cerrato

Table 2. P values for the panel Unit Root Tests for Real Dollar Exchange Rates

Test IPS ANN

Asymptotic 0.0413 * 0.0248 *

Bootstrap 0.0486 * 0.0010 ***

* P value significant at 5% level,

*** P value significant at 1% level.

ADF test rejects the unit root null hypothesis in 0 out of 20 cases at all levels
of significance. By contrast, the [7] test rejects the null in 3 cases at the 2%
significance level. Hence the [7] test rejects the unit root null more frequently
and therefore yields stronger support for the long-run PPP.

4.2 Panel Unit Root Tests

As we argued above, univariate tests have low power and this problem is over-
come by employing panel unit root tests. The results for the IPS test and for
our neural panel unit root test are shown in Tab. 2. The number of lags used in
these tests are the same as for individual tests. Three neural regressors are used
for each series in the neural panel test. The bootstrap test is run with B = 9999.

The contrast between the two bootstrap panel statistics is rather strong. IPS
test fails to reject clearly the unit root null at all levels of significance: the P
values (asymptotic and bootstrap) are close to the 5% level limit, and thus may
imply non-mean reversion in the whole panel of real exchange rates. On the other
hand, our bootstrap neural panel test rejects the null hypothesis of unit root for
the panel of real exchange rates at all levels of significance, giving support to the
long-run PPP for the whole panel of OECD countries. This evidence of nonlinear
mean reversion in the OECD real exchange rates may suggest that previous
evidence in the literature of non-mean reversion in real exchange rates is due to
using linear unit root tests. The evidence we provide is more in accordance with
what is expected by the economic theory.

5 Concluding Remarks

The focus of econometric investigation has shifted away from stable linear and
unit root processes towards more general classes of processes that include non-
linear specifications. Some tools to distinguish the nature of empirical series were
developed, as in [9] and [7]. However, the only paper proposing a unit root test
in a nonlinear panel framework is [18], which proposes a test against a very
specific nonlinear alternative. In this paper, we have developed a bootstrap pro-
cedure to improve the artificial neural network test of [1] for testing the unit
root hypothesis against stable nonlinear processes in heterogeneous panels. In
the case of panel framework, it is possible to substantially augment the power
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of the unit root tests applied to single time series. Our application to bilateral
real exchange rates shows that the empirical results can be very different, and
our test permits to display evidence expected by economists that classical tests
cannot.

Acknowledgments. The authors wish to thank the referee of the 16th Inter-
national Conference on Neural Information Processing for its useful comments.
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Abstract. In recent years, there has been a growing attention to develop a  
Human-like Robot controller that hopes to move the robots closer to face real 
world applications. Several approaches have been proposed to support the 
learning phase in such a controller, such as learning through observation and\or 
a direct guidance from the user. These approaches, however, require incre-
mental learning and memorizing techniques, where the robot can design its in-
ternal system and keep retraining it overtime. This study, therefore, investigates 
a new idea to develop incremental learning and memory model, we called, a 
Hierarchical Constructive BackPropagation with Memory (HCBPM). The va-
lidity of the model was tested in teaching a robot a group of names (colors). The 
experimental results indicate the efficiency of the model to build a social learn-
ing environment between the user and the robot. The robot could learn various 
color names and its different phases, and retrieve these data easily to teach an-
other user what it had learned.  

Keywords: Incremental learning and memory, human-like robot controller, 
constructive backpropagation. 

1   Introduction 

Developing a complete human-like robot controller, inspired from the principles of 
neuroscience, is one of the challenging tasks for many groups of robotics researchers 
[1]. The difficulty in such a system can be summarized in three main points as dia-
grammatically shown in Fig.1: i) A simple mechanism for human-robot interaction, 
which is, mainly relies on robot’s vision, speech recognition, sensor-motor interac-
tion, etc. ii) A dynamic mechanism for learning and memory, which gives the robot 
the features to learn and\or to teach. iii) A mechanism for homeostatic, which gives 
the robot a degree of an internal stability.  

In our early works [2], we have proposed a model for better robot’s vision toward 
better human-robot interaction (level-1 in Fig.1). Following this series of study, in this 
paper, we are highlighting the issue of enhancing the robot’s learning and memory 
(level-2 in Fig.1). 

In general, robot can learn behaviors either by: i) independent learning, i.e. without 
the needs to interact with human, such as simple obstacle avoidance, or target tracking, 
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etc., where the learning can be autonomously occurred by the known unsupervised 
evolutionary or adaptation algorithms (genetic algorithms, Hebbian learning, etc.) 
[3][4][5]. Or by ii) Un-independent learning, such as learning a particular skill or 
learning the names of various things, in which the interaction with human is needed. 
Such supervised learning can be achieved either by observing mechanisms, where the 
robot can observe the human actions and mapping it into its behavior [6], or by a 
direct guidance from the human, where the user can take a walk with the robot in a 
room and keeps teaching the robot the names of things around in natural way (exactly 
as he teaches his child). 

To support such as un-independent learning, incremental learning and memory 
structure can be the most suitable structure so far, since its size is adaptable to the 
amount of data that the robot may learn during its life. These data are usually dynamic 
and unpredictable. Giving a static structure to such a system could potentially run into 
problems like under fitting, over fitting or even wasting computational resources.  

In this study, therefore, we are suggesting an incremental learning and memory 
model, where a new skill or object names can be easily taught to the robot. We called 
the model a Hierarchical Constructive BackPropagation with Memory (HCBPM). The 
validity of the model is tested in a task of teaching a human-like robot “RoboVie-R2” 
the names of various things (colors for simplicity) by a normal user. Some image 
processing and sound recognition algorithms are borrowed from our early works to 
support the system [2]. The experimental results shows that the robot could learn 
color names and its different phases, and could retrieve these data easily from its 
memory.  

The following section highlights a brief history of incremental learning and mem-
ory. The rest of the paper is organized as follows. Section 3, describes in details the 
proposed model. Section 4, represents the robot and the task. Section 5, shows ex-
perimental setup and results. Finally section 6, concludes the work and points at pos-
sible future research directions. 

 

Fig. 1. Human-like robot’s controller 

2   The History of Incremental Learning and Memory  

So far, the mechanism of how human’s brain works to learn and memorize behaviors 
or names is a very complicated issue, and it is still a subject of hot debate for many 
groups of researchers [1]. Although the exact principles of such a mechanism are not 
yet clear, many researchers have agreed on some of its main features that can help to 
design a similar one to achieve a human-like robot controller. For example: i) The 
learning and memory techniques should fall somewhere in between stability and  
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plasticity spectrum. ii) Synaptic weights should code some knowledge of the past 
experiences. iii) Adaptable to dynamic changes with minimum computational time. 

Although many algorithms have been developed for learning and memory to sat-
isfy such a mechanism with various degrees of success [7] [8], we believe that the 
constructive backpropagation algorithm [9] [10], with some minor amendment, can be 
the key to step forward toward such a target. It supports incremental learning in real-
time with reasonable computational time [10], and it has a degree of memory. This 
degree, however, is limited and might not form long-term memory in some domains, 
since it may be disturbed by additional learning of new data. Therefore, attaching a 
separate memory level that can guarantee the stability besides the plasticity of the 
system is required.  

In this study, therefore, we are proposing a model that has ability to keep learning 
new information with its various phases without forgetting previously acquired 
knowledge and can retrieve this information easily. The model is presented by three-
level HCBPM, with respect to all the features mentioned above. We believe that this 
model is an indispensable tool for teaching the robot in natural way.  

3   A Hierarchical Constructive BackPropagation with Memory  

This section describes the HCBPM model (Fig.2), and the working mechanism of 
each level. From the figure, HCBPM is represented by three levels: i) Network 
Switcher (NS), which is used to learn different phases of the object and to switch it to 
its original form, before passing it to the next level. ii) Constructive BackPropagation 
network (CBP), which is used for incremental learning. iii) Memory Space (MS), 
which is used for storing and retrieving the data.  
 

 

Fig. 2. A schematic model of the HCBPM 

3.1   Network Switcher (NS) 

NS represents the upper level of HCBPM (Fig.2). It is used to learn different phases of 
the object. It has three layers: i) Input-layer that has similar number of neurons to its 
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output, plus one addition neuron, called user sensor (US), which is used to confirm 
the input from the user before it activates and trains the network. The neurons in this 
layer are connected to both the hidden layer neurons and the output layer neurons, 
except for the US neuron, which is only connected to the hidden layer neuron. ii) 
Hidden layer that works as a switcher to the network. It has excitatory and/or inhibi-
tory impact to the network output neurons. This layer is activated either by the user 
comment or by the amount of the inputs that could reach a certain threshold value 
assigned during the earlier training of this layer. If the input object to this network is 
in its original form, this layer will not be activated. iii) The output layer that repre-
sents the input neurons of the CBP network. 

3.2   Constructive BackPropagation (CBP) 

CBP is a three-layer network structure used by the robot to learn various names 
(Fig.2). The hidden-layer is initialized by two neurons and can be incrementally in-
creased based on the amount of data that the robot can learn during its life. The output 
layer contains one neuron that maps the network output to the MS level. CBP is 
trained by the constructive back-propagation algorithm [9] [10] [11]. The flowchart in 
Fig.3, explains in details the working mechanism of CBP. In brief:  

• Weights in CBP are randomly initialized.  
• Robot reads the front object by its camera (since we are dealing with colors, 

the robot reads the RGB of the color, R: red, G: green, B: blue).  
• If the robot has previously experienced the color, i.e. it is already mapped into 

its memory; the robot will identify the color, call it from its memory and say 
its name.   

• If the robot has not experienced the color, it will ask the user about its name, 
assign a particular data point with a certain range for the color, and check the 
possibility of any overlap between the new data and the existed data in its 
memory. 

• If there is an overlap, the error tolerance (ET) will be gradually decreased, so 
that, the range of each data point in the MS will be shrunken to open a new 
space for upcoming data points and then continue the training. 

• During the training, if the error rate (ER) reaches to a value that is equal or 
less than the ET, then the training will be stopped and the learning will be con-
firmed. Otherwise, the memory space will be expanded by adding a hidden 
neuron to the CBP level, if and only if, the training does not reach to its target 
within 500 cycles.  

• Continue the training, jump to step 6. 

Although constructive learning algorithms have many advantages [10], they are very 
sensitive to changes in the stopping criteria. If training is too short, the components of 
the network will not work well to generate good results. If training is too long, it costs 
much computation time and may result in over fitting and poor generalization. There-
fore, in this stage we have selected a variable stopping criteria ET that can be gradu-
ally decreased during the learning to satisfy the training requirement at that time.   
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Fig. 3. Flowchart illustrates the CBP’s working mechanism 

3.3   Memory Space (MS) 

The MS in this level is represented by a number of data points that each of which 
represents a name of the color that the robot learns from the user. These points are 
assigned between 0 and 1. Each of these points has a range that is changeable based 
on the value of the variable ET, which indeed based on the density of the data in the 
memory. The number of the data points along the MS is assigned by the size of the 
hidden layer neurons in CBP’s level.  

Assigning the data points in the MS for each upcoming object is done orderly by 
the CBP’s network output neuron in order to control the network training direction 
(more explanation is in experiment 5.1). 

4   The Robot and the Task  

All the works in this study have been conducted in a physical human-like robot 
(Robovie-R2) [12] (Fig.4A). Robovie-R2 equipped with various types of sensors and 
motors. In this study, the color camera and the microphone that was mounted in the 
robot’s head were used. The camera was used to read the colors, and it was also used 
with the microphone to facilitate the interaction task with the user. 

The robot task was to learn from a normal user a group of color names and its dif-
ferent phases, and to retrieve these data to teach another user what it had learned.       
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5   Validation of the Framework   

This section presents the experimental validation of the work. In the following ex-
periment, all the synaptic weights in the HCBPM’s level were initialized randomly 
and the MS were set up empty (Fig.5A).   

5.1   Interacting with User (Learning and Memory) 

In this experiment, a user showed sequentially four different colors to the robot (red, 
green, blue and pink) and asked the robot for their names. The following points illus-
trate the scenario that occurred during the experiment:  

• The user first showed the robot the red color and asked “Do you know what 
this color is?” 

• The robot looked at the color, took four samples, and read the RGB of each 
sample.  

• The robot tested the samples by its network and found that it is a new color, 
which it had not experienced before. The robot, therefore, answered: “No, I 
don’t know, Can you please tell me what this color is?” 

• The user answered the robot: “it is Red” 
• The robot assigned a data point for the color in its MS based on (Eq.1), where 

in this case Red=0.5. The CBP’s level was then trained by BP, where the new 
samples of RGB represented the input training set of the network and 
(red=0.5) represented the desired output.   

• After training the network and storing the new data in its memory, the robot 
confirmed the training “Thank you, I know now what is Red”. 

• The user continued showing the rest of the colors to the robot and similar sce-
narios were occurred. 

Figure 5, shows the steps of learning each of the color’s name and storing it in the 
robot’s MS. Notice that all the colors in this stage were in its original phase.  

From the figure, CBP was initialized by two hidden neurons and the ET was set to 
0.2. During the learning, ET was gradually decreased (Fig.6). This decrease shortened 
the range of each data point in the MS to open a new space for upcoming data. Two 
hidden neurons were sufficient to learn the first three colors (Fig.5B,C&D). When the 
user showed the forth color, CBP’s level failed to train the network to the target (ER ≤ 

ET), therefore, a new hidden neuron was added into the CBP’s level. This additional 
neuron expanded the memory and gave new space. CBP therefore could continue the 
training.  

After teaching the robot the four colors, the user reshow the colors to the robot and 
the robot could identify each of these colors successfully.  

a = (b + c) /2 (1) 

Where b&c assigned consistently in the MS as shown in the Fig.5A~E. 
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Fig. 4. (A) RoboVie-R2 while reading the color which given by the user. (B) A sample of the 
red color in its original form. (C) The red color in the Light-on phase. 

 

Fig. 5. The steps to store new color names in the memory space 

 

 

Fig. 6. ER during the learning. ET for the first color was set to 0.2, for the second and the third 
color were set to 0.1, and for the forth color was set to 0.05. 

5.2   Interacting with User (Learning Different Phases) 

This experiment is to examine the validity of NS’s level to learn the different phases 
of each color and switch it to its original before it hands it over to the CBP’s level. 
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This level requires the guidance from the user at the early stages to set up the thresh-
old value of its hidden layer neuron.  

In this level, the user showed the robot the red color again but with its new phase 
(Light-on) (Fig.4C). The robot read the samples of the new RGB, which is, for sim-
plicity, a representation of a regular shifted form from its original. Since NS was not 
yet trained, the robot, therefore, assumed it as a new color and asked the user of its 
name as follows:  

• Robot: “I don’t know, Can you please tell me what this color is?”. 
• User: “This is Red but Light-on”. 
• Since the original red color has been trained before, the robot activated the 

NS’s level and trained it by BP. The network input training sets were the new 
RGB samples and the network desired output was the nearest value of the 
original form of the red color.  

• The hidden layer neuron in NS’s level was then assigned by a threshold value 
that can be activated by any other color with its “Light-on” phase.  

To confirm the learning of the NS’s level, the user trained the robot with various sam-
ples of the red on its “light-on” phase. For the testing stage, the user, showed a green 
color with (light-on) to the robot. Interestingly, even that the robot had not experi-
enced the green color with the light-on phase, the RGB of this phase could reach the 
threshold value and activate the NS’s level. The robot could successfully identify the 
color and its phase “This is Green Light-on”. 

We believe that different phases of the original form of any color can be learned by 
similar scenario.   

5.3   Interacting with User (Retrieving Existing Data to Teach Another User) 

In this experiment, we examine the ability of the robot to retrieve the information that 
it learned from the above experiments to teach another user the names of the colors.  

The scenario was similar to the one in the first experiment but with a replacing be-
tween the position of the user and the robot. In this experiment, the robot started to 
point randomly at the colors and asks the user about its names. If the user did not 
know the name, the robot taught him. This experiment was carried out successfully. 
Experiment results were omitted due to page limitation. 

6   Conclusion 

This paper addressed a new method for learning and memory, where a new object 
names and its different phases can be taught easily to the robot. This work can be 
considered as a social learning architecture, inspired from how the human can teach 
his child the names of things around. The framework is based on three-level hierar-
chical controller each of which responsible in a part of the work. The first level is the 
network switcher NS, which is used for learning different phases of the object to 
switch it to its original form before passing it to the next level. The second is the Con-
structive BackPropagation CBP, which is used for incremental learning. The third 
level is the memory space level MS, which is used for storing and retrieving the data 
that robot learned during its life. 
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The training, in the experiment section, took place in real-time and the architecture 
scaled from simple to nearly complex task. Experimental results indicate that the 
proposed model works rather well in practice and could develop a positive interaction 
between the robot and the user. The robot could learn new color names with its differ-
ent phases, and retrieve the old data easily to teach another user what it had learned. 
We believe that the proposed model in this study is an indispensable tool for teaching 
the robot in natural way. This paper satisfies the learning and memory part of the 
human-like robot controller (Fig.1). 

For future research, we intend to further examine the model in a wider range of of-
fice-like environment and higher complex task after improving the image processing 
part, where the robot can see and understand different objects (e.g., TV, video, PC, 
desk, etc.) and its different phases such as size, shape, etc.   
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Cellular Neural Networks Template Training

System Using Iterative Annealing Optimization
Technique on ACE16k Chip
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Abstract. Cellular neural networks proved to be a useful parallel com-

puting system for image processing applications. Cellular neural net-

works (CNNs) constitute a class of recurrent and locally coupled arrays

of identical cells. The connectivity among the cells is determined by a set

of parameters called templates. CNN templates are the key parameters

to perform a desired task. One of the challenging problems in designing

templates is to find the optimal template that functions appropriately

for the solution of the intended problem. In this paper, we have im-

plemented the Iterative Annealing Optimization Method on the analog

CNN chip to find an optimum template by training a randomly selected

initial template. We have been able to show that the proposed system is

efficient to find the suitable template for some specific image processing

applications.

Keywords: CNNs, Iterative Annealing, ACE16k, Template Training.

1 Introduction

The key feature of a Cellular Neural Network (CNN), introduced in [1], is that
it is a locally interconnected analog processor array. Since CNN has two dimen-
sional (2D) grid structure, it is a suitable platform for developing image process-
ing algorithms. Based on the mathematical modeling of CNNs, a programmable
CNN, called CNN universal machine (CNN-UM) [3] has been developed. Since
these chips have huge computational power and capability of parallel processing,
it is possible to perform image processing tasks in a high speed in comparison
to conventional architectures.

Program instructions called templates have most important role in the CNN
applications. The dynamical behavior of a CNN is completely determined by the
templates. The design of suitable templates is one of the fundamental tasks in
CNN area.

Kozek T. and et al. used Genetic Algorithm for template learning [6]. Bahram
M. and et al. developed a learning algorithm based on Back-Propagation [7].
Loncar A. and et al. developed a simulator system called SCNN which uses wide
range of training algorithms [8]. All these methods are simulated to validate
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the accuracy of the trained templates using a CNN simulator or calculating the
dynamics of the cells.

Parameter variation introduced during fabrication process, noise in the elec-
trical components of the cells, imperfect or noisy loading of the input and initial
state and temperature variation can cause erroneous behavior in VLSI (Very
Large Scale Integration) implementation of ACE16k. Chip-independent meth-
ods or simulation systems of generation of robust templates can not avoid such
erroneous behaviors and give accurate results on the chip. In order to overcome
this problem, we have designed a template training system on ACE16k chip to
obtain more stable templates. Iterative Annealing optimization method, is im-
plemented for the training system. The main advantage of using ACE16k chip
is that the processing speed is much higher than the speed of the simulation
systems.

Proposed training system can process gray level and black-white input images.
By using this system, edge and corner detection templates have been trained.
Besides, object counting algorithm based on corner detection has been realized
on ACE16k.

2 CNNs and Bi-i Cellular Vision System

2.1 Architecture of CNNs

The basic structure of a CNN of size 4x4 is shown in Fig. 1 where each square
represents a cell which is the basic unit. In this CNN architecture, every cell is
connected only to its neighbouring cells.

Consider a CNN having MxN cells arranged in M rows and N columns. The
cell on the ith row and jth column is denoted by C(i,j). [1]

Fig. 1. A two dimensional CNNs of size 4x4

The r-neighbourhood of a cell C(i,j) in a CNN is defined by:

Nr(i, j) = {C(k, l)|max{|k − i|, |l− j|} ≤ r, 1 ≤ k ≤M ; 1 ≤ l ≤ N} (1)

where r is a positive integer.
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Fig. 2. An example of a cell circuit

A typical example of a cell C(i,j) of a cellular neural network is shown in Fig. 2,
where the suffices u,x and y denote the input, state and output, respectively.
the node voltage vuij is called the input of C(i,j) and the node voltage vyij is
called the output of the cell [1].

Ixy(i, j; k, l) = A(i, j; k, l)vykl , Ixu(i, j; k, l) = B(i, j; k, l)vukl ,∀C(k, l) ∈ Nr(i, j) (2)

The dynamics of a CNN can be characterised by the following equations [1]:

C
dvxij

(t)

dt
= −

1

Rx
vxij

+
∑

C(k,l)∈Nr(i,j)
A(i, j; k, l)vykl

(t) +
∑

C(k,l)∈Nr(i,j)
B(i, j; k, l)vukl

(t) + I

where vyij (t) = 1
2 (|vxij (t)+1|−|vxij (t)−1|) (3)

vuij = Eij , vxij (0) ≤ 1, vuij ≤ 1; 1 ≤ k ≤M ; 1 ≤ l ≤ N
A(i, j; k, l) = A(k, l; i, j), 1 ≤ i, k ≤M ; 1 ≤ j, l ≤ N andC > 0, Rx > 0 (4)
A(i,j;k,l) and B(i,j;k,l) are called the feedback operator and the control

operator, respectively.

2.2 Bi-i Cellular Vision System and ACE16k Chip

The Bi-i cellular vision system which contains ACE16k chip and Digital Signal
Processor (DSP) is a high-speed, compact and intelligent camera for training.
InstantV ision Libraries and Bi-i SDK (Software Development Kit) are set of
C++ programming library for developing Bi-i applications. These libraries can
be used with the development environment for the DSP and ACE16k called
Code Composer Studio [10].

ACE16k is a CNN-UM implementation. It can be basically described as an
array of 128x128 identical, locally interacting, analog processing units designed
for high speed image processing tasks. ACE16k is essentially an analog processor
(computation is carried out in the analog domain), it can be operated in a fully
digital environment [4]. Images can be acquired either by chip specific optical
input module or by a digital hosting system [4].
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3 Iterative Annealing

Iterative Annealing (IA), a kind of Simulated Annealing [11], is an optimization
method specially developed for CNN [13]. The algorithm of Iterative Annealing
is shown below:

1. Choose initial values xk
0 , smax, jmax, T0, τ, j = 0

2. Calculate step size v = (τ/T0)jmax/smax

3. T = T0, i = 0

4. yk
i = xk

i + uk.T ; uk : Unit distribution U [-0.5,0.5]
5. If f(−→y i) < f(−→x i) then −→x i+1 = −→y i
6. Reduce temperature T = v.T
7. i = i + 1
8. If i < (smax/jmax) then Go to 4
9. j = j + 1

10. If (j < jmax) then Go to 3

Where, f(−→x ) : error measure to be minimized, −→x : parameter vector, smax :
maximum number of iteration steps, jmax : number of reruns to be carried out,
T0 : initial temperature, τ : minimal temperature, v : cooling factor

At every step the temperature is chilling, leading to a decreasing search area
until T reaches . Then the process restarts with T = T0. Finally a global mini-
mum is found [13].

4 On Chip Training with Iterative Annealing

Iterative Annealing (IA) method was modified to work on a PC with the ACE16k
chip. This means that we can obtain templates which are stable and robust with-
out inaccuracies of CNN-UM hardware realization. ACE16k chip as an external
process unit obtains output images for variable template configurations during
training process. IA algorithm consists of two loops. The inner loop contains
annealing procedure. The outer loop controls iterative behavior. The function to
minimize is an error measure calculated between a given reference image and an
output image obtained from the chip [14].

Iterative Annealing algorithm can be modified to adapt to ACE16k chip by
adding the following steps into the inner loop: 1. Templates are generated by
adding uk.T to the parameter vector to perform them on the chip. 2. Output
image is saved for computing error measure. This algorithm generates templates
using parameter sets. Then, it loads and runs these templates to ACE16k chip,
saves output images and compares them with desired output using error measure
function [14].

5 Object Counting Algorithm on Bi-i System

In this section we describe the algorithm for object counting on Bi-i System
based on work of Fasih et al [2]. We have developed and adapted the algorithm
to ACE16k chip. This algorithm can count objects rapidly in a grey level image
(128x128 pixel) because of high-speed offered by Bi-i System. In this algorithm,
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we use the north-west corners to count the number of the objects. The algorithm
is shown below.

1. Input image is given
2. Threshold operation
3. Opening operation
4. Convex-Hull operation
5. N-W corner detection operation

6. Count number of pixels

6 Experimental Results

We have developed on chip training system by using Iterative Annealing method.
We have chosen initial parameters: T0 = 10 and v = 0.91 for 100 steps in all
optimization procedures. Initial template values are chosen randomly.

In order to test performance of the system, we have tried to learn edge detec-
tion template and corner detection template which is not available in TACEIPL.
In addition, we have developed an object counting algorithm using the trained
N-W corner detection template that we have trained.

6.1 Edge Detection

An edge detection template for the gray-scale images is developed using IAOM.
The trained edge detection template is given as follows.

A =

⎡⎣ 0 0 0
0 4.54 0
0 0 0

⎤⎦ , B =

⎡⎣ −2.98 −0.47 −2.26
2.07 5.66 1.74
−3 0.74 −3

⎤⎦ , I = −0.96

After that we have applied the trained edge detection template to show accuracy
of the template on an input image given in Fig. 3a. Result of the edge detection
template is shown in Fig. 3b.

(a) (b)

Fig. 3. Edge detection test (a) Sample image (b) Edge detection template result

6.2 Corner Detection

We have also designed corner detection templates. Since a template can not
detect all corners, we have tried to train two templates for concave (at least five
white neighbor pixels) and convex (at least five black neighbor pixels) corners.
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These templates for Concave corner detection template and Convex corner
detection template are given in the following, respectively. Here, Fig. 4a, Fig. 4b,
Fig. 4c, and Fig. 4d are used as inputs, desired output for concave, desired output
for convex images and combined output by Logical OR operation, respectively.

A =

⎡⎣ 0 0 0
0 6 0
0 0 0

⎤⎦ , B =

⎡⎣ 0.97 −2.3 1.37
−1.12 5.44 −0.9
2.27 −3 1.09

⎤⎦ , I = 4.49 andA =

⎡⎣ 0 0 0
0 4.62 0
0 0 0

⎤⎦ , B =

⎡⎣ −1.57 0.48 −2.6
−0.6 5.94 −1.15
−1.25 −1.53 0.07

⎤⎦ , I = 4.78

(a) (b) (c) (d)

Fig. 4. Corner Detection test (a) Sample image (b) Concave corner detection template

result (c) Convex corner detection template result (d) All detected corners

6.3 Comparison of Methods Using Corner Detection

In order to show computational power of ACE16k chip, we have compared our ex-
ecution times of template operations with a MATLAB implementation of Harris
method [5]. Image in Fig. 3a has been used. Our test platform is a PC (Core2Duo
2.0GHz, 2GB RAM). Execution times of template operation and Harris method
are 0.000545 s. and 0.0416 s., respectively. Template execution on ACE16k is
much faster than Harris method.

6.4 Object Counting

In the first step of the algorithm, input image (Fig. 5a) is converted to binary
image by the threshold operator called ConvLAMtoLLM . This function in SDK
Library, converts a grey image to a binary image on ACE16k [10]. Output image
is given in Fig. 5b.

In next step of the algorithm, small objects on binary image are eliminated
by Opening4 function in SDK Library. In addition, this function performs 4-
connectivity binary opening using dilation and erosion functions [10]. Noiseless
image is given in Fig. 6a.

In the following step, objects on image obtained in previous step are converted
to rectangular objects to find North-West corners easily of each object. This
operation is perfomed by ConvexHull in SDK Library. Using this function, the
objects on the image are involved into a square [10]. Result of this function is
shown in Fig.6b.

After ConvexHull operation, North-West corner detection template is applied
on image in order to represent each rectangular object as a corner. We trained
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this template with the template design tool that we have developed. N-W tem-
plate and corresponding output image (Fig. 6c) of this template are shown below.

A =

⎡⎣ 0 0 0
0 4.76 0
0 0 0

⎤⎦ , B =

⎡⎣ 3 −2.93 1.63
−1.87 3.51 −0.19
−0.49 −0.12 2.3

⎤⎦ , I = 5.49

(a) (b)

Fig. 5. a) Input Image b) Threshold Result

(a) (b) (c)

Fig. 6. a) Opening Result b) Convex-Hull Result c) N-W Corner Template Result

Last step of the algorithm is counting white pixels on the image shown in
Fig. 6c. This operation is performed using loop operation (for function) in C++
programming language.

We have performed the algorithm on different platforms such as ACE16k
and DSP in Bi-i and Matlab in order to show the computational power of
ACE16k (Table 1). First three steps of the algorithm are implemented on all plat-
forms. Duration of threshold operation is almost same on these three platforms.
The shortest execution times of Opening and Convex-Hull operations belong
to ACE16k. Template execution step can not be realized on DSP. In addition,
template execution time obtained using MATCNN (A toolbox for CNN imple-
mentations on Matlab) [12] was given as reference; because N-W corner template
does not work on Matlab. This template was trained to work on ACE16k.

Table 1. Execution times of counting algorithms on different platforms

ACE16k DSP Matlab
Threshold 641µs 841µs 670µs
Opening 425µs 1673µs 36000µs

Convex-Hull 1362µs 96154µs 9200µs
N-W Corner 423µs - 390000µs
Counting 4169µs 4169µs 760µs

Total 7020µs = 0.00702s 102837µs = 0.102s 436630µs = 0.436s



Cellular Neural Networks Template Training System 467

Acknowledgments. This work was supported by the Scientific and Techno-
logical Research Council of Turkey, under Project 104E024.

References

1. Chua, L.O., Yang, L.: Cellular neural networks: Theory. IEEE Trans. Circuits Syst.,

1257–1272 (1998)

2. Fasih, A., Chedjou, J., Kyamakya, K.: Ultra Fast Object Counting Based-on Cel-

lular Neural Network. In: First International Workshop on Nonlinear Dynamcis

and Synchronization (INDS 2008), pp. 181–183 (2008)

3. Roska, T., Chua, L.O.: The CNN Universal Machine: An Analogic Array Com-

puter. IEEE Transactions on Circuits and Systems- II: Analog and Digital Signal

Processing, 163–173 (1993)

4. Liñán, G., Domı́nguez-Castro, R., Espejo, S., Rodŕıguez-Vázquez, A.: ACE16k: A
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Abstract. It is important for a driver-assist system to know the phase of

the driver, that is, safety or danger. This paper proposes two methods for

estimating the driver’s phase by applying machine learning techniques

to the sequences of brake signals. One method models the signal set

with a mixture of Gaussians, where a Gaussian corresponds to a phase.

The other method classifies a segment of the brake sequence to one of the

hidden Markov models, each of which represents a phase. These methods

are validated with experimental data, and are shown to be consistent

with each other for the collected data from an unconstrained drive.

1 Introduction

When a driver follows another vehicle, he/she has to maintain a safe following
distance to avoid rear-end collisions. Such collisions account for a large portion
of injurious/non-injurious accidents, a fact which has motivated the past studies
on driver support systems that warn drivers in advance about possible collisions
[1,2].

A naive idea for predicting a collision is to evaluate a collision risk and alert
the driver when the risk is high. Several risk indices have been proposed from
psychological or mechanical viewpoints [3,4,5,6]. These indices take into account
the braking response times of drivers or Newtonian mechanics of the two vehi-
cles. However, the risk index has to match the driver’s risk perception because
the driver uses the brake pedal only when he/she finds it necessary. The risk
perception threshold differs from driver to driver, and therefore, the system has
to adapt the alertness level to the driver’s preference, which must be extracted
from the driving data.

The challenging aspect of this problem is to extract this information from
the driving data. In order to alert the driver according to past data, we need
to detect anomalies in the data. In other words, to ensure that the system only
learns “good data”, the system should exclude from the training dataset any
data collected in dangerous situations.

One method to remove bad data is to estimate the driver’s phase, i.e. safety
or danger [7,8]. If we know the phase of the driver, then we can take into account
the quality of the training data and ignore the data from dangerous situations.

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 468–475, 2009.
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In this paper, we show two methods to estimate the driver’s phase using the
master cylinder (M/C) pressure of the brake. One advantage of using the brake
signal is the ease of onboard measurement. Another advantage is the fact that
it represents an intentional operation of the driver to avoid a risk, in contrast to
the relative distance between cars or the velocity of the car [9]. The brake signals
are given as a sequence consisting of positive sub-sequences which successively
take positive values and intervals during which the pressure is zero. We divide
the sequence into positive sub-sequences and consider which phase each sub-
sequence belongs to by making statistical models of the sub-sequence.

The first method employs Gaussian mixture models (GMMs) [10]. Since the
phases of the driver are difficult to define explicitly, we construct a GMM from
the dataset in an unsupervised manner and regard one Gaussian as one phase.
The second method employs hidden Markov models (HMMs). It is likely that
some sub-sequences in a phase are long and others are short. Therefore, an HMM
seems suitable for modeling sub-sequences with a variety of lengths.

The rest of the paper is organized as follows. Section 2 describes the details
of our collected data. Sections 3 and 4 respectively give brief introductions of
GMMs and HMMs, as well as how to model the driving data and the results of
experiments. Finally, discussions and conclusions are given in Section 5.

2 Driving Data

We collected the driving data under unconstrained conditions, where we mea-
sured the velocity of the vehicle, its distance from the preceding vehicle, and
the amount of throttle and M/C pressure of the brake. The driver, who has
more than 25 years of driving experience, is the same in all the experiments. He
made a round-trip in a suburb, during morning with good weather conditions.
We collected 129 sub-sequences in the outgoing portion of the trip and 134 in
the incoming portion.

Note that only the brake signal is used in this paper, but the use of others
may help to improve our methods in the future.

3 Clustering with a Gaussian Mixture Model

In a GMM, the k-th Gaussian is chosen with probability πk:

p(x) =
K∑

k=1

πkN (x|µk, Σk), (1)

where µk and Σk denote the mean and the variance of the k-th Gaussian. Intro-
ducing a hidden random variable vector z, which has the 1-of-K representation
with its k-th element having probability πk, (1) is rewritten as

p(x) = p(z)p(x|z) (2)
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Fig. 1. Iso-probability contour of the densities of the Gaussian components

where

p(z) =
K∏

k=1

πzk

k , p(x|z) =
K∏

k=1

N (x|µk, Σk)zk . (3)

Given a set of data, {x(t)}T
t=1, a GMM fits its parameters, πk, µk and Σk to

the dataset and estimates the hidden variable vectors, {z(t)}T
t=1 using a learning

method (e.g. the EM algorithm). Since z(t) expresses which Gaussian produced
the data x(t), we can classify x(t) to one of the Gaussian distributions which
has the largest zk(t) in {zk(t)}K

k=1.
In our GMM-based analysis, the input vector at time t has two dimensions: the

M/C pressure of the brake at time t, and its accumulation in the sub-sequence
to which the brake signal belongs. When the pressure is zero, the accumulation
is also set to zero. Note that the cardinality of the dataset is 26,751.

Fig. 1 shows the densities of the four Gaussian components trained with the
dataset, where four circles show the centers of the components and the ellipses
show the contours describing the variances of the Gaussians. We can find the
following four categories in the figure:

1. Short-term operations (green).
2. Long-term operations with a large constant pressure (red).
3. Middle-term operations with a variety of pressures (purple).
4. No operations (blue).

Fig. 2 shows the result of the classification, where the color of each point shows
the class. We see some curves which correspond to sub-sequences, however, all
the data in a sub-sequence do not belong to the same category because each data
in a sub-sequence is classified separately. Fig. 3 shows this phenomenon more
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clearly, where the upper plot represents a brake signal sequence and the lower
plot represents the phase to which the data was classified. In the next section,
we propose a method to cope with this problem.

4 Discrimination with a Hidden Markov Model

The problem to be solved in this paper is to estimate the phase to which each
sub-sequence belongs. Note that the sub-sequences of brake signals resembles
speech signals, in that the duration varies among sub-sequences [11]. Hence, we
propose to apply a similar HMM to the sub-sequence classification problem.

We first formulate a general HMM using the hidden variable vector z(t) which
has the 1-of-K representation as a GMM. Fig. 4 is a graphical model of an
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HMM, where the dependencies among the variables are described by arrows.
The hidden variable vector z(t), i.e. the state, depends only on the state z(t−1)
at the previous time:

p(z(t)|z(t− 1), A) =
K∏

k=1

K∏
j=1

A
zj(t−1)zk(t)
kj , (4)

where Akj represents the probability that the state changes from j to k and
A ≡ {Akj} is the state transition matrix. Our method restricted the class of
HMMs to the left-to-right HMMs (Fig. 5), as is done in many applications for
sequences. The HMM in our model has five nodes, where the number of nodes
was determined by exhaustive experiments. The transition matrix for this class
is lower bidiagonal, i.e. the matrix has non-zero entries at the main and lower
diagonals.

The output x(t) depends only on the current state z(t):

p(x(t)|z(t)) =
K∏

k=1

p(x(t)|φk)zk(t), (5)

Table 1. The number of sub-sequences in each class

# of sub-sequences

Phase 1 86

Phase 2 26

Phase 3 16

Phase 4 1
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where φk denotes the distribution parameter of the data at the kth state. In our
method, we employ a Gaussian with mean µk and variance Σk.

Note that an HMM can model given sequences but cannot classify them in an
unsupervised manner. Hence, we must give a set of data accompanied with the
correct labels or classes. In this paper, we used the result of the GMM classifier
mentioned in the previous section and determine the label by the majority rule
in each sub-sequence. The 129 sub-sequences in the ongoing drive are labeled as
Table 1. Note that the training data should be labeled manually in the future.

Each of the four HMMs were trained to model one of the above subsets using
HMM Toolbox for Matlab [12]. The estimated transition matrices for Phases 1
to 3 are respectively⎛⎜⎜⎜⎜⎝

0.560 0 0 0 0
0.440 0.643 0 0 0

0 0.357 0.878 0 0
0 0 0.122 0.854 0
0 0 0 0.146 1

⎞⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝

0.975 0 0 0 0
0.025 0.975 0 0 0

0 0.025 0.979 0 0
0 0 0.021 0.724 0
0 0 0 0.276 1

⎞⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝

0.965 0 0 0 0
0.035 0.980 0 0 0

0 0.020 0.989 0 0
0 0 0.011 0.988 0
0 0 0 0.012 1

⎞⎟⎟⎟⎟⎠ .
Given a new sub-sequence, we calculate the likelihood that each HMM produces
the sub-sequence and classify it as the class with the highest likelihood. We
show some examples in Fig. 6. The upper plot of (a) represents the brake signal
sequence when the car is approaching a preceding car. The other subplots show
the state transitions of each HMM that produces the sub-sequence. In this case,
the first model has the highest likelihood, and the sub-sequence is classified as
Phase 1. Likewise, (b) and (c) are cases when the car is stopping for a red traffic
light and when the car is turning right at a crossing, respectively. Phases 2 and
3 have the highest likelihood in cases (b) and (c), respectively.

We input the 134 sub-sequences from the incoming drive into the classifier
to evaluate the classification ability of the above model, For 86.4 % of the sub-
sequences, the output of the HMM classifier agreed to that of the GMM classifier
with the majority rule. Since the datasets are independently collected, this result
implies that the method has a high generalization ability.

5 Conclusions

We proposed two methods to estimate the driver’s phase from the M/C pressure
of the brake, which make it possible for a driver-assist system to qualify the
driving data. One method is based on GMMs and classifies the two-dimensional
brake signal and its accumulation in an unsupervised manner. However, this
method does not take into account the fact that the brake signal is a sequence.
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The other method is based on HMMs and assigns a sub-sequence to one of the
pre-determined phases. This method is more suitable to analyze time-series but
requires labeled training data in advance. These disadvantages will be reevalu-
ated in future studies.
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Abstract. Variational Bayes learning is widely used in statistical

models that contain hidden variables, for example, normal mixtures,

binomial mixtures, and hidden Markov models. To derive the variational

Bayes learning algorithm, we need to determine the hyperparameters in

the a priori distribution. In the present paper, we propose two different

methods by which to optimize the hyperparameters for the two differ-

ent purposes. In the first method, the hyperparameter is determined for

minimization of the generalization error. In the second method, the hy-

perparameter is chosen so that the unknown hidden structure in the data

can be discovered. Experiments are conducted to show that the optimal

hyperparameters are different for the generalized learning and knowledge

discovery.

1 Introduction

Variational Bayes learning is widely being used in statistical models that contain
hidden variables, because its generalization performance is as good as that of
Bayes estimation, and its computational costs is as small as those of the EM algo-
rithms. For example, Variational Bayes learning has been applied to information
science, pattern recognition, artificial intelligence, and bioinformatics.

In order to derive the variational Bayes learning algorithm, we need to de-
termine the hyperparameters contained in the a priori distribution, because the
recursive procedure of the variational Bayes explicitly contains the hyperparam-
eters. However, a method by which to control the hyperparameter has not yet
been established.

In the present paper, we propose that two different methods of hyperparam-
eter optimization are necessary for the two different purposes. The first method
involves minimizing the generalization error so that the probability distribution
of the information source is most accurately estimated. The second method in-
volves extracting the hidden minority structure from the given data in order to
discover unknown knowledge.
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In the first method, we investigate how to control the hyperparameter using
the information criteria of the minimum free energy and the minimum general-
ization error. Although these criteria give different hyperparameters, the hyper-
parameters are not exceedingly different.

In the second method, we attempt to find as many unknown hidden structures
as possible from the given data. The optimal hyperparameters for such a purpose
differ from those for the minimum free energy and generalization error. In other
words, the hyperparameter that is appropriate for the knowledge discovery is
not optimal for the minimum generalization error.

In the experiment, we use a Bernoulli mixture model, and demonstrate that
different hyperparameters must be used in variational Bayes learning according
to the purposes.

2 Bernoulli Mixture

In the present paper, we investigate variational Bayes learning in the Bernoulli
mixture, which is widely used for the analysis of multidimensional binary data.
The Bernoulli mixture is known as the latent class analysis [3,10]. The Bernoulli
distribution is given by the following conditional probability density function,

B(x|µ) =
M∏
i=1

µxi

i (1 − µi)(1−xi),

where x = (x1, · · · , xM )T is a datum, µ = (µ1, · · · , µM )T is a parameter and M
is the dimension of the datum. Then the Bernoulli mixture is defined by

p(x|π,θ) =
K∑

k=1

πkB(x|θk), (1)

where π denotes the mixture ratio ofB(x|θk) andK is the number of mixtures, θ
isK×M parameters θ = (θ1, · · · ,θK). Here, we introduce the hidden parameters
associated with the datum x. The hidden parameter z denotes the distribution
that generates the datum x, and z is expressed as a competitive vector z =
(0, · · · , 1, · · · , 0).

Here, we introduce the Dirichlet and Beta distribution as the conjugate prior
distributions of the hidden parameter z and datum x.respectively. Then the
distributions of Z = (z1, · · · , zN ),X = (x1, · · · ,xN ),π and θ are given, respec-
tively, by

p(Z|π) =
N∏

n=1

K∏
k=1

πznk

k , (2)

p(X|Z,θ) =
N∏

n=1

K∏
k=1

(
M∏
m

θxnm

km (1− θkm)(1−xnm)

)znk

, (3)
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p(π) = Dir(π|a) =
Γ (Ka)
Γ (a)K

K∏
k

πa−1
k , (4)

p(θ) =
K∏

k=1

M∏
m=1

Beta(θkm|b) =
K∏

k=1

M∏
m=1

(
Γ (2b)
Γ (b)2

θb−1
km (1− θkm)b−1

)
, (5)

where (a, b) is the set of parameter in the a priori distributions p(π) and p(θ)
respectively and these parameters are called hyperparameters. In the present
paper, we investigate two different methods by which to determine the hyperpa-
rameters.

3 Variational Bayes Algorithm

3.1 General Framework of the Variational Bayes Algorithm

In this section, Y denotes all hidden variables, including parameters, and X
denotes all variables that are observable. The following equation relates an ar-
bitrary probability distribution q(Y ) and the a posteriori distribution p(Y |X):

F (X) = F̄ [q(Y )] +KL(q(Y )‖p(Y |X)), (6)

where the free energy F , the variational free energy F̄ and the Kullback-Leibler
divergence KL are given as follows:

F (X) = − log
∫
p(X,Y )dY = − log p(X),

F̄ [q(Y )] =
∫
q(Y ) log

q(Y )
p(X,Y )

dY ,

KL(q(Y )‖p(Y |X)) =
∫
q(Y ) log

q(Y )
p(Y |X))

dY .

The variational posterior distribution q(Y ) is optimized by minimization of
F̄ [q(Y )], which is equivalent to the minimization of the Kullback-Leibler di-
vergence between q(Y ) and the true posterior p(Y |X). Here the variational
Bayesian approach assumes that the parameters and hidden variables are condi-
tionally independent of each other in order to obtain a computationally tractable
posterior. Hence, when we denote w as parameters, then q(Y ) is expressed as

q(Y ) = q(Z,w) = q1(Z)q2(w).

Minimization of the functional F̄ [q(Y )] with respect to the above q1 and q2
can be performed by using variational methods. By solving the minimization
problem under the constraints

∑
Z q1(Z) = 1,

∫
q2(w)dw = 1, we can obtain

the following equations,

log q1(Z) = Eq2 [logP (X ,Z,w)] + C1, (7)

log q2(w) = Eq1 [logP (X,Z,w)] + C2, (8)

where C1, C2 are the normalization constants.
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3.2 Variational Bayes Algorithm for Bernoulli Mixture

The variational Bayes learning is carried out by recursive calculation of (7)
and (8). By calculating (7) and (8) for Bernoulli mixture under the setting we
described in the section 2, we obtain the following algorithm,

VB e-step

log ρnk = ψ(αk)− ψ
(

K∑
k

αk

)

+
M∑

m=1

(xnmψ(ηkm)− xnmψ(η′km) + ψ(η′km)− ψ(ηkm + η′km))

rnk =
ρnk∑K

k=1 ρnk

VB m-step

Nk =
N∑

n=1

rnk, ak = a+Nk

ηkm = b+
N∑

n=1

rnkxnm, η
′
km = b+

N∑
n=1

rnk(1− xnm)

The above algorithm illustrate the update formulae with respect to the hyperpa-
rameters of posterior q1(π) = Dir(π|a) and q2(θ) =

∏K
k=1

∏M
m=1 Beta(θkm|ηkm,

η′km), and ψ denotes the digamma distribution ψ(a) ≡ d
daΓ (a) = Γ ′(a)

Γ (a) .

4 Hyperparameter Optimization

4.1 Hyperparameter for Generalized Learning

The free energy F that is minimized by the optimal q(Y) is referred to as the
variational free energy. The variational predictive distribution is defined by

p(x|X) =
∫
p(x|w)q2(w)dw.

The variational generalization errorG is defined by the Kullback-Leibler distance
between the true distribution R(x) and the variational predictive distribution,

G = E
[∫

R(x) log
R(x)
p(x|X)

dx

]
,

where E[·] denotes the expectation value over all sets of training data X.
Note that mixture models are not regular but singular models from a sta-

tistical points of view. Although learning properties of singular models remain
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unknown, it has been reported that the asymptotic behaviors of the Bayes free
energy and Bayes generalization error are determined by algebraic geometrical
structures [4,5,6].

However, since the variational Bayes learning differs from Bayes learning, there
remains no mathematical foundation for variational Bayes learning. It has been
reported that the variational free energy changes its behavior at a = M+1

2 [1].
Actually the learning result has a phase transition at a = M+1

2 . More specifically,
a mixture ratio of redundant components approaches zero in a < M+1

2 and the
algorithm attempts to express the predictive distribution by using all redundant
components evenly in a > M+1

2 . However the influence of this behavior on the
generalization error has not yet been clarified. . The variational generalization
error has been reported not to have a direct mathematical relationship with the
variational free energy [2].

In the following section, we experimentally investigate the generalization
problems with respect to the hyperparameters.

4.2 Hyperparameter for Knowledge Discovery

A mixture model such as a Bernoulli mixture is used for the unsupervised clus-
tering in application. In such a cases, knowledge discovery or data mining is
emphasized rather than the generalization error. With respect to the parameter
setting, the hyperparameters are generally set based on the prior information, if
we have any knowledge about the analysis object. In contrast, if we do not use
the prior information, a uniform distribution, such as a = 1, b = 1 in Bernoulli
mixtures, is often adopted. However, we usually have a reason for performing
clustering or analysis, even when we do not have any prior information. In other
words, we usually have a requirement with respect to the size of the cluster. For
example, when we classify the data, we sometimes consider not only main clus-
ters but also small and minority clusters. This case corresponds to the extraction
of a minority cluster from, for example, a questionnaire. In a Bernoulli mixture,
it would appear that assigning a small b enables minority cluster extraction.
In this case, the prior distribution generates 0 or 1 with high probability. As a
this result, the predictive distribution becomes adapted to a small cluster that
generates a number of specific terms. The above theorem suggests that the com-
bination of parameters a < M+1

2 and small b enables both a small number of
clusters and the minority cluster to be extracted.

5 Experiments

5.1 Variational Free Energy and Generalization Error

We first investigated the behaviors of the variational free energy and generaliza-
tion error. We used 1, 000 samples in one trial and calculated the experimental
expectation values over 100 trials. The free energy is shown in Fig.1, where (a,b)
is the set of hyperparameters of the mixture ratio and the Bernoulli distribu-
tion. The true distribution was designed to have the parameter described in
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Fig. 1. (left)True distribution and (right)variational free energy(a, b : log scale)

the left-hand of Fig.1 (the true distribution consists of 3 mixture components
and each component is a 7 dimensional Bernoulli distribution, here white indi-
cates the high probability), and the stop condition of the learning is given by
“maximum variation of all parameters < 10−3”. The number of mixture com-
ponents of learner was set to K = 10.

The generalization error appears in Fig.2. In this case, the minimum point of
the variational generalization error corresponds approximately to the minimum
point of the variational free energy.

Fig. 2. Generalization error (a, b : log scale)

Peaks in the variational free energy appeared around (a, b) = (3, 1). This phe-
nomenon is thought to be related to the phase transition. In addition, Fig.2 shows
a region of small a and the region around b = 1 was stable with respect to the
variational generalization error. Therefore, in order to make the generalization
error small, the hyperparameter (a, b) = (small, 1) is recommended.

5.2 Knowledge Discovery

In this section, we investigate a method by which to find the minority cluster.
We used the true distribution composed of three mixture components, in which
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Fig. 3. Extraction of a minority cluster

one component, as a minority cluster, has a mixture ratio of 0.01. The aspect
of predictive distribution by average parameters is shown in Fig.3. For example,
when both a and b were set large, the learner could not find small clusters. On
the other hand, the pair of large a and small b extracted several clusters. When
small a and b (right) are chosen, the learner simultaneously reduces the number
of clusters and extracts a minority cluster. Consequently, in order to find the
minority cluster, the hyperparameter set (a, b) = (small, small) was appropriate.
Although such a set of hyperparameters may not be optimal for the minimum
generalization error, because these hyperparameters make too much fitting to
the data. However, it is useful for knowledge discovery.

Finally we applied the above setting to the practical data obtained from the fol-
lowing web site “http://kiwitobes.com/clusters/zebo.txt” [11]. These data were
obtained from a matrix composed of 83 items and 1750 users, in which elements
are assigned a value of 1 if some users want (or own or’love’) the item, and other
elements are assigned a value of 0. The result applied to the data is illustrated in
Fig.4 (we listed the items in decreasing order of the probability for each category)
where category3 and category4 are large clusters, and category11 is a very small
cluster. In this case, the probability of category 11 was expressed as either high

Fig. 4. Clustering result for practical data(left column:item, right column:probability)
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probability or low probability, i.e., 0.999947 or 3.34E − 05. This result suggests
that category 11 contains a minority cluster that has very similar interests.

6 Conclusion

In the present paper, we proposed two methods for hyperparameter optimiza-
tion: a method to minimize the generalization error and a method for knowledge
discovery. The hyperparameters for the minimum generalization error and the
hyperparameters for the minimum variational free energy are not so different.
This result suggests the adequacy of selecting the hyperparameters for the mini-
mum generalization error by the variational free energy. On the other hand, small
a and b enable us to find minority from the data. We guess that it is possible to
obtain the same effect in case of the Gaussian mixture by setting hyperparam-
eters giving small variances to the Gaussian distributions. However, the above
hyperparameters are not for minimizing the generalization error. Our experi-
mental results demonstrate that the optimal hyperparameters for the different
purposes are different from each other.
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Abstract. We present a backpropagation learning algorithm for multi-

layer feedforward phasor neural networks using a gradient descent

method. The state of a phasor neuron takes a complex-valued state on

the unit circle in the complex domain. Namely, the state can be identi-

fied only by its phase component because the amplitude component is

fixed. Due to the circularity of the phase variable, phasor neural net-

works are useful to deal with periodic and multivalued variables. Under

the assumption that the weight coefficients are complex numbers and

the activation function is a continuous and differentiable function of a

phase variable, we derive an iterative learning algorithm to minimize the

output error. In each step of the algorithm, the weight coefficients are

updated in the gradient descent direction of the error function landscape.

The proposed algorithm is numerically tested in function approximation

task. The numerical results suggest that the proposed method has a

better generalization ability compared with the other backpropagation

algorithm based on linear correction rule.

Keywords: Phasor neural networks, Complex-valued neuron, Learning,

Backpropagation, Gradient descent.

1 Introduction

Complex numbers have been widely used for information representation in en-
gineering and physics. Indeed, complex number calculus is convenient to deal
with a variety of information, including not only complex-valued data but also
multivalued data. For instance, complex-valued representation is suited for waves
with amplitude and phase components, while multivalued representation is useful
for digital images with multiple colors. Therefore, complex-valued information
processing is becoming more and more important with expectation for its wide
applications [1]. In such backgrounds, it is understandable that complex-valued
neural networks have been widely studied in recent years [2,3].

In the 1990s, learning algorithms for layered complex-valued neural networks
were intensively studied. Since a complex function that is bounded and regular
� Corresponding author.
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(differentiable) is restricted to a constant function due to Liouville’s theorem, the
main concern was to seek an appropriate complex activation function which is
effective for learning complex-valued information. A simple generalization of the
sigmoid function g(x), typically used in real-valued neural networks, is the real-
imaginary type activation function, i.e., f(z) = g(Re(z))+ g(Im(z)) where z is a
complex number. The backpropagation algorithm for complex-valued networks
with this activation function can be simply obtained by extending the real-
valued case [4]. The complex activation function, in which only the amplitude
component of the input is nonlinearly transformed and the phase component is
unchanged, is called the amplitude-phase type activation function, i.e., f(z) =
g(|z|) exp(iarg(z)). The backpropagation learning algorithm with this activation
function was also derived [5,6].

We focus on a special class of complex-valued neural networks, where the
neuronal states are located on the unit circle in the complex domain. It is called
a phasor neural network [7,8]. Recurrent networks of phasor neurons have been
applied to multistate associative memories [9,10,11]. In phasor neural networks,
only the phase component is the information carrier while the amplitude of each
neuronal state is fixed at one. By dividing the unit circle into K arcs with equal
size, the K boundary points can be used to represent K-valued states. This
discrete phasor neuron is also called a multivalued neuron [12].

Recently, a complex activation function with continuous nonlinearity for a
phasor neuron has been proposed to improve the capability of the conventional
complex-valued Hopfield network based on discrete activation functions [13]. Us-
ing the differentiable activation function, we derive a backpropagation learning
algorithm based on a gradient descent method for multilayer feedforward pha-
sor neural networks. The presented method is tested in numerical experiments
on function approximation task. The numerical results show that the proposed
method yields less test errors than the heuristic learning algorithm based on a
linear correction rule [14].

2 Activation Function of Phasor Neurons

The complex-signum function [9], which is used for a discrete phasor neuron [7,8]
and a multivalued neuron [12], is described as follows:

fd(z) = exp
(
i
2π
K

{[
Karg(z)

2π

]
+

1
2

})

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

eiπ/K (0 ≤ arg(z) < 2π/K),
...

...
ei(2πk+π)/K (2πk/K ≤ arg(z) < 2π(k + 1)/K),
...

...
ei(2π(K−1)+π)/K (2π(K − 1)/K ≤ arg(z) < 2π),

(1)

where [·] indicates the floor function. Equation (1) is called a K-state phasor or
a K-valued neuron for an integer K, because the number of discrete neuronal
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states is given by K. The complex-signum function is based on a multilevel
staircase-like function, which is regarded as a generalization of the two-state
step function.

By replacing the discrete multilevel function with its continuous version
defined on a circle, the complex-sigmoid function [13] is obtained as follows:

fc(z) = exp
{
i
2π
K
mK

(
Karg(z)

2π

)}
. (2)

The continuous multilevel function with circularity, mK : [0,K) → [0,K), is
defined by using the multilevel sigmoid function [15,16] as follows:

mK(x) =

(
K∑

k=0

g(x− k)
)
− 1

2
(mod K), (3)

where g(x) = 1/(1 + exp(−x/ε)). For any real number u, u (mod K) ≡ u +
jK ∈ [0,K) where j is an appropriate integer. It should be noted that the
continuous multilevel function is differentiable because g′(x) = g(x)(1− g(x))/ε
but the discrete multilevel function is not. The complex-sigmoid function (2) is
a generalization of the complex-signum function (1), i.e., fc(z) → fd(z) for any
z in the limit of ε→ 0.

The complex-valued mapping (2) can be rewritten as follows:

arg(fc(z)) =
2π
K
mK

(
Karg(z)

2π

)
. (4)

Therefore, Eq. (2) is essentially reduced to the following circle map:

fp(ϕ) =
2π
K

{
K∑

k=0

g

(
Kϕ

2π
− k

)
− 1

2

}
, (5)

where ϕ ≡ arg(z) ∈ [0, 2π) and fp(ϕ) ≡ arg(fc(z)). This reduction is possi-
ble because the neuronal state can be identified only by the real-valued phase
component ϕ. In a gradient descent learning method, the activation function
requires to be continuous and differentiable. It is more convenient to consider
the differential of fp with respect to ϕ than that of fc with respect to z. The
differential of the continuous activation function (5) is calculated as:

f ′p(ϕ) =
1
ε

K∑
k=0

g

(
Kϕ

2π
− k

){
1− g

(
Kϕ

2π
− k

)}
. (6)

In the limit of K →∞, it is obvious from Eqs. (1) and (2) that fd(z) → eiarg(z)

and fc(z) → eiarg(z). Similarly, as K goes to the infinity, we obtain the following
activation function:

fp(ϕ) = ϕ, (7)
f ′p(ϕ) = 1, (8)

for any ϕ ∈ [0, 2π). Later, we adopt this limit activation function for numerical
simulations instead of Eq. (5) because it is better in terms of computation time.
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3 Multilayer Feedforward Phasor Neural Networks

For simplicity, we consider three-layer feedforward phasor neural networks in-
cluding one input, one hidden, and one output layers as schematically illustrated
in Fig. 1. The numbers of input, hidden, and output units are denoted by Nj ,
Nk, and Nl, respectively. The neuronal states of the input, hidden, output lay-
ers are represented by zj = eiθj (1 ≤ j ≤ Nj), zk = eiθk (1 ≤ k ≤ Nk), and
zl = eiθl (1 ≤ l ≤ Nl), respectively. The weight coefficient of the kth hidden unit
for the jth input unit is denoted by wkj , and that of the lth output unit for the
kth hidden unit is denoted by wlk.

The weighted sum of inputs to the kth hidden unit is

uke
iϕk ≡

Nj∑
j=0

wkjzj =
Nj∑
j=0

wkje
iθj , (9)

where a dummy unit with z0 = 1 and θ0 = 0 is introduced for the bias parameters
wk0. The output of the kth hidden unit is given as

zk = eiθk = fc(uke
iϕk), (10)

θk = fp(ϕk). (11)

Similarly, the weighted sum of inputs to the lth output unit is

ule
iϕl ≡

Nk∑
k=0

wlkzk =
Nk∑
k=0

wlke
iθk , (12)

where the same dummy unit is used again for the bias parameters wl0. Then,
the output of the lth output unit is given as

zl = eiθl = fc(ule
iϕl), (13)

θl = fp(ϕl). (14)

input
layer

hidden
layer

output
layer

zj

zk

zl

ukexp(iϕk) ulexp(iϕl)

wkj

wlk

z0 z0

Fig. 1. Structure of a three-layer feedforward phasor neural network consisting of Nj

input, Nk hidden, and Nl output units. The filled circles indicate the dummy units for

the bias parameters.
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All the states of the units can be identified only by the phase components.
However, it should be remembered that complex number representation and
complex number calculus are still essential for the forward propagation of the
multilayer phasor neural network.

4 Learning Algorithm

4.1 Gradient Descent Method

Before learning, the current output of the network with randomly distributed
weights is different from the desired output in general. The purpose of learning is
to minimize the output error, or the difference between the current and desired
outputs. We adopt the method of updating the weight coefficients iteratively.

Suppose that the weight coefficient between the lth output unit and the kth
hidden unit is updated as follows:

w̃lk = wlk +∆wlk, (15)

where wlk = wR
lk+iwI

lk and w̃lk = w̃R
lk+iw̃I

lk are the current and updated weights,
respectively. The real and imaginary parts of a complex number are indicated
by the superscripts R and I, respectively. In a gradient descent method, the
variations of the weights are proportional to the negative value of the gradient
descent as follows:

∆wR
lk = −η ∂E

∂wR
lk

, (16)

∆wI
lk = −η ∂E

∂wI
lk

, (17)

where η is the learning rate.
We assume that training data are given as a combination of Nj-dimensional

input vector and Nl-dimensional output vector ẑ = (ẑ1, . . . , ẑNl
) where ẑl =

eiθ̂l . The current network output for the input training vector is denoted by
z = (z1, . . . , zNl

) where zl = eiθl . The aim of learning is to minimize the output
error:

E =
1
2
||z− ẑ||2

= 1−
Nl∑
l=1

cos(θl − θ̂l). (18)

Using the chain rule, we obtain

∂E

∂wR
lk

=
∂E

∂θl

dθl
dϕl

∂ϕl

∂wR
lk

, (19)

∂E

∂wI
lk

=
∂E

∂θl

dθl
dϕl

∂ϕl

∂wI
lk

, (20)
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where

∂E

∂θl
= sin(θl − θ̂l), (21)

dθl
dϕl

= f ′p(ϕl). (22)

In order to calculate the remaining terms ∂ϕl/∂w
R
lk in Eq. (19) and ∂ϕl/∂w

I
lk in

Eq. (20), we suppose that the weights wlk (k = 1, . . . , Nk) and the bias wl0 of
the lth output unit are updated as follows:

wlk → wlk + (∆wA
lk + i∆wP

lk)ei(ϕl−θk). (23)

This update results in the variation of the weighted sum of inputs as follows:

∆(ule
iϕl) = (∆wlk)zk = (∆wA

lk + i∆wP
lk)eiϕl . (24)

The terms ∆wA
lk and ∆wP

lk are independently related to the variation of the
weighted sum of inputs in the directions of amplitude and phase, respectively
[6]. Therefore, it follows that

dul

dwA
lk

= 1, (25)

dϕl

dwP
lk

=
1
ul
. (26)

We can rewrite Eq.(23) as follows:

∆wR
lk + i∆wI

lk = (∆wA
lk + i∆wP

lk)ei(ϕl−θk). (27)

Comparing the real and imaginary parts in both sides separately, we obtain the
following relation:

∆wR
lk = cos(ϕl − θk)∆wA

lk − sin(ϕl − θk)∆wP
lk, (28)

∆wI
lk = sin(ϕl − θk)∆wA

lk + cos(ϕl − θk)∆wP
lk. (29)

Since the vector (∆wR
lk, ∆w

I
lk)T is a rotation of the vector (∆wA

lk, ∆w
P
lk)T with

angle ϕl − θk, the inverse rotation yields

∆wA
lk = cos(ϕl − θk)∆wR

lk + sin(ϕl − θk)∆wI
lk, (30)

∆wP
lk = − sin(ϕl − θk)∆wR

lk + cos(ϕl − θk)∆wI
lk. (31)

These equations lead to

∂wP
lk

∂wR
lk

= − sin(ϕl − θk), (32)

∂wP
lk

∂wI
lk

= cos(ϕl − θk). (33)
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Consequently, the derivatives for the weight correction rule based on the gradient
descent method are summarized as follows:

∂E

∂wR
lk

= − sin(θl − θ̂l)f ′p(ϕl) sin(ϕl − θk)/ul, (34)

∂E

∂wI
lk

= sin(θl − θ̂l)f ′p(ϕl) cos(ϕl − θk)/ul, (35)

for k = 0, 1, . . . , Nk and l = 1, 2, . . . , Nl. For the calculation of the derivatives
with respect to the bias parameters, wR

l0 and wI
l0, we take θ0 = 0. By combining

the derivatives in Eqs. (34)-(35), we get the weight correction rule as follows:

w̃lk = wlk − η sin(θl − θ̂l)f ′p(ϕl) exp (ϕl − θk + π/2)/ul. (36)

4.2 Backpropagation Algorithm

Next we consider backwards propagation of the errors. After corrections of the
weight coefficients in the output layer neurons, the weights in the hidden layer
neurons are updated. Suppose that the weight coefficient between the kth hidden
unit and the jth input unit is updated as follows:

w̃kj = wkj +∆wkj , (37)

where wkj = wR
kj + iwI

kj and w̃kj = w̃R
kj + iw̃I

kj are the current and updated
weights, respectively. The variations are obtained with gradient descent by

∆wR
kj = −η ∂E

∂wR
kj

, (38)

∆wI
kj = −η ∂E

∂wI
kj

, (39)

where η is the learning rate.
The derivatives in the righthand sides are given by the chain rule as follows:

∂E

∂wR
kj

=

(
Nl∑
l=1

∂E

∂θl

dθl
dϕl

∂ϕl

∂θk

)
dθk
dϕk

∂ϕk

∂wP
kj

∂wP
kj

∂wR
kj

, (40)

∂E

∂wI
kj

=

(
Nl∑
l=1

∂E

∂θl

dθl
dϕl

∂ϕl

∂θk

)
dθk
dϕk

∂ϕk

∂wP
kj

∂wP
kj

∂wI
kj

. (41)

Most terms in the righthand sides of the above equations, except for ∂ϕl/∂θk,
can be calculated as in the previous subsection. To calculate ∂ϕl/∂θk, we focus
on the following equation:

ule
iϕl =

Nk∑
k=1

wlke
iθk =

(
Nk∑
k=1

wR
lk cos θk

)
+ i

(
Nk∑
k=1

wI
lk sin θk

)
,

which leads to
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tanϕl =
ul sinϕl

ul cosϕl
=

∑
k w

I
lk sin θk∑

k w
R
lk cos θk

.

By differentiating both sides with respect to θk, we obtain

1
cos2 ϕl

∂ϕl

∂θk
=

(wI
lk cos θk)(ul cosϕl) + (ul sinϕl)(wR

lk sin θk)
u2

l cos2 ϕl
.

Hence,

∂ϕl

∂θk
=
wR

lk sin θk sinϕl + wI
lk cos θk cosϕl

ul
. (42)

Consequently, we obtain the error backpropagation formula for the three-layer
network in Eqs. (40)-(41). Even when the number of layers is more than three,
the procedure of the backpropagation algorithm is almost the same.

5 Simulation Results

A popular task to evaluate the performance of a learning algorithm for feed-
forward neural networks is function approximation. In this section, M pairs of
input and output data are randomly generated by the following function:

y = h(x) + ξ (mod 2π). (43)
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Fig. 2. The original function y = h(x) (thin) and the functions (thick) approximated

by three-layer networks. The number of training data is M = 15. The number of

hidden units is indicated by Nk. (Upper) The proposed backpropagation algorithm

based on gradient descent method. (Lower) Backpropagation algorithm based on linear

correction rule.



492 G. Tanaka and K. Aihara

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12  14  16

R
M

S
 e

rr
or

 fo
r 

tr
ai

ni
ng

 d
at

a 
(E

R
M

S)

Number of hidden units (Nk)

Gradient descent method
Linear correction rule

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  2  4  6  8  10  12  14  16

R
M

S
 e

rr
or

 fo
r 

te
st

 d
at

a 
(E

R
M

S)

Number of hidden units (Nk)

Gradient descent method
Linear correction rule

Fig. 3. (Left) The RMS error for the training data with variation of the number of

hidden units. (Right) The RMS error for the test data with variation of the number of

hidden units.

where h(x) = x(π − x)/π and ξ indicates white Gaussian noise with mean zero
and variance σ = 0.25. The aim is to approximate y = h(x) using the training
data set. For comparison, the same experiments are conducted with backpropa-
gation algorithm based on linear correction rule [14]. Figure 2 shows the results
of function approximation task for different numbers of hidden units in the three-
layer network. The number of training data indicated by the circles is M = 15.
The number of iterations of weight corrections is fixed at 10000. In both methods,
the activation function (7) is used. When Nk = 1, the approximated function is
far from the original function. At Nk = 3, the best approximation is achieved in
both methods. A further increase of Nk leads to overfitting of the training data
as exemplified in the case of Nk = 8.

Figure 3 shows the root-mean-square (RMS) error for the training and test
data. The mean values of 100 trials are plotted. The M test data are newly
generated by (43). The RMS error for the training data is almost monotonically
decreasing with increase of the hidden units in both methods. The RMS error
for the test data with the proposed method is smaller than that with the lin-
ear correction method. It suggests that our method has a better generalization
ability.

6 Conclusions

We have presented a backpropagation learning algorithm based on a gradient
descent method for multilayer feedforward phasor neural networks. The gradient
descent method relies on the continuous and differentiable activation function.
In order to demonstrate the performance of the proposed method, we have con-
ducted numerical simulations on function approximation task. In comparison
with the linear correction method, the proposed gradient descent method can be
advantageous in terms of generalization ability. The learning method for phasor
neural networks can be useful for processing various information with periodicity
or circularity.
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Abstract. Despite noise injecting during training has been demon-

strated with success in enhancing the fault tolerance of neural network,

theoretical analysis on the dynamic of this noise injection-based online

learning algorithm has far from complete. In particular, the convergence

proofs for those algorithms have not been shown. In this regards, this

paper presents an empirical study on the non-convergence properties of

injecting weight noises during training a multilayer perceptron, and an

online learning algorithm called SNIWD (simultaneous noise injection

and weight decay) to overcome such non-convergence problem. Simula-

tion results show that SNIWD is able to improve the convergence and

enforce small magnitude on the network parameters (input weights, in-

put biases and output weights). Moreover, SNIWD is able to make the

network have similar fault tolerance ability as using pure noise injection

approach.

1 Introduction

Improve tolerance of a neural network towards random node fault, stuck-at
node fault and weight noise have been researching for almost two decades
[4,6,5,7,9,12,13,16,17,19], Many methods such as injecting random node fault
[18,3], injecting weight noise during training (for multilayer perceptrons (MLP)
[14,15], a recurrent neural network (RNN) [11], or a pulse-coupled neural net-
works (PCNN) [8]) or node noise (response variability) during training [2] (for
PCNN) during training have been developed and demonstrated with success via
intensive computer simulations. Despite the idea of injecting weight noise during
training is straight forward and its implementation is extremely elegant, theo-
retical analysis regrading their convergence and the objective functions in which
the algorithms are minimizing is scarce [1,2,14,15].

Murray and Edward although have found that injecting multiplicative weight
noise can enhance the fault tolerance of a MLP [15], they have not put forward
the objective function for this algorithm. While G.An in [1] has attempted to de-
rive an objective function for injecting weight-noise during training (see Section
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4 in [1]), he failed to prove the convergence of this algorithm and nevertheless
the objective function derived is not the true one. In terms of Murray & Ed-
ward’s terminology, the objective derived by G.An is essentially the prediction
error of a MLP if weight noise is injected after training. Until very recent, Ho et
al [10] have shown the first complete analysis on the convergence of injecting
output weight noise (either multiplicative or additive) during training a radial
basis function (RBF) network.

In view of lacking understand on injecting weight noise during training a
MLP, simulated experiments have been conducted. We found that pure noise
injection during training might lead to non-convergence of network parameters,
even the training error has been converged. Rather, adding weight decay together
with noise injection during training is able to overcome such non-convergence
problem. In this paper, we will present this comparative study based on purely
noise injection training algorithm and simultaneous weight noise injection with
weight decay (SINWD).

In the next section, the online weight noise injection algorithms will be pre-
sented. Their convergence properties, in terms of training error and network
parameters, and their fault tolerance abilities will be shown by a simple example
in Section 3. Section 4 gives the conclusions of this paper.

2 Noise Injection during Training

Let f(·, ·) ∈ Rl be a single output multilayer perceptron (MLP) consisting of m
hidden nodes, n input nodes and l linear output nodes.

f(x,w) = DT z(AT x + c), (1)

where D = [d1,d2, · · · ,dl] ∈ Rm×l is the hidden to output weight vector, z =
(z1, z2, · · · , zm)T ∈ Rm is the output of the hidden nodes, A = [a1, a2, · · · ,am] ∈
Rn×m is the input to hidden weight matrix, ai ∈ Rn is the input weight vector
of the ith hidden node and c ∈ Rm is the input to hidden bias vector.

w in (1) is a vector augmenting all the parameters, i.e.

w = (dT
1 ,d

T
2 , · · · ,dT

l ,a
T
1 , a

T
2 , · · · , aT

m, c
T )T .

For i = 1, 2, · · · ,m, zi(x,ai, ci) = τ(aT
i x+ci), where τ(·) is the neuronal transfer

function. Training dataset is denoted by D = {(xk,yk)}N
k=1. The random noise

vector is denoted by b. For simplicity, we assume that there is only one output
node, i.e. l = 1. In such case, the gradient of f(x,w) with respect to w is denoted
by g(xt,w(t)). The Hessian matrix of f(x,w) is denoted by gw(xt,w(t)).

Table 1. Settings of the experiments

Pure noise injection With weight decay

Add. weight noise (Fig 1) Sb = .01, α = 0 Sb = .01, α = .00001
Mul. weight noise (Fig 3) Sb = .01, α = 0 Sb = .01, α = .00001
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Fig. 1. Dynamical changes of the network parameters while additive weight noise is

injected during training. Note that the total number of training steps is 100 × 1000.

Every two consecutive points are taken at an interval of 1000 steps.
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Fig. 2. Testing error versus different values of S′
b, for the networks obtained in Figure 1

2.1 Pure Weight Noise Injection

The online weight noise injection training algorithm for f(x,w) given a
dataset D can be written as follows :

w(t+ 1) = w(t) + µt(yt − f(xt, w̃(t)))g(xt, w̃(t)). (2)
w̃(t) = w(t) + b'w(t). (multiplicative weight noise) (3)
w̃(t) = w(t) + b. (additive weight noise) (4)

Here b'w = (b1w1, b2w2, · · · , bMwM )T and bi, for all i, is a mean zero Gaussian
distribution with variance Sb.

2.2 SNIWD

For simultaneous weight noise injection and weight decay (SNIWD), the update
equations are similar except the decay term is added.

w(t+ 1) = w(t) + µt {(yt − f(xt, w̃(t)))g(xt, w̃(t))− αw(t)} . (5)
w̃(t) = w(t) + b'w(t). (multiplicative weight noise) (6)
w̃(t) = w(t) + b. (additive weight noise) (7)

Clearly, the difference between pure noise injection during training, and the one
with weight decay lies in the last term of the update equation, i.e. −αw(t), which
can limit the growth of ‖w(t)‖ to infinity.

3 Simulation Study

To illustrate the effect of injection noise during training MLP with and with-
out adding weight decay, a training dataset consisting of 100 samples that are
generated from an XOR function is used for the MLP training.
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Fig. 3. Dynamical changes of the network parameters while additive weight noise is

injected during training. Note that the total number of training steps is 100 × 1000.

Every two consecutive points are taken at an interval of 1000 steps.
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Fig. 4. Testing error versus different values of S′
b, for the networks obtained in Figure 3

Let (xk, yk) be the kth input and output pair. xk is uniformly random selected
from [−1, 1]× [−1, 1]. The output vector yk ∈ {0, 1} is generated by the following
equation.

yk = sign(xk1)sign(xk2). (8)

Then, an MLP consisting of 2 input nodes, 10 hidden nodes and 1 linear output
nodes is trained. Four experiments are carried out. The values of Sb and α are de-
picted in Table 1. The step size for all eight experiments is set to 0.05. The change
of parameters during training are shown in Figure 1 and Figure 3. To validate the
fault tolerance ability, each network that is trained with online additive (multi-
plicative) weightnoise injection will be injectedS′

b additive (multiplicative) weight
noise after training and then the testing error is evaluated. The last step is repeated
100 times, the statistics of the testing errors are displayed in box-plot form and
shown in Figure 2 and Figure 4 respectively for additive weight noise injection and
multiplicative weight noise injection. The range of S′

b is from 0 to 0.04.
In accordance with the simulation results, it is clear that the network parame-

ters do not converge for pure weight noise injection cases. Even the training error
has shown converge, many network parameters are still increasing. Adding weight
decay is able to control the growth of the network parameters, especially the input
weights. If weight decay is added, their magnitudes converge to below 4. Without
weight decay, their magnitude can diverge to as large as 10, see Figure 3.

Moreover, as observed from Figure 2 and Figure 4 that the fault tolerance
abilities of a network trained by pure noise injection and SNIWD are quite
similar. Except that, SNIWD gives slightly better performance when S′

b is close
to 0.01. For S′

b is larger than 0.02, the situation is reverse.

4 Conclusion

In this paper, we have presented simulation results comparing the convergence of
network parameters (including input weights, input biases and output weights)
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that are obtained by purely noise injection and simultaneous noise injection
with weight decay. We have found that purely injecting weight noise during
training a MLP might not be able to improve its fault tolerance, as the some of
network parameters might diverge. By simulations, we have found that adding
weight decay simultaneously with weight noise injection during training is able
to overcome such problem. For a network that is trained by SNIWD approach, its
network parameters are with smaller magnitude compared with pure weight noise
injection approach. Convergence of network parameters is almost guaranteed.
The fault tolerance ability of that network is comparable to that is trained by
purely noise injection approach. Due to page limit, we are not able to derive
the objective functions in which those algorithms are minimizing in this paper.
Those theoretical results will be presented in our future papers.
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Abstract. Reinforcement learning induces non-stationarity at several levels.
Adaptation to non-stationary environments is of course a desired feature of a
fair RL algorithm. Yet, even if the environment of the learning agent can be con-
sidered as stationary, generalized policy iteration frameworks, because of the in-
terleaving of learning and control, will produce non-stationarity of the evaluated
policy and so of its value function. Tracking the optimal solution instead of trying
to converge to it is therefore preferable. In this paper, we propose to handle this
tracking issue with a Kalman-based temporal difference framework. Complexity
and convergence analysis are studied. Empirical investigations of its ability to
handle non-stationarity is finally provided.

Keywords: Reinforcement learning, value function approximation, tracking,
Kalman filtering.

1 Introduction

Reinforcement learning (RL) [1] is a general paradigm in which an agent learns to con-
trol a dynamic system (its environment) through examples of real interactions without
any model of the physics ruling this system. A feedback signal is observed by this agent
after each interaction as a reward information, which is a local hint about the quality of
the control. When addressing a reinforcement learning problem, one considers the sys-
tem as made up of states and accepting actions from the controling agent. The objective
of the agent is to learn the mapping from states to actions (a policy) that maximizes
the expected cumulative reward over the long term, which it locally models as a so-
called value or Q-function. Reinforcement learning induces non-stationarity at several
levels. First, as in a lot of real-world machine learning applications, adaptation to non-
stationary environments is a desired feature of a learning method. Yet most of existing
machine learning algorithms assume stationarity of the problem and aim at converging
to a fixed solution. Few attempts to handle non-stationarity of the environment in RL
can be found in the litterature. Most of them are based on interleaving of RL and plan-
ning such as in the Dyna-Q algorithm [1]. Tracking value function is proposed by [2],
which can be seen as a specific case of the proposed approach. Second, a large class of
RL approaches consists in alternatively learning the value function of a given policy, and
then improving the policy according to the learnt values. This is known as generalized
policy iteration [1]. This scheme suggests to have a value function learner. However,
because of the policy improvement phase, the value function changes together with the

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 502–511, 2009.
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policy and makes it non-stationary. In both cases, tracking the value function rather than
converging to it seems preferable. Other arguments can be discussed on the advantages
of tracking vs converging even in stationary environments [3]. To address this issue, we
propose a statistical approach to value function approximation in RL based on Kalman
filtering, namely the Kalman Temporal Difference framework. Kalman filtering is in-
deed an efficient solution to tracking problems and is shown here to apply positively to
the problem at sight. Readers are invited to refer to [4] for a deaper theoretical descrip-
tion. Contributions of this paper are the analysis of this framework (computational com-
plexity, bias caused by stochastic transitions and convergence) and a set of experimental
results which show its ability to handle non-stationary (for a non-stationary system and
in the case of interlacing of control and learning), as well as sample efficiency.

2 Background

Originally, Kalman filtering [5] aims at online tracking the hidden state of a non-
stationary dynamic system through indirect observations of this state. The idea behind
KTD is to express the problem of value function approximation in RL as a filtering
problem. Considering a parametric value function approximator, the parameters are the
hidden state to be tracked, the observation being the reward linked to the parameters
through a Bellman equation.

2.1 Reinforcement Learning

This paper is placed in the framework of Markov decision process (MDP). An MDP
is a tuple {S,A, P,R, γ}, where S is the state space, A the action space, P : s, a ∈
S × A → p(.|s, a) ∈ P(S) a family of transition probabilities, R : S × A × S → R

the bounded reward function, and γ the discount factor. A policy π associates to each
state a probability over actions, π : s ∈ S → π(.|s) ∈ P(A). The value function of a
given policy is defined as V π(s) = E[

∑∞
i=0 γ

iri|s0 = s, π] where ri is the immediate
reward observed at time step i, and the expectation is done over all possible trajectories
starting in s given the system dynamics and the followed policy. TheQ-function allows
a supplementary degree of freedom for the first action and is defined as Qπ(s, a) =
E[

∑∞
i=0 γ

iri|s0 = s, a0 = a, π]. RL aims at finding (through interactions) the policy
π∗ which maximises the value function for every state: π∗ = argmaxπ(V π). Two
schemes among others can lead to the optimal policy. First, policy iteration implies
learning the value function of a given policy and then improving the policy, the new one
being greedy respectively to the learned value function. It requires solving the Bellman
evaluation equation, which is given here for the value andQ-functions:

V π(s) = Es′,a|π,s[R(s, a, s′) + γV π(s′)], ∀s (1)

Qπ(s, a) = Es′,a′|π,s,a[R(s, a, s′) + γQπ(s′, a′)], ∀s, a (2)

The second scheme, value iteration, aims directly at finding the optimal policy. It re-
quires solving the Bellman optimality equation:

Q∗(s, a) = Es′|s,a[R(s, a, s′) + γmax
b∈A

Q∗(s′, b)], ∀s, a (3)
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2.2 Kalman Temporal Differences

For the sake of generality, the following notations are adopted, given that the aim is
respectively the value or theQ-function evaluation or the Q-function optimization:

ti =

⎧⎪⎨⎪⎩
(si, si+1)
(si, ai, si+1, ai+1)
(si, ai, si+1)

and gti(θi) =

⎧⎪⎨⎪⎩
V̂θi(si)− γV̂θi(si+1)
Q̂θi(si, ai)− γQ̂θi(si+1, ai+1)
Q̂θi(si, ai)− γmaxb Q̂θi(si+1, b)

(4)
where V̂θ (resp. Q̂θ) is a parametric representation of the value (resp. Q-) function and
θ is the parameter vector. A statistical point of view is adopted and the problem at sight
is stated in a so-called state-space formulation (that is the value function approximation
problem is cast into the Kalman filtering paradigm):{

θi = θi−1 + vi (evolution equation)

ri = gti(θi) + ni (observation equation)
(5)

The first equation (evolution equation), is the key of non-stationarity handling. It spec-
ifies that the parameter vector evolves with time according to a random walk. The
random walk model is chosen for its simplicity. Expectation of θi corresponds to the
optimal estimation of the value function at time step i. The evolution noise vi is cen-
tered, white, independent and of variance matrix Pvi (to be chosen by the practitioner).
The second equation (observation equation) links the observed transition to the value
(or Q-) function through one of the Bellman equations. The observation noise ni is
supposed centered, white, independent and of variance Pni (also to be chosen by the
practitioner). Notice that this white noise assumption does not hold for stochastic MDP
(see Sec. 3.2). KTD is a second order algorithm (and thus sample efficient): it updates
the mean parameter vector, but also the associated variance matrix. It breaks down in
three steps (see also algorithm 1). First, the prediction step (i) consists in predicting
the parameters mean and covariance at time step i according to the evolution equation
and using previous estimates. Then some statistics of interest are computed (ii). Third,
the correction step (iii) consists in correcting first and second order moments of the
parameter random vector according to the Kalman gain Ki (obtained thanks to statis-
tics computed at step (ii)), the predicted reward r̂i|i−1 and the observed reward ri (the
difference between the two being a form of temporal difference error). The statistics of
interest are generally not analytically computable, except in the linear case, which does
not hold for nonlinear parameterization and for the Bellman optimality equation, be-
cause of the max operator. Yet, a derivative-free approximation scheme, the unscented
transform (UT) [6], is used to estimate first and second order moments of nonlinearly
mapped random vectors. LetX be a random vector of size n and Y = f(X) its nonlin-
ear mapping. A set of 2n+ 1 so-called sigma-points is computed as follows:⎧⎪⎨⎪⎩

x(0) = X̄ w0 = κ
n+κ , j = 0

x(j) = X̄ + (
√

(n+ κ)PX)j wj = 1
2(n+κ) , 1 ≤ j ≤ n

x(j) = X̄ − (
√

(n+ κ)PX)n−j wj = 1
2(n+κ) , n+ 1 ≤ j ≤ 2n

(6)
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where X̄ is the mean ofX ,PX is its variance matrix, κ is a scaling factor which controls
the accuracy [6], and (

√
PX)j is the jth column of the Cholesky decomposition of PX .

Then the image through the mapping f is computed for each of these sigma-points:

y(j) = f(x(j)), 0 ≤ j ≤ 2n (7)

The set of sigma-points and their images can then be used to compute the following
approximations: ⎧⎪⎨⎪⎩

Ȳ ≈ ȳ =
∑2n

j=0 wjy
(j)

PY ≈
∑2n

j=0 wj(y(j) − ȳ)(y(j) − ȳ)T

PXY ≈
∑2n

j=0 wj(x(j) − X̄)(y(j) − ȳ)T

(8)

Using the UT practical algorithms can be derived. At time-step i, a set of sigma-points is
computed from predicted random parameters characterized by mean θ̂i|i−1 and variance
Pi|i−1. Predicted rewards are then computed as images of these sigma-points using
one of the observation functions (4). Then sigma-points and their images are used to
compute statistics of interest. This gives rise to three algorithms, namely KTD-V, KTD-
SARSA and KTD-Q, given that the aim is to evaluate the value orQ-function of a given
policy or directly the optimalQ-function. They are summarized in Algorithm 1, p being
the number of parameters.

3 KTD Analysis

3.1 Computational Cost

The UT involves a Cholesky decomposition, which can be perfomed in O(p2) instead
ofO(p3) when done with a square-root approach [7]. The different algorithms imply to
evaluate 2p + 1 times the gti function at each time-step. For KTD-V or KTD-SARSA
and a general parameterization, each evaluation is bounded by O(p). For KTD-Q, the
maximum over actions has to be computed. Let A be the cardinality of action space if
finite, the computational complexity of the algorithm used to search the maximum oth-
erwise (e.g., the number of samples for Monte Carlo). Then each evaluation is bounded
by O(pA). The rest of operations is basic linear algebra, and is bounded by O(p2).
Thus the global computational complexity (per iteration) of KTD-V and KTD-SARSA
isO(p2), and KTD-Q is inO(Ap2). This is comparable to approaches such as LSTD [8]
(nevertheless with the additional ability to handle nonlinear parameterization).

3.2 Stochastic MDP

The KTD framework assumes a white observation noise. In the case of determinis-
tic MDP, this observation noise only models the inductive bias introduced by function
approximation. But in stochastic MDP, this noise includes the stochasticity of tran-
sitions as well and cannot be considered white anymore. Similarly to other second
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Algorithm 1. KTD-V, KTD-SARSA and KTD-Q

Initialization;
priors θ̂0|0 and P0|0 ;

for i ← 1, 2, . . . do

Observe transition ti =

⎧⎪⎨⎪⎩
(si, si+1) (KTD-V)

(si, ai, si+1, ai+1) (KTD-SARSA)

(si, ai, si+1) (KTD-Q)

and reward ri ;

Prediction Step;
θ̂i|i−1 = θ̂i−1|i−1;
Pi|i−1 = Pi−1|i−1 + Pvi ;

Sigma-points computation ;

Θi|i−1 =
{

θ̂
(j)
i|i−1, 0 ≤ j ≤ 2p

}
(using the UT, from θ̂i|i−1 and Pi|i−1);

W = {wj , 0 ≤ j ≤ 2p } ;
Ri|i−1 =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
r̂
(j)
i|i−1 = V̂

θ̂
(j)
i|i−1

(si) − γV̂
θ̂
(j)
i|i−1

(si+1), 0 ≤ j ≤ 2p
}

(KTD-V){
r̂
(j)
i|i−1 = Q̂

θ̂
(j)
i|i−1

(si, ai) − γQ̂
θ̂
(j)
i|i−1

(si+1, ai+1), 0 ≤ j ≤ 2p
}

(KTD-SARSA){
r̂
(j)
i|i−1 = Q̂

θ̂
(j)
i|i−1

(si, ai) − γ maxb Q̂
θ̂
(j)
i|i−1

(si+1, b), 0 ≤ j ≤ 2p
}

(KTD-Q)

;

Compute statistics of interest;
r̂i|i−1 =

∑2p
j=0 wj r̂

(j)

i|i−1
;

Pθri =
∑2p

j=0 wj(θ̂
(j)
i|i−1 − θ̂i|i−1)(r̂

(j)
i|i−1 − r̂i|i−1);

Pri =
∑2p

j=0 wj

(
r̂
(j)

i|i−1
− r̂i|i−1

)2

+ Pni ;

Correction step;
Ki = PθriP

−1
ri

;
θ̂i|i = θ̂i|i−1 + Ki

(
ri − r̂i|i−1

)
;

Pi|i = Pi|i−1 − KiPriK
T
i ;

order approaches, such as residual algorithms [9], the cost function minimized by KTD
is thus biased. For the value function evaluation (extension to other cases is straightfor-
ward), the bias is:

‖Ki‖2E[cov
s′|si

(ri + γVθ(s′))|r1:i−1] (9)

whereKi is the Kalman gain, the covariance depends on transition probabilities and the
expectation is over parameters conditioned on past observed rewards. Proof, although
not tricky, is not given here due to a lack of space. This bias, which is zero for determin-
istic transitions, is similar to the one arising from the minimization of a square Bellman
residual. It favorises smooth value functions [10] and acts as a regularization effet, but
cannot be controlled.
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3.3 Convergence Analysis

Theorem 1. Assume that posterior and noise distributions are Gaussian, and that the
prior is flat (uniform distribution). Then:

θ̂i|i = argmin
θ

i∑
j=1

1
Pnj

(rj − gtj (θ))
2 (10)

Proof. KTD is a special form of a Sigma-Point Kalman Filter (SPKF) with a random
walk evolution model. It is shown in [7, Ch. 4.5] that under the hypothesis of Gaussian
posterior and noises, such a filter produces a maximum a posteriori (MAP) estimator.
Thus, for KTD, θ̂i|i = θ̂MAP

i = argmaxθ p(θ|r1:i). Using the Bayes rule, the poste-
rior can be rewritten as the normalized product of likelihood and prior: p(θ|r1:i) =
p(r1:i|θ)p(θ)

p(r1:i)
. The prior is assumed flat, and the denominator does not depend on pa-

rameters, so MAP resumes to maximum likelihood. Moreover, the noise being white,
the joint likelihood is the product of local likelihoods: θ̂i|i = argmaxθ p(r1:i|θ) =
argmaxθ

∏i
j=1 p(rj |θ). As the noise is assumed Gaussian, rj |θ ∼ N (gtj (θ), Pnj ), and

maximizing a product of likelihood is equivalent to minimizing the sum of their negative
logarithms: θ̂i|i = − argminθ

∑i
j=1 ln(p(rj |θ)) = argminθ

∑i
j=1

1
Pnj

(rj − gtj (θ))
2.
 !

The form of the minimized cost function strengthen the parallel drawn in Sec. 3.2
between KTD and square Bellman residual minimization. It can also be shown (see
again [7, Ch. 4.5.]) that a SPKF (and thus KTD) update is actually an online form of a
modified Gauss-Newton method, which is a variant of natural gradient descent. In this
case, the Fisher information matrix is P−1

i|i . Natural gradient approach has been shown
to be quite efficient for direct policy search [11] and actor-critic [12], so it lets envision
good empirical results for KTD. This may be considered as the first RL value (and Q-)
function approximation algorithm (in a pure critic sense) involving natural gradient.

4 Experiments

4.1 Boyan Chain

The first experiment is the Boyan chain [13]. The aim is to illustrate the bias caused by
stochastic transitions and to show sample-efficiency and tracking ability of KTD-V on
a deterministic version of this experiment.

Stochastic Case. The Boyan chain is a 13-state Markov chain where state s0 is an
absorbing state, s1 transits to s0 with probability 1 and a reward of -2, and si transits
to either si−1 or si−2, 2 ≤ i ≤ 12, each with probability 0.5 and reward -3. In this
experiment, KTD-V is compared to TD [1] and LSTD [8]. The feature vectors φ(s)
for states s12, s8, s4 and s0 are respectively [1, 0, 0, 0]T , [0, 1, 0, 0]T , [0, 0, 1, 0]T and
[0, 0, 0, 1]T . The feature vectors for other states are obtained by linear interpolation.
The approximated value function is thus V̂θ(s) = θTφ(s). The optimal value function
is linear in these features, and θ∗ = [−24,−16,−8, 0]T . The error measure is ‖θ−θ∗‖.
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Fig. 1. Boyan Chain: stochastic case

The discount factor γ is set to 1 in this episodic task. For TD, the learning rate is set to
α = 0.1. For LSTD, the prior is set to P0|0 = I where I is the identity matrix. For KTD-
V, the same prior is used, the observation noise is set to Pni = 10−3 and the process
noise covariance to Pvi = 0I . Choosing these parameters requires some practice, but
no more than choosing a learning rate for other algorithms. Fig. 1 shows results. LSTD
converges faster than TD, as expected, and KTD-V converges even faster than LSTD.
However it does not converge to the optimal parameter vector, which is explained by
the fact that the minimized cost-function is biased.

Deterministic and Non-Stationary Case. The Boyan chain is made deterministic by
setting the probability of transiting from si to si−1 to 1. KTD-V is again compared to
LSTD and TD. Moreover, to simulate non-stationarity, the sign of the reward is switched
from the 100th episode. The optimal value function is still linear in the feature vectors,
and optimal parameters are θ∗(-) = [−35,−23,−11, 0]T before the MDP change, and
θ∗(+) = −θ∗(-) after. Algorithms parameters are the same, except the procces noise covari-
ance which is set to Pvi = 10−3I . Results are presented in Fig. 2. Here again KTD-V
converges much faster than LSTD and TD, however now to the correct optimal param-
eter vector. After the change in reward, LSTD is very slow to converge, because of the
induced non-stationarity. TD can track the correct parameter vector faster, the learning
rate being constant. However, KTD converges again faster. Thus, KTD-V fails to handle
the stochastic case as expected, however it converges much faster than LSTD or TD in
the deterministic one. Moreover, it handles well non-stationarity, as desired.

4.2 Mountain Car

The last experiment is the mountain car task (see [1] for a full description). The objec-
tive here is to illustrate behavior of algorithms in an optimistic policy iteration scheme:
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Fig. 2. Boyan Chain: deterministic and non-stationary case

learning while controlling induces non-stationary value dynamics. This task consists
in driving an underpowered car up a steep mountain road, the gravity being stronger
than the car engine. The discount factor is set to 0.95. State is normalized, and the
parameterization is composed of a constant term and a set of 9 equispaced Gaussian
kernels (centered in {0, 0.5, 1} × {0, 0.5, 1} and with a standard deviation of 0.5) for
each action. This experiment compares SARSA withQ-function approximation, LSTD
and KTD-SARSA within an optimistic policy iteration scheme. The followed policy is
ε-greedy, with ε = 0.1. For SARSA, the learning rate is set to α = 0.1. For LSTD the
prior is set to P0|0 = 10I . For KTD-SARSA, the same prior is used, and the noise vari-
ances are set to Pni = 1 and Pvi = 0.05I . For all algorithms the initial parameter vector
is set to zero. Each episode starts in a random position and velocity uniformly sampled
from the given bounds. A maximum of 1500 steps per episode is allowed. For each trial,
learning is done for 200 episodes, and Fig. 3 shows the length of each learning episode
averaged over 300 trials. KTD-SARSA performs better than LSTD, which performs
better than SARSA with Q-function approximation. Better results have perhaps been
reported for SARSA with tile-coding parameterization in the literature, however the
chosen parameterization is rather crude and involves much less parameters. Moreover,
even with tile-coding and optimized parameters, SARSA with function approximation
is reported to take about 100 episodes to reach an optimal policy [1, Ch. 8.4.], which is
about an order of magnitude higher than KTD. The optimistic policy iteration scheme
used in this experiment implies non-stationarity for the learned Q-function, which ex-
plains that LSTD fails to learn a near-optimal policy. This is confirmed by [2]. LSTD
has been extended to LSPI [14], which allows searching an optimal control more effi-
ciently, however it is a batch algorithm which does not imply to learn while controlling,
so it is not considered here. KTD-SARSA performs well, and learns a near-optimal
policy after only a few tens of steps. Learning is also more stable with it.
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5 Conclusion

In this paper we proposed the use of a stochastic framework (the Kalman Temporal
Differences framework) for value function approximation to handle non-stationartity
in RL. Its ability to handle non-stationarity has been shown experimentally (both for
non-stationary system and for the case of interlaced learning and control) as well as
its sample efficiency. KTD minimizes a square Bellman residual in a natural-gradient
descent-like scheme which links it to other promising approaches. Computational (and
memory) cost is quadratic. The KTD framework compares favorably to state-of-the-art
algorithms, however there is still room for improvement. First, the resulting estimator
is biased for stochastic transitions. It would be a great advantage to handle stochastic
MDP, and [10,15,16] are interesting leads. When using KTD, the practitioner has to
choose a prior, a process noise and an observation noise, which are domain-dependent;
there exists a vast literature on adaptive filtering for traditional Kalman filtering, and
adaptation to KTD is possible. Using a KTD-based function evaluation in an actor-
critic architecture can also be envisioned. For exemple, incremental natural actor-critic
algorithms are presented in [17]. TD is used as the actor part instead of LSTD, mostly
because of the inability of the latter one to handle non-stationarity. In this case, we
argue that KTD is an interesting alternative for the critic part. Finally, as this framework
can handle nonlinear parameterization, it can be of interest to combine it with neural
networks or basis adaptation schemes. A kernel-based nonlinear parameterization is
used in [18].
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Abstract. In this paper, we investigate the potentials of a novel classi-

fier ensemble scheme, referred to as heterogeneous boosting (HB), which

aims at delivering higher levels of diversity by allowing that distinct

learning algorithms be recruited to induce the different components of

the boosting sequence. For the automatic design of the HB structures

in accord with the nuances of the problem at hand, a genetic algorithm

engine is adopted to work jointly with AdaBoost, the state-of-the-art

boosting algorithm. To validate the novel approach, experiments involv-

ing well-known learning algorithms and classification datasets from the

UCI repository are discussed. The accuracy, generalization, and diversity

levels incurred with HB are matched against those delivered by AdaBoost

working solely with RBF neural networks, with the first either signifi-

cantly prevailing over or going in par with the latter in all the cases.

Keywords: Boosting, heterogeneous models, genetic algorithms.

1 Introduction

Over the last two decades, numerous theoretical and experimental studies in
Machine Learning (ML) have supported the idea that pooling the decisions of
different estimators within a unique combination structure can lead to substan-
tial improvements both in terms of training accuracy and learning generalization.
As a consequence, several approaches for designing ensembles of estimators have
been conceived so far [12], each trying to properly induce and exploit the local
different behaviors of the base predictors in order to enhance the overall sys-
tem performance. Among these approaches, two classes have received increasing
attention, namely, those using different subsets/configurations of training data
jointly with a single learning method and those adopting different learning meth-
ods associated with different predictors.

As the key for the success of any ensemble lies in how its components disagree
on their predictions [12], the methods of the second class try to foster high levels
of diversity by making use of heterogeneous (also called hybrid) architectures
comprising different types of learning algorithms [3,4,10]. By this means, the
learned components are produced by different search processes taking place over
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dissimilar configurations of the hypothesis space. So, it is expected that they
correspond to different perspectives over the same training data and are thus
endowed with disparate levels of expertise and accuracy [5]. On the other hand,
methods of the first class try to promote ensemble diversity by altering aspects
of the training set over which each classifier is generated. This is usually achieved
via data resampling, rotation, distortion, the use of different data sources, and/or
adoption of different pre-processing schemes [9].

Boosting [7] and bagging [2] allude to two representative families of data re-
sampling ensemble methods. While the latter generates multiple bootstrapped
sets over the training data and aggregates the outputs of the resulting estima-
tors via a simple majority vote (MV) rule, the former operates iteratively so that
the data distribution in a round is changed adaptively to be overrepresented by
samples mispredicted in the previous round. By this means, boosting entails a
sort of hierarchical process of ensemble creation, where models produced at later
stages of the sequence learn to discriminate more complex regions of the input
space. It is theoretically shown that a combination of a sequence of moderately
inaccurate estimators can deliver an error rate that is arbitrarily small on the
training data, and for this purpose boosting uses the performance indices ex-
hibited by these “weak” models as their weights for voting. Regardless of their
conceptual differences, the standard settings of boosting and bagging, as well as
of some methodologies hybridizing them [9,13], stipulate that the same learning
algorithm is used for generating all ensemble components.

Even though the two classes of ensemble creation approaches discussed above
are complementary in their operational basis, their combination into a unique
conceptual framework has not been deeply investigated so far. To fill this gap,
in this paper, we introduce a novel boosting scheme, referred to as heteroge-
neous boosting (HB), which aims at delivering higher levels of ensemble diversity
by allowing that different learning algorithms be recruited to induce the weak
components over the resampled data. As different blueprints of heterogeneous
ensembles may yield distinct results in terms of performance (due to the sequen-
tial nature of boosting), achieving the best ensemble design for a given problem
turns out to be a very difficult combinatorial optimization problem. For tackling
it, a genetic algorithm (GA) engine is adopted in HB to work jointly with Ad-
aBoost [7,12], the most popular realization of boosting. As a manner to validate
the novel approach, experiments involving 10 well-known learning algorithms
and 18 well-known pattern classification datasets taken from the UCI repository
are discussed here. The accuracy, generalization, and diversity levels achieved by
HB are contrasted with those produced by standard AdaBoost operating solely
with RBF neural networks (NNs) [8], since combinations of neural networks are
typical ensemble settings investigated in the literature [11,15].

In the following section, we describe aspects related to boosting and then
provide details on HB and its design via a customized GA. In Section 3, we
present and discuss the results achieved in the experiments conducted. Section 4
concludes the paper, bringing remarks on future work.
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2 Heterogeneous Boosting via a Genetic Algorithm

In a nutshell, boosting is based on the observation that finding many simple
estimation rules can be much easier than finding a single, highly accurate pre-
dictor [7]. In the terminology adopted, these simple rules, whose error rates are
only slightly better than random guessing, are said to be produced by a weak
learner. In contrast, a strong learner is that capable of generating models that
are arbitrarily well correlated with the true data estimation. The purpose of
boosting is thus to sequentially apply a weak learning algorithm to repeatedly
modified versions of the data, thereby producing a series of weak estimators.
The predictions from all weak models are then combined via a weighted MV
rule (with the weights being proportional to each classifier’s accuracy on its
associated training set) towards the development of a stronger model [12].

The data modifications at each boosting step consist of applying weights to
each training sample. According to Kotsiantis & Pintelas [9], there are two ways
that AdaBoost can make use of these weights to construct a new training set to
give to the weak learner. In boosting by sampling, examples are drawn with re-
placement with probability proportional to their weights. So, the derived training
sets all have the same size of the original dataset, but the examples within them
are chosen stochastically, like in bagging. Conversely, in boosting by weighting,
although the derived training sets are identical to the original one, they are aug-
mented with weights measuring the hardness in classifying each sample alone.
This latter approach, which is followed by AdaBoost.M1, the standard version
of AdaBoost for classification, has the clear advantage that each example is
incorporated (at least in part) in the training set [11].

Boosting shows some resemblance in structure to bagging. However, unlike
bagging, which is largely a variance reduction method [2], boosting appears to
reduce both bias and variance [9,13]. This is because boosting attempts to cor-
rect the bias of the most recently constructed model by forcing it to concentrate
its efforts on instances that have not been correctly learned. A number of ex-
perimental studies comparing boosting algorithms (Arcing and AdaBoost) and
bagging suggest that they have quite different behaviors.

In [11], they are contrasted in terms of several criteria on several well-known
datasets (most of which taken from the UCI repository [1]) using feedforward
NNs or decision trees as base learners. Among several conclusions, the authors
point out that: 1) while bagging is almost always more accurate than a single
classifier, it is sometimes much less accurate than boosting; 2) bagging is usually
more consistent than boosting, which can create ensembles that are less accurate
than a single classifier and seems to be affected by the characteristics of the
dataset being examined; and 3) boosting ensembles may overfit noisy data.

With the purpose of increasing the diversity levels of the ensemble models
produced by boosting, we have conceived the idea of adopting different learn-
ing algorithms for possibly inducing the sequence of ensemble components over
the resampled data, giving birth to the HB scheme. Indeed, recent work [3,4]
investigating the impact of varying the number and type of ensemble members
on the performance of some combination methods has empirically shown that
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hybrid structures usually behave significantly better in terms of accuracy and
diversity than non-hybrid ones. Moreover, Menahem et al. [10] have evaluated
the impact of the choice of combining methods on multi-inducer ensembles cre-
ated specifically for copying with malware detection. In those studies, however,
the ensemble components produced by the different learners were all induced
over the same training data, as no resampling or other data-varying methods
were effectively employed.

In its current version, heterogeneous boosting adopts 10 state-of-the-art learn-
ing algorithms representing five distinct classes of classifier inducers to work
within AdaBoost.M1. These algorithms are available in Weka, a well-known ML
toolkit [14]. They comprise: i) Simple Näıve Bayes, founded on Bayesian statis-
tics; ii) RBF NNs and Support Vector Machines (SVMs) trained with SMO
algorithm, both based on non-linear function representations; iii) J48, Decision
stump, and REP Tree, working with decision trees; iv) IBk, an instance learning
algorithm; and v) OneR, PART and Decision table, which generate hypothesis
in rule format. The choice of these learning algorithms is due to the different rep-
resentation and searching bias they incur in their functioning, possibly yielding
weak estimators with complementary roles.

One important aspect to be taken into account is that the application of dis-
tinct sequential orders of heterogeneous models via boosting may entail very
different results in terms of ensemble performance. This is because different
sequences may correspond to distinct problem decompositions and the perfor-
mance of a model induced in a certain boosting round depends very much on
the weighted data received for training. So, it is very reasonable to accept that,
for a given round, a particular type of inducer may be more appropriate than
others to be applied.

We have modeled the task of specifying the best heterogeneous structure in
accordance with the nuances of the prediction problem in sight as a combinatorial
optimization problem. As the size of the search space is of an exponential nature,
namely O(KM ), whereM denotes the number of different inducers available and
K the number of ensemble components to be induced, handling this task via
conventional optimization methods turns out to be computationally intractable,
even for moderate magnitudes of M and K. Therefore, in HB, a customized GA
engine has been deployed for such a purpose. As a typical class of evolutionary
algorithms, GAs comprehend a family of stochastic search and optimization
algorithms inspired from the mechanics of Natural Selection and concepts of
population genetics [6]. According to the GA framework, candidate solutions to a
given problem play the role of individuals in a population, while a fitness function
determines the environment within which the solutions “live” and have their
levels of adaptation (quality) measured. Here, optimal solutions emerge through
the evolution of the population, which takes place after the repeated application
of some operators mimicking well-known natural phenomena: parent (mating)
selection, recombination, mutation, and survivor (environmental) selection.

In the evolutionary engine of HB, each individual of the population (which
is initially randomly generated) represents a whole ensemble structure and is
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codified as a K-size linear array of integer values. For the k-th position (gene),
M +1 values (alleles) are available to be selected, one for each type of inducer in
the repertory and another indicating the possibility of component pruning. Usu-
ally, the pruning of ensemble components happens as a second stage in ensemble
creation (after the generation of components), aiming at increasing accuracy by
reducing the redundancy and complexity of the resulting ensemble model [15].
In our case, component generation and pruning occurs simultaneously, allowing
HB to tune the ensemble size in agreement with the problem’s demands.

As fitness function, a convex linear combination of two terms have been
adopted: one related to accuracy and another to parsimony. While the first term
refers to the cross-validation error delivered in training (see Section 3), the sec-
ond captures the complexity of the ensemble model associated to an individual.
By this means, the lower the cross-validation error and the number of compo-
nents of an ensemble model, the higher will be the fitness of its affiliated GA
individual. Moreover, the Roulette Wheel operator [6] is used both for selecting
individuals to reproduce (among parents) and to survive to the next generation
(among parents and offspring), even though elitism (salvation of the best cur-
rent individual) is also adopted in this last phase. Individuals are recombined
through a single-point crossover and the resulting offspring undergo modifica-
tions via creep mutation. The stop criterion adopted is to go through a given
number of generations of evolution.

3 Empirical Assessment

To assess the performance of HB, a prototype was developed under Weka [14]
and extensive experiments have been conducted over several UCI benchmark
datasets [1]. These datasets are indicated in Table 1 and their description in
terms of type of attribute values and number of instances, attributes, and classes
can be found elsewhere [9,11]. To serve as yardstick against which we could
match the performance of HB ensemble models, we have also recorded results
delivered by AdaBoost.M1 working only with RBF NNs. This choice holds for
combinations of neural models are typical ensemble settings investigated in the
literature [11,15] and because these models are known to show high error vari-
ance [8]. In particular, an advantage of RBF NNs over multilayer perceptrons
(another popular NN model) is that the training of each layer of neurons in these
networks can be conducted separately, thus yielding efficiency [8].

Aiming at delivering statistically significant results, for each dataset, 10 pairs
of training/test (66,6%/33,4%) partitions were randomly generated in a stratified
manner (i.e. with preservation of class distributions) by using 10 different random
seeds. Over the training partitions, both homogeneous/heterogeneous boosting
settings were executed under the frame of a 10-fold stratified cross-validation
process [14]. In particular, the error rates produced in this manner served as
scores to guide the GA engine (see Section 2). Conversely, test data were used for
assessing the levels of generalization achieved by the resulting ensemble models
trained ultimately over the whole training partition.
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For the experiments, the GA control parameters were set as follows (after
manual calibration): 20 as population size; 80% and 10% as crossover and muta-
tion rates, respectively; and 20 as maximum number of generations. It is worth
mentioning that the performance results reported for each dataset relate to the
best weight combinations achieved for the two terms employed in the GA fitness
function. Moreover, we have made extensively use of the validation testbench
and code implementations (with default control parameter values) available in
Weka for the 10 learning algorithms currently adopted in HB (see Section 2).
Since it has been observed that for boosting most of the gain in performance is
due to the first few estimators combined [9,11], we have adopted K = 10.

Table 1 contrasts the performance achieved with homogeneous and hetero-
geneous ensemble models produced by boosting in terms of accuracy (average
cross-validation error), generalization (average test error), and diversity. To es-
timate the diversity levels among the ensemble components, we have adopted
Yule’s Q-statistic, calculated pairwisely as [12]: Qi,j = ad−bc

ad+bc , where a (d) is the
fraction of samples correctly (incorrectly) classified by both classifiers i and j
and b is the fraction of samples correctly classified by i but incorrectly classified
by j (c is the opposite). Q assumes positive values if there is high correlations
in the classifiers’ outputs; and negative values, otherwise. Maximum diversity is
obtained for Q = 0 and the final value of this statistic is averaged over all pairs
of classifiers. In the table, better values for all criteria are highlighted. The last
column shows the p-values delivered by paired t-test [14] with 5% significance
when applied to the error values achieved by the contestants over the 10 test
partitions generated for each dataset.

Overall, the results suggest that adopting HB models designed by evolution
may entail apparent gains in performance. This is particularly noticeable in
terms of training accuracy (they have prevailed in all datasets considered) and
diversity (they have outperformed in 66,6% of the cases). Regarding learning
generalization, the heterogeneous ensemble models have delivered lower average
test error rates in 14 out of 18 problems. In addition, the application of t-test
indicates that heterogeneous ensembles have performed statistically better in
seven cases (p < 0.05) and have been comparable to homogeneous models in the
remaining problems. As a general rule, one could conclude that embedding more
heterogeneity in the weak models produced by boosting can be instrumental
for achieving improvements in terms of performance. The empirical results we
have obtained also support those achieved in related work on heterogeneous
ensembles [3,4,10], mainly in ratifying that the choice of the types of components
to be induced into an ensemble is an important issue to be properly pursued.

4 Final Remarks

In this paper, heterogeneous ensemble models produced via boosting and a cus-
tomized genetic algorithm have been characterized and empirically evaluated,
taking as reference the performance levels achieved by standard boosting con-
figured with only RBF neural networks. The results confirm that sensible gains
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in terms of accuracy, generalization, and diversity may be incurred by resorting
to this novel approach.

As future work, we plan to conduct a more comprehensive empirical analysis
involving other homogeneous ensemble models produced by standard boosting
(in particular, those generated with the other types of inducers considered in this
study). As well, a statistical account of the types of inducers more frequently
recruited by the GA to generate the heterogeneous ensemble models is underway.
Experiments with other datasets, particularly those with noisy data [9,11] are
also under consideration. Finally, bringing the idea of heterogeneous models to
other data resample based ensemble techniques, like bagging [2] and derived
methods [9,13], shall be also investigated.
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Abstract. This paper presents an improved algorithm of Incremental

Simple-PCA. The Incremental Simple-PCA is a fast incremental learn-

ing algorithm based on Simple-PCA. This algorithm need not hold all

training samples because it enables update of an eigenvector according

to incremental samples. Moreover, this algorithm has an advantage that

it can calculate the eigenvector at high-speed because matrix calcula-

tion is not needed. However, it had a problem in convergence perfor-

mance of the eigenvector. Thus, in this paper, we try the improvement

of this algorithm from the aspect of convergence performance. We per-

formed computer simulations using UCI datasets to verify the effective-

ness of the proposed algorithm. As a result, its availability was confirmed

from the standpoint of recognition accuracy and convergence perfor-

mance of the eigenvector compared with the Incremental Simple-PCA.

Keywords: PCA, Simple-PCACincremental learningCdimensional re-

ductionCpattern recognition.

1 Introduction

In recent years, the high-dimensional data with the various features can be easily
obtained by the increase in capacity of a storage medium. An opportunity to
treat the high-dimensional data has been increasing in the fields such as machine
learning and data mining. However, a phenomenon that causes significant error
appears when the dimension of data becomes too high. This is called “curse
of dimensionality” [1]. The dimensional reduction is effective as the technique
to solve this problem. There is the principal component analysis (PCA) as a
typical technique of this dimensional reduction. Originally, it has been used as
a technique to derive the low feature variables from the multivariate data in the
area of the multivariate analysis etc. However, it is often used as a method of
the dimensional reduction and the feature extraction in the field of the pattern
recognition. Its effectiveness has been shown in the areas such as face recognition
[2], industrial robotics [3], and 3-D object recognition [4].
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When the PCA is applied to various systems in the real world, we are con-
fronted with two problems. One is that a complete training dataset cannot be
obtained beforehand. In the real world, increase of training and evaluation data
is expected. It is thought that the accuracy can be improved more by utiliz-
ing these data that increased. Therefore, the sequential learning with increase
of data is necessary. As an algorithm which achieves this, a technique called
Incremental PCA (IPCA) that equipped PCA with incremental learning func-
tion exists. IPCA was an algorithm proposed by P.M.Hall et al. [5], and it has
been used for the localization control of a mobile robot [6,7] and online image
processing [8].

The other problem is the necessity of the matrix calculation when PCA is
performed. Since the PCA needs to solve an eigenvalue problem, the amount of
calculation increases exponentially. Simple-PCA was proposed as the technique
to solve such a problem. Simple-PCA is an approximation algorithm of PCA,
and was developed by M. Partridge et al. [9]. In addition, its availability has been
reported on many fronts, for example, recognition of hand-written characters [9],
dimensionality reduction of a model for information retrieval [10], recognition
using face images [11,12].

Since it is necessary to solve an eigenvalue problem also in above-mentioned
IPCA, matrix calculation is essential. If incremental learning becomes possible in
Simple-PCA algorithm that used repeated computation, high-speed incremen-
tal learning is promising. Thereby, the application range in the real world will
spread. In particular, it is available in the built-into system that should operate
in real time. We already proposed the technique called Incremental Simple-PCA
as the sequential learning type algorithm of Simple-PCA[13]. This method up-
dates approximately the eigenvector by using the last eigenvector and the incre-
mental data which were obtained by the calculation of Simple-PCA. However,
the problem was seen in respect of the convergency of the updated eigenvector.
Thereby, in this paper, we try improvement which focused on the convergence of
the eigenvector of this Incremental Simple-PCA. The validity of improved Incre-
mental Simple-PCA is verified from the viewpoints of accuracy, a computational
time and a memory usage by using dataset.

The rest of this paper is organized as follows. In Section 2, the algorithm
of basic Simple-PCA and the algorithm of improved Incremental Simple-PCA
which is the proposal technique are explained. Chapter 3 presents the results
and the discussions in incremental learning experiments that used UCI dataset.
Finally, the conclusion and future works are in Section 4.

2 Simple-PCA and Incremental Algorithm

2.1 Algorithm of Simple-PCA

Simple-PCA (Simple Principal Component Analysis) is a technique proposed by
Partridge et al. [9] to speed up principal component analysis. The technique is an
approximation algorithm from which principal components can be sequentially
found from the first component. Its effectiveness has been confirmed in many
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fields such as recognition of hand-written characters, dimensionality reduction
of a model for information retrieval, recognition using face images and so on
[9,10,11,12]. The algorithm of this technique sequentially solves for eigenvectors
that maximizes the variance over all samples. Concretely, it is summarized as
follows.

First of all, a set of vectors to use is defined as follows.

v = {v1,v2, · · · ,vm} (1)

To make the center of gravity of this set the origin, the calculation shown in eq.
(2) is performed, and a new set of vectors (3) is obtained.

xi = vi −
1
m

m∑
j=1

vj (2)

X = {x1,x2, · · · ,xm} (3)

Next, the following output function is used.

yn = (αk
n)T xj (4)

where αk
n is an eigenvector that represents the n-th principal component and k is

number of repetitions. Initially, the initial vector α0
n can be set to any vector. If

the input vector xj has the same direction component as αk
n, the function shown

by eq. (4) outputs a positive value. If it has the opposite direction component,
a negative value is used. Thus, the following threshold function is introduced.

f(yn,xj) =

{
xj if yn ≥ 0
−xj otherwise

(5)

The initial vector α0
n initialized by arbitrary random values is brought close in

the same direction as αn by these functions and the repetition operation shown
in eq. (6).

αk+1
n =

∑
j f(yn,xj)

‖
∑

j f(yn,xj) ‖
(6)

where αk+1
n is a vector after calculating k + 1 times. The value of the output

function is calculated by using αk
n which is the previous calculation result. Fur-

thermore, this repetition calculation is done until αk+1
n is converged. This vector

obtained after it converges is an eigenvector.
When the next eigenvector is calculated, it is necessary to calculate it by

using a new vector x′
j after the previous principal component is removed from

the input vector by doing the calculation shown in eq. (7).

x′
j = xj − (αk+1

n · xj)αk+1
n (7)

After the component is removed, the principal component can be evaluated by
repeating a similar calculation in order with a high accumulated relevance.



Improvement Algorithm for Approximate Incremental Learning 523

2.2 Algorithm of Improved Incremental Simple-PCA

This section explains the algorithm of improved Incremental Simple-PCA which
is proposed in this paper. The previous Incremental Simple-PCA updated the
eigenvector by using the incremental sample, the mean vector and the eigenvector
which was finally derived. The specific algorithm is shown below.

First, the current mean vector of all samples and the new incremental sample
are defined as v̄ and vM+1, respectively.M shows the number of all samples. The
improved Incremental Simple-PCA performs update of the eigenvector αk

n using
the incremental sample vM+1, the mean vector v̄ and the repetition calculation
result fk

n(n = 1, · · · , L; k = 1, · · · ,Kn) at each time in Simple-PCA. Here, n
and k express the number of principal component vectors (eigenvectors) and
the iteration count of calculation performed by Simple-PCA. Thus, fk

n means
the computation result obtained by k-th operation at the time of calculation of
n-th eigenvector by Simple-PCA. Furthermore, L is the number of eigenvectors
calculated by Simple-PCA, and Kn is iterative calculation frequency needed
when the n-th eigenvector is found. For this reason, it can be said that it is
necessary to hold L × Kn calculation results to execute improved Incremental
Simple-PCA proposed in this paper.

Actually equations are as follows. The new mean vector v̄′ is obtained by
updating the mean vector of all samples v̄ using eq.(8).

v̄′ =
1

M + 1
(M v̄ + vM+1) (8)

The new input sample xM+1 is calculated using this updated mean vector v̄′.

xM+1 = vM+1 − v̄′ (9)

Next, the threshold function is introduced as well as the case of Simple-PCA.

yn = (αk
n)T xM+1 (10)

fk
n

′
(yn,xM+1) =

{
xM+1 if yn ≥ 0
−xM+1 otherwise

(11)

αk
n expresses the eigenvector after the k-th calculation at the time of deriving

the n-th eigenvector, and it can be obtained by normalizing fk−1
n . The new

eigenvector αk
n
′ is found by adding and normalizing fk

n
′ and fk

n obtained in
eq.(11).

αk
n

′
=

fk
n + fk

n
′

‖fk
n + fk

n
′‖

(12)

The calculation result of the k-th times is obtained in order to find the n-th
eigenvector by executing from eq.(10) to eq.(12). In other words, to obtain the
final eigenvector, it is necessary k times to repeat the calculation of eq.(12) from
eq.(10). In order to get the next eigenvector, the calculation shown in eq.(10) is
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Simple-PCA Incremental 
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Fig. 1. The flow of experiment

performed by using the eigenvector updated in the last calculation. The eigen-
vector is updated by executing these k times repetition calculations according
to the incremental sample. Finally, the component of the present eigenvector
is removed from the incremental sample by using eq.(13) to obtain the next
eigenvector.

x′
M+1 = xM+1 − (αk

n

′ · xM+1)αk
n

′
(13)

Afterwards, the eigenvector can be sequentially updated by executing the similar
repetition calculation from eq.(8) every time the sample is added.

3 Verification Experiment

3.1 Flow of Experiment

We carry out a recognition experiment to verify the performance of proposed im-
proved Incremental Simple-PCA. In this paper, the incremental learning experi-
ment is conducted by using the dataset of UCI Machine Learning Repository [14].
The flow of the experiment is as shown in Fig. 1. In this experiment, we prepare
learning samples and evaluation samples. The learning samples are divided into
the samples for the initial learning and the incremental learning. Simple-PCA
is executed using the initial samples for learning. As a result, the eigenvector in
the initial state is obtained. The learning samples and the evaluation samples
are projected to the eigenspace by using this eigenvector. The discrimination is
conducted by the nearest neighbor method using the Euclidean distance of the
evaluation samples and the learning samples. Therefore, the recognition result in
the initial state can be obtained. Next, for the incremental learning, the eigen-
vector is updated by performing improved Incremental Simple-PCA using the
incremental samples. Each time it is updated, the discrimination is carried out
using the updated one.

3.2 Experimental Conditions

In this experiment, iris in UCI Machine Learning Repository [14] is used as a
dataset for discrimination. The iris data has information on length and width of
sepal and petal. In this dataset, the task classifying into three kinds of classes is
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carried out, and 50 samples per class are prepared. As a basic policy of experi-
ment, we construct initial feature space using about 20% of the total datasets,
the other about 20% datasets is used for testing. The remainder is used for in-
cremental learning. Therefore, the number of samples for the initial learning, the
incremental learning, and the evaluation are 30, 90, 30 respectively. We assume
the sample chosen by each class one by one to be one set. The experiment is
conducted by the number of times equal to the number of sets while exchanging
the sets of the initial, the incremental, and the evaluation. We carried out the
all experiments on Intel Core 2 Quad 2.4GHz CPU and 4GB RAM PC. More-
over, we experiment by using not only improved Incremental Simple-PCA but
also IPCA [5] which used matrix calculation, the batch Simple-PCA and the
previous Incremental Simple-PCA [13]. In this paper, batch Simple-PCA means
Simple-PCA to the batch data (initial data and incremental data).

3.3 Recognition Accuracy

The recognition accuracy obtained by using the iris dataset is shown in Fig.
2. The horizontal axis is the number of incremental data and the vertical axis
is recognition accuracy. In the figure, the lines labeled “Improved ISPCA” and
“ISPCA” are ones obtained by the improved Incremental Simple-PCA which is
proposed in this paper and the previous Incremental Simple-PCA, respectively.

As a result, it is understood that the recognition accuracy that used the im-
proved Incremental Simple-PCA proposed in this paper is higher than of that
the previous Incremental Simple-PCA. Moreover, it turns out that it is closer
to the result obtained using the batch Simple-PCA. We can explain this phe-
nomenon from the degree of approximation of each eigenvector obtained by the
batch Simple-PCA and the incremental learning. The inner product result of
each eigenvector obtained by the batch Simple-PCA and the improved Incre-
mental simple-PCA is shown in Fig. 3(a). In addition, Fig. 3(b) shows the result
of the batch Simple-PCA and the previous Incremental Simple-PCA. These were
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Fig. 3. The inner products between eigenvectors obtained by Batch SPCA and each

incremental method

calculated by using the 1st and 2nd eigenvector every time the incremental sam-
ple is added. When the result of the inner product is the maximum value, that
is 1, it means that each eigenvector found by the batch Simple-PCA and the
Incremental algorithm is almost the same. In Fig. 3(a), both the inner product
values of 1st and 2nd are always converged nearly to the maximum. On the
other hand, in Fig. 3(b), it turns out that 2nd one deviates gradually as the in-
cremental learning advances though the 1st eigenvector is almost approximated.
Thus, the improved Incremental Simple-PCA can update eigenvector with high
precision, and is more effective than the previous algorithm. Furthermore, the
recognition accuracy when the Incremental PCA is used is low compared with
Simple-PCA in Fig. 2. We think that the accuracy is varied by the difference of
the property of the applied datasets. For the iris used in this experiment, it turns
out that the Incremental Simple-PCA is more dominant than IPCA for the iden-
tification. Although the relative merits of these techniques are expected to vary
in the viewpoint of the recognition accuracy by the problem to apply, it turns
out that the Incremental Simple-PCA is more dominant for the identification
problem with iris used in this experiment.

3.4 Computing Time

In this section, each technique is compared in relation to computational time.
Fig. 4 shows the variation of the computation time that needed at the time of
incremental learning. The vertical axis is computational time and the horizontal
axis is the number of incremental data. As a result, the computing time is long
in order of the improved Incremental Simple-PCA, the batch Simple-PCA, and
the previous Incremental Simple-PCA. Though the previous Incremental Simple-
PCA was the algorithm which updates the eigenvector by one-time calculation,
the improved algorithm needs the number of times of update calculation which
is the same as the number of times of calculation which were repeated by Simple-
PCA in the initial learning. Therefore, computational time becomes longer by
using the improved algorithm. On the other hand, it is observed that the com-
putational time is very little when the Incremental PCA which needs matrix
calculation is used. This is partly because the dimension of the applied dataset
is very small. Actually, when higher dimensional data like facial images and the
EMG signal, etc. is treated, it is shown that the Simple-PCA has been more
high-speed [13].
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3.5 Memory Usage

Next, we consider the proposed algorithm from the standpoint of the space com-
plexity. The proposal algorithm must hold fk

n(n = 1, · · · , L; k = 1, · · · ,Kn)
samples in order to update the eigenvectors. L and Kn are defined as the max-
imum number of eigenvector and the repeat count of the calculation required
in order to obtain n-th eigenvector, respectively. The total number of repeated
calculation K by Simple-PCA is represented K =

∑L
n=1Kn. Thus, the storage

region K · D is needed to execute the incremental learning by using improved
Incremental Simple-PCA, where D is the number of dimensions of the samples.
Hence, repeat count K that Simple-PCA needed in initial learning influences
greatly the storage capacity of the proposed algorithm. In addition, when we
define the number of input samples as N , the storage capacity which is required
to execute the batch learning by using Simple-PCA is N ·D.

When the input samples N are few, which means N < K, N · D < K ·
D is true. Therefore, the memory usage decreases by executing Simple-PCA
to all the input samples as batch learning rather than performing incremental
learning that used improved Incremental Simple-PCA. However, in the stage
with many input samples (N > K), it can be said that the incremental learning
with proposal algorithm is more effective than the batch learning in respect to
memory usage. As stated above, the superiority and inferiority of both methods
change according to the relationship between the number of input samples and
the repetition count. Hence, it is necessary to judge which of the batch learning
or the incremental learning should be used.

The total number of calculation repeated
(
K =

∑2
n=1Kn

)
for obtaining each

eigenvector using Simple-PCA is shown in Fig. 5. The vertical axis is the total
repeat count of calculation K, and the horizontal axis is the number of input
samplesN . The dotted line in Fig. 5 represents the relationship when the number
of input samples is equal to the total number of repeated calculation (N = K).
The intersection of the dotted line and the solid line which shows repetition count
is thought to become criterion for judgment of whether to use the incremental
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learning. In this figure, when the number of input samples is about 6, the two
lines cross. In this case, when the number of input samples exceeds 6, it can be
said that it is better to perform the incremental learning by using the proposal
technique because the memory utilization is less. Thus, the incremental learning
is effective unless the number of input samples is few. In addition, the incremental
learning which used the proposal algorithm is indispensable when the batch
samples cannot be obtained.

4 Conclusion

In this paper, the algorithm which made improvement to Incremental Simple-
PCA which added the incremental learning function to Simple-PCA which is
an approximation algorithm of the principal component analysis was proposed.
Because the previous Incremental Simple-PCA has a problem that related to the
convergency of the eigenvector, we tried the improvement of this point. As a re-
sult of the verification experiment, the effectiveness was able to be confirmed by
viewpoints of the recognition accuracy and the convergency of the eigenvector.
However, it was found that the computing time is much longer than Incremen-
tal PCA which needs matrix calculation and previous Incremental Simple-PCA.
Moreover, the memory usage increases because it needs information more than
the previous algorithm when the eigenvector is updated. Therefore, further im-
provement is needed. In addition, more detailed verification remains to be done
by applying it to other various recognition problems, such as facial recognition.

References

1. Sakano, H., Yamada, K.: Horror Story: The Curse of Dimensionality. Journal of

Information Processing Society of Japan 43(5), 562–567 (2002) (in Japanese)

2. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuro-

science 3(1), 71–86 (1991)

3. Nayar, S.K., Nene, S.A., Murase, H.: Subspace Methods for Robot Vision. IEEE

Trans. Robotics and Automation 12(5), 750–758 (1996)



Improvement Algorithm for Approximate Incremental Learning 529

4. Murase, H., Nayar, S.K.: Visual Learning and Recognition of 3D Objects from

Appearance. International Journal of Computer Vision 14, 5–24 (1995)

5. Hall, P.M., Marshall, D., Martin, R.R.: Incremental Eigenanalysis for Classifica-

tion. In: Proc. of the British Machine Vision Conference, vol. 1, pp. 286–295 (1998)

6. Artac, M., Jogan, M., Leonardis, A.: Mobile robot localization using an incremental

eigenspace model. In: Proc. of IEEE International Conference on Robotics and

Automation, Washington,D.C, pp. 1025–1030 (2002)

7. Freitas, R., Santos-Victor, J., Sarcinelli-Filho, M., Bastos-Filho, T.: Performance

Evaluation of Incremental Eigenspace Models for Mobile Robot Localization. In:

Proceedings of the IEEE 11th International Conference on Advanced Robotics

(ICAR 2003), Coimbra, Portugal, pp. 417–422 (2003)

8. Artac, M., Jogan, M., Leonardis, A.: Incremental PCA for On-line Visual Learning

and Recognition. In: Proceedings of the 16th International Conference on Pattern

Recognition (ICPR), Quebec City, Canada, pp. 781–784 (2002)

9. Partridge, M., Calvo, R.: Fast dimentionality reduction and simple PCA. In: IDA,

vol. 2, pp. 292–298 (1997)

10. Kuroiwa, S., Tsuge, S., Tani, H., Tai, X.-Y., Shishibori, M., Kita, K.: Dimension-

ality reduction of vector space model based on Simple PCA. In: Proc. Knowledge-

Based Intelligent Information Engineering Systems & Allied Technologies (KES),

Osaka, vol. 2, pp. 362–366 (2001)

11. Nakano, M., Yasukata, F., Fukumi, M.: Recognition of Smiling Faces Using Neu-

ral Networks and SPCA. International Journal of Computational Intelligence and

Applications 4(2), 153–164 (2004)

12. Takimoto, H., Mitsukura, Y., Fukumi, M., Akamatsu, N.: A Feature Extraction

Method for Personal Identification System by Using Real-Coded Genetic Algo-

rithm. In: Proc. of 7th SCI 2003, Orlando, USA, vol. 4, pp. 66–77 (2003)

13. Oyama, T., Karungaru, S.G., Tsuge, S., Mitsukura, Y., Fukumi, M.: Fast Incre-

mental Algorithm of Simple Principal Component Analysis. IEEJ Trans. on Elec-

tronics, Information and Systems 129(1), 112–117 (2009)

14. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of

California, School of Information and Computer Science, Irvine, CA (2007),

http://www.ics.uci.edu/~mlearn/MLRepo-sitory.html

http://www.ics.uci.edu/~mlearn/MLRepo-sitory.html


A Meta-learning Method
Based on Temporal Difference Error

Kunikazu Kobayashi, Hiroyuki Mizoue, Takashi Kuremoto, and Masanao Obayashi

Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611, Japan
{koba,wu,m.obayas}@yamaguchi-u.ac.jp

http://www.nn.csse.yamaguchi-u.ac.jp/k/

Abstract. In general, meta-parameters in a reinforcement learning system, such
as a learning rate and a discount rate, are empirically determined and fixed dur-
ing learning. When an external environment is therefore changed, the sytem can-
not adapt itself to the variation. Meanwhile, it is suggested that the biological
brain might conduct reinforcement learning and adapt itself to the external envi-
ronment by controlling neuromodulators corresponding to the meta-parameters.
In the present paper, based on the above suggestion, a method to adjust meta-
parameters using a temporal difference (TD) error is proposed. Through various
computer simulations using a maze search problem and an inverted pendulum
control problem, it is verified that the proposed method could appropriately ad-
just meta-parameters according to the variation of the external environment.

Keywords: reinforcement learning, meta-parameter, meta-learning, TD-error,
maze search problem, inverted pendulum control problem.

1 Introduction

Reinforcement learning is a famous model of animal learning [1]. Schultz et al. found
that dopamine neurons in the basal ganglia have the formal characteristics of the teach-
ing signal known as the temporal difference (TD) error through an animal experiment
[2].

In this context, Doya proposed the hypotheses between meta-parameters in rein-
forcement learning and neuromodulators in the basal ganglia based on the review of
experimental data and theoretical models. That is, he presented that dopamine signals
the error in reward prediction, serotonin controls the time scale of reward prediction,
noradrenaline controls the randomness in action selection, and acetylcholine controls
the speed of memory update [3]. Successful reinforcement learning highly depends on
the careful setting of meta-parameters in reinforcement learning. Schweighofer et al.
proposed a meta-learning method based on rewards, which not only finds appropriate
meta-parameters but also controls the time course of these meta-parameters in an adap-
tive manner [4]. However, their method has some parameters to be pre-determined.

In the present paper, we propose a meta-learning method based on a TD-error. The
proposed method has only one parameter to be pre-determined and is easy to apply
to reinforcement learning. Through various computer simulations using a maze search
problem and an inverted pendulum control problem, it is verified that the proposed

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 530–537, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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method allows meta-parameters to be appropriately adjusted according to the variation
of the external environment.

2 Reinforcement Learning

Reinforcement learning is a method that agents acquire the optimum behavior with a
repeating process of exploration and exploitation by being given rewards in an envi-
ronment as a compensation for its behavior [1]. In this section, we explain two kinds
of temporal difference (TD) learning, i.e. a Q-learning method [5] and an actor-critic
method [1] and also describe a policy in reinforcement learning.

2.1 Q-Learning Method

The Q-learning method guarantees that every state converges to the optimal solution
by appropriately adjusting a learning rate in an MDP environment [5]. The state-action
value function Q(s(t), a(t)) for a state s(t) at time t and an action a(t) at time t is
updated so as to take the optimal action by exploring it in a learning space and defined
as follows:

Q(s(t), a(t)) ← Q(s(t), a(t)) + αδ(t), (1)

δ(t) = r(t) + γmax
b∈A

Q(s(t+ 1), b)−Q(s(t), a(t)), (2)

where δ(t) and r(t) denote a TD-error at time t and a reward at time t, respectively,
meta-parameters α and γ refer to a learning rate and a discount rate, respectively, and
A is a set of actions to be taken.

2.2 Actor-Critic Method

The actor-critic method has a separate memory structure to explicitly represent the pol-
icy independent of the value function [1]. The policy structure is known as the actor, be-
cause it is used to select actions, and the estimated value function is known as the critic,
because it criticizes the actions made by the actor. The values in actor-critic method are
updated as follows:

V (s(t)) ← V (s(t)) + αδ(t), (3)

Q(s(t), a(t)) ← Q(s(t), a(t)) + αδ(t), (4)

δ(t) = r(t) + γV (s(t+ 1))− V (s(t)), (5)

where V (s(t)) is a value function for a state s(t) at time t.

2.3 Policy

The policy is a mapping from the states in an external environment to the actions to take
in those states. Throughout the present paper, we suppose that an action is selected by
the Boltzmann distribution. That is, the policy π(s(t), a(t)) is defined as follows [1]:

π(s(t), a(t)) =
exp (Q(s(t), a(t))/T )∑
b∈A exp (Q(s(t), b)/T )

, (6)
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where T refers to a temperature parameter. The policy realizes a random selection if
T →∞ and is a greedy selection if T → 0.

3 Meta-learning

Generally speaking, it is crucial that all the meta-parameters such as a learning rate and
a discount rate are carefully tuned to elicit good performance in advance. It therefore is
beneficial that the meta-parameters could be changed according to the situation. In this
section, we describe the conventional meta-learning method based on rewards (Section
3.1) and propose a new meta-learning method based on the TD-error (Section 3.2).

3.1 Meta-learning Based on Reward

Schweighofer et al. proposed the meta-learning method based on mid-term and long-
term rewards [4]. In their method, the mid-term reward rMT (t) at time t and the long-
term reward rLT (t) at time t are defined as follows:

rMT (t) =
(

1− 1
τMT

)
rMT (t− 1) + r(t), (7)

rLT (t) =
(

1− 1
τLT

)
rLT (t− 1) + rMT (t), (8)

where r(t) refers to an instant reward at time t, τMT and τLT denote the time constants
for rMT (t) and rLT (t), respectively. In the present paper, we assume that τMT < τLT

and rMT (0) = rLT (0) = 0. If an agent tends to take the desired actions than be-
fore, then the mid-term reward has a larger value than the long-term one. If not so, the
mid-term reward has a smaller value than the long-term one. The conventional method
updates meta-parameters such as a discount rate, a learning rate, and a temperature
parameter using this characteristic.

A discount rate is defined as a function of time t.

γ(t) = 1− e−ε(t), (9)

where ε(t) refers to a variable represented by the rewards and an exploration noise σ(t),
and is defined as follows:

ε(t) = ε′(t) + σ(t). (10)

In (10), ε′(t) is a variable depending on the rewards and updated by the follwing equa-
tion (ε′(0) = 0).

ε′(t) = ε′(t− 1) + µ {rMT (t)− rLT (t)} σ(t), (11)

where µ represents an updating rate for ε′(t).
Although the other meta-parameters, i.e. a learning rate α(t) and a temperature pa-

rameter T (t), are also updated like the above, the literature [4] does not present their
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updating rules at all. In the present paper, we therefore propose the updating rules for
α(t) and T (t). At first, we propose that α(t) and T (t) are defined as follows:

α(t) = e−ε(t) (12)

T (t) =
1

eε(t) − 1
(13)

From (10), the value of ε(t) increases if rMT (t) is larger than rLT (t), decreases if
rMT (t) < rLT (t), and has no change if rMT (t) ≈ rLT (t). The α(t) and T (t) therefore
increases if rMT (t) > rLT (t) because of the growth of ε(t) and decreases if not so.
This corresponds that α(t) and T (t) should take large values if learning is required, e.g.
in the beginning of learning or when the external environment has changed, and they
should take small values if not so.

In the present paper, it is assumed that the conventional method includes the two pro-
posed equations (12) and (13) besides the conventional equation (9) in the literature [4].
Note that the conventional method does not completely correspond with Schweighofer
et al.’s method.

3.2 Meta-learning Based on TD-Error

The optimal values of meta-parameters in reinforcement learning might change accord-
ing to the progress of learning. We therefore focus on the TD-error which could be
changed by the progress of learning and propose a meta-learning method based on the
TD-error. We define a variable δ′(t) which depends on the absolute value of the TD-
error. Then, meta-parameters are updated based on it. The δ′(t) is defined as follows
(δ′(0) = 0):

δ′(t) =
(

1− 1
τ

)
δ′(t− 1) +

1
τ
|δ(t)|, (14)

where δ(t) refers to a TD-error at time t and τ is a time constant.
A learning rate α(t) and a temperature parameter T (t) are expected to be a large

value for exploration in the beginning of learning. On the other hand, their values are
desired to be small for exploitation at the matured stage of learning. In addition, if
relearning is required according to an environmental change, a discount rate γ(t) are
expected to be a small value. On the other hand, the value of δ′(t) becomes large if
relearning is required because of the environmental change and converges to 0 at the
matured stage. The meta-parameters α(t), γ(t), and T (t) at time t are therefore defined
based on δ′(t) as follows:

α(t) =
2

1 + e−δ′(t) − 1, (15)

γ(t) =
2

1 + eδ′(t) , (16)

T (t) = eδ
′(t) − 1. (17)

Based on the above equations, α(t) and T (t) becomes small according to the decrease
of δ′(t) and becomes large according to the increase of δ′(t). This allows that meta-
parameters are appropriately updated in accordance with the change of δ′(t).
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4 Computer Simulation

The performance of the proposed method is verified through computer simulation. In
the simulation, we prepare two reinforcement learning tasks, i.e. a maze search problem
and an inverted pendulum control problem. Accordingly, we apply the proposed method
to the Q-learning method (Section 2.1) and the actor-critic method (Section 2.2). The
proposed method applied to the Q-learning system is compared with the conventional
method (Section 3.1) and the Q-learning without meta-learning (Section 2.1). Then, our
method applied to the actor-critic system is compared with the conventional method and
the actor-critic method without meta-learning (Section 2.2).

4.1 Maze Search Problem

To evaluate the performance for the discrete task, we use the maze search problem. In
this simulation, we apply the proposed method to the Q-learning system.

Simulation Setting. Figure 1 shows a maze used in the simulation. In this figure, the
black and gray squares correspond to walls and the white squares correspond to paths.
The structure of the maze in Fig.1(a) will change to that in Fig.1(b) at 301 episodes.
Namely, one gray square and two white squares are changed to a white one and two
gray ones, respectively. The shortest path for both mazes is 14 steps. An agent is able to
perceive only the adjacent eight squares. In this task, the Markov property is guaranteed
because there is no aliasing problem. But, since the structure of the maze is changed,
meta-parameters should be adjusted again. In this simulation, one episode is assumed
that an agent starts from a start point and arrives at a goal point. The failure of maze
search is defined when an agent cannot arrive at a goal point within 10,000 steps.

The parameters to be pre-determined are as follows: In the conventional method,
time constant in (7) and (8): τMT = τLT = 300, updating rate in (11): µ = 0.1. In the
proposed method, time constant in (14): τ = 300. The exploration noise σ(t) in (10)
is set as the Gaussian distribution with mean 0 and variance 1. In the standard method
with fixed meta-parameters, we set as α = 0.2, γ = 0.95, and T = 0.3.

Fig. 1. Dynamical structure change in the maze search problem
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Table 1. The total number of steps in the maze search problem

Method From 1 to 300 episodes From 1 to 600 episodes
Proposed method 9,855 17,622

Conventional method 9,922 23,226
Q-learning 10,664 —
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Fig. 2. Development of the number of steps for the conventional and proposed methods in the
maze search problem

Simulation Result. Table 1 shows the total number of steps and Fig.2 illustrates the
development of the number of steps. From these results, the proposed method could
adjust to the structure change of the maze. That is, although the number of steps in-
creases significantly when the structure is changed at 301 steps, both the proposed and
conventional methods can find a new shortest path but the Q-learning method without
meta-learning cannot find it. Furthermore, as seen from Table 1, the proposed method
takes smaller steps than the conventional method.

4.2 Inverted Pendulum Control Problem

To evaluate the performance for the continuous task, we use the inverted pendulum
control problem. In this simulation, we apply the proposed method to the actor-critic
system.

Simulation Setting. Let θ, θ̇(= dθ/dt), and τc be angle, angular velocity, and torque,
respectively. The dynamics of the inverted pendulum is represented by

ml2θ̈ = −mgl sin(θ) − µθ̇ + τc, (18)
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where m denotes the mass of the pendulum, l is the length of the pendulum, g is the
acceleration of gravity, µ is the friction coefficient of axis. In the simulation, we set
m = 0.5[kg], l = 0.5[m], g = 9.8[m/s2], and µ = 0.1. Then, reward r(t) is defined as
follows:

r(t) = cos(θ) − 0.005 τ2c (t). (19)

At the initial state, we set θ(0) = 0 and θ̇(t) = 0. We can only observe θ and set
the torque to the pendulum as −1 or +1. The success of control is assumed that the
pendulum can be controled within ±5[deg] for 15[s]. Then, the trial that the angle of
the pendulum exceeds±45[deg] is assumed to be failure and go to the next trial. A time
step is set as ∆t = 0.01[s]. The success rate of controlling the pendulum is calculated
as the average of 100 trials after 1, 000 training episodes.

The parameters are set as τMT = τLT = 300 and µ = 0.1 in the conventional
method, and τ = 300 in the proposed method. The exploration noise is set as the
Gaussian distribution with mean 0 and variance 1. In the standard method with fixed
meta-parameters, we set as α = 0.2, γ = 0.95, and T = 0.35.

Simulation Result. As seen in Table 2, the success rate is 87.9% in the proposed
method, 85.2% in the conventional method, and 76.8% in Q-learning method. As a
result, it is shown that the proposed method could improve the performance for con-
trolling the pendulum. Figure 3 shows the temporal development of the accumulated

Table 2. The success rate of controlling an inverted pendulum

Method Success rate (%)
Proposed method 87.9

Conventional method 85.2
Actor-critic method 76.8
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Fig. 3. Development of the accumulated reward for the proposed and conventional methods in the
inverted pendulum control problem
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reward. From this figure, it is clear that the accumulated reward in the proposed method
is much larger than that in the conventional method. In addition, the number of param-
eters to be pre-determined is only one, i.e. τ in (14) in the proposed method. On the
other hand, there are three such parameters, i.e. τMT in (7), τLT in (8), and µ in (11) in
the conventional method. It therefore is much easier for the proposed method to apply
the reinforcement learning system than the conventional method.

5 Summary

The present paper have proposed the meta-learning method based on the TD-error.
Through various computer simulations, we investigated the performance of the pro-
posed method using the discrete and continuous tasks. As a result, it is shown that the
proposed method applied to the Q-learning system could improve the learning perfor-
mance for the discrete task, the maze search problem because it allows meta-parameters
to adjust according to the variation of the external environment. In addition, it is clar-
ified that the proposed method applied to the actor-critic system could improve the
control performance for the continuous task, the inverted pendulum control problem.
Furthermore, it is shown that the proposed method could easily apply to reinforcement
learning compared with the conventional method, the standard Q-learning and actor-
critic methods because the proposed method can reduce the number of parameters to be
pre-determined. In future work, the proposed method under a noisy environment needs
to be evaluated.
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Abstract. Analysis of data with high dimensionality in modern appli-

cations, such as spectral analysis, neuroscience, chemometrices naturally

requires tensorial approaches different from standard matrix factoriza-

tions (PCA, ICA, NMF). The Tucker decomposition and its constrained

versions with sparsity and/or nonnegativity constraints allow for the ex-

traction of different numbers of hidden factors in each of the modes,

and permits interactions within each modality having many potential

applications in computational neuroscience, text mining, and data anal-

ysis. In this paper, we propose a new algorithm for Nonnegative Tucker

Decomposition (NTD) based on a constrained minimization of a set of

local cost functions which is suitable for large scale problems. Extensive

experiments confirm the validity and high performance of the developed

algorithms in comparison with other well-known algorithms.

1 Introduction

In many applications such as those in neuroscience studies, the data structures
often contain high-order ways (modes) including trials, task conditions, subjects,
together with the intrinsic dimensions of space, time, and frequency. Analysis
on separate matrices or slices extracted from a data block often faces the risk
of losing the covariance information among subjects. To discover hidden com-
ponents within the data, the analysis tools should reflect the multi-dimensional
structure of the data [1].

Tucker decomposition is a suitable method to extract factors having interac-
tive relations within each modality, described as a “decomposition of a given N -
th order tensor Y ∈ RI1×I2···×IN into an unknown core tensor G ∈ RJ1×J2···×JN

(typically Jn � In) multiplied by a set of N unknown component matrices,
A(n) = [a(n)

1 ,a
(n)
2 , . . . ,a

(n)
Jn

] ∈ RIn×Jn (n = 1, 2, . . . , N), representing common
factors or loadings” [1,2,3].

Y =
J1∑

j1=1

J2∑
j2=1

· · ·
JN∑

jN =1

gj1j2···jN a
(1)
j1
◦ a

(2)
j2
◦ · · · ◦ a

(N)
jN

+ E
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Fig. 1. Illustration for a third-order Tucker decomposition; the objective here is to find

optimal component matrices A(n) ∈ RIn×Jn and a core tensor G ∈ RJ1×J2×J3

= G×1 A(1) ×2 A(2) · · · ×N A(N) + E

= G× {A}+ E = Ŷ + E, (1)

where Ŷ is an approximation of Y, and E denotes the estimation error (see Fig.
1 as an example of a 3-way Tucker decomposition).1 Sparsity and nonnegativity
constraints often imposed on hidden factors and core tensor due to meaningful
representation leads to the NTD model with many potential applications in
neuroscience, bioinformatics, chemometrics ect [1,4].

Almost all the existing algorithms for Tucker decompositions [3,4,5] require
processing based on full tensor during the estimation. The real-world data often
contain millions of elements. Full data processing, especially inverse of huge ma-
trices, are therefore impractical. To this end, we formulate local learning rules
which sequentially estimate components in each factors. The proposed algorithm
called the Hierarchical Alternative Least Square (HALS) algorithm has the suc-
cessful original forms for NMF and PARAFAC models [1,6].

Extensive experiments confirm the validity and high performance of the devel-
oped algorithms on the applications of noisy data reconstruction, classification
of EEG data. The performance of new algorithm was compared to well-known
existing algorithms (HOOI [3], HONMF [4]).

2 Local Tucker Decomposition

Most algorithms for the NTD model are based on ALS minimization of the
squared Euclidean distance [3,7] used as a global cost function subject to non-
negativity constraints, that is

DF (Y ||G× {A}) =
1
2

∥∥∥Y − Ŷ
∥∥∥2

F
. (2)

Based upon some adjustments on this cost function, we establish local learning
rules for components and core tensor.

1 For convenience, tensor notations used in this paper are adopted from [3].
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2.1 Learning Rule for Factors A(n)

We define the residual tensor Y(jn)

Y(jn) = Y −
J1∑

r1=1

. . .
∑

rn 
=jn

. . .

JN∑
rN=1

gr1...rn...rN a
(1)
j1
◦ · · · ◦ a(n)

rn
◦ · · · ◦ a(N)

rN

= Y − Ŷ + Grn=jn
×−n {A} ×n a

(n)
jn
, (jn = 1, 2, . . . , JN ), (3)

where Grn=jn
∈ RJ1×···×Jn−1×1×Jn+1×···×JN is a subtensor of the tensor G ob-

tained by fixing the n-th index to some value jn. For example, for a three-
way core tensor G ∈ RJ1×J2×J3 , Gr1=1 is the first horizontal slice, but of size
1×J2×J3. The mode-n matricized version of tensor Grn=jn

is exactly the jn-th
row of the mode-n matricized version of tensor G, i.e., [Grn=jn

](n) =
[
G(n)

]
jn

.

To estimate the component a
(n)
jn

, we assume that all the other components in all
factors and the core tensor are fixed. Instead of minimizing (2), we use a more
sophisticated approach by minimizing a set of local cost functions given by:

D
(jn)
F =

1

2

∥∥∥Y(jn) −
∑

r1,...,rn−1,
rn+1,...,rN

gr1···rn−1 jn rn+1···rN

a(1)
r1 ◦ · · · ◦ a(n−1)

rn−1 ◦ a
(n)
jn

◦ a(n+1)
rn+1 ◦ · · · ◦ a(N)

rN

∥∥∥2

F

=
1

2

∥∥∥Y(jn) − Grn=jn
×−n {A} ×n a

(n)
jn

∥∥∥2

F

=
1

2

∥∥∥Y
(jn)
(n) − a

(n)
jn

[Grn=jn
](n) A⊗−n T

∥∥∥2

F
, (4)

We first calculate the gradient of (4) with respect to element a
(n)
jn

∂D
(jn)
F

∂a
(n)
jn

= −
(
Y(jn)

(n) − a
(n)
jn

[G(n)]jn A⊗−n T
)

A⊗−n [G(n)]Tjn
(5)

and set it to zero to obtain a fixed point learning rule for a
(n)
jn

given by

a
(n)
jn

← Y(jn)
(n) A⊗−n [G(n)]Tjn

/
(
[G(n)] jn A⊗−n T A⊗−n [G(n)]Tjn

)
, (6)

for n = 1, 2, . . . , N and jn = 1, 2, . . . , JN . In the next step we shall further
optimize the derived learning rules.

2.2 Update Rules for the Core Tensor

Elements of the core tensor will be sequentially updated under the assumption
that all components are fixed. The cost function (4) is adjusted as follows

D
(jn)
F =

1
2

∥∥∥Y(jn) −
∑

(r1,...,rn−1,rn+1,...,rN ) 
=
(j1,...,jn−1,jn+1,...,jN )

(gr1···rn−1 jn rn+1···rN a(1)
r1
◦ · · · ◦ a(n−1)

rn−1
◦
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a
(n)
jn

◦ a(n+1)
rn+1

◦ · · · ◦ a(N)
rN

)− gj1···jn···jN a
(1)
j1
◦ · · · ◦ a

(n)
jn

◦ · · · ◦ a
(N)
jN

∥∥∥2

F

=
1
2

∥∥∥Y −
∑

(r1,...,rn,...,rN ) 
=
(j1,...,jn,...,jN )

gr1...rn...rN a(1)
r1
◦ · · · ◦ a(n)

rn
◦ · · · ◦ a(N)

rN

−gj1···jn···jN a
(1)
j1
◦ · · · ◦ a

(n)
jn

◦ · · · ◦ a
(N)
jN

∥∥∥2

F

=
1
2

∥∥∥Y(j̄) − gj̄ a
(1)
j1
◦ · · · ◦ a

(N)
jN

∥∥∥2

F
, (7)

where the tensor Y(j̄), j̄ = [j1, j2, · · · , jN ] is defined as

Y(j̄) = Y −
∑

r1 
=j1

. . .
∑

rN 
=jN

gj̄ a(1)
r1
◦ · · · ◦ a(N)

rN

= Y − Ŷ + gj̄ a
(1)
j1
◦ · · · ◦ a

(N)
jN

= E + gj̄ a
(1)
j1
◦ · · · ◦ a

(N)
jN
. (8)

To estimate an entry gj̄ , we consider the vectorized version of the cost function
(7), and for convenience, we change the index of the cost function

D
(j̄)
F =

1
2

∥∥∥ vec(Y(j̄)
(1))−

(
a

(N)
jN

⊗ · · · ⊗ a
(1)
j1

)
gj̄

∥∥∥2

F
. (9)

The gradient of (9) with respect to element gj̄ is given by

∂D
(j̄)
F

∂gj̄
= −

(
a

(N)
jN

⊗ · · · ⊗ a
(1)
j1

)T (
vec(Y(j̄)

(1))−
(
a

(N)
jN

⊗ · · · ⊗ a
(1)
j1

)
gj̄

)
(10)

and set to zero, to yield learning rule for entries of the core tensor G

gj̄ ←

⎡⎢⎣
(
a

(N)
jN

⊗ · · · ⊗ a
(1)
j1

)T

vec(Y(j̄)
(1))(

a
(N)
jN

⊗ · · · ⊗ a
(1)
j1

)T (
a

(N)
jN

⊗ · · · ⊗ a
(1)
j1

)
⎤⎥⎦

+

. (11)

This update rule can be simplified by taking into account that the Kronecker
product of the two unit-length vectors a and b, i.e., c = a⊗b, is also a unit-length
vector, that is

‖ c ‖22 = cT c = (a ⊗ b)T (a ⊗ b) = (aT a)⊗ (bT b) = 1⊗ 1 = 1. (12)

Hence, if all the components a
(n)
jn

are normalized to #2 unit length vectors, and

by replacing Y(j̄)
(1) in (11) by (8), we have

gj̄ ←
(
a

(N)
jN

⊗ · · · ⊗ a
(1)
j1

)T

vec
(
E(1) +

(
a

(N)
jN

⊗ · · · ⊗ a
(1)
j1

)
gj̄

)
= gj̄ + vec

(
a

(1) T
j1

E(1)

(
a

(N) T
jN

⊗ · · · ⊗ a
(2) T
j2

)T
)

= gj̄ + E ×̄1 a
(1)
j1

×̄2 a
(2)
j2
· · · ×̄N a

(N)
jN
. (13)
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Moreover, the denominator of the learning rule (6) can also be neglected as it is
a scale factor equal to one.

Finally, the learning rules for factors A(n) (n = 1, 2, . . . , N) and core tensor G
can be summarized as follows (referred here to as the #2 HALS-NTD algorithm)

a
(n)
jn

←
[
Y(jn)

(n)

[
(G×−n {A})(n)

]T

jn

]
+

, a
(n)
jn

← a
(n)
jn
/
∥∥∥a

(n)
jn

∥∥∥
2
, (14)

gj̄ ←
[
gj̄ + E ×̄1 a

(1)
j1

×̄2 a
(2)
j2
· · · ×̄N a

(N)
jN

]
+
, (jn = 1, 2, . . . , JN ), (15)

Y(jn) = E + gj̄ a
(1)
j1
◦ · · · ◦ a

(N)
jN
. (16)

The error tensor and the residue tensor don’t need to be explicitly compute as in
(1), and (3). They can be updated using the relation described in (16). Depending
on the application, it may be beneficial to use the #1-norm normalization [5]
instead of the #2-norm, which leads to the following alternative update rule for
core tensor (referred to as the #1 HALS-NTD algorithm):

G ←
[
G �

(
Y % Ŷ

)
× {AT }

]
+
. (17)

The core tensor can also be updated by the global ALS learning rule

G ←
[
Y × {A†}

]
+

(18)

where A† denotes the Moore-Penrose pseudo-inverse of factor A.

3 Experiments

The proposed algorithms were analyzed in 3 experiments involving applications
of data denoising, classification. One experiment was analyzed using a synthetic
benchmark, and two others were performed on real-world EEG datasets. The
#2 HALS algorithm was emphasized, and its estimated core tensor is ready to
identify the complex interactive relations among hidden components.

3.1 Noisy Data Reconstruction

We constructed a 3-rd order tensor Y ∈ R200×200×200 corrupted by additive
Gaussian noise SNR = -10 dB by benchmarks ACPos24sparse10 [8], and a ran-
dom core tensor G ∈ R4×5×4

+ . The noisy tensor was decomposed to retrieve the
hidden factors and a core tensor. Then we built up reconstructed tensors. The
#2 HALS algorithm was compared with the HONMF [4] algorithm, and also
with HOOI algorithm for Tucker decomposition [9]. All algorithms were eval-
uated under the same condition of difference of FIT value (1e-6) using Peak
Signal to Noise Ratio (PSNR) for all frontal slices. The results are illustrated in
Fig. 2, with PSNR [dB] and FIT (%) values. The #2 HALS algorithm returned the
most successful reconstruction with PSNR = 43.92 dB (Fig. 2(a)). Although the
HOOI algorithm does not require nonnegative constraint, that algorithm gave a
quite good result, but its reconstructed tensor was still noisy. The #2 HALS and
HONMF algorithms converged after 133.04 and 249.13 seconds, respectively.
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(a) HALS 43.92 dB, FIT = 99.80 % (b) NTD 42.17 dB, FIT = 99.74 % (c) HOOI 31.96 dB, FIT = 99.27 %

Fig. 2. Iso-surface visualization of simulation results for Example 1 with tensor Y ∈
R200×200×200

+ corrupted by Gaussian noise with SNR = -10dB

3.2 Classification of EEG Signal

We illustrate the HALS NTD algorithm with a simple example of EEG classifica-
tion according to the nature of the stimulus for the benchmark EEG AV stimuli
[10]: auditory stimulus, visual stimulus, both the auditory and the visual stimuli
simultaneously. EEG signals were recorded from 61 channels during 1.5 sec-
onds after stimulus presentation at a sampling rate of 1 kHz, and in 25 trials.
The observed nonnegative tensor Y consists the WTav measurements in the
time-frequency domain using the complex Morlet wavelet: 61 channels × 3906
frequency-time (31 frequency bins (10-40 Hz) × 126 time frames (0-500ms)) × 3
classes. The number of components was set to three, and the estimated factors
and core tensor are illustrated in Fig. 3.

An advantage of the #2 HALS algorithm is that all the component vectors
are unit length vectors, hence the coefficients of the core tensor G express
the energy of rank-one tensors built up from the basis components a

(n)
j , (n =

1, 2, . . . , N, j = 1, 2, . . . , Jn), and is ready to evaluate the complex interactions
between components using the Joint Rate (JR) index [11]. For example, the
relation of spatial and category components can be identified using the JR
index given in Fig. 3(e): the auditory class (component 2) interacts predom-
inantly with the third spatial component, whereas the visual class (compo-
nent 3) links with the second spatial component, and the auditory+visual class
(component 1) links with all the spatial ones.

3.3 BCI Experiment

This example illustrates the analysis of real-world EEG data containing the
evoked spectral perturbation (ERSP) measurements of EEG signals recorded
from 62 electrodes during right and left hand motor imagery [12]. The observed
tensor has size of 62 channels × 25 frequency bins × 1000 time frames × 2 classes
(Left/Right). The #2 HALS algorithm returned the decomposition results with
the core tensor size of 4 × 3 × 3 × 2, and sparsity and orthogonality constraints
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Fig. 3. Visualization of components for example 2 (a) spherically-spline EEG field

maps; (b) spectral components expressed by factor A(2); (c) category factor A(3) for 3

classes: a
(3)
1 - auditory-visual class, a

(3)
2 - auditory class, and a

(3)
3 - visual class; (d)-(e)

Hinton diagrams of core tensor, and JR index of spatial and category components
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Fig. 4. Illustration for example 3: (a)-(d) factor visualizations; (e) JR index of inter-

active relations: spectral and spatial components

on factors A(1) and A(2) displayed in Fig. 4. The JR matrix indicating the
interactive relation between the spectral components A(2) and the spatial com-
ponents A(1) is displayed in Fig. 4(e). Component a

(1)
1 corresponds to class-1

(right-hand imagery) with a larger amplitude on the left hemisphere, and lower
amplitude for the right one. Whereas component a

(1)
4 for class-2 (left-hand im-

agery) shows ERD on the left hemisphere and ERS on the right hemisphere (see
Fig. 4(d)). Both these components are mainly affected by the spectral component
a

(2)
2 (see Fig. 4(e)).
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4 Conclusion

We presented new local NTD algorithms, and confirmed their robustness to
noise and good convergence properties in synthetic and real-world data sets. The
proposed algorithms can resolve large scale problem due to sequentially update
components instead of processing based on full data. The result core tensor of the
#2 HALS algorithm is ready to evaluate complex interactive relations between
components of factors using the Joint Rate index.
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Abstract. In data mining, the problem of measuring similarities between diffe-
rent subsets is an important issue which has been little investigated up to now.
In this paper, a novel method is proposed based on unsupervised learning. Diffe-
rent subsets of a dataset are characterized by means of a model which implicitly
corresponds to a set of prototypes, each one capturing a different modality of
the data. Then, structural differences between two subsets are reflected in the
corresponding model. Differences between models are detected using a simila-
rity measure based on data density. Experiments over synthetic and real datasets
illustrate the effectiveness, efficiency, and insights provided by our approach.

1 Introduction

In recent years, the datasets’ size has shown an exponential growth. Studies exhibit
that the amount of data doubles every year. However, the ability to analyze these data
remains inadequate. The problem of mining these data to measure similarities between
different datasets becomes an important issue which has been little investigated up to
now. A major application may be the analysis of time evolving datasets, by computing
a model of the data structure over different periods of time, and comparing them to
detect the changes when they occurred. Nevertheless, there are many other possible
applications, like large datasets comparison, clustering merging, stability measure and
so on.

As the study of data streams and large databases is a difficult problem because of the
computing costs and the big storage volumes involved, two issues appear to play a key
role in such an analysis: (i) a good condensed description of the data properties [1,2]
and (ii) a measure capable of detecting changes in the data structure [3,4]. In this paper
we propose a new algorithm which is able to perform these two tasks. The solution we
propose consists of an algorithm, which first constructs an abstract representation of
the datasets to compare and then evaluates the dissimilarity between them based on this
representation. The abstract representation is based on the learning of a variant of Self-
Organizing Map (SOM) [5], which is enriched with structural information extracted
from the data. Then we propose a method to estimate, from the abstract representation,
the underlying data density function. The dissimilarity is a measure of the divergence
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between two estimated densities. A great advantage of this method is that each enriched
SOM is at the same time a very informative and a highly condensed description of the
data structure that can be stored easily for a future use. Also, as the algorithm is very
effective both in terms of computational complexity and in terms of memory require-
ments, it can be used for comparing large datasets or for detecting structural changes in
data-streams.

The remainder of this paper is organized as follows. Section 2 presents the new
algorithm. Section 3 describes the validation protocol and some results. Conclusion
and future work perspectives are given in Section 4.

2 A New Two-Levels Algorithm to Compare Data Structure

The basic assumption in this work is that data are described as vectors of numeric
attributes and that the datasets to compare have the same type. First, each dataset is
modeled using an enriched Self-organizing Map (SOM) model (adapted from [6]), con-
structing an abstract representation which is supposed to capture the essential data struc-
ture. Then, each dataset density function is estimated from the abstract representation.
Finally, different datasets are compared using a dissimilarity measure based upon the
density functions.

The idea is to combine the dimension reduction and the fast learning SOM capabili-
ties in the first level to construct a new reduced vector space, then applies other analysis
in this new space. These are called two-levels methods. The two-levels methods are
known to reduce greatly the computational time, the effects of noise and the “curse
of dimensionality” [6]. Furthermore, it allows some visual interpretation of the result
using the two-dimensional map generated by the SOM.

2.1 Abstract Algorithm Schema

The algorithm proceeds in three steps :

1. The first step is the learning of the enriched SOM. During the learning, each SOM
prototype is extended with novel information extracted from the data. These struc-
tural informations will be used in the second step to infer the density function. More
specifically, the attributes added to each prototype are:

– Density modes. It is a measure of the data density surrounding the prototype
(local density). The local density is a measure of the amount of data present in
an area of the input space. We use a Gaussian kernel estimator [7] for this task.

– Local variability. It is a measure of the data variability that is represented by
the prototype. It can be defined as the average distance between the prototypes
and the represented data.

– The neighborhood. This is a prototype’s neighborhood measure. The neighbor-
hood value of two prototypes is the number of data that are well represented by
each one.

2. The second step is the construction, from each enriched SOM, of a density func-
tion which will be used to estimate the density of the input space. This function is
constructed by induction from the information associated to the prototypes of the
SOM, and is represented as a mixture model of spherical normal functions.
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3. The last step accomplishes the comparison of two different datasets, using a dis-
similarity measure able to compare the two density functions constructed in the
previous steps.

2.2 Prototypes Enrichment

In this step some global information is extracted from the data and stored in the pro-
totypes during the learning of the SOM. The Kohonen SOM can be classified as a
competitive unsupervised learning neural network [5]. A SOM consists in a two di-
mensional map of M neurons (units) which are connected to n inputs according to n
weights connectionswj = (w1j , ..., wnj) (also called prototypes) and to their neighbors
with topological links. The training set is used to organize these maps under topological
constraints of the input space. Thus, an optimal spatial organization is determined by
the SOM from the input data.

In our algorithm, the SOM’s prototypes will be “enriched” by adding new numerical
values extracted from the dataset. The enrichment algorithm proceeds in three phases:

Input :

– The dataX = {xk}N
k=1.

Output :

– The densityDi and the local variability si associated to each prototype wi.
– The neighborhood values vi,j associated with each pair of prototype wi and wj .

Algorithm:

1. Initialization :
– Initialize the SOM parameters
– ∀i, j initialize to zero the local densities (Di), the neighborhood values (vi,j),

the local variability (si) and the number of data represented by wi (Ni).

2. Choose randomly a data xk ∈ X :
– Compute d(w, xk), the euclidean distance between the data xk and each pro-

totype wi.
– Find the two closest prototypes (BMUs: Best Match Units) wu∗ and wu∗∗ :

u∗ = argmin
i

(d(wi, xk)) and u∗∗ = argmin
i
=u∗

(d(wi, xk))

.
3. Update structural values :

– Number of data:Nu∗ = Nu∗ + 1 .

– Variability: su∗ = su∗ + d(wu∗ , xk) .

– Density: ∀i,Di = Di + 1√
2πh
e−

d(wi,xk)2

2h2 .

– Neighborhood: vu∗,u∗∗ = vu∗,u∗∗ + 1 .
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4. Update the SOM prototypes wi as defined in [5].

5. repeat T times step 2 to 4.

6. Final structural values: ∀i, si = si/Ni andDi = Di/N .

In this study we used the default parameters of the SOM Toolbox [8] for the learning
of the SOM and we use T = max(N, 50×M) as in [8]. The numberM of prototypes
must neither be too small (the SOM does not fit the data well) nor too large (time
consuming). To choose M close to

√
N seems to be a good trade-off [8]. The last

parameter to choose is the bandwidth h. The choice of h is important for good results,
but its optimal value is difficult to calculate and time consuming (see [9]). A heuristic
that seems relevant and gives good results consists in defining h as the average distance
between a prototype and its closest neighbor [6].

At the end of this process, each prototype is associated with a density and a vari-
ability value, and each pair of prototypes is associated with a neighborhood value. The
substantial information about the structure of the data is captured by these values. Then,
it is no longer necessary to keep data in memory.

2.3 Estimation of the Density Function

The objective of this step is to estimate the density function which associates a density
value to each point of the input space. We already have an estimation of the value of
this function at the position of the prototypes (i.e. Di). We must infer from this an
approximation of the function.

Our hypothesis here is that this function may be properly approximated in the form
of a mixture of Gaussian kernels. Each kernel K is a Gaussian function centered on a
prototype. The density function can therefore be written as:

f(x) =
M∑
i=1

αiKi(x) with Ki(x) =
1

N
√

2πhi

e
− d(wi,x)2

2hi
2

The most popular method to fit mixture models (i.e. to find hi and αi) is the expecta-
tion-maximization (EM) algorithm [10]. However, this algorithm needs to work in the
data input space. As here we work on enriched SOM instead of dataset, we can’t use
EM algorithm.

Thus, we propose the heuristic to choose hi :

hi =

∑
j

vi,j

Ni+Nj
(siNi + di,jNj)∑

j vi,j

di,j is the euclidean distance between wi and wj . The idea is that hi is the standard
deviation of data represented by Ki. These data are also represented by wi and their
neighbors. Then hi depends on the variability si computed for wi and the distance di,j

between wi and his neighbors, weighted by the number of data represented by each
prototype and the connectivity value between wi and his neighborhood.

Now, since the density D for each prototype w is known (f(wi) = Di), we can use
a gradient descent method to determine the weights αi. The αi are initialized with the
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values ofDi, then these values are reduced gradually to better fitD =
∑M

i=1 αiKi(w).
To do this, we optimize the following criterion:

α = arg min
α

1
M

M∑
i=1

⎡⎣ M∑
j=1

(αjKj(wi))−Di

⎤⎦2

Thus, we now have a density function that is a model of the dataset represented by the
enriched SOM.

2.4 Algorithm Complexity

The complexity of the algorithm is scaled asO(T×M), with T the number of steps and
M the number of prototypes in the SOM. It is recommended to set at least T > 10×M
for a good convergence of the SOM [5]. In this study we use T = max(N, 50×M) as
in [8]. This means that ifN > 50×M (large database), the complexity of the algorithm
is O(N ×M), i.e. is linear in N for a fixed size of the SOM. Then the whole process
is very fast and is suited for the treatment of large databases. Also very large databases
can be handled by fixing T < N (this is similar as working on a random subsample of
the database).

This is much faster than traditional density estimator algorithms as the Kernel esti-
mator [7] (that also needs to keep all data in memory) or the Gaussian Mixture Model
[11] estimated with the EM algorithm (as the convergence speed can become extraor-
dinarily slow [12,13]).

2.5 The Dissimilarity Measure

We can now define a measure of dissimilarity between two datasets A and B, rep-

resented by two SOMs: SOMA =
[
{wA

i }MA

i=1 , f
A
]

and SOMB =
[
{wB

i }MB

i=1 , f
B
]

With MA and MB the number of prototypes in models A and B, and fA and fB the
density function of A and B computed in §2.3.

The dissimilarity between A and B is given by:

CBd(A,B) =

∑MA

i=1 f
A
(
wA

i

)
log

(
fA(wA

i )
fB(wA

i )

)
MA

+

∑MB

j=1 f
B
(
wB

j

)
log

(
fB(wB

j )
fA(wB

j )

)
MB

The idea is to compare the density functions fA and fB for each prototype w of A
and B. If the distributions are identical, these two values must be very close. This mea-
sure is an adaptation of the weighted Monte Carlo approximation of the symmetrical
Kullback–Leibler measure (see [14]), using the prototypes of a SOM as a sample of the
database.

3 Validation

3.1 Description of the Used Datasets

In order to demonstrate the performance of the proposed dissimilarity measure, we used
nine artificial datasets generators and one real dataset.
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“Ring 1”, “Ring 2”, “Ring 3”, “Spiral 1” and “Spiral 2” are 5 two-dimensional non-
convex distributions with different density and variance. “Ring 1” is a ring of radius 1
(high density), “Ring 2” a ring of radius 3 (low density) and “Ring 3” a ring of radius
5 (average density) ; “Spiral 1” and “Spiral 2” are two parallel spirals. The density in
the spirals decreases with the radius. Datasets from these distributions can be generated
randomly.

“Noise 1” to “Noise 4” are 4 different two-dimensional distributions, composed of
different Gaussian distributions and a heavy homogeneous noise.

Finally, the “Shuttle” real dataset come from the UCI repository. It’s a nine-dimen-
sional dataset with 58000 instances. These data are divided in seven class. Approxi-
mately 80% of the data belongs to class 1.

3.2 Validity of the Dissimilarity Measure

It’s impossible to prove that two distributions are exactly the same. Anyway, a low dis-
similarity value is only consistent with a similar distribution, and does of course give
an indication of the similarity between the two sample distributions. On the other hand,
a very high dissimilarity does show, to the given level of significance, that the distribu-
tions are different. Then, if our measure of dissimilarity is efficient, it should be possible
to compare different datasets (with the same attributes) to detect the presence of similar
distributions, i.e. the dissimilarity of datasets generated from the same distribution law
must be much smaller than the dissimilarity of datasets generated from very different
distribution.

To test this hypothesis we applied the following protocol:

1. We generated 250 different datasets from the “Ring 1”, “Ring 2”, “Ring 3”, “Spiral
1” and “Spiral 2” distributions (50 datasets from each). Each sets contain between
500 and 50000 data.

2. For each of these datasets, we learned an enriched SOM to obtain a set of represen-
tative prototypes of the data. The number of prototypes is randomly chosen from
50 to 500.

3. We computed a density function for each SOM and compared them to each other
with the proposed dissimilarity measure.

4. Each SOM was labeled depending on the distribution represented (labels are “ring
1”, “ring 2” , “ring 3” , “spiral 1” and “spiral 2”). We then calculated an index of
compactness and separability of SOM having the same label with the generalized
index of Dunn [15]. This index is even bigger than SOM with the same label are
similar together and dissimilar to other labels, according to the dissimilarity func-
tion used.

We used the same protocol with “Noise 1” to “Noise 4” and with the “Shuttle” database.
Two kinds of distributions have been extracted from the “Shuttle” database, by using
random sub-sampling (with replacement) of data from class 1 (“Shuttle 1”) and data
from other classes (“Shuttle 2”).

We compared the results with some distance-based measures usually used to com-
pare two sets of data (here we compare two sets of prototypes from the SOMs). These
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measures are the average distance (Ad: the average distance between all pair of proto-
types in the two SOMs), the minimum distance (Md: the smallest Euclidean distance
between prototypes in the two SOMs) and the Ward distance (Wd: The distance be-
tween the two centroids, with some weight depending on the number of prototypes in
the two SOMs)) [16]. All results are in Table 1. The visual inspection of the dissimi-
larity matrix obtained from the different measures is consistant with the values of the
Dunn index (Table 1) to show that the density-based proposed similarity measure (CBd)
is much more effective than distance based measures (see Fig. 1 for an example).

(a) Ad (b) Md (c) Wd (d) CBd

Fig. 1. Visualizations of the dissimilarity matrix obtained from the different measures for the
comparaisons of the different “Noise” 1 to 4 distributions. Darker cells mean higher similarity
between the two distributions. Datasets from the same distribution are sorted, then their compar-
isons appear as four box along the diagonal of the matrix.

As shown in table 1, our dissimilarity measure using density is much more effective
than measures that only use the distances between prototypes. Indeed, the Dunn index
for density based measure is much higher than distance based ones for the three kinds of
datasets tested: non-convex data, noisy data and real data. This means that our measure
of dissimilarity is much more effective for the detection of similar dataset.

Table 1. Value of the Dunn index obtained from various dissimilarity measures to compare vari-
ous data distributions

Distributions to compare Average Minimum Ward Proposed

Ring 1 to 3 + Spiral 1 and 2 0.4 0.9 0.5 1.6
Noise 1 to 4 1.1 1.4 22.0 115.3
Shuffle 1 and 2 1.1 16.5 6.3 27.6

4 Conclusion and Future Works

In this article, we proposed a new algorithm for modeling data structure, based on the
learning of a SOM, and a measure of dissimilarity between cluster structures. The ad-
vantages of this algorithm are not only the low computational cost and the low memory
requirement, but also the high accuracy achieved in fitting the structure of the mod-
eled datasets. These properties make it possible to apply the algorithm to the analysis
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of large data bases, and especially large data streams, which requires both speed and
economy of resources. The results obtained on the basis of artificial and real datasets
are very encouraging.

The continuation of our work will focus on the validation of the algorithm on more
real case studies. More specifically, it will be applied to the analysis of real data streams,
commonly used as benchmark for this class of algorithms. We will also try to extend the
method to structured or symbolic datasets, via kernel-based SOM algorithm. Finally, we
wish to deepen the concept of stability applied to this kind of analysis.
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Abstract. This paper proposes a novel approach to solve a single out-

put regression problem using duo output neural network. A pair of duo

output neural networks is created. The first neural network is trained

to provide two outputs which are the truth and the falsity values. The

second neural network is also trained to provide two outputs; however,

the sequence of the outputs is organized in reverse order of the first

one. Therefore, the two outputs of this neural network is the falsity and

the truth values. All the truth and the non-falsity values obtained from

both neural networks are then averaged to give the final output. We

experiment our proposed approach to the classical benchmark problems

which are housing, concrete compressive strength, and computer hard-

ware data sets from the UCI machine learning repository. It is found that

the proposed approach provides better performance when compared to

the complementary neural networks, backpropagation neural networks,

and support vector regression with linear, polynomial, and radial basis

function kernels.

1 Introduction

Neural network is one of the most popular predictors used to solve the regression
problem. One of the reasons is that the neural network can provide better per-
formance when compare to the statistical methods [1–3] and the support vector
regression [4–6].

In recent years, complementary neural networks (CMTNN) have been used
to solve both classification and regression problems [7, 8]. Instead of consider-
ing only the truth output obtained from neural networks, complementary neural
networks consider both truth and falsity outputs predicted from the truth and
falsity neural networks, respectively. Both neural networks have the same archi-
tecture and apply the same parameter values for training. However, the target

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 554–561, 2009.
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output used to train the falsity neural network is the complement of the target
output used to train the truth neural network. Several aggregation techniques
have been proposed based on CMTNN. One of those aggregations is the equal
weight averaging which is the simple averaging between the truth and non-falsity
outputs obtained from the truth and falsity neural networks. The result obtained
from these aggregation techniques have been found to provide better accuracy
results compared to the traditional neural network trained with only the truth
target output [7, 8]. In this paper, we proposed a duo output neural network
(DONN) based on complementary neural networks. Instead of applying a pair of
neural networks, a single neural network with two outputs is utilized. In order to
get better results, a pair of neural networks with two outputs is considered. We
experiment our proposed approach to the classical benchmark problems includ-
ing housing, concrete compressive strength [9], and computer hardware from the
UCI machine learning repository [10].

The rest of this paper is organized as follows. Section 2 explains the duo
output neural network and the proposed aggregation technique used for single
output regression. Section 3 describes the data set and results of our experiments.
Conclusions and future work are presented in Section 4.

2 Duo Output Neural Network (DONN)

Duo output neural network is a neural network trained with two target outputs,
which are complement to each other. Let Ttarget(xi) be the true target output
for the input pattern xi, i = 1, 2, 3, ..., n where n is the total number of training
input patterns. Let Ftarget(xi) be the false target output for the input pattern
xi. The false target output is the complement of the true target output. Hence,
the false target output can be computed as follows.

Ftarget(xi) = 1− Ttarget(xi) (1)

The duo output neural network is trained using two complementary target values
(Ttarget and Ftarget) in order to predict two complementary outputs which are
the truth and falsity output values. In this case, the sequence of the outputs
can be organized in two ways: truth-falsity and falsity-truth. Therefore, two
duo output neural networks are created to support both types of output. Fig. 1
shows our proposed duo output neural network model in the training phase. Two
neural networks are trained. The first neural network, NN1, is trained to predict
the truth output Ttrain 1 and the falsity output Ftrain 1 using the true target
and the false target values, respectively. On the other hand, the second neural
network, NN2, is trained to predict the falsity output Ftrain 2 and the truth
output Ttrain 2 using the false target and the true target values, respectively.
The ensemble of these two duo output neural networks can provide us better
accuracy results when dealing with the unknown input data.

In the testing phase, each unknown input pattern yj is assigned to the two
duo output neural networks where j = 1, 2, 3, ..., t and t is the total number of
unknown input patterns. Fig. 2 shows the proposed duo output neural network
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model in the testing phase. Let T1(yj) and F1(yj) be the truth and the falsity
outputs for the unknown input pattern yj of the first neural network (NN1). The
truth and the non-falsity outputs can be aggregated to provide the combined
output as shown in the equation below.

O1(yj) =
T1(yj) + (1− F1(yj))

2
(2)

Let F2(yj) and T2(yj) be the falsity and the truth outputs for the unknown
input pattern yj of the second neural network (NN2). The combined output of
the truth and the non-falsity outputs can be computed as follows.

O2(yj) =
T2(yj) + (1− F2(yj))

2
(3)

The regression output for each unknown input pattern yj can be computed as
the average between both outputs O1(yj) and O2(yj) as shown below.

O(yj) =
O1(yj) +O2(yj)

2
(4)

3 Experiments

3.1 Data Set

Three UCI data sets are used in this experiment. The characteristics of these data
sets which are housing, concrete compressive strength, and computer hardware
are shown in Table 1.

Table 1. UCI data sets used in this study

Name Feature type No. of No. of

features samples

Housing numeric 13 506

Concrete numeric 8 1030

Hardware numeric 6 209

3.2 Experimental Methodology and Results

In this experiment, ten-fold cross validation is applied to each data set. For
each fold, two feed-forward backpropagation neural networks are trained with
the same parameter values except the initial weight. Both network apply dif-
ferent initial weights in order to increase diversity in the ensemble of the two
networks. The first neural network is trained to predict the truth-falsity output
values whereas the second neural network is trained to predict the falsity-truth
output values. In both neural networks, the number of input-nodes is equal to
the number of input features, which is 13, 8, and 6 for housing, concrete, and
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Table 2. The comparison among the average of mean square error, MSE, (ten folds)

obtained from SVR, BPNN, CMTNN, and DONN for housing, concrete, and hardware

data sets

Technique
Mean Square Error (MSE)

Housing Concrete Hardware

SVR (linear) 0.045140 0.048829 0.017808

SVR (Polynomial) 0.040929 0.042365 0.018324

SVR (RBF) 0.049051 0.041987 0.019221

BPNN 0.030113 0.021595 0.005601

CMTNN (Equal weight averaging) 0.019275 0.017384 0.004377

DONN (Truth-Falsity) 0.020756 0.021249 0.006930

DONN (Falsity-Truth) 0.022923 0.013848 0.002899

DONN (Combination) 0.012304 0.014642 0.003767

SVR(linear) SVR(poly) SVR(RBF) BPNN CMTNN DONN(TF) DONN(FT) DONN(TF,FT)
0
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0.035
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0.045

0.05

Technique

M
SE

Fig. 3. The average of mean square error obtained from the test set of housing data

hardware data sets, respectively. They have one hidden layer constituting of 2n
neurons where n is the number of input features. Hence, the number of neuron
in the hidden layer for those data sets are 26, 16, and 12, respectively.

Table 2 shows the average of mean square error (MSE) obtained from the
proposed duo output neural networks (DONN) compared to other existing es-
timators, which are backpropagation neural network (BPNN), support vector
regression (SVR) with linear, polynomial, and radial basis function (RBF) ker-
nels, as well as the complementary neural networks (CMTNN). These estima-
tors are also experimented with ten-fold cross validation method. This table
shows that our proposed duo output neural network based on the combination
of truth-falsity and falsity-truth outputs yields better performance than other
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Fig. 4. The average of mean square error obtained from the test set of concrete data

Table 3. The average of percent improvement of the proposed DONN with the com-

bination technique compared to the traditional SVR, BPNN, and CMTNN (ten folds)

Technique
DONN (Combination)

Housing Concrete Hardware

SVR(linear) 72.74% 70.01% 78.85%

SVR(polynomial) 69.94% 65.44% 79.44%

SVR(RBF) 74.92% 65.13% 80.40%

BPNN 59.14% 32.20% 32.75%

CMTNN (Equal weight averaging) 36.16% 15.77% 13.94%

techniques. Fig. 3, 4, and 5 show the graphical representation of the comparison
of the mean square error among our technique and other techniques for the test
set of housing, concrete, and hardware, respectively. From these figures, it can be
observed that the technique based on neural networks provides better accuracy
than the support vector regression. It is also found that the complementary neu-
ral networks and the combination of two opposite duo output neural networks
outperform the traditional backpropagation neural networks. Moreover, it can
be seen that the individual truth-falsity output neural network and the falsity-
truth neural network may not provide good results when compared to CMTNN
and BPNN. However, the combination between these two duo output neural
networks yield better accuracy than other techniques. Table 3 shows the average
of percent improvement of the proposed technique of the combination of two op-
posite duo output neural network compared to the traditional BPNN, SVR, and
CMTNN.
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Fig. 5. The average of mean square error obtained from the test set of hardware data

4 Conclusion and Future Work

This paper applies the combination of two duo output neural networks to solve
a single output regression problem. The first neural network provides the truth-
falsity output whereas the second neural network provides the falsity-truth out-
put. We found that the output obtained from the combination between both
neural networks provide more accurate result than individual duo output neural
network and other existing techniques. In the future, we will apply duo output
neural network to solve the classification problem.
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Abstract. To learn things incrementally without the catastrophic inter-

ference, we have proposed Resource Allocating Network with Long-Term

Memory (RAN-LTM). In RAN-LTM, not only training data but also

memory items stored in long-term memory are trained. In this paper, we

propose an extended RAN-LTM called Resource Allocating Network by

Local Linear Regression (RAN-LLR), in which its centers are not trained

but selected based on output errors and the connections are updated

by solving a linear regression problem. To reduce the computation and

memory costs, the modified connections are restricted based on RBF ac-

tivity. In the experiments, we first apply RAN-LLR to a one-dimensional

function approximation problem to see how the negative interference is

effectively suppressed. Then, the performance of RAN-LLR is evaluated

for a real-world prediction problem. The experimental results demon-

strate that the proposed RAN-LLR can learn fast and accurately with

less memory costs compared with the conventional models.

1 Introduction

Memory-based learning such as Locally Weighted Regression (LWR) [9] and
Radial-Basis Function (RBF) networks [2,3] is one of the most promising strategy
in incremental learning. In this approach, (almost) all training samples are accu-
mulated in a memory and they are utilized for predicting and learning whenever
new data are given. However, when data consist of a large number of attributes
(or features), the computation and memory costs could be serious especially
under life-long learning environments.

For the memory-based RBF networks, keeping all the training data as the RBF
centers could be unrealistic for high-dimensional data; therefore, an appropriate
number of RBF centers should be selected from incoming training data. On the
other hand, one of the difficulties in incremental learning is to suppress the so-
called catastrophic interference which leads to unexpected forgetting of input-
output relationships acquired in the past. This interference is mainly caused

� The authors would like to thank Professor Shigeo Abe for his helpful comments and

discussions.
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by modifying connection weights and RBF centers by which the input-output
relations are represented in a distributed way.

To avoid the catastrophic interference effectively in RBF networks, there
have been proposed several approaches [1]. A promising approach is that some
representative input-output pairs are extracted from sequentially given training
samples and some of them are trained with a current training sample. For this ap-
proach, an extended version of RBF networks called Resource Allocating Network
with Long-Term Memory (RAN-LTM) and the two learning algorithms based on
gradient descent algorithm [6] and linear regression method [5,7] have been pro-
posed. In the former algorithm, not only the connections but also the centers
and widths of RBFs can be learned. However, the learning may get stacked into
local minima and its convergence is usually slow. In the latter method, opti-
mal connections are always obtained by solving a set of linear equations in the
least squared error sense. However, the computation and memory costs grow
exponentially as the number of RBFs increases [7].

In this paper, to alleviate the increase in the computation and memory costs,
we propose a new incremental learning algorithm for RAN-LTM in which the
connections to be learned are restricted based on RBF activity. Since an RBF
has local response to an input domain, the number of modified connections is
roughly kept constant even if the input domain is growing over time.

2 Proposed Incremental Learning Algorithm

In this section, we propose a new RAN-LTM model which can reduce compu-
tation and memory costs by restricting modified connections. Let us call this
model Resource Allocating Network by Local Linear Regression (RAN-LLR)D
The learning of RAN-LLR is divided as follows: (1) incremental allocation of
RBFs, (2) creation & retrieval of memory items, (3) creation of pseudo training
data, (3) selection of modified connections, and (4) learning of connections.

2.1 Incremental Allocation of RBFs

In the Platt’s RAN, an RBF is added only when the distance ‖xp−c∗‖ between
the pth input xp and the closest center c∗ is large and the errorE = ‖T p−z(xp)‖
between the output z(xp) and the target T p is large. That is, when xp exists in
an unknown region, an RBF is created by setting xp to its center.

In the linear regression approach, once RBFs are created, the centers are fixed
afterwards. Therefore, the allocation of RBF centers can be affected by sequences
of training data and it may result in non-optimal allocation in approximating
a target function. In the proposed method, to keep the approximation error
low, the necessity of allocating an RBF is checked every after the learning of
connections. That is, after updating connections, the output error is recalculated;
then, an RBF is added if the error is larger than a threshold.
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2.2 Creation and Retrieval of Memory Items

As mentioned in 2.1, RBFs are added only when it is necessary for a network to
maintain good approximation accuracy. Let J and K be the numbers of RBFs
and outputs, respectively. In creating a new RBF, first the number of RBFs is
incremented (i.e., J ← J + 1), then the center cJ is set to the input xp (i.e.,
cJ = xp). And the connection weights W ∈ RJ×K are obtained such that the
error between the target T p ∈ RK and the output z(xp) is reduced to zero. This
can be achieved by updating W as follows:

W NEW =
[

W OLD

T p − z(xp)

]
(1)

After creating a new RBF, the training data (xp,T p) is stored in the long-term
memory (LTM) as a memory item because it represents crucial input-output
relation which should not be forgotten over the future learning stages. Let MJ

be the Jth memory item which is created when the Jth RBF is allocated. Note
that J is the number of memory items as well as that of RBFs.

In the proposed method, the memory items that are retrieved from LTM are
learned with training data. From the computational point of view, they should be
restricted to essential ones that can suppress the interference. Considering that
the interference mainly occurs at the connections to active RBFs whose outputs
yj are larger than a threshold η3, the input domain supported by the active
RBFs is vulnerable to the interference. Therefore, the memory items associated
with the active RBFs should be retrieved and learned. Let us define an index
set SA of active RBFs: SA = {j | yj ≥ η3; j = 1 · · ·J}. Then, the memory items
to be retrieved are represented by Mj = (cj ,T j) (j ∈ SA).

2.3 Creation of Pseudo Training Data

Let |SA| be the number of active RBFs when a training data xp is given. Then,
the total number of training data and retrieved memory items is |SA|+ 1, while
the number of connection weights is |SA| ×K where K is the number of output
units. Thus, the number of parameters is usually larger than that of available
data for training in solving linear equalities. To avoid such an underdeterminant
situation, pseudo training data (ĉjl, z(ĉjl)) for each active RBF are temporally
generated by using the network input-output function as follows:

(ĉjl, z(ĉjl)) = (cj +∆cl, z(cj +∆cl))
for j ∈ SA; l = 1, · · · , Pj (2)

where Pj is the number of pseudo data for the jth center cj . Here, Pj is deter-
mined based on the complexity of the function shape. This complexity can be
estimated by the following Hessian information H(·):

H(cj) = min
{∑

k |hk(cj)|
h0

, 1
}

(3)
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where h0 is a normalization constant and |hk(cj)| corresponds to the determinant
of the Hessian whose (i, i′)-th element is given by

∂2zk
∂cji∂cji′

= 4
J∑

j′=1

wkj′

σ2
j

(cji − cj′i)(cji′ − cj′i′)yj′ (4)

where wkj is the connection weight from the jth RBF to the kth output and
σj is the width parameter of the jth RBF. Larger Hessian information means
that the approximated function is more complex; thus, the number of pseudo
training data Pj is determined as follows:

Pj = PmaxH(cj) (5)

where Pmax is the maximum number of pseudo training data1.

2.4 Selection of Modified Connections

Since an RBF has local response to an input domain, the learning is mainly
conducted at connections to a limited number of active RBFs. This suggests
that the approximation accuracy does not hurt seriously even if the modified
connections are restricted to only the connections to active RBFs. To quantify
RBF activity, the following contribution index rj for the jth RBF is defined by
the sum of RBF outputs for a training data xp and retrieved memory items M j′

(j′ ∈ SA).

rj = min

⎧⎨⎩yj(xp) +
∑

j′∈SA

yj(cj′ ), 1

⎫⎬⎭ (6)

The connections to be modified are limited to the RBFs whose contribution
index rj is larger than a threshold η3 (i.e., rj > η3). Let us define the index
set S̃A for these active RBFs by S̃A = {j | rj ≥ η3; j = 1, · · · , J}. Then, the
modified connections are denoted as W̃ = {wj}j∈S̃A

where wj represents the
connections between the jth RBF and the outputs.

2.5 Learning of Connections

To update the connection matrix W̃ , the outputs of RBFs in S̃A are first cal-
culated for a training data xp, the retrieved memory item cj (j ∈ SA), and the
pseudo data ĉjl (j ∈ SA; l = 1, · · · , Nj). Then, the (|SA|+

∑
j∈SA

Pj +1)× |S̃A|
activation matrix Φ̃ is defined. Here, |S̃A| is the number of RBFs in S̃A.

When learning pseudo training data, sometimes the error does not decrease
to a satisfied level without modifying the connections to RBFs that are not
included in S̃A. Empirically, it is known that such pseudo data often exist in
1 Since a large Pmax results in high computation costs, it should be determined de-

pending on available computer resource.
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the outermost domain supported by the centers of RBFs in S̃A. To alleviate the
interference by such pseudo training data, the learning ratio should be small for
the connections to the RBFs whose centers are in the outermost domain.

For this purpose, the learning ratio is determined based on the contribution
index rj and define a matrix R whose diagonal elements are given by rj (j ∈ S̃A).
Using R, the update of connections ∆W̃ is given by

∆W̃ = R(Φ̃
′
Φ̃)−1Φ̃

′
(T − Φ̃W̃ ) (7)

where W̃ , Φ̃, and T correspond to the matrix of restricted connections, the
activation matrix, and the target matrix for Φ̃, respectively. Instead of calcu-
lating the inverse of the matrix in Eq. (7), we use the singular decomposition
Φ̃ = UDV ′; then, Eq. (7) is reduced to

∆W̃ = RV D−1U ′(T − Φ̃W̃ ). (8)

3 Experiments

3.1 Study on Negative Interference

Scale of Negative Interference. There are two types of interference caused by
learning training data: the one is positive interference enhancing the generaliza-
tion performance and the other is negative interference leading to the destruction
of past knowledge [10]. To study the effect of the interference, we propose a scale
to quantify the positive and negative interference and utilize for evaluating the
capability of suppressing the interference in the proposed RAN-LLR.

Let f(x) and f ′(x) be the input-output functions of a neural network before
and after the incremental learning is carried out, respectively; and let f∗(x) be
the true function. Furthermore, let us define the following two sets S+

I and S−
I

for a training data set X :

S+
I = {x|x ∈ X, |f(x)− f∗(x)| > |f ′(x)− f∗(x)|} (9)
S−

I = {x|x ∈ X, |f(x)− f∗(x)| ≤ |f ′(x)− f∗(x)|}. (10)

S+
I and S−

I respectively represent the sets of points that make the generaliza-
tion error decreased and increased by learning data x incrementally. Then, the
positive interference and the negative interference can be measured by

I+ =
∫

x∈S+
I

|f ′(x) − f(x)|dx (11)

I− =
∫

x∈S−
I

|f ′(x)− f(x)|dx. (12)

The effectiveness of suppressing the interference is measured by the following
ratio between the positive and negative interferences.

C =
I−

I+ + I−
. (13)
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If C is larger than 0.5, it means that the negative interference dominates over
the positive one, resulting in poor performance. On the contrary, if C is less than
0.5, it is considered that stable incremental learning is conducted.

Results. To see how the interference is suppressed in RAN-LLR, the following
one-dimensional function approximation problem is applied to RAN-LLR:

g(x) =
{

4(x− n) (n ≤ x < n+ 0.5)
−4(x− n− 1) (n+ 0.5 ≤ x < n+ 1). (14)

The domain of x is defined for n = 0, 1, · · · , 9 in Eq. (14). 200 training data
(x, g(x)) are randomly generated and they are given to learn one after another.

The evaluation is made by comparing with the following models: (1) Re-
source Allocating Network with Global Linear Regression (RAN-GLR) and (2)
RAN-LLR without the learning rate R (RAN-LLR(noR)). In RAN-GLR, no
restriction on the connections is imposed in learning. Thus, all the connections
are trained with all the memory items when a training data is learned. Since the
interference is suppressed almost completely, RAN-GLR gives the target per-
formance for RAN-LLR. On the other hand, RAN-LLR(noR) is adopted to see
the effectiveness of introducing R in Eq. (8); that is, the interference caused by
removing R is investigated.

Figures 1 (a) and (b) demonstrate the time evolutions of the average errors
and the negative interference rates C. As seen from Fig. 1, at the early learning
stages, C is kept small (i.e., the positive interference dominates) and the average
error is quickly dropped. In RAN-GLR, the interference is always suppressed
quite effectively and the output error quickly converges. As seen from Fig. 1
(b), the proposed RAN-LLR suppresses the interference fairly well and it has
almost the same level of interference as RAN-GLR at the last part of learning
stages. Without R in Eq. (8), the negative interference often dominates in RAN-
LLR(noR). Obviously, the reason why the error goes up and down after the
70th learning stage in Fig. 1(a) results from the dominance of the negative
interference.
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3.2 Performance Evaluation

Experimental Setup. To evaluate the performance of RAN-LLR for noisy
and multi-dimensional data, we apply RAN-LLR to the water purification pre-
diction problem where the quantity of injecting chemicals in a filtration plant is
predicted. An input is given by a 10-dimensional vector and the output corre-
sponds to the degree of contamination. The numbers of training and test data
are 241 and 237, respectively. Training data are randomly given one by one. In
RAN and RAN-GD, the learning is terminated when the root mean squared
error (RMSE) is lower than 0.1 or the learning times exceeds 50,000.

Here, the following incremental models are evaluated:

1. Locally Weighted Regression (LWR) [9]
2. Memory-based RBF Network (RBFN) [2]
3. Resource Allocating Network (RAN) [4]
4. RAN-LTM by Gradient Descent Learning (RAN-GD) [6]
5. RAN by Global Linear Regression (RAN-GLR) [7]

LWR and RBFN belong to so-called memory-based learning models which give
high performance but need large memory costs. Therefore, the performance of
the two models is referred to the target performance. RAN is adopted to study
the effect of suppressing the interference, and RAN-GD is adopted to study the
effectiveness of the linear regression approach. To see the effectiveness of re-
stricting modified connections, we also evaluate the performance of RAN-GLR
in which all the connections are trained.

Results. Table 1 shows RMSE for test data, learning time, and required mem-
ory. As seen from Table 1, the test RMSE of the RBF network is the largest
among six algorithms because the learning tends to overfit to training data. In
addition, the RBF network requires large memory to store the training data.
Although the memory usage of RAN is the smallest and the learning is fast, it
has large RMSE due to the lack of the function to suppress the interference. The
learning of RAN-GD is also fast but the error is slightly larger than the pro-
posed RAN-LLR. The proposed RAN-LLR has the lowest test RMSE which is
almost the same as LWR and RAN-GLR. In terms of learning time and required
memory, RAN-LLR has good performance as an incremental learning model.

Table 1. Performances for the water purification prediction problem

Test RMSE Time (sec.) Memory (MB)

LWR 1.66 - 44.3

RBF Net 2.38 75.0 489.7

RAN 2.25 4.5 9.0

RAN-GD 1.93 399.6 13.2

RAN-GLR 1.68 3.9 17.1

RAN-LLR 1.65 2.0 15.0
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4 Conclusions

In this paper, we proposed a fast and efficient incremental learning algorithm of
RAN-LTM [6] called RAN-LLR in which the linear regression method is applied
to learning a restricted set of connections. In the proposed RAN-LLR, only
several training data that are essential to maintain the approximation accuracy
are selected and stored in long-term memory (LTM) as memory items. In order
to suppress the catastrophic forgetting, a minimum set of memory items are
retrieved from LTM and learned with training data. In addition, pseudo training
data are generated based on the complexity of the approximated function and
learned to suppress the interference. The primary feature of RAN-LLR is that the
computation and memory costs are not significantly increased when a problem
domain is dynamically expanded over time.

To evaluate the incremental learning performance of RAN-LLR, we first stud-
ied how the negative interference was suppressed to attain good approximation
accuracy. Then, we applied RAN-LLR to a real-world prediction problem. As
a result, we demonstrated that RAN-LLR had better approximation accuracy
compared with the memory-based RBF network and RAN, and that the perfor-
mance was comparable to LWR with less memory costs.
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Abstract. We investigated the coordination among agents in a goal

finding task in a partially observable environment. In our problem for-

mulation, the task was to locate a goal in a 2D space. However, no infor-

mation related to the goal was given to the agents unless they had formed

a swarm. Further more, the goal must be located by a swarm of agents,

not a single agent. In this study, cooperative behaviours among agents

were learned using our proposed context dependent multiagent SARSA
algorithms (CDM-SARSA). In essence, instead of tracking the actions

from all the agents in the Q-table i.e., Q(s,a), the CDM-SARSA tracked

only actions ai of agent i and the context c resulting from the actions

of all the agents, i.e., Qi(s, ai, c). This approach reduced the size of the

state space considerably. Tracking all the agents’ actions was impractical

since the state space increased exponentially with every new agent added

into the system. In our opinion, tracking the context abstracted unnec-

essary details and this approach was a logical solution for multiagent

reinforcement learning task. The proposed approach for learning cooper-

ative behaviours was illustrated using a different number of agents and

with different grid sizes. The empirical results confirmed that the pro-

posed CDM-SARSA could learn cooperative behaviours successfully.

Keywords: Multiagent reinforcement learning, Context dependent mul-

tiagent SARSA, Learning cooperative behaviours.

1 Background

Reinforcement learning is a learning paradigm where feedback to the learner
is less specific than feedback in supervised learning; as is the case in many
real life scenarios. However, the feedback informs how fruitful the current situ-
ation is and the learners could benefit from this feedback. From the literature,
many studies of single agent reinforcement learning have been explored, for ex-
amples, TD-Gammon, Samuel’s checkers player, Acrobat, Elevator dispatching,
Dynamic channel allocations and Job-shop scheduling [15]. Recently, multiagent
reinforcement learning (MARL) has received much attention. MARL extends a
single agent RL to multiagent RL and has attracted the interest of researchers
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in game theory [2], [6]; behavioural learning in robots [11]; multi-robot [1], [8];
and multiagent [16] disciplines.

In this paper, our investigation concerns behavioural realisation (i.e., forma-
tion forming, formation keeping and goal finding) which is one of the focus areas
in robotic swarm and multiagent communities. Swarm formations such as fish
schooling, bird flocking and other group hunting behaviours are emerging co-
operative behaviours among group members in nature. These behaviours evolve
for survival necessity. In nature, group hunting in animals increases the success
rate of their hunts. We are interested in emulating this kind of cooperative be-
haviours in multiagent systems. In our setup, agents must learn to form a group
and once the group is formed, the common goal would be realised by all agents.
The common goal would disappear if the formation is not kept by all agents.
So agents must learn to form a swarm then keep the formation while moving
towards the goal. Formation and formation-keeping in robotic swarm have been
studied in particle swarm optimisation (PSO) [5] and robotic swarm [1]. Inter-
ested readers may want to see a good review on cooperative mobile robotics by
[4]. Here, we are interested in investigating these issues from the perspective of
multiagent RL.

RL has its roots strongly established around Markov Decision Processes
(MDPs). A MDP is a tuple 〈S,A,R, T 〉 where S is a finite discrete set of states,
A is a finite set of discrete actions, R is a reward function R : S×A→ " and T
is a state transition function T : S × A → Π(S) which informs the probability
distribution of all possible next states from the current state-action pair. Among
reinforcement learning techniques, Q-learning [17] is one of the most popular
techniques for a single agent paradigm. Q-learning learns state-action value to
estimate the optimum policy.

Q(s, a) ← (1− α)Q(s, a) + α(R(s, a) + γV (s′))

V (s) ← maxa∈AQ(s, a)

The extension of Q-learning from a single agent to a multiagent framework has
been studied by many colleagues. There are good surveys from [14], [18], [12]
and recently by [3] which we would not want to repeat here, though we would
touch on some closely related works again for background information.

In the early attempts to apply a standard Q-learning to multiagent by [13],
each agent employed different stationary policies. However, the dynamicity of
multiagent could not be approximated using stationary policies. It was clear
that the state-action pairs in Q-learning must take into account the states and
actions of all agents in the system. The other agent’s action was taken care
of in the minimax-Q-learning suggested by [7]. The minimax-Q-learning was
the solution for a zero-sum stochastic game (i.e., competitive behaviours). The
minimax-Q-learning was later on extended to Nash-Q that could handle a general
sum stochastic game [6]. It was pointed out by [14] that although the minimax-Q
and Nash-Q learning algorithms were extended to handle general sum stochastic
games, it could be favorable to opt for belief-based algorithms such as fictitious
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play. In fictitious play, agents maintain their own Q values which were related
to joint actions and their past play [18].

In a recent work by [10], a relational representation was proposed to reduce
the size of the state space. In his rQ learning approach, an r-state, defined by
a set of first order relations, abstracted the states and helped reduce the size of
the state space.

All the works mentioned employed variations of Q-learning. In our experiment
here, we also resort to Q-learning. We employ SARSA which is an on-policy RL
algorithm [15]. In the next section, the proposed context dependent multiagent
SARSA is elaborated.

2 Context Dependent Multiagent SARSA

Let us quickly go through the main components of a multiagent reinforcement
learning: environment, agents, actions and evaluations. The environment (E)
in a multiagent setup is always dynamic since an agent’s actions are always
dependent on other agents’ actions. Traditional Markov Decision Process (MDP)
for a single agent could be extended to handle many agents by including other
agents’ actions in the equation (i.e., Qi(s,a) is the state-action value for agent
i on state s and a vector of actions a):

Qi(s,a) ← (1− α)Qi(s,a) + α(R(s,a) + γVi(s′))

Vi(s) ← maxa∈AiQi(s, a)

2.1 Problem Formulation

In our problem formulation, agents must cooperate in order to accomplish the
task of goal-finding. The task must be approached in two stages; firstly, agents
must form a swarm in order to perceive the common goal and the formation must
be kept so that the goal remains visible to them until the task was completed
(see figure 1). The environment here was dynamic and the agents’ actions were
dependent on other agents’ actions.

Here, the multiagent SARSA was adopted. Traditionally, Qi(s,a) is con-
structed for all the actions of all the agents. This approach results in a huge state
space explosion when the number of agents increase. In our implementation, the
Qi(s,a) was set up as Qi(s, ai, c) where c was the context. By referring to the
context which abstracted agents’ actions, the state space was greatly reduced (as
compared to keeping track of the agents’ actions). In this experiment, there were
two contexts, one was the swarm not yet formed and the other was the swarm
already formed. Table 1 summarises our context-dependent multiagent SARSA
algorithm.

Determining the context. In our setup, all the agents’ actions could be ab-
stracted to whether (i) the joint actions had resulted in the swarm-formation or
(ii) not yet. The swarm would be formed if the distances of each agents to the
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Goal Goal
A1

A2

A3

A4

A1
A2 A4

A3

A1

A3
A4 A2

(a) (b) (c)

Fig. 1. Problem formulation: (a) agents learned to cooperate and form a swarm, the

goal was not informed if a swarm was not formed, (b) the swarm formation was main-

tained while moving towards a goal, and (c) a goal state

Table 1. The CDM-SARSA algorithm

Context Dependent Multiagent SARSA

Initialise Qi(si, ai, c) for each agent i arbitrary

Repeat for each episode:

Initialise si

Repeat for each step of episode:

Choose ai according to policy π(si)

Agent i take action ai

Observe r from s′i
Observe context c from s′i
Update value function:

Qi(si, ai, c) ← Qi(si, ai, c) + α[r + γQi(s
′
i, a

′
i, c

′) − Qi(si, ai, c)]
si ← s′i, ai ← a′

i, c ← c′

Until max step or until the goal is reached

Until max episode

center of the swarm was less than 7 distance units. The center of the swarm was
determined by

∑n
i Agi(x, y)/n where n was the number of agents in the model

and Agi(x, y) denoted the (x, y) coordinates of an agent i.

Determining the reward. Setting up a rewarding mechanism in RL was cru-
cial for the success of RL. The rewarding mechanism determined how the policy
was modified. This was directly related to the desired or undesired situation the
agent was in. In our experiment, agents were punished if they ran into the wall
(-1.0 credit), or moved away from the formation (-0.1 credit); agents were re-
warded if they moved towards each other. After agents had successfully formed a
swarm, if the center of the swarm moved towards the goal, each agent would be
rewarded (0.1 credit). While maintaining the swarm, if agents moved too close
to each other (threshold was set at 2 distance unit) they would be punished (-0.1
credit). If the swarm was broken, all agents would be punished (-0.1 credit). All
agents were rewarded 100 credits if the goal was achieved.
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2.2 Experimental Setup

Environment. The environment here was a 2D landscape with grid sizes of
16× 16, 32× 32 and 48× 48 (for three sets of experiments). Initialised positions
of the agents and a goal were fixed for each experiment (see Table 2). In each
time step, an agent might move in any of the following directions: n, e, s, w, ne,
nw, se and sw according to its policy. The agents’ decisions to move to any one
of the eight directions would be evaluated and either a positive or a negative
feedback would be given to the agents. The agents, however, were not given
any information about the environment and they were supposed to learn the
cooperative behaviours by themselves.

Table 2. The parameter settings for the MARL experiments

Parameter Settings Values

Environment
Grid size 16 × 16 32 × 32 48 × 48

Position of the Goal (15,15) (28,28) (44,44)

Position of Agent-1 (2,2) (3,3) (5,5)

Position of Agent-2 (15,2) (30,3) (44,5)

Rewards & Actions
Formation is formed 0.1 credit

Formation is not formed -0.1 credit

Move toward goal 0.1 credit

Move away from goal -0.1 credit

Move closer to formation 0.1 credit

Move away from formation -0.1 credit

Agents hit the wall -1.0 credit

The goal is reached 100 credit

Possible actions A {n, e, s, w, ne, nw, se, sw}
MARL-parameters

Learning rate α 0.3

Discount rate γ 0.8

ε-greedy probability 0.01

Max-iteration 1000

Max-episode 50

Experimental Designs. Two experiments were reported here. In the first
experiment, the behaviours of two agents were investigated in three grid sizes.
The three grid sizes employed here were 16×16, 32×32 and 48×48 respectively.
Two agents were placed in a specified location (see table 2 for the parameter
setting used in the experiments).

In the second experiment, the effects from a different number of agents were
investigated. Here, the grid size was fixed at 32× 32 and the numbers of agents
of 2, 4 and 6 were investigated. The agent Ag1 to agent Ag6 were placed at the
following coordinates (3,3),(30,3),(6,6),(27,6), (3,30) and (6,27) respectively. The
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choice of coordinates for all the experiments was arbitrary but fixed throughout
each of the experiment. They were mostly on the corners since the distance would
be longest in this way (note, the longer the distance, the harder the problem).

3 Results and Discussion

Locating a goal position in a 2D space by a group of agent is a hard problem
when agents are not informed about the goal unless they have formed a swarm.
Information about the goal would disappear if the swarm is broken. This in-
duces two kinds of behaviours: forming a swarm and locating the goal which are
analogous to group hunting behaviours observed in animals. The constrain of
swarm-formation requirement is suitable for studying cooperation in multiagent
reinforcement learning. Agents must learn to form a swarm and keep the swarm
as this would lead to a more fruitful outcome.

Two sets of experiments were carried out to test our proposed context-
dependent multiagent SARSA. Behaviours of agents with different grid sizes and
with different numbers of agents were illustrated in Figure 2. From the top pane
of Figure 2 (experiment I), an average of 280 steps was required for 2 agents
to locate the goal for a grid size of 48×48; an average of 50 steps for a grid
size of 32×32; and an average of 20 steps for a grid size of 16×16. The per-
formance of the system was very impressive since an exhaustive search would
require (worst case) of 2304 steps (i.e., 482), 1024 steps (i.e., 322), and 256 steps
(i.e., 162) respectively (assuming that two agents had already form a swarm).
Without giving away the swarm formation condition, the task might never be
accomplished since the probability that all agents would be in the goal position
at time t was extremely small.

From the bottom pane of Figure 2 (experiment II), the system’s behaviours
of different number of agents with a fixed grid size were investigated. It was
found that an average of 280 steps had been required for 6 agents to locate the
goal for a grid size of 32×32; and an average around 50 steps for 4 agents and 2
agents to locate the goal for a grid size of 32×32. Both experiments confirmed
that agents did learn effective policies for the given task (evident from successful
policies learned by different agents -see Figure 3; and effectiveness of the learned
policies -see Figure 2).

3.1 Discussion on the Approach Taken

SARSA is one of the most popular on-policy temporal difference (TD) meth-
ods. SARSA with a single step sample backup is simple to be implemented and
yet has proved to be powerful for many single agent applications. In a multia-
gent scenario, it would not be feasible to apply the traditional SARSA to learn
and control agent behaviours since (i) the environments of multiagent are non-
stationary, and (ii) the state space would grow exponentially with additional
agents added into the system.

Attempts to maintain separate Q-tables for each agent without taking into
account other contexts are only logical if all agents do not interact. That is, if
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Fig. 2. Experiment I (top): The median of steps (over 20 repetitions) from 50 episodes

for two agents. Three different grid sizes employed here were 16 × 16, 32 × 32 and

48 × 48; Experiment II (bottom): The median of steps (over 20 repetitions) from 50

episodes for two, four and six agents. The grid size used in this experiment was fixed

at 32 × 32.

each agent is independent and coordination/cooperation is not required for the
task. Otherwise, it is always necessary to take into account the actions of other
agents. What can be done here? Keeping track of all agents actions is a logical
extension from the RL to the MARL frameworks. Unfortunately, the state space
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Fig. 3. Gradient of state values from agent 1,2,3,4 (arbitrary picked from one episode).

All agents start at different positions and locate the goal at (28,28).

would be intractable soon since each additional agent would expand the state
space by the order of |S|n|A|n where n in the number of agents, |S| and |A| are
the cardinalities of the agents’ state-space and actions respectively.

Instead of keeping track of the action vector a in Qi(s,a), here we kept track
of Qi(si, ai, c) where c was the context. We argue that with the appropriate
context (appropriate here meant the context that reflected the outcome of the
dynamicity of the agents actions), it was possible to abstract a vector of actions
a and replace it with context information c. Figure 2 shows that each agent
did learn optimal policies using our proposed CDM-SARSA approach. The goal
was located successfully with different grid sizes and with a different number of
agents. The gradient of states’ value (Figure 3) also confirmed that each agent
had learned the path to the goal successfully.

4 Conclusion

It is important to point out that although the cooperative behaviours presented
here was only in 2D space, the principle could be generalised and scaled up to
real life problems such as unmanned robots in hazardous environments. In such
a scenario, it would be inefficient to associate states with spatial positions since
there are far too many states. States and actions must be carefully represented
as pointed out by [10]. As discussed in this report, it would be a good tactic not
to worry about other agents’ actions but to focus on the outcome context of the
environment from those actions.
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We have shown in this paper that adding relevant contexts to reflect the
status of the environment (which was altered by other agents’ actions) was a good
approach in dealing with the explosion of the state space in MARL. In this report,
the non-stationary characteristic of the environment was dealt with by adding
two contexts to the MARL algorithms instead of adding other agents’ actions.
These contexts were (i) incomplete formation and (ii) completed formation. The
results show that the agents could successfully learn to form a swarm-formation
and maintain the formation while searching for the goal. The abstraction of
actions to contexts reduced the additional |S| ×|Si| × |Ai| to only |S| ×|C|,
where S was the current state space and C was the context which |C| was
usually a lot smaller than |Si| × |Ai|.

In this work, we have shown that it was possible to deal with the dynamicity
in MARL by abstracting a vector of actions a into contexts and then use these
contexts in the context dependent multiagent SARSA algorithm. In further work,
two directions could be pursued, one is to develop the framework for developing
the context dependent multiagent SARSA and the other is to apply this idea to
deal with intractability issue in a real life problem.

Acknowledgement. I would like to thank anonymous reviewers for their useful
comments and suggestions.
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Abstract. This report discusses the behavioural learning properties of a

musical agent learning to generate a two-part counterpoint using SARSA,

one of the on-policy temporal difference learning approaches. The policy

was learned using hand-crafted rules describing the desired characteris-

tics of generated two-part counterpoints. The rules acted as comments

about the generated music from a critic. The musical agent would amend

its policy based on these comments. In our approach, each episode was a

complete 32-bar two-part counterpoint. Form and other contexts (such

as chordal context) were incorporated into the system via the critic’s

rules and the usage of context dependent Q-tables. In this approach the

behaviours could be easily varied by amending the critic’s rules and the

contexts. We provide the details of the proposed approach and sample

results, as well as discuss further research.

Keywords: Reinforcement learning, SARSA, Machine generated tonal

counterpoint.

1 Background

Reinforcement learning (RL) is a learning paradigm that has been paralleled to
the process of reinforcement by dopamine found in humans [11]. The evaluative
feedback of an agent’s actions in reinforcement learning is not as explicit as the
feedback in a supervised learning paradigm. The mapping of states and fruitful
actions are usually learned after many trial-and-error attempts. RL has been
successfully demonstrated in many tasks such as a pole balancing task where an
agent tried to balance a pole as long as it could. In this task, the desired states
were states where the pole was balanced in the air and the undesired states were
the states where the pole lost its balance. Behavioral learning in this style is
suitable to be modelled using reinforcement learning. In this report, we consider
the problem of learning creative behaviours, in particular, learning to generate
two-part tonal counterpoints.

Algorithmic composition has been investigated by researchers in the AI-music
circle since the 1960s. In this area, systems based on rule-based approach, evo-
lutionary approach and machine learning approach have been explored. Among

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 580–589, 2009.
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the variety of approaches that have been investigated by researchers, the appli-
cations of RL in the music domain is not widely adopted yet, only recently has
reinforcement learning been paid due attention in music domain.

In comparison to rule-based, evolutionary and supervised learning approaches,
the RL approach provides flexible more ways to incorporate both exploration and
exploitation in its learning mechanism. The exploration of state space in a rule-
based approach [5], [9] and an evolutionary approach [7], [15] could be seen as
relying on the generate-and-test and modify-and-test techniques respectively. In
essence, the rule-based and the evolutionary approaches explore the state space
based on a predefined policy residing as rules or fitness functions. This technique
could work well in many domains. However, the approaches do not attempt to
make use of the experience gained during the search process to adjust the policy.
Although, some forms of adaptive search have been investigated, RL offers a
different flavour as to how the state space is explored. Past experiences modify
an agent’s current policies and contribute to the way the state space is explored.

Other machine learning approaches such as artificial neural network [16], [2]
and Hidden Markov Model [1] have also been investigated by researchers. These
group of machine learning approaches offer attractive features of automated do-
main knowledge acquisition through training. Nevertheless, the training samples
must be prepared, in a way, to manipulate what is supposed to be learned. In
this sense, RL offers a more flexible methodology worth investigated into.

Here, we investigated a system that generated compositions in the style of
two-part counterpoint 1 using RL. In RL paradigm, an agent explores the state
space as well as exploits its best knowledge about the terrain of the search
landscape. The agent learns about the search landscape from implicit feedback
in the RL. Exploration and exploitation in RL are quite unique compared to
other approaches.

In music domain, it is generally agreed that it is impossible to lay down
fixed rules for composing music. This is because music rules are highly context
dependent. However, there are some basic practical norms which novice music
students are taught when learning to write a two-part counterpoint. These prac-
tical norms could be used to criticise the quality of music generated by an agent.
It is possible to adjust an agent’s behaviours (i.e., the policy) based on these
criticisms. In this way, an optimal policy could be learned by sampling the state
space to estimate the utility of state-action pairs Q(s, a) :

Q(s, a) ← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]

where α is the learning rate and γ is the discount rate (see [13]).

2 Generating Tonal Counterpoints Using SARSA

Counterpoint is the style of music that has more than two or more simultaneous
melody lines. Counterpoint has its origin in church music since 900 AD. The term
1 “...the more common use of the word is that of the combination of simultaneous

parts or voices,...” quoted from [8].
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counterpoint may carry more specific connotations when used to describe par-
ticular stylistics such as Palestrina counterpoint, Bach counterpoint, etc. Here,
the term tonal counterpoint is used to describe computer generated music based
on major and minor scales. In this exercise, we are interested to see the agent’s
behaviour in generating a two-part tonal counterpoint (hereafter, counterpoint)
using SARSA [12].

2.1 Knowledge Representation

To apply SARSA to generate a tonal counterpoint, two important criteria must
be considered: (i) the states and actions must represent the counterpoint gener-
ation process, and (ii) the representation must facilitate the performance eval-
uation process. A major drawback of RL is the issue of intractable state space.
Although this issue is common in all approaches, in RL, it is crucial to devise
the representation so that the state space would not be too large. The reason
is that RL estimates the optimum policy from all possible states so we would
prefer all the states to be visited.

Representing state-action. Here, the states represent the pitches and the
actions represent the steps (intervals) between the current pitches and the next
pitches. Since we are interested in generating a two-part counterpoint, each state
represents a pair of pitches (p1, p2) and each action represents a pair of actions
(a1, a2), one for each part. Figure 1 illustrates the basic concept of our setup.

s

s’

s’

s’

s’

a r

t+1tt0 tn

One episode

plausible next states

plausible next states t t+1

Fig. 1. Formulating two-part counterpoint using SARSA. Each episode, from t0 to tn,

represents 32 bars of music. At time t the next plausible pitches for the two part are

determined using SARSA.

In our two-part counterpoint experiment, the normalised scale degrees in both

parts were {
<
4

<
5

<
6

<
7 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂

>
1 }2. Each voice could stay the same or

move up/down up to five scale degrees {-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5}.
The representation choice of states and actions above was quite effective for our
problem setup. The size of the Q-table would be 12*12*11*11 = 17424 states.

2
<

5 means dominant degree in the lower octave and
>

5 means dominant degree in the

upper octave respectively.
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Representing performance evaluation criteria. The performance of RL
depends on the performance evaluation criteria. Important dimensions in music
could be described using form, melody, harmony and texture. To generate a
two-part counterpoint from Qπ(s, a) above, two issues need to be addressed:
(i) the evaluation criteria for the generated content, and (ii) the overall form
of the composition. Table 1 summarises all the evaluation criteria used in this
experiment (see [14] for definitions of these musical terms).

Table 1. Evaluation criteria

Criteria Reward value

Parallel fifth, octave -0.1

Crossing between parts -0.1

Spacing between voice more than one octave -0.1

Repeated notes -0.1

Repeated consonant major, minor third -0.1

Repeated consonant major, minor sixth -0.1

Wide leap interval -0.1

Dissonant progression second, tritone -0.1

Consonant progression major, minor third 0.1

Contrary motion 0.1

For the second issue, we decided to code the desired formal structure of
a two-part counterpoint in each episode. That one episode represented a 32
bar composition of a two-part counterpoint. Figure 2 illustrates the tactic we
employed to capture both the form and context of the composition. Adding
chord (tonality or chordal) contexts could be dealt with by expanding the Q-
tables from one to seven tables. The total states would be 17424*7 = 121968
states.

I V

I

V IV

I ii

I

I

I

IV V V I

I Vii iiV

V vii ii V vii V

ii IV ii−V ii−VI V I

Fig. 2. Coding a desired form and choral contexts into a two-part counterpoint. The

figure shows 32 bars chordal context in a major mode.

2.2 Applying SARSA with Chordal Context

SARSA has its name from its backup diagram (i.e., s, a r→ s′, a′). It is a pop-
ular on-policy TD control. An agent learns the action-value function Q(s, a) from
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action a on the state s. Q-learning learns state-action value and estimates the
optimum policy using the equations below:

Qc(s, a) ← Qc(s, a) + α[r + γQc(s′, a′)−Qc(s, a)]

where α is the learning rate, γ is the discount rate, and c refers to the chordal
context (see Table 3 for parameter settings in this experiment).

Table 2. The application of SARSA algorithm in this experiment

SARSA

Initialise Qc(s, a) for all possible contexts C arbitrary

Repeat for each episode:

Initialise s for each Qc

Repeat for each step of episode:

Choose a according to policy π(s) and context c
Agent takes action a
Observe r from s′, a′, c′

Update value function:

Qc(s, a) ← Qc(s, a) + α[r + γQc(s
′, a′) − Qc(s, a)]

s ← s′, a ← a′, c ← c′

Until max step or until termination

Until max episode

Table 3. The parameter settings in our experiment

SARSA Parameter Settings

Figure 4 (a) Figure 4 (b)

Learning rate (α) 0.3, 0.5, 0.7 0.5

Discount rate (γ) 0.9 0.9

(ε)-greedy probability 0.1 0.05, 0.1, 0.2

Max-iteration 512 512

Max-episode 120 120

3 Results and Discussion

It is always hard to find an objective evaluation criteria for computer generated
music (or other algorithmic art such as paintings). Here, we present the output
from the system which has many interesting characteristics. Figure 3 shows the
two-part counterpoint in a G-major mode This is just an example from many

plausible outcomes. The generated counterpoint has 32-bar in
4
4 time which is

equivalent to 512 steps in each episode. Due to limited space, only one example
of the two-part counterpoint in a major mode is presented here.

In our opinion, the piece is quite tuneful with a good exploitation of an ascend-
ing scale motive. There are too many repeated notes here and there but on the
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Fig. 3. The generated counterpoint was in 4
4 time where 32-bar of music was equivalent

to 512 steps in each episode (i.e., each step represented a semi-quaver duration, each

bar in 4
4 time had 16 steps, therefore 32 bars had 512 steps)

whole, the piece does express characteristics of counterpoint compositions. To
be more objective about the output, we argue that the system did learn from its
experience. The overall signature of this composition emerged from the rewards
scheme provided (see Table 1). The rewards and punishments were set according
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to our theoretical knowledge of tonal counterpoints. Desired behaviours would
be encouraged by positive feedback and undesired behaviours would be discour-
aged by negative feedback. The magnitude of feedback was set arbitrarily, here,
-0.1 to undesired behaviours and 0.1 to desired behaviours. These reward signals
r, the learning rate α, and the discount rate γ were used to update agents’ poli-
cies. Hence, desired behaviours would be encouraged while undesired behaviours
would be discouraged in the future.
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Fig. 4. Smoothed reward values from 120 episodes, (top) varying learning rates α, and

(bottom) varying ε-greedy probability

From our experiment, the SARSA always converged (see Figure 4). This im-
plies that the model did learn the optimal policy. Figure 5 shows the trend of
different reward criteria over 150 episodes. It is evident that the system learned
from their past mistakes (by abstaining from repeating the mistakes) as well as
promoting fruitful actions (increasing desired behaviours).

3.1 Relations to Previous Work

Unfortunately, we could not really compare the output of this work with other
related works in the field. This is mainly because there are so many distinctive
features in each work and a comparison to their unique results would not bring
any conclusive viewpoint. Instead, a summary of closely related works is given
and discussed below.

In [6], a hybrid of recurrent artificial neural network and the actor-critic
temporal difference method were explored in a jazz improvisation task. In [3],
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Fig. 5. Changes in behaviours over 120 episodes; (top pane) reduce in undesired be-

haviors; (middle pane) increase in desired behaviours; (bottom pane) fluctuation in

consecutive third, sixth, and wide leap progressions

Dyna-Q RL was employed in the study of automatic improvisation and style imi-
tation. In a recent report by [4], SARSA(λ) was employed to create an automated
interactive music.

In RL paradigm, the representation of states, actions and reinforcement sig-
nals are the important components. The application of RL in the music domain
in previous works, commonly, abstract music to pitch, and duration of pitch as
basic building blocks. Other information, e.g., melodic interval, harmonic inter-
vals, melodic contours, harmonic movements, rhythmic motives, etc., may be
further derived from those basic building blocks.

In our work, similar abstraction was employed for music knowledge represen-
tation. The SARSA was also employed in our experiment. However, to reduce
the size of the state space, states and actions were represented using scale degrees
and the number of steps up/down the scale degrees. Other derived features such
as harmonic intervals and melodic contours were organised in terms of rules and
contexts (e.g., chordal contexts).
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4 Conclusion and Further Work

Policy learning in RL is a powerful concept. An agent is left to explore a partially
observable environment until it learns a policy (i.e., how it should react to the
environment) that maximises its return,R. The representation of the state space,
S, and actions, A, are critical since they are the abstraction of behaviours to be
learned.

Temporal-difference learning is an effective technique for learning a policy. In
this work, we explored SARSA which was a variant of TD learning to generate
32-bar two-part counterpoint pieces. By carefully selecting the representation
of states, actions, rules and contexts, a complex problem such as algorithmic
composition could be dealt with and reasonable output is obtained with com-
paratively less effort. Our approach could potentially facilitate mass automated
music generation where each composition could still be uniquely conditioned by
a set of rules, form and context provided to each piece. In further work, a few im-
mediate directions could be pursued from here: (i) to improve the handcrafted
rules for different composition, (ii) to automate rules-acquisition process, and
(iii) to apply the approach to other genres (e.g., four part writing, jazz, etc).

Acknowledgement. The author would like to thank anonymous reviewers for
their useful comments.
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Abstract. Recently, an efficient reinforcement learning method has

been proposed, in which the problem of approximating the value function

is naturally decomposed into a number of sub-problems, each of which

can be solved at small computational cost. While this method certainly

reduces the magnitude of temporal difference error, the value function

may be overfitted to sampled data. To overcome this difficulty, we in-

troduce a robust approximation to this context. Computer experiments

show that the value function learning by our method is much more robust

than those by the previous methods.

Keywords: reinforcement learning, approximation of value function,

robust approximation.

1 Introduction

In many realistic reinforcement learning (RL) problems, large state and action
spaces make the value function estimation in its original function space imprac-
tical. One possible idea to deal with this problem is to decompose the value
function effectively. In [5], the conventional RL problem of estimating the value
function was reformulated into that of estimating the error in the value function.
The error, i.e., the decomposed value function, can be more easily approximated
than the value function itself. Hence, an efficient RL method that approximates
the errors by a least-squares (LS) method and reconstructs the value function
by combining those errors was proposed [5].

Although this method was successful in minimizing the magnitude of tempo-
ral difference (TD) errors effectively, the value function can be overfitted into
sampled data, because the LS optimization is likely to be disturbed by outliers.
To overcome this difficulty, in this study, we introduce a robust approximation to
the decomposed RL [5]. That is, we employ the least-absolute deviation (LAD)
technique [3] instead of the LS optimization. Computer experiments show that
the value function learning by our method is more robust than those by the
previous methods [5] [4].

2 MDPs and Value Function Approximation

We consider finite Markov decision processes (MDPs). At time t, the agent selects
an action at according to a stationary policy π at a state st, and then moves to
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c© Springer-Verlag Berlin Heidelberg 2009



Robust Approximation in Decomposed Reinforcement Learning 591

a next state st+1 and simultaneously receives a reward rt+1. The objective is to
find the policy that maximizes the action value function:

Qπ(s, a) = Eπ

[ ∞∑
i=t

γi−tri+1|st = s, at = a

]
, (1)

where γ ∈ [0, 1) is a discount factor.
One approach to seeking an optimal policy is policy iteration [6]. This is

composed of two steps, i.e., a policy evaluation step and a policy improvement
step. In the former, the value function Qπ for the current policy π is calculated
or approximated. In the latter, the policy π is improved based on the learned
value function Q̂π (≈ Qπ). In this study, we focus on the former problem. The
Bellman equation under π is defined as

Qπ(s, a) = Eπ [rt+1 + γQπ(st+1, at+1)|st = s, at = a]. (2)

In realistic RL problems, the value function is often approximated by using a
parametric linear model, i.e., it is represented as a linear combination of basis
functions φ(s, a) whose linear coefficients constitute the parameter θ:

Qπ(s, a) ≈
M∑

m=1

φm(s, a)θm ≡ φ(s, a)′θ, (3)

where (’) is the transpose. Note that the designer of the learning system must
prepare the basis functions prior to learning. The parameter θ is adjusted in
the policy evaluation step by using the sample trajectory. One of the learning
methods is least-squares TD learning (LSTD) [2], which obtains a closed-form
solution for the linearly-approximated value function. In LSTD, for an observed
sample trajectory, the parameter vector θ is optimized so as to minimize the
cost function:

JLSTD(θ) =
1
2

T−1∑
t=0

(Qπ(st, at)− φ(st, at)′θ)2, (4)

where T is the trajectory length. The vector θ is obtained by the least-squares
optimization; more concretely [2],

θ = A−1b, (5)

where matrix A and vector b are given by

A =
T−1∑
t=0

φ(st, at)(φ(st, at)− φ(st+1, at+1))′ (6)

b =
T−1∑
t=0

φ(st, at)rt+1, (7)

respectively.
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3 Decomposed Reinforcement Learning

According to the idea of decomposed RL [5], on the contrary, the value function
is repeatedly updated as

Q̂π(s, a) := Q̂π(s, a) + ψ(s, a)′θ. (8)

In each update, the basis function ψ(s, a) and the parameter θ are updated in
order to approximate the error Qπ(s, a)− Q̂π(s, a),

Qπ(s, a)− Q̂π(s, a) ≈ ψ(s, a)′θ, (9)

instead of the value function itself (Eq.(3)). The basis function ψ(s, a) is deter-
mined by the minimax approximation [1], and the parameter θ is determined by
the procedure shown below.

The cost function of the least-squares optimization of θ is given by

JdLSTD(θ) =
1
2

T−1∑
t=0

(Qπ(st, at)− Q̂π(st, at)−ψ(st, at)′θ)2. (10)

The derivative of the cost function with respect to θ becomes

∇θJdLSTD(θ) =
T−1∑
t=0

ψ(st, at)(Ûπ(st, at)−ψ(st, at)′θ). (11)

The target of the regression problem above, Ûπ(st, at) ≡ Qπ(st, at)− Q̂π(st, at),
is replaced by the expectation of the discounted cumulative TD error:

Ûπ(s, a) = Eπ

[ ∞∑
i=0

γiδt+i+1

∣∣∣∣∣st = s, at = a

]
, (12)

where δt+1 is the TD error:

δt+1 ≡ rt+1 + γQ̂π(st+1, at+1)− Q̂π(st, at). (13)

From its definition, Eq.(12), Ûπ(s, a) satisfies

Ûπ(s, a) = Eπ[δt+1 + γÛπ(st+1, at+1)|st = s, at = a], (14)

which corresponds to the Bellman equation for Ûπ(s, a). Because Ûπ(s, a) is
unknown, a bootstrapping technique [6] is employed to approximate Ûπ(s, a) in
Eq.(11) such that the target Ûπ(st, at) is replaced by δt+1 + γψ(st+1, at+1)′θ,
and then the gradient (11) is replaced by

∇̃θJdLSTD(θ) ≡
T−1∑
t=0

ψ(st, at)(δt+1 − (ψ(st, at)− γψ(st+1, at+1))′θ). (15)
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The solution is given from ∇̃θJdLSTD(θ) = 0 as a closed form:

θ = B−1c, (16)

where

B =
T−1∑
t=0

ψ(st, at)(ψ(st, at)− γψ(st+1, at+1))′ (17)

c =
T−1∑
t=0

ψ(st, at)δt+1. (18)

This policy evaluation method is called “differential LSTD” (dLSTD) [5].

4 Robust Approximation in Decomposed RL

In dLSTD, the value function is repeatedly updated by adding a parameterized
model (Eq.(8)) to represent well the residual of the value function based on the
sampled data; this iterative procedure may make the value function overfitted
to the sampled data, in comparison to optimization of a single regression model
such as LSTD (Eqs.(5)-(7)). Especially when the number of samples is small or
their variance is large, the quality of the dLSTD value function gets worse as
the number of updating the value function (Eq.(8)) increases. This is a general
weak point of LS methods. For example, suppose that we are seeking the mean
parameter from five samples: {x0 = 1.8, x1 = 1.9, x2 = 2.0, x3 = 2.3, x4 = 100},
where x0, . . . , x3 are from the true distribution of mean of 2.0, but x4 is an
outlier. Based on the LS cost function:

HLS(θ) =
1
2

4∑
m=0

(xm − θ)2, (19)

the parameter θ is estimated as 21.6 as the solution of ∂HLS(θ)/∂θ = 0. Due to
the outlier x4, this estimation is much different from the true parameter value
2.0.

On the other hand, the cost function of the LAD optimization [3] of θ is given
based on the L1 norm:

HLAD(θ) =
4∑

m=0

|xm − θ|, (20)

where | · | denotes the absolute value. The parameter estimate is given by setting
the derivative at 0:

∂

∂θ
HLAD(θ) =

4∑
t=0

sign(xt − θ) = 0

⇒ θ̂ = median{x0, . . . , x4} = 2.0, (21)
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where sign(·) returns the sign of the input. The obtained estimate θ̂ is 2.0, which
is much robust to the outlier x4.

By employing this technique, the cost function of dLSTD (Eq.(10)) is modified
to

JdLADTD(θ) =
T−1∑
t=0

|Qπ(st, at)− Q̂π(st, at)−ψ(st, at)′θ|. (22)

The derivative of the cost function (22) with respect to θ becomes

∇θJdLADTD(θ) =
T−1∑
t=0

ψ(st, at)sign(Ûπ(st, at)−ψ(st, at)′θ). (23)

Because Ûπ(s, a) is unknown, we introduce a bootstrapping technique [6]. Similar
to Eqs.(12)-(15), we obtain the approximate derivative:

∇̃θJdLADTD(θ) ≡
T−1∑
t=0

ψ(st, at)sign(δt+1 + γψ(st+1, at+1)′θ −ψ(st, at)′θ).

Because the sign function is nonlinear and ∇̃θJdLADTD(θ) = 0 cannot be solved
in a closed form, we perform gradient-based optimization of the objective func-
tion. Then, the parameter θ is estimated by repeating

θ := θ − α∇̃θJdLADTD(θ), (24)

where α is a positive learning coefficient. We call this method “differential least-
absolute deviation temporal difference learning” (dLADTD).
Pseudo-code of dLADTD in policy iteration

(Sampling phase) Generate a sample trajectory
(Learning phase) Repeat

1. Calculate the TD error: δ0, . . . , δT−1

2. Generate the new basis function ψ(s, a) based on δ0, . . . , δT−1 by [1].
3. Repeat

– Calculate the approximate gradient ∇̃θJdLADTD(θ)
– Update the parameter θ as θ := θ − α∇̃θJdLADTD(θ)

4. Update the value function: Q̂π(s, a) := Q̂π(s, a) + ψ(s, a)′θ
(Policy update phase) Update policy and go back to (Sampling phase) or

(Learning phase)

5 Computer Experiments

We compared our method with the decomposed RL [5] and other comparable
LSTD-based method [4] by using a 200-state chain problem.
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5.1 Experimental Settings

In this problem, an agent moves through a single chain consisting of 200 states,
and the agent’s objective is to maximize the expected return defined as accumu-
lated discount rewards. In each time step, the agent selects an action from two
candidates, “left” and “right”. Each action is successfully done with probability
0.9, leading to state transition in the intended direction, but fails with probabil-
ity 0.1, making the state change in the opposite direction. The two boundaries of
the chain are dead-ends where the outward transition is replaced by staying at
the same state. Eight states are selected randomly from all of the 200 states in
each learning run; a reward of 1 is given when the agent is at one of the selected
states, otherwise, no reward (0) is given. The discount factor is set at γ = 0.9.

First, as a sampling phase, we generated a single trajectory whose length
was T = 5, 000 by using a random policy. Next, we performed a learning phase
through which we evaluated our method. In each step in the learning phase,
2-basis functions was produced by the minimax method [1], such that ψ(s, a) =
[1, 0]′ when the TD error of the pair (s, a) was larger than its average or ψ(s, a) =
[0, 1]′ otherwise. The policy was updated when log-RMSE (logarithmic root mean
squares error) of Q-function (see the next subsection) became −0.8. The entire
RL algorithm was shown in the previous section.

5.2 Experimental Results

We compared our method (dLADTD), decomposed RL (dLSTD) [5], compa-
rable LSTD-based method (LSTD) [4], and the LSTD-based method with the
random basis function (LSTD-random) in which ψ(s, a) = [1, 0]′ or [0, 1]′ was
randomly chosen regardless of the values of the state and action. We imple-
mented them using matlab 7.7.0(R2008b) on 3.00 GHz Intel(R) Xeon(R). Fig.1
and Fig.2 show the learning curves averaged over 10 learning runs for the 200-
chain problem, where Fig.1 shows the comparison in the policy evaluation and
Fig.2 in the policy iteration. The vertical axes in Fig.1(a) denote log RMSTDE
(logarithmic root mean square TD error) averaged over all pairs of state and

action: ||δ|| ≡ log
√∑T−1

t=0 δ
2
t+1/N , where N is the number of samples. The

vertical axes in Fig.1(b) denote log RMSE (the logarithmic root mean square er-

ror) between Qπ and Q̂π: ||Qπ −Q|| ≡ log
√∑T−1

t=0 (Qπ(st, at)− Q̂π(st, at))2/N .
The vertical axes in Fig.2 denote log RMSE between Qπ∗

(s, a) and Qπ(s, a),
where Qπ∗

is the value function under the optimal policy π∗: ||Qπ∗ − Qπ|| ≡
log

√∑T−1
t=0 (Qπ∗(st, at)−Qπ(st, at))2/N . The horizontal axes in the upper pan-

els of Figs.1 and 2 denote the iteration steps, and those in the lower panels denote
the CPU time (sec.).

In Fig.1(a), we can see that dLSTD is much faster than the other meth-
ods in terms of the CPU time. This result supports the conclusion of [5] about
the effectiveness of the value function decomposition. However, the TD error
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Fig. 1. Policy evaluation

can be seen as the training error, which represents the approximation of the value
function for the sampled data, not for new data. Practical learning algorithms
should pay attention to the test error rather than the training error.

Fig.1(b) shows the test error. Although the learning curve of our new
algorithm (dLADTD) was much worse than those of the dLSTD and LSTD
in Fig.1(a), it showed the best generalization ability in Fig.1(b). This is due
to the fact that the negative effects of outliers and large sampling variance
have actually eased by the LAD optimization. The learning speed of dLADTD
was slightly slower than the dLSTD and LSTD in terms of CPU time, because
the iterative gradient-based procedure (Eq.(24)) are in addition necessary in
dLADTD.
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Fig. 2. Policy iteration

Similar to Fig.1, the best performance was achieved by the dLADTD in policy
iteration (Fig.2). The policy acquired by the dLADTD was much nearer to the
optimal policy than those by the other LSTD-based methods.
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6 Conclusion

In this study, we proposed a novel scheme for policy evaluation, where the value
function was estimated by sequentially approximating its approximation error,
by means of the robust regression (LAD) technique. The value function was more
robustly approximated by LAD than by the previous least squares-based meth-
ods [5] [4]. Our experiments showed that our method has better performance in
the generalization of the value function than the existing LSTD-based methods.
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Abstract. We construct an artificial neural network called T361G to

evaluate Go board state (expected winning probability of Black’s/White’s

win conditioned on the current board state in Black’s/White’s turn). Dif-

ferent from the existing Mote-Carlo Go [3][4], which evaluates the next

move (the next board state) by performing random simulations in every

turn, we use a large number of experts’ game records of Go as training

data in order for T361G to learn the evaluation function of Go board

states. We reduce the number of parameters to be learned by taking

Go-specific properties into account. It is shown that T361G predicts the

winning probability fairly well with avoiding overtraining, even from in-

sufficient amount of data.

Keywords: Go, neural network, supervised learning.

1 Introduction

Go is a classic board game, which has been long played in East Asia. The basic
rule is simple; each of two players alternately places Black or White stone on a
board, and finally the player who has larger territory on the board becomes a
winner. However, it is very complex to analyze the strategy such as evaluating the
significance of the stone in certain board position. This complexity has prevented
making a computer Go agent that is stronger than human experts.

There are two major reasons why Go is complex to analyze; 1) The size of
Go board, 19× 19, is too big and there is almost no restriction of place to put
stones. Therefore, the search tree inevitably becomes large. 2) Different from
Chess and Shogi pieces, Go stone alone does not have an explicit role, but the
role of each stone is defined by a stone pattern whose possible combination is
enormous. Because of these two reasons, the existing methods such as α-β search
that was actually used for computer Chess agent [5], cannot be applicable to Go.

In recent years, however, computer Go agents have become strong remark-
ably due to the progress of Monte-Carlo Go [3]. The algorithm requires little
knowledge of Go. It determines the next stone place by evaluating the expected
winning rate that stems from the current situation by means of a large num-
ber of random simulations starting from the current situation. Furthermore,
UCT algorithm, which incorporates the trade-off between ‘exploration’ (of the
untested move) and ‘exploitation’ (of the best move ever tested) [1] into the

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 598–605, 2009.
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Monte-Carlo Go, was also proposed and showed the better performance than
the original Monte-Carlo Go [4]. To evaluate the winning rate from the current
state with satisfactory accuracy, these Monte-Carlo Go algorithms require nu-
merous number of random simulations, which would be a hazard for real-time
implementations of computer Go players.

In this study, we propose a new framework ‘T361G’ for constructing a board
state evaluation function. T361G evaluates the board state using a hierarchi-
cal neural network which is trained on a large number of human experts’ game
records. The hierarchical neural network receives stone positions in Black turn
(or White turn) as its input, and outputs an expected winning probability of
Black (or White). When training the neural network, the input stone positions
are randomly chosen from the game records and the output is given either 1
or 0 depending on the actual result of the game. The expected winning prob-
ability of a given board state is regarded as the board state evaluation. Based
on this evaluation function, good next move can be obtained; for example, the
player’s move that yields the highest winning probability or the move that yields
the highest winning probability after the opponent chooses his best possible
move.

T361G has several advantages over the Monte-Carlo Go; 1) By using ex-
perts’ game records, T361G can evaluate board states obtained by more realis-
tic moves than random simulations. 2) After the training, T361G evaluates the
board state quickly because the output calculation requires a simple linear al-
gebra and component-wise nonlinear transformation while the Monte-Carlo Go
requires heavy random simulations for evaluating each move. 3) While random
simulations done by the Monte-Carlo Go are just for evaluating each board state
and difficult to reuse, T361G learns weight parameters of the neural network,
implying T361G efficiently memorizes all the game records through training.
This efficient representation of memory is expected to work well for generaliza-
tion, that is, for evaluating unseen board states. On the other hand, its learning
is challenging because it is difficult to learn the parameters of such a large net-
work whose input is discrete and the dimension is as large as 192 = 361 with
avoiding overtraining. In this study, we overcome this difficulty by reducing ad-
justable parameters in the network based on Go-specific properties, and by using
a stochastic gradient descent algorithm which has good scalability to the size of
the training data.

This article is organized as follows; Section 2 describes the architecture of the
T361G network after explaining several desirable properties for our network.
The training of the T361G network is explained in Section 3. Section 4 shows
results of the learning for artificial data and for human experts’ game records.
Section 5 summarizes contributions of our study.

2 Architecture of T361G Network

A hierarchical neural network T361G attempts to solve a regression problem
in which input x represents stone positions of Go board in Black turn and its
output represents a winning probability of Black;
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p(CB |x) = f(x|θ), (1)

where θ denotes all the parameters in the T361G network.

2.1 Desirable Properties for Go Neural Network

Here, we describe Go-specific properties; we will see later that these properties
are fulfilled in our network.

– Normalization of output
The output range of our neural network should be [0, 1] because it represents
an expected winning probability.

– Symmetry between Black and White
If the expected Black’s winning probability conditioned on the input board
state in Black’s turn is P , then the expected White’s winning probability
conditioned on the board state in White’s turn in which the colors of all the
stones on the board are reversed1 should also be P , that is, the expected
Black winning probability conditioned on the reversed board in White’s turn
should be 1− P .

– Rotational and mirror symmetry in Go board state evaluation
Since the relative stone positions do not change by the rotation and the
mirror-image reflection of the board, the evaluation of the board state should
be invariant with respect to such transformations. Because four ways of rota-
tions and two ways of mirror-image reflections yield eight possible equivalent
transformations, the output of our neural network should be consistent over
such eight equivalent inputs.

2.2 Strong Local Correlations in Stone Patterns

If we employ a simple architecture in which M hidden units are connected to all
the input units of 19× 19 = 361, the number of weight parameters between the
input and the hidden layers amount 361×M . Since this number is quite large,
there is a risk of overtraining and the calculation of the network output requires
a large computation cost. For dimension reduction of parameters, we focus on
local patterns of stones. Because it is said that there are good or bad local
stone patterns, such local patterns should be paid attention to when evaluating
the board state. Therefore, each hidden unit is assumed to have its receptive
field on the input board, in particular, 4 × 4 patch on the Go board; there are
no connections from other positions on the board. Furthermore, it is assumed
the function of receptive fields is the same between different hidden units; the
weights for connections between a hidden unit and its corresponding input patch
are common over the hidden units. Such local patches (receptive fields) are made
as many as possible (in total 16 × 16 = 256) with overlapping each other so
that the patch boundary does not affect so much. Then, the number of weight
parameters we should tune reduces to 16×m where m is the number of hidden
units connecting local patches.
1 Note that Black and White’s symmetry does not mean there is no asymmetry for

the winning probability if one takes the initial move or the second move.
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2.3 Architecture of T361G Network

To incorporate the above properties, our hierarchical neural network is organized
as follows. Let x(1) be a 19 × 19 = 361 dimension vector representing an input
board state. The i-th element xi (i = 1, · · · , 361) takes 1,−1 and 0 when there is
Black stone, White stone, and no stone, respectively, at the i-th position of the
board. From given input x(1), we replicate the other seven equivalent (rotational
and mirror-image symmetric) board states denoted as x(k) (k = 2, · · · , 8). These
equivalent inputs x(k) (k = 1, · · · , 8) are fed into eight identical networks to
satisfy the rotational and mirror-image symmetry of the board (their integration
will be seen later). Since the eight networks are identical, hereafter we explain the
architecture of one of the eight networks, in which the input is simply denoted
as x.

First, 16-dimensional patch vectors z(i) (i = 1, · · · , 256) are extracted from
the input x, each of which corresponds a certain 4 × 4 local patch on the Go
board. Each patch z(i) connects eight first-layer hidden units h(1)

l,i (l = 1, · · · , 8),
which are obtained as

h
(1)
l,i (x) = 2σ

(
(w(1)

l )Tzi

)
− 1 (2)

where w(1)
l (l = 1, . . . , 8) is a 16-dimensional weight vector and σ(x) ≡ 1

1+exp(−x)

denotes a logistic sigmoid function. T denotes a vector transpose. Note that h(1)
l,i

extracts the same feature as far as the input local patch is same irrelevant to
the position of the patch on the Go board. By representing the concatenation
of 256× 8 first-layer hidden units h(1)

l,i as h(1), the second-layer hidden unit h(2)
m

(m = 1, · · · , 16) is calculated as

h(2)
m (x) = 2σ

(
(w(2)

m )Th(1)
)
− 1 (3)

where w(2)
m (m = 1, · · · , 16) is a 2048-dimensional weight vector. Finally, the

third-layer hidden unit h(3) is calculated as

h(3)(x) = 2σ
(
(w(3))Th(2)

)
− 1 (4)

where w(3) is a 16-dimensional weight vector. Note that all the nonlinear activa-
tion functions for h(1), h(2) and h(3) are of the form 2σ(·)− 1 without additional
bias term so that the signs of the output are easily flipped when color of all
the stones on the Go board are reversed. Moreover, this nonlinear function is
suitable for representing the ambiguity of the judgment which player will win in
the early stage of the game, because the nonlinear function takes (nearly) zero
when the input is (nearly) zero, i.e., few stones are placed on the Go board (note
that the xi takes zero when the i-th position of the board is vacant). Finally, the
output of the T361G network, y, is obtained as the nonlinear transformation of
the summation of the outputs of eight identical networks;

y = σ

(
8∑

k=1

(w(4))Th(3)(x(k))

)
(5)
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output: y

Equivalent board states

h(X(2)) h(X(8))h(X(1))

Local  patches

Identical networks

X(2) X(8)

Patch 1 Patch 256Patch 2

Input:  X(1)

Identical weight vectors

Fig. 1. The neural network architecture

so that it satisfies the Black-White symmetry and the rotational and mirror-
image symmetry of the board. Here, w(4) is a scalar weight parameter. The
total number of the parameters to be learned is 32,913. The architecture of the
T361G network is depicted in Fig.1

3 Learning Algorithm

Based on a large number of experts’ game records as the training data, we
performed maximum likelihood estimation of the network parameters. Let xn

(n = 1, · · · , N) be an n-th training datum, which denotes a board state of a
certain experts game in Black’s turn (White’s turn), and tn be the outcome of
the game where tn = 1 and tn = 0 denote Black’s win (White’s lose) and White’s
win (Black’s lose), respectively. Then, the likelihood function becomes

p(tn|xn,θ) = ytn
n {1− yn}1−tn . (6)

By taking negative logarithm of the likelihood function, we obtain the cross
entropy error function En(θ) as follows.

En(θ) ≡ −lnp(tn|xn,θ) = −{tnlnyn + (1− tn)ln(1− yn)}. (7)

The cross entropy error function is minimized by a stochastic gradient descent
method;

θ(new) = θ(old) + ηn∇En(θ(old)), (8)

where ηn is a learning coefficient and needs to satisfy the following conditions
for convergence [6]:

∑∞
n=1 ηn = ∞ and

∑∞
n=1 η

2
n <∞. In this study, we set
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Fig. 2. Learning curve for the artificial data. The ordinate denotes the exponential of

100 test sample average of the cross entropy while the abscissa denotes the number

of learning steps, i.e., the number of training data used for the learning. The learning

constants are as follows: λ = 0.01, τ = 100, 000, and η0 = 0.1 for the solid line while

λ = 0, τ = 10, 000, and η0 = 0.5 for the dashed line.

ηn =
τ

τ + n
η0 (9)

where η0 and τ are positive constants. Although the maximum likelihood es-
timation is known to be asymptotically efficient [2], it can overfit the training
data as long as the number of training samples is finite. Then, we introduce the
following regularization term to the parameter update;

θ(new) = θ(old) − ηn∇En(θ(old))− λθ(old), (10)

where λ is a regularization coefficient whose range is [0, 1). Because the regular-
ization term decreases the absolute value of the parameter updates, it works to
stabilize the learning even from a limited number of training data.

4 Experiments

4.1 Learning with Artificial Data

We examined the performance of our hierarchical neural network using an ar-
tificial dataset whose input dimension is as high as the Go board state, i.e.,
192 = 361. In the case of real experts’ game records, the outcome could be
noisy because it depends on the subsequent playing by humans, whereas we can
control the noise easily in the case of artificial data. Then, we examined how
many training data we need to train the T361G network with avoiding over-
fitting, and how the regularization term works. For each artificial datum, the
input consists of 361 variables whose each value was set as 0, 1 and −1 with the
probabilities 0.5, 0.25, and 0.25, respectively. The corresponding output took 1
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Fig. 3. Learning curve for the real experts’ game records. The ordinate denotes the

rate of 1000 test samples whose actual outcomes were correctly predicted by the T361G

network while the abscissa denotes the number of learning steps, i.e., the number of

training data used for the learning. The solid line and dashed line denote the cases

where all the game states and the last 20 moves were used for the training and test,

respectively.

when the sum of all the input variables was more than 0, otherwise took 0. We
trained the T361G network using 1,000,000 training data, and tested on 100 test
data, which were independently generated from the training data by the same
method with that of the training data. To evaluate the generalization ability of
the T361G network after the learning, we estimated the exponential of the test
sample average of the cross entropy, which corresponds to the geometrical mean
of the accuracy of the current label estimation over the test samples. The result
is shown in Fig.2.

As seen in the figure, the T361G network successfully learns the parameters
of as many as 32,913. The geometrical mean of the accuracy reaches more than
95% with about 600,000 training data. Furthermore, it can be seen that an
appropriate regularization term accelerates the learning.

4.2 Learning with Experts’ Game Records

Real experts’ game records were then used to train the T361G network. All the
game records were taken from FLYGO (http://www.flygo.net/) of which 8,000
game records were used for training while 1,085 game records for test. Each
game record has about 100 - 200 moves. The evaluation of the Go board state
is difficult especially in the early stage because there are numerous number of
possible progresses. To see the learnability according to the progress of the game,
we tested two kinds of learning; one used all the board states for training and
test, while the other used only the board states which have less than 20 moves
before the game ends for training and test. In every step of the stochastic gradient
descent, a training datum (a board state) was randomly chosen from a randomly
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chosen game record in the dataset. In the training, it took about 210 seconds for
10,000 learning steps by Intel Dual-Core Xeon 5470 3.33 GHz. Note that T361G
can evaluate the board states very quickly after the training is completed. We
evaluated the generalization ability of the T361G network by the rate of test
samples whose actual outcomes were correctly predicted by the T361G network.
The outcome prediction was done as follows; if the output of the T361G network
was more than 0.5 conditioned on the Black’s turn, T361G is assumed to predict
the Black’s win, otherwise the White’s win. As seen in Fig.3, in the case of
training and test from the last 20 moves, T361G successfully predicted the game
outcomes as high as 65% for unseen board states. On the other hand, T361G
predicted the game outcomes around 55% when all the Go board states were used
for training and test. This performance is significantly higher than the chance
level, suggesting the learnability of the Go board state evaluation function to
some extent, nevertheless there could be tons of possibilities in the subsequent
game progress.

5 Conclusion

When the input variables take discrete values and their dimension is high, we
need a huge amount of training data, which is said “curse of dimensionality”. If
the number of available data is not sufficient, the machine learner like an artificial
neural network should suffer from overtraining. In this study, we avoid such a dif-
ficulty by reducing adjustable parameters of the network and using a stochastic
gradient descent method with a regularization. The reduction of the parameters
are expected not to deteriorate the representation power of the network because
the reduction is reasonably performed utilizing Go-specific properties (symme-
try and locality explained in Sections 2.2 and 2.3), and it was justified from
the real data learning, showing successful prediction of the winning probability.
Although we assumed identical weight parameters between each of hidden units
and corresponding local patch inputs irrelevant to the location of the patch on
the Go board, we can extend our design into incorporating special receptive field
for ‘kado’ and ‘hen’, which are clearly different from other inside spaces. Such
an extension will be done as a near future study.
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Abstract. It is well known that the photovoltaic (PV) device has a

Maximum Power Point (MPP) that can ensure that maximum power is

generated in a device. Since this MPP depends on solar radiation and

the PV-panel temperature, it is never constant over time. A Maximum

Power Point Tracker (MPPT) is widely used to ensure there is maximum

power at all times. Almost all MPPT systems use a Perturbation and

Observation (P&O) method because its simple procedure. If the solar

radiation rapidly changes, however, the P&O efficiency degrades.

We propose a novel MPPT system to solve this problem that covers

both the online-learning of the PV-properties and the feed-forward con-

trol of the DC-DC converter with a neural network. Both the simulation

results and the actual device behaviors of our proposed MPPT method

performed very efficiently even when the solar radiation rapidly changed.

Keywords: Photovoltaic, MPPT, P&O, Online Learning, non-i.i.d. data.

1 Introduction

A photovoltaic (PV) device is a type of current source, whose properties vary
depending on the level of solar radiation and the PV panel temperature. For
example, if there is a lot of solar radiation, the PV generates a large current,
but the current is reduced if the PV voltage is larger than a given voltage. The
properties are also valid depending on the temperature. Therefore, PV has a
Maximum Power Point (MPP) that can ensure that maximum power is gener-
ated. To ensure there is maximum power at all times, a Maximum Power Point
Tracker (MPPT) is needed. Almost all MPPT systems use a Perturbation and
Observation (P&O) method because of its simple procedure. However, if the
level of solar radiation rapidly changes, the efficiency of P&O degrades.

Several MPPT controllers that use a Neural Network (NN) have been pro-
posed [1] [2] [3] to solve this problem. Although these MPPT controllers quickly
respond to the rapidly changing solar radiation, almost all of them need to do
pre-learning using PV specific data.

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 606–613, 2009.
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We propose a novel MPPT system to solve this problem that covers both
the online-learning of the PV-properties and the feed-forward control of the
DC-DC converter simultaneously. The approach of the proposed method is a
combination of an online learning Neural Network and the P&O method. Us-
ing this approach, the system does not need any prior exploitation to adjust
to the PV specifications. To do this, a general regression neural network [4]
[5] is used to achieve the online learning of non-stationary inputs (non-i.i.d.
inputs).

2 Photovoltaic and MPPT

Figure 1 shows an example of the behavior of a PV device. The magnitude of the
generated current varies depending on the solar radiation S, the PV temperature
T , and the voltage VPV (Fig. 1).

1000 mW/m2
25̊ C

800 mW/m2
45̊ C

current [A]

Voltage (vpv) [V]

1

2
600 mW/m2

25̊ C

3

4

5 10 15 20 25

MPP

Fig. 1. Example of PV properties

Therefore, there is a maximum power point (MPP) for each (S, T ). Note that
the relation between the MPPs and (S, T )s is a nonlinear PV-panel specific
function.

To find the MPP, a perturbation and observation (P&O) method, which se-
quentially optimizes the PV-voltage in order to maximize the generated power,
is widely used. The P&O monitors whether the generated power is increased or
not due to the change in voltage ∆V . If the power is increased, it decides that
the next change in voltage should be the same as that of the last one (∆V ).
However, if the power is decreased, it decides that the next change in voltage
should be a negative one −∆V .

Although the P&O method is a very simple procedure to achieve the MPPT,
it cannot track the MPP very well if the solar radiation rapidly changes. To
overcome this drawback, we propose a novel MPPT method that uses a neu-
ral network, which achieves the learning and maximum power point tracking
simultaneously.
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3 Proposed System

3.1 Outline

The proposed method consists of the Neural Network (NN) and the P&O parts
(Fig. 2, 3). When solar radiation only slowly changes, the system controls the
DC-DC converter by using the P&O and, thus, the NN can learn the MPP,
which is founded by the P&O, simultaneously. On the other hand, when the
solar radiation is rapidly changing, the system controls the DC-DC converter by
using the NN so that it can track the MPP without delay.

Normally, neural networks need independent and identically distributed (i.i.d.)
samples to ensure successful online learning. In this case, however, similar train-
ing samples, which depend on the angle of incident radiation, will be consecu-
tively given to the NN. To deal with these training samples, we use a General
Regression Neural Network (GRNN) [4] for the proposed system to accomplish
the stable learning.

3.2 Neural Network Used

In this system, the neural network has to learn each sample in an online manner,
because it is difficult to store all the learning samples in the small device. More-
over, the sample distribution is not i.i.d., but the prior distribution of inputs
P (x), where x = (S, T )T , varies depending on the angle of incident radiation.

The general regression neural network (GRNN) [4] ensures stable learning in
such environments. GRNN is a memory-based network that provides the esti-
mates of the continuous variables. Even with sparse data in a multidimensional
measurement space, the algorithm provides smooth transitions from one ob-
served value to another. GRNN consists of an input layer, a pattern layer, a
summation layer, and an output layer. The output y(x) of GRNN is

on
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Fig. 2. Outline of system
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y(x) =

∑J
j=1 wjφj(x)∑J

j=1 φj(x)
, where φj(x) = exp

(
−‖x− cj‖2

2σ2

)
, (1)

where x is the input vector, J is the number of pattern units, φj is the basis
function of pattern unit j, cj is the center of the basis function, and wj is the
weight. σ2 denotes the variance of the basis function.

The learning by GRNN is achieved by adding a new unit (J +1-th unit) to the
pattern layer, and its new weightwJ+1 is set to the target output ŷ of the training
sample. In this study, if the given training sample is similar to one of the already
learned samples, GRNN does not add the new unit, but updates the weight of the
unit that is the nearest to the training sample. This is to avoid wasting not only
the memory capacity but also the computational power of the system.

Therefore, when the training sample [x̂, ŷ] is given, the GRNN calculates
dnearest = ‖x−cnearest‖2, which is the nearest center to x̂. Then, if dnearest > θ,
the GRNN adds a new unit whose parameters are initialized as

wnew = ŷ, cnew = x̂. (2)

On the other hand, when dnearest < θ, it updates the weight of the nearest unit.
The weight is modified so that it is close to ŷ according to the following equation,

wnearest = (nwnearest + ŷ)/(n+ 1), (3)

where n is the number of samples given to the unit. Note that the above equation
means that wnearest is set to the averaged target values, which are given to
the unit. Using this strategy, the GRNN reduces the wrong influence due to
noisy target values. In this learning algorithm, if θ is large, the number of units
decreases, but the mean square error (MSE) of the GRNN will be large. On
the other hand, if θ is small, the MSE may decrease, but the number of units
increases. Therefore, we need to define θ according to the available memory
capacity and desired accuracy. Moreover, σ should also be defined according to
the accuracy of the resultant network. We determined σ using numerical tests.

Fig. 3. Circuit configuration
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Although the learning method is based on the GRNN, it is similar to that of
ART-map [6]. However, this learning algorithm is simpler than that of ART-map.

3.3 Whole Algorithm

Algorithm 1 lists the pseudo code of the algorithm for the proposed MPPT
controller. Note that the controller repeats Algorithm 1.

If the change in solar radiation∆S is less than a threshold γ, the system finds
the best control signal Vref for the observed input x = (S, T )T using the P&O
method. Then, the GRNN learns (x, Vref ) incrementally. On the other hand, if
∆S ≥ γ, the system uses the GRNN output y(x) as Vref .

If the threshold γ is too large, the GRNN is not used, so the proposed system
is equivalent to P&O. In this study, we set γ to the mean value of the noise of
the output from the solar radiation sensor.

If the input is far from the learned samples, however, the GRNN output is
untrustworthy. To avoid using such GRNN outputs, the system does not use the
GRNN output when ‖x− cnearest‖2 ≥ θ.

Algorithm 1. Pseudo code of proposed MPPT algorithm
Measure solar radiation S, temperature T , PV voltage VPV and current I
x = (S, T )T , ∆S := S − Sprevious, P := IVPV

cnearest = the nearest center of GRNN pattern unit to x
if |∆S| > γ and ‖x − cnearest‖2 < θ then

Vref =GRNN output y (eq. 1)

else
if P < Pprevious then

∆V := −∆V
end if
Vref := Vref + ∆V

end if
if moving average of Vref during the last 20 steps == 0 then

Make the GRNN learn (x, Vref )

end if
Sprevious := S
Pprevious := P
return Vref

4 Experiments

4.1 Computer Simulation

We verified the proposed method by using a computer simulation.
In this simulation, the changes in solar radiation and panel temperature were

made by the sine curve1, and the noise and the response speeds of various equip-
ment were disregarded.
1 We assume that the solar radiation curves can be represented by the combination

of several sin curves, which can be derived by using the Fourier Transformation.
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First, we changed the solar radiation and panel temperature gradually ac-
cording to low frequency sine curves to confirm whether or not the proposed
system can learn the PV characteristics under gradually changing solar radia-
tion conditions. At this time, the frequency of the sine curve, which represents
the changes in solar radiation and panel temperature, was slightly staggered so
that the proposed system could study the MPPs of various solar radiation and
panel temperature combinations.

Second, we used high frequency sine curves to simulate the rapid changes in
solar radiation to show the effectiveness of the proposed system under rapidly
changing solar radiation conditions, and the proposed system without the neural
network (P&O only) method was also tested for comparison (Fig. 4). We can
see that the proposed system basically maintained about an optimum output
whereas the output of the P&O was a little lower than the optimum value.

Finally, we compared the performances of the proposed system with that of
the optimal system, which can completely track the MPP, under the sine curved
solar radiation with varying frequencies. Here, we examined the efficiency r where
r =Wout/Wbest, Wout is the output power from the proposed system, and Wbest

is the optimum energy. In Figure 5, the horizontal axis is the frequency f , and
the vertical axis is the efficiency r. From this figure, we can see that the efficiency
of P&O decreases as the frequency increases while the proposed system yields
about a 99 % efficiency at any frequency.
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4.2 System Behavior of Actual Device

We also verified our proposed method using actual devices. We checked whether
the proposed system achieves MPP learning and quick control when solar radi-
ation rapidly changed.

The actual device consists of a silicon photovoltaic device of 20 V/20 W,
a step down switching converter, a 7.2-V Ni-MH rechargeable battery,and a
laptop computer (Fig. 3, 6). The Ni-MH rechargeable battery was connected to
the photovoltaic device through the switching converter. The laptop computer



612 Y. Kohata, K. Yamauchi, and M. Kurihara

executed the MPPT algorithms and controlled the switching converter through
the analog input/output board, and recorded the responses from the system
sensors (Fig. 3).

In the experiment, we changed the installation angle of the PV-panel to
change the apparent solar radiation. Moreover, we executed not only the pro-
posed method but also the original P&O method for comparison. The simplest
way to compare these two methods was by preparing two sets of devices for the
proposed and P&O methods. However, it is very difficult to make precisely the
same conditions for the different devices. To overcome this difficulty, we made
the laptop PC execute the two methods alternately. Namely, each method sent a
control signal to the switching converter alternately every 100 milliseconds, and
the two methods were switched every 50 milliseconds.

Fig. 6. Actual device: PV-panel with illuminance, temperature sensors, and PC

controlled switching converter

First, we fixed the PV-panel angle horizontally, and verified the behaviors
of the two methods (Fig. 7). In the graph, although the vertical axis should
originally set the unit of the illuminance and temperature, the measure is [volt-
age] because all the sensory outputs were straightforwardly plotted. Moreover,
the operation voltage V and output power P were multiplied by the coefficients
(< 1), which is determined by looking at the characteristics of the sensors.

According to Figure 7, by gradually changing the solar radiation conditions,
both the proposed and P&O methods approached the MPP in a similar manner,
because the proposed method accomplishes the same operation as that of the
original P&O under the given conditions. However, the GRNN learned the best
control signals when using the proposed method.

Next, we changed the installation angle of the PV-panel, and made the pro-
posed method work for one minute on each angle in order to let the GRNN learn
the MPPs under various solar radiation conditions.

Finally, we intensely changed the installation angle of the PV-panel while the
two methods were working (Fig. 8). According to Figure 8, the proposed method
was able to generate greater power than that of the original P&O, because the
proposed method was able to reach the MPP immediately by using the GRNN
while the original P&O method gradually approaches MPP.
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5 Conclusion

In this study, we proposed a maximum power point tracking converter that uses
an online learning neural network and the perturbation and observation (P&O)
method. We showed that the proposed system is able to learn the photovoltaic
properties while operating the P&O under gradually changing solar radiation con-
ditions, and accomplishes the quick tracking of the maximum power point when
the solar radiation is rapidly changing. We do not need any prior exploitation for
adjusting to the PV specifications when using the proposed MPPT method.

The proposed system, however, cannot easily learn if the solar radiation is
always rapidly changing. However, we think this is rare in actual environments.

We are planning to embed the proposed method into a micro-computer in the
near future.

References

1. Hiyama, T., Kitabayashi, K.: Neural network based estimation of maximum power

generation from pv module using environmental information. IEEE Transactions on

Energy Conversion 12(3), 241–247 (1997)

2. AbdulHadi, M., Al-Ibrahim, A.M., Virk, G.S.: Neuro-fuzzy-based solar cell model.

IEEE Transactions on Energy Conversion 19(3), 619–624 (2004)

3. Akkaya, R., Kulaksiz, A.A., Aydogdu, O.: Dsp implementation of a pv system with

ga-mlp-nn based mppt controller supplying bldc motor drive. Energy Conversion &

Management 48, 210–218 (2007)

4. Specht, D.F.: A general regression neural network. IEEE Transactions on Neural

Networks 2(6), 568–576 (1991)

5. Tomandl, D., Schober, A.: A modified general regression neural network (mgrnn)

with a new efficient training algorithm as a robust “black-box”-tool for data

analysis. Neural Networks 14, 1023–1034 (2001)

6. Su, M.-C., Lee, J., Hsieh, K.-L.: A new ARTMAP-based neural network for incre-

mental learning. Neurocomputing 69, 2284–2300 (2006)



C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 614–621, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Semi-Naïve Bayesian Method for Network Intrusion 
Detection System 

Mrutyunjaya Panda1 and Manas Ranjan Patra2 

1 Department of ECE, Gandhi Institute of Engineering and Technology, Gunupur,  
Orissa-765022, India 

mrutyunjaya.2007@rediffmail.com 
2 Department of Computer Science, Berhampur University-760007, Orissa, India 

mrpatra12@gmail.com 

Abstract. Intrusion detection can be considered as a classification task that  
attempts to classify a request to access network services as safe or malicious. 
Data mining techniques are being used to extract valuable information that can 
help in detecting intrusions. In this paper, we evaluate the performance of rule 
based classifiers like: JRip, RIDOR, NNge and Decision Table (DT) with Naïve 
Bayes (NB) along with their ensemble approach. We also propose to use the 
Semi-Naïve Bayesian approach (DTNB) that combines Naïve Bayes with the 
induction of Decision Tables in order to enhance the performance of an intru-
sion detection system. Experimental results show that the proposed approach is 
faster, reliable, and accurate with low false positive rates, which are the essen-
tial features of an efficient network intrusion detection system. 

Keywords: Intrusion Detection, Rule Based Classifiers, Hybrid DTNB,  
Ensemble approach, Accuracy. 

1   Introduction 

With the growing use of Internet, information security threat is becoming one of the 
most forbidding problems. The demand for reliable connection, information integrity 
and privacy is more intense today than ever before. One possible precaution is the use 
of an effective Intrusion Detection System (IDS).  

Data Mining is a relatively new approach for intrusion detection. Data mining  
approaches for intrusion detection was first implemented in mining audit data for 
building automated models for Intrusion Detection [1]. The raw data is first converted 
into ASCII network packet information which in turn is converted into connection 
level information. These connection level information records contain connection 
features like service, duration, protocol, etc. Data mining algorithms are applied to 
this data to create models to detect intrusions. 

In this paper, we investigate and evaluate the performance of various rule based 
classifiers like JRip, Ridor, NNge, and Decision Table (DT), Bayesian classification 
using Naïve Bayes (NB), Hybrid DTNB and an ensemble approach. The motivation for 
using the hybrid approach is to improve the detection accuracy of an IDS compared to 
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using individual approaches. Finally, we use AdaBoost algorithm as an ensemble  
approach to all the above for further enhancement in the intrusion detection accuracy 
while maintaining low false positive rate. The rest of the paper is organized as follows. 
Related research is presented in Section 2 followed by a short theoretical background 
on the rule based classification algorithms in Section 3. A brief introduction to Naïve 
Bayesian classifiers is presented in Section 4. Hybrid classifiers and ensemble  
approach used in this research is discussed in Section 5. Experimental results and 
analysis is presented in Section 6 followed by conclusion in Section 7. 

2   Related Research 

In [2], the authors include a hybrid statistical approach which uses Data Mining and 
Decision tree classification in identifying the false alarms. In that, the authors conclude 
that their strategy can be used to evaluate and enhance the capability of an IDS to  
detect and at the same time to respond to the threats and benign traffic in critical net-
work applications. . The authors in [3] present two hybrid approaches for modeling 
IDS. Decision trees and SVM are combined as a hierarchical hybrid intelligent system 
model (DT-SVM) and an ensemble approach combining the base classifiers. They 
conclude that the proposed research provides more accurate intrusion detection capa-
bilities. Intrusion detection using an ensemble of intelligent paradigms is proposed in 
[4]. In this, the authors show that an ensemble of ANNS, SVMs and MARS is superior 
to individual approaches for intrusion detection in terms of classification accuracy. In 
[5], the authors present an intrusion detection model based on hybrid neural network 
and C4.5. The key idea is to take advantage of different classification capabilities of 
neural network and the C4.5 algorithm for different attacks. However, in this, they 
consider only few selected attacks from each category for their analysis. A review of 
various supervised classification techniques is presented in [6]. In [7], the authors pro-
pose hybrid GA (genetic algorithm) /decision tree algorithm which outperform the 
decision tree classifier in order to build a network intrusion detection model. In this, 
they conclude that this improvement is due to the fact that the hybrid approach is able 
to focus on relevant features and eliminate unnecessary and distracting features. How-
ever, the hybrid GA /decision tree algorithm needs to be tested more in depth for its 
true potential. The authors propose a double multiple-model approach capable of  
enhancing the overall performance of IDS in [8]. In that, the authors adopted three 
reasoning methods: Naïve Bayesian, Neural Nets, and Decision Trees for IDS model. 
Finally, the authors conclude that even if a given model outperforms others in specific 
problem, it is incapable of producing better results in general. This is specifically true 
in case of intrusion detection because often single algorithm can’t deal with all attack 
classes at the desired accuracy level. Thus, combination of multiple models tries to 
take advantage of the characteristics of the individual base models to improve overall 
performance of an IDS. 

3   Rule Based Classifiers  

In this section, we will focus on some very important and yet novel rule based classi-
fication algorithms like NNge, JRip, RIDOR, Decision table(DT), which are not yet 
explored by intrusion detection researchers to the best of our knowledge. 
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3.1   NNge (Non-Nested Generalized Exemplars) 

NNge is a novel algorithm that generalizes exemplars without nesting or overlap. 
NNge is an extension of Nge [9], which performs generalization by merging exem-
plars, forming hyperrectangles in feature space that represent conjunctive rules with 
internal disjunction. NNge forms a generalization each time a new example is added 
to the database, by joining it to its nearest neighbor of the same class. Details about 
this algorithm can be found in [10]. 

3.2   JRip (Extended Repeated Incremental Pruning)  

JRip implements a propositional rule learner, “Repeated Incremental Pruning to Pro-
duce Error Reduction” (RIPPER), as proposed in [11]. JRip is a rule learner alike in 
principle to the commercial rule learner RIPPER. RIPPER rule learning algorithm is 
an extended version of learning algorithm IREP (Incremental Reduced Error Prun-
ing). Initially, a set of training examples is partitioned into two subsets, a growing set 
and a pruning set. The rule set begins with an empty rule set and rules are added  
incrementally until no negative examples are covered. This approach performs effi-
ciently on large and noisy datasets. 

3.3   RIDOR (Ripple-Down Rules) 

RIDOR generates the default rule first and then the exceptions for the default rule 
with the least (weighted) error rate. Later, it generates the best exception rules for 
each exception and iterates until no exceptions are left. It performs a tree-like expan-
sion of exceptions and the leaves have only default rules but no exceptions. The  
exceptions are a set of rules that predict the improper instances in default rules [12]. 

3.4   Decision Tables 

Decision Tables are one of the possible simplest hypothesis spaces, and usually they 
are easy to understand. A decision table is an organizational or programming tool for 
the representation of discrete functions. It can be viewed as a matrix where the upper 
rows specify sets of conditions and the lower ones indicate sets of actions to be taken 
when the corresponding conditions are satisfied; thus each column, called a rule, 
describes a procedure of the type “if conditions, then actions”. Details about the rule 
based classifiers can be found in [13]. 

4   Naïve Bayesian Approach 

The Naïve Bayes model is a heavily simplified Bayesian probability model [14]. Here, 
one considers the probability of an end result given several related evidence variables. 
The probability of end result is encoded in the model along with the probability of the 
evidence variables occurring, given that the end result occurs. The probability of an  
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evidence variable given that the end result occurs is assumed to be independent of the 
probability of other evidence variables given that end results occur. In [15], the authors 
examine the circumstances under which the Naïve Bayes classifier performs well and 
why. They state that the error is a result of three factors: training data noise, bias, and 
variance. Training data noise can only be minimized by choosing good training data. 
The training data must be divided into various groups by the machine learning algo-
rithms. Bias is the error due to groupings in the training data being very large. Variance 
is the error due to those groupings being too small. 

5   Proposed Methodology 

5.1   Hybrid DTNB: A Semi-Naïve Bayesian Approach 

Here we, explore the effectiveness of the simple semi-Naïve Bayesian ranking method 
that combines Naïve Bayes (NB) with induction of Decision Tables (DT), which is 
called as hybrid DTNB. This algorithm is recently proposed in [16], which to the best 
of our knowledge has not been used by any of the intrusion detection researchers. In 
this model, Naïve Bayes and Decision tables can both be trained efficiently, and the 
same holds true for the combined semi-Naïve Bayes model. Figure 1 shows the archi-
tecture of the semi-Naïve Bayesian approach by combining DT with NB.  

Decision Tables    
(DT)

Naïve Bayes (NB) OutputInput KDDCup’99 Intrusion 
Detection Data

 

Fig. 1. Semi-Naïve Bayesian Approach 

Algorithm Description. The algorithm for learning the combined model (DTNB) 
proceeds in much the same way as the DTs alone. At each point in the search; it evalu-
ates the merit associated with splitting the attributes into two disjoint subsets: one for 
the Naïve Bayes and the other for the Decision Tables. In this, forward selection is 
used, where at each step, selected attributes are modeled by NB and the remainder by 
the DT and all attributes are modeled by the DT initially. We use leave-one-out cross 
validation to evaluate the quality of a split based on the probability estimates generated 
by the combined model. In [16], the authors use the AUC (Area under the curve) as the 
performance measures for the evaluation of classifiers in 2-class classification prob-
lem, whereas we aim to use accuracy as our performance measures in a 5-class classi-
fication process in building a network intrusion detection system. The class probability 
estimates of the Naïve Bayes and Decision Tables must be combined to generate over-
all class probability estimates. All probabilities are estimated using Laplace corrected  
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observed counts. In addition to this, a variant that includes attribute selection, which 
can discard attributes entirely from the combined model, is considered. To achieve this, 
an attribute can be discarded rather than added to the NB model, in each step of the 
forward selection. 

5.2   Ensemble Approach 

Here the idea is to apply an ensemble approach which basically does not rely on a 
single best classifier for decision on an intrusion; instead information from different 
individual classifiers is combined to take the final decision. However, the effective-
ness of the ensemble approach depends on the accuracy and diversity of the base 
classifiers used. The architecture of the proposed ensemble approach is shown in 
Figure 2. 

Intrusion 
Detection
Dataset

Rule based classifiers 
(JRip, RIDOR, NNge
and DT)

Naïve Bayes (NB)

Hybrid Model

Ensemble 
Approach

Output

 

Fig. 2. Ensemble Approach 

6   Experimental Results and Discussion 

We use KDDCup 1999 intrusion detection benchmark dataset for our experiments. 
The data set contains 24 attacks and 41 attributes. We have randomly selected 1000 
connection records out of those, which contains all intrusion types, where the care has 
been taken to include all the rare attacks that fall under U2R and R2L category. We 
use five class classifications for our experimentation in building a network intrusion 
detection system. Full dataset is used as training data in order to build an intrusion 
detection system, while 10-fold cross validation is used in order to find the efficacy of 
the model built in the training phase. All our experiments are carried out on a Pentium 
4 IBM PC with 2.8GHz CPU, 40GB HDD and 512 MB RAM. 

6.1   Comparison of Results 

It can be observed from Table 1 that DTNB approach enhances the detection rate of 
Naïve Bayes classifier in detecting Normal, Probe and U2R attack, where as it fails to 
perform well in case of DoS and R2L attacks. It is also observed that DTNB does not 
perform well for our intrusion detection dataset in comparison to NNge rule based 
classifiers. So, we need to use ensemble approach for Semi naïve Bayesian method in 
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order to build an efficient intrusion detection system, which is shown in Table 2. It 
can be observed from Table 2 that the performance of Hybrid DTNB is enhanced 
after using the ensemble approaches. It is also quite clear that the ensembled DTNB 
produces better detection rate in all five class than the individual DT and NB  
approaches. However, still, it produces low detection rate in case of rare attacks in 
comparison to NNge rule based classifier. Low Root mean square error (RMSE) and 
high kappa value makes our proposed approach more interesting in designing a net-
work intrusion detection system. Other performance measures are also presented in 
Table 2 in order to provide a comparative view of the performance of each of the 
classifiers under consideration. 

Table 1. Performance Comparison of Classifiers 

JRip RIDOR NNge DT NB Hybrid 
DTNB

DR Normal 0.9835 0.9859 0.9835 0.9859 0.96 0.979

Probe 0.5625 0.75 0.6562 0.4375 0.279 0.406

DoS 0.998 1.0 1.0 0.9684 0.984 0.972

U2R 0.25 0.0 0.75 0.4444 0.0 0.5

R2L 0.353 0.4706 0.647 0.353 0.353 0.294

RR Normal 0.9698 0.979 0.9721 0.9188 0.927 0.941

Probe 0.9 0.75 0.7241 0.8235 0.414 0.684

DoS 0.9656 0.99 0.998 0.9723 0.958 0.974

U2R 0.8333 0.8333 0.7273 1.0 0.0 1.0

R2L 0.6666 0.6666 0.9166 0.75 1.0 0.263

FPR Normal 0.0126 0.0107 0.0126 0.0124 0.031 0.017

Probe 0.0142 8.35x10-3 0.0114 0.0182 0.032 0.019

DoS 2.23x10-

3
0.0 0.0 0.033 0.017 0.0288

U2R 4x10-3 4x10-3 1.02x10-3 5x10-3 1.0 0.005

R2L 0.0111 9.15x10-3 6.1x10-3 0.011 0.011 0.001

FNR Normal 0.0302 0.021 0.0279 0.081 0.073 0.058

Probe 0.1 0.25 0.2759 0.1765 0.586 0.31

DoS 0.0343 9.76x10-3 1.97x10-3 0.0277 0.042 0.026

U2R 0.1666 0.1666 0.2727 0.0 0.0 0.0

R2L 0.3333 0.3333 0.0833 0.25 0.0 0.73

F-Value Normal 0.9766 0.9824 0.9777 0.9512 0.943 0.96

Probe 0.6923 0.75 0.6885 0.5714 0.333 0.51

DoS 0.9815 0.9951 0.999 0.9703 0.971 0.973

U2R 0.6666 0.6666 0.8 0.615 0.0 0.615

R2L 0.4616 0.5517 0.7586 0.48 0.522 0.278

Kappa 0.9308 0.9477 0.9495 0.8915 0.87 0.887

Time Taken in
Seconds

0.49 0.72 0.23 0.34 0.08 0.92

RMSE 0.0601 0.0537 0.0546 0.0919 0.072 0.0855
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Table 2. Ensemble Approach 

Ensemble Approach  with Base Classifiers

JRip RIDOR NNge DT NB DTNB

DR Normal 0.9929 0.986 0.9812 0.993 0.957 0.995

Probe 0.6875 0.375 0.6875 0.75 0.791 0.854

DoS 0.998 1.0 0.998 1.0 1.0 1.0

U2R 0.75 0.5 0.75 0.5 0.5 0.6

R2L 0.353 0.412 0.647 0.42 0.412 0.47

RR Normal 0.9635 0.9813 0.972 0.979 0.958 0.972

Probe 0.88 0.8 0.7333 0.857 0.654 0.921

DoS 0.9883 0.9512 0.996 0.9826 0.998 1.0

U2R 0.8571 0.8 0.8 1.0 0.667 0.67

R2L 0.75 0.7 0.846 0.78 0.875 0.888

FPR Normal 5.56x10-3 0.01 0.014 5.52x10-3 0.031 3.6 x10-3

Probe 0.01 0.02 0.01 8.28x10-3 9.62x10-3 6.2x10-3

DoS 2.09x10-3 0.0 2.08x10-3 0.0 0.0 0.0

U2R 3.04x10-3 5x10-3 1.02x10-3 3.03x10-3 2x10-3 2.03x10-3

R2L 0.011 0.01 6.11x10-3 0.01 0.01 9.1x10-3

FNR Normal 0.0365 0.0187 0.028 0.021 0.042 0.027

Probe 0.12 0.2 0.0266 0.143 0.346 0.079

DoS 0.0117 0.0487 3.94x10-3 0.017 1.97x10-3 0.0

U2R 0.1428 0.2 0.2 0.0 0.333 0.333

R2L 0.25 0.3 0.154 0.222 0.125 0.111

F-Value Normal 0.978 0.984 0.9766 0.986 0.957 0.994

Probe 0.772 0.51 0.71 0.8 0.716 0.886

DoS 0.993 0.975 0.997 0.9912 0.999 1.0

U2R 0.75 0.572 0.842 0.803 0.571 0.633

R2L 0.48 0.52 0.733 0.546 0.56 0.625

Kappa 0.947 0.9477 0.9442 0.9489 0.921
1

0.958

Time Taken (Sec.) 2.66 3.28 0.94 1.53 0.59 10.6

RMSE 0.0502 0.0482 0.0512 0.0481 0.058
3

0.0451

 

7   Conclusion 

In this research, we have investigated some new techniques for network intrusion de-
tection and evaluated their performance based on the KDDCup 1999 benchmark intru-
sion detection dataset. We have explored rule based classifiers and Naïve Bayes as 
intrusion detection models. Next, we designed a semi-Naïve Bayesian approach Hybrid 
DTNB by combining Decision Table (DT) and Naïve Bayes (NB) and an ensemble 
approach with all the rule based classifiers and Hybrid DTNB as base classifier. The 
experimental results reveal that the proposed ensemble approach for semi-Naïve 
Bayesian classification performs well for Normal, Probe and Dos attacks. In Normal 
and DoS attacks, the detection rate is almost 100%. This result suggests that by choos-
ing proper base classifiers 100% accuracy might be possible for other classes too. 
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Abstract. A method for speaker recognition which uses feature vectors of pole
distribution derived from the piecewise linear predictive coefficients obtained by
the bagging CAN2 (competitive associative net 2) is presented. The CAN2 is
a neural net for learning efficient piecewise linear approximation of nonlinear
function, and the bagging CAN2 has been shown to have a stable performance in
reproduction and recognition of vowel signals. After training the bagging CAN2
with the speech signal of a speaker, the present method obtains a number of poles
of piecewise linear predictive coefficients which are expected to reflect the shape
and the scale of the speaker’s vocal tract. Then, the pole distribution is used as
the feature vector for the speaker recognition. The effectiveness is examined and
validated with real speech data.

Keywords: speaker recognition, feature vector of pole distribution, bagging
CAN2.

1 Introduction

The competitive associative net called CAN2 has been introduced for learning efficient
piecewise linear approximation of nonlinear function [1,2] by means of using the com-
petitive and associative schemes [3,4]. The effectiveness has been shown in several
applications; especially, the method using the CAN2 has been awarded the regression
winner at the Evaluating Predictive Uncertainty Challenge held at NIPS2004 [5]. In the
application to learning and analyzing chaotic and vowel time-series, the time-series is
shown to be reproduced with high precision, where multiple piecewise linear predictive
coefficients learned by the CAN2 are used for multistep prediction at each consecutive
time step [6,7]. Furthermore, the pole distribution derived from the piecewise linear
predictive coefficients is shown to be useful for vowel recognition [8] and the bagging
version of the CAN2 is shown to have stabler performance [9].

On the other hand, among the conventional researches of speaker recognition includ-
ing verification and identification, the most common way to characterize the speech
signal is short-time spectral analysis, such as Linear Prediction Coding (LPC) and
Mel-Frequency Cepstrum Coefficients (MFCC) [10,11,12,13]. Namely, both methods
extract multidimensional features from each of consecutive intervals of speech, where
a speech interval spans 10-30ms of the speech signal which is called a frame of speech.

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 622–629, 2009.
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Fig. 1. Schematic diagram of a single CAN2

Thus, a single feature vector of the LPC or the MFCC corresponds to the average of
multiple piecewise linear predictive coefficients of the CAN2, which indicates that the
CAN2 has stored more precise information on the speech signal.

The remainder is organized as follows; Section 2 gives a brief overview of the single
and the bagging CAN2. Section 3 shows the present method for speaker recognition
using the pole distribution of predictive coefficients. Section 4 shows the experiments
with real speech data and examines the effectiveness.

2 Single and Bagging CAN2

Let Dn � {(xt, yt) | t ∈ In} be a given training dataset, where xt � (xt1, xt2, · · · ,
xtk)T and yt denote an input vector and the target scalar value, respectively, and In �
{1, 2, · · · , n} is the index set of the dataset. Here, we suppose the relationship given by

yt � rt + εt = f(xt) + εt (1)

where rt � f(xt) is a nonlinear function of xt, and εt represents noise.
A single CAN2 has N units (see Fig. 1). The ith unit has a weight vector wi �

(wi1, · · · , wik)T ∈ Rk×1 and an associative matrix (or a row vector) M i � (Mi0,Mi1,
· · · ,Mik) ∈ R1×(k+1) for i ∈ IN � {1, 2, · · · , N}. The CAN2 approximates the
above function f(xt) by

ŷt � f̂(xt) � ỹct � M ctx̃t, (2)

where x̃t � (1,xT
t )T ∈ R(k+1)×1 denotes the (extended) input vector to the CAN2,

and ỹct = M ct x̃t is the output value of the ctth unit of the CAN2. The index ct
indicates the selected unit who has the weight vector wct closest to xt, or
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Fig. 2. Speaker recognition system using the CAN2s

ct � argmin
i∈IN

‖xt −wi‖. (3)

The above function approximation partitions the input space V ∈ Rk into the Voronoi
(or Dirichlet) regions Vi � {x | i = argmin

l∈IN

‖x − wl‖} for i ∈ IN , and performs

piecewise linear approximation of f(x). Note that we have developed an efficient batch
learning method (see [2] for details), which we also use in this application.

The bagging (bootstrap aggregation) method [14] is known to have an ability to
reduce the variance of the prediction by a single learning machine, and we introduce it
into the CAN2: Let Dαn∗

l be the lth bootstrap sample set (multiset, or bag) involving
αn elements, where the elements in Dαn∗

l are resampled randomly with replacement
from the given training dataset Dn, where l ∈ Ib � {1, 2, · · · , b}, α > 0, and we use
α = 0.7 and b = 20 in the experiments shown below. The bagging prediction of the
target value rt = f(xt) is done by the arithmetic mean given by

ŷb∗
t � 1

b

∑
l∈Ib

ŷl
t =

1
b

∑
l∈Ib

M cl
t
x̃t (4)

where ŷl
t = M cl

t
x̃tis the prediction by the lth CAN2 which has been trained with

Dαn∗
l , and clt is the index of the selected unit in the lth CAN2.

3 Speaker Recognition Using Pole Distribution

3.1 Overview of Speaker Recognition

Fig. 2 shows the present speaker recognition system using the CAN2s. The speaker
recognition system, in general, consists of four steps: speech data acquisition, feature
extraction, pattern matching, and making a decision. Furthermore, the speaker recogni-
tion can be classified into verification and identification, where the former is the process
of accepting or rejecting the identity claim of a speaker, which is regarded as two-class
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classification. The latter, on the other hand, is the process of determining which regis-
tered speaker provides a given utterance, which is regarded as multi-class classification.
In addition, speaker recognition has two schemes: text-dependent and text-independent
schemes. The former require the speaker to say key words or sentences with the same
text for both training and recognition phases, whereas the latter do not rely on a specific
text being spoken. In order to deal with both schemes, the present method embeds the
features of a text into a feature vector representing the pole distribution derived from
the bagging CAN2.

3.2 Model of Speech Signal Production

The most standard model of the speech production is the all-pole linear prediction
model described as follows (see [10]); a speech output signal yt at a discrete time t
is modeled by a linear combination of its past values xt = (yt−1, yt−2, · · · , yt−k)T as

yt = aT xt +Gut (5)

where a = (a1, a2, · · · , ak)T represents the predictor coefficients, G is a gain scaling
factor, and ut is the input to the vocal system. In speech application, the input ut is
unknown and k is called prediction order (usually not k but p is used).

On the other hand, the speech signal in the present research is modeled by a more
general expression as shown in Eq.(1), and the piecewise linear prediction by the bag-
ging CAN2 given by Eq.(4), where we use xt = (yt−1, yt−2, · · · , yt−k)T as for the
above standard model. Now, let us rewrite the prediction by the lth CAN2 involved in
Eq.(4), or ŷl

t = M cl
t
x̃t, as

yt = M l
i (1, yt−1, yt−2, · · · , yt−k)T (6)

where we replace ŷl
t by yt and M cl

t
by M l

i because we put less importance on the bag

number, l, of the prediction ŷl
t, and the selected unit number, clt, in the following stream.

Then, firstly, from [8], we can say that the bagging CAN2 has an ability to store almost
all information of vowel signal into wl

i and M l
i for l ∈ Ib and i ∈ IN because the

bagging CAN2 after learning a vowel signal could achieve a high-quality reproduction
of the vowel by the multistep prediction. Since M l

i executes the above prediction, M l
i

is supposed to be restricted by the vocal tract and has some information on the vocal
tract. Furthermore, if a text speech signal involving many vowels and consonants is
trained, we expect that M l

i (l ∈ Ib, i ∈ IN ) store the information on the vocal tract
of the speaker which is not restricted by a specific vowel or consonant. On the other
hand, wl

i is supposed to be less restricted by the vocal tract, because it is only used for
selecting the unit as shown in Eq.(3).

3.3 Pole Distribution

The values of M l
im as well as am in Eq.(5) for m ∈ Ik � {1, 2, · · · , k} are unstable

for the change of the prediction order k even if the prediction error is very small, which
indicates that they do not express the information of the vocal tract directly and they are
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not appropriate for feature vectors in speaker recognition. So, we apply the z-transform
to Eq.(6), and we have

Y (z) =
M l

i0

1−
∑k

m=1M
l
imz

−m
=

M l
i0∏k

m=1(1− pl
im/z)

(7)

where pl
im are the poles of Y (z) = Z(yt). Although the poles are expected to reflect

the shape and the scale of the vocal tract of the speaker, not the poles directly but the
features processed much more, such as the LSP (line spectrum pair) frequencies, MFCC
(Mel-frequency cepstrum coefficients), etc. are usually used for speaker recognition.
This is mainly because they are demonstrated to work well in speaker-recognition as
well as speech-recognition [10]. However, in our empirical results [8], the above poles
of the bagging CAN2 are shown to work well in vowel recognition although the poles
of only linear coefficients am do not work so much.

So, we try to utilize the pole distribution derived from the bagging CAN2 for the
feature vector as follows; first, we express the pole by the polar form as pl

im = rlim
exp(−jθlim), where rlim is the magnitude, θlim is the argument, and j2 = −1. Next, we
evenly divide the ranges of the magnitude, [0, rmax], and the argument, [0, π], into nr

and nθ regions, respectively. Then, by counting the number of poles in each region by
raster scan from smaller magnitude and smaller argument, we obtain kq = nr×(nθ+1)-
dimensional feature vector, e.g. q = (q1, q2, · · · , qkq ). Here, note that we set the sth
region for the argument as [(s − 1)π/nθ, sπ/nθ) for s = 1, 2, · · · , nθ , the number
of the poles for θlim = π are counted additionally and the obtained nr elements are
augmented to the last part of the feature vector. Furthermore, we neglect the poles with
negative imaginary parts, because the pole distribution is symmetric with respect to
the real axis on the z-plane. Examples of the pole distributions and feature vectors are
shown in Fig. 3. In this figure, we can see that there are oscillatory poles out of the unit
circle. Although the vocal tract usually is supposed to be passive, but we have no reason
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Fig. 3. Examples of pole distributions (upper) and the feature vectors (lower) for the Japanese
words /gakusei/ and /kikai/ by speakers NA and KI (nr = 2, nθ = 18, rmax = 2)
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to neglect those poles. Actually, those poles obtained are necessary for reproducing the
high-quality vowel signal via the bagging CAN2 [8], so we dare say that they may
be some active or dynamic characteristic of the vocal tract. Furthermore, note that the
fluctuation of the feature vector in Fig. 3 does not indicate the pitch component of the
speech as usually appeared in the vowel spectrum, but the effect of the raster scan from
smaller to bigger magnitude.

3.4 Pattern Matching for Speaker Verification and Identification

For the pattern matching and the classification, we utilize multiple CAN2s, where each
CAN2 is used for verifying a speaker. Here, note that the CAN2 basically is for re-
gression problems but we can use it as a two-class classifier by means of binarizing the
output of the CAN2. Furthermore, although the bagging CAN2 is also applicable, we
explain the case of the single CAN2 in the following: First, let S and U be the sets of
speakers and texts, respectively, Qs be the set of feature vectors q of the pole distribu-
tion for the speaker s. Then, for CAN2s, or the CAN2 as a two-class classifier for the
speaker s, we replace the system equation shown in Eq.(1) by ys = fs(q) + εq, where
εq indicates the effect of the variation of q, and

fs(q) =
{

1, if q ∈ Qs,
−1, otherwise.

(8)

Moreover, for the error calculation of the learning method [2], we binarize the output
of the original CAN2 given by Eq.(2) as

ẑs =
{

1, if ŷs = Ms
cq̃ ≥ 0,

−1, otherwise.
(9)

where M s
c is the associative memory of the selected unit c in CAN2s, and q̃ = (1, qT )T .

After training CAN2s with a certain number of training data (q, fs(q)) for q ∈ Qs, we
can execute a speaker verification for the speaker s by Eq.(9).

Furthermore, we use the original output, ŷs = Ms
cq̃, as a score of the pattern

matching for the speaker identification. Namely, for an unknown feature vector q,
the speaker identification number r can be obtained by the maximum detection as
r = argmax

s∈S
ŷs, where CAN2s for all s ∈ S are supposed to have been trained.

4 Experimental Results and Discussion

We use the speech signals sampled with 8kHz of sampling rate and 16 bits of resolution
in a silent room of our laboratory. They are from five speakers: S ={NA, KI, KH, MO,
RM} where NA is female and the others are male. We mainly examined five texts (or
Japanese words): /gakusei/, /kikai/, /daigaku/, /kyukodai/, /fukuokaken/, while we also
used five Japanese vowels (/a/, /i/, /u/, /e/, /o/) for an analysis shown below. For each
speaker and each text, we use ten sets of speech data.

First, we examined the performance in text-dependent speaker recognition. For
speaker identification, we apply the leave one set out cross-validation (LOOCV) for
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Table 1. Error rate [%] obtained by the LOOCV in various cases of speaker recognition. The
variables Ev and Ei are for verification and identification, respectively. For all cases, default
parameter values are k = 8, N = 20 and b = 20 for the bagging CAN2, and nr = 2, nθ = 18

for the feature vectors of pole distribution. (a) is the result of text-dependent recognition for the
five texts. (b) is of text-independent recognition using the five texts shown in (a). (c) is obtained
by the single CAN2 with N = 20. (d) is of text-independent recognition for five vowels. (e) is of
the text-independent recognition for /gakusei/ with different nθ .

(a) (b) (d) (e)
text Ev Ei

/gakusei/ 5.6 4.0
/kikai/ 6.8 6.0
/daigaku/ 2.4 0.0
/kyukodai/ 1.6 0.0
/fukuokaken/ 0.4 2.0

total 4.1 2.4

text Ev Ei

independent 5.6 2.0

(c)
text Ev Ei

/gakusei/ 15.2 32.0
(single CAN2)

text Ev Ei

/a/ 4.0 0.0
/i/ 12.0 0.0
/u/ 16.0 60.0
/e/ 0.0 0.0
/o/ 24.0 100.0

total 11.2 32.0

nθ Ev Ei

6 9.6 14.0
12 8.4 10.0
18 5.6 4.0
24 5.2 8.0
30 5.2 4.0
48 5.2 8.0

the ten sets of each text for five speakers. Namely, we leave one set out for the test,
and use the remaining sets for training, and this process is applied to every set for the
test. So, there are 50 (=5 speakers × 10 sets) test data for identification. Through these
speaker identification tests, the performance of the speaker validation by each CAN2s

can be obtained. Namely, for every test of 50 data, five CAN2s for all speakers output
the decision, thus we have 250 data for the speaker verification. The result is shown in
Table 1(a). We can see that the error rate for the speaker identification, Ei, is zero for
two texts, /daigaku/ and /kyukodai/, and a little bit worse result for other words. The
error rate for the speaker verification by CAN2s, Ev , was a little bit worse than Ei.

Next, we examined the performance in text-independent speaker recognition, where
we used all of the five texts shown in (a) and two datasets for each speaker and each text.
The result is shown in Table 1(b). We can see that the error rates are almost the same as
those in (a). This result suggests that the present system could extract the characteristics
of the speakers independent from the texts. Moreover, the error rates seem to be com-
petitive with the results by the previous works shown in [10] for the text-independent
speaker recognition.

In order to compare with the performance of the single CAN2, we executed the
text-dependent recognition for /gakusei/ with the single CAN2. The result is shown in
Table 1(c), and we can see that the error rates are much bigger than those for /gakusei/
shown in (a). This result indicates that the lots of poles obtained by the bagging method,
as shown in Fig. 3, is supposed to provide a good variation of the poles. This seems to
correspond to the fact that the bagging method makes a good variation of predictions
and their mean provides a stable and high-quality prediction [14], where only the mean
usually is used for prediction but the variation is utilized in this application.

Since the shape of the vocal tract is stable for vowels and it may play an impor-
tant role in speaker recognition, we executed the text-independent speaker recognition
for five vowels with one dataset for each vowel and each speaker. The result is shown
in (d), and it suggests that the performance depends on each vowel, but the variance
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through the vowels is very large. By comparing with the results in (a), we could not find
any single vowel which contributes to Ei = 0 or which derives bigger Ei.

We examined the effect of nθ , or the resolution of the pole distribution for the feature
vector by text-dependent recognition for /gakusei/, as shown in Table 1(e). From this
result, we can see that low resolution nθ < 18 does not work so well, while high
resolution up to nθ = 48 provides a certain level of the performance.

5 Conclusion
We have presented a method for speaker recognition which uses feature vectors of pole
distribution derived from the bagging CAN2. The effectiveness of the method is ex-
amined and validated with real speech data. Since the poles correspond to frequency
response modes of the vocal tract, they are expected to reflect the shape and the scale
of the vocal tract much more than the spectrum and the cepstrum, we would like to
compare with such methods theoretically from this point of view in our future research
study. Furthermore, since the size of the dataset we examined is small, we would like
to use much bigger dataset in our future research.
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Abstract. H.264/AVC video encoder adapting a rate-distortion opti-

mization technique to select the coding mode for each macroblock (MB)

gets a higher coding efficiency than those of previous video coding stan-

dards but the computational complexity increases drastically. To reduce

the computational complexity, we propose a fast intra mode decision

algorithm based on directional information of I4MB. Simulation results

demonstrate that the proposed algorithm generates generally good

performances in PSNR, bit rates, and processing time.

Keywords: H.264/AVC, Fast Intra Mode Decision, Directional

Information.

1 Introduction

The fast growth of entertainment services has generated a great deal of interest
in the transmission of digitized video data. To transmit vast video data over
a band-limited channel, an efficient video coding standard is necessary, such
as H.264/AVC [1]. By adopting new coding techniques, the H.264/AVC can
generate the high coding efficiency but real time encoding is very difficult due to
high computational complexity. To reduce the complexity of H.264/AVC, many
fast mode decision methods have been suggested: Fast variable block size motion
estimation (ME) [2], fast coding mode selection [3], fast intra prediction [4], etc.
Among them, a fast intra mode decision algorithm is a good approach because
the computational cost of the intra prediction is comparable to that of the inter
prediction.

In this paper, we propose a fast intra mode decision algorithm. It generates
a good performance without a large loss of PSNR and a big increment of bit
rate. In section 2, we briefly introduce the general mode decision algorithm to
help understanding our proposed scheme. Section 3 explains a new fast intra
mode decision algorithm based on directional information of I4MB. Finally, we
demonstrate the performances of the proposed algorithm and draw conclusions
in section 4 and section 5.
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Fig. 1. Intra Prediction Modes

2 MB Prediction Mode for Inter Frame

H.264/AVC adapts the rate-distortion optimization (RDO) technique to deter-
mine the best MB coding mode, in terms of minimizing bit rate and maximizing
image quality.

2.1 Inter Prediction Mode

Unlike the inter MB encoding mode of previous video coding standards, the
MB can be motion estimated and compensated by multi reference frames with
varying block sizes from 16×16 down to 4×4. The luminance component of
each MB may be partitioned in four ways and motion compensated either as
one 16×16 partition, two 8×16 partitions, or four 8×8 partitions. If the 8×8
partition is chosen, each of the four 8×8 sub-MBs should be further divided into
partitions with block sizes of 8×4, 4×8, or 4×4, which are called the SUB8×8
mode. In inter MB prediction stage, the H.264/AVC predicts the motion vector
(MV) and reference frame for each partition.

2.2 Intra Prediction Mode

In addition to the inter MB coding modes, various intra predictive coding modes
are specified in H.264/AVC. In contrast to previous video coding standards, intra
MB for H.264/AVC is predicted in the spatial domain and residual data are
encoded. For the luminance samples, the prediction block can be a 16×16 block
(I16MB) or a 4×4 block (I4MB). As shown in Fig. 1, I16MB and I4MB have 4
prediction modes and 9 prediction modes, respectively.

2.3 Best Coding Mode Selection by RDO

To obtain the best MB coding mode for inter frame, H.264/AVC encoder ex-
haustively tests all possible encoding modes for each MB.
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Inter Mode

1. Calculate mcost for 16×16, 16×8, and 8×16 blocks

mcost = SADmode + λmotion ·R(MV, REF ), (1)

where SADmode is the sum of absolute differences between the current block
and its motion estimated block. λmotion denotes the lagrangian multiplier.
R(MV, REF ) means bitrates for encoding the MV and notifying the number
of reference frame to be used.

2. Calculate RD costs for 8×8, 8×4, 4×8, and 4×4 blocks.

JRD = SSDmode + λmode · R(s, r, M), (2)

where SSDmode means the squared sum of differences between the current
block and its motion compensated block. λmode is the lagrangian multiplier.
R(s, r, M) is bitrates to encode selected mode M , where s is the current
block and r is the predicted block.

3. Skip mode check
4. If the current MB is not a SKIP mode, we calculate RD costs for 16×16,

16×8, 8×16 blocks
5. Determine the best inter MB mode.

Intra Mode

1. Calculate SAD for 4 prediction modes for I16MB
2. Calculate RD cost for I16MB mode having the minimum SAD
3. Calculate RD costs for all prediction modes for I4MB
4. Determine the best intra MB mode.

Select the best MB coding mode by comparison of RD costs

3 Proposed Fast Intra Mode Decision Algorithm

To propose a fast intra mode decision algorithm, we analyze the spatial cor-
relation within a current block and find that the pixels along the local edge
direction generally have similar values. If we determine the representative di-
rection of I4MB, a suboptimal RD cost can be obtained around the direction.
Therefore, we can skip several prediction modes. In addition, the statistical data
of RD costs of sixteen I4MB can be used to choose the best prediction mode for
I16MB, because I16MB is composed of sixteen I4MB blocks. Consequently, we
can save the processing time by reduction of the number of RD calculation.

3.1 Mode Prediction for I4MB

First, SAD values for main four direction modes are calculated as shown in Fig. 3,
which are expressed in (3). The mode having the smallest SAD is determined as
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Fig. 3. Candidates for I4MB Prediction

a primary direction mode (PDM) of the current I4MB. Mode0, Mode1, Mode3,
and Mode4 notify vertical(↓), horizontal(−→), backward diagonal(↙), and for-
ward diagonal(↘) directions, respectively. Due to the directional property, the
smallest RD cost can be generated around the PDM.

Mode0 SAD0 =
3∑

j=0

3∑
i=0

|xiyj − xiyj+1|

Mode1 SAD1 =
3∑

j=0

3∑
i=0

|xiyj − xi+1yj |

Mode2 SAD2 =
3∑

j=0

3∑
i=0

|xiyj − xi−1yj+1|

Mode3 SAD3 =
3∑

j=0

3∑
i=0

|xiyj − xi+1yj+1| (3)

Second, RD costs are calculated. To select more precise prediction mode for I4MB,
we add three auxiliary modes for calculating RD cost, such as Mode2 (DC) and
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Fig. 5. Flowchart of the proposed algorithm

both side modes of PDM as shown in Fig. 3(a). In addition, we consider the spatial
correlation of mode information. As shown in Fig. 3(b), if up and left I4MB are
already determined as one of the previously determined prediction modes, we do
not need to calculate any other RD costs. However, if only one or none of them is
included in those modes, we calculate RD costs for the adjacent prediction modes.
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3.2 Mode Prediction for I16MB

Because I16MB is composed of sixteen I4MB blocks, the statistical data of RD
costs of sixteen I4MB can be used to choose the best prediction mode for I16MB.
The accumulated number (AN) of each mode for I4MB is compared, and then
the mode having the maximum value is determined as a best candidate mode
for I16MB. Because the number of the prediction mode for I16MB is smaller
than that of I4MB, there is a rule to separation, which is expressed in (7). Fig. 4
shows an example for defining the mode for I16MB.
Finally, according to which one generates the smaller RD cost, I4MB or I16MB is
determined as an intra coding mode for current MB. To implement the proposed
algorithm, we modify the H.264/AVC encoder structure. The flowchart for the
proposed intra mode decision algorithm is shown in Fig. 5.

4 Simulation Results

Our propose methods have been implemented and compared with that of the JVT
reference software JM11.0. Simulation conditions are summarized into Table 1.

Our proposed algorithm was compared with Pan et al. algorithm [4] under
the same conditions. We used several measures for evaluating the performance
of the proposed algorithm.

�PSNR = PSNRnew method − PSNRJM (4)

Table 1. Simulation Conditions

Parameters Condition

Profile Main

Search Range 32

Number of Reference Frames 1

Sequence Types IPPP and All I frames

Interval between I frames 100

Table 2. Performance Comparison for IPPP Sequences

Sequence
QP=28 QP=32

∆P ∆B ∆T ∆P ∆B ∆T

Akiyo
Pan et al.[4] 0.00 0.42 -13.39 0.00 0.82 -11.99

Proposed 0.00 -0.17 -13.62 -0.01 0.58 -12.40

City
Pan et al.[4] 0.00 0.18 -14.98 0.00 1.02 -13.46

Proposed 0.00 0.00 -13.70 0.00 0.47 -12.17

Foreman
Pan et al.[4] 0.00 0.22 -15.98 -0.02 0.19 -16.79

Proposed -0.01 0.05 -16.72 -0.02 -0.16 -16.55

Stefan
Pan et al.[4] -0.01 0.23 -17.17 0.00 0.37 -16.30

Proposed -0.01 0.08 -15.89 0.00 0.07 -14.33
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Table 3. Performance Comparison for All I Frames

Sequence
QP=28 QP=32

∆P ∆B ∆T ∆P ∆B ∆T

Akiyo
Pan et al.[4] 0.00 0.42 -13.39 0.00 0.82 -11.99

Proposed 0.00 -0.17 -13.62 -0.01 0.58 -12.40

City
Pan et al.[4] 0.00 0.18 -14.98 0.00 1.02 -13.46

Proposed 0.00 0.00 -13.70 0.00 0.47 -12.17

Foreman
Pan et al.[4] 0.00 0.22 -15.98 -0.02 0.19 -16.79

Proposed -0.01 0.05 -16.72 -0.02 -0.16 -16.55

Stefan
Pan et al.[4] -0.01 0.23 -17.17 0.00 0.37 -16.30

Proposed -0.01 0.08 -15.89 0.00 0.07 -14.33
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Fig. 6. Comparisons of Rate Distortion Curves
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�Bits =
Bitnew method − BitJM

BitJM
× 100(%) (5)

�T ime =
T imenew method − T imeJM

T imeJM
× 100(%) (6)

We summarized the performance of fast intra mode decision algorithms in
Table 2 and Table 3. The proposed algorithm achieves consistent time savings
about 15% in IPPP sequence and 44% in all I frames with negligible PSNR loss
and small increment of bit rate compared with JM11.0. Especially, interesting
observation of all I sequences is that the proposed algorithm reduces the in-
crement of bit rate compared with Pan’s method. As shown in Fig. 6, the RD
results of proposed algorithm generate the similar to those of JM11.0.

AN0 = the number of Mode0, Mode5, Mode7
AN1 = the number of Mode1, Mode6, Mode8
AN2 = the number of Mode2, Mode4
AN3 = the number of Mode3, Mode7, Mode8 (7)

5 Conclusions

This paper presented a fast intra mode decision for H.264/AVC encoder by
reducing the number of RDO calculation based on directional information of
I4MB. By using statistical data of RD costs for sixteen I4MB, we can easily
decide the best prediction mode for I16MB. The proposed algorithm reduces the
processing time about 15% in IPPP sequences and 44% in all I frame sequences
with negligible loss in PSNR and small increment of bit rate compared with
those of JM11.0.
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Abstract. In this paper we present a method which extracts features

from palmprint images by applying the Discrete Cosine Transform (DCT)

on small blocks of the segmented region of interest consisting of the mid-

dle palm area. The region is extracted after careful preprocessing to

normalize for position and illumination. This method takes advantage

of the well known capability of the DCT to represent natural images

using only a few coefficients by performing the DCT on each block. Af-

ter ranking the coefficients by magnitude and selecting only the most

prominent, these are then concatenated into a compact feature vector

that represents each palmprint. Recognition and verification experiments

using the PolyU Palmprint Database show that this is an effective and

efficient approach, with a recognition rate above 99 % and Equal Error

Rate (EER) of less than 3 %.

Keywords: palmprint authentication, Discrete Cosine Transform, block

DCT, local feature extraction, hand-based biometrics.

1 Introduction

Biometrics offer an attractive alternative to traditional token-based methods of
personal identification or verification because they are harder to circumvent and
easier to use [1].

The print patterns on the palm are not duplicated in other people, even in
mono zygotic or identical twins, and they do not change over the entire lifetime
of an individual. The palm is also larger in area than the iris and fingerprint,
and contains an abundance of features which include principal lines, wrinkles,
creases and minutiae points. This makes it possible to use lower resolution images
for palmprint recognition, increasing speed and lowering cost. Also, palmprint
biometrics have a higher user acceptance than those which use iris scans because
the palmprint image capture process is not as invasive [2,3].

This paper describes a novel method of palmprint feature extraction and
matching using block-based Discrete Cosine Transform (DCT) that, combined
with careful preprocessing and choice of block size, has proved to be quite effec-
tive in palmprint discrimination.

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 639–648, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Research in palmprint recognition can be divided into two main categories:
statistical and structural methods [2]. Statistical methods transform the palm-
print into a new space or consider it as a point in a multidimensional space, while
structural methods involve the extraction of information from structural features
of palmprints such as principal lines, ridges and creases. Statistical methods re-
ported in the literature include Eigenpalms [1,4], Fisherpalms [5], those based
on local and global texture [3], using Gabor filters [6], and Fourier Transform
[1,7]. Structural methods include those that extract principal lines [8], extrac-
tion of features based on palm creases [9], extraction of structural features using
wavelets [10], and the use of hand geometry features [11].

The Karhunen-Loeve transform (KLT) is used in [1] and [4] to produce an
expansion of the input image in terms of a set of basis images or “Eeigenpalms”.
Using only a portion of the KLT coefficients, impressive recognition results are
achieved. Fishers Linear Discriminant Analysis is applied on a set of palmprints
to find the optimal linear transformation that maximizes the Fisher criterion in
[5]. The KLT transform is first applied to guarantee non-singularity and the
method performs as well as Eigenpalms, although both are computationally
expensive and data-dependent.

In [1] and [7], the DFT image of a palmprint is divided into ring-like portions
centered at the zero frequency point to extract features representing frequency,
and into slices cutting through the middle to extract features representing di-
rection Both are then used for recognition with an accuracy of about 96%.

Hafed and Levine used a subset of the global DCT coefficients of an input face,
and by using an affine transformation to correct for scale and orientation together
with illumination normalization proved that their method could perform as well
as the benchmark Eigenfaces technique in recognition and verification [13]. In
[14], block-based DCT similar to that used in the JPEG standard [15] is applied
to achieve good face recognition results using less than half the DCT coefficients.

In a face and palmprint fusion method, [16] used global DCT coefficients
and selected specific frequency bands based on a 2-D separability judgment.
A frequency band is judged to be an effective means of class separation by
evaluating the ratio of the between-class scatter to the within-class scatter for
the entire data set when the specific band is used as a feature vector. If the
ratio is 1 or more, the frequency band is judged to have good linear separability.
The approach is similar to performing Fisherpalms [5] using just the chosen
frequency bands as input instead of the individual palms, making the method
rather complicated.

1.1 Proposed Approach and Motivation

The main merit of the DCT is its close relationship to both the KLT and DFT.
In an information packing sense, the KLT is the optimal transform because
it minimizes the mean square error, but the DCT follows very closely behind
it [12,13]. Unlike the KLT, however, the DCT is data-independent and can be
evaluated using the same fast algorithms used for obtaining the DFT. It also has
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the major advantage of having been implemented in a single integrated circuit
unlike other data-independent transforms like the DFT [12].

These factors motivated us to explore the use of DCT coefficients for palmprint
identification after our earlier work showed that careful selection of a subset of
DFT coefficients combined with proper preprocessing can produce very good
palmprint recognition results [17]. We propose a method that uses only the
largest 50 % or less of the DCT coefficients from non-overlapping blocks of
the input image. This ensures that local information about the features in the
palmprint image is retained. The blocks are either 8×8 or 16×16 pixels in size and
classification is based on the simple Euclidean distance. Careful preprocessing is
performed on the images prior to extracting the central palm area in order to
improve performance. We compare our results to other transform-based methods
in the literature that used images from the same database and demonstrate the
effectiveness of our method.

2 Palmprint Recognition Using Local DCT Features

An overview of the proposed system is shown in Fig. 1. The input consists of
uncompressed gray scale bitmap images of the palm scanned at a resolution of
75 dots per inch and with an original size of 384×284 pixels. Before extracting
the square central palm area, it is necessary first to obtain a reference coordinate
system to ensure that approximately the same area is extracted from each image.
This is done together with brightness normalization in the preprocessing stage as
shown in Fig. 1. A square 128×128 pixel area is then extracted from the middle
palm area and this represents the input image fed into the block-based feature
extraction stage of the system.

In the block based feature extraction stage, two major experiments are carried
out. First, local DCT coefficients are calculated from the original 128×128 input
image using 8×8 or 16×16 pixel blocks and after ranking based on magnitude,
the top half are selected and concatenated from each block to form the feature
vector for each input image. The aim of using the two block sizes is to determine
the optimal block size for performing DCT when the input image size is fixed at
128×128 pixels. Because the JPEG standard [15] uses an 8×8 block size, using
the same size would be ideal for integration with a system that uses JPEG–
compressed palmprint images, but we wish to compare the results with those
obtained using a 16×16 block size as well.

The second block DCT feature extraction experiment involves reducing the
original 128×128 input image via bi-cubic interpolation to 64×64 and 32×32
pixels and extracting DCT features using a fixed block size in order to deter-
mine the effect of input image size reduction on recognition accuracy for each
of the two block sizes. The effect of gradual size reduction has not been inves-
tigated rigorously enough in other transform-based methods in the literature,
even though a mere 50 % reduction in input image size would increase the speed
of computation for such a system by a factor of 4. The results obtained from the
two experiments can therefore be evaluated based on optimizing not only the
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Fig. 1. System architecture for palmprint recognition via block-based DCT

block size used for DCT feature extraction and the input image size but also on
the number of coefficients retained per block when forming the feature vectors.
In this manner, the final configuration selected will be the one that involves
using the most compact feature vector to produce the best recognition results.

In the matching stage, a classifier is used based on minimizing the distance
D, which is the summation of the Euclidean distance between the feature vector
from each block of the unknown palm b and that from the corresponding block
in the database image a

D =
N∑

i=1

√√√√ L∑
j=1

(aij − bij)
2

. (1)

where N is the number of blocks per image and L is the length of the feature
vector per block and corresponds to the number of coefficients retained.

2.1 Preprocessing

The method proposed and explained in great detail by [1] is used to normalize
the input image for position and rotation before extracting the central palm
area. The two points k1 and k2 shown in Fig. 2 (a) are located on the image
and used as the reference x axis. A perpendicular line originating from the
midpoint m between these two points is then used as the y axis. The square
region shown starts at a fixed distance from point m. Because the points k1 and
k2 are determined based on the center of the gravity of the corresponding hole
between fingers, this region is approximately the same in each image.

Brightness normalization is performed on the extracted region-of-interest
(ROI), summarized in Fig. 2 (b)–(e). A coarse estimate of the background illu-
mination is first obtained by finding the average of every 8×8 region over the
entire ROI [18]. Each average value is a pixel in a 16×16 image that is expanded
to the original ROI size via bi-cubic interpolation. The estimated background is
then subtracted from the original image followed by contrast improvement by
local histogram equalization using 32×32 blocks as shown in Fig. 2(e).
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Fig. 2. (a) The coordinate system used for position normalization and the central palm

area to be extracted, (b) extracted 128×128 palm image, (c) estimated background

image, (d) background-subtracted image, and (e) after local histogram equalization

2.2 Block DCT Feature Extraction

Feature vectors that represent the palms in the database are formed by comput-
ing the block-based DCT of the processed images. The 2D DCT, C(u, v), of an
image I(r, c) whose size is N×N pixels is given by

C(u, v) = α(u)α(v)
N−1∑
r=0

N−1∑
c=0

I(r, c) cos
[
(2r + 1)uπ

2N

]
cos

[
(2c + 1)vπ

2N

]
, (2)

where α(u) and α(v) are given by

α(u), α(v) =

⎧⎨⎩
√

1
N for u, v = 0√
2
N for u, v = 1, 2, . . .N − 1

. (3)

Using equation 2, a vector is formed for each 8×8 or 16×16 block by extracting
the DCT coefficients, ranking from the smallest to the largest based on the
magnitude, and retaining only the first 50%. The DC value represents the mean
of the pixel values within a given block and is included in the feature vector
as well. Each image is therefore represented in feature space by a matrix whose
columns are the sorted magnitude values and whose dimensions are L×N, given
in equation 1.

3 Experiments, Results and Analyses

Palmprint images from the Hong Kong PolytechnicUniversity palmprint database
(‘PolyU Palmprint Database’) [19] were used in our experiments. In this database,
between 7 and 10 images of the left and right palms are captured in bitmap format
per individual in each of two sessions,approximately 2 months apart.

For recognition, 2 images each for 33 palms from the first session are selected
at random. A training template is formed by averaging the feature vectors from
each corresponding block of the processed images. The test set consists of 4
images for each of the same palms from the second session for a total of 132
images belonging to 33 classes. The test set is used for recognition by matching
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each of the 132 feature vectors to every template in the training set, and based
on the total Euclidean distance, a test sample belongs to the same class as the
template with which the minimum distance is obtained. A total of 33 matching
attempts are performed for each test sample to give a total of 4356 attempts for
the whole test set.

For verification, an evaluation set containing 5 randomly selected images each
for 33 palms from either session is formed. To test the performance of the system,
a one–to–all matching using equation 1 is done for each of the images in the
set while varying the decision threshold so that at each threshold, a total of
165C2 (165 × 164 ÷ 2 = 13530) matching attempts are made, of which 5C2 ×
33 = 330 are genuine matches while the rest (13200) are impostor matches. The
recognition accuracy of the system is evaluated based on the number of test
samples whose minimum distance is achieved with a template from the same
class. During verification, False Rejection Rate (FRR) measures the rate at which
genuines are rejected as impostors while False Acceptance Rate (FAR) is the rate
at which impostors are accepted as genuine. Receiver Operating Characteristic
(ROC) curves, which plot the FAR against the FRR are used to obtain the Equal
Error Rate (EER). This indicates the optimal operating point where both FRR
and FAR are minimum. The Total Success Rate (TSR), which gives a measure
of the verification performance of the system, is also obtained. This is given by

TSR (%) =
(

1− FA + FR

Total number of attemps

)
× 100 . (4)

where FA is the number of falsely accepted impostors and FR is the number of
genuine palmprints rejected as impostors .

3.1 Recognition and Verification Results

Table 1 shows the recognition accuracy at different feature lengths per 8×8 and
16×16 block while varying the size of the input image from 128×128 to 32×32
pixels. The highest accuracy of 99.2% is achieved when using a 128×128 input
image and 16×16 block size during DCT feature extraction with only the largest
25% of the coefficients used. As the image size is reduced, however, the recognition
rate using the 16×16 block deteriorates much faster than the 8×8 block.

Table 2 shows the best TSR during verification for both block sizes. The
values indicate the maximum TSR, which can occur at a different point from the
EER because the number of impostor matches is much larger than the genuine
matches. The value shown here for the 64×64 input image is obtained when the
FAR and FRR are 0.1 % and 6.7 % respectively. The TSR therefore indicates the
point where the system is achieving the most success, which is not necessarily
the optimal operating point given by the EER.

Fig. 3 shows the ROC curves for the 2 block sizes at different input image
sizes. It can be noted that the optimal results for verification are obtained when
using a 128×128 input image and 16×16 block size for DCT, with an EER of
2.8 %. However, this value falls rapidly when the input image size is reduced so
that the 8×8 block size performs much better at 64×64 and 32×32 image sizes.
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Table 1. Recognition rate (%) for 16×16 and 8×8 block sizes at various image sizes

Features Input image size

Block size per block 128×128 64×64 32×32

128 98.5 80.3 50.8

64 99.2 78.8 47.7
16×16 32 98.5 75.0 43.2

2 93.2 62.1 25.8

32 98.5 93.2 75.8

16 98.5 93.2 76.5
8×8 2 93.9 86.3 62.1

Table 2. TSR for 16×16 and 8×8 block sizes

Features TSR (%) for Input image size:

Block size per block 128×128 64×64 32×32

16×16 64 99.7 99.0 98.1

8×8 32 99.7 99.6 98.9

Because a reduction of the input image size by half increases the speed of
processing by a factor of 4, this leads us to conclude that the 8×8 block size
would be more suited for real-time applications. This is because halving the
input image size increases the EER by only 0.4 % to 3.2 % if a 8×8 block size is
used. However, when using the 16×16 block size, a reduction of the input image
from the original size to 64×64 pixels causes the EER to increase from 2.8 % to
8.9 % as shown by the green line in Fig. 3 (b). At an input image size of 32×32
pixels, the 16×16 block size produces an EER of 18.4 % compared to 8.6 % for
the 8×8 block size. This is shown by the red dotted line in Fig. 3.

The ROC curves in Fig. 3 also show that there is a direct correlation between
the input image size and the block size chosen for DCT feature extraction. This
can be explained by the fact that in a smaller input image, variations over a
smaller local region will have a bigger effect on the overall discrimination between
two images. By noting that the DC or fundamental value of the DCT transform
is the average pixel value over the entire block, it is easy to see how the block
size would be related to the input image size during discrimination.

3.2 Performance Comparison with Other Transform-Based
Methods

Experimental results presented in Section 3 demonstrate the effectiveness of our
method. To compare with global DCT feature extraction, we used the same
input images and extracted half the DCT coefficients from the whole image and
used their magnitudes as the features. The recognition accuracy from this was
less than 50 %.
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Fig. 3. The ROC curves for 3 input image sizes, (a) using an 8×8 block size and, (b)

16×16 block size during DCT feature extraction

Wen-xin, [1,7] used global DFT features on the same database and despite
using two feature sets to represent direction and frequency, the maximum recog-
nition accuracy obtained was 95.5 % and EER of 3.6 %. In previous work [17],
we also used global DFT features but selected an optimal set of coefficients using
a genetic algorithm. Using the same database a recognition rate of 98.9 % and
EER of 2.5 % was achieved, but the length of the feature vector in this case was
almost twice what it takes to obtain the maximum recognition accuracy here.
Kumar and Shen [4] applied Eigenpalms on a database of 30 images of 3 palms
and obtained a recognition rate of 98.7 %, while Zhang et al. [1] used a refined
version of the same method on the PolyU palmprint database with an impres-
sive recognition rate of 99.1 % and an EER of 1 %. In [16], global DCT for face
and palmprint recognition is performed. Even after using the Fisher criterion to
maximize the separability of a selected frequency band of DCT coefficients, the
palmprint recognition rate achieved was 98.1 % and no value was reported for
the EER.

4 Conclusions

In this paper, we proposed a holistic method of palmprint feature extraction and
matching based on block-based DCT features and conducted various experiments
to test the effectiveness of the method in recognition and verification using im-
ages from the PolyU Palmprint Database. These experiments show clearly that
the use of local DCT features for palmprint recognition, when combined with
careful preprocessing, is an effective alternative to other statistical or structural
methods. Excellent recognition results are obtained when a 16×16 block size and
a 128×128 pixel input image are used. In this case, using just 25 % of the largest
DCT coefficients produces a recognition accuracy of 99.2 %, with 131 out of the
132 palms in the evaluation set correctly identified. The best EER of the method
is 2.8 % while a maximum TSR of 99.7 % is achieved.
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We also conducted experiments to determine the effect of the input image
size on the recognition accuracy when the block size used for DCT is varied and
showed that an 8×8 block size is more robust to reduction in the input image
size, with the EER increasing from 3.2 % to 8.6 % when the input image size is
reduced from 128×128 to 32×32 pixels. This is in stark contrast to the 16×16
block size, where the EER increases from 2.8 % to 18.4 % for the same reduction
in input image size.

Other methods such as Eigenpalms and Fisherpalms require the use of large
matrices to compute the basis vectors during training in order to transform the
training set into the new KLT space. In the case of Fisherpalms, subsequent
use of covariance matrices is also necessary in the calculation of within–class
and between–class scatter. This makes such methods computationally expensive,
whereas the proposed method can take advantage of available fast algorithms to
evaluate the DCT coefficients in a very efficient way. The data-independence of
the DCT also saves us from having to calculate the basis vectors every time new
data is introduced.

As part of present and future work, an improved preprocessing method is in-
vestigated. The method used here for position normalization relies on the ability
to properly segment the holes between the fingers. In many of the images in the
database, these areas are partly occluded, which adversely affects the accuracy of
normalization as approximate borders are used in such cases. Also, to reduce the
effects of slight shifts in position and orientation, we shall consider adopting a
method that uses overlapping blocks for DCT feature extraction where different
degrees of overlap will be investigated.
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Abstract. For the emotion recognition in speech we had developed two feature 
extraction algorithms, which emphasize the subtle emotional differences while 
de-emphasizing the dominant linguistic components. The starting point is to ex-
tract 200 statistical features based on intensity and pitch time series, which are 
considered as the superset of necessary emotional features. Then, the first algo-
rithm, rNMF (representative Non-negative Matrix Factorization), selects simple 
features best representing the complex NMF-based features. It first extracts a 
large set of complex almost-mutually-independent features by unsupervised 
learning and latter selects a small number of simple features for the classifica-
tion tasks. The second algorithm, dNMF (discriminant NMF), extracts only the 
discriminate features by adding Fisher criterion as an additional constraint on 
the cost function of the standard NMF algorithm. Both algorithms demonstrate 
much better recognition rates even with only 20 features for the popular Berlin 
database. 

Keywords: discriminant feature, feature extraction, feature selection, NMF, 
Fisher criterion. 

1   Introduction 

The recognition of emotion in speech is an important component for the efficient 
human-computer interactions. However, the primary information in human speech is 
linguistic, and the speaker-dependent and emotion-dependent information are mi-
nors. Therefore, the efficient features of the subtle emotional differences for the 
language-independent emotion recognition are difficult to extract and still under 
intensive study [1-5]. 

The popular speech features for emotional recognition include fundamental fre-
quency (pitch), formants, MFCC, and energy. [1][2] Features based on manifold 
                                                           
*  The research was conducted while S.Y. Lee was on sabbatical leave from KAIST and  

working at RIKEN BSI, and D. Kim was a visiting student at RIKEN BSI. 
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learning [3] and Teager energy operator [4] are also used. However, a large number of 
features are required for good recognition performance. For example, the AIBO team 
came out with a huge set of 200 features from intensity and pitch time series for ex-
cellent recognition performance. [5] However, these have many redundant features 
and therefore are not optimum.  

The NMF (Non-negative Matrix Factorization) is an efficient feature extractor for 
non-negative data, and usually results in efficient features without redundancy. [6] 
However, the extracted features based on the unsupervised learning mainly represent 
the primary information and are not suitable for the subtle differences such as emo-
tional contents in speech. 

In this paper we present two algorithms based on NMF (Non-negative Matrix Fac-
torization) which reduce redundancy among extracted features and also extract the 
subtle differences for efficient classification tasks. The first algorithm (rNMF) selects 
one “representative” feature from each of the NMF-extracted complex features, while 
the second algorithm (dNMF) extracts discriminant complex features by simultane-
ously maximizing Fisher criterion and minimizing the NMF cost function.  

2   Baseline: AIBO Features  

As the baseline we use the 200 features implemented by the AIBO team with excel-
lent emotion recognition performance. [5] It is a bottom-up approach using an exten-
sive feature set of low level statistics of prosodic parameters. As shown in Table 1, 
the features are based on time series of intensity, pitch, and MFCCs.  

Table 1. 5x4x10 features used by AIBO team 

Acoustic features Derived series Statistics 
Intensity Minima Mean  Variance 
Lowpassed intensity Maxima Maximum Minimum 
Highpassed intensity Duration between local extrema Median First quartile 
Pitch The series itself Range Third quartile 
Derivatives of MFCC  Between 

quartile 
range 

Mean absolute 
local derivatives 

 
We use Berlin emotional speech database developed by the Technical University 

of Berlin [7]. Ten actors (five females and five males) generated ten German utter-
ances (five short and five longer sentences) which could be interpretable in all seven 
emotions. The emotional states are neutral, happy, angry, sad, boredom, fear, and 
disgust. Totally 535 utterances were recorded with a sampling frequency of 48 kHz 
and later downsampled to 16 kHz.  

The Support Vector Machine (SVM) is used as the classifier with one-vs.-the-
other tactic, and the class with the maximum output value among the 7 SVMs is 
regarded as the final decision. We divided database into 5 sets to use the stratified  
5-fold cross validation with 424 utterances for the training and 111 utterances for the 
testing. 
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3   Representative NMF (rNMF) Features  

The mutual information (MI) between the class variable and the feature coefficient is 
a popular choice of selection criterion. However, the MI criterion is good only for 
statistically-independent features. As shown in Figure 1, with a given feature f1 the 
feature f3 adds more information to the class than the feature f2, which has a large MI 
with f1. Although both f1 and f2 may be selected by MI criterion, once you have f1, 
you do not need f2. Figure 2 shows the cross-correlation between the AIBO features. 
Obviously many features have large MI values with high correlation, and the MI is 
not a good criterion for the feature selection. The MI values for the 200 AIBO fea-
tures in Figure 3 clearly show that several features from lowpassed intensity and pitch 
time series have large MI values but may be redundant.  

 

            

Fig. 1. MI between class and feature          Fig. 2. Cross-correlation between AIBO feature 

  

Fig. 3. MI between class and AIBO                 Fig. 4. 10 Complex features extracted by NMF 
Features 
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Features 
Fortunately it is well known that several unsupervised feature extraction algorithms 
such as Independent Component Analysis (ICA) and NMF result in statistically-
independent features. Due to the non-negative characteristics of the AIBO features the 
NMF algorithm is adopted here. Figure 4 shows the 10 features extracted by NMF. 
The low cross-correlation between NMF-based features is eminent in Figure 5.  
 

 

Fig. 5. Cross-correlation between NMF-based features 

The NMF algorithm results in complex features, which are actually weighted linear 
combinations of original features. Although the extracted NMF features themselves 
may be used for the classification tasks, here we propose to select one “representa-
tive” original feature for each NMF feature. Since the NMF features have low cross-
correlation, the “representative” original features may have low cross-correlations, 
too. In Figure 4 it is clear that the first, second and third NMF features mainly repre-
sent the intensity, MFCC, and pitch, respectively. 
 

Fig. 6. Cross-correlation between 54 impor-
tant original features for the first NMF fea-
ture in Figure 4 

 

Fig. 7. Emotion recognition performance for  10 
and 20 selected features by MI. The NMF-based 
features show the best performance.  

 
Figure 6 shows the correlation matrix of 54 highly-weighted original features for 

the first NMF features in Figure 4. The mean, maximum, minimum, median, first 
quartile, and third quartile of the original, minima series, and maxima series of the 
intensity, lowpassed intensity, and highpassed intensity time series are important.  
In Figure 6, each successive 18 features came from the same acoustic series. The first 
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18 features are intensity related, while the next 18 features are derived from the  
lowpassed intensity. The last 18 features are derived from the highpassed intensity. 
Each 18 features are ordered as mean, maximum, minimum, median, first quartile, 
and third quartile of series itself, those of minima series, and those of maxima series. 
It is clear that the lowpassed intensity features are closely related to each other. They 
also have large MI with the class variable. Therefore, it is possible to select the “rep-
resentative” original feature (rNMF feature) with the highest MI with the NMF-based 
feature. Table 2 summarizes the 10 “representative” features for the 10 NMF features. 
It is expected to have reasonably good recognition performance with these representa-
tive original features. Once one had selected these features, no NMF feature extrac-
tion is required  for the test. 

Table 2. Representative original features (rNMF features) of 10 NMF-based features 

Basis Acoustic Features Derived Series           Statistics 
Basis 1 Intensity The Series Itself  Mean 
Basis 2 Lowpassed Intensity The Series Itself Mean 
Basis 3 Pitch The Series Itself Mean 
Basis 4 Intensity The Series Itself Variance 
Basis 5 
Basis 6 
Basis 7 
Basis 8 
Basis 9 
Basis 10 

Highpassed Intensity 
Intensity 
Intensity 
Norm of MFCC derivative 
Pitch 
Norm of MFCC derivative 

The Series Itself  
The Series Itself 
Duration Series 
The Series Itself 
The Series Itself 
Duration Series 

Mean of Absolute Derivative 
First Quartile 
Mean of Absolute Derivative 
Variance 
Variance 
Mean 

 
Figure 7 shows the emotion recognition performance with 10 and 20 selected fea-

tures by MI criterion for original AIBO features, PCA features, NMF features, and the 
“representative” NMF (rNMF) features. The NMF-based features result in best recog-
nition rates, of which only 10 and 20 features are comparable to that of all 200 AIBO 
features (71.2%). The 50 NMF features actually result in better recognition rate of 
71.7%. The rNMF features which are just a small subset of the 200 AIBO feature 
result in much better recognition rates than those of AIBO features selected by MI 
criterion. The rNMF performance is only slightly inferior to those of NMF and PCA 
features. It clearly demonstrates that the “representative” feature selection from NMF-
based features is an excellent choice.  

4   Discriminant DNF (dNMF) Features 

The discriminant features depend upon the classification task. For example the speech 
recognition relies on the classification of phonemes while neglecting speaker-
dependent and emotion-dependent components. On the other hand the emotion recog-
nition in speech needs amplify the subtle differences between emotional speeches 
while neglecting the phonemes and speaker-dependent components. The NMF and 
rNMF features are based on unsupervised learning without the knowledge on  
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the classification task, and naturally not optimum. Also, the unsupervised feature 
algorithms usually extract features with larger coefficient values, i.e. phoneme-related 
features in speech.  

In this Section we describe the discriminant NMF (dNMF) which maximize  
discriminant performance during the NMF learning. It is a simultaneous feature ex-
traction and selection algorithm, and may be regarded as an extension of NMF to 
incorporate Linear Discriminant Analysis (LDA) for multi-class problems. 

For the dNMF one adds an additional cost function based on Fisher criterion for 
the discriminant power as 

 

 
 
 

 
 

where λ is a weighting factor for the discriminant power, and X, W, and H denote the 
original feature, NMF-based features, and their coefficient matrices, respectively. The 
mean coefficients of the k-th class and of all classes for the r-th feature are defined as  

 
 

 
Here k(n) is the class of the n-th sample, and δ  is the Cronecker delta. Also, R, K, N, 
and Nk denote the number of dNMF features, the number of classes, the number of 
training samples, and the number of samples in the k-th class, respectively. By  
minimizing the cost function E one is able to maximize between-class variance and 
minimize within-class variance of the feature coefficient, while still minimizing the 
representation error and maintaining the non-negativity. 

A gradient-descent learning algorithm results in additional terms as 
 
 
 

 
Although the original learning rule in [6] utilizes multiplicative updates, we use a 
gradient-descent learning rule with an adaptive learning rate based on line-searching 
and progressive thresholding for the non-negativity. The resulting algorithm usually 
converges much faster than the multiplicative learning rule.  

As shown in Figure 8, the difference of mean values between different classes for 
each feature coefficients (µrk -µrk’) becomes larger during the NMF learning. In Figure 
9 we show the emotion recognition rates with 5 to 20 features learnt by 3 different λ 
values, i.e. the weighting factor for the discriminant power. The best performance was 
achieved with only 15 features and λ =20, and the recognition rate (69.9%) is much 
better than the best NMF performance (67.6%) with 20 features. Actually, it is not far 
from the 71.2% obtained for all the 200 AIBO features. 
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Fig. 8. Mean values of 10 dNMF features for
the first class, and differences of mean values
between the first class and the other classes.
The differences increase during dNMF
learning. 

 

Fig. 9. Recognition rates of the dNMF with 
5, 10, 15, and 20 features for 3 different val-
ues of  discriminant factor λ(=D). Fifteen 
features with λ=20 shows 69.9% which is 
Close to the 71.2% with all 200 features. 

 

 
(a)                                                                 (b) 

Fig. 10. Feature coefficients Hrn for the training and test data with (a) λ =20 and (b) 50. In (b) 
they show different patterns for the training and test data, which is a symptom of overfitting. 

With the dicriminant factor λ =20 the recognition rates increase as the number of 
features increases up to 15, but falls down for 20 features. With the larger values of λ 
it becomes more serious. As shown in Figure 10, the feature coefficients have differ-
ent patterns for the training and test data with the larger value of discriminant factor 
λ. The features are overfitted to the training data and do not generalize well for the 
test data. It is a common symptom of the supervised learning, which is usually 
avoided by having a validation dataset.  
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5   Conclusion and Future Research 

In this paper we had demonstrated two efficient feature extraction algorithms for emo-
tion recognition in speech. The representative NMF (rNMF) algorithm successfully 
select efficient raw features which represent the NMF-extracted complex features one-
by-one. The discriminant NMF (dNMF) algorithm maximizes the discriminant power 
during the NMF feature extraction. Both algorithms result in much better classification 
performance than the simple feature selection based on MI. Especially, the dNMF 
algorithm results in excellent recognition rates with much smaller number of features, 
i.e., 15 out of 200 original features. Both algorithms are suitable to classify patterns 
based on subtle differences, not by the primary information. 

In the future we will work on algorithms to overcome the overfitting problem of 
the dNMF. The dNMF cost function consists of the representation error ENMF and the 
discriminant power ED. The optimum features may be extracted based on the tradeoff 
between the two cost terms by adjusting the weighting factor λ. Also, an optimum 
value for the Fisher criterion may be imposed. 
 
Acknowledgments. S.Y. Lee was supported by the Korea Research Foundation Grant 
(KRF-2008-013-D0091). D. Kim was also supported by Korea-Japan Collaboration 
Core Project on Neuroinformatics during her stay at RIKEN BSI.   
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Improvement of the Neural Network Trees

through Fine-Tuning of the Threshold
of Each Internal Node
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Abstract. Neural network tree (NNTree) is a decision tree (DT) in

which each internal node contains a neural network (NN). Experimen-

tal results show that the performance of the NNTrees is usually better

than that of the traditional univariate DTs. In addition, the NNTrees

are more usable than the single model fully connected NNs because their

structures can be determined automatically in the induction process.

Recently, we proposed an algorithm that can induce the NNTrees effi-

ciently and effectively. In this paper, we propose to improve the per-

formance of the NNTrees further through fine-tuning of the threshold

of each internal node. Experimental results on several public databases

show that, although the proposed method is very simple, the performance

of the NNTrees can be improved in most cases, and in some cases, the

improvement is even significant.

Keywords: Machine learning, pattern recognition, decision tree, neural

network, multivariate decision tree.

1 Introduction

Neural networks (NNs) are a class of learning models analogous to the human
brain. They often get good answers for solving non-linear problems, and have
been applied successfully to many fields, such as image recognition, speech recog-
nition, data mining, robot control, and so on. One drawback in using NNs is that
determination of a proper network structure is usually difficult.

In our research, we have proposed a hybrid learning model called neural net-
work tree (NNTree) [1]. An NNTree is a special decision tree (DT) with a small
NN embedded in each internal node (see Fig. 1). The small NNs are used for
local decisions, and the tree controls the whole decision making process. Usually,
an NNTree is induced recursively. For the current node (start from the root), a
small NN is added if the data assigned to this node are not pure enough (mea-
sured by the information gain ratio in this study). The small NN divides all data
assigned to the current node into several groups. For each group, we do the same
thing as above recursively. Because there is no trial and error, and the number

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 657–666, 2009.
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NN

NN

NN

NN

NN

Fig. 1. An example of neural network trees

of small NNs needed is often proportional to the number of classes, the structure
of the NNTree can be determined efficiently and automatically.

One bottleneck in using the NNTrees is the possible high cost for induction.
Although the recursive induction process can finish in a very limited number
of steps, finding the best NN in each internal node can be very time consum-
ing. In fact, finding the best multivariate test function in each internal node
is an NP-complete problem [2]. To solve the problem more efficiently, we have
proposed an efficient algorithm based on a heuristic grouping strategy [3]. Using
this algorithm, the NNTrees can be induced very quickly even for relatively large
databases.

The purpose of this paper is to improve the stability of the induction algo-
rithm. In fact, the existing algorithm is not bad. It can induce NNTrees with
better generalization ability compared with the standard DT. It can also in-
duce NNTrees that are comparable with the single model fully connected NNs.
However, the existing algorithm is not very stable. For some databases, the per-
formance of the NNTrees can be significantly worse than that of the single model
fully connected NNs.

To improve the induction algorithm, we consider to fine-tune the threshold
of each internal node of the NNTree once the NN embedded in this node is
obtained. Here, the threshold of an internal nodes is defined as the bias of the
output neuron of the NN. So far, we have fixed the threshold of output neurons
to 0.5 (which is the medium value of the range of the output). This value may
not follow the distribution of the outputs. In this paper, we propose to fine-
tune the threshold based on the information gain ratio, so that the data can
be divided more effectively using the same NN. Efficiency of this method is
confirmed through experiments on several public databases.

The rest of the paper is organized as follows. Section 2 gives a brief review
of DTs and NNTrees. Section 3 explains how to fine-tune the threshold of each
internal node of the NNTree. Section 4 provides experimental results, and dis-
cusses the performance of the proposed method compared with existing method
of inducing NNTrees. Section 5 is the conclusion.
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2 Preliminaries

2.1 Definition of Decision Tree

Roughly speaking, a decision tree (DT) is a directed graph with no cycles. We
usually draw a DT with the root at the top (see Fig. 1). Each node (except
the root) has exactly one node above it, which is called its parent. The nodes
directly below a node are called its children. A node is called a terminal node
if it does not have any child. A node is called an internal node if it has at least
one child. The node of a DT can be defined as a 5-tuple as follows:

node = {I, F, Y, N, L}

where I is a unique number assigned to each node, F is a test function that
assigns a given input pattern to one of the children, Y is a set of pointers to
the children, N = |Y | is the number of children or the size of Y , and L is the
class label of a terminal node (it is defined only for terminal node). For terminal
nodes, F is not defined and Y is empty (N=0).

The process for recognizing an unknown pattern x is as follows:

– Step 1: Set the root as the current node.
– Step 2: If the current node is a terminal node, assign x with the class label

of this node, and stop; otherwise, find i = F (x).
– Step 3: Set the i-th child as the current node, and return to Step 2.

2.2 Induction of Decision Tree

To induce a DT, it is necessary to have a training set composing feature vectors
and their class labels. The DT is induced by partitioning the feature space re-
cursively. The induction process include three steps: splitting the nodes, finding
terminal nodes, and assigning class labels to terminal nodes. The step of splitting
nodes is the most significant and time consuming. To get a good DT, we should
try to find a good test function for each internal node. Many criteria have been
proposed for estimating the “goodness” of a test function [4], [5]. It is known
that the efficiency of DTs is not affected greatly over a wide range of criteria [4].
In our study, we just adopt the information gain ratio (IGR), which is used in
the well-known DT induction program C4.5 [5].

A test function F (x) which maximizes the IGR decreases the entropy most
for recognizing an unknown datum. Suppose S (|S| is the size of S) is the set
of data assigned to the current node, and ni is the number of data belonging to
the i-th class (i = 1, 2, . . . , Nc, and Nc is the number of classes), the entropy for
recognizing an unknown datum is given by

info(S) = −
Nc∑
i=1

ni

|S| × log2(
ni

|S|) (1)
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Suppose S is divided into N subsets S1, S2, . . . , SN by the test function F , the
information gain is given as follows:

gain(F ) = info(S)− infoF (S) (2)

where

infoF (S) =
N∑

i=1

|Si|
|S| × info(Si) (3)

The IGR is defined by

gain ratio(F ) = gain(F )÷ split info(F ) (4)

where

split info(F ) = −
N∑

i=1

|Si|
|S| × log2(

|Si|
|S| ) (5)

2.3 Definition of NNTrees

As mentioned previously, an NNTree is a kind of multi-variate decision tree,
and each internal node contains a small NN. As the small NN, we use a small
multilayer perceptron (MLP) here, although any kind of NNs can be adopted.
The number of inputs and outputs of the NN correspond, respectively, to the
dimensionality Nd of the feature space and the number N of child nodes. A
major point in this research is to solve complex problems by embedding small
NNs to the DT. Therefore, a small number (2, 4, or 6) is used as the number of
hidden neurons as Nh in this paper.

Using an NNTree, any given example x is recognized as follows:

– Step 1: Start from the root. This is the current node.
– Step 2: If the current node is already a terminal node, assign its label to x.

Else find the next child node by using the following equation.

i = F (x) = arg max
1≤k≤N

ok (6)

where ok is the k-th output of the NN.
– Step 3: Set the i-th child as the current node, return to Step 2.

2.4 Induction of NNTrees

The overall process for inducing NNTrees is the same as that of C4.5. The
difference is the method to generate the test function F (x) in each internal node.
For inducing NNTrees, it is not an efficient way to find the test function based
on “generation and evaluation”. To find the test function more efficiently, we can
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Fig. 2. Flowchart for inducing the NNTrees using the proposed method

define the teacher signals first using some heuristics [6]. Based on the teacher
signals, we can find the NN test function quickly using the back-propagation
(BP) algorithm [3]. This algorithm is much more efficient than the evolutionary
algorithms we proposed before [1].

The flow-chart for inducing an NNTrees is given in Fig. 2. It can be explained
as follows. The induction process is explained as follows.

– Step 1: Check if the current node is a terminal node. If examples assigned to
this node belong to several classes, this node is an internal node, goto Step
3; otherwise, this node is a terminal node, goto Step2.

– Step 2: Assign class label of the biggest classes to this node, and finish.
– Step 3: Divide the examples assigned to the current node to N groups, and

define the teacher signals for all data.
– Step 4: Train the NN using the BP algorithm with the teacher signals defined

in Step3.
– Step 5: Split the examples into N groups using NN obtained at Step 4, and

create a new node for each group.
– Step 6: For each new node (child node), repeat the above process recursively.

Next, we explain how to divide examples into N subsets. The explanations of
each step are as follows.
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Suppose that we want to partition S (which is the set of examples assigned to
the current node by the tree) into N sub-sets S1, S2, · · · , SN , which are initially
empty sets. For any given example x ∈ S, repeat following process:

– Step 1: Get an unassigned data x from S.
– Step 2: If there is a y ∈ Si, such that label(y) = label(x), assign x to Si;
– Step 3: Else, if there is a Si, such that Si = Φ, assign x to Si;
– Step 4: Else, find y, which is the nearest neighbor of x in ∪Si, and assign x

to the same sub-set as y.

where ∪ represents the union of sets, and Φ is the empty set.

The teacher signal of a data x is the subset number to which it is assigned.
That is, if x is assigned to Si, its teacher signal is i. The problem to design NNs
as the test function changes to the supervised learning. In this research, we use
the well known BP algorithm to train the NN test function.

3 Performance Improvement of the NNTrees through
Fine-Tuning of Thresholds of Internal Nodes

3.1 Basic Concept

In this study, we study binary NNTrees only. For a binary NNTree, one output
neuron is enough to make the local decisions in each internal node (of course, the
number of hidden neurons can be larger than or equal to two). So far, we have
assumed that the threshold of each internal node is 0.5. That is, if the output of
the NN is less than 0.5, visit the left child node; otherwise, visit the right child
node.

After training the NN using the BP algorithm, the data assigned to the current
node are projected by the NN to a 1-Dimensional space (Fig. 3). Most of the data
are projected to the neighborhood of 0 or 1 because the square errors between the
teacher signals and the actual outputs are minimized. If the training is successful,
the data will be projected like Case 1 in Fig. 3. In general, however, the projected
data may distribute like Case 2, or data of difference group might be mixed up
like Case 3. In such cases, the recognition rate can be increased by fine-tunning
the threshold.

3.2 Local Optimization of the Internal Node Thresholds Based on
Information Gain Ratio

In this section, we explain how to decide the threshold. An important concept
is information gain ratio (IGR) which has been explained in Chapter 2. The
IGR is one of the well-known criteria for data division. The IGR becomes higher
when a datum is assigned to the correct group. The best threshold is the value
maximizing the IGR. To fine-tune the threshold, we follow the following steps:
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Fig. 3. Fine-tuning of threshold

– Step 1: Obtain the output values y1, y2, ..., yn of the NN for all data assigned
to the current node.

– Step 2: Sort the data according to the output values y1, y2, ..., yn.
– Step 3: Calculate the average values ak = (yk +yk+1)/2, for k = 1, 2, ..., n−1.
– Step 4: Calculate IGR(ak), which is the information gain ratio corresponding

to ak, for k = 1, 2, ..., n− 1.
– Step 5: The desired threshold is given by

T = arg max
k

IGR(ak).

The computational cost for obtaining the optimal threshold is O(n). This
increment of the cost can be ignored because it is much smaller than the cost of
BP algorithm. In practice, the cost can be decreased by restricting the range of
the threshold. For example, for the purpose of fine-tunning, T can be found in
the range [0.5−α, 0.5+α], rather than [0,1], where α is a small positive number.

We should also consider the timing of fine-tuning. There are two different
ways. The first is to fine-tune the thresholds of all internal nodes after inducing
the whole NNTree. The second is to fine-tune the threshold of each internal node
once the NN in the current node is trained. Actually, the first way cannot induce
good NNTrees because the data assigned to the child nodes can be changed when
the threshold of the parent node is fine-tuned, and the child nodes may not work
well any more. Therefore, we use the second way in this study.
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4 Experimental Results

To verify the efficiency and efficacy of the proposed method, we conducted ex-
periments with databases taken from the machine learning repository of the
University of California at Irvine[7]. The databases used are adult, crx, derma-
tology, diabetes, ecoli, glass, isolet, pendigits, and soybean. Table 1 shows the
parameters of the databases.

For each database, we conducted 5 trials of 10-fold cross validation (all to-
gether 50 runs). Each database was shuffled before each trial. The computer used
in the experiments is Sun workstation: Sun Ultra20 M2 (the CPU is 2.2 GHz
AMD Optron 1214, and the main memory is 1,024 MB).

We compare three approaches. The first one is the original induction algo-
rithm. The second method is the original induction algorithm with threshold
fine-tuning. The last method is a BP based single model full connected multi-
layer perceptron (MLP).

We set experimental parameters of NNTrees as follows. First, for the BP
algorithm, the learning rate is fixed to 0.5, and the maximum number of epochs
for learning is 1,000. For the small NN in each internal node, the number of
inputs of the NN is Nd. The number of hidden neurons is fixed to 4; and the
number of output neuron is 1 because we consider only binary NNTrees here. The
parameters of MLP are the same as previous one except the number of hidden
neurons and output neurons. The number of hidden neurons of MLP is the sum
of hidden neuron into each internal node of NNTrees. This is fair condition in the
sense of system scale. A formula for the number of hidden neurons is (“number
of internal node of NNTree” - 1) × “number of hidden neurons of NN”. The
number of output is the same as the number of the class of databases.

Table 2 shows the experimental results for all databases. The table contains
“Test error” (the error rate for the test set); “Tree size” (the number of all nodes
of the NNTree, including both terminal nodes and internal nodes); “Training
time”; and the value of α for determining the search range of the threshold. For
MLP, the number of hidden neurons is shown instead of the number of nodes. For
each result, we have the average over 50 runs and the 95% confidence interval.
Table 3 shows the result of t-test for the original induction algorithm and the

Table 1. Parameters of the Databases

Number of Number of Number of
examples features classes

(Nt) (Nd) (Nc)
adult 48842 14 2
crx 690 15 2
dermatology 366 34 6
diabetes 760 2 8
ecoli 336 7 8
glass 214 9 6
ionosphere 351 34 2
isolet 7797 617 26
pendigits 10992 16 10
soybean 307 35 19
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Table 2. Experimental results

Method Test Tree Training α
error size time

adult Original 15.05±1.54 712.6±114.2 1018.56±129.72 -
New 14.81±1.53 129.7±21.0 378.48±40.30 0.05
MLP 42.31±7.10 (1424) 14865.93±7.78 -

crx Original 16.87±1.98 14.5±1.0 2.86±0.13 -
New 16.06±1.94 14.0±1.0 2.89±0.13 0.1
MLP 15.80±2.03 (106) 4.29±0.08 -

dermatology Original 3.83±1.41 16.0±0.6 0.08±0.02 -
New 2.94±1.05 11.9±0.3 0.04±0.01 0.35
MLP 2.67±0.97 (31) 0.10±0.02 -

diabetes Original 25.76±2.55 26.1±2.5 2.87±0.18 -
New 24.97±2.44 25.1±2.3 3.04±0.27 0.1
MLP 26.18±2.48 (28) 6.07±0.10 -

ecoli Original 15.64±2.49 15.6±1.1 0.78±0.04 -
New 14.24±2.34 14.8±0.7 0.77±0.04 0.1
MLP 13.70±2.27 (30) 2.22±0.06 -

glass Original 34.00±3.46 21.9±1.5 0.68±0.05 -
New 33.52±3.66 20.2±1.5 0.66±0.05 0.05
MLP 33.52±3.33 (42) 1.97±0.06 -

ionosphere Original 9.14±1.76 5.4±0.5 0.49±0.06 -
New 7.89±1.74 5.5±0.5 0.40±0.06 0.45
MLP 8.57±1.74 (9) 0.28±0.06 -

isolet Original 10.65±2.07 75.4±2.8 268.96±20.85 -
New 8.16±1.46 75.4±2.9 199.32±10.96 0.25
MLP 10.32±1.46 (149) 8128.98±35.55 -

pendigits Original 2.72±0.68 32.0±2.0 8.00±1.53 -
New 2.37±0.62 29.7±1.5 4.03±1.11 0.45
MLP 4.56±0.86 (63) 215.37±0.59 -

soybean Original 18.00±2.41 53.5±1.8 0.48±0.05 -
New 13.20±1.97 38.9±0.7 0.36±0.04 0.45
MLP 11.33±2.06 (106) 16.28±0.96 -

proposed method. Table 4 also shows the result of t-test for the proposed method
and MLP. The numerical number in this table is the number of databases which
is significant difference against another.

First, we discuss about “Test error”. To compare the original induction method
with the proposed method by t-test, the latter is better significantly for 4
databases (adult, isolet, pen, soybean). For other databases, there is no signifi-
cant difference. The NNTree obtained by proposed method have been improved
at recognition rate. To compare the original method with MLP, from the result of
t-test, the original is better with significant difference for pen and adult database.
The MLP is better with significant difference for soybean database. On the other
hand, To compare the proposed method with MLP, the proposed one is better

Table 3. T-test for the original induction

method of NNTree and the new method

Test Error Tree size Training time
Original 0 0 0

New 4 3 6
No difference 6 7 4

Table 4. T-test for the new method and

MLP

Test Error Training time
New 3 9
MLP 0 1

No difference 7 0
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significantly for 3 databases (adult, isolet, pen), and there are no significant dif-
ference for other databases. The recognition rate of proposed method have been
more stable in the sense that NNTree obtained by the proposed method is better
or comparable with that of MLP for all databases.

Next, let us consider the “Tree size”. To compare with the original method,
the tree size of the proposed one is significant smaller for 3 databases (adult,
dermatology, soybean), and there are no difference for other databases. Espe-
cially, the proposed method is more effective for “adult” database. The tree size
can be reduced to about one fifth.

Finally, we discuss about the “Training time”. To compare with the original
method by t-test, although the time for threshold fine-tuning is added, the pro-
posed one is significant faster for 6 databases (adult, dermatology, ionosphere,
isolet, pen, soybean), and there are no difference for other databases. This is
mainly because that fine-tuning can reduce the number of errors in each internal
node, and less “small” nodes will be produced during induction (By “small” node
here we mean that only a small number of data are assigned to the node). Thus,
the number of NN training is actually smaller if we use the proposed method.

5 Conclusion

In this paper, we have proposed an efficient method for inducing NNTrees
through threshold fine-tuning. Experimental results show that, although the
proposed method is very simple, it can get better results for all databases with
no degrading performance, compared with the past proposed algorithm. In ad-
dition, the tree sizes and the training time can also be reduced to some extent
using the proposed method.
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Abstract. Recently, the synthesis of gene networks having desired

functions has become of interest to many researchers and several studies

have been done. Synthesis methods of gene networks possessing

desired expression pattern sequences are proposed. Periodic phenomena,

e.g. circadian rhythm, are the important functions of cells. In this paper,

we consider a synthesis problem of gene networks possessing the desired

persistent cyclic expression pattern sequences. We have proposed the syn-

thesis method of gene networks possessing the desired expression pattern

sequences. Desired cyclic expression pattern sequences can be realized

by using the synthesis method. But the behavior may not be persistent.

We derive a sufficient condition such that the desired cyclic expression

pattern sequences are persistent and propose a synthesis method realiz-

ing the persistent desired behavior by network learning.

1 Introduction

Investigating gene networks (GNs) is important for understanding mechanisms
and functions of organisms and many researchers have been studied from various
view points. Recently there have been increasing research interests in synthesiz-
ing GNs and several studies have been done. For example, [1] and [2] synthesize
artificial GNs having oscillatory behavior. Those studies are motivated by two
ways. One is that the synthesis of GNs could be the first step in controlling and
monitoring biochemical processes in living cells. The other is that the synthesis
of GNs is a complementary approach to investigating and understanding mech-
anisms of real GNs, that is to say, by synthesizing simple artificial networks and
analyzing their behavior and functions, one can get some insights into functions
of real GNs.

Recently, [3] and [4] propose a synthesis method of GNs having desired prop-
erties. In those studies the desired properties are given by expression pattern
sequences (EPSs) which describe changes of expression levels of genes. There
exist periodic phenomena in cells, e.g. circadian rhythm. These phenomena are
caused by gene networks. Analyzing periodic behavior of gene networks could
give some insight into understanding periodic phenomena of cells. In [4], we
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c© Springer-Verlag Berlin Heidelberg 2009



668 Y. Mori and Y. Kuroe

show that the proposed method can synthesize GNs possessing cyclic EPSs. In
order to make a GN possess a persistent cyclic EPS, its corresponding solution
trajectory must be periodic. However, the synthesis method does not guarantee
that the corresponding solution trajectory is periodic, which may cause that the
realized EPS is cyclic, but not persistent.

In this paper, we propose a synthesis method of GNs possessing a desired
persistent cyclic EPS. The proposed method realizes a periodic trajectory by
assigning pass points of the trajectory. Constraint conditions such that a GN
possesses a periodic solution trajectory passing through the points are derived.
The synthesis problem is formulated as an optimization problem with the con-
straint conditions. An efficient algorithm to solve the optimization problem by
network learning is derived.

2 Synthesis Problem

In this paper, we consider a continuous-time network model of GNs, which is
given by the following differential equations[5]:

ẋi(t) = −dixi(t) + fi(wi1, wi2, . . . , wimi , y1(t), y2(t), . . . , yn(t)), (1)
yi(t) = H(xi(t)), i = 1, 2, . . . , n, (2)

where n is the number of genes, xi(t) is a normalized expression quantity of the
ith gene, yi(t) ∈ {0, 1} is a binary variable describing the on/off information
of expression of the ith gene, that is, yi(t) = 1 if the ith gene is expressed,
yi(t) = 0 if the ith gene is not expressed, fi : {0, 1}n → R is a nonlinear function
describing interactions among genes, wij ’s (j = 1, 2, . . . , mi) are parameters of
fi, mi is the number of the parameters of fi, di denotes the degradation rate of
the product of the ith gene and H is a threshold function:

H(xi) =
{

1 if xi ≥ 0,
0 if xi < 0.

(3)

This model is rewritten in the vector form:

ẋ(t) = −Dx(t) + f(w, y(t)), y(t) = H(x(t)), (4)

where xT = (x1, x2, . . ., xn), yT = (y1, y2, . . ., yn), D = diag {d1, d2, . . ., dn},
fT = (f1, f2, . . ., fn), HT (x) = (H(x1), H(x2), . . ., H(xn)), wT = (wT

1 , wT
2 , . . .,

wT
n ) and wT

i = (wi1, wi2, . . ., wimi). We call the vector y an expression pattern.
[4] discussed the synthesis problem of GNs having the desired EPS: For a

given EPS:

y∗(0) → y∗(1) → · · · → y∗(r) → · · · → y∗(p−1) → y∗(p), (5)

where p is the length of the sequence, synthesize a GN given by (4), which
possesses a trajectory such that changes of the expression pattern y(t) of the
GN (4) become equal to the desired EPS given by (5).
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In [4], it is shown that the proposed method can synthesize GNs having a
cyclic EPS (5) in which y∗(0) = y∗(p). In order to make a GN have a persistent
cyclic EPS, its corresponding solution trajectory must be periodic. However, the
synthesis method does not guarantee that the corresponding solution trajectory
is periodic, which may cause that the realized EPS is cyclic, but not persistent.

The synthesis problem of GNs having the desired persistent cyclic EPS is
formulated as:

Synthesis problem. For a given cyclic EPS:

y∗(0) → y∗(1) → · · · → y∗(r) → · · · → y∗(p−1) → y∗(p), y∗(0) = y∗(p), (6)

synthesize a GN (4) possessing a trajectory x̂(t) satisfying the following two
conditions: (i) the solution trajectory x̂(t) is periodic (x̂(T + t) = x̂(t)), (ii)
there exist time instants tr’s (r = 0, 1, . . . , p, p + 1) such that y∗(r) = H(x̂(t))
holds for the time interval tr ≤ t < tr+1 (r = 0, 1, . . . , p).

Because it rarely happens that signs of multiple normalized expression quanti-
ties x(t) change at the same time in real GNs, we assume that ||y∗(r+1)−y∗(r)||22 =
1, r = 0, 1, . . . , p − 1, where ||x||2 =

√∑n
i=1 x2

i for x ∈ Rn. Note that this as-
sumption implies that there exist ir’s (r = 0, 1, . . . , p − 1) such that y

∗(r)
ir

�=
y
∗(r+1)
ir

and y
∗(r)
i = y

∗(r+1)
i for any i �= ir.

3 Synthesis Method

3.1 Problem Formulation as Optimization Problem

The synthesis problem of GNs having the desired EPS (5) can be formulated as
an optimization problem with the condition (7) of the following theorem[4].

Theorem 1. For the given desired EPS (5), a GN (4) possesses the desired EPS
(5) if it satisfies the conditions

y∗(r+1) = H(e(y∗(r))), r = 0, 1, · · · , p− 1, (7)

where e(ŷ) := D−1f(w, ŷ).

To solve the synthesis problem, we must derive an additional condition corre-
sponding to the periodicity of trajectories. Periodic solution trajectories corre-
sponding the desired cyclic EPS given by (6) cross the boundaries S0, S1, . . ., Sr,
. . ., Sp in the order, where Sr is the boundary of the regions Ωy∗(r) and Ωy∗(r−1)

(r = 1, 2, . . . , p), S0 is identical to Sp due to y∗(0) = y∗(p), and Ωŷ is a region in
the space of x(t) defined by Ωŷ := {x ∈ Rn|ŷ = H(x)}. We take two steps for
solving the synthesis problem; firstly, choose p points x∗(r)’s on the boundary
Sr, r = 0, 1, . . . , p, where x∗(p) = x∗(0) and secondly, synthesize a GN (4) having
a solution trajectory x(t) passing through the points x∗(r), r = 0, 1, . . . , p, in the
order.

We derive the condition such that a GN (4) has a periodic solution trajectory
x(t) passing through the points x∗(r), r = 0, 1, . . . , p, in the order.
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Theorem 2. For given desired EPS (6) and the points x∗(r) on the boundary
Sr, r = 0, 1, . . . , p, where x∗(0) = x∗(p), a GN (4) possesses a cyclic trajectory
passing through the points x∗(r), r = 0, 1, . . . , p, in the order if it satisfies the
conditions (7) and the conditions

x(r+1) = x∗(r+1), r = 0, 1, . . . , p− 1, (8)

where

x
(r+1)
i = ei(y∗(r))−

(
ei(y∗(r))− x

∗(r)
i

)( eir(y∗(r))

eir (y∗(r))− x
∗(r)
ir

) di
dir

. (9)

Proof. If a GN (4) satisfies the conditions (7), the trajectory of the GN (4) in
Ωy∗(r) starting from x∗(r) is described as

xi(t) = x
∗(r)
i exp(−dit) + ei(y∗(r))(1 − exp(−dit)), (10)
i = 1, 2, . . . , n, r = 0, 1, . . . , p− 1,

and we can see that the trajectory (10) crosses the surface Sr+1 at x(r+1). Hence
the trajectory starting from x∗(0) is a cyclic trajectory passing through the points
x∗(r+1)’s (r = 0, 1, . . . , p− 1) because the GN satisfies the conditions (8).

Values of the parameter vector w of the GN (4) satisfying the conditions (7)
and (8) are not unique. We formulate the synthesis problem as an optimization
problem whose constraints are (7) and (8) as follows.

min
w

J s. t. y∗(r+1) = H(e(y∗(r))), x(r+1) = x∗(r+1), r = 0, 1, . . . , p− 1, (11)

where J is a cost function depending on w, which represents a measure of the
complexity of the GN (4). In this paper, we choose l1 norm: J =

∑
|wij |. A

simpler GN (4) with smaller number of interactions could be obtained by the
choice of J [4].

3.2 Learning Method for Synthesis Problem

It generally takes long computational time to solve differential equations. We
must carefully solve the differential equations (4) because the GN model (4) is
piecewise linear. To avoid these problems, we introduce the following discrete-
time network:

x[k + 1] = D−1f(w, y[k]), y[k] = H(x[k]), x[0] = x0. (12)

Let x[k, x0] and y[k, x0] be the solutions of the difference equations (12). Define
x[k,x0] as

x
[k+1,x0]
i = xi[k + 1, x0]−

(
xi[k + 1, x0]− x

∗(k)
i

)( xik
[k + 1, x0]

xik
[k + 1, x0]− x

∗(k)
ik

) di
dik

,

k = 0, 1, . . . , p− 1, (13)



A Synthesis Method of GNs Having Cyclic EPSs 671

and x
[0,x0]
i = x

∗(0)
i . Using the discrete-time network (12), we reduce the opti-

mization problem (11) to an optimization problem:

min
w

Ĵ , (14)

where Ĵ = αJ + βJ1 + γJ2, α, β and γ are weighting coefficients,

J1 =
1
2

p∑
k=1

||y[k, x0]− y∗(k)||22, (15)

J2 =
1
2

p∑
k=1

||x[k,x0] − x∗(k)||22, (16)

and x0 ∈ Ωy∗(0) . If Ĵ = 0 for w∗, then y[k, x0] becomes equal to y∗(k) and
x[k,x0] becomes equal to x∗(k) for k = 1, 2, . . . , p. These imply that x[k + 1, x0]
= e(y∗(k)), y∗(k+1) = H(e(y∗(k))), and x(k+1) = x∗(k+1) for k = 0, 1, . . . , p− 1.
Hence, w∗ satisfies the conditions (7) and (8).

The optimization problem (14) can be solved by network learning with the
gradient based methods. To calculate the gradient of Ĵ , the threshold function
H in the discrete-time network (12) is replaced by a smooth function S which
can closely approximate to H , then we introduce the discrete-time network:

x[k + 1] = D−1f(w, y[k]), y[k] = S(x[k]), (17)

where S(x) = (S(x1), S(x2), . . ., S(xn))T . The function J is non-smooth. We
define the gradient ∂J/∂wij of the function J as

∂J

∂wij
=

⎧⎨⎩ 1 if wij > 0
0 if wij = 0
−1 if wij < 0.

(18)

Remark 1. From the definition (13), x[k+1,x0] becomes a complex number if
xik

[k+1, x0]/(xik
[k+1, x0]−x

∗(k)
ik

) is negative. However, if the parameter vector
w satisfies the condition (7), x[k+1,x0] becomes the cross point x(k+1). This fact
implies that x[k+1,x0]’s (k = 0, 1, . . . , p− 1) are real number. In order avoid the
problem that x[k+1,x0] becomes a complex number, we solve the optimization
problem (14) by network learning with ŵ as initial values of w where ŵ is a
solution of the optimization problem (14) with γ = 0. Note that ŵ satisfies the
condition (7).

Remark 2. If the interaction functions are defined as

fi(ai, y) = a(i) +
n∑

j=1

a
(i)
j yj +

n−1∑
j=1

n∑
k=j+1

a
(i)
jk yjyk + · · ·+ a

(i)
12···ny1 · · · yn, (19)

the discrete-time network (17) with the interaction functions (19) is equivalent
to a class of Recurrent High-Order Neural Networks(RHONNs). Hence the syn-
thesis problem is solved by learning of RHONNs. The algorithm to compute
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gradient ∂J1/∂wij and ∂J2/∂wij can be obtained based on the sensitivity anal-
ysis method by using adjoint equations or sensitivity equations[6].

Remark 3. GNs (4) having two or more desired persistent cyclic EPSs can be
also synthesized by using the proposed synthesis method. The objective function
Ĵ in the optimization problem (14) is replaced with

Ĵ = αJ + β

q∑
l=1

J1,l + γ

q∑
l=1

J2,l, (20)

where

J1,l =
1
2

pl∑
k=1

||y[k, x0,l]− y∗(k,l)||22, (21)

J2,l =
1
2

pl∑
k=1

||x[k,x0,l] − x∗(k,l)||22, (22)

x0,l ∈ Ωy∗(0,l) , y∗(k,l)’s (k = 1, 2, . . . , pl) are the expression patterns consisting
of the lth EPS, pl is the length of lth EPS, x∗(k,l) is the assigned point on the
boundary Sk,l of Ωy∗(k,l) and Ωy∗(k−1,l) , and x0,l’s (l = 1, 2, . . . , q) are initial state
of x[k].

4 Numerical Experiments

We have carried out experiments in order to illustrate the performance of the
synthesis method. In these experiment, we use the interaction functions (19)
and a sigmoidal function S(x) = 1/(1 + exp(−7x)) for a smooth function S,
which approximates the threshold function H . We let the parameters di’s of
genes be di = 1.0. The weighting coefficients α, β and γ in the cost function Ĵ
are determined by trial and error.

4.1 Realization of a Cyclic Expression Pattern Sequence

Let a desired persistent cyclic EPS be given as:

(0, 0, 0, 0, 0)T → (1, 0, 0, 0, 0)T → (1, 1, 0, 0, 0)T → (1, 1, 1, 0, 0)T

→ (1, 1, 1, 1, 0)T → (1, 1, 1, 1, 1)T → (0, 1, 1, 1, 1)T → (0, 0, 1, 1, 1)T

→ (0, 0, 0, 1, 1)T → (0, 0, 0, 0, 1)T → (0, 0, 0, 0, 0)T . (23)

A GN (4) consisting of 5 genes is synthesized because the expression patterns
have 5 elements. We choose the points x∗(r) on the boundaries Sr’s (r = 0, 1,
. . ., 10) as

x∗(0) = (−1.0,−2.0,−2.0,−1.0, 0.0)T , x∗(1) = (0.0,−1.0,−2.0,−2.0,−1.0)T ,
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x∗(2) = (1.0, 0.0,−1.0,−2.0,−2.0)T, x∗(3) = (2.0, 1.0, 0.0,−1.0,−2.0)T ,

x∗(4) = (2.0, 2.0, 1.0, 0.0,−1.0)T , x∗(5) = (1.0, 2.0, 2.0, 1.0, 0.0)T ,

x∗(6) = (0.0, 1.0, 2.0, 2.0, 1.0)T , x∗(7) = (−1.0, 0.0, 1.0, 2.0, 2.0)T ,

x∗(8) = (−2.0,−1.0, 0.0, 1.0, 2.0)T , x∗(9) = (−2.0,−2.0,−1.0, 0.0, 1.0)T,

x∗(10) = x∗(0), (24)

and set the weighting coefficients α, β and γ in the cost function Ĵ as α = 0.001,
β = 1.0 and γ = 10.0 and initial states x0 of x[k] as x0 = (−1.0,−1.0,−1.0,−1.0,
−1.0)T , respectively. Applying the synthesis method, a parameter vector w of a
GN (4) having a trajectory passing through the points x∗(r)’s (r = 0, 1, . . . , 10) is
obtained. An example of simulation results of the synthesized GN (4) is shown
in Fig. 1, where initial state x(0) is the same as x∗(0) in (24). The numbers
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Fig. 1. Simulation result of the obtained GN : realization of a cyclic pattern sequence

placed at the bottom of Fig. 1 represent the expression patterns of the synthe-
sized GN. Vertical dashed lines show boundaries where the expression pattern
y(t) of the GN changes. It is observed that the obtained GN (4) has the desired
EPS (23) with its corresponding periodic trajectory passing through the points
(24). It is concluded that the obtained GN (4) possesses the desired persistent
EPS (23).

4.2 Realization of Two Cyclic Expression Pattern Sequences

Let two desired persistent cyclic EPS be given as:

(1, 0, 0, 0, 0)T → (1, 1, 0, 0, 0)T → (0, 1, 0, 0, 0)T → (0, 1, 1, 0, 0)T

→ (0, 0, 1, 0, 0)T → (0, 0, 1, 1, 0)T → (0, 0, 0, 1, 0)T → (0, 0, 0, 1, 1)T

→ (0, 0, 0, 0, 1)T → (1, 0, 0, 0, 1)T → (1, 0, 0, 0, 0)T (25)
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Fig. 2. Simulation result of the obtained GN : realization of two cyclic pattern sequence

and

(1, 1, 1, 0, 0)T → (1, 1, 1, 1, 0)T → (0, 1, 1, 1, 0)T → (0, 1, 1, 1, 1)T

→ (0, 0, 1, 1, 1)T → (1, 0, 1, 1, 1)T → (1, 0, 0, 1, 1)T → (1, 1, 0, 1, 1)T

→ (1, 1, 0, 0, 1)T → (1, 1, 1, 0, 1)T → (1, 1, 1, 0, 0)T . (26)

A GN (4) consisting of 5 genes is synthesized because the expression patterns
have 5 elements. We choose the points x∗(r,l)’s on the boundaries Sr,l’s (r = 0,
1, . . ., 10, l = 1, 2) for the desired EPS (25) and (26) as

x∗(0,1) = (2.0,−1.0,−3.0,−2.0, 0.0)T , x∗(1,1) = (1.0, 0.0,−2.0,−3.0,−1.0)T ,

x∗(2,1) = (0.0, 2.0,−1.0,−3.0,−2.0)T , x∗(3,1) = (−1.0, 1.0, 0.0,−2.0,−3.0)T ,

x∗(4,1) = (−2.0, 0.0, 2.0,−1.0,−3.0)T , x∗(5,1) = (−3.0,−1.0, 1.0, 0.0,−2.0)T ,

x∗(6,1) = (−3.0,−2.0, 0.0, 2.0,−1.0)T , x∗(7,1) = (−2.0,−3.0,−1.0, 1.0, 0.0)T ,

x∗(8,1) = (−1.0,−3.0,−2.0, 0.0, 2.0)T , x∗(9,1) = (0.0,−2.0,−3.0,−1.0, 1.0)T ,

x∗(10,1) = x∗(0,1), (27)

and

x∗(0,2) = (2.0, 3.0, 1.0,−1.0, 0.0)T , x∗(1,2) = (1.0, 3.0, 2.0, 0.0,−2.0)T ,

x∗(2,2) = (0.0, 2.0, 3.0, 1.0,−1.0)T , x∗(3,2) = (−2.0, 1.0, 3.0, 2.0, 0.0)T ,

x∗(4,2) = (−1.0, 0.0, 2.0, 3.0, 1.0)T , x∗(5,2) = (0.0,−2.0, 1.0, 3.0, 2.0)T ,

x∗(6,2) = (1.0,−1.0, 0.0, 2.0, 3.0)T , x∗(7,2) = (2.0, 0.0,−2.0, 1.0, 3.0)T ,

x∗(8,2) = (3.0, 1.0,−1.0, 0.0, 2.0)T , x∗(9,2) = (3.0, 2.0, 0.0,−2.0, 1.0)T ,

x∗(10,2) = x∗(0,2), (28)

respectively. We set the weighting coefficients α, β and γ in the cost function
Ĵ as α=0.0001, β = 1.0 and γ = 1.0, and initial states x0,l and x0,2 of x[k]
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as x0,1 = (1.0,−1.0,−1.0,−1.0,−1.0)T and x0,2 = (1.0, 1.0, 1.0,−1.0,−1.0)T ,
respectively. Applying the synthesis method, a parameter vector w of a GN (4)
having two periodic trajectories is obtained. One trajectory passes through the
points (27) and the other passes through the points (28). From simulations of
the GN by using the obtained parameters, it is confirmed that the GN (4) has the
desired cyclic EPSs (25) and (26) with their corresponding periodic trajectories
passing through the desired points (27) and (28), respectively. An example of
simulation results of the synthesized GN (4) is shown in Fig. 2, where initial
state x(0) is the same as x∗(0,1) in (27). It is observed that the obtained GN
(4) has the desired EPS (25) with its corresponding periodic trajectory passing
through the points (27). It is concluded that the obtained GN (4) possesses the
desired persistent EPSs (25) and (26).

5 Conclusion

There exist periodic phenomena in cells, e.g. circadian rhythm. These phenom-
ena are caused by gene networks. In this paper, we proposed a synthesis method
of gene networks possessing the desired persistent cyclic expression pattern
sequence. The proposed method realize its corresponding periodic solution
trajectory. To solve the synthesis problem, we introduced the discrete-time net-
work having the equivalent behavior to the expression pattern sequence of gene
network. The synthesis problem was reduced to an optimization problem by
using the discrete-time network. The efficient algorithm to solve the optimiza-
tion problem was derived.
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Abstract. This paper proposes a method for identifying a gender by using a Thai 
spoken syllable with the Average Magnitude Difference Function (AMDF) and a 
neural network (NN). The AMDF is applied to extracting pitch contour from a 
syllable. Then the NN uses the pitch contour to identify a gender. Experiments 
are carried out to evaluate the effects of Thai tones and syllable parts on the  
gender classification performance. By using a whole syllable, the average correct 
classification rate of 98.5% is achieved. While using parts of a syllable, the first 
half part gives the highest accuracy of 99.5%, followed by the middle and the 
last parts with the accuracies of 96.5% and 95.5%, respectively. The results indi-
cate that the proposed method using pitch contour from any tones of the first half 
of a Thai spoken syllable or a whole Thai spoken syllable with the NN is  
efficient for identifying a gender. 

Keywords: Gender identification, Thai speech signal, Thai syllables, Thai 
tones, Neural network. 

1   Introduction 

The speech signal has been studied by researchers for several applications such as 
speech recognition, speaker identification, and robotic interaction. It is well-known 
that speech signal not only conveys the message but also a lot of information about 
the speaker himself such as a gender. The gender appears to be the important factor 
related to physiological differences that create speech variability [1][2]. A speaker’s 
gender can be one of the variabilities adversely affecting the speech recognizer’s 
accuracy and apparently, separating speakers can be considered as an important way 
of improving a speech recognizer’s performance [3]. In speech recognition and 
speaker identification applications, the studies in the literature show that gender-
dependent models are more accurate than gender-independent ones [4] and these 
applications would be simpler, if we could recognize a speaker’s gender [5]. In  
robotic applications, the robots can interact with users by providing suitable services 
to females and males according to their gender information [6]. The gender classifica-
tion can also be used to create more security for the places that allow only for females 
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or males. In this work, we aim at Thai speech recognition applications. In the Thai 
speech recognition, there is evidence that gender-dependent acoustic models can 
achieve higher recognition results than gender-independent acoustic models [7]. 
However, using gender-dependent acoustic models, the gender of a speaker has to be 
classified beforehand. Therefore, if the gender of speakers can be recognized accu-
rately from the beginning part of speech or a spoken syllable, the results of Thai 
speech recognition applications can be boosted.  

The pitch frequency and gender are studied in languages [8][9]. However, the pat-
terns and the number of pitch contours differ from language to language. The average 
pitch frequency is used for recognizing genders, but the accuracy is still unsatisfactory 
[10]. We think that a syllable unit contains rather rich pitch information, which should 
be represented by the pitch frequency contour not just the average pitch frequency. 
Therefore, the pitch contour of Thai syllables and parts of them should be studied more 
for the gender classification task. In this work, the gender classification based on a 
Thai spoken syllable and parts of the syllable is investigated. The paper is organized as 
follows. Section 2 describes Thai speech signal analysis of Thai syllables with different 
tones. Section 3 explains the proposed method to identify the gender. Section 4 carries 
out several experiments of the gender classification using the whole and half parts of a 
Thai syllable. Finally, section 5 gives conclusions.  

2   Thai Speech Signal Analysis 

Thai is a tonal language that has five different tones: mid, low, falling, high, and rising, 
respectively. A base syllable with a different tone always means different things. The 
shapes of pitch contours of the syllables having the same tones are quite similar [11] 
and rather independent to Thai vowels [12]. Fig. 1 shows the fundamental frequencies 
(F0) or pitch contour of Thai syllables with five different tones when they are spoken 
in isolation by a female speaker and a male speaker.   
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Fig. 1. Fundamental frequencies of five Thai tones of a female and a male 

Fig. 1 reveals that the levels of the pitch frequencies of a female speaker are higher 
than those obtained from a male speaker. Therefore, in the Thai language, a syllable 
can be a good source of gender information and it is possible to use pitch contour 



678 R. Phoophuangpairoj, S. Phongsuphap, and S. Tangwongsan 

 

extracted from a Thai syllable to classify speakers’ gender. The pitch contours of Thai 
syllables from several speakers should be considered. Additionally, to comprehen-
sively understand the effect of Thai tones on gender classification, the use of a  
mid-tone through rising-tone syllable and parts of a syllable with a gender classifica-
tion method should be investigated.   

3   The Proposed Gender Classification Method 

The proposed gender classification method comprises three stages, which are pitch 
frequency extraction using the Average Magnitude Difference Function (AMDF), 
pitch feature representation for a neural network, and gender classification by a neural 
network classifier, as shown in Fig. 2.  
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Fig. 2. Gender classification based on a Thai syllable using a neural network 

In the first stage, the acoustic pitch frequencies (F0) are extracted from a speech 
signal of a Thai spoken syllable. As a consequence, the pitch contour consisting of a 
number of pitch frequencies is obtained from the signal. The numbers of pitch  
frequencies of speech signals are not equal because the duration of syllables spoken 
by speakers is not equivalent. In the second stage, the pitch frequencies are selected or 
generated to fit the number of the neural network inputs. In the last stage, the gender 
is identified using a neural network classifier. The details of each stage are explained 
in the following subsections.   

3.1   Pitch Frequency Extraction Using AMDF 

Acoustic feature is one of the most important factors in classification using speech. In 
this research, pitch frequencies (fundamental frequencies) extracted from speech 
signal are used to determine the gender of speakers. There is evidence that voice 
speech is quasi-periodic [13]. The quasi-periodic signal obtained from a voice part of 
a Thai spoken syllable is illustrated in Fig. 3. 
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Fig. 3. A quasi-periodic signal obtained from a Thai spoken syllable 

To calculate the fundamental frequency, the AMDF is used. The AMDF is a meas-
ure of periodicity of speech waveform. The function is expected to have a minimum 
when the shift variable k in the following equation equals the waveform period T0 of a 
quasi-periodic signal of a syllable x(n) of length K. 

11
( ) ( ) ( )

q K

n q

a k x n x n k
K

+ −

=

= − +∑ ,    k = 0,1,…,N. (1)

Let q be the beginning sampling point of the pitch extracting speech part. N is the 
number of sampling points used to find the waveform period. The minimum of a(k) is 
zero in case the input voice signal x(n) is exactly periodic. However, because voice 
speech is a quasi-periodic signal, the AMDF will seldom fall to zero but will only fall 
to a very low value [14]. After obtaining the waveform period K, the time period T0 

can be computed using K and a speech sampling frequency (Fs) as follows. 

0
=

s

K

FT  (2)

The sampling frequency used in this work is 11,025 Hz. Then the fundamental  
frequency (F0) can be calculated using the next equation.  

0

0

1
F

T
=  (3)

In this work, the fundamental frequencies are computed using the Snack Sound Tool-
kit [15]. Since sometimes, there are unvoiced parts at the beginning and the ending of 
a syllable, after obtaining the fundamental frequencies, the only longest consecutive 
part of pitch contour (fundamental frequencies) without a zero value is used. The 
steps of pitch frequency extraction are shown in Fig. 4. 
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Fig. 4. Steps of pitch frequency extraction 
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After that the pitch frequencies are upsampled or downsampled to fit the number of 
neural network inputs as explained in the next section. 

3.2   Pitch Feature Representation for a Neural Network 

Since the numbers of pitch frequencies obtained from syllables are not equal, depend-
ing on the duration of a spoken syllable. Before training and classifying genders, the 
pitch frequencies of each Thai syllable are upsampled or downsampled to fit the  
number of neural network inputs, using the steps shown in Fig. 5. 
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Fig. 5. Pitch frequency conversion for a neural network 

Firstly, the number of pitch frequencies extracted from a spoken syllable is deter-
mined. Then the ratio of the number of pitch frequencies and the neural network inputs 
is calculated and used for upsampling or downsampling pitch frequencies in order to 
obtain the number of pitch frequencies that equals the number of neural network  
inputs. Finally, the pitch frequencies are normalized into the range of 0 and 1 by divid-
ing the pitch frequencies with 400, which is the highest pitch frequency set in the pitch 
extraction. The obtained normalized pitch frequencies are used as the inputs for the 
neural network classifier. 

3.3   Gender Classification by a Neural Network Classifier 

The multi-layer perceptron neural network (MLP) consisting of three layers of neu-
rons, which are the input layer, the hidden layer, and the output layer, is used as a 
gender classifier. The neural network is trained by the Backpropagation algorithm. 
The considered transfer functions in the hidden layer are hyperbolic tangent sigmoid 
(Tansig), radial basis (Radbas), and log sigmoid (Logsig). In the output layer, the 
Logsig transfer function is used. The extracted pitch frequencies obtained from all 
five Thai tone syllables are used to train the neural network. To identify the gender of 
a speaker, the pitch frequencies computed from a Thai spoken syllable are used as the 
input for the neural network. The classification result is determined from the output of 
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the female node and the male node, as shown in Fig. 2. If the output of the female 
node has a higher value than the output of the male node, the gender is identified as a 
female. On the other hand, if the output of male node provides a higher value than the 
output of the female node, the gender is identified as a male. 

4   Experimental Results 

In the experiments, the training and testing speech are recorded in the 16-bit PCM for-
mat at 11,025 samples per second. The VXi TalkPro Max headset and Andrea USB 
audio adapter are used to record speech signals. The training set consists of 20 females 
and 20 males. The syllables with five Thai tones are used in training. There are 2 test 
sets. The first consists of 20 different females and 20 different males speaking the same 
syllables used in training. The second test set comprises 70 females and 60 males speak-
ing different syllables from those used in training. The experiments are divided into 3 
parts: the gender classification using a syllable, the gender classification using different 
parts of a syllable, and gender classification using a different syllable from training. 

4.1   Gender Classification Using a Syllable 

The gender classification using the whole Thai syllable with the neural network is 
studied in this part. The MLP neural network consisting of 40 input nodes, 50 hidden 
nodes and 2 output nodes is used. In training, the pitch frequencies of all five different 
Thai tone syllables from 40 speakers, consisting of 20 females and 20 males, are 
combined and used to create a single neural network. In testing, the five-tone syllables 
from another set of 20 females and 20 males are used. The classification results are 
shown in Table 1. 

Table 1. Gender classification results using a Thai syllable categorized by Thai tones 

               Classifier 
 

 
Tones 

NN & Hyperbolic 
Tangent Sigmoid 

(Tansig) 

NN & Radial 
Basis 

(Radbas) 

NN & Log 
Sigmoid 
(Logsig) 

HMM 
with MFCC 

Mid 100% 100% 100% 97.5% 

Low 100% 100% 100% 97.5% 

Falling 95% 95% 95% 92.5% 

High 100% 100% 97.5% 100% 

Rising 95% 97.5% 95% 97.5% 

Average 98% 98.5% 97.5% 97% 

 
The result reveals that nearly the same average gender classification rates of 98%, 

98.5%, and 97.5% are obtained from applying the different transfer functions: hyper-
bolic tangent sigmoid, radial basis, and log sigmoid transfer functions, respectively. 
We have compared these results with those from the method using Mel Frequency 
Ceptral Coefficient (MFCC) with a Hidden Markov Model classifier (HMM). Our 
method using pitch frequency contour with the NN classifier provides the better  
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results, in particular, by using the radial basis transfer function. There are 37 from 40 
speakers, which is 92.5% of speakers, that their genders are accurately recognized 
from any tones of five Thai tone syllables. The detail results of each speaker are 
shown in Table 2. 

Table 2. Gender classification results of 40 test speakers grouped by Thai tones 

      Speaker    
               No. 
Tones 

 
1-7 

 
8 

 
 9-18 

 
19 

 
20-21 

 
22 

 
23-27 

 
28 

 
29-36 

 
37 

 
38-40 

Mid            

Low            

Falling      X    X  

High            

Rising    X        

     Remark: X means incorrect gender classification 
 
The results reveal that any tones can be used to identify the gender with the high 

accuracy rates. 

4.2   Gender Classification Using Different Parts of a Syllable   

Gender classification using different parts of a syllable is investigated in this part. The 
pitch frequencies extracted from the first 50%, the middle 50%, and the last 50% of a 
syllable are used. The neural networks with 20 input nodes, 25 hidden nodes and 2 
output nodes are applied and the details of gender classification results are shown in 
Table 3.  

Table 3. Gender classification results using parts of a syllable 

First Half Part of  
a Syllable 

Middle Half Part of 
a Syllable 

Last Half Part of  
a Syllable 

   Parts 
 

 
 
Tones 

Tan 
sig 

Rad 
bas 

Log 
sig 

Tan 
sig 

Rad 
bas 

Log 
sig 

Tan 
sig 

Rad 
bas 

Log 
sig 

Mid 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Low 97.5% 100% 100% 97.5% 100% 100% 97.5% 97.5% 97.5% 

Falling 97.5% 97.5% 97.5% 90% 92.5% 92.5% 92.5% 92.5% 92.5% 

High 100% 100% 100% 97.5% 95% 97.5% 95% 95% 95% 

Rising 100% 100% 100% 92.5% 92.5% 92.5% 92.5% 92.5% 92.5% 

Avg 99% 99.5% 99.5% 95.5% 96% 96.5% 95.5% 95.5% 95.5% 

 
Interestingly, only half of a syllable can be used to identify the gender of a speaker 

quite accurately. The first half part of Thai syllables outperforms the middle and the 
last half part of the syllables. When comparing among three transfer functions, the 
radbas transfer function performs better than others. The average correct gender  
classification rates of 99.5%, 96% and 95.5% are attained from the first, middle and 
last half of syllables, respectively.  
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4.3   Gender Classification Using a Different Syllable from Training 

In this experiment, syllables and speakers used in gender classification are different 
from those used in training. The same training set as used in the aforementioned  
experiments is used in training and there are 130 speakers consisting of 70 females 
and 60 males used in testing. Each test speaker enunciates 5 syllables having different 
tones. When the neural network with the radial basis transfer function is applied, the 
gender classification results are obtained as shown in Table 4. 

Table 4. Gender classification results when using a different syllable from training 

                      Syllable    
                          Parts 
 Tones  

Whole Syllable First Half Part of  
a Syllable 

Mid 97.7% 99.2% 

Low 99.2% 99.2% 

Falling 96.9% 95.4% 

High 99.2% 98.5% 

Rising 96.9% 99.2% 

Average 98% 98.3% 

 
The results show that when using the whole syllable to determine a gender, the 

classification rates of 97.7%, 99.2%, 96.9%, 99.2%, and 96.9% are obtained from 
mid, low, falling, high, and rising tone syllables, respectively. The gender classifica-
tion rates of 99.2%, 99.2%, 95.4%, 98.5%, and 99.2% can be achieved from the first 
half part of mid, low, falling, high, rising tone syllables, respectively. On average, the 
first half of a Thai syllable slightly outperforms the whole syllable (98.3% vs. 98%). 
When comparing the gender classification using the different Thai syllables from 
training with the gender classification using the same Thai syllables in training, the 
comparable classification rates of 98% vs. 98.5% for the whole syllable and 98.3% vs. 
99.5% for the first half part of a syllable can be obtained. The results indicate the 
good generalization performance of using pitch contour of a Thai syllable and the 
neural network for the gender identification task. 

5   Conclusions 

This work proposed the method to identify a gender based on a Thai syllable using the 
AMDF and the MLP neural network. The experimental results show that Thai syllables 
with any tones can be used for gender classification through pitch contour. By using 
the whole syllable, the average correct gender classification rate up to 98.5% can be 
achieved from the MLP neural network with the radial basis transfer function in the 
hidden layer. Furthermore by using a part of a syllable, we found that the first half of a 
syllable is sufficient for gender classification and it can give the slightly higher accu-
racy than the whole syllable, 99.5% vs. 98.5%. Moreover, even using the whole  
syllable and the first half part of a syllable that is different from those used in training, 
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the high average gender classification rates of 98% and 98.3% can be achieved, respec-
tively. The results show that our proposed method using the pitch contour of the first 
half of a Thai syllable or a whole Thai syllable from any tones with the MLP neural 
network classifier is an efficient method for gender identification.  
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Abstract. In this paper, we propose a support vector machine with automatic
confidence (SVMAC) for gender classification based on facial images. Namely,
we explore how to incorporate confidence values introduced in each primitive
training sample and compute these values automatically into machine learning.
In the proposed SVMAC, we use both the labels of training samples and the label
confidence which projected by a monotonic function as input. The main contribu-
tion of SVMAC is that the confidence value of each training sample is calculated
by some common algorithms, such as SVM, Neural Network and so on, for gen-
der classification. Experimental results demonstrate that SVMAC can improve
classification accuracy dramatically.

Keywords: Support Vector Machine, Feature Extraction, Gender Classification.

1 Introduction

Due to its wide application in human-computer interaction, such as vital statistics, iden-
tity appraisal, visual surveillance and robot vision [1], gender classification based on
facial images has attracted many researchers’ attention.

One of the most challenging problems is to devise a proper classification algorithm
to classify gender information of faces. In other words, we need to select a better clas-
sifier to improve the classification performance. Among all kinds of recognition al-
gorithms [2] [3] [4] [5], support vector machine (SVM) is one of the most popular
classification methods, providing a sound theoretic basis for constructing classification
models with high generalization ability. Li and Lu [6] brought forward a framework
based on multi-view gender classification where a trained layer support vector machine
(LSVM) is utilized to recognize the angle of each facial image and classify its gender.
To develop new machine learning algorithms and improve the performance of exist-
ing machine learning methods, it is very important for us to consider the problem how
SVM can be ameliorated. Ji et al [7] proposed a support vector machine with confidence
(SVMC) labeled manually. But before training, the confidence of each training sample

� Corresponting author.
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must be labeled manually. Thus, when the number of training samples is very large we
must spend much time in labeling the confidence. Furthermore, we can not guarantee
all these labeled confidence values are reasonable. To explore how to label rational con-
fidence for each training sample automatically, we propose the support vector machine
with automatic confidence (SVMAC).

The remaining part of the chapter is organized as follows: Section 2 described the
proposed SVMAC model in detail. Experiments are presented in Section 3. Some con-
clusions and discussions on future work are outlined in Section 4.

2 The Proposed SVMAC Model

The quadratic programming problems for the standard and soft margin forms of tradi-
tional SVM [8] [9] [10] [7] can be expressed as

min
w

1
2 ||w||2 + C

∑
i ξi

s.t. ∀i, yi(wT xi + b) � 1− ξi,

ξi � 0 (1)

and

min
w

1
2 ||w||2 + D

∑
i ξ2

i

s.t. ∀i, yi(wT xi + b) � 1− ξi,

ξi � 0 (2)

respectively. One way of incorporating confidence values is to re-scale the soft margin
as follows,

min
w

1
2 ||w||2 + D

∑
i ξ2

i

s.t. ∀i, yi(wT xi + b) � t(πi)− ξi,

ξi � 0 (3)

where t(πi) is a monotonic function to scale the confidence, namely

t(πi) = h · πi,
1
2

� πi < 1 (4)

where h is the scale parameter.
Existing work reported that the support vectors obtained by a support vector ma-

chine tend to be those training samples that people can not discriminate well [2] [11].
Based on this fact, we propose a modified support vector machine. First, we divide all
the training samples into two disjointed subsets U and V (X = U ∪ V), which are later
treated in a different way in the training algorithm. Then, we put the training samples in
U with confidence πi less than 1, and the remaining training samples in V with confi-
dence πi equal to 1. In essence, U contains the training samples that tend to be support
vectors after training. In the following, we denote the number of training samples in U
and V by nu and nv , respectively.
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According to Eq. (3) for training subset U and Eq. (1) for training subset V , we can
express the quadratic programming problem for soft margin form as follows:

min
w

1
2
||w||2 + D

nu∑
i=1

σ2
i + C

nv∑
i=1

ξi, (5)

s.t. ∀1 � i � nu,

yu
i (wT ui + b) = t(πi)− σi,

∀1 � i � nv,

yv
i (wT vi + b) � 1− ξi, ξi � 0.

Using the standard Lagrangian dual technique, we get the following dual form:

min
λ,α

1
2
(

nu∑
i=1

λiy
u
i ui +

nv∑
i=1

αiy
v
i vi)T

(
nu∑
i=1

λiy
u
i ui +

nv∑
i=1

αiy
v
i vi)

−
nu∑
i=1

t(πi)λi +
1

4D

nu∑
i=1

λ2
i −

nv∑
i=1

αi (6)

s.t. ∀1 � i � nu, 0 � λi < +∞,

∀1 � i � nv, 0 � αi � C,
nu∑
i=1

λiy
u
i +

nv∑
i=1

αiy
v
i = 0.

However, it is a considering problem how to label the confidence of training samples
reasonably. In SVMC [7] the confidence of all the training samples is labeled manually.
But if the number of the training samples is large, we must spend much time in labeling
their confidence values. Moreover, we can not guarantee that all the labeled confidence
values are reasonable because people’s action on making them is very subjective. There-
fore, we suggest using logical methods to divide the training samples into the two sets
U and V . The algorithm ALC of labeling the confidence is displayed in Algorithm 1.

As a matter of fact, the size of the distance between a training sample and decision
boundary γ suggests whether the sample can be discriminated well. Obviously, the train-
ing sample which is far from the decision boundary can tend to be discriminated and
should be appended into V . Otherwise, it need to be added in U . Therefore, the auto-
matic mark is coincident with the manual label on the confidence of training samples.

Now we take into account the performance of SVMAC in some situation. According
to the algorithm ALC and SVMAC defined in Eq. (5) that makes use of the method of
probability statistics [7] [12] [13], we set the confidence values in U less than 1. Those
samples marked by small circles (green) are shown in Fig. 1, and the right figure of
Fig. 2. We can observe that the decision boundary is changed if the confidence values
of the support vectors in U are assigned by employing the algorithm ALC where the
sample set Γ = {(xi, yi)|1 � i � N} is trained by SVM. We can conclude that the
movement of the decision boundary is identical to the one in SVMC [7].
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Algorithm 1. ALC
Step 1: The sample set Γ = {(xi, yi)|1 � i � N} is trained by utilizing some algorithms

such as SVM, Adaboost, Neural Network, and so on. Thus, a decision hyperplane γ, namely, a
classifier can be obtained;

Step 2: Computing these distances between all the samples in Γ and the hyperplane γ and
Obtaining the distance set Ω = {di | the distance between the i-th sample and γ};

Step 3: Given threshold value σ,
for all i from 1 to N

if di < σ,
the sample (xi, yi) is added in U ;

else
(xi, yi) is added in V;

end if
end for

Step 4: The confidence values of the samples in V are set to 1.0 while the ones in U is
projected onto the confidence space [ 1

2
, 1) according to the distances.
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Fig. 1. Illustration of movement of decision boundary caused by the proposed SVMAC. The scale
parameter h for SVMAC in Eq. (4) is set to 1.0 and 0.1 in the left and right figures, respectively.

We regard the support vectors obtained by means of SVM as the training samples
close to noise. Therefore, we should assign them with confidence values less than 1.
By training the proposed SVMAC on all the training samples with proper confidence
values, we obtain the decision boundaries as shown in Fig. 1. From this figure, we can
see that if the support vectors obtained by the traditional SVM are assigned with ap-
propriate confidence values, some of them may be turned into non-support vectors after
applying SVMAC. The decision boundary obtained by SVMAC can be regarded as a
fitting achieved by training the samples in which some noise is removed. Therefore, the
decision boundary obtained by SVMAC is superior to that obtained by traditional SVM.
For example, the lower left training samples in Fig. 1 are much denser and closer to the
boundary than the upper right training samples, the movement of separation boundary
from the lower left corner to the upper right corner caused by the proposed SVMAC no
doubt yields a better separation than that of traditional SVM.
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Fig. 2. Illustration of the decision boundaries formed by SVM (left) and SVMAC (rigfht), where
we only assign the confidence values (less than 1) to non-support vectors in V for training
SVMAC and do not consider any confidence values for support vectors in U

Table 1. Description of training and test data based on facial images

Data Set Description Total Male Female Training Test
PD00 1040 595 445 311*2 418
PD15 939 516 423 296*2 347
PD30 939 516 423 296*2 347
PM00 1039 595 444 310*2 419

CAS-PEAL PM15 938 516 422 295*2 348
PM30 938 516 422 295*2 348
PU00 1040 595 445 311*2 418
PU15 939 516 423 296*2 347
PU30 939 516 423 296*2 347

TOTAL 8751 4881 3870 5412 3339
FERET PM00 992 589 403 282*2 428
BCMI PM00 1045 529 516 361*2 323

TOTAL TOTAL 10788 5999 4789 6698 4090

From the angle of the confidence, the decision boundaries in Fig. 1 are the most su-
perior boundaries. However, the decision boundaries produced by traditional SVM and
the proposed SVMAC are the same as shown in Fig. 2, where only the non-support vec-
tors in V are assigned with confidence values less than 1 and none of support vectors
in U is assigned with confidence value. From this figure, we can see that the confi-
dence values less than 1 assigned to non-support vectors in V don’t affect the decision
boundary. In other words, after some non-support vectors in SVM are marked by the
confidence values less than 1 through using ALC, the whole classification accuracy will
not be decreased.

3 Experiments

To evaluate the performance of SVMAC, we select the gender classification problem
based on multi-view facial images in the CAS-PEAL face database [14] and frontal
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Table 2. Description of the mean accuracy denoted by MA (%) and the standard deviation de-
fined as SD (%) caused by SVM and SVMAC with RBF kernel used by the first row and the
second row in each group in turn on F1, F2, F3, F4, F5, F6, F7, F8 corresponding to MLGBP-
CCL, MLGBP-LDA, LGBP-CCL, LGBP-LDA, MLBP, LBP, Gabor, and gray respectively, where
CAS-PEAL, FERET and BCMI are represented by C, F, and B in front of these description names,
and m (the number of window blocks) is ranged from 5 × 5 to 10 × 10

Description
F1 F2 F3 F4 F5 F6 F7 F8

MA/SD MA/SD MA/SD MA/SD MA/SD MA/SD MA/SD MA/SD

C-PD00 99.1/0.4 99.9/0.2 96.7/11.4 99.6/0.4 95.5/2.9 94.2/10.2 90.6/16.3 92.5/4.9
99.3/0.3 100.0/0.0 97.4/4.8 99.9/0.2 96.4/1.1 95.3/4.4 92.6/15.1 93.8/4.3

C-PD15 99.3/1.1 100.0/0.0 97.4/7.5 99.7/0.1 94.9/1.1 93.5/3.0 88.7/26.0 91.3/1.1
99.4/0.9 100.0/0.0 97.7/7.3 99.8/0.1 95.6/0.9 94.6/2.1 90.5/17.2 92.6/2.0

C-PD30 98.9/0.4 99.9/0.2 96.4/6.2 99.8/0.4 92.7/2.0 92.2/3.2 89.9/13.1 89.4/1.5
99.1/0.6 100.0/0.0 96.8/4.8 100.0/0.0 93.3/2.1 93.2/1.9 90.4/8.4 90.6/2.5

C-PM00 99.6/0.2 100.0/0.0 97.3/10.6 100.0/0.0 96.1/2.7 94.5/10.4 91.6/26.3 94.6/6.0
99.6/0.3 100.0/0.0 97.5/10.8 100.0/0.0 96.6/3.3 95.5/8.5 92.7/16.7 95.4/3.6

C-PM15 99.6/0.2 99.9/0.1 97.1/2.9 99.7/0.3 95.1/0.9 94.2/14.6 92.7/30.2 94.5/7.4
99.7/0.8 100.0/0.0 97.3/2.7 99.9/0.2 95.7/2.5 94.7/15.3 93.2/23.4 95.0/6.9

C-PM30 98.9/0.3 99.9/0.1 96.3/6.8 99.7/0.5 93.7/9.1 92.4/15.3 91.9/17.4 92.1/1.5
99.4/0.2 100.0/0.0 96.9/2.8 100.0/0.0 95.1/6.0 93.2/11.3 93.1/8.3 92.6/2.0

C-PU00 99.4/0.5 100.0/0.0 96.7/5.4 99.9/0.1 95.4/4.2 94.5/4.7 90.2/33.2 89.0/28.4
99.6/0.5 100.0/0.0 97.6/5.6 100.0/0.0 96.3/2.4 95.3/4.8 91.6/18.4 92.0/17.9

C-PU15 99.3/0.2 100.0/0.0 97.6/1.3 99.9/0.1 96.0/4.2 95.6/1.8 92.6/8.9 89.3/16.5
99.9/0.2 100.0/0.0 98.3/2.5 100.0/0.0 96.6/0.8 96.0/2.5 93.1/6.5 90.2/18.8

C-PU30 98.8/1.4 100.0/0.0 96.9/8.6 99.9/0.2 94.0/4.0 92.8/5.1 89.0/21.1 88.2/9.1
99.2/0.5 100.0/0.0 97.0/6.3 100.0/0.0 95.0/1.2 93.6/5.5 90.2/13.0 89.6/5.9

F-PM00 96.8/2.3 99.6/0.2 94.6/11.6 98.8/2.3 93.7/1.3 92.3/9.0 90.4/9.8 89.5/3.7
97.2/2.4 99.7/0.2 95.1/8.8 99.1/0.6 93.8/1.0 93.1/3.9 91.6/15.1 91.2/4.6

B-PM00 98.8/1.2 100.0/0.0 97.3/8.3 99.4/1.4 96.3/2.0 96.2/3.2 93.4/10.2 95.4/2.1
99.0/0.7 100.0/0.0 98.1/0.7 99.7/0.2 97.2/0.9 97.3/0.9 95.1/6.1 95.7/1.2

face pictures in FERET1 and BCMI2 databases as a benchmark problem, respectively,
and make some comparative studies. The total 10788 different-pose facial images are
organized into 11 groups in each of which the numbers of training and test samples are
70% and 30% of the whole group, respectively (See Table 1).

In this paper, we use gray, Gabor, local binary pattern (LBP) [15] [16], multi-
resolution local binary pattern (MLBP) [17], local Gabor binary pattern (LGBP) [18],
and multi-resolution local Gabor binary pattern (MLGBP) approaches to extract the fea-
tures of each facial image. Thereinto, the MLGBP feature as input of SVM [8] [9] [10]
and SVMAC classifiers is derived by combining multi-resolution analysis, Gabor char-
acteristic and uniform LBP histograms. All experiments were performed on a Pentium
fourfold CPU (2.83GHz) PC with 8GB RAM.

1 http://www.frvt.org/FERET/default.htm
2 BCMI face database is set up and packed up by the Center for Brain-Like Computing and

Machine Intelligence Shanghai Jiao Tong University, Shanghai, China.
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From Table 2, we conclude that the average classification accuracy caused by
SVMAC is higher than SVM on the same face feature, and the standard deviation of
classification precision brought by SVMAC is lower than SVM. What’s the more, the
performance improvement of SVMAC is obvious for Gray, Gabor, LBP and MLBP fea-
tures and the maximum improvement accuracy obtained between SVMAC and SVM
reaches 3.0%. But for MLGBP-CCL, LGBP-CCL, MLGBP-LDA and LGBP-LDA
features, because all the accuracies are very high, SVMAC improve the classification
performance a little only. These indicate that SVMAC improves the classification per-
formance compared to traditional SVM, where the parameter C in Eqs. (1) and (6) is
consistent. In addition, we observe that the classification performance is also dependent
on the distributions of training samples. Generally speaking, there are two kinds of sam-
ple distributes. One is dense and the other is sparse, such as in Fig. 1. In this situation,
if the confidence values less than 1 are set for the support vector samples, the decision
boundary obtained by SVMAC will favor the sparse samples in comparison with tra-
ditional SVM. Consequently, from the experimental results and theoretical analysis, by
modifying the confidence values of the support vector samples, we can separate the data
samples more reasonably.

4 Conclusions and Future Work

We have proposed a novel support vector machine with automatic confidence, i.e.,
SVMAC. The most important advantage of this presented SVMAC over traditional
SVM is that some explicit human prior knowledge estimated by the algorithm ALC on
training samples can be easily incorporated into learning. We have derived the quadratic
programming problem for SVMAC and analyzed its performance theoretically. Exper-
imental results on a gender classification problem based on facial images indicate that
this proposed method can improve classification accuracy dramatically. As future work,
we would like to give a bound for the improvement on classification accuracy about
SVMAC and apply it to other real-world pattern classification problems, such as text
classification, age estimation and object recognition.
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Abstract. In this paper, we propose a novel occluded face detection model which 
can detect multiple occlusions in a stereo image. The biologically motivated face 
preferable selective attention model localizes candidate regions for human faces in 
a natural scene, and then the Adaboost based face and eye detection process 
works for those localized candidate areas to check whether the areas contain a 
human face. In order to detect each facial area in multiple occluded faces, we use 
depth information of an eye, which is obtained by a binocular saliency map 
model. If the facial local features are similar depth information, we use the con-
ventional Adaboost algorithm to localize the face area, and mask off the facial re-
gion. Then, we check the next area in a distance point of view whether it has an 
occlusion by Auto-associative multilayer perceptron (AAMLP) at 3 divided can-
didate regions. Finally, we implement an efficient model which can detect not 
only faces in a stereo image but also multiple occluded facial regions in an input 
scene. Experimental results show that the proposed model successfully localizes 
multiple occluded faces. 

Keywords: Multiple occlusion, Occlusion detection, Binocular saliency, 
saliency map, Face detection, AAMLP, AdaBoost. 

1   Introduction 

In the last decades, face detection is one of hottest issues as well as face recognition. 
Face and facial expression recognition have attracted much attention though they have 
been studied for more than 20 years by psychophysicists, neuroscientists, and engi-
neers [1]. Numerous methods have been developed to localize or detect faces in a 
visual scene [1, 2]. M. Yang et al, [1] have reviewed and classified those face detec-
tion methods into four major categories such as the knowledge-based methods, the 
feature invariant approaches, the template matching methods, appearance-based 
methods. The-state-of-the-art of the face detection shows excellent performance [3]. 
                                                           
* Corresponting author. 
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But, the performance was still limited under constrained environment. There exist 
various environmental components to deteriorate face detection performance, such as 
shadow, occlusion, head rotation, view point change, various illuminations and so on. 
Many researchers are trying to develop more robust face detection and recognition 
methods, but no specific method has yet shown comparable performance with a hu-
man being.  

Biologically inspired vision system may provide a critical clue to overcome the 
limitations of the current artificial vision system. Recently, biologically motivated 
approaches have been developed by L. Itti., T. Poggio, and C. Koch [4, 5, 6]. And, 
attention models were introduced for face detection [7, 8]. However, they have not 
shown plausible results for the face attention problem in complex scenes including 
multiple occlusion until now. Conventional face detection models based on an 
AdaBoost algorithm show good performance in real time environment even if they 
are not perfectly working [9]. 

In this paper, we propose a new face detection model to localize face areas even 
when multiple faces are occluded. The conventional methods based on the AdaBoost 
algorithm can work well for single face detection, but it doesn’t work for detecting a 
multiple occluded faces because the AdaBoost algorithm uses a Haar-like feature for 
complete facial features such as a distance of intensity difference between two eyes, 
chicks, nose and mouth. However, there needs to detect a face with partial informa-
tion such as crowded area for airport and/or downtown street, in which some of facial 
features are not available caused by occlusion. In order to detect facial areas robustly 
with and without complete facial features, we propose a new method based on bio-
logically motivated multiple occluded face detection. We localize the candidate area 
to search a facial feature by a face preferable selective attention model, and apply the 
wavelet based Adaboost algorithm to find a facial feature such as eye region. Then, 
we consider depth information of the facial features to sequentially identify frontal 
and behind facial features in multiple occluded face images, in which a biologically 
inspired binocular saliency map model is used for obtaining depth information [9]. 
We finally localize the suitable size of a facial region based on the 3D facial feature 
information. Also, we use an auto-associative multilayer perceptron (AAMLP) model 
to identify the occluded local region. Finally, we implement a face detection model 
which can detect not only faces in stereo image but also multiple occluded facial 
regions. Experimental results show that the proposed model can successfully detect an 
each facial region from multiple occluded faces. 

This paper is organized as follows; Section 2 describes the proposed model includ-
ing a face preferable selective attention, a binocular saliency for depth information of 
a local facial feature, and AAMLP for detecting the occluded region. Experimental 
results will be followed in Section 3. At last, further works with conclusion are dis-
cussed in Section 4. 

2   Proposed Model 

Fig. 1 shows the overall architecture of the proposed model. The selective attention 
model considers a face color preferable intensity, an RG color opponent and edge 
information for reflecting human preference for faces. Thus, the proposed selective 
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attention model generates a saliency map (SM) for an input scene, which pop-outs 
face candidate areas having the face-like low level features. The face preferable SM 
model reduces region of interests (ROI) in an input scene, which plays important role 
for decreasing processing time of face detection [10]. Moreover, in order to reject 
non-face areas and correctly localize face areas in the selected face candidate areas, 
we consider a well-known AdaBoost algorithm based on Haar-like form features. 
Using binocular face preferable SM model, we can obtain distance information to a 
local feature area in a face region. The AAMLP uses to detect whether a candidate 
facial region is occluded or not.  

 

 

Fig. 1. The proposed model flow chart 

2.1   Face Preferable Selective Attention with Adaboost 

In order to implement a human-like visual attention function, we consider the simplified 
bottom-up SM model proposed in [11]. The SM model reflects the functions of the 
retina cells, the lateral geniculate nucleus (LGN )and the visual cortex. In order to pro-
vide the proposed model with face color preference property, the skin color preferable 
intensity feature is considered together with the original intensity feature. According to 
a given task to be conducted, those two intensity features are differently biased. For face 
preferable attention, a skin color preferable intensity feature works for a dominant fea-
ture in generating an intensity feature map. And the real color components R, G, B, Y 
are extracted using normalized color coding [11]. According to our experiments, the real 
color component R among 4 real color components shows dominant contribution for 
face color plausible filtering. Moreover, RG color opponent coding features also show a 
discriminate characteristic between face and non-face area. Instead, BY color opponent 
coding feature has a little contribution to discriminate whether face or non-face area. 
Therefore, in the proposed model, only the real color component R and RG color oppo-
nent feature are considered to generate a skin color filter, which also plays a role for 
reducing computation time as well as getting better skin color filtering performance.  

Actually, considering the function of the LGN and the ganglian cells, we implement 
the on-center and off-surround operation by the Gaussian pyramid images with differ-
ent scales from 0 to n-th level, whereby each level is made by the sub-sampling of 2n, 
thus it is able to construct four feature bases such as the intensity (I), and the edge (E), 
and color (RG and BY) [11, 12]. This reflects the non-uniform distribution of the ret-
ina-topic structure. Then, the center-surround mechanism is implemented in the model 
as the difference operation between the fine and coarse scales of the Gaussian pyramid 
images [11]. Consequently, three feature maps are obtained by the following equations. 
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( , ) | ( ) ( ) |I c s I c I s=  
( , ) | ( ) ( ) |E c s E c E s=  

( , ) | ( ) ( ) | | ( ) ( ) |RG c s R c G c G s R s= −  

(1)

where “ ” represents interpolation to the finer scale and point-by-point subtraction, 
c and s are indexes of the finer scale and the coarse scale, respectively. Totally, 18 
features are computed because three features individually have 6 different scales [11]. 
Features are combined into three feature maps as shown in Eq. (2) where I , E  and 

C  stand for intensity, edge, and color feature maps, respectively. These are obtained 
through across-scale addition “⊕” [11].  
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Thus, the three features maps such as I , E  and C  can be obtained by the center-
surround difference and normalization (CSD&N) algorithm [11]. A SM is generated 
by the summation of these three feature maps as shown in Eq. (3).  

SM I E C  (3)

The salient areas are obtained by selecting areas with relatively higher saliency in the 
SM. In order to decide salient area, the proposed model generates binary data for each 
selected face candidate area using Otsu’s threshold method [12] in the SM. Then, the 
proposed model makes a group of segmented areas using a labeling method for each 
binary face candidate area. After obtaining the candidate salient areas for human face, 
the obtained face candidate areas are used as input of the AdaBoost algorithm. 

2.1.1   Facial Feature Detection Using AdaBoost 
In case of occluded face, the AdaBoost can not detect the face, because the occluded 
face does not contain enough facial information. So, we use the facial feature, such as 
eyes and mouth, to estimate the facial feature area. After detecting the size of eye 
regions without occlusion, which is obtained by the AdaBoost algorithm [10], we 
estimate the whole size of the occluded facial area. In this case, since we don’t know 
whether the detected eye region is for left or right eyes and we need to correctly esti-
mate the whole size of the occluded facial area, we check the energy variation in the 
face preferable SM. If the energy value in the SM for a left part of detected eye region 
is greater than that for a right part, then we regard the detected eye as a right eye, and 
estimate that the occluded facial area is in left side of the right eye. The estimated 
facial size is obtained by the detected eye region through AdaBoost algorithm and 
depth information from the binocular saliency. 
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2.2   Binocular Saliency Map and Depth Information 

In order to implement a human-like visual attention function, three processes are inte-
grated to generate a binocular SM. One generates static and dynamic saliency in terms 
of monocular vision. And we can build a binocular SM by combining two monocular 
SMs. The stereo vision can get more information from images than monocular vision. 
Using the binocular SM, we can extract the depth information of each feature. So it can 
cluster the features by depth information.  

First, we have to obtain the degrees of two camera angles to be moved to make a 
focus on a land mark. Considering the limitation of the field of view (F) in the hori-
zontal axis and motor encoder resolution (U), we can get the total encoder value (E) 
to represent the limited field of view of the horizontal axis. The total encoder value 
(E) can be obtained by Eq. (4). As shown in Eq. (5), the total encoder value (E) is 
used to calculate the encoder value (xt) of the horizontal axis motor for aligning of 
each camera to a landmark.  

In Eq. (5), R denotes the x-axis pixel resolution of the image and T denotes the 
relative pixel coordinate of the x-axis of a landmark from the focus position. In other 
words, T represents the disparity of x- axis. The x- axis encoder value (xt) that uses to 
move each camera to the landmark point is translated into the angel (xd) by Eq. (6). 
As a result, the angles a and b are obtained by Eq. (6) by substituting T for the x coor-
dinates of the left and right cameras. 

( 360 )/E F U= × °  (4)

( )/1x E E T R=− + ×  (5)

90 ( )/x R x Ud t= °− ×  (6)

The vertical distance (y) is obtained by the following equations.  

tan( ) tan( )a x a s y× − × =  (7)

tan( )b x y× =  (8)

[tan( ) tan( )] / [tan( ) tan( )]y a b a b= × −  (9)

Eq. (7) and (8) show the equation of straight lines between the cameras and the land-
mark, respectively. In Eq. (7), x and y denote the disparities for x-axis and y-axis re-
spectively between a land mark and a current focus position, and s represents the 
distance between each focal axis of two cameras.  Eq. (9) is the equation to calculate 
the vertical distance (y). 

2.3   Occluded Region Detection in Facial Image 

We have modeled the occlusion detection mechanism in the IT and V4 areas using 
AAMLP by which the characteristics of the facial features are trained and memorized 
in the connections of the artificial neurons in AAMLP.  
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Fig. 2. Example of divided regions 

Considering computational efficiency, we extract some eigenvectors with large ei-
gen-values using the principal component analysis (PCA) for extracting important 
features of a face region. First, we resize detected face into 120 x 120. And we divide 
face into halves. Lastly, we divide the upper part into halves. The divided each region 
contains facial features like eye and mouth. Figure 2 shows the divided regions. The 
PCA features are extracted in each region. 

2.3.1   Occluded Region Detection Using AAMLP 
To perceive an occluded facial region, we use the retrieval of face related information 
from AAMLP using correlation computation between input and output of the 
AAMLP. The AAMLP has been used successfully in many partially-exposed envi-
ronments [13]. The face detection is also one of the partially exposed problems with 
tremendous within-class variability [13]. Let F(·) denotes an auto-associative mapping 
function, and xi and yi indicate an input and output vector, respectively. Then the 
function F(xi) is usually trained to minimize the following mean square error given by 
Eq. (10). 

                                 
(10) 

 
 

where n denotes the number of output nodes. 
We train the AAMLP using facial features without occlusion. After detecting a face 

region, we extract the PCA features at the 3 divided region (2 eyes, 1 mouth), and the 
facial features in each region are used as input to the each region’s AAMLP as test 
data. Then, we check whether each region is occluded or not by calculating the mean 
square error (MSE).  

3   Experimental Results 

There is no database for experiment of the multiple occluded face detection system. 
Thus, we make our own database of multiple occlusion using 2 CCD cameras [9]. We 
get the 200 pictures continuously from 2 cameras. And we use ABR database [14] and 
POSTECH database [15]. We crop the face from those databases to train the AAMLP. 
Totally 93 facial images is trained.  

Figs. 3 (a) and (b) show the results of eye detection using AdaBoost algorithm in 
the localized candidate area. Figs. 3 (c) and (d) show the result of the proposed model, 
in which the occluded faces are successfully indentified with suitable size of face 
area. Fig. 4 shows an example for detecting face areas in multiple occluded facial 
images.  
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Fig. 3 (e) shows the results of face color preferable attention model in the stereo 
camera. Fig. 3 (f) shows the results of face and facial feature detection using 
AdaBoost algorithm in the localized candidate area as shown in Fig. 3 (e). Fig. 3 (g) 
shows successfully identified with suitable size of face area.  

 

Fig. 3. Occluded face detection results; (a) and (b) Candidate region for face and facial feature 
detection, (c) and (d) Face detection result for occluded faces, The multiple occluded face 
detection results; (e) Face preferable SM, (f) Candidate region for face and facial feature detec-
tion, (g) Face detection result for multiple occluded faces 

Fig. 4 shows the results for detecting the occluded local region using the AAMLP. We 
use 264 facial images for test (132 non-occluded face images / 132 occluded face im-
ages). From the results, each occluded region has higher MSE than occlusion free region. 

 

Fig. 4. Test results with average MSW using AAMLP 

4   Conclusion 

In this paper, we proposed a novel method which can detect multiple occluded faces and 
also can detect occluded region in facial image. In natural complex scenes, the proposed 
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model not only successfully localizes the face areas but also appropriately rejects non-face 
areas. The proposed model is based on the face color preferable attention, and the 
AdaBoost algorithm based on Haar-like features decides whether the attended region 
contains a face characteristic. The proposed model aims to detect multiple occluded faces 
in crowded area. As a further work, we need to enhance this model and verify the per-
formance of the proposed model through more complex benchmark databases. 
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of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0082262). 

References 

1. Yang, M., Kriegman, D.J., Auja, N.: Detecting faces in images: a survey. IEEE Trans. 
Patt. Anal. Mach. Intell. 20(1), 34–58 (2002) 

2. Turk, M.A., Pentland, A.P.: Eigenfaces for Recognition. J. Cogn. Nerosci. 3(1), 71–86 
(1991) 

3. Viola, P., Jones, M.J.: robust real-time face detection. Int. J. Comput. Vis. 58(2), 137–154 
(2004) 

4. Walther, D., Itti, L., Riesenhuber, M., Poggio, T.A., Koch, C.: Attentional selection for  
object recognition - A gentle way. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, 
C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 472–479. Springer, Heidelberg (2002) 

5. Serre, T., Riesenhuber, M., Louie, J., Poggio, T.: On the role of object-specific features for 
real world object recognition in biological vision. In: Bülthoff, H.H., Lee, S.-W., Poggio, 
T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 387–397. Springer, Heidel-
berg (2002) 

6. Navalpakkam, V., Itti, L.: An integrated model of top-down and bottom-up attention for 
optimal object detection. In: IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, pp. 2049–2056. IEEE Press, New York (2006) 

7. Siagian, C., Itti, L.: Biologically-inspired face detection: Non-Brute-Force-Search  
approach. In: Proceedings of the 2004 Conference on Computer Vision and Pattern Rec-
ognition Workshop, vol. 5, pp. 62–69. IEEE Computer Society, Washington (2004) 

8. Ban, S.-W., Lee, M., Yang, H.S.: A face detection using biologically motivated bottom-up 
saliency map model and top-down perception model. Neurocomputing 56, 475–480 (2004) 

9. Choi, S.B., Jung, B., Niitsuma, H., Lee, M.: Biologically motivated vergence control  
system using human-like selective attention model. Neurocomputing 69, 537–558 (2006) 

10. Kim, B., Ban, S.-W., Lee, M.: Improving adaboost based face detection using face-color 
preferable selective attention. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 
2008. LNCS, vol. 5326, pp. 88–95. Springer, Heidelberg (2008) 

11. Jeong, S., Ban, S.-W., Lee, M.: Stereo saliency map considering affective factors and  
selective motion analysis in a dynamic environment. Neural Networks 21(10), 1420–1430 
(2008) 

12. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. System 
Man Cybernetics. 9(1), 62–66 (1979) 

13. Won, W.J., Jang, Y., Ban, S.: Biologically motivated face selective attention model. In: 
Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part I. LNCS, 
vol. 4984, pp. 953–962. Springer, Heidelberg (2007) 

14. Lee, M.: ABR database, ftp://abr.knu.ac.kr/DB/Occlusion/ 
15. Kim, D.: Postech database, http://imlab.postech.ac.kr 



C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 701–707, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

A Mutual Information Based Face Recognition Method 

Iman Makaremi and Majid Ahamdi 

Electrical and Computer Engineering Department 
University of Windsor 
Windsor, ON, Canada 

{makarem,ahamdi}@uwindsor.ca 

Abstract. A mutual information based method for face recognition has been 
proposed. By comparing the mutual information of images locally, this method 
becomes robust to illumination variation. The method’s performance has been 
evaluated using AT&T database with different number of samples in the train-
ing set, as well as different resolutions for intensity distribution estimation. The 
accuracy rate is dependent on the number of samples in the training set and the 
accuracy of the probability density function (PDF) estimation. An accuracy rate 
of 94.58% has been obtained when half of the database was used as the training 
set and the PDFs were estimated with 20-bin histograms. A perfect accuracy 
rate was achieved when 60% of the database was allocated to the training set. 

Keywords: Face Recognition, Mutual Information.  

1   Introduction 

Face as a non-interactive biometric has been under attention for the last two decades, 
and face recognition found many applications in security and human-machine inter-
face. There are many challenges in building face recognition systems such as effect of 
illumination variation, pose, and facial expression. 

There are many different approaches to tackle problems raised by illumination var-
iation in face images. Using preprocessing methods which try to enhance the image 
and remove the effect of illumination [1, 4] is one of them. There are also many other 
methods that try to solve this problem in feature extraction step. Belhumeur et. al. [3] 
proposed a method based on Fisher’s linear discriminant. Xue et. al. [8] exploited 
ridge regression locally to make their face recognition method robust to illumination 
variation. Wright et. al. [7] tried to solve the illumination variation problem as well as 
facial expression and occlusion with sparse signal representation. Fusing information 
from different types of sensors is also an alternative. Kong et. al. [4] fused visible and 
infrared image data to reduce the effect of illumination variation. 

In this paper, a face recognition method based on mutual information is introduced. 
The main advantage of this method is by performing the analysis separately on left 
and right sides of the images, the effect of side-lighting, which can considerably 
change the intensity distribution, is reduced significantly. Also, taking advantage of 
mutual information as a similarity measure between smaller sections of the images 
makes a local analysis possible and with a simple voting strategy obtains a very high 
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accuracy face recognition system. In the section 2, the concept of mutual information 
is briefly reviewed, and the proposed method is explained in detail in section 3. In 
section 4, experimental results are represented and discussed. Finally, conclusions are 
presented in section 5. 

2   Mutual Information 

Mutual information, which is a fundamental concept in information theory [3], is a 
measure of the dependency between two random variables say X and Y. This depen-
dency is based on the information shared between these two variables, and if they are 
discrete, it is defined as: 

 ; , log ,
 (1) 

where ,  is the joint probability distribution function (PDF) of the variables and  and   are the PDFs of X and Y respectively. 
To estimate the PDFs of images in this paper, we exploit the histogram of intensi-

ties of images with different numbers of bins. In this case, the range of 0 to 1 is di-
vided into different numbers of regions with identical width. The effect of number of 
bins will be discussed in this paper. 

3   The Proposed Method 

In this method, every image is vertically divided into two sub-images,   and , 
with an overlap (Fig. 1-a ). The reason is that in the case of side lighting, half of the 
face is darker than the other side and it directly affects the intensity distribution. If 
this separation is not done, the intensity distribution will be significantly different 
from an image with a frontal-lighting. Fig. 2 shows the effect of lighting direction in 
image histogram (This makes the methods which use the mutual information between 
the unknown image and images in train set as a primary step to reduce the number of 
classes for further comparison [5, 6] less reliable). While, dividing the image into two 
sub-images helps to perform a local analysis on each side which can be made to be 
more dependent on the general shape of the intensity distribution rather than its loca-
tion on the intensity axis. This will be explained in the following. 

In the next step, each side is divided into smaller overlapping strips (Fig. 1-b). The 
mean of each strip is moved to 0, and its intensity distribution is estimated. As it was 
discussed earlier, by moving the mean to 0, we can take advantage of the shape of 
distribution without being concerned about how the face is lit. Also, because the im-
ages are divided into smaller strips, the effect of a sudden change in intensity due to 
shading cannot considerably affect the shape of distribution. On the other hand, the 
height of strips should not be very small in order to have a sufficient number of pixels 
in each of them for accurate intensity distribution estimation. Larger strips also de-
crease the chance of a localized analysis of variations.  
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Fig. 1. (a) Each image is divided into two overlapping sub-images. (b) Each sub-image is also 
divided into overlapping strips. 

 
Fig. 2. The effect of lighting direction on image histogram. (a) and (b) have similar histogram, 
however there is a small pose variation. (c) which has a frontal lighting has a different histogram. 

Each image is represented by a set of strips. In this paper, the set of strips of ith 
image in class c is shown with 

  c,i ,, , ,, |1  (2) 

where ,,  and ,,  are the jth strips of the left sub-image and the right sub-image 
 of the image respectively and M is the number of strips. Mutual information  
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between  , the representing set of strips of an unknown image in the test set and 
all  , ’s of the train set is calculated in order to find the corresponding class Since the 
images are divided into strips, comparing strips at similar locations might not include 
the same parts of face due to movement of camera or of the person (e.g. say eyes 
might be in the third strip in one image and in the fourth strip in the other one).  
Therefore, the mutual information between each strip with a certain number, K,  
of its upper and lower neighbors is also calculated. The mutual information 
tween   and ,  with k shifts is shown as follows: 

 , x , c,i  (3) 

where MI is the mutual information function, and the subscript k shows the number of 
shifts. For each shift, there are 2  (the number of strips on both sides) mutual infor-
mation values. The average of these values is used as the representative mutual in-
formation between two images. 

Between 2K+1 shifts, the highest mutual information represents the similarity of 
the two images: 

 
, max ,  (4) 

which is used to determine the class of the image. If there is more than one image per 
class in the train set (say N), the average of the , ’s are calculated as the similarity 
between the image and that certain class: 

 
∑ ,1 . (5) 

Finally, the image is recognized to belong to a class which it had the highest similarity 
with: 

 arg max . (6) 

4   Experimental Results 

In this paper, we have used AT&T face database. This database contains 400 different 
images of 40 individuals, 10 for each. The size of images is 112×92. The images were 
divided into two sub-images with a width of 50 pixels; so they had overlap on 8 pix-
els. Afterward, the height of strips was set to 8 pixels, and the overlap between them 
was 5 pixels. Therefore, there were 400 pixels in each strip to estimate their PDF. The 
PDFs were defined as the histogram of the intensities of the strip with different num-
bers of bins. 

To find the best match, the number of neighbor strips on each side, K, was set to 2. 
Thus, displacements of up to 6 pixels on each side were detectable. In this study, the 
effect of two different parameters on the classification rate has been studied; 1) the 
number of bins for PDF estimation, 2) number of samples in training set. 

The algorithm has been implemented in MATLAB and executed sixty times. The 
averages of the results are shown in Table I and Fig. 3. Based on these results, the 
number of bins has a significant effect on the classification rate. In this study, the best 
results were obtained with 20 bins. The reason is that, small number of bins does not 
give an accurate estimation of the PDFs, and a larger number of bins makes the  
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distribution to be too detailed which has a negative effect on the accuracy. Fig. 4  
illustrates a strip and its histograms with six different numbers of bins. The strip shows a 
part of the face right below the left eye of the person. As it is shown, the histogram with 
5 bins shows a very general shape of the distribution while at the other end the histo-
gram with 100 bins represents the strip with lots of variations which makes it very sensi-
tive to small variations in illumination. Based on Table 1, small numbers of bins have 
very poor results, and the results with larger number of bins are also unacceptable.  

The best results were obtained when the number of bins was 20. The accuracy rate 
with one sample in training set is 48.72%, and it increases to 94.58% with 5 samples 
and 100% for more samples. 

Table 1. Accuracy rates based on Number of Bins (NoB) and Number of Samples (NoS) in 
train set 

     NoB
NoS 

5 10 20 30 50 100 

1 20.18 46.00 48.72 50.48 26.85 2.11 

2 22.25 56.89 64.27 60.66 26.79 2.21 

3 28.23 72.13 75.45 65.30 27.71 2.39 

4 30.56 84.10 85.52 69.38 26.95 2.50 

5 34.90 89.95 94.58 70.88 26.91 2.45 

6 38.44 91.69 100.00 72.51 27.11 2.46 

7 42.33 93.17 100.00 73.57 26.43 2.50 

8 43.69 98.94 100.00 74.58 27.20 2.50 

9 46.13 100.00 100.00 74.85 26.10 2.50 

 

 
Fig. 3. Accuracy Rate with different number of Samples in train set and different number of bins 
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Fig. 4. A strip of face and histograms of it with different numbers of bins 

5   Conclusion 

A face recognition method which uses mutual information as a measure of similarity 
between images was proposed. In this method, images were divided into smaller over-
lapping strips, and mutual information between these strips and their corresponding 
strips in other images were calculated. Also, to reduce the effect of illumination varia-
tion in different images, the mean of each strip was moved to zero. Considering the 
possibility of displacement of camera and/or face in images, the mutual information 
between strips and a certain number of their corresponding neighbors in other images 
were calculated in order to find the best match. In this paper, the histogram of each 
strip was used to estimate the intensity distribution. To have a better understanding of 
the estimation, different number of bins were used. Also, the effect of different num-
ber of samples in train set was studied. The accuracy rate on AT&T face database 
while half of the database was used as the train set and with 20-bin histograms was 
%94.58. The accuracy rate rises to 100% when 60% or more of the database is allo-
cated to the training set with the same number of bins. 
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Abstract. Two-Dimension Linear Discriminant Analysis (2DLDA) becomes a 
popular technique for face recognition due to its effectiveness in both accuracy 
and computational cost. Furthermore, there has been shown that 2DLDA reduc-
es only the row direction of the data. This gives a rise to a new technique, 
(2D)2LDA. (2D)2LDA performs 2DLDA on the row direction and conducts  
Alternate 2DLDA on the column direction of the data. Although the eigenva-
lues associated with eigenvectors simply show the discriminative power of the 
subspace spanned by the corresponding eigenvectors, there are some evidences 
indicate the eigenvector with high eigenvalue may correspond to noise signal 
such as pose, illumination or expression and the eigenvector with high discri-
minative power may have a low eigenvalue due to its closeness to the null space 
of the training data. By these reasons, we may improve the performace of 
2DLDA-based techniques by properly reordering the importance of their eigen-
vectors. In this paper, we propose a technique to solve this problem; we use the 
Subspace Scoring with the Fisher Criterion to rerank the discriminative power 
of the subspace spanned by certain eigenvectors. The experimental results show 
that our method makes an improvement to 2DLDA and (2D)2LDA in accuracy. 
We also combine our proposed method with the wrapper method to determine 
the target dimension for further use. 

Keywords: Fisher Score, face recognition, Linear Discriminant Analysis, LDA, 
2DLDA, (2D)2LDA, wrapper. 

1   Introduction 

For the last decades, many research works have proved the effectiveness of feature 
extraction techniques in face recognition. They assumed that the face data can be 
represented in the underlying intrinsic dimension. Two dimension Linear Discrimi-
nant Analysis (2DLDA) [3] is one of the efficient techniques which is developed from 
LDA [1]. It directly uses the image matrix representation of the data which better 
preserves the local information between pixels of the image data. The scatter matrices 
are much smaller than the original version. This makes it require less time and memo-
ry in computation process. 2DLDA was also reported to be more accurate due to more 
information preserved in the computation. 
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Later, there has been emphasized that 2DLDA reduces only the dimension of the 
row direction. This leads to the new techniques, (2D)2LDA [4]. (2D)2LDA reduces 
both row and column directions of the data simultaneously by using the Alternate 
version of 2DLDA to obtain another projection matrix. 

This paper focuses on two LDA-based techniques, 2DLDA and (2D)2LDA and 
emphasizes on the phenomenon happened in random subspace methods reported in 
the work of Nyugen et al. [5]. The phenomenon is about the random selection of basis 
vectors may form a more discriminative subspace and yield a better result in classifi-
cation accuracy. Nyugen et al. conducted the research on 2DPCA but we investigate 
on 2DLDA instead. For LDA, there are some works [2, 6] on the issue of a discrimin-
ative basis that has lower weight in choosing for a candidate basis remained in dimen-
sional reduction. The first work shows that the basis with largest corresponding  
eigenvalue is affected by illumination condition. Another work is on the singularity 
problem of LDA that was completely overcome in 2DLDA, but there may be some 
trace of this problem that may also reside in 2DLDA.  

The organization of this paper is as follows. The overview of 2DLDA and 
(2D)2LDA are in Section 2. The overview of Fisher Score is in Section 3. The pro-
posed method is in Section 4. The experimental results are in Section 5. Finally, the 
paper conclusion is in Section 6. 

2   Overview of 2DLDA and (2D)2LDA 

2.1   Notations 

We denote data with labels by { , }, 1,2, … ,  where Ai is the matrix repre-
sentation by the image representation of data. Let , , , , P and Z denote the 
global mean value, the number of data in class i, the mean value in class i, the va-
riance in class i, the projection matrix that has basis vector  in column manner, P = 
[ | |…| ] and the feature matrix after dimensional reduction, respectively. 

Frobenius norm is the matrix norm; for example, Frobenius norm of matrix A-B is 
denoted as  which can be calculated as: 

 , , (1) 

where denotes the Euclidean norm or L2 norm. 

2.2   2DLDA 

2DLDA [3] is a popular and effective technique for face recognition. 2DLDA uses the 
image representation which is a matrix or the mode-2 tensor instead of the traditional 
representation of vector in the classic LDA [1]. This makes the construction of the 
scatter matrix more accurate due to lower computation which also reduces the time. 

2DLDA tries to maximize the Fisher’s criterion and finds an optimal projection U 
using dimension-reduction equation Z = UTA. The criterion is as follows: 

 max | || |. (2) 
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We define M as a global mean calculated from the Frobenius norm of data matrices A, 
and Mi as a within class mean of data matrices A of class i. 

   (3) 

  . (4) 

The optimal projection matrix U can be calculated by solving the eigenvalue problem 
of matrix (Sw)-1Sb. Note that it has been shown that matrix Sw is always nonsingular 
because the number of data matrix A will always exceed the rank of A [3]. U will be 
formed as | |…| ], where  are the eigenvectors sorted by the corresponding 
eigenvalues  in descending order and p is from the notation p q row by column 
representation of image matrix A. We should choose d1 < p for the target reduced 
dimension. This makes projection matrix U be Ud1 = [ | |…| ]. 

2.3   Alternate 2DLDA 

Alternate 2DLDA [4] is an alternate version of 2DLDA. It operates on the column 
direction of image matrix A. Alternate 2DLDA finds an optimal projection V using 
dimension-reduction equation Z = AV. The criterion is the same as 2DLDA. The 
difference between Alternate 2DLDA and 2DLDA is the way of constructing between 
class scatter matrix Sb and within class scatter matrix Sw: 

  M  (5) 

  . (6) 

The optimal projection matrix V can be calculated by solving the eigenvalue problem 
of matrix (Sw)-1Sb. V will be formed as | |…| ], where  are the eigenvectors 
sorted by the corresponding eigenvalues  in descending order and q is from the nota-
tion p q row by column representation of image matrix A. We should choose d2 < q 
for the target reduced dimension which makes projection matrix V be Vd2 = 
[ | |…| ]. 

2.4   (2D)2LDA 

We show in Section 2.3 that 2DLDA works in the row direction to reduce the image 
matrix A of p q elements to feature matrix Z of d1 q elements. Similarly, we also 
show in Section 2.4 that Alternate 2DLDA works in the column direction which al-
ternatively reduces dimensions of p q image matrix A to p d2 feature matrix Z. Sup-
pose we calculate both 2DLDA and Alternate 2DLDA with the training set of image 
matrix A and we obtain the two projection matrices U and V. If we perform the  
dimension reduction simultaneously, the equation Z = UTA and Z = AV can be  
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combined to a new equation to form a new feature matrix Z = UTAV with dimensions 
d1 d2. In conclusion, (2D)2LDA [4] performs 2DLDA and Alternate 2DLDA to yield 
projection matrices U and V for the equation Z = UTAV and (2D)2LDA will have two 
feature dimension parameters d1 and d2 which makes the dimension-reduction equa-
tion to be Z = AVd2. 

2.5   Classification Method of 2DLDA-Based Techniques 

We will classify the data using the similarity measured from distance between their 
feature matrices. Large distance means low similarity. For 2DLDA and Alternate 
2DLDA, we denote two feature matrices Z1 = [z11; z12;..; z1d] and Z2 = [z21; z22;..; z2d] 
the similarity of Z1 and Z2 can be calculated as follows: 

 , . (7) 

For (2D)2LDA, we calculate the similarity of two feature matrices from their differ-
ence on Frobenius norm, 

 , . (8) 

3   Fisher Score  

Fisher Score [9] is a supervised feature selection technique in the category of filter 
methods. It is sometimes denoted as Fisher Kernel and widely used as a kernel or 
used with the Hidden Markov Model (HMM). It selects a good feature by the score 
that is measured by its discriminative power defined by Fisher’s Criterion. Given data 
with labels { , }, y 1,2, … , . F denotes the Fisher Score value,  denotes the 
global mean value,  denotes the number of data in class i and  denotes the mean 
value in class i.  denotes the variance in class i. Fisher Score criterion is as follows: 

 ∑ ∑ . (9) 

Fisher Score directly measures the value F for each feature. A feature will have a high 
score if it has high between class scatter and low within class scatter. This can be seen 
that Fisher Score indicates the discriminative value on one feature which is in a form 
of vector only. 

4   Proposed Method 

It is obvious that the eigenvectors obtained from 2DLDA, Alternate 2DLDA and 
(2D)2LDA may  not have their corresponding discriminative power in the decreasing 
order of their corresponding eigenvalues. The first reason is when training data to 
obtain the model, 2DLDA based methods may classify the training data using unim-
portant features in the data such as pose, illumination or expression [2]. This will 
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make us obtain the wrong model for testing. The second reason is that sometimes the 
most discriminative projection may be an eigenvector with a low eigenvalue due to its 
closeness to the null space [6]. 

We also assume that all obtained eigenvectors are distinct in discriminative power 
and we want to reorder the eigenvectors in order to form a correct subset and select 
them for the dimensional reduction step. To achieve this target, we propose the use of 
Fisher Score which can evaluate the discriminative power in the vector space obtained 
in the dimensional reduction step of eigenvectors with low computational cost of O(n) 
where n is the number of training data. 

For 2DLDA and Alternate 2DLDA, we denote the projection matrix U and V as 
P= | |…| ], where  are the eigenvectors sorted by the corresponding eigenva-
lues  in descending order. We will obtain the corresponding vector space S of eigen-
vectors  and the data X from the equation S =  as shown in Fig.1. S has the 
dimension 1. Then, we evaluate the Fisher Scores of all vector spaces Si, namely, 
Si   . Then, we get Fisher Score Fi corresponding to vector space Si spanned by 
eigenvector . Finally, we rearrange the set of eigenvectors Pfs= | |…| ] in the 
decreasing order of Fisher Score Fi. The computational complexity in Fisher Score for 
2DLDA and Alternate 2DLDA is O(pn) and O(qn) from the notation p q row by 
column representation of image matrix A. 

 

Fig. 1. Thumbnail of the 2DLDA with Fisher Score algorithm 

For (2D)2LDA, we perform traditional 2DLDA and Alternate 2DLDA, and then 
use two vectors from the obtained projection matrix U and V to form the subspace 
matrix S with dimension p  as shown in Fig.2. Then, we calculate the Fisher Score 
matrix F from each cell of matrix S and the row summation of F is the Fisher Score 
corresponding to each vector in projection matrix U. Similarly, the column summa-
tion of F is the Fisher Score corresponding to each vector in projection matrix V.  

After the evaluation of Fisher Score, we may use the wrapper method to determine 
the optimal target dimension. Although Fisher Score can rearrange the discriminative 
power of eigenvectors, it is still impractical to pick up an optimal target dimension d 
in 2DLDA and Alternate 2DLDA or d1 and d2 in (2D)2LDA. We may define a cutoff 
c based on Fisher Score itself but it is also difficult to choose the optimal c.  

 
Fig. 2. Thumbnail of the (2D)2LDA with Fisher Score algorithm 
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Wrapper methods [10] are feature selection methods which wrap the classifier 
within the evaluation step as an inductive algorithm. The classifier is used with the 
cross-validation strategy, which holds out a subset of the whole dataset to be used as a 
validation set, to evaluate the classification error. The wrapper methods determine the 
optimal subset of input features with the searching techniques. In this paper, we need 
an optimal solution regardless of training time so we select the exhaustive search with 
pruning to reduce some training time. 

The exhaustive search normally has a search space of O(2d) where d is the number 
of feature vectors when a wrapper method is used to evaluate all subsets from the 
combination of eigenvectors. However, if we use the filter method, such as Fisher 
Score, for preprocessing, the exhaustive search can be used with the subsets obtained 
from the ordered combination of eigenvectors instead, ie. { [ ], [ | ],…, 
[ | |…| ]}. This will reduce the subspace from O(2d) to O(d). In case of 
(2D)2LDA, it will be reduced from O(2 ) to O(d1 d2). We also use pruning to 
reduce the computation time. 

5   Experimental Results 

We evaluated our proposed methods and their originals on the Yale face database1 and 
Extended Yale face database B2 [7, 8]. For Yale face database, we evaluated with the 
subset of 15 individuals with 11 images per person on different face expressions and 
some configurations such as glasses. For Extended Yale face database B, we evaluated 
with the subset of 38 individuals with 64 near frontal images on different illuminations. 
In both data sets, each image was cropped and rescaled to 32 by 32. In our experi-
ments, the data set was randomly partitioned into 10 roughly equal-sized subsets. Each 
subset was used as a test once, and the remaining subsets were used as the training set. 
In the experiments, 1-Nearest Neighbor classifier (1-NN) was employed. 

5.1   Original 2DLDA and (2D)2LDA vs. 2DLDA and (2D)2LDA with Fisher Score 

In this section, we tested the improved performance when applying the Fisher Score 
for basis selection to 2DLDA and (2D)2LDA. The dimensions to be reduced are vary 
from 1 to 32 according to the number of rows in the image matrix. This test was car-
ried on Intel Core 2 Duo CPU 2.2 GHz., Windows Vista 32 bits OS and 2 GB RAM. 
Table 1 shows that our proposed method improves the performance of 2DLDA by 
0.67% and 1.55% and (2D)2LDA by 2% and 5.42% on both database respectively. 
This indicates that the performances of 2DLDA-based techniques are improved by 
reordering the eigenvectors using the Fisher Score. It is known that (2D)2LDA does 
not always outperform 2DLDA or may slightly outperform 2DLDA only but the re-
sults show that it can significantly outperform 2DLDA. From the assumption of ei-
genvectors misarrangement, (2D)2LDA uses two projection matrices which can be 
significantly suffered from the error caused by each projection matrix. Our proposed 
method gives the thorough measurement of how to rearrange the eigenvectors and 
gives us an unleashed performance of (2D)2LDA.  
                                                           
1 http://cvc.yale.edu/projects/yalefaces/yalefaces.html 
2 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html 
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To compare with the state-of-the-art Fisherface, our method was divided into two 
stages, similar to Fisherface which is a two-stage PCA+LDA. In the first stage, we 
reduced the dimension to the cutoff of 97% of cumulative Fisher Score. In the second 
stage, we performed LDA to reduce the desired dimension to be less than the number 
of classes. The results show that in the small data set, Yale face database, our method 
outperforms Fisherface and in the large data set, Extended Yale Face database B, our 
method + LDA is comparable with the Fisherface. This means our method performs 
well on both scenarios of small and large data sets. 

Table 1. Comparisons of the best classification accuracy of the original 2DLDA and (2D)2LDA 
with 2DLDA and (2D)2LDA with the Fisher Score using 1-NN  

Technique Yale face  
database 

Extended Yale face 
database B 

2DLDA 82.33% 90.40% 
2DLDA with Fisher Score* 83.00% 91.95%  

(2D)2LDA 84.33% 90.07% 
(2D)2LDA with Fisher Score* 86.33% 95.49%  

Fisherface (PCA+LDA) 78.67% 97.24% 
(2D)2LDA with Fisher Score + LDA* 79% 97.67% 

* indicates our proposed methods. 

5.2   (2D)2LDA and (2D)2LDA with Fisher Score and Wrapper 

In this section, we picked up the high accuracy (2D)2LDA to choose the optimal tar-
get dimension for real world application where the optimal one is unknown. We com-
bined the use of wrapper with Fisher Score to determine the optimal subset of bases. 
In the wrapper phase, we used 10-fold cross validation as an evaluation function and 
apply some pruning to reduce computation time. The environment was the same as 
the previous sub-section. We evaluated on Yale face database which has smaller size 
and the classification accuracies are in Table 2. The results indicate that our proposed 
method helps improve the classification accuracy of (2D)2LDA and this combination 
extends the use of (2D)2LDA in a real world problem. 

Table 2. Comparisons of Classification Accuracy of the original 2DLDA and (2D)2LDA with 
2DLDA and (2D)2LDA with the Fisher Score using 1-NN 

Technique Yale face database 
(2D)2LDA with wrapper 75.00% 

(2D)2LDA with Fisher Score and wrapper* 77.67% 

6   Conclusions 

In this paper, we visited the problem of the eigenvector misarrangement in 2DLDA 
and (2D)2LDA which causes the degradation in discriminative power of a dimensional 
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reduced subspace. Our proposed method picks up a misplaced eigenvector that also 
has a high discriminative power but has a low corresponding eigenvalue to yield a 
more proper order when selecting the subset eigenvectors as a projection matrix for 
the dimensional reduction step. The experimental results show that our proposed 
method helps unleash the performance of 2DLDA and significantly in (2D)2LDA 
where the original technique seems to be more suffered from the misarrangement 
problem. Our proposed method requires an O(n) computational cost which makes it 
practical in applications. We also proposed the combination of filter and wrapper 
method to tackle this problem in real world applications. However, the guarantee of 
the global optimum in the unleash performance is still unclear and it is unknown that 
if there exists any better scoring way than Fisher Score and the computational cost to 
find the target dimension is still costly. These will be investigated in our future works. 
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Abstract. Recently, the Scale Invariant Feature Transform (SIFT)

proposed by Lowe has emerged as a cut edge methodology in general ob-

ject recognition as well as for other machine vision applications.

However, SIFT method has not shown successful results in face recog-

nition problem because of its original matching strategy which does not

consider the location of local keypoints. This paper proposes a novel

keypoints matching strategy for face recognition. The proposed match-

ing strategy can avoid mis-matching of local keypoints by using regular

grid of face image and can give robustness to various transformations by

using keypoint voting strategy. By performing computational experiment

on the AR face data set, we confirmed the proposed matching strategy

gives better performance than the conventional methods. Especially, the

proposed method can give robust and best performance for facial images

with occlusions.

Keywords: Scale Invariant Feature Transform (SIFT), face recognition,

matching strategy.

1 Introduction

Face recognition has become a very active research topic in last decade [1,2]. In
pattern recognition and computer vision domain, several and novel approaches
have been introduced for face recognition in recent literatures. Still, face recog-
nition is a difficult challenge since human face is not rigid object and can be
transformed easily under different environments. Therefore, in order to increase
the accuracy of face recognition systems, it is very important to find an efficient
representation of human face which can give clear distinction between subjects.

One of most well-known representation methods are PCA (Principal Compo-
nent Analysis)and LDA (Linear Discriminant Analysis), which utilize a linear
transformation matrix to obtain meaningful features satisfying specific condi-
tions. PCA [3,4,5] computes a reduced set of orthogonal basis vectors or eigen-
faces of the training face images. A new face image can be approximated by a
weighted sum of these eigenfaces. It provides an optimal linear transformation
from the original image space to an orthogonal eigenspace with reduced dimen-
sionality in the sense of least mean squared reconstruction error. LDA [6,7,8]

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 716–723, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Robust Keypoints Matching Strategy for SIFT 717

seeks to find a linear transformation by maximizing the between-class variance
and minimizing the within-class variance. However, these methods hardly give
a robust performance to face recognition because of various conditions such as
illumination, occlusion, or expression changes.

Scale Invariant Feature Transform (SIFT) [9,10] proposed by Lowe becomes
one of the popular feature extraction method for pattern recognition because of
the excellent performances shown in the object recognition problem. The SIFT
method first detects local keypoints that are notable and stable for images in dif-
ferent resolutions, and uses scale and rotation invariant descriptors to represent
the keypoints. However, SIFT method has rarely been applied to face recogni-
tion because of its matching strategy. The original matching strategy proposed
by Lowe is to find the best candidate match for each keypoint by identifying
its nearest neighbor in database of keypoints from each training image. In this
matching strategy, the location of features is not considered, which may cause
severe problems.

To apply SIFT for face recognition, the SIFT-Grid method [11] is introduced
by Bicego and et al. The SIFT-Grid method first conducts the conventional
SIFT on whole face image and divides it into regular grids. Finally, it conducts
keypoints matching in each subregion. Representation of an image using a com-
bination of subregions can give some locational information of local keypoints.

In this paper, by extending the SIFT-Grid method, we propose a novel key-
points matching strategy for face recognition. The proposed matching strategy
can avoid mis-matching of local keypoints by using regular grid of face image
which gives locational information of local keypoints. Also the proposed match-
ing strategy can give robustness to various transformations by using keypoint
voting strategy which utilize the local independent property of keypoints.

The conventional SIFT method is demonstrated in Section 2, and the proposed
keypoints matching strategy is introduced in Section 3. The experimental results
are shown in Section 4. Finally, conclusions are made in Section 5.

2 Scale Invariant Feature Transform

Scale Invariant Feature Transform has been proposed for extracting distinctive
invariant features from images, which can be used to perform reliable matching
between different views of an object or scene. It consists of two main stages of
computation to generate the set of image features [10].

– 1. Keypoint detector: The invariant feature to scale and orientation is de-
tected by using a difference-of-Gaussian function. The difference-of-Gaussian
function is as follows:

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ) (1)

where I(x, y) and L(x, y, σ) represent a scale-space function and a convolu-
tion function respectively and k is multiple factor. Then local maxima and
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minima of D(x, y, σ) are computed based on its eight neighbors in current
image and nine neighbors in the scale above and below. The gradient mag-
nitude m(x, y) and orientation Θ(x, y) are also computed as follows:

m(x, y) =
√

(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2)
Θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x + 1, y)− L(x− 1, y))). (3)

From the obtained local maxima and minima, keypoints are selected based
on measures of their stability, gradient magnitude m(x, y) and orientation
Θ(x, y).

– 2. Keypoint descriptor: The obtained keypoint is composed by four part: the
locus (location in which the feature has been found), the scale, the orientation
and the descriptor. The feature descriptor, which is represented by a 128-
dimensional vector, is obtained by computing the gradient magnitude and
orientation at each image sample point in a region around the keypoint
location weighted by a Gaussian window. For simplicity, given a keypoint
κi, let us denote F (κi), L(κi), S(κi), O(κi) as its feature descriptor, location,
scale, and orientation, respectively.

The SIFT method detects the local keypoints that are notable and stable for
images in different resolutions and uses scale and rotation invariant descriptors
to represent the keypoints. However, the naive matching strategy of SIFT which
finds the minimum pair distance (we will describe in next section in detail) for
keypoints is not suitable to face recognition. Therefore, in next section, we will
introduce new matching strategies to overcome this drawback.

3 Keypoints Matching Strategies

3.1 Conventional Matching Strategies

Before the keypoints matching, we should conduct SIFT on training data set
and test data set. The original SIFT should match a test image with each train-
ing image. For a training image and a test image, the obtained keypoints are
represented by:

K(Itest) = {κItest
1 , κItest

2 , ..., κItest

M }, (4)

K(Itrain) = {κItrain
1 , κItrain

2 , ..., κItrain

N }, (5)

where M and N denote the number of obtained keypoints for each image re-
spectively. The minimum pair distance is computed as follows:

D(Itest, Itrain) = min
i,j

(d(F (κItest

i ), F (κItrain

j ))) (6)

where d(F (κi), F (κj)) is a distance between descriptors. In the original matching
strategy using this minimum pair distance, the locations of features are not
considered, which may cause a severe problem of locational mis-matching. The
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matched keypoint pair which gives minimum distance, may come from strictly
different parts of facial images. For example, the keypoint of left eye may be
mis-matched with one of right eye or mouth. This kind of mis-match can cause
low classification performance.

To overcome this drawback, SIFT-Grid proposed by Bicego and et al. [11],
divides the images into a number of sub-images using a regular grid with overlap-
ping. The distance between two images can be measured by computing minimum
distance between all pairs of corresponding sub-images and averaging them as
follows:

DRG(Itest, Itrain) =
1
T

T∑
t=1

(D(It
test, I

t
train)) (7)

where It denotes tth partial overlapped sub-image and T denotes the number of
sub-images.

Though the size of sub-image may depend on data, this paper uses 1/4 and
1/3 of width and height, respectively. Using combination of sub-images, we can
expect to avoid the locational mis-matching of keypoints which often occurs in
the original matching strategy.

3.2 Keypoint Voting

The standard SIFT method and SIFT-Grid method try to measure the distance
between test image and each training image so as to assign the test image to a
class from which the training image with minimum distance is given. In the pro-
posed method, however, we utilize the independent properties of local keypoints
given by SIFT and try to assign each keypoint in the test image to a specific
class independently. The result of assignment for each keypoint will play a vote
in the decision of the class membership of the whole test image.

In the proposed keypoint voting method, we first construct a keypoint-pool
from all training image as follows:

Keypoint-pool = {κi
j | i = 1, ..., N, j = 1, ..., Ni} (8)

where N represents the number of training images, Ni represents number of
obtained keypoints for the ith image and κi

j denotes jth keypoint of ith training
image. The minimum pair distance between kth keypoint of a test image and
the keypoint-pool is computed as follows:

D(κtest
k , Keypoint-pool) = min

i,j
(d(F (κtest

k ), F (κi
j))) (9)

where κtest
k represents kth keypoint of the test image. Based on the distance, we

can obtain the class-label that the keypoint indicates, such as

C(κtest
k ) = C(arg min

κi
j

{d(F (κtest
k ), F (κi

j))}) (10)

where C(κ) denotes the label of class with which a keypoint κ is involved.
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Using the class-label noted by each keypoint, we can obtain the class-label of
the test image through voting:

C(Itest) = argmax
i

Ntest∑
k=1

δ(i, C(κtest
k )), (11)

where δ(·, ·) denotes the kronecker delta, and Ntest denotes the number of key-
point in test image.

The proposed voting method is appropriate for facial data with diverse vari-
ations. Since important facial features such as eyes, nose, and mouth can vary
independently, a keypoint giving high matching score in an image can give low
matching score in another image even though the two images are given from
the same person. Because the proposed method assigns each keypoint to a class
first, it can find a training image with most similar variation at the correspond-
ing local point. Through voting the assignment result of each keypoint, we can
find a specific person who has the largest number of most similar features. How-
ever, the proposed method does not consider the location of features and the
locational mis-match can still occur.

3.3 Hybrid Method with a Threshold

To overcome the drawbacks of the above two methods, we propose a hybrid
matching strategy. The proposed matching strategy consists of three steps. In
first step, we conduct SIFT on all training images to obtain keypoints. Next, like
SIFT-Grid method, each training image is subdivided into different sub-images
using a regular grid with overlapping, and we conduct a keypoint-pool for each
sub-image as follows:

Keypoint-pool = {κit
j |i = 1, ..., N, t = 1, ..., T, j = 1, ..., Nit} (12)

where N represents the number of training images, Nit represents the number of
keypoints for tth sub-image of ith training image, and T represents the number
of sub-images in each training image. The minimum pair distance between a
keypoint from a sub-image of test image and the keypoint-pool is computed as
follows:

D(κtestt

k , Keypoint-pool) = min
i,j

(d(F (κtestt

k ), F (κit
j ))) (13)

where κtestt

k represents kth keypoint in tth subregion of the test image. Based on
the distance, the class-label of each keypoint, C(κ), and the class-label of the test
image, C(Itest) can be found by using the same voting strategies given in Section
3.2. The proposed hybrid matching strategy can give locational information by
using regular grid of face image and also utilize the local independent property
of keypoints.
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Furthermore, when face image is occluded by sun glasses or scarf, it is possible
to modify the matching strategy by using threshold technique. Since the obtained
keypoints from sun glasses or scarf, should not be used to distinguish between
faces, we need to discard them using threshold (See Fig.1). It can be achieved by
just taking a keypoint which has smaller minimum pair distance than a threshold
as a vote. In next section, we will describe the results of each matching strategy
for face recognition.

Fig. 1. The sample of occlusion keypoint

4 Experimental Results

In order to verify robustness of the proposed method, we conducted facial classi-
fication task on the AR face database [13] which is one of famous benchmark data
with various transformations including occlusions. This database contains over
4,000 color images of the frontal faces of 126 subjects. For each subject, there are
26 different images, which were recorded in two different sessions separated by
two weeks, each session consisting of 13 images. Images from one subject have
various transforms such as expressions, illumination conditions, and occlusions
(See Figure 2). All images are of 768 × 576 pixels and of 24 bits of depth. From
this database, we randomly selected 40 different individuals(20 males and 20
females) and used the first-session data set. The original color images with 768
× 576 pixels were morphed to 85 × 60 pixel arrays, as stated in [4]. The selected
images are cropped by [4] and we converted them to gray-level images. For com-
putational efficiency, the size of the images was reduces to 68 × 50 pixels. The
sample images used in the experiments are shown in Figure 2.

Fig. 2. Images of one subject in the AR face database
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Using these images, we constructed two data sets which consist of different
images:

– Data set 1
For training, three non-occluded images from each subject (e.g. Figure 2 (a),
(c), and (g)) are used.
For test, remained four non-occluded images from each subject (e.g. Figure
2 (b), (d), (e), and (f)) are used.

– Data set 2
For training, three non-occluded images from each subject (e.g. Figure 2 (a),
(c), and (g)) are used.
For test, remained four non-occluded images and six occluded images from
each subject (e.g. all the images of Figure 2 excluding (a), (c), and (g)) are
used.

There are 40 classes and only three units of samples in each class, which may
cause instability of LDA. In order to solve the problem arising from a small
sample set, we applied PCA prior to using LDA [6].

Table 1. Results of face classification using the AR database

AR Face Database Data Set 1 Data Set 2

PCA 69.37%(100dim) 43.25%(100dim)

LDA 96.88%(37dim) 60%(39dim)

SIFT-Grid 75% 64%

Keypoint Voting 84.38% 74%

SIFT-Grid + Keypoint Voting 86.88% 72%

Keypoint Voting(threshold=0.3) 84.38% 81%

SIFT-Grid + Keypoint Voting(threshold=0.3) 88.75% 84.25%

The experimental results are shown in Table 1 for each data set. For the
both sets, PCA has generally low performances. Therefore, we can conclude
that PCA is not robust to various transformations. Unlike PCA, LDA gives
best performances than the others in data set 1. However, LDA failed to find
meaningful features to distinguish between faces. This means that LDA is not
suitable to occlusion data. Although, the performance of the proposed hybrid
method is not best in data set 1, it is generally high. In addition, it gives best
performance in data set 2. Therefore, we can conclude that the proposed hybrid
method is robust to the transformation of occlusion.

5 Conclusions

In order to apply SIFT method for representing facial image data, this paper
proposed a hybrid matching strategy which combines the SIFT-Grid method and
the keypoint voting with a threshold. The proposed matching strategy consists
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of three steps. In first step, we conduct SIFT on all training images to obtain
keypoints. Next, each training image is subdivided into different sub-images
using a regular grid with overlapping, and we construct a keypoint-pool from
sub-images of all training image. Finally, based on the minimum pair distance,
each keypoint is assigned to a class first and the class-label of the test image
is determined by using the keypoint voting strategy. Therefore, the proposed
hybrid matching strategy can give locational information of features by using
regular grid of face image, and can also utilize the local independent property of
keypoints. In addition, when face image is occluded by sun glasses or scarf, the
proposed method can discard occluded keypoints by using a threshold. Through
the computational experiments on AR face database, we confirmed the robust
performance of the proposed method.
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Abstract. This paper describes a novel framework for facial expression recogni-
tion from still images by selecting, optimizing and fusing ‘salient’ Gabor feature 
layers to recognize six universal facial expressions using the K nearest neighbor 
classifier. The recognition comparisons with all layer approach using JAFFE and 
Cohn-Kanade (CK) databases confirm that using ‘salient’ Gabor feature layers 
with optimized sizes can achieve better recognition performance and dramati-
cally reduce computational time. Moreover, comparisons with the state of the art 
performances demonstrate the effectiveness of our approach.  

Keywords: Facial expression recognition, Gabor filter, (2D)2PCA, KNN. 

1   Introduction 

Facial expression recognition (FER) is an active area and has been increasingly given 
much attention in recent years due to its potential to be applied into a wide range of 
areas, including human-computer interaction, video surveillance, video indexing and 
summarization. To date, a robust FER is still a challenging issue due to facial image 
variations, such as illumination, rotation and occlusion. 

FER method can be classified into four categories: motion-based, feature-based, 
model-based and appearance-based approaches. Appearance-based is the most effective 
approach to handle facial image in real situations since it is insensitive to in-plane rota-
tion and illumination variations, particularly Gabor filter. However, there are three 
weaknesses in the use of Gabor filter which need to be overcome, including redundant 
information within the neighboring frequencies [1]; expensive computation [2]; and 
different channels have different contributions on recognition performance [3]. In this 
paper, we will address these problems by selecting ‘salient’ Gabor filters. There have 
only been few studies on the ‘salient’ Gabor features selection, which can be catego-
rized into three groups: 1) Point based approach [4, 5] which extracts Gabor features 
based on fiducial points of a face grid. However, its recognition performance is depend-
ent on the accuracy of the automatically selected and located fiducial points, which is 
still a challenging task. 2) Feature based approach which performs Gabor filters on 
facial images and selects the ‘salient’ features using feature selection algorithms such as 
Adaboost [6, 7], genetic programming (GP) [8] and zero norm [9]. Although it over-
comes the drawback of point based approach, it still requires accurate face location. 3) 
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Channel based approach [3] which aims to select a subset of Gabor channels corre-
sponding to different scales and orientations. Unlike the other two methods, this  
approach eliminates the requirement of point location at the cost of losing expressional 
information in unselected channels. The selection can be specifically optimized for each 
expression [10] or overall performance [1].  

In this paper, we propose a channel based approach that selects, optimizes and 
fuses a set of ‘salient’ Gabor filters for effective FER from still images. We extend 
Gabor filters from 5 to 18 scales and adopt (2D)2PCA instead of PCA for dimension 
reduction. The selection of feature layers and the determination of their optimized 
sizes are automatically processed based on the recognition performance of an image 
set. The selected ‘salient’ layers are fused for six universal expressions recognition, 
including anger AN, disgust DI, fear FE, happy HA, sadness SA and surprise SU, 
using the K nearest neighbor (KNN) classifier.  

The main contributions are as follows: 1) We propose a novel and automatic ap-
proach to select and optimize ‘salient’ Gabor features. To the best of our knowledge, 
our approach is the first attempt to exploit the selection of ‘salient’ Gabor features 
from the aspect of scale, orientation and size. Meanwhile, our approach also is the 
first one to explore the way of determining the optimized sizes of feature matrixes. 2) 
We investigate the recognition performances of KNN using K values ranged from 1 to 
14. Our results indicate that the best performance is obtained when K equals to 1. 3) 
We use (2D)2PCA for dimension reduction. Our results show that it only takes a small 
proportion of the overall computational time. 4) We confirm that using ‘salient’ fea-
tures can lead to a better performance with dramatically less computational time than 
using all features. 5) We present results to confirm Littlewort’s finding [7] that useful 
emotional features are distributed in a wide range of Gabor feature scales. 6) We use a 
comprehensive evaluation to demonstrate that “sad” contributes to most of the mis-
recognitions, while “surprise” is the easiest facial expression to be correctly recog-
nized for both JAFFE and CK databases. 

The rest of the paper is organized as follows. Section 2 describes in details the  
proposed framework and each step. Section 3 shows the performance evaluations 
using three types of comparisons, namely approach using all features, computational 
time and state of the art performances. Finally, conclusions are drawn in section 4. 

2   System Framework 

The proposed framework as shown in Fig. 1 is composed of five steps: pre-processing, 
Gabor features, (2D)2PCA, layer selection and layer fusion. During pre-processing, face 
images are cropped and scaled into a resolution of 110*110 pixels. These images are 
then passed through 9 bands, 2 scales, and 4 orientations Gabor filters. In this paper, we 
define a layer as a Gabor feature representation with different bands, scales and orienta-
tions. These layers are processed by (2D)2PCA for dimension reduction, which pro-
duces feature matrix layers with the same bands, scales and orientations, but smaller 
sizes. Layer selection is then automatically achieved based on the performance of an 
image set to choose the most ‘salient’ feature matrix layers and decide their optimized 
sizes. Finally, the ’salient’ optimized layers are fused for recognizing the six universal 
expressions using the KNN classifier. 
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Fig. 1. Flow chart of the proposed framework 

2.1   Gabor Features 

Gabor filters have been successfully applied to a wide range of fields, such as face 
recognition [11] and fingerprint identification [12]. In this paper, 2D Gabor filter is 
adopted and it can be mathematically expressed as:  
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          θθ sincosX yx +=     θθ cossinY yx +−=  .                          (1)  

where, orientationθ , the effective widthσ , the wavelengthλ , the aspect ratio 0.3=γ . 

In this paper, 9 bands, 2 scales in each band, and 4 orientations (90°, -45°, 0°, 45°) are 
adopted. The values of these parameters are set based on [13]. Given an image, each 
pixel is convoluted with Gabor filters, resulting in a series of Gabor images with  
expressional features (e.g. bar and edge). 

2.2   (2D)2PCA 

PCA-based methods have been widely used for dimension reduction, however, most 
of the methods need to reshape 2D image into a 1D feature vector, which leads to 
three problems: the intrinsic 2D structure of an image is removed, curse of dimen-
sionality dilemma and small sample size [14]. Thus, (2D)2PCA [15] was used in our 
framework to directly calculate the feature without matrix-to-vector conversion, and 
save storage requirement by performing PCA on row and column pixels simultane-
ously to obtain feature matrixes that represent images. 

2.3   Layer Selection 

The tasks of selecting ‘salient’ matrix layers and determining their optimized sizes are 
completed by using the recognition performance of an image set from the JAFFE 
database. The test set includes images with the emotion index ‘1’, whilst the training 
set comprises of the rest images. As for optimized sizes, a size range [4, 40] with an 
interval of 2 is chosen based on preliminary experiments. The selection process can 
be described as follows.  

Let Lbsot be the bth band, sth scale and oth orientation layer of training image At  (b = 
1,2,…, 9; s = 1,2; o = 1,2,3,4; t = 1,2,…, M, M is the number of training images), the 
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feature matrix of Lbsot is Fbsot. Let Lbsol be the bth band, sth scale and oth orientation 
layer of test image Tl (l = 1,2,…, Q; Q is the number of test images), the feature ma-
trix of Lbsol is Fbsol. The distance between Lbsot and Lbsol is defined by 

                     
bsolbsotbsolbsot FFLLD −=),(  .                                              (2) 

where ⋅  is the L1 or L2 norm of (
bsolbsot FF − ). 

Then, the correct recognition rate (CRR) of the bth band, sth scale and oth orientation 
layer of all test images can be obtained by the nearest neighbor classifier using these 
distances. Based on the results, layers with comparatively higher CRRs are selected as 
‘salient’ layers. For each ‘salient’ layer, the optimized size is set to be a little bigger 
than the size of the best performance in order to gain a general performance. Finally, a 
total of 26 ‘salient’ layers and their optimized sizes are obtained and listed in Table 1, 
in which BSO ‘322’ represents the 3th band, 2th scale and 2th orientation, L2 stands for 
using L2 distance. 

Table 1. The selected ‘salient’ feature matrix layers and sizes 

BSO Size BSO Size BSO Size BSO Size BSO Size 
322 20 513 22 622(L2) 18 723 16 913 16 
412 20 522 16 623 10 724 14 923 14 
413 20 523 14 624 16 812 10 - - 
422 18 612(L2) 18 712 12 813 16 - - 
423 18 613 20 713 18 814 22 - - 
512 18 614 16 714 14 823 14 - - 

2.4   Layer Fusion 

The layer fusion step performs FER by fusing the ‘salient’ feature matrix layers with 
optimized sizes. Firstly, for each ‘salient’ layer of one test image, KNN is used to 
calculate the K possible expressions. Then the expressions of all layers are combined 
to obtain the final result using the maximum rule. The algorithm is as follows. 

Let Lpt be the pth layer of training image At  (p = 1,2,…, 26; t = 1,2,…, M), and Lpl 

be the pth ‘salient’ layer of test image Tl (l = 1,2,…, Q), their feature matrixes are Fpt 

and Fpl respectively. For each Lpl , the M distances D(Lpt, Lpl) between Lpl and Lpt of 
all training images can be calculated by the equation (2). The nearest distance of the 
M distances is defined by  

                
plpt

M

t
plpt FFLLD −=

=1
min),(  .                                             (3) 

Similarly, the K smallest D(Lpt, Lpl) also can be obtained, the emotion labels g
piE (i = 

1,2,…,K; g = 1,2,…,6; },,,,,{Eg
pi SUSAHAFEDIAN∈ ) of these chosen K Lpk are  

recorded. Then Epi with the same emotion label are summed over 26 ‘salient’ layers: 

          ∑∑
= ==

=
26

1 1

6

1
)(max

p

k

i

g
pi

g
g EE  .                                                 (4) 

Thus, the final output of emotion g corresponds to the largest Eg. 
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3   Experiments 

3.1   Databases 

The JAFFE database [4] contains 213 gray images of 7 facial expressions posed by 10 
Japanese females. Each object has 3 or 4 frontal face images for each expression. The 
name of each image is identified by subject name initials, emotion initials & index, 
and image index. Cohn-Kanade database [16] includes 2105 image sequences from 
182 subjects ranged in age from 18 to 30 years. Image sequences were digitized from 
neutral to target display. The six universal expressions were based on descriptions of 
prototypic emotions. In this paper, all the images of the six universal expressions from 
JAFFE are used. For CK, 1184 images that represent one of the six expressions are 
selected, 4 images for each expression of totally 92 subjects. The images are chosen 
from the last image of each sequence, then one every two images. The faces of all 
images from two databases are cropped and scaled to a resolution of 110*110 pixels.  

3.2   JAFFE Database Tests 

For each validation step, the images with the same emotion index are grouped as the 
test set, and the remaining images are regarded as the training set. In this research, 
only emotion index from 1 to 3 are tested due to the fact that most subjects do not 
contain images with emotion index ‘4’. As a test benchmark, all layer (AL) approach 
is defined as using all layer features and L1 distance. 

The CRRs of three test sets using KNN with K ranged from 1 to 14 are shown in 
Fig. 2. As shown in this figure, for both the proposed and AL approaches, the highest 
CRR of each set is obtained by KKN when K=1. Regarding the highest CRR of each 
set, the proposed approach shares the same value (90.0%) with AL approach in set1 
and achieves bigger values than all layer approach in set2 and set3. The highest CRR 
(96.923%) of the proposed approach is 3.077% bigger than that of the AL approach. 
Therefore, it can be concluded that the chosen and optimized layers can achieve better 
recognition performance than using all layers. Since the training and test images of 
set2 and set3 are different from those used for obtaining the chosen and optimized 
layers, their high performances indicate a good general recognition capability of these 
‘salient’ layers. 

Among the three sets, set2 obtains the best overall recognition performance for all 
K values and keeps the highest CRRs in both the proposed and AL approaches, while 
set1 ranks the lowest. After the peak performance in both approaches, the CRRs de-
crease as K values increase, whereas CRRs of the proposed approach decrease 
quicker than those of AL approach. The reason is probably that AL approach utilizes 
all expressional information for FER, thus a steady decline of CRR is expected, 
whereas the proposed approach only adopts part of this information, therefore, a rapid 
decrease is anticipated.  

The confusion matrix of the six expressions can be drawn by setting K to be 1 for all 
three sets in order to obtain the highest CRRs. The result is demonstrated in Table 2. 
As shown in this table, the images of surprise are all correctly recognized probably due 
to the apparent characteristic of big mouth; the second best recognized emotion is 
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anger, and only one image is falsely classified as sad. On the other hand, happy is the 
most difficult emotion to distinguish from others. Another interesting point is that sad 
is the emotion that is most likely to be incorrectly recognized as target emotion. And 
this may be owing to the erratic expressers on sad in JAFFE, which is in accord with 
the work [5] that reported two erratic expressers (UY and NA) existed in JAFFE. 

  

Fig. 2. CRR comparisons between the proposed and AL approaches using JAFFE database 

Table 2. Confusion matrix of six expressions using JAFFE database 

 AN DI FE HA SA SU Overall 
AN 29 0 0 0 1 0 96.7% 
DI 0 28 1 0 0 1 93.3% 
FE 0 1 27 0 2 0 90.0% 
HA 0 0 0 26 4 0 86.7% 
SA 0 0 1 1 28 0 93.3% 
SU 0 0 0 0 0 30 100% 

3.3   CK Database Tests 

Since each subject has four images for each expression, all images can be classified 
into four sets that include one of the four images per set. Four cross-validation tests 
are conducted separately and the results are compared with the AL approach as shown 
in Fig. 3. Based on the graphs, the overall performances of the two approaches are 
fairly satisfactory. For all the four sets, both approaches achieve their highest CRRs 
when K=1 and 2, but the AL approach can retain the highest CRR of 100% with a big 
K value (for instance, 6 in set3). As for set1, set2 and set3, the highest CRRs of both 
approaches is 100%, while for set4, the highest CRR (99.662%) of the proposed  
approach is 0.338% lower than that of the AL approach since one happy image is 
wrongly recognized as fear. For both approaches, the CRRs decrease when K  
increases. However, similar to our findings while using JAFFE database, CRR of the 
proposed approach declines quicker than that of the AL approach. Thus, we can con-
clude that the selected ‘salient’ layers can achieve higher recognition performances 
compared to using all layers. 
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Fig. 3. CRR comparisons between the proposed and AL approaches using CK database 

3.4   Computational Time Comparison 

For each of JAFFE and CK, the average computational time of all test images at three 
stages, including Gabor feature, (2D)2PCA and KNN, is calculated and demonstrated 
in Table 3. The program was developed by Matlab 7.0.1 under a laptop configuration 
of core duo 1.66GHz CUP and 2GB memory. Based on the time, the proposed ap-
proach has shown a substantial improvement compared with the AL approach as it 
has reduced 75% to 80% of the processing time in the AL approach. Moreover, there 
is an 75% to 82% of time reduction for computing Gabor features, 65% to 75% for 
processing (2D)2PCA, and 75% to 80% for recognizing expressions using KNN. Time 
spent on computing Gabor features is nearly 90% of the overall time for JAFFE, and 
about 60% for CK. This demonstrates that Gabor feature is the most computationally 
expensive. On the other hand, (2D)2PCA only requires 2.7% to 4.7% of the overall 
time. Another notable point is that the computational time of KNN on CK is 6 to 7 
times as much as that on JAFFE. This is due to KNN has a bigger number of test and 
training images to process as CK contains more images than JAFFE.  

Table 3. Computational time comparisons at three stages (in seconds) 

 Proposed approach All layer approach 
 Gabor (2D)2PCA KNN Total Gabor (2D)2PCA KNN Total 

JAFFE 0.301 0.016 0.025 0.342 1.263 0.047 0.101 1.411 
CK 0.244 0.011 0.150 0.405 1.342 0.047 0.711 2.100 

3.5   Comparisons with Previous Work 

In this paper, the performances of Liang [17] (using LLE) and Guo [18] (using FSLP) 
are used as the benchmark for JAFFE, while the performances of Wang [19] (using 
NBC and QDC) and Wong [20] (using FEETS) are used as the benchmark for CK. 
The choice on these benchmarked works is based on the database images being the 
most similar to our work. The comparison results are shown in Table 4, from which 
we can see that using JAFFE, the proposed approach exceeds Liang’s approach by 
1.90% with respect to the maximum (Max) CRR, 0.6% for the average (Ave) CRR, 
and 4.3% for the minimum (Min) CRR. Moreover, it exceeds Guo’s approach by 
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2.4% for the Ave CRR. A better performance is shown by the CK database as the 
proposed approach surpasses Wong’s by 6.71% for the Max CRR and 17.14% for the 
Min CRR, while it also surpasses Wang’s approach by 3.43% for the Max CRR, and 
12.45% for the Min CRR. Hence, our experiment has demonstrated a significant rec-
ognition improvement in the proposed approach compared to the previous work.  

Table 4. CRR comparisons with previous work (%) 

 Proposed approach [17] and [19] [18] and [20] 
 Max Ave Min Max Ave Min Max Ave Min 

JAFFE 96.9 93.4 90.0 95 92.8 85.7 - 91.0 - 
CK 100 99.89 99.66 93.29  - 82.52 96.57 - 87.21 

4   Conclusions 

This paper presents a novel method to automatically select, optimize and fuse ‘salient’ 
Gabor layers to improve the current performance in FER from still images. The ex-
periments on JAFFE and CK databases demonstrate that the proposed approach can 
achieve significant improvements on recognition performance and computational time 
compared to the previous work. Our results confirm that wider range of Gabor filters 
can improve the performance as expressional information is evenly distributed over 
these filters. Moreover, our experiments show that the time used for computing Gabor 
filters takes a large part of the overall processing time of our framework, while 
(2D)2PCA only requires a small proportion of the overall time.  

In our future work, we aim to conduct more experiments to improve CRR by in-
creasing orientation number. Meanwhile, the combination of (2D)2PCA with other 
local feature extraction methods (for example, local binary pattern [21]) seems to be a 
promising direction. Another important field is combining both appearance and mo-
tion features for FRE since researches [22] have confirmed the significant role of 
dynamic information in the process of expressing and recognizing facial expressions.  

Acknowledgments. The authors would like to thank Nicki Ridgeway for providing 
the Cohn-Kanade AU-Coded Facial Expression Database and the providers of JAFFE 
database.  

References 

1. Deng, H.B., Jin, L.W., Zhen, L.X., Huang, J.C.: A new facial expression recognition 
method based on local gabor filter bank and pca plus lda. International Journal of Informa-
tion Technology 11, 86–96 (2005) 

2. Caifeng, S., Shaogang, G., McOwan, P.W.: Robust facial expression recognition using  
local binary patterns. In: IEEE International Conference on Image Processing, ICIP 2005, 
vol. 2, pp. II-370–II373 (2005) 

3. Wei Feng, L., ZengFu, W.: Facial Expression Recognition Based on Fusion of Multiple 
Gabor Features. In: 18th International Conference on Pattern Recognition, ICPR 2006, 
vol. 3, pp. 536–539 (2006) 



732 L. Zhang and D. Tjondronegoro 

4. Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor 
wavelets. In: Proceedings of Third IEEE International Conference on Automatic Face and 
Gesture Recognition, 1998, pp. 200–205 (1998) 

5. Bashyal, S., Venayagamoorthy, G.K.: Recognition of facial expressions using Gabor 
wavelets and learning vector quantization. Engineering Applications of Artificial Intelli-
gence 21, 1056–1064 (2008) 

6. Chen, H.Y., Huang, C.L., Fu, C.M.: Hybrid-boost learning for multi-pose face detection 
and facial expression recognition. Pattern Recognition 41, 1173–1185 (2008) 

7. Littlewort, G., Bartlett, M.S., Fasel, I., Susskind, J., Movellan, J.: Dynamics of facial ex-
pression extracted automatically from video. Image and Vision Computing 24, 615–625 
(2006) 

8. Yu, J., Bhanu, B.: Evolutionary feature synthesis for facial expression recognition. Pattern 
Recognition Letters 27, 1289–1298 (2006) 

9. Gunes, T., Polat, E.: Feature selection for multi-SVM classifiers in facial expression classi-
fication. In: 23rd International Symposium on Computer and Information Sciences, ISCIS 
2008, pp. 1–5 (2008) 

10. Lajevardi, S.M., Lech, M.: Facial Expression Recognition Using Neural Networks and 
Log-Gabor Filters. In: Digital Image Computing: Techniques and Applications, DICTA 
2008, pp. 77–83 (2008) 

11. Kong, A.: An evaluation of Gabor orientation as a feature for face recognition. In: 19th  
International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008) 

12. Dadgostar, M., Tabrizi, P.R., Fatemizadeh, E., Soltanian-Zadeh, H.: Feature Extraction  
Using Gabor-Filter and Recursive Fisher Linear Discriminant with Application in Finger-
print Identification. In: Seventh International Conference on Advances in Pattern Recogni-
tion, ICAPR 2009, pp. 217–220 (2009) 

13. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust Object Recognition 
with Cortex-Like Mechanisms. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 29, 411–426 (2007) 

14. Kong, H., Wang, L., Teoh, E.K., Li, X., Wang, J.-G., Venkateswarlu, R.: Generalized 2D 
principal component analysis for face image representation and recognition. Neural  
Networks 18, 585–594 (2005) 

15. Zhang, D., Zhou, Z.-H. (2D)2PCA: Two-directional two-dimensional PCA for efficient 
face representation and recognition. Neurocomputing 69, 224–231 (2005) 

16. Kanade, T., Cohn, J.F., Yingli, T.: Comprehensive database for facial expression analysis. 
In: Proceedings of Fourth IEEE International Conference on Automatic Face and Gesture 
Recognition, pp. 46–53 (2000) 

17. Liang, D., Yang, J., Zheng, Z., Chang, Y.: A facial expression recognition system based on 
supervised locally linear embedding. Pattern Recognition Letters 26, 2374–2389 (2005) 

18. Guo, G., Dyer, C.R.: Learning from examples in the small sample case: face expression 
recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B 35, 477–488 
(2005) 

19. Wang, J., Yin, L.: Static topographic modeling for facial expression recognition and analy-
sis. Comput. Vis. Image Underst. 108, 19–34 

20. Wong, J.-J., Cho, S.-Y.: A face emotion tree structure representation with probabilistic  
recursive neural network modeling. Neural Computing & Applications (2008) 

21. Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on Local Binary 
Patterns: A comprehensive study. Image and Vision Computing 27, 803–816 (2009) 

22. Yongmian, Z., Qiang, J., Zhiwei, Z., Beifang, Y.: Dynamic Facial Expression Analysis and 
Synthesis With MPEG-4 Facial Animation Parameters. IEEE Transactions on Circuits and 
Systems for Video Technology 18, 1383–1396 (2008) 

 
 



Self-Organized Gabor Features for Pose

Invariant Face Recognition

Saleh Aly1, Naoyuki Tsuruta2, and Rin-ichiro Taniguchi1

1 Department of Intelligent Systems, Kyushu University,

744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan

{aly,rin}@limu.ait.kyushu-u.ac.jp
2 Department of Electronics Enginieering and Computer Science, Fukuoka University

8-19-1, Nanakuma, Jonan, Fukuoka 814-0180, Japan

tsuruta@tl.fukuoka-u.ac.jp

Abstract. Pose-invariant face recognition using single frontal training

image is considered one of the most difficult challenges in face recogni-

tion. To address this problem, we introduce a novel feature extraction

method based on learning the manifold of local features. Changes in

local features due to pose variations induce a nonlinear manifold in the

feature space. Self-organizing map is employed to learn the manifold

induced by Gabor filter response of a generic training face database cap-

tured at various pose directions. Furthermore, this manifold can be used

to represent new face image as a set of points in the feature space. A

modular Hausdorff distance measure, which can effectively measure the

similarity between two point sets without any correspondence, is also

proposed to identify unlabeled subjects. Experimental results on CMU-

PIE face database show the effectiveness of the novel method against

pose variations.

1 Introduction

Although humans can detect and identify faces in a scene without much effort,
building an automated system that accomplishes such tasks is very challenging
[1]. The challenges are even more profound when one considers the wide vari-
ations in imaging conditions [2]. There are inter- and intra-subject variations
associated with face images. Inter-subject variation is limited due to the phys-
ical similarity among individuals. Intra-subject variation, on the other hand, is
very extensive and can be attributed to three factors: pose, illumination, and ex-
pression. In this paper, we are concerned with building a robust face recognition
system against pose variation.

Pose invariant algorithms can be broadly classified into three categories,
invariant feature-based, 2D view-based, and 3D-based techniques. The invari-
ant feature-based approach records expressive features in a face image that do
not vary under pose changes. These methods can be divided into appearance-
based like Eigenfaces [3] and Fisherfaces [4] algorithms, geometric model-based
algorithms like Elastic Bunch Graph Matching [5] and Active Appearance Model

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 733–742, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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[6]. Although these approaches are simple and fast, their performance is sensi-
tive to misalignment and can not separate image variance caused by identity and
pose variations. The 2D view-based approach stores a set of observed multiview
images in the gallery to deal with pose variation problem [7] or synthesized new
view images from a given image [8]. Moreover, invariance can achieved by pose
transformation in the image space [9] or pose transformation in the feature space
[10]. However, linear transformation cannot adequately describe image variations
caused by pose changes. In the third category, 3D generic face model [11,12] as-
sist to predict the appearance of a face under different pose parameters. However
they are computational expensive and require manual locating of facial features.
In this paper, we present a new algorithm belongs to the first category, however
the proposed algorithm does not require any prior facial alignment or any feature
localization.

A self-organized Gabor feature (SOGF) method is introduced to nonlinearly
model the extracted local facial features. In order to distinguish between
local features extracted from different facial regions, input image is divided into
three horizontal regions and three feature maps are learned from each major
facial part (i.e. eyes, nose, and mouth). SOGF is used as a feature extractor to
represent facial image parts in a new invariant feature space by learning such
variations from generic training data. In order to minimize the redundancy be-
tween features, self-organizing map (SOM) is employed to transform the high di-
mensional Gabor feature space into nonlinear low dimensional topological space,
which capture the intrinsic dimensionality of Gabor feature space. Finally, mod-
ular Hausdorff distance measure, which can effectively exploit the output of the
SOM topological space, is also proposed to identify unlabeled subjects.

This paper is organized as follows. In Section 2, we discuss the framework of
self-organized Gabor feature based face recognition system. More details about
each component of the system is given in the following subsections. Experimental
results are presented in Section 3. Finally, the summary and conclusions are given
in Section 4.

2 Proposed Face Recognition System

In this paper, we propose a novel self-organized Gabor features (SOGF) method
for face recognition whose system architecture is shown in Fig. 1. Gabor fil-
ters are used as a local feature extractor for the input face image and SOM is
used to nonlinearly project Gabor features and represent them in a new fea-
ture space learned from pose-variant training data. The projected face region
called component-map. The proposed system contains three component-maps,
upper component-map represents features extracted from eye region, middle
component-map represents features derived from nose, and lower component-
map represents features from mouth region. Features extracted by each map are
used to represent variations in local features of the input face region. The ratio-
nale behind integrating Gabor wavelet and SOM is two-fold. On the one hand,
the Gabor transformed face images exhibit strong characteristics of spatial local-
ity, scale and orientation selectivity. These images can thus produce salient local
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Fig. 1. Architecture of proposed face recognition system

features that are most suitable for face recognition. On the other hand, SOM
can model the nonlinear manifold of the local features caused by pose variations.
Furthermore, SOM would further reduce the redundancy and represent Gabor
features in a set of topological ordered nodes. These features are encoded only
by the position of the best matching nodes in SOM maps.

Intuitively, out-of-plane face rotation (face rotation around vertical axis) leads
to disappearance of some facial parts or shrinking them into smaller area. For
example, part of the eyes, nose and mouth regions are occluded due to viewpoint
changes. Since representing all local features by one global face-map will destroy
the configuration and the discrimination characteristics of the three main facial
parts (eyes, nose, and mouth). Horizontal partitioning of the face image into
three regions is an appropriate choice to retain distinctive information of the
major feature points against pose variations. The resulting Gabor response image
is divided into three horizontal parts, upper, middle and lower part. Feature
matching between two feature maps is carried out without any correspondence
using Hausdorff distance. We will give more details about each component of
the system in the following sections.

2.1 Gabor Wavelet

Gabor filters are commonly used for image analysis because of their biological
relevance and computational properties. The Gabor wavelets, whose kernels are
similar to the 2D receptive field profiles of the mammalian cortical simple cells,
exhibit strong characteristics of spatial locality and orientation selectivity, and
are optimally localized in the space and frequency domain. The following form of
a 2D Gabor filter function in the continuous spatial domain has been employed:

ψ(x, y, θ, λ, γ) = e−
x′2+γ2y′2

2σ2 cos(2π
x′

λ
) (1)
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x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ (2)

where λ, θ, γ, σ specify the wavelength, orientation, aspect ratio of the wavelet
and the radius of Gaussian respectively.

Tuning Gabor wavelets parameter is a very complex task, the filter parameters
used in this paper are inspired by the work in [13] because it gives biologically
plausible Gabor filters which perform well for filtering tasks related with object
recognition. However in our implementation we consider only 8 orientations and
5 scales as recommended by [5]. The filters are arranged to form a pyramid of
scales, λ ∈ {4, 4

√
2, 8, 8

√
2, 16} , and these filters span a range of sizes from

9 × 9 to 17 × 17 pixels in steps of two pixels. The orientation parameter is
sampled into 8 different orientations over the interval from 0 to π, i.e., θ ∈
{0, π

8 , 2π
8 , 3π

8 , 4π
8 , 5π

8 , 6π
8 , 7π

8 }. The radius of Gaussian function is set such that
the wavelets of different size and frequency are scaled versions of each other, i.e.,
σ = λ . The aspect ratio parameter is included such that the wavelets could also
approximate some biological models, and the wavelets used in this paper have
circular Gaussian, i.e., γ = 1. Fig. 2 shows Gabor filter kernels at five scales and
eight orientations.

Gabor Feature Vector. Let I(x, y) be the gray level distribution of an image,
and the Gabor wavelet representation of image I(x, y) is defined as follows:

O(x, y, θ, λ, γ) = I(x, y) ∗ ψ(x, y, θ, λ, γ) (3)

where ∗ denotes the convolution operator. Due to the misalignment between
input images, a small shift in the response of filters is produced. In order to
compensate this shift variation, a MAX filter is applied to local areas in the
Gabor-filtered image [13]. In our experiments the size of the MAX filter is 2× 2
pixels. As a result of this operation, the dimension of the output image reduced
by half, which consequently reduce the computational cost of the successive
operations. Furthermore, the response of each Gabor filter is normalized to zero
mean and unit variance.

2.2 Self-Organizing Map

In self-organizing map (SOM) [14], a pattern is projected from an input space
to a position in the map where the information is coded as the location of the
activated neuron. The SOM is unlike most classification or clustering techniques
in that it provides a topological ordering of data. Similarity in the input space is
preserved in the output space. The topological preservation of the SOM process
makes it especially useful in the classification of data, which includes smooth
variations in the data. For example, the changes in the face viewpoint cause
distortions in its local features, which can be modeled either by the Voronoi
region of the winner neuron in the feature map or even by its neighbor neurons.

The SOM codebook has two important characteristics that make it especially
suitable for nonlinear projection. First, the probability density function (PDF)
of the codebook is a good approximation for the PDF of the training data.
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Fig. 2. Gabor wavelets at five scales and eight orientations

Second, the topographic order of the training data is preserved in the codebook,
even if the dimensionality of the SOM is smaller than that of training data. The
second characteristic means that similar features are mapped to nearby positions
in the feature map. However, if the dimensionality of the map is too low, the
map tries to approximate the high dimensionality input space by folding itself
into the input space. Therefore, a correct dimension of the map leads to better
topographic order of neurons.

Local features to be trained with SOM are extracted by convolving each pixel
of the input image with a set of Gabor filters. Each neuron in the SOM learns
local characteristics of the face image. After training, the feature vector at each
pixel is projected in the SOM map and represented by the position of the win-
ner neuron. In our method, features extracted from each region of the face are
depressively represented in terms of positional relationship among the winner
neurons, each of which corresponds to local feature of the face image. Fig. 3
shows feature maps of the eye region for one person at 5 different pose condi-
tions. This figure indicates that features maps are very similar to each other
despite the viewpoint changes in the appearance of the face. Because of the self-
occlusion of local feature due to pose variations, the number of active neurons
is different for the maps.

2.3 Modular Hausdorff Distance

To identify an unlabeled face, a classifier should be built on the top of SOM maps.
Although there are many metrics that can be used to calculate the similarity, we
have employed Hausdorff distance, which was previously used for shape match-
ing in face images. Hausdorff distance exhibits tolerance to the translation and
distortion variations in the local features caused by pose changes. The Hausdorff
distance is defined as a distance between two point sets, and it gives a measure
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Fig. 3. Eye component-map for one subject from CMU-PIE database under 5 different

viewpoints: black dots represent winner neurons

of dissimilarity between the point sets. One advantage of using Hausdorff dis-
tance for local feature matching is that it does not require the explicit pairing
of points. In [15], the authors revised the metric and investigated 24 different
distance measures based on their behavior in the presence of noise, and they
redefined the original definition of the metric proposing an improved measure,
called the modified Hausdorff distance, which is formulated as:

hp(P, Q) =
1

Np

m∑
p=1

min
q∈Q

‖p− q‖ (4)

where P = {p1, p2, ..., pm} and Q = {q1, q2, ..., qn} are two point sets and Np,
represent the cardinality of P set.

In this paper, we adopt the above formulation to calculate the similarity
between each part of the face. Three different Hausdorff distance values are
obtained from each region of the face and combined to give the final dissimilarity
measure. The following equation used to calculate the distance for the whole
three face parts.

HD(P, Q) =
3∑

p=1

Hp(P, Q), (5)

where Hp(P, Q) is the partial directed Hausdorff distance between two face re-
gions and is given by this equation:

Hp(P, Q) = max(hp(P, Q), hp(Q, P )) (6)
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Fig. 4. Pose variations in the CMU-PIE face database. The pose varies from full left

profile (c34) to full frontal (c27) and to full right profile (c22).

3 Experimental Results

In the following experiments, we used CMU-PIE database [16], which consists
of 68 subjects under 43 significant illumination variation, and with 13 poses
and 2 facial expressions. Typical images from one subject for all pose conditions
are shown in Fig. 4. All face images under normal light conditions and 7 pose
variations are selected. All images in CMU-PIE databases are scaled to the size
48 × 48 pixels, and photometrically normalized by histogram equalization. We
divided the dataset into three disjoint subsets according to the same procedure
of [9]

– Generic training data: The generic data are used to construct local feature
maps for each face image part.

– Gallery: The gallery is the set of reference images of the people to be rec-
ognized. (i.e., the images given to the algorithm as examples of each person
who might need to be recognized).

– Probe: The probe set contains the ”test” images (i.e., the images to be
presented to the system to be classified with the identity of the person in
the image).

The division into these subsets is performed as follows: First we randomly select
half of the subjects as the generic training data. After the generic training data
have been removed, the remainder of the database is divided into probe and
gallery sets based on the pose of the images. In All experiments, we set the gallery
to be the frontal images c27 and the probe set to be {c37, c05, c09, c07, c29, c11}
poses which span the pose from half left profile (+45◦) to half right profile
(−45◦). In this case, we evaluate how well our algorithm is able to recognize
people from their profiles when the algorithm has seen them only from the front.

In the first experiment, SOM maps with different sizes are constructed to
learn the distribution of local facial features. Upper, middle and lower maps
are trained from the patterns at the eyes, nose and mouth regions respectively.
All SOMs are trained in batch-mode using all extracted Gabor features and
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Table 1. Average recognition rate of SOGF algorithm with varying map dimension

Map Dimension c37 c05 c09 c07 c29 c11 Mean

[4000] 82 94 94 94 94 73 88

[100 × 40] 94 100 97 100 100 97 98

[40 × 20 × 5] 88 97 94 97 97 88 93

[20 × 10 × 5 × 4] 94 94 88 94 94 91 92

[10 × 8 × 6 × 4 × 2] 97 100 100 100 100 100 99.5

[8 × 6 × 5 × 4 × 2 × 2] 91 100 100 100 100 94 97.5

[8 × 5 × 4 × 3 × 2 × 2 × 2] 100 100 94 100 100 88 97

Table 2. Comparison between Eigenfaces, Fisherfaces, and SOGF algorithm perfor-

mance across pose

Map Dimension c37 c05 c09 c07 c29 c11 Mean

Eigenfaces+KNN 39 66 96 96 33 30 60

Fisherfaces+KNN 94 100 97 100 100 97 64

3D Morphable Model 96 100 100 99 100 99 99

SOGF+MHD 97 100 100 100 100 100 99.5

100 updates were performed. The initial weights of all neurons were set to the
greatest eigenvectors of the training data, and the neighborhood widths of the
Gaussian function converged exponentially to 0.1 with the increase of time.

We utilized a fixed number of 4000 neurons, which arranged in different ways
to give various map sizes (e.g., 100 × 40, 40 × 20 × 5, etc.). The results showed
in Table 1 indicate that higher dimensional map seems to be more beneficial to
the performance of the system. Intuitively, the choice of map dimension reflects
the quality of the topographic order of neurons, that is, as the dimensions gets
smaller or larger than the intrinsic dimensionality of the feature space, the topo-
graphic order of the map is destroyed and thus lose this important characteristic.
5-D SOM map seems to effectively represent the nonlinear manifold of the Gabor
features caused by pose variations, it gives 99.5% accuracy for all tested poses
given only one frontal image.

In the second experiment, a comparison between two classical linear feature
extraction algorithms namely Eignefaces (PCA), Fisherfaces (LDA) and one
state of the art algorithm (3-D morphable model) is conducted. The experi-
ment examine the performance of different feature extraction algorithms across
pose changes. 1-KNN classifier algorithm based on Euclidean distance is em-
ployed for Eignefaces and Fisherfaces algorithms while modular Hausdorff is used
for Self-organized Gabor Features. Results shown in Table 2 reveal that global
features extracted by PCA/LDA are highly sensitive to pose variations while
local features extracted by SOGF is more robust. Furthermore, Fisherfaces al-
gorithm outperform Eignefaces by small margin due to its supervised learning
capability. 3D morphable model algorithm considered as state of the art in face
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Table 3. Performance of proposed algorithm using features from nose, mouth, and

eyes regions

Component c37 c05 c09 c07 c29 c11 Mean

Eyes 59 97 94 100 97 88 89

Nose 53 97 97 100 97 50 82

Mouth 88 100 97 97 97 78 93

All 94 100 97 100 100 91 97

recognition across pose due to its perfect capability to separate pose parameters
and identity features. The weakness of the 3D model approaches is that they
require 3D models and complicated fitting algorithms. Compared to the above,
the proposed recognition scheme possesses the following advantages: (i)No man-
ual selection for feature points are required; (ii) It is able to handle new pose
conditions even if the algorithm given one Gallery image; (iii) No face align-
ment is required which considered as an essential preprocessing step in many
algorithms.

The aim of the third experiment is to examine the contribution of each face
component in the performance of the system under viewpoint changes. Recogni-
tion accuracy is calculated from the features captured by each component map
separately. Roughly speaking eye features are the most discriminative features
between subjects. However, the results shown in Table 3 reveal that features
extracted from mouth region are the most invariant to pose variations followed
by features from eye and nose regions. Furthermore, combining features from all
component maps seems to be more effective than using only single component-
map in the recognition.

4 Conclusion and Future Works

In this paper, we introduced a novel self-organized Gabor features based face
recognition system across pose variations. Gabor wavelets first derive desirable
facial features characterized by spatial frequency, spatial locality, and orienta-
tion selectivity. Self-organizing map method has been successfully captured the
variations in the Gabor space caused by pose changes. Selecting the appropriate
dimension of SOM has a great effect in the accuracy, which implies that each
dimension in the map can be considered as a nonlinear principal component
in the feature space. Local feature matching based on the Hausdorff distance
metric proved to be robust to viewpoint changes compared with global feature
extraction methods like Eigenfaces and Fisherfaces. Finally, the experimental
results showed that features around mouth and eyes are the most discriminative
and invariant features in comparison with features extracted from nose region.
In the future, the effect of simultaneous variations in illumination and pose will
be analyzed using proposed face recognition system.
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Abstract. A novel approach for image segmentation is proposed in this

paper. This approach is based on the growing hierarchical self-organizing

map (GHSOM), which consists of a hierarchical architecture composed of

growing self-organizing maps (SOMs). The SOMs have shown to be suc-

cessful for the analysis of high-dimensional input data as in data mining

applications. The hierarchical architecture of the GHSOM is more flexi-

ble than a single SOM in the adaptation process to input data, mirroring

inherent hierarchical relations among input data. Image hierarchical seg-

mentation can be achieved by using this neural network model, where

the hierarchical structure of segmented regions is captured. In order to

evaluate the performance of this segmentation method, an application for

hierarchical background modeling in video sequences is provided. There-

fore, foreground detection is achieved. Experimental results show that

the proposed approach is promising for applications where hierarchical

segmentation is required.

Keywords: Segmentation, data clustering, hierarchical self-organization,

background modeling.

1 Introduction

Data clustering is an unsupervised learningmethod to discovermost similar groups
from input data, where data belonging to one group are most similar than data be-
longing to different groups according to a similarity measure. These methods are
especially useful when information about input data is unavailable and input data
are usually represented as feature vectors in a high-dimensional space.

The self-organizing map (SOM) has been widely used for knowledge discov-
ery, data mining, detection of inherent structures in high-dimensional data and
mapping these data into a two-dimensional representation space [1]. This map-
ping retains the relationship among input data and preserves their topology.
The main advantage of this method is visual understanding of data structure.
However, SOMs have some difficulties related to their fixed network architecture
in terms of number and arrangement of neurons, which has to be defined in
advance, and their lack of representation of hierarchical relations among input
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data. The growing hierarchical SOM (GHSOM) was proposed in [2] to solve both
limitations. This neural network model has a hierarchical architecture divided
into layers, where each layer is composed of different single SOMs with adap-
tative architecture that is determined during the unsupervised learning process
according to input data.

In this paper, the GHSOM model is used for hierarchical image segmentation.
Image segmentation methods divide an image into several regions, where the con-
tents of each region represent meaningful objects. Then, the segmentation results
can be used for subsequent stages such as object recognition. Mathematically,
most of these methods operate on the principle of minimizing the within-region
variance, or other measures of internal homogeneity [3]. Different approaches are
commonly used for this principle, ranging from threshold techniques, and bound-
ary techniques, to region-based techniques and hybridized approaches [4,5].

The usefulness of the hierarchical segmentation based on GHSOM is shown
with an application for foreground detection in video sequences. Here, the
GHSOM is trained and tested with a set of frames from the PETS 2001 se-
quence dataset, which has been used to evaluate the performance of tracking
and surveillance.

The remainder of this paper is organized as follows. Section 2 provides a
description of the GHSOM model for hierarchical segmentation. In Section 3, a
background model is built by using the GHSOM model to detect the foreground.
In Section 4, some experimental results after evaluate the foreground detector
with PETS 2001 dataset are presented. Section 5 concludes this paper.

2 GHSOM Model

The GHSOM has a hierarchical architecture composed of layers, which consist
of several growing SOMs [6]. Initially, the GHSOM consists of a single SOM
of 2x2 neurons, but this architecture is automatically adapted depending on
the input patterns during the training. The SOM can grow by adding neurons
until reach a certain level of detail in the representation of the data mapped
onto the SOM. After growing, each neuron of the map has to be verified to
see whether they are expanded or not. If the neuron has a bad representation
of the data, it is expanded in a new map in the next layer of the hierarchy in
order to provide a more detailed representation. Once training has finished, the
GHSOM mirrors the inherent structure of the input patterns, improving the
representation achieved with a single SOM. Therefore, each neuron represents
a data cluster, where data belonging to one cluster are more similar than data
belonging to different clusters.

The adaptative growth process of a GHSOM, is controlled by two parameters
τ1 and τ2, which are used to control the growth of a map and to control the
hierarchical growth of the GHSOM, respectively. But this adaptation depends
mainly on the quantization error of the neuron (qe). The qe is a measure of
the similarity of data mapped onto each neuron, where the higher is the qe, the
higher is the heterogeneity of the data cluster. The quantization error of the unit
i is defined as follows
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qei =
∑

xj∈Ci

‖wi − xj‖ (1)

where Ci is the set of patterns mapped onto the neuron i, xj is the jth input
pattern from Ci, and wi is the weight vector of the neuron i.

Initially, the quantization error at layer 0 must be computed as given in (2),
where w0 is the mean of the all input data I.

qe0 =
∑
xj∈I

‖w0 − xj‖ (2)

The initial quantization error qe0, measures the dissimilarity of all input data
and it is used for the hierarchical growth process of the GHSOM together with
the τ2 parameter, following the condition given in (3). That is, the quantization
error of a neuron i (qei) must be smaller than a fraction (τ2) of the initial
quantization error (qe0) to be a leaf neuron. Otherwise, the neuron is expanded
in a new map in the next level of the hierarchy, so the smaller is the τ2 parameter
chosen the deeper will be the hierarchy.

qei < τ2 · qe0 (3)

When a new map is created, a coherent initialization of the weight vectors of the
neurons of the new map is used as proposed in [7]. This initialization provides a
global orientation of the individual maps in the various layers of the hierarchy.
Thus, the weight vectors of neurons mirror the orientation of the weight vectors
of the neighbor neurons of its parent. The initialization proposed computes the
mean of the parent and its neighbors in their respective directions.

A new map created from an expanded neuron is trained as a single SOM.
During the training, the set of input patterns are those that were mapped onto
the upper expanded unit. In each iteration t, an input pattern is randomly
selected from this data subset. The winning neuron of the map is the neuron
with the smallest Euclidean distance to the input pattern, whose index r is
defined in (4).

r(t) = arg min
i
{‖x(t)− wi(t)‖} (4)

The winner’s weight vector is updated guided by a learning rate α, decreasing in
time (5). In addition to the winner, the neighbors of the winner are updated de-
pending on a Gaussian neighborhood function hi and its distance to the winner.
This neighborhood function reduces its neighborhood kernel in each iteration.

wi(t + 1) = wi(t) + α(t)hi(t)[x(t) − wi(t)] (5)

When the training of the map m is finished, the growing of the map has to be
checked. For that, the quantization error of each neuron (qei) must be computed
in order to compute the mean of the quantization error of the map (MQEm). If
the MQEm of the map m is smaller than a certain fraction τ1 of the quantization
error of the corresponding parent neuron u in the upper layer, the map stops
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growing. This stopping for the growth of a map is defined in (6). Otherwise, the
map grows to achieve a better level of representation of the data mapped onto
the map, so the smaller is the τ1 parameter chosen the larger will be the map.

MQEm < τ1 · qeu (6)

The growing of a map is done by inserting a row or a column of neurons between
two neurons, the neuron with the highest quantization error e and its most
dissimilar neighbor d. The neuron d is computed according to the expression
(7), where Λe is the set of neighbor neurons of e.

d = arg max
i

(‖we − wi‖), wi ∈ Λe (7)

3 Hierarchical Background Segmentation

GHSOMs can be used for image hierarchical segmentation by training this model
with input data from images. These input data are represented by vectors of
three features that represent each color component of a pixel, depending of the
color space used (RGB, Lab, HSV, etc). In fact, just using the color information
of each pixel, the pixel components will be mapped into a neuron so that each
neuron will represent a set of pixels that are similar among them and the image
will be segmented by colors, that is, each neuron represent a segmented region
and each region can be hierarchical. In fact, if some neuron represents a set of
heterogeneous pixels, it will be expanded at a subsequent layer of the hierarchy,
creating a new map that will be trained with the pixels mapped onto the parent
neuron. Non-expanded neurons are called leaf neurons and represent a region
at the most level of granularity. Thus, an image hierarchical segmentation just
using color information is provided. An example of hierarchical segmentation of
an image and its generated GHSOM architecture is given in Fig. 1.

Image hierarchical segmentation using GHSOMs can have multiple applica-
tions. In order to evaluate this novel method, an application for hierarchical
background modeling and foreground detection in video sequences has been im-
plemented. Foreground detection can be achieved by analyzing the hierarchical
information from the background model.

The hierarchical background model is based on hierarchical segmentation with
GHSOM. A set of N frames from a video sequence is chosen, which are consid-
ered as background images of the scene. Then, the GHSOM is trained with
the N background frames so that we obtain a hierarchical segmentation of the
background. Thus, the generated GHSOM structure after training represents a
hierarchical model of the background, where mappings between pixels of each
frame and neurons are stored.

Let k = (i, j) be the position of a pixel in a frame, Nk (8) be the set of mapped
neurons of the pixel xk and N1

k (9) be the set of layer 1 mapped neurons of the
pixel xk in the training. A pixel xk belongs to foreground if its 1 layer neuron
mapped n is different to all 1 layer neurons mapped in the training (n �∈ N1

k ).



Image Hierarchical Segmentation Based on a GHSOM 747

(a) (b)

(c) (d)

(e)

Fig. 1. An example of image hierarchical segmentation: (a) Original image. (b) Image

where each pixel is represented by its associated leaf neuron weight vector. (c) Image

segmentation at level 1. (d) Image where leaf neurons are represented by different

colors, having similar colors leaf neurons with the same father. (e) Generated GHSOM

architecture after training using the original image (a), with 3 layers, 8 neurons at layer

1, 47 leaf neurons and altogether 60 neurons.
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Nk = {i/xk was mapped to ni} (8)

N1
k = {i/xk was mapped to ni at layer 1} (9)

To increase the robustness of the detection criterion, the leaf neurons where
the pixels are mapped can be analyzed, benefiting from hierarchy. Therefore,
for pixels that satisfy the previous criterion, if the Euclidean distance between
the pixel xk and the weight vector of the mapped leaf neuron wi is smaller
than the Euclidean distance between xk and the weight vectors of the mapped
leaf neurons in the training wj , the pixel belongs to foreground. This detection
criterion is defined as follows

‖xk − wi‖ < ‖xk − wj‖, ∀j ∈ Nk (10)

(a) (b)

Fig. 2. (a) Original test frame. (b) Image with foreground objects detected.

4 Experimental Results

In order to evaluate the foreground detection system based on our hierarchi-
cal segmentation, PETS 2001 data set has been used1. PETS 2001 consists of
five separate sets of training and test sequences, where each set consists of one
training sequence and one test sequence. Each frame of the sequence has a res-
olution of 576x768 pixels. In the segmentation phase, we chose 20 frames from
the first dataset that we consider as background. Fig. 1(a) is one of them. 0.6
and 0.1 as values for τ1 and τ2 parameters, respectively. This way, we achieved
a hierarchical architecture of 3 layers that was shown in Fig. 1(e).

Test frames were selected from the dataset to detect the foreground. These
test frames include objects that did not appear in the training frames and are
considered as foreground objects. Post-processing techniques have been applied
to remove noise and improve the foreground detection. A test frame and the
binary image with detected foreground objects are shown in Fig. 2.
1 [Online] Available: ftp://ftp.pets.reading.ac.uk/pub/PETS2001/
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Table 1. Foreground detection results with different trainings

False Positives 0.06% 0.3% 0.07% 0.03%

τ1 0.6 0.4 0.6 0.6

τ2 0.1 0.1 0.1 0.1

α 0.3 0.3 0.1 0.3

epochs 2 2 2 4

layers 3 4 3 3

1 layer neurons 8 12 9 8

overall neurons 60 72 61 52

Several experiments have been performed to compare the effects on foreground
detection when GHSOM training parameters are modified and, therefore, hier-
archical segmentation is different. These differences on foreground detection can
be noted in Table 1. False positives are the percentage of background pixels that
are detected as foreground. Note that the parameter τ1 is the most decisive since
control the size of the maps and, therefore, the depth/shallowness of the result-
ing hierarchical GHSOM. Thus, changing 0.6 to 0.4 as value for τ1 parameter,
the number of layers and neurons increase and the detection is worse. This is due
to the number of neurons at the first layer, where the higher is the number of
neurons the higher is the probability to make a mistake mapping a background
pixel into a neuron. On the other hand, the lower the number of layer 1 neurons,
the lower the foreground objects detection. Also, the number of epochs helps
GHSOM learn better the input patterns and, therefore model the background
of the video sequence.

5 Conclusions

In this paper, a novel approach for image hierarchical segmentation is proposed.
This approach is based on the growing hierarchical self-organizing map (GH-
SOM), which is composed of several independent growing self-organizing maps
(SOMs). The hierarchical architecture provides a more flexible adaptation pro-
cess to input data and mirrors hierarchical relations among input data.

Hierarchical segmentation has multiple applications. An application to gener-
ate a hierarchical background model is proposed in order to detect the foreground
and take advantage of this method. For our experiment, PETS 2001 data set has
been used, where training frames considered as the background from a video se-
quence has been selected for training the GHSOM. Once training is finished, the
generated architecture provides a hierarchical segmentation that represents the
background of the video sequence. This way, when a new frame is presented to
the trained GHSOM, comparison between the resulting mappings from pixels
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into neurons with the mapping done during the training, provides information
about whether classify a pixel as foreground or background. Since we have only
used color components to segment the image, this hierarchical segmentation can
be improved by adding more features to input pixels. Also, other applications
can exploit hierarchical segmentation such as image compression, tracking and
so on.
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Abstract. The role of early sensory neurons is to remove statistical redundancy 
in the sensory input. In this paper, we propose a novel efficient coding model 
combining sparse coding strategy and selective attention strategy for image  
representation. The model is divided into two modules. In the first module, we 
employ the sparse coding strategy for natural image feature extraction.  
Furthermore, inspired by the selective attention strategy in biological visual  
system, we propose a self-adaptive algorithm to further reduce the activated  
variables in the second module. Compared with standard sparse coding (SC), 
the experimental results show that the efficient coding model evidently  
decreases the number of coefficients which may be activated and preserves the 
main structural information at the same time. Moreover, our model employs 
fewer responses to preserve similar perceptual image quality than other models. 

Keywords: Image Representation, Sparse Coding, Structural Similarity,  
Selective Attention, Biological Visual System. 

1   Introduction 

Efficient coding hypothesis [1] provides a quantitative relationship between environ-
mental statistics and neural processing. Barlow hypothesized that the role of early 
sensory neurons is to remove statistical redundancy in the sensory input. Furthermore, 
Olshausen and Field put forward a model, called sparse coding, which made the  
variables (or neurons stimulated by the same stimulus in the neurobiology.) be acti-
vated (i.e. significantly non-zero) only rarely [2, 3]. Vinje’s result validated the sparse 
properties of neural responses under natural stimuli conditions [4]. Since then sparse 
coding theory was broadly investigated [5-8]. 

However, the number of variable which has a large value produced by sparse cod-
ing model and is possible to activated, is relatively large compared with the computa-
tion capacity of neurons, though the kurtosis of every response coefficient is also 
high. Thus, how to further reduce the activated variables in the same time to retain the 
important information as much as possible is very valuable in practice. 

Another important problem is that objective methods for assessing perceptual im-
age quality were the mean squared error (MSE), computed by averaging the squared 
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intensity differences of reconstructed and actual image pixels, along with the related 
quantity of peak signal-to-noise ratio (PSNR). This simplest and most widely used 
full-reference quality metric is appealing because it is simple to calculate, has clear 
physical meaning, and is mathematically convenient in the context of optimization. 
However, it is not very well matched to perceived visual quality [9]. 

In this paper, we propose a novel efficient coding model combining sparse coding 
strategy and selective attention strategy for image representation. First, we introduce 
structural similarity for quality assessment based on the assumption that human visual 
perception is highly adapted for extracting structural information from a scene. Then, 
employing the quality assessment method that takes advantage of known characteris-
tics of the human visual system (HVS), we propose a self-adaptive algorithm to fur-
ther reduce the activated variables. 

The rest of this paper is structured as follows. In Section 2 we present the SC mod-
el and structural similarity. Section 3 describes a novel efficient coding model com-
bining sparse coding strategy and selective attention strategy based on response  
saliency. Experiment results are reported and analyzed in Section 4. Finally, we con-
clude the paper in Section 5. 

2   Sparse Coding Model and Structural Similarity 

A perceptual system is exposed to a series of small image patches, drawn from one or 
more large images, just like the classic receptive field (CRF) of neurons. Imagine that 
each image patch represented by the vector I (numbered row-wise) has been formed 
by the linear combination of N basis functions. The basis functions form the columns 
of a fixed matrix, A. The weight of this linear combination is given by a vector, S. 
Each component of this vector has its own associated basis function, and represents a 
response value of a neuron in vision system. The linear synthesis model is therefore 
given by: 

 I( , ) AS ( , )i i
i

x y a x y= = Φ∑  (1) 

In a cortical interpretation, the S model the responses of (signed) simple cells, and the 
column of matrix A closely related to their CRF’s. 

2.1   Sparse Coding Model 

Olshausen and Field applied two criteria to seek the optimal basis vector and the coef-
ficients [3]. One of the criteria is how well the code describes the input. It was meas-
ured by the squared error between the input and its reconstruction by the network: 

 
2

,

Error( , ) I( , ) ( , )i i
x y i

A S x y a x y
⎡ ⎤= − Φ⎢ ⎥
⎣ ⎦

∑ ∑  (2) 

As an additional criteria for sparse coding, Olshausen and Field proposed the ‘sparse-
ness’ cost for seeking sparse codes. 
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 Sparseness( , ) i

i i

a
A S S

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑  (3) 

where S(x) is a nonlinear function such as |x|, exp(-x2), and log(1+x2). The cost 
sparseness favors the codes which consist of minimal number of non-zero coeffi-
cients. Thus, the search for a sparse code can be formulated as an optimization prob-
lem by constructing the following cost function to be minimized: 

 
2

,

E( , ) I( , ) ( , ) i
i i

x y i i i

a
A S x y a x y Sλ

σ
⎛ ⎞⎡ ⎤= − Φ + ⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
∑ ∑ ∑  (4) 

Learning is accomplished by minimizing (4). The process for minimizing E(A, S) can 
be divided into two nested stages. In the inner stage, E(A, S) is minimized with re-
spect to the ai for a batch of pattern, holding the A fixed. In the outer stage (i.e, on a 
long timescale, over many image presentations), E(A, S) is minimized with respect to 
the A. 

I and Y denotes respectively actual and reconstructed images, Φi and ai denotes re-
spectively the ith column of A and the ith row of S, Φi,j denotes the element of A, λ is 
the weight of sparseness. Thus, the inner stage minimization over the ai can be  
performed by conjugate gradient method, so the ai is determined by the differential 
equation: 

 ( ) ( ) '
,

1

E , 2
i

N
i

a k k k i
k i i

a
A S I Y S

λφ
σ σ=

⎛ ⎞
∇ = − − + ⎜ ⎟

⎝ ⎠
∑

r
 (5) 

The outer stage minimization over the A may be finished by simple gradient descent 
method. The learning rule as follows: 

 ( ) ( )
,

E , 2
i j i i jA S I Y aφ∇ = − −

r
 (6) 

 ( )
,, E ,

i ji j A Sφφ η∆ = − ∇
r

 (7) 

where η is the learning rate. 

2.2   Structural Similarity 

Natural image signals are highly structured: their pixels exhibit strong dependencies, 
especially when they are spatially proximate, and these dependencies carry important 
information about the structure of the objects in the visual scene. Moreover, the HVS 
is highly adapted to extract structural information from the visual scene. Wang and 
Bovik et al. [10] developed a Structural Similarity Index and demonstrate it provides 
a good approximation to perceptual image quality through a set of intuitive examples. 

The structural similarity between signals x and y is given by 

 ( ) ( )( )
( )( )

1 2

2 2 2 2
1 2

2 2
,

x y xy

x y x y

C C
SSIM x y

C C

µ µ σ
µ µ σ σ

+ +
=

+ + + +
 (8) 
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3   A Novel Efficient Coding Model 

Early vision creates representations at successive stages along the visual pathway, 
from retina to lateral geniculate nucleus (LGN) to V1. Li and Shi et al. [11] put for-
ward an attention-guided sparse coding model (AGSC), which adapts to the limited 
computation capability of neural system and improves the efficiency for the tradition-
al sparse coding model. However, AGSC has drawbacks because MSE is not very 
well matched to perceived visual quality. 

In this paper, in order to further reduce the activated variables and explain two key 
information bottlenecks along the visual pathway, we propose a novel efficient coding 
model divided into two modules. Functional diagram of the efficient coding model is 
shown in Fig. 1. At the beginning, retina performs a transformation of the natural 
image into a ‘retinal image’. The retinal image used as an input to the sparse coding 
module of the simple cell. Then, the selective attention module performs the selective 
attention based on response saliency. 

 

Fig. 1. Functional diagram of efficient coding model 

3.1   Selective Attention Based on Response Saliency 

Vision attention mechanism is an active strategy in information processing procedure 
of brain, which has many interesting characteristics, such as selectivity, competition. 
The simple cell’s response value and discrepancy distance based on their selective 
properties such as location, orientation and space frequency, formed the response 
saliency of simple cell [12]. The simple cells’ responses compete for being further 
processed in complex cell based on response saliency value. 

Response saliency is to represent the conspicuity of every neuron in the same per-
ception level for a stimulus and to guide the selection of attended neuron. The neuron 
response that has great response saliency value will be chosen to further process. On 
the contrary, the neuron that has small value will be omitted. 

1 20 , 1C C< .

Natural 
image Retina

Simple cell Complex cell

Sparse 
coding

Selective 
attention
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Intuitively, the response value itself provides very useful information: the response 
value is bigger, the information represented by the neuron is more important; other-
wise, the information is less important. Obviously, the response value gives a founda-
tion for the attention mechanism. Supposed here that Ai represents simple cell i, and 
Ri represents the simple cell’s response. So Ri is greater, the response saliency value 
of Ai is also greater. 

After we get the simple cell’s response saliency values we can select certain simple 
cells as the complex cell’s inputs according to the response saliency. Firstly, the sim-
ple cells responding to the stimulus are sorted by descend according to the response 
saliency value, and then a self-adaptive algorithm to further reduce and determine the 
number of activated variables. 

Each image needs different number of variable to be activated according with it-
self. Inspired by the research of selective attention in psychology, we propose a self-
adaptive algorithm combining sparse coding and selective attention. The self-adaptive 
algorithm consists of the following steps. 

Algorithm 1. Combining sparse coding and selective attention 

Input: a given threshold of structural similarity (inf_SSIM) 

1. Extract  image  feature (i.e. responses of neurons) using SC 

2. Responses are sorted by descend according to the response saliency value 

3. Initialize number of responses to preserve (N=8) 

4. Calculate the structural similarity between actual image and  reconstructed image when 

N responses were preserved ,
1

1
( , ) (I ( , ) , ( , ))SSim SSIM

n

k i k i
k i

R A x y R A x y
n =

′ ′= ∑ ∑  

5. While (SSim(R’,A) < inf_SSIM) do {N=N+8, goto step 4}  

6. N=N-7 

7. Calculate the structural similarity between actual image and  reconstructed image when 

N responses were preserved ,
1

1
( , ) (I ( , ) , ( , ))SSim SSIM

n

k i k i
k i

R A x y R A x y
n =

′ ′= ∑ ∑  

8. While (SSim(R’,A) < inf_SSIM) do {N=N+1, goto step 7} 

Output: the number of responses to preserve (N) 

4   Experiment Results 

We conduct our experiments on a nature image data set which is available on the 
internet http://www.cis.hut.fi/projects/ica/data/images/. We sampled randomly sub-
windows of 12×12 pixels 250000 times from original images, and converted every 
patch into one column. Thus, the input data set with the size of 144×250000 is ac-
quired, and each image patch is represented by a 144 dimensional vector. 
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4.1   Image Feature Extraction 

Using the updating rules of A and S as in (5) and (7) respectively in turn, we mini-
mized the objective function given in (4). A stable solution was arrived at after 5000 
updates (250000 image presentations). The learned basis functions (Fig. 2) simply 
reflects the fact that natural images contain localized, oriented structures with limited 
phase alignment across spatial frequency. 

With learned basis functions, image feature extracting is accomplished by mini-
mizing E(A, S) with respect to the ai for a batch of pattern, holding the A fixed. We 
sampled randomly sub-windows of 12×12 pixels 10000 times from original images, 
and converted every patch into one column. Using the above algorithm and 144 
learned basis functions, image features of the input data set with the size of 
144×10000 are extracted. 

 

Fig. 2. Learned basis functions of sparse coding model 

4.2   Image Reconstruction Using SC model and Selective Attention 

In order to validate performance of our efficient coding model, we select Lenna  
(Fig. 3a) as test image. Lenna with 256×256 pixels was used widely in the image 
processing field. 

The test image is randomly sampled 5000 times with 12×12 pixels to get the data 
set, and converted every patch into one column. Note that to find the accurate position 
of any image patch, we must remember the positions of each image patch appeared. 
Using the above 144 learned basis functions (Fig. 2), image features of the input data 
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set with the size of 144×5000 are extracted. The response coefficients produced  
by sparse coding model are mostly distributed around zero for each image patch of 
Leana. 

In order to further reduce the number of activated variables in the same time to re-
tain the important information as much as possible, algorithm 1 was employed to com-
bine sparse coding and selective attention. The number of responses to preserve was 
determined by the algorithm, and then the reconstructed image was shown in Fig. 3b. 

Because of sampling randomly, the same pixel might be founded in different image 
patches. Therefore, for the same pixel, we averaged the sum of the values of all re-
constructed pixels, and used the averaged pixel value as the approximation of the 
pixel. 

 

Fig. 3. (a) Original image. (b) Reconstructed image using our model. (c) Reconstructed image 
using AGSC model. 

For comparison, we also used the AGSC model [13] to extract image features from 
the same data set, and the reconstructed image was shown in Fig. 3c. Percentage of 
responses to preserve for image representation using different models was shown in 
Table 1. 

It is clear to see that reconstructed images (as shown in Fig. 3) are satisfying. It is 
difficult to tell reconstructed images from the original image only with naked eyes. 
However, comparison with the SC model, our method not only prominently reduces 
the number of activated coefficients, but also retains the main essential vision infor-
mation for image representation. Furthermore, our model omits more coding coeffi-
cients to preserve similar perceptual image quality than AGSC model. 

Table 1. Comparison of responses to preserve for image representation using different models 

 AGSC-P AGSC-T Our model 

Percentage of responses 
to preserve 

45% 43% 27% 

5   Conclusion 

In this paper, in order to explain two key information bottlenecks along the visual 
pathway, we put forward an efficient coding model combining sparse coding strategy 
and selective attention strategy. Firstly, sparse coding strategy was employed for 

ba c
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simple cells to extract natural image features. Then, inspired by the research of selec-
tive attention in psychology, we propose a self-adaptive algorithm to further reduce 
the number of activated variables. By comparison with the SC model, the experimen-
tal result shows that our method not only prominently reduces the number of activated 
coefficients, but also retains the main essential vision information for image represen-
tation. Moreover, our model employs fewer responses to preserve similar perceptual 
image quality than AGSC model. 
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Abstract. We propose an automatic method for segmenting neurons in the TEM 
cell images based on a top-down attention model, which is efficient to solve the 
discontinuity problems in TEM cell image caused by loss of section or branching 
of cell. At first, the proposed model enhances cell boundaries using a partial dif-
ferential equation based on hessian matrix, which can improve the contrast and 
continuity of cell membranes in the TEM images. Then, a top-down attention 
model trains the shape characteristics of the desired target neurons through the 
reinforcement and inhibition learning process. The top-down attention model  
localizes a candidate neuronal region in subsequent TEM image, which was  
implemented by a growing fuzzy topology adaptation resonance theory network 
(GFTART) model. It is efficient to resolve the discontinuity problem of TEM 
cell image. The localized candidate target neurons are finally indicated whether 
they are correct ones by an active appearance model (AAM). Experimental  
results show that the proposed method is efficient to segment the TEM images. 

Keywords: serial-sectioning TEM (SSTEM), Top-down attention, cell image 
segmentation. 

1   Introduction 

In order to more precisely understand the brain’s information processing mechanism, 
it might be really helpful to understand the structure of its neuronal circuit such as 
circuit interconnection topologies, the cell and synapse molecular that determine cir-
cuit signaling dynamics [1]. Electron microscopy (EM), which can provide resolu-
tions on the order of 1 nanometer, remains the primary tool for resolving neurons, 
their sub-cellular 3D structures, and their synaptic connections. 

Several of the high-resolution volume imaging methods generate large data set and 
spend long time to obtain the scanning images. For instance, the serial block-face 
SEM (SBFSEM), which is useful for the analysis of larger organism such as the blow-
fly Calliphora vicina with a total brain volume of 1 mm3, takes about 21 years only 
for total scanning and 54 terabytes memory capacity [2]. However, it is possible to 
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analyze only interesting regions of the brain which leads to a significant reduction of 
the time to acquisition and memory capacity. Therefore, a 3D reconstruction of neural 
circuit is performed only for each local neural circuit by recording one neuron at a 
time during processing by each local neural circuit. The morphology of an individual 
neuron might be useful for understanding in single cells [3]. 

There are still large data set that becomes enormous challenges of reliably abstract-
ing biologically meaningful information about circuit connectivity and molecular 
architecture. Even though we can utilize the latest hardware and software for handling 
and tracing images, definitive results so far have been achieved only manual tracing, 
which is performed by human hand and eye [1]. Therefore, we need to develop a 
model for automated segmentation and discrimination of a neurobiologically mean-
ingful object from the obtained scanning images. Some automated segmentation algo-
rithms for the serial EM have been developed [1]. One approach for EM segmentation 
uses “Machine learning” algorithms, in which a program automatically optimizes its 
own operation based on “training sets” consisting of pairs of raw EM images and 
corresponding manual segmentation results [4]. In this approach, however, some 
difficulties are in producing sufficient and accurate training data sets for obtaining a 
robust and reliable performance by a machine learning algorithm. The other approach 
called “Contour-propagation” algorithm uses a semi-automated segmentation method, 
which is conducted by user interaction based on pixel-intensities of the current image 
in conjunction with the segmentation results of the previous image [2]. That approach 
assumes that objects are continuous across adjacent images which can be an appropri-
ate method for processing continuous sequence of cell intensities and/or cell positions. 
Those two approaches have been applied to SBFSEM image data. 

In our experiments, we try to analyze the very large serial-sectioning TEM 
(SSTEM) image data that has discontinuity properties, geometrical distortion and 
uneven section thickness. Therefore, both “Machine learning” and “Contour-
propagation” algorithms are not enough for analyzing the SSTEM. To clear up those 
problems, we propose a new method that can segment a target cell region from candi-
date target areas in discontinuous sequence of the TEM cell image. Our proposed  
top-down attention model plays important role to find candidate area for segmentation. 
It will be a fully automatic method for segmenting neurons in the SSTEM cell images. 
Using top-down attention model, we take advantages both accuracy and processing 
time by localized candidate area. 

This paper is organized as follows: in section 2, we describe our approaches to 
TEM image segmentation. In section 3, experimental results of the proposed model 
will be shown. Finally, we give brief summary and conclusion in section 4.  

2   Proposed Model 

In this paper, we propose an automatic method for segmenting neurons in the SSTEM 
cell images based on a top-down attention model. Figure 1 shows the overview of the 
proposed model. In preprocessing, the proposed model enhances cell boundaries using 
a partial differential equation based on a Hessian matrix, which can improve the con-
trast and continuity of cell membranes in the SSTEM images [5]. After preprocessing 
of the SSTEM cell images, a top-down attention model trains the shape characteristics 
of the desired target neurons through reinforcement and inhibition processes. The  
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top-down attention model was implemented by a growing fuzzy topology adaptation  
resonance theory network (GFTART) model [6]. The GFTART model is successively 
used to localize a candidate neuron region in subsequent SSTEM cell images, which 
not only enhance the segmentation accuracy but also reduce the computation load. 
Then, an active appearance model (AAM) is used to check whether the localized area 
by the top-down attention model includes a target neuron. 

 

Fig. 1. Overview of proposed model 

2.1   Preprocessing Step 

It is very complicate to localize a neuronal area in the EM images. In order to obtain 
better localization, the histogram equalization is applied to the raw input intensity 
image of the EM, which improves the contrast of the neuronal membranes against the 
background. Moreover, in order to enhance the neuronal boundary among various 
stained textures, a partial differential equation based on a Hessian matrix [5] is  
applied to the histogram equalized EM images. Finally, we can preserve strong edge 
area in the EM images while smoothing weak edges substantially.  

2.2   Top-Down Attention Model 

When humans pay attention to a target object, the prefrontal cortex gives a competi-
tive bias signal, related with the target object, to the infero-temporal (IT) and V4 area. 
Then, the IT and V4 area generates target object dependent information, and this is 
transmitted to the low-level processing part in order to make a competition between 
the target object dependant information and features in whole area in order to filter 
the areas that satisfy the target object dependent features. 

The lower part in Fig. 2 generates a bottom-up salience map (SM) based on primi-
tive input features such as intensity and edge opponent [9-11]. In training mode, each 
salient object decided by the bottom-up SM is learned by a neural network called the 
GFTART [6]. The GFTART is implemented by integrating the conventional fuzzy 
ART, with the topology-preserving mechanism of the growing cell structure (GCS) 
unit [8]. In the GFTART, each node in the F2 layer of the conventional fuzzy ART 
network was replaced with GCS units [7]. Orientation histogram based C1 features in 
the hierarchical MAX model are used as form features [7]. For each object area, the 
log-polar transformed feature of Harris corner is used as a form feature. In top-down 
object biased attention, the GFTART activates one of memorized features according 
to task to find a specific object. The activated features related with a target object are 
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involved in competition with the features extracted from each local area in an input 
scene. By such a competition mechanism, as shown in Fig. 2, the proposed model can 
generate a top-down bias signal to a localized region for segmenting a target cell. 

 

Fig. 2. Flow chart of top-attention model 

Due to the top-down attention mechanism for a specific target cell, we can dimin-
ish the discontinuity problems caused by loss of section and branching of cells in 
TEM images since the top-down attention mechanism keeps more or less local key 
features of a target cell even when the shapes of the target cell varies through the 
successive sections. 

2.2.1   Extraction of Form Features 
Fig. 3 shows the feature extraction for an object area. Orientation features for 8 direc-
tions with 3 different scales are extracted from the intensity image of an input scene, 
which are called C1 features. Then we obtain 4 patches from 4 each different orienta-
tion feature, from which an orientation histogram with 4x4x8 dimension is generated.  
Each patch is divided by 4x4 sub-areas. An orientation histogram with 4x4 values for 
each patch is obtained using an average value of each sub-area. 

 

Fig. 3. Extraction of orientation histogram 

Then a final orientation histogram with 4x4x8 dimensions is generated by conca-
tenating 8 orientation histogram obtained from 8 different patches as shown in Fig. 3, 
then extract Harris corner from C1 features for considering of corner information as 
shown in Fig. 4. 
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Fig. 4. Extraction of Harris corner 

Corner information is made by 4 directions of C1 features against noise. 4 corner 
features are transformed by the log-polar process in order to make an input data with 
the same dimension regardless of different size of attention area. So we can construct 
a shape model with C1 feature and Harris corner, which mimics the information proc-
essing mechanism in V4 and IT. 

Finally, we can make a vector by concatenating orientation histogram shown Fig. 3 
and log-polar transformed corner features, which is used as input of the GFTART for 
from perception. And the size of input vector is 1x384. 

2.2.2   Growing Fuzzy Topology ART 
The structure of the proposed GFTART is the similar with the convention fuzzy ART 
model. Instead, in the GFTART, each node in the F2 layer of the conventional fuzzy 
ART network was replaced with GCS units [7, 8]. The detailed GFTART algorithm is 
described in Fig. 5. The inputs of the GFTART consist of form features. Those  
features are normalized and then represented as a one dimensional array X that is 
composed of every pixel value ai of the three feature maps and each complement ai is 
calculated by 1-ai, the values of which are used as an input pattern in the F1 layer of 
the GFTART model. Next, the GFTART finds the winning GCS unit from all GCS 
units in the F2 layer, by calculating the Euclidean distance between the bottom-up 
weight vector Wi, connected with every GCS unit in the F2 layer, and X is inputted. 
After selecting the winner GCS unit, GFTART checks the similarity of input pattern 
X and all weight vectors Wi of the winner GCS unit. This similarity is compared with 
the vigilance parameter ρ, which is the minimum these results similarity between the 
input pattern and the winner GCS. If the similarity is larger than the vigilance value, a 
new GCS unit is added to the F2 layer. In such situation, resonance has occurred, but 
if the similarity is less than the vigilance, the GCS algorithm is applied. The detailed 
GCS algorithm is described in [8]. 
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Fig. 5. Process flow of the growing fuzzy topology ART 

The GFTART enhances the dilemma regarding the stability of fuzzy ART and the 
plasticity of GCS [8, 12]. The advantages of this integrated mechanism are that the 
stability in the convention fuzzy ART is enhanced by adding the topology preserving 
mechanism in incrementally changing dynamics by the GCS, while plasticity is main-
tained by the fuzzy ART architecture. Also, adding GCS to fuzzy ART is good not 
only for preserving the topology of the representation of an input distribution, but it 
also adaptively creates increments according to the characteristics of the input  
features. 

2.2.3   Top-Down Biasing 
In the proposed model, two GFTARTs are applied for training two different kinds of 
shapes of neuronal patterns. One GFTART memorizes target neuronal shapes (attrac-
tors) during training mode and reinforces a local area with memorized neuronal 
shapes of a target cell. The other GFTART memorizes non-target neuronal shapes 
(distractors) and inhibits a local area with memorized non-target neuronal shapes. 
Using two GFTARTs, the proposed model can efficiently localize the target areas 
among various types of similar patterns. After being successfully trained, the 
GFTARTs work for generating bias signals for reinforcing the target area and inhibit-
ing the non-target area using similarity measure between the memorized patterns and 
the input patterns. In order to consider scale invariant characteristic of the top-down 
biased attention, 3 different scaled pyramids for shape features are considered. The 
bias signals generated for each local area constructs a weight matrix that uses as 
weighting factors for reinforcement and inhibition of a local area in the TEM images. 

In order to enhance contrast between inner-side of boundary of the target area and 
outer-side of it, a Mexican hat function is applied to the local area originated at the 
center of the target area, fm, as shown in Eq. (1), which generates the reinforcement 
weight matrix, Wt. In Eq. (2) fs denotes neighbors of fm. Moreover, in order to inhibit 
the non-target area, Gaussian function is applied to the local area originated at the 
center of the non-target area as shown in Eq. (2), which generates the inhibit weight 
matrix, Wnt.  
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 (1)

 
(2)

2.3   Segmentation by Active Appearance Model 

The active appearance model (AAM) is applied to segment a neuronal pattern in a 
target area localized by the top-down attention model. 

The technique of AAM has been introduced as a powerful technique for various 
automated medical image segmentation application [13, 14]. For training an AAM, all 
expert drawn contours obtained from manually annotated example images should have 
the same point distribution. A principal component analysis (PCA) is applied to the 
extracted contours in order to generate basis templates of neuronal contours. A PCA is 
also applied to the textures for generating basis templates of neuronal textures. Then, 
new neuronal structure basis templates are generated by each pair-wise combination of 
those two different kinds of basis. Moreover, the AAM model trains those obtained 
neuronal structure basis templates in order to get more generalized templates. 

 

Fig. 6. AAM learning & searching flow 

Fig. 6 shows the AAM process for localizing a specific neuron using trained neu-
ronal structure templates. For accelerating fitting performance and speed we adapt 
dynamic learning because target object shape is varying. 

As a final processing step, the cross-correlation between any two consecutive im-
ages is calculated. This allows the detection of failure of target segmentation and 
elimination of corrupted images when debris has gotten onto the section’s face. 
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3   Experimental Result 

Fig. 7 shows an experimental a top-down biased attention with preprocessed image. A 
target area becomes most salient area through inhibition and reinforcement weight 
generated by the GFTART model. 

In order to show the effectiveness of the top-down attention model, we used an  
image stack obtained from primary afferents with presynaptic endings in the cat 
trigeminal interpolar nucleus. Serial ultrathin sections were collected on formvar-
coated single slot nickel grids, counterstained with uranyl acetate and lead citrate, 
which are examined by an electron microscope. 

 

Fig. 7. The result of Top-down biasing in the proposed model 

 

Fig. 8. The result of Top-down biasing in the proposed model 
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As shown in the middle row of Fig. 8, the proposed top-down attention model 
properly pop-outs a target area through inhibition and reinforcement of the GFTART 
model. And the AAM model also successfully segments the target area based on the 
area information localized by the top-down attention model as shown in the bottom 
row of Fig. 8. The top-down attention model correctly localizes by 90% and the AAM 
model successfully segments by 92%. As shown in Fig. 9, the AAM model based on 
top-down attention model generates better segmentation performance than the AAM 
based on the other models which was compared with the true restoration provided by 
a human expert. 

 

Fig. 9. Comparison of searching performance of AAM 

4   Conclusion 

We proposed a new neuron segmentation model based on the proposed top-down 
attention model and the AAM model, which shows plausible segmentation perform-
ance for the TEM images. The top-down attention mechanism successfully localizes a 
candidate area for a target cell, which helps to enhance the segmentation accuracy as 
well as computational efficiency. It can generate a reinforced bias signal when a local 
area has a resonance with the memorized shape pattern of a target cell. Also, it can 
keep local key features of a target cell even when the loss of section or branching of 
cells happens at the successive sections in the TEM images. 

As further works, we need to test the proposed model using much more TEM im-
ages in order to verify generalization performance of the proposed model. Moreover, 
we need to verify the performance of the proposed model through comparing with 
that of another reconstruction algorithm of the TEM images. 
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Data Partitioning Technique for Online and Incremental 
Visual SLAM 
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Abstract. This paper describes a new data partitioning technique for used with a 
visual SLAM system. Combined with the existing SLAM system, the technique 
surveys areas to which the input image might belong to. It then retrieves matched 
images from such areas. The proposed technique can run in parallel with a nor-
mal SLAM system, such as FAB-MAP, in an unsupervised and incremental 
manner. We also introduce usage of Position-Invariant Robust Features (PIRFs) 
to make the system robust to dynamic changes in scenes such as moving objects. 
Combining our technique with normal SLAM can markedly increase the local-
ization recall rate. Experiment results showed that the FAB-MAP result recall 
rate can increase to 30% at the same precision. 

Keywords: Data partitioning, Visual simultaneous localization and mapping 
(visual SLAM), Invariant robust feature. 

1   Introduction 

Home-used robots are soon to be developed. Because of recent groundbreaking stud-
ies, home-used robots seem not to be mere daydreams anymore. Many researchers are 
striving to create humanoid robots that can assist humans in daily life in domestic tasks 
such as cooking, cleaning, and nursing. Nevertheless, without vision, even humans can 
barely finish such tasks by themselves. Robots cannot. Furthermore, how can a robot 
finish a task without knowing whether it is in a kitchen or living room? Consequently, 
Simultaneous Localization and Mapping (SLAM) system has become the focus of 
robot research and development (see [5] and [6] for reviews). 

Existing SLAM systems share an important feature: a probability threshold for  
accepting or rejecting loop-closure detection. To achieve high precision, most systems 
must sacrifice lower recall for higher precision [1]. Somehow, in a highly dynamic 
environment, the obtained probability of some correct detected loop-closure might be 
too low to be accepted by the system. A high threshold guarantees 100% precision. 
However, it also rejects many correct loop-closure detections. This problem might be 
resolved if the system were able to change the threshold value for loop-closure accep-
tance or rejection adaptively, depending on the situation. 

To achieve this capability, we propose a new technique that partitions the map into 
sub-maps, called areas. Using this technique, many correct loop-closure detections, 
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which were rejected by normal SLAM systems, could be accepted. Particularly, FAB-
MAP performs accurate localization through image-to-image matching, whereas our 
system performs coarse localization through image-to-area classification. Conse-
quently, some rejected loop-closures could be re-accepted if the current location could 
be determined to be somewhere in the map. Once it is confirmed that the currently 
detected loop-closure occurs at an area known to be visited previously, even a loop-
closure with very low probability could be accepted by omitting the threshold. 

This paper describes a specific examination of increasing the recall rate at "high" 
precision (i.e. 95–100% precision) because none of the practical SLAM systems can 
always perfectly offer precision of 100%. For an actual application, we might obtain 
only about 90–100% precision. Therefore, it would be useful to increase the rate of 
recall for every instance of decreased precision. As described herein, our proposed 
technique would be used with FAB-MAP. The entire system is tested on both City 
Centre and New College datasets described in an earlier report [1]. The system can 
match the location correctly even if the probability of the two images coming from 
the same location is 0.01 or less. Although the original FAB-MAP increase merely 
about 5–10% recall rate for 5–10% drops of precision, combining our technique with 
FAB-MAP increases the recall rate up to 30% for equally decreased precision. 

2   Related Work 

Simultaneous localization and mapping (SLAM) has been an important topic in robot-
ics for nearly two decades [5], [6]. Failure in detecting loop closure based on metric 
data (metric SLAM) spurred researchers to present several appearance-based  
approaches to this task (visual SLAM). Despite their low cost, cameras can capture 
richer information than laser scanners or proximity sensors. Appearance-based meth-
ods can resolve perceptual aliasing problems, by which two places look similar. 

Regarding visual SLAM, Bag-of-Words (BoW)-based approaches are considered 
state-of-the-art. Inspired by the Bag-of-Words image retrieval systems from the com-
puter vision community [7], images are represented as a set of unordered elementary 
features (visual words) taken from a dictionary. The dictionary is built by clustering 
similar visual descriptors extracted from images into visual words. Using a given 
dictionary, images are classified by inferring their class based on the occurrence of 
words in an image. Images are represented as vectors of visual words' statistics with 
size equal to the number of words in the dictionary [9]. In fact, FAB-MAP [1]–– 
which achieves the highest performance for this task over City Centre and New Col-
lege datasets––presents a disadvantage in its offline process for dictionary generation. 
Angeli et al. [2] proposed the incremental dictionary for use in online applications. 
However, the accuracy of [2] is described as less than or equal to [1]. 

A remaining disadvantage of FAB-MAP is its low recall rate at 100% precision. 
We can improve the recall rate of FAB-MAP markedly at the same precision using a 
novel post-processing technique that runs in real-time with FAB-MAP. Our technique 
uses another visual feature that is especially robust against dynamic changes. Results 
obtained using our technique show marked improvement of the recall rate of localiza-
tion at a high rate of precision, especially at around 90–95% precision. 
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Fig. 1. Concept of Position-Invariant Robust Feature extraction. Alphabet characters represent 
each local feature. The same characters represent similar features. At time i, P(i) contains fea-
tures Q, R, and J. 

3   Online Data Partition Technique 

a   Position-Invariant Robust Feature 

Position-invariant Robust Feature, designated as PIRF, is developed upon the SIFT 
feature [8]. To be compatible with City Centre and New College datasets presented in 
an earlier report [1], the location L in this work includes 2 associated images: left-
hand side and right-hand-side images. Figure 1 portrays a typical PIRF extraction. 
First, the system extracts SIFT features from the current location Li and compares 
with SIFT features from Li-1. Matched SIFT features are kept in the list of index M(i). 
Given that n is the number of location per sliding window, the system finds similar 
SIFT features among M(i-n+1), …, M(i-1), M(i) in the same sliding window and 
keeps it in P(i). Consequently, P(i) represents a set of SIFTs which appear in the loca-
tion from Li-n to Li. By repeating this process, the system can obtain "slow-moving" 
keypoints of Li: the keypoints move slowly relative to the changes of the camera's 
positions. In many cases, PIRFs capture distant objects. It might be said that P(i) 
belongs to objects that exist in all n locations Li-n to Li. 

b   Bag of Words Recognition 

Bag of words [2] is another concept we have applied in our system. Raw SIFTs are 
too noisy to use directly to model the appearance of location. The costs for processing 
numerous SIFTs are too great. Therefore, Sivic and Zisserman [7] suggested cluster-
ing SIFTs into k clusters and their use as "visual words" to model the appearance. To 
apply this concept with PIRF, a single PIRF is used simply as a single word in the 
dictionary. Each area has its own dictionary. That is to say, if there are currently N 
areas in the map, there would be N associated dictionaries to represent the appearance 
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of each particular area. During localization, the system searches through all dictionar-
ies and finds an area with the highest number of words matched the input image. The 
matching method is done as described in a previous report [8]. However, localization 
based on only the highest matches might cause errors. For example, the winner area 
has 20 matches and the runner-up area has 19 matches. This case is considered an 
unclear winning condition. To handle this appropriately, we perform the winning 
quality check. The quality is defined in eq. (1). In this work, the best threshold for 
quality is 1.2. Some correct match is judged as unclear winning; it decreases the recall 
rate of localization if the threshold is too high. Alternatively, if the threshold is too 
low, it decreases the precision rate. The system will reject and decide a location as 
unknown because the bag-of-word system has no confidence in its answer if the qual-
ity is lower than 1.2. Those unknown locations need additional information to localize 
from an Online Data Partition system. 

scoreuprunner

scorewinner
quality

__

_=  
(1)

c   Online Data Partition 

This section presents a detailed description of our proposed technique. Two main 
tasks exist for SLAM: Localization and Mapping. A previously visited location must 
be localized to some place in the map. Otherwise, such a location is a new previously 
unseen location and must be mapped into the map as a new location. To do so, the 
system needs to localize the input image to some existing areas in the map first. The 
localization is confirmed as the correct localization if the localization results are  
apparently stable or in the same area. In contrast, if the results are confusing, it could 
be inferred that none of the mapped areas are a good match for the input image and 
that the image should therefore belong to the new area. 

Particularly if location Li belongs to some past area k, designated as Ak, the area of 
locations Li-1 and Li+1 should be Ak. However, in practice, if the areas of locations Li-1 
and Li+1 differ from Ak, those situations can be classified into three cases: incorrect 
localization, entering another visited area, and entering new area. 

In the first case, incorrect localization, if Li-1 and Li+1 are in the same area, Li must 
be in the same area as well. 

In the second case, entering another visited area, if the previous area of from Li-k to 
Li-1 is Am and area of Li change to Ak and areas of Li+1, Li+2, Li+3,… remains Ak, system 
can conclude that, from location Li, the system left area Am and entered area Ak. 

In the third case, that of entering a new area, because that area’s dictionary has not 
been generated yet, no suitable dictionary exists for that location. This causes the 
system to localize areas of Li, Li+1, Li+2, Li+3,… to different areas. Those locations 
cannot be localized into one single area. Instead, they scatter in a random manner. The 
system defines a new area from PIRF features of those locations. 

Figure 2 presents the online data partition method algorithm. Given area k of loca-
tion Li represented as Ak, the system determines the most suitable area for Li. Let 
prev_area be the area of Li-1. Both Li-1 and Li are in the same area. The system gives a 
reward to confidence in the prediction module if prev_area and Ak are the same with  
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Fig. 2. Online data partition method. The variable correct helps the system decide when to reset 
differ_area. 

quality beyond threshold. However, if prev_area differs from Ak, then the confidence 
gets a penalty and increases the number of different areas: differ_area. The dif-
fer_area represents the number of locations which do not belong to prev_area.  

After assigning a penalty to confidence, the system checks both confidence and dif-
fer_area. The values of both variables can engender the following three cases. 

Case I: Incorrect localization 
The current location is judged as a misclassification if confidence is beyond the confi-
dence threshold. The system sets the current area to prev_area and remembers the 
current location as the start_point. The start_point will be used if the location is not 
misclassified data, but is from some other location. The system can recover the result 
after retrieving additional information from the next location. 

Case II: Entering another visited area 
The system left prev_area and entered a visited area at start_point if both confidence 
and differ_area are lower than their thresholds. Behavior of the confidence value is 
dropping slightly before rising. The differ_area value will increase for some time but 
remain under the threshold because prev_area has changed to the other area. After 
localizing correctly for some time, the differ_area will be reset to 0. 
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Case III: Entering new area 
The current location is in an unvisited area because areas from the locations sequence 
are unpredictable if confidence is lower than confidence_threshold and differ_area is 
greater than differ_threshold. We can assume that the current area has no dictionary. 
In this case, the system will gather PIRF features from those locations and generate a 
new dictionary. After generating the new area, the area of locations from Lstart_point to 
current Li is set to the created new area. Then differ_area is set to 0 and the confi-
dence gets a reward (i-start_point+1) times. 

The reward–penalty method described in this paper can be any mathematical func-
tion. In this work, we suggest the linear accumulation function as a reward function 
and exponential decay function as a penalty function because the system might lose 
sensitivity to the new area if we choose the same mathematical function. 

4   Experiment and Result 

As described herein, two major experiments were conducted. Experiment 1 was  
designed to examine the precision rate and recall after post-processing compared to 
the SLAM system. Experiment 2 showed the influence of threshold value on preci-
sion. The SLAM system used in this experiment is the FAB-MAP system [1], which 
is claimed to represent the state-of-the art. 

Experiment 1: Precision and Recall Rate after Post-Processing 

This experiment was designed to show the improvement of the recall rate after post-
processing. Post-processing yields an unknown or new location of FAB-MAP’s result 
and finds the best answer in the area of that location. Post-processing tested both the 
City Centre dataset and New College dataset. 

Figure 3 presents precision–recall curves of our post-processing comparing to the 
FAB-MAPs for City Centre and New College. According to Table 1, the recall rate at 
precision 0.95 can improve 31% in City Centre and 20% in New College. 

Figures 4(a) and 4(b) respectively depict results at precision 0.95 of post-processing 
and FAB-MAP. The yellow dots show the path. Red dots show the loop-closure detec-
tion. Green lines connect loop-closure detected locations. Although at precision 0.95, 
our system located mistaken location to location near the correct location but not in-
cluded in the Ground truth, while FAB-MAP pointed to a completely different location. 

Experiment 2: Effect of Threshold on Precision 

This experiment is designed to elucidate the influence of threshold on precision. The 
threshold in the post-processing system was set by discarding the probability of a 
same area, which is lower than specified during post-processing. Figure 5 portrays the 
relation between the threshold, precision, and recall rate. 

From figure 5, it is apparent that decreasing the threshold in post-processing has 
less influence than in FAB-MAP. At this point, we can strongly assert that our system  
can answer correctly even the match between two locations that have low probability. 
In other words, our system depends only slightly on a threshold value. 
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Table 1. Comparison of results at different precisions on both after post-processing and  
FAB-MAP 

Method Precision Recall: City Centre Recall: New College 
FAB-MAP 100% 34.94% 41.26% 
Post-processing 100% 36.01% 42.44% 
FAB-MAP 95% 36.01% 43.26% 
Post-processing 95% 66.93% 62.37% 

 

 

Fig. 3. Precision-recall curves on City Centre and New College dataset 

 

Fig. 4. Result for the City Centre dataset overlaid on an aerial photograph at precision 0.95. 
Figure 4(a) shows the result after post-processing. Figure 4(b) shows the result of FAB-MAP. 
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Fig. 5. Relation between threshold and precision 

5   Discussion and Conclusions 

This paper introduced post-processing for SLAM system. Our experiments demon-
strated that our system can enhance the SLAM result. Although the system showed no 
significant improvement at precision 1, the system yields outstanding results with a 
high recall rate by sacrificing a small amount of precision. 

However, our work is based on the SLAM system. This post-processing might not 
show marked improvement if the SLAM system fails to match the images of location 
containing highly dynamic change. Good normalization is necessary for this post-
process as well. 
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Abstract. Semantic image annotation can be viewed as a classification

problem, which maps image features to semantic labels, through the

procedures of image modeling and image-semantic mapping. In order to

improve the performance of image modeling, we propose a novel method

which is based on affinity propagation (AP) algorithm. For a given image,

low-level image features are extracted from image sub-blocks, and the im-

age feature distribution can be modeled by a mixture of Gaussian com-

ponents. An adaptive mixture component number selection algorithm

which is related to the image semantic information is also developed.

The AP algorithm is adopted to improve the efficiency and accuracy of

the distribution estimation. For a given label, the overall distribution is

modeled, and the mixture component number is selected according to the

mixture exemplars extracted from all images and the average value of

the preference parameter. The experiment results illustrate that the pro-

posed algorithm has the higher efficiency and accuracy compared with

C-means and expectation-maximization (EM) algorithm combination.

Keywords: image annotation, clustering, image modeling, affinity prop-

agation algorithm.

1 Introduction

Automatic semantic image annotation is the process that the database of im-
ages are annotated with semantic labels by a computer system automatically.
Semantic image annotation can be viewed as a mapping procedure from image
features to semantic labels, by the steps of image modeling and image-semantic
mapping. Image features include low-level visual features (color, shape, texture,
topology), object-level features and 3-dimension scene features. While seman-
tic labels include feature semantics, object semantics, scene semantics, behavior
semantics and emotion semantics [1]. The low-level visual features have been
successfully used in content based image retrieval (CBIR) [2]. However, high-
level image features and semantic labels used in semantic based image retrieval
(SBIR) [3] make the retrieval process more flexible.

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 778–787, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Improvement of Image Modeling with Affinity Propagation Algorithm 779

To bridge the semantic gap between low-level image features and high-level
semantic labels, we should focus on two key steps: image modeling and image-
semantic mapping.

For image modeling, low-level image features are extracted from image sub-
blocks, then the image feature distribution is represented by the Gaussian mix-
ture model (GMM), for example, the model parameters are computed by C-
means and EM algorithm combination [4][5].

For image-semantic mapping, there are two categories of methods. If each
semantic label is considered as a class, the mapping can be viewed as a semantic
classification problem, such as earlier indoor-outdoor [10], blobworld [4] and
supervised multiclass labeling (SML) [5][11] problems. If each semantic word is
viewed as a variable, the mapping is a image-semantic joint modeling problem,
such as N-cut based method [3], latent dirichlet allocation (LDA) method[12] and
cross-media relevance models(CMRM) [13]. Besides, relevance feedback methods
integrate users’ feedbacks to retrieve images [14].

When image-semantic mapping is viewed as the classification problem, se-
mantic labels are considered as predefined classes, and the mapping is taken as
supervised classification. Supervised OVA (one vs all) adopted two-class clas-
sifiers to learn from positive and negative images, while the positive images
have the given semantic label and the negative images do not have[15]. Luo and
Savakis [10] have approached the scene classification using a divide-and-conquer
strategy, a good first step of which is to consider only two classes such as indoor
and outdoor images, while the latter may be further subdivided into city and
landscape images. SML [5] [11] adopted a multiclass Bayesian classifier to clas-
sify the images with multiple semantic labels, and assumed that the labels have
independent distributions although each image has multiple labels. EM algo-
rithm was adopted to iteratively estimate the distribution parameters. However,
this is a computational expensive process. Affinity propagation (AP) clustering
algorithm is to identify a relatively small number of features, called exemplars to
represent the whole features [7] [8]. It seems to produce a better fitness function
than mixture modeling with C-means methods [9].

In this work, we intend to apply AP algorithm to find out how to fast estimate
the image density distribution model parameters, and how to efficiently produce
image annotation results more precisely.

2 Methods

The framework of the proposed method is shown as Figure 1.
In Figure 1, rectangles represent objects, while rounded corner rectangles rep-

resent methods. To bridge the semantic gap between image features and semantic
labels is the central target of semantic image annotation. And image modeling
(modeling of one image), image-semantic mapping (modeling of images and su-
pervised classification) are the three key steps.
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Fig. 1. Framework of the proposed method

2.1 Image Features

Considerable research efforts have been devoted to the low-level image features
used in CBIR and SBIR. A localized color feature, which is the discrete cosine
transform (DCT) coefficient vector of 8×8 image sub-blocks that overlap 6 pixels
between adjacent blocks in YCbCr color space[5], is selected.

Rc
i,j = Ic(2i : 2i + 7, 2j : 2j + 7), (1)

Tc = DCT(Rc) c = y, cb, cr i, j = 0, 1, 2, 3..., (2)

X = [Ty(:)′, Tcb(:)
′
, Tcr(:)′]′, (3)

f(I) = {X0,0,X0,1, ...,X1,0,X1,1, ...}. (4)

Where Rc
i,j is the (i, j)-th sub-block of image I, Tc is the DCT coefficient matrix

of the sub-block Rc, Xi,j(:) is the feature vector that concatenates feature vectors
from three color channels, and f(I) is the set of image feature vectors.

2.2 Modeling of One Image

AP algorithm. AP algorithm can be applied to identify a relatively small num-
ber of exemplars to represent the whole feature vectors. Each feature vector is
viewed as a node in a network, and real-valued messages are recursively transmit-
ted along edges of the network until a good set of exemplars and corresponding
clusters emerges. It can be briefly described as following [7]:

s(i, k) = − ‖ Xd −Xk‖2, (5)

r(i, k) ← s(i, k)−max
k′ �=k

{a(i, k′) + s(i, k′)}, (6)

a(i, k) ← min{0, r(k, k) +
∑

i′ �=i,i′ �=k

max{0, r(i′, k)}}. (7)

Where the similarity s(i, k) indicates how well the feature vector with index j
is the exemplar of feature i. The responsibility r(i, k) reflects the accumulated
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evidence for how appropriate feature k is the exemplar of feature i, considering
other potential exemplars of feature i. Availability a(i, k) reflects the accumu-
lated evidence for how appropriate it would be for feature i to choose feature k
as its exemplar, considering the support from other feature vectors that feature
k should be an exemplar. When the preference s(k, k) grows big, each node tends
to select itself as the exemplar, then the number of clusters will increase [7].

Clustering features and the mixture model. Considering the dimension
and amount of image features, the Gaussian mixture representation is compact
and robust. Instead of C-means and EM algorithm combination, we propose an
AP-based algorithm for image modeling:

1) AP algorithm is adopted to cluster the feature vectors into several groups
with corresponding exemplars;

2) For each group, these similar feature vectors are used to estimate the Gaus-
sian distribution. The weight of each group is estimated according to the number
of feature vectors in the group;

3) Each image is represented by the mixture model of these Gaussian distri-
butions and weights.

{ei} = AP(f(I), p) , i = 1..cn (8)

µi = ei, Σi = cov(Ai), ωi = num(Ai), (9)

Ai = {x|exemplar(x) = ei}, (10)

PX|I =
∑

i=1..cn

ωi G(µi,Σi) (11)

Where the parameter f(I) is the set of image feature vectors. The preference
parameter p can be estimated by the adaptive mixture component number se-
lection algorithm described in the next section. And cn is the real number of
the exemplars computed by AP algorithm. Ai means the set of feature vectors
whose representation exemplar is ei, and G(µi,Σi) means the Gaussian distri-
bution with mean vector µi and covariance matrix Σi. PX|I is the mixture model
of image I.

An adaptive mixture component number selection algorithm. There
have been several mixture component number selection principles, such as fixed
number [5] and the minimum description length principle [4], or more general
criterion [6]. We found that the mixture model of clustering features can be
referred from the semantic information of the image. That is to say, instead
of fixed or homogeneous component number, we develop an adaptive mixture
component number selection method incorporating with the semantic labels of
the image and corresponding label attributes.
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cn(I) =
∑

si∈labels(I)

cn(si). (12)

Where cn(I) is the mixture component number of image I, labels(I) are the
semantic labels of image I. cn(s) is the empirical approximate mixture number
of the semantic label s, which can be estimated in advance. The mixture numbers
of some semantic labels are shown as in Table 1.

Table 1. Cluster number of several semantic classes

sky plant aeroplane land animal

1 1 1,2 2,3 2,3

In AP algorithm, the mixture component number is a variable that relies on
the preference parameter. We find that there is a similar mapping relationship
between preference and mixture number. As it is shown in Figure 2, from 20p
to 100p all can lead to a two-class clustering result. This illustrates that there is
a wide range of preference value that can produce a steady clustering result.

(a) original image (b) cluster number vs. logarithm of

the preference

(c) 0.01 (d) 0.1 (e) 1 (f) 2 (g) 3 (h) 5 (i) 10 (j) 20 (k) 40 (l) 100

Fig. 2. Preference values influencing the clustering result. The original image and re-

sult images with increasing preference values(0.01p, 0.1p, ...), where p is the median

similarity.

An empirical map between mixture number and preference value can be built
up in advance. Taking the aeroplane picture 2(a) as an example, this picture has
two labels: sky and aeroplane. By looking up the empirical approximate mixture
number table, this picture might contain two or three clusters totally. Then by
looking up the preference and mixture number map, the preference value might
be 20 to 40. We can select a average value 30 as the preference for AP algorithm.
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p = map(cn(I)) (13)

The preference and mixture number map can be built up in the training process.

2.3 Modeling of Images

The goal of modeling images is to find the prior distribution and the class-
conditional distribution in feature space, which can be computed from images
with the given label.

Hierarchical distribution estimation. For a given label, images with this
label contain two categories of features: features that belong to this label and
features that do not belong to this class. There is an assumption that the former
features tend to cluster together, while the latter features tend to spread over
the entire feature space [5]. We believe that this assumption is reasonable when
the number of samples of each label is large and balanced enough.

However, it is too expensive to estimate the distribution from all images at the
same time. A hierarchical mechanism is adopted based on a mixture hierarchy
where children densities consist of different combinations of subsets of the par-
ents’ components. A general description of bottom-up propagating parameters
in two consecutive levels is given using EM algorithm [16].

The semantic label distribution can be estimated using the mixture model of
images.

As = {PX|I|s ∈ labels(I)}, (14)

PX|s = H(As) =
∑

i=1,...,cn(s)

ωi G(µi,Σi)). (15)

Where PX|I is the mixture model of image I computed in the section 2.2, and
PX|s is the distribution of label s. As represents the distribution of images
with label s, and the function H(·) is the hierarchical distribution estimation
algorithm. Fixed cluster number is required when applying H(·) to build mixture
model, therefore we need to find out the largest number of clusters from all
images, and supply null components to those mixture models that have less
number of clusters.

A class-level mixture component number selection algorithm. The mix-
ture component number of class-conditional distribution can be inferred from the
exemplars of this class, because the number of the exemplars is relatively smaller
than that of all feature vectors. For the hierarchical distribution estimation, this
selected number adapts to the real distribution than that of fixed number.

cn(s) = cn(A), A = {exemplars(I)|s ∈ labels(I)}. (16)

Where cn(s) is the mixture number of label s, and s ∈ labels(I) means all images
with label s.
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The algorithm is as follows:
1)For each image in the class, the exemplars and preference parameters are

recorded after AP clustering (section 2.2).
2)The average value of the preference parameters is used in clustering the

exemplars, in order to produce a proper mixture component number.
The image-level and class-level mixture component number selection

algorithms are different:
1) For a given image, the former algorithm adaptively computes an component

number instead of fixed number.And a mixture number and preference map is
built up previously, because the AP algorithm requires preference parameter
instead of component number.

2) For a given label, the latter algorithm adopts AP algorithm to compute the
component number instead of fixed number, which is required as a parameter in
hierarchical distribution estimation algorithm.

2.4 Supervised Classification

Under the framework of Bayesian classification, both the image annotation and
retrieval can be implemented with a minimum probability of error principle. For
a given class, the probability that a test image belongs to this class is the product
of the class-conditional probabilities of the image components.

lg(PI|s(I|si)) =
∑
X∈I

lg(PX|s(X|si)) (17)

By introducing a set of class-conditional distributions, the semantic annotation
results for this image can be obtained with the labels whose posterior probabil-
ities ( Ps|I(si | I) ) are the first several large values.

3 Experiments

In this section, we validate the efficiency and accuracy of the image modeling
with AP algorithm through annotation results. The images are selected from
database [17] and [18]. We selected a subset of outdoor images which contain
five classes: aeroplane, sky, land, plant and animal, altogether 378 images are
selected. Typically each image contains three or more classes. In order to speed
up the processing, all images are resized to the small blocks with the size of from
200×200 to 300×300 pixels.

Table 2 illustrates the efficiency of the proposed algorithm.
The experiment procedure is described as follows:

1. Half of images are for training set, and half of those for testing. Six different
sets of training images are selected and the adjacent two sets have five-sixth
overlap.

2. For each training set, three factors are computed: a) percentage of some
attractive label annotated; b) percentage of all labels annotated; and c)
percentage of any wrong label annotated (Figure 3).
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(a) C-means+EM (b) AP-based

Fig. 3. Two algorithms are compared using the percentage of images which are labeled

correctly

Table 2. Time consumption of modeling one image

methods 25 loops max 50 loops max 100 loops max

C-means 25.8 43.3 46.5

C-means+EM 63.6 133.7 167.3

AP-based 17.8 45.4 73.6

3. For each label, recall and precise factors are computed, averaging from all
six training sets (Figure 4).

4. The average time consumption is computed.

For a given semantic descriptor, assuming that there are wH human annotated
images in the test set and the system automatic annotates number is wAuto, of
which wC are correct, recall and precision are given as following:

recall =
wC

wH
, (18)

precise =
wC

wAuto
(19)

The labels that are manually annotated might relate with obscure features of the
image.Comparing theC-means andEMalgorithmcombinationwith theAP-based
algorithm, we find that there are about 70 % of test images in which most attrac-
tive label is annotated, and about 30 % of images in which all labels are annotated.
However, AP-based algorithm improves the percentage that all labels are anno-
tated, and reduces the percentage that wrong label is annotated(Figure 3).

Figure 4 illustrates that the accuracy is improved with the proposed algorithm
for three classes, while that for other two classes is near same with C-means and
EM algorithm combination. From Figure 3 we can easily know that the recall or
precise values are different when the classification model is built with different
training sets, which means that the distributions of the labels in the database are
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(a) C-means+EM (b) AP-based

Fig. 4. The comparison of the average recall and precise values, computed with one

particular label among five labels

uneven. The recall or precise values of the five classes in Figure 4 are different,
probably because the classes have large difference amount of information in those
images. That is to say, the image database requires to be well organized in order
to improve the annotation performance.

4 Conclusions

In this paper, we have investigated the improvement problem of image modeling
with AP algorithm for semantic image annotation. The efficiency and accuracy
of distribution estimation is improved when AP algorithm is adopted. For a given
image, a mixture component number selection method is developed on consid-
ering the semantic labels. For a given label, the mixture component number
is selected according to the average parameter value and the mixture exem-
plars extracted from all training data set. The experiment results show that the
effectiveness of the developed number selection methods. When the algorithm
developed from this study is applied to the automatic image annotation problem,
it certainly can accelerate and optimize the image retrieval process.
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Abstract. This paper presents a robust method for digital image identification 
under conditions of variant illumination, compression, flip, scaling, rotation and 
gray scale conversion. Techniques introduced in this work are composed of two 
parts. The first one is the signature of image is to be detected by the Trace 
Transform [6]. Then, in the second part, the notion of Hausdorff distance [8] 
and Modified Shape Context [10] are employed to measure and to determine 
the similarity between the models and tested images. Finally, our approach is 
evaluated with experiments on a set of over 60,000 unique images and one  
billion images pairs. The experimental result has show that the average of  
accuracy rate is higher than 83%. 

Keywords: Image Retrieval, Image Identification, Hausdorff Distance, Trace 
Transform. 

1   Introduction 

Large numbers of image databases now exist that contain multiple modified versions 
of the same image. An extreme example of this is the large number of modified ver-
sions of images on the internet (web site). There is a need to develop tools that will 
enable the identification of all of the original and modified versions of the same im-
ages. Identification of image in image databases has a challenging problem despite of 
over three decades of research efforts. This is because the identifier must be robust to 
common image processing modifications such as rotation, scaling, grayscale conver-
sion, compression, blur, and Gaussian noise. In the other requirements are that the 
descriptor should be compact, it should not be excessively expensive for extraction 
and it must allow very fast searching. Image identifiers are also known by the terms 
image hashes [1], image signatures [2] and image fingerprints [3].  

However, there are several areas that are related to image identification. Although 
these areas are all related they are somewhat different in their requirements. The first, 
image similarity, involves looking for images that are perceptually similar in some 
sense. The solution to similarity matching can be more relaxed about the results  
returned in terms of the false acceptance. The work in area of image area of image 
identifiers can be broadly classified into three approaches by their support region, i) 
local feature point based [4] , ii) region based [5] and iii) global [2].  
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 Local feature point based methods have the undesirable characteristic that they 
have high complexity in terms of searching. This is a result of the need to compare 
all points from one image with all point in another image 

 Region-based approaches overcome some of the complexity problems associated 
with feature-based approaches they suffer from a lack of invariance to geometrical 
transformations. Region-based approaches perform particularly poorly in the 
presence of significant rotation. 

 Global support region methods have shown some promise in terms of search com-
plexity and robustness. One such method exploits the invariant properties of the 
Fourier-Mellin transform. Whilst this method shows some interesting results it uses 
principal components analysis on a set of training images which leads to the signa-
ture being specific to a particular dataset. 

 

Fig. 1. An Image Identification System 

A number of methods based on line projection in images have been proposed. In 
[1] lines are projected through a centre point in the image to form a 180 sample fea-
ture vector. The DCT components of the feature vector are taken and then quantized 
to form an identifier. Matching is carried out using a peak cross-correlation method. 
The concept of the radial projections is similar to a method based on the Radon 
transform [2]. The Radon transform of the image is taken and then a number of steps 
including a 2D FFT are performed to extract a 2D 20x20 binary identifier for an 
image.  

Our approach is similar to [2], however there are several significant and beneficial 
differences. We use the more general Trace transform, rather than the Radon trans-
form, allowing multiple component identifiers to be extracted. Also the intermediate 
steps are less computationally demanding, the 2D FFT is no longer necessary and a 
1D FFT can be used. Lastly, the method presented here uses fewer bits for the image 
identifier which results in lower storage requirements and faster searching. The organ-
ization of this paper is as follows. Section 2 introduces a method for tracing line on an 
image and some trace functional we used in this paper. We introduce a shape match-
ing measure in section 3. In section 4, we present our experimental results. Finally, 
we conclude in section 5. 
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2   Feature Extraction 

2.1   Trace Transform 

The Trace transform [6], a generalization of the Radon transform, is a new tool for 
image processing which can be used for recognizing objects under transformations, 
e.g. rotation, translation and scaling. To produce the Trace transform one computes a 
functional along tracing lines of an image. Each line is characterized by two parame-
ters, namely its distance  from the centre of the axes and the orientation . The  
normal to the line has with respect to the reference direction. In addition, we define 
parameter along the line with its origin at the foot of the normal. The definitions of 
these three parameters are shown in figure 2. The image is transformed to another 
image with the Trace transform which is a 2-D function depending on parameters , . Different Trace transforms can be produced from an image using different 
trace functional. An example of the Trace transform is shown in figure 3. It is shown 
that the image space in the  and  directions is transformed to the Trace transform 
space in the  and  directions. 

 

 

Fig. 2. Tracing line on an image with parameters  ,  and  

The key property of the Trace transform is that it can be used to construct features 
invariant to rotation, translation and scaling. We should point out that invariance to 
rotation and scaling is harder to achieve than invariance to translation. Let us assume 
that an object is subjected to linear distortions, i.e. rotation, translation and scaling. It 
is equivalent to saying that the image remains the same but viewed from a linearly 
distorted coordinate system. Consider scanning an image with lines in all directions. 
Let us denoted the set of all these lines with  . The Trace transform is a function  
defined on  with the help of  which is  some functional of the image function when 
it is considered as a function of variable .  is called the trace functional. , , , ,                                                  (1) 

where , ,  stands for the values of the image function along the chosen line. 
Parameter  is eliminated after taking the trace functional. The result is therefore a  
2-D function of parameters  and  and can be interpreted as another image defined 
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on .The resultant Trace transform depends on the functional we used. Let us denote 
 the sampling points along a tracing line defined by  and . Let us also denote 

by  the number of points along the tracing line.  may be varied depending on the 
length of the tracing line. The trace functionals used in our experiments are: 

                                                         (2) | |                                                  (3) , | |                                       (4) 

The denomination ,  means the weighted median of sequence  with 
weights in the sequence .For example, median{{4,2,6,1},{2,1,3,1}} indicates the 
median of numbers 4,2,6 and 1 with corresponding weights 3, 1, 2 and 1. This means 
the standard median of the numbers 4, 4, 2, 6, 6, 6, 1, i.e. the median of the ranked 
sequences 1, 2, 4, 4, 6, 6, 6 is 4. (See [6]. for more details and the properties of the 
Trace transform). 

A further functional can then be applied to the columns of the Trace transform to 
give a 1D function of the angle . This second functional is known as the diametrical 
functional and the resulting function is known as the circus function. Two different 
diametricals are applied to obtain the circus functions in Figure 4. The properties of 
the circus function can be controlled by appropriate choices of the two different func-
tionals (trace and diametrical). 

 

 

Fig. 3. An image and its Trace Transform 

For rotation, scaling and translation it can be shown that [10] with a suitable choice 
of functionals the circus function c a  of image a is only ever a shifted or scaled ver-
sion of the circus function c a  of the modified image a  
 

                                                      (5) 
 
The property of (5) is exploited in [3] to obtain an object signature and it is also used 
here to obtain a visual identifier. 
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Fig. 4. Circus functions resulting from applying different diametrical functional 

 

Fig. 5. The circus function (c) for an image (a) and the circus function for the same image 
rotated by 45 . The circus function is shift to the right by 45  (π/4). 

2.2   Identifier Algorithm 

Invariance to shift and amplitude scaling can be achieved by taking the Fourier  
transform of (5) 

 Φ ,                                                       (6) 
 

and then considering the magnitude of (5) 
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| Φ | | Φ |,                                                            (7) 
 
From (7) it can be seen that the original image and the modified image give equiva-
lent descriptors except for the scaling factor K. A binary string is extracted by taking 
the sign of the difference between neighboring coefficients, b 0   if |F ω | |F ω 1 | 01   otherwise                                                                        (8) 

The image identifier is then made up of these values  , , … ,  for . 
Results are further improved by using different diametrical functional to extract mul-
tiple component identifiers and concatenating them to obtain complete identifier as 
shown in Figure 6. 
 

 

Fig. 6. The binary identifier for an image (a) and its rotated version (b). The difference between 
the identifiers is show in (c). The identifier is 1D but has been mapped to 2D for presentation 
purposes only. 

3   Similarity Measure 

3.1   The Classical Hausdorff Distance 

Given two point sets A and B, the Hausdorff distance[7] between A and B is defined 
as , max , , , ,                                           (9) , max min ,                                       (10) , max min ,                                       (11) 
 
where ·  denotes some norm of points of A and B. This measure indicates the degree 
of similarity between two point sets. It can be calculated without an explicit pairing of 
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points in their respective data sets. The conventional Hausdorff distance, however, is 
not robust to the presence of noise. Dubuisson et. al. [8] have studied 24 different 
variations of the Hausdorff distance in the presence of noise. A modified Hausdorff 
distance (MHD) using an average distance between the points of one set to the other 
set gives the best result. This measure is the most widely used in the task of object 
identification and defined as 
 h B, A ∑ min a b ,                                               (12) 
 

with h(B,A) defined similarly. This modified Hausdorff distance is less sensitive to 
noise than the conventional one. It is possible, however, to end show the Hausdorff 
distance with even more attractive features as it is shown in the next section. 
 

 

Fig. 7. The grey shade indicates the neighborhood area. The point marked by ○ is a sample 
point a of the first shape A. The points marked by ▲and □ are the candidate matching points of 
the second shape B. 

3.2   The Hausdorff- Shape Context 

In this section, we propose a shape similarity measure, the “Hausdorff-Shape Con-
text”, based on the combination of the Hausdorff distance and the shape context. The 
Hausdorff distance measures the distance from point a to all points of set B, d(a,B) 
,then, selects the one at the minimum distance among them. In this case, the candidate 
point marked by   is selected and, then, the distance between them is used as the result. 
The minimum distance is therefore based only on the spatial information. This is not 
useful when using the Hausdorff distance in the presence of noise, when we have to 
deal with the broken point problem caused by segmentation and edge detection errors, 
etc. To the best of our knowledge, there is no work in the point matching Hausdorff 
distance with structural point information. We propose an alternative way to find the 
minimum distance between point a and set B to overcome the above problem. Instead 
of finding the nearest distance, in our approach, the point descriptor, shape context, is 
used to find the best matching between point a and set B. We, therefore, call this 
shape similarity measure as “Hausdorff-Shape context”. 
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 , ∑ , min , ,                           (13) 
 
and  , ,∑ ,  and ∑ , 1                                    (14) 

 
where  arg min ,  and  is χ2 test statistic. In the example 
shown in Fig. 7 the candidate point   is the one marked by □ which is the correct 
corresponding point between point  a and a point in set B. The cost of matching be-
tween two points a and b, ,  is weighted by their distance, (a, b’). There-
fore  is a normalized distance between points a and b’ over the entire distance 
between sets A and B. Furthermore, the neighborhood N() is designed to reduce the 
computation time of the shape matching, since it finds the best point matching only in 
the neighborhood area. Thus faster performance improvement can be achieved. The ,  is defined in a similar way. The shape similarity measure in (13) with the 
maximum Hausdorff matching in (9) is defined to be a confidence level of matching: dist , 1 ,                                                    (15) 

4   Experimental Results 

The increasing size of image databases, even for consumer applications, means that 
the false acceptance rate must be kept low to avoid returning large numbers of erro-
neous matches. To test the performance of the identifier a set of 4,000 original images 
are used. Each image is modified in 15 different ways to create a dataset of 4,000x16 
 

Table 1. Accuracy rate under different modifications  

CONDITION ACCURACY RATE (%) 
Blur 5% 91.89
Blur 10% 92.23
Bright ± 5% 93.03
Bright ± 10% 95.34
Bright ± 15% 91.09
Compression JPEG 95% 99.99
Compression JPEG 80% 99.99
Compression JPEG 65% 97.35
Rotate ±15o 85.43
Rotate ± 30o 85.77
Rotate ±45o 82.87
Scale ±25% 87.67
Scale ±50% 82.98
Scale ±75% 79.57
Flip 85.34
Noise ± 5% 97.55
Noise ± 10% 96.78
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images (=64,000). Some example image modifications are shown in Figure 8. All 
results are presented in terms of the detection rate, which is defined as 
 100 ,                                                              (16) 
 

where A is the total number of images and a is the number of images correctly identi-
fied as matching. In table 1 shows the detection rate results when the false positive 
and false negative rates are equal 

 

 

Fig. 8. (a) Original Image (b) with rotate -45o (c) with rotate -45o (d) Bright +5% (e) Bright 
+15% (f) Flip (g) with noise 5% (h) Compression 95% 

5   Conclusions 

We have presents a robust method for image identification with variant illumination, 
compression, flip, scaling, rotation and gray scale conversion. Techniques introduced 
in this work are composed of two stages. First, the signature of image is to be detected 
by the Trace Transform. Then, in the second stage, the Hausdorff distance and Mod-
ified Shape Context are employed to measure and determine of similarity between 
models and test images. From the experimental result of 60,000 images, the average 
of accuracy rate is higher than 83%.  
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Abstract. Fingerprint segmentation is an important pre-processing step in au-
tomatic fingerprint identification system. Traditional fingerprint segmentation 
methods either highly depend on empirical thresholds sophistically chosen by 
experts or a learned model trained by elements generated from manually seg-
mented fingerprints. It is manpower and time consuming. They always try their 
best to tune their fingerprint segmentation methods to be universal to all unseen 
fingerprints. However, one fingerprint may have a significantly distinct distri-
bution from another in feature space because fingerprint acquisition is affected 
by several factors, such as pressure, the types of sensors, finger tip condition 
(dry, wet etc.). As a result, the delicate threshold and the well trained model may 
not be suitable to the new input fingerprints from a new finger or a new person. 
And it makes worse when automatic fingerprint identification systems meet 
sensor interoperability. To solve the problem, we propose a personalized fin-
gerprint segmentation method: Automatic Labeling based Linear Neighborhood 
Propagation (ALLNP), which learns a segmentation model special for each input 
fingerprint image based on the input image only. The proposed method is tested 
with typical fingerprint images from four heterogeneous data bases of FVC2000. 
Experimental results show its effectiveness and encouraging strength when fin-
gerprint segmentation meets sensor interoperability.   

Keywords: Fingerprint recognition, Fingerprint segmentation, Semi-supervised 
learning, Label propagation, Linear Neighborhood Propagation. 

1   Introduction 

Owning to uniqueness and immutability of fingerprint [1], it has been used as one of the 
biometrics features for a very long time. An automatic fingerprint identification system 
(AFIS) consists of several steps, such as fingerprint segmentation, image enhancement 
and filtering, binarization, thinning, gaining minutiae of fingerprint matching, and so 
on. Fingerprint segmentation is important as a pre-processing step in AFIS. A captured 
fingerprint image mainly consists of two components: foreground and background. The 
foreground is the component that originates from the contact of the fingertip with the 
sensor, and the background is the noisy area at the border of the image. The purpose of 
fingerprint segmentation is separating foreground of high quality from background and 
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foreground of low quality or unrecoverable. Effective fingerprint segmentation not 
only decreases the computational cost in the subsequent steps but also improves the 
system performance. 

Fingerprint segmentation typically extracts features (or single feature) for every 
element first, which can be a pixel or an un-overlapped block of the input fingerprint 
image. Then what segmentation methods need to do is to decide the type (foreground or 
background) of each element. Statistical features of grey level, e.g., mean and variance 
of pixel intensity, directional image, ridge projection signal and Gaussian-Hermite 
moments are often used in fingerprint segmentation. Mehtre [2] proposed a segmenta-
tion method based on directional image. To overcome the limitations of [2] when the 
input image has perfectly uniform regions, a composite segmentation method [3] is 
suggested using the variance criterion wherever the directional method fails. Bazen [4] 
proposes a completely different solution based on pixel-wise direction and coherence. 
Bazen [5] trains an optimal linear classifier based on three pixel features: coherence, 
mean and variance (CMV). Yin [6] trains a quadric surface model based on pixel-wise 
CMV features. Ratha [7] computes the variance of the projection signal on different 
directions with the prior knowledge that the foreground block is of large variance along 
the direction orthogonal to the ridges and is of small variance along the direction pa-
rallel to the ridges, and background is usually of small variance along all directions. 
Wang [8] proposes to segment fingerprint based on Gaussian-Hermite moments. Jain 
[9] takes texture energy of each pixel and their spatial locations as input to a 
squared-error clustering algorithm. Helfroush [10] proposes a modified method based 
on Jain [9], but uses dominant ridge score of each block instead of coherence, and takes 
median filtering as a post processing step to improve the performance of the fingerprint 
segmentation. Yin [11] proposes a segmentation method consisting of two steps: in the 
primary segmentation, non-ridge regions and unrecoverable low quality ridge regions 
are removed as background by a well trained neural network, and the secondary seg-
mentation, the remaining ridges are identified and removed according to the two typical 
differences between the remaining ridges and the true ridges. Bernard [12] proposes a 
multiscale Gabor wavelet filter bank using the Phase of Multiscale Gabor Wavelets for 
a robust and efficient fingerprint segmentation. Ross [13] apply convex hull algorithm 
to Fingerprint segmentation. Klein [14] uses a hidden Markov model (HMM) to solve 
the problem of fragmented segmentation. 

Although there are lots of researches on fingerprint segmentation, they either highly 
depend on empirical thresholds sophistically chosen by experts or a learned model 
trained by samples generated from manually segmented fingerprints. It is manpower 
and time consuming. They always try their best to tune their fingerprint segmentation 
methods to be universal to all unseen fingerprints. However, one fingerprint may have a 
significantly distinct distribution from another in the feature space, as shown in Section 
2, because fingerprint acquisition is affected by several factors, such as pressure, the 
types of sensors, finger tip condition (dry, wet etc.). As a result, the delicate thresholds 
and the well trained models may not be suitable to the new input fingerprint from a new 
finger or a new person. And it makes worse when fingerprint verification meets sensor 
interoperability [15]. To the best of our knowledge, there is no research on how to 
segment a fingerprint image based on the input fingerprint image only. Thus we argue 
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that personalized fingerprint segmentation makes more sense. Here, personalized 
means fingerprint segmentation result for one fingerprint relies only on the input  
fingerprint image. The contribution of the paper is two folds. For one, to realize per-
sonalized fingerprint segmentation, we propose Automatic Labeling based Linear 
Neighborhood Propagation (ALLNP) method, which learns from the input fingerprint 
image only instead of a set of fingerprints, and segments the input fingerprint image 
specifically. For another, to avoid fragmented blocks in segmented fingerprints to some 
extent, we take position information of elements, i.e., block row index and block 
column index in the paper, as new segmentation features. Experiments show encour-
aging strength of the proposed method in sensor interoperability. 

The remainder of the paper is organized as follows. Section 2 presents a new 
formulation of fingerprint segmentation in transductive view. Our method ALLNP is 
proposed in section 3. Section 4 contains the experimental results. And section 5 
concludes the paper.  

2   Formulation of Fingerprint Segmentation in Transductive View 

Traditional fingerprint segmentation methods are analyzed in this section theoretically 
and empirically, followed by a new formulation formulated in the paper. As we stated in 
Section 1, almost each of previous fingerprint segmentation methods either chooses an 
empirical threshold sophistically according to experience of experts or learns a model by 
samples generating from manually segmented fingerprints by experts. However, it is 
unreasonable to learn a fingerprint segmentation model in such a way, especially when 
the fingerprint images, on which the model is trained, have distinct distribution in fea-
ture space. For instance, they are captured via sensors of different types.  

Fig.1 shows the scenario when traditional fingerprint segmentation methods do not 
work. For one input fingerprint image denoted by elliptic dots, Hyperplane1 can easily 
separate it. And for another input fingerprint image, Hyperplane1 can easily separate it. 
However, when a segmentation model is trained by a mixture of samples generated 
from the two input fingerprint images, it seems difficult to find an exact hyperplane 
suitable for the two and subsequent numerous input fingerprints.  

 

Fig. 1. Illustration of traditional fingerprint methods. Elliptic dots represent samples (elements) 
from one fingerprint image, while diamondoid ones represent samples from another fingerprint 
image. Dots in yellow color represent foreground samples, while ones in red color represent 
background samples.  
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Formally, we assume the input fingerprint image can be divided into n  

un-overlapped blocks denoted by 1 2 1{ , , , , , , }l l nx x x x xχ += L L , where d
ix R∈ , 

and let 1 2 1{ , , , , }l l ny y y y y+L L  represents the class (foreground or background) 

of blocks in the fingerprint image, where {1, 1}iy ∈ − , 1 for foreground and -1 for 

background. The fingerprint segmentation task is to learn a hypothesis f F∈ . And it 

is unsupervised learning. However, if we can get some prior knowledge of what blocks 

are most likely foreground and background ones. In other word, if we can get the first 

l  labels 1 2{ , , }ly y yL  corresponding to 1 2{ , , , }lx x xL , we can transfer the 

knowledge from the labeled data to unlabeled data. The learning task will become a 

transductive learning [16], since we only anticipant its generalization ability on a de-

finite and closed data set. In the next section, we exhibit an oracle how to partially label 

blocks in a fingerprint image. 
To validate the rationality of the new formulation in fingerprint segmentation pre-

liminarily, we select two typical fingerprints from NIST-4 [17], and project them to 
CMV space the most commonly used in fingerprint segmentation, as shown in Fig.2. 
The original fingerprint images are listed in the top left, and their histograms in indi-
vidual dimension of CMV space are aligned in the top right and the second row cor-
respondingly. It can be seen that the two fingerprints have significantly different dis-
tribution in CMV feature space.   

 

Fig. 2. Distribution of typical fingerprint images in CMV space 

3   The Proposed Method: ALLNP 

In the section, an Automatic Labeling based Linear Neighborhood Propagation (ALLNP) is 
proposed, which in fact is a self-help semi-supervised fingerprint segmentation method. 

Original images Histogram of block coherence

Histogram of block mean Histogram of block coherence



802 X. Guo, Y. Yin, and Z. Shi 

Before conducting semi-supervised learning on the dataset generated from the input image, 
an oracle is used to label some unlabeled data automatically. ALLNP works as in Fig. 3. 
An input fingerprint image to be segmented is first divided into un-overlapped blocks1. 
Then a feature vector is extracted for each block. Subsequently, some definitely fore-
ground and background blocks are automatically by an oracle. Provided with these 
labeled data (blocks) L  and the remaining unlabeled data U  in the image, a 
graph-based semi-supervised method called linear neighborhood propagation (LNP) is 
adopted to do the transductive learning on D , resulting in the segmented fingerprint. 
Some readers may be confused and argue why we conduct an oracle to label only  
some data points instead of all. Selectively labeling some data points is a much easier 
task than labeling all, so we take the easier task as a mediate step of the more complex 
task.  

 

Fig. 3. Flow diagram of the proposed method ALLNP 

3.1   Block Contrast as an Oracle 

We have investigated several commonly used image features. And block contrast 
seems to be a more discriminative feature. Suppose an input fingerprint image is di-
vided into a set of w w×  blocks. For one block B, block contrast is defined to be the 
quotient of block variance and block mean, as shown  

B
B

B

Block Variance
Block Contrast

Block Mean
=  (1)

The block mean for block B is defined to be 

 
(2)

where ( , )x yI is the intensity of the pixel ( , )x y . And the block variance for block B is 

defined as the variance of intensity of each pixel in the block B, represented by . 

                                                           
1 In the paper, we segment fingerprint images in a block-wise way.  
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2
( , )

( , )

1
( )B x y B

x y B

Block Variance I Block Mean
w w ∈

= −
× ∑  (3)

 

Fig. 4. The example plots of block contrast 

Fig.4 shows two example plots of block contrast for two fingerprints, where both 
images are represented by  blocks. (a) and (b) in Fig.4 represent the two fin-
gerprints, while (c) and (d) are their plots of block contrast respectively. In the two 
block contrast plots, x-axis and y-axis represent block indices in horizontal and vertical 
directions of the original fingerprint images respectively, and the z-axis stands for 
block contrast value of each block. 

In the paper, block contrast is taken as an oracle to automatically label some fore-
ground and background blocks for an input image. For each block, block contrast, as 
defined in (1), is extracted first. Then, each block is sorted into a list according to its 
block contrast in ascending order. Blocks in the top of the list have larger probabilities 
to be background blocks than those in the bottom, while these in the bottom have larger 
probabilities to be foreground ones than those in the top.  

3.2   Label Propagation by LNP Algorithm 

The graph-based semi-supervised learning methods have received considerable attrac-
tion in recent years, which model the whole dataset as a graph. The construction of the 
graph is at the heart of these graph-based methods. And most of these methods [18, 19] 
adopt a Gaussian function to calculate the edge weights of the graph but the variance of 

(a) (b)

(c) (d)
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the Gaussian function will affect the classification results significantly. To address the 
above limitation of graph-based semi-supervised learning, Linear Neighborhood 
Propagation [20] is proposed. 

The reason why we select LNP as our solution is twofold. First, the number of the 
nearest neighbors k in LNP is easier to tune since it is selected from only positive 
integers in a small range. Some other semi-supervised learners, such as S3VM and 
co-training, need to explicitly specify the ratio of two classes2, or implicitly assume the 
unlabeled data has the same ratio with labeled data. That may be improper for finger-
print segmentation problem. Because fingerprint images captured by different sensors 
actually have different proportions of foreground owing to various resolutions of 
sensors. The proportions of foreground for the same finger acquired by the same sensor 
may distinctly differ if with different pressures. Every fingerprint can be seen as a 
manifold embedded in a high space. The parameter k may be inherently affected by 
fingerprints, and insensitive. Second, LNP has been shown of the capability to auto-
matically erase the noise in labeled data. So even we injected some noise in the auto-
matic labeling the first step of our algorithm, LNP still works. 

The LNP algorithm consists of two steps. In the first step, it approximates the whole 
graph by a series of overlapped linear neighborhood patches, and the edge weights in 
each patch can be constructed by solving the following standard quadratic program-
ming problem  

, , : , ( )
min

. . 1, 0
i j j k i

i
w ij jk ikj k x x x

ij ij
j

w G w

s t w w
∈Ν

= ≥
∑
∑  (4)

Where ( )
i

xΝ  represents the neighborhoods of ix , ijw is the contribution of jx to ix , 

and i
jkG  represents the ( , )j k th−  entry of the local Gram matrix 

,) ( ) ( )T
j k i j i kx x x x= − −i( G   at point ix , where ( ) ,

.
j k

represents the ( , )j k th−  

entry of a matrix. Then all the edge weights will be aggregated together to form the 

weight matrix of the whole graph. In the second step, the labels of the labeled data to 

the remaining unlabeled data using the constructed graph in the first step. In detail, (5) 

is used to update the labels of each data object until convergence. 

1 tf Wf (1 )t yα α+ = + −  (5)

Where 0 1α< <  is the fraction of label information that ix receives from its 

neighborhoods. Let 1 2( , ,... )T
ny y y y=  with ( )i iy L i l= ≤ , 

0 ( 1 )uy l u n= + ≤ ≤ , 1 2f ( , ,..., )t t t t T
nf f f= is the prediction label vector at 

                                                           
2 Unless otherwise specified, the paper talks about two class problem. 
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iteration t   and 0f y= . And LNP has been derived from a regularization frame-

work to provide a theoretical guarantee of its feasibility [20].  

4   Experiments 

In this section, we present some experimental results of our personalized fingerprint 
segmentation algorithm ALLNP. In order to validate the strength of ALLNP in seg-
menting fingerprints of sensor interoperability, it is tested with typical fingerprints 
from 4 heterogeneous databases of the Fingerprint Verification Competition 2000 
(FVC2000) [21]. For the reason that the fingerprint segmentation result needs human 
inspection, we select 10 typical fingerprints of different quality from each fingerprint 
database. So there are 40 images in all in our test set. We divided each input fingerprint 
image into a set of 16 by 16 blocks, then a feature vector consisting of block mean, 
block variance, block contrast and block coherence is extracted for each block. Besides, 
to avoid fragmented blocks in the segmented fingerprints to some extent, we take po-
sition feature of each block, i.e., block row index and block column index, as new 
features. In all the experiments, the parameter α  is set to 0.99, which stands for the 
fraction of label information that a block receives from its neighbors in feature space in 
each iteration. The number of neighbors calculated for each block seems insensitive in 
fingerprint segmentation, and it is set to be 7 in the experiment for all input fingerprint 
images.  

Some segmentation results by our method without any post-processing are shown in 
the Fig.5. Two fingerprints are selected from each data set. Images in the first column 
are input fingerprints. And the second column shows corresponding partially  
automatically labeled fingerprints of the first column. For each input fingerprint 20 
foreground and 10 background blocks are automatically labeled. To distinguish the 
automatically labeled foreground and background blocks we deal with them as follows. 
Labeled foreground blocks are displayed the same intensity as these in the input image, 
and labeled foreground ones are displayed as black, while unlabeled blocks are dis-
played as white. Some fingerprints in the second column have black margin, because 
the sizes of their input images can not divide by the block size. And we simply segment 
the margin to be background. Segmented fingerprints by ALLNP are shown in the last 
column. It can be seen that the proposed personalized fingerprint method ALLNP 
achieves favorable segmentation results on almost all the fingerprints, which indicates 
its strength in sensor interoperability.  

Some statistical experiment results of previous fingerprint segmentation methods 
available are listed in Table.1 for comparison. It is worth noting that these figures were 
quoted simply from their papers, and we did not realize these methods. It can be ob-
served that our method ALLNP is better than all the other methods except Yin 2005 [6]. 
With human inspection our personalized fingerprint segmentation method ALLNP 
achieves an encouraging fingerprint segmentation performance with an error rate of 
only 2.89% in block-wise segmentation. And post-processing will reduce the error rate 
of our method further.  
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Fig. 5. Segmentation results of ALLNP on some typical fingerprints of FVC2000 

Input Fingerprints Partially Labeled Fingerprints Segmented Fingerprints 
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Fig. 5. (Continued) 

Table 1. Comparison of fingerprint segmentation methods. In the third and the fourth columns, 
“Y” denotes yes, “N” denotes no, while “-” represents unknown from the paper. 

 
 

Although our algorithm has achieved above advantage, it is worthy to mention that 
almost all the experiments of previous fingerprint segmentation methods are carried out 
on single homogeneous fingerprint data set, in which all the fingerprints are obtained 
 

   

   

   

Methods Block-wise/Pixel-wise Pre-processing Post-processing Error Rate 
Bazen 2001 [5] Pixel-wise Y Y  
Klein 2002 [14] Block-wise - N 
Yin 2007 [11] Block-wise - - 
Yin 2005 [6] Pixel-wise - Y 
Bernard 2002 [12] Pixel-wise Y - 
ALLNP  Block-wise N N 
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via the same sensor. When the trained models by these fingerprint segmentation me-
thods are tested on several heterogeneous fingerprint data sets, their performance will 
significantly drop.  

5   Conclusion 

Traditional fingerprint segmentation methods always try their best to tune their fin-
gerprint segmentation methods to be universal to all unseen fingerprints. However, one 
fingerprint may have a significantly distinct distribution from another in the feature 
space because fingerprint acquisition is affected by several factors. As a result, the 
delicate threshold and the well trained model may not be suitable to the new input 
fingerprints from a new finger or a new person. And it makes worse when automatic 
fingerprint identification systems meet sensor interoperability. In the paper, we propose 
a personalized fingerprint segmentation method ALLNP, which learns a fingerprint 
segmentation model  specially for an input fingerprint image based on the input image 
only. The proposed method is tested with representative fingerprints from four hete-
rogeneous databases of FVC2000. The experiments show encouraging performance of 
the proposed method when fingerprint segmentation meets sensor interoperability. 
However, in Section 3, some foreground and background blocks are automatically 
labeled by a simple oracle based on block contrast before learning. And the block 
numbers automatically labeled for each input fingerprint are small. We may wish 
more labeled data, for the more exactly labeled data provided the better segmentation 
performance it achieves. However, some noise may be injected as the number of 
automatically labeling blocks increases. In the future work, we will investigate robust 
automatically labeling mechanics. 
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Abstract. An automatic image restoration method is proposed for text images 
despite severe occlusion and noise. 3D tensor voting framework is used to  
analyze surface areas to detect corrupted regions. These corrupted regions  
are then restored by an adaptive median filter or image completing. The  
experimental results attained from several text images show that good images 
can be achieved from degraded ones by using the proposed method.  

Keywords: tensor voting, restoration, image repairing, image completion. 

1   Introduction 

Some portions of natural scene images can be corrupted due to occlusion or noises 
such as dusts, streaks, shadows and small unwanted objects. Several methods can be 
used to restore these corrupted regions such as variational image inpainting [2] and 
image completion [9]-[11]. Corrupted regions in the input images of these methods, 
however, are located and marked manually by users. In this paper, we propose a novel 
method to detect and locate the corrupted regions automatically by using 3D tensor 
voting. Whereas large corrupted regions can be successful corrected by the image 
completion, in the paper we only focus on small and medium noise sizes. 

Image restoration has been developed in three distinct fields: variational image in-
painting, texture synthesis and image completion. Narrow gaps or corrupted regions 
can be successfully filled by variational image inpainting methods that are based on 
prolonging the isophotes arriving at the boundary. These methods exploit the continui-
ty of the geometrical structure of an image to fill the corrupted regions. The most im-
portant work, a partial differential equation (PDE)-based algorithm, was presented in 
[2]. Although the whole image looks fine with PDE-based variational image inpainting 
methods, the details are blurring because textured images cannot be filled and continu-
ation is not well enough. Some other methods in variational image inpainting are level 
lines [1], detecting edges [3] and global approach [4]. 

For real images with large corrupted regions, texture information is important. 
Many texture synthesis methods have been reported in the literature. The most popular 
texture synthesis method is based on statistical model [5]. In this method, the authors 
modeled and matched the statistical features of the sample texture. This method, how-
ever, captures only marginal statistics and joint properties between different scales and 
orientations are not considered. Other approaches are image-based [6] and patch-based 
[7], which generate good results for many applications. Variational image inpainting 
and texture synthesis are combined in the image completion. The first work in the 
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image completion was presented in [8]. In this method, an input image is decomposed 
into its structure and texture components. Image inpainting and texture synthesis are 
then applied to these components separately. The result is obtained by adding the two 
processed components together. The method exploits the advances of two methods 
image inpainting and texture synthesis but it is slow and gives blurry outputs due to 
diffusion. Another image completion method is fragment-based [9]. In [9], surrounding 
information of pixels is determined by a confidence map. Based on the confidence 
map, the color of an unknown region is inferred from visible parts of the image. More 
confident pixels are considered first. In each step, unknown region is filled by a similar 
fragment that is found. This method gives good result but it is extremely slow and 
complex. A simpler and faster than fragment-based method is exemplar-based method 
[10]. In video, a space-time video completion is proposed in [11]. The missing areas 
are filled by sampling spatio-temporal patches from available parts of the video. 

The work in [12], a tensor voting-based image segmentation method, is the closest 
to our work. Since the surface saliency values of tokens, image pixels, are directly 
proportional to the areas of regions they belong to, the small corrupted regions are 
detected based on the surface saliency map. In this method, the input tokens of tensor 
voting are generated from a chromaticity image with value range is from 0 to 1. Since 
the chromaticity image contains real values, pixels on the same surface are not well 
aligned together. Therefore, the surface saliency map is not clean to infer noise re-
gions, especially in low quality natural images. In our method, the k-means clustering 
is applied on the input image to separate objects into different layers. The corrupted 
regions, therefore, are easily detected. An adaptive median filter or image completion 
method is applied on corrupted regions to recover the original image. 

The remainder of the paper is organized as follows. The 3D tensor voting frame-
work is reviewed in section 2. Our automatic image restoration method and results are 
presented in sections 3 and 4, respectively. Section 5 gives conclusions and draws 
future work. 

2   Tensor Presentation and Voting in 3D 

Tensor voting (TV) [13], [14] is a unified computational framework to solve a wide 
range of computer vision problems. In our application, 3D tensor voting is used to 
analyze 3D surface in order to detect corrupted regions. Each pixel in the input image 
is represented by a triple (x, y, H(x, y)) representing for row, column, and a value 
achieved from a function of color or grayscale information of this pixel. Each pixel, or 
token, belongs to a geometric structure such as region, curve, surface or the intersec-
tion among them. To extract geometric structure information, each token is represented 
by a second order tensor. Each tensor is represented by a 3 by 3 matrix and visualized 
as an ellipsoid whose shape indicates the type of structure presented and its size the 
saliency of this information. An isolate pixel can be represented by a ball tensor that 
indicates a structure which has no preference of orientation. A plate tensor can 
represent for a token corresponding to a curve element with curve tangent vector is the 
smallest eigenvector. A stick tensor indicates an elementary surface token with the 
biggest eigenvector is its normal. Here, however, we do not know in advance what 
type of entity a token may belong to. Furthermore, since features may overlap, a loca-
tion may actually correspond to several types at the same time. Therefore, a token may 
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be represented by a generic tensor that can be decomposed into stick tensor, plate ten-
sor and ball tensor which correspond to the three terms in the following equation. 
 ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂̂ ̂ ̂ ̂ ̂ ̂ , (1) 

 

 
where λ  are the eigenvalues in decreasing order and e  are the corresponding eigen-
vectors. After encoding the input tokens by tensors with initial values, these tensors 
communicate with each other in order to derive the most preferred orientation informa-
tion for each of the input tokens, and extrapolate the inferred information at every 
location in the domain for the purpose of coherent feature extraction. In other words, 
each tensor votes its neighboring tensors with its information and also receives votes 
from them. The shape and size of this neighborhood and the vote strength and orienta-
tion are encapsulated in predefined voting fields or kernels. The voting field for each 
tensor component is used to look up the orientation and magnitude of the votes cast. 
All voting fields are based on the fundamental 2-D stick voting kernel (Fig.1). The 
orientation of the stick vote is normal to the smoothest circular path connecting from 
the voter to the recipient. The magnitude of the vote is calculated by the following 
decay function. , , , (2)

 
where s=(lθ)/sin(θ) and k=2sin(θ)/l. The parameter s is the arc length from the voter to 
the recipient, k is the curvature, c is a constant, and σ is the scale of voting field con-
trolling the size of the voting neighborhood and the strength of votes. Note that the 
vote strength at Q’ and Q’’ is smaller than at Q because Q’ is father and Q’’ requires 
higher curvature than Q. Each token in the domain receives several votes from its 
neighboring tokens. Vote accumulation is performed by tensor addition or equivalently 
by addition of 3 by 3 matrices. After voting, saliency maps of each kind of tensor are 
computed. To analyze surface saliency of input tokens, we build the surface saliency 
map calculate from value  of each resulting token. 

 

 

Fig. 1. Vote generation by a 2D stick tensor 
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3   Image Restoration Based on 3D TV 

The flowchart of our method is illustrated by Fig.2. The k-means clustering method is 
applied on the input image to generate a segmented image. The segmented image, 
which contains objects in several layers, is used as input data for the 3D tensor voting 
framework. The surface saliency map achieved from 3D tensor voting is analyzed to 
detect corrupted regions. An adaptive median filter or an image completion technique 
is then applied on the original image with corrupted regions marked by a noise map. If 
all corrupted regions are not successfully recovered, the enhanced image is fed to the 
system again for next iterations. 
 

 

Fig. 2. The flowchart of the proposed method 

 
(a) 

 
(b) 

Fig. 3. Chromaticity image with method in [12], (a): original image, (b): chromaticity image 

3.1   Generating Input Data 

Since the tensor voting framework is a general tool for solving many computer vision 
problems, input data should be represented correctly for a specific application. To 
analyze and detect corrupted regions appearing as small regions in the image, different 
objects or surfaces should be presented separately in different surfaces in 3D spaces of 
tensor voting domain. In [12], a chromaticity image is created based on values of pix-
els in the input image. Since the value in the chromaticity image is real, pixels that 
belong to different objects or layers are not well separated. Fig.3 shows an example of 
a chromaticity image created by the method in [12]. Some parts of the image are not 
easily classified to background or foreground. To enhance this preprocessing step, we 
propose to use the k-means clustering with color information on the input image to 
create separate layers for different objects. 

The k-means clustering is a well-known method of cluster analysis [15]. If the in-
put image is a grey scale image, a 2-means clustering with grey scale value or global 
thresholding binarization can be used. For a color input image, in the ideal case, the 
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number of clusters is same as the number of dominant colors in the image. Since our 
method is iterative, we do not need to detect and correct all noise regions at once. 
Therefore, k can be set to 3 or 4. To reduce the effect of uneven illumination on clus-
tering result, we convert input color image from RGB to L*a*b* color space and apply 
k-means clustering on a* and b* color components. 

 

 
(a) 
 

 
(b) 

Fig. 4. Segmented image generated by k-means clustering, (a): original image, (b): clustered 
image with 3-means clustering method 

 
Fig.4 shows an example of clustering the input image into 3 clusters. With k-means 

clustering, objects with different colors are well separated to different layers. Note that 
each layer may contain many objects such as background and noise at the same time. 
By applying tensor voting, we intend to take out the small and isolate regions consi-
dered as noise or corrupted regions. 

3.2   Detecting Corrupted Regions 

The segmented image is then used as token data. Each token corresponding to a pixel 
at ,  is represented by a triple , , ,  where ,  is its cluster index. 
Tokens are encoded by tensors and communicate each other in voting process. The 
value of the scale of voting field is calculated based on experiments (σ=10 with 
256x256 images). The surface saliency map is calculated as the magnitude of the big-
gest eigenvector of stick component of accumulated tensors. Color coding presentation 
of saliency maps of image in Fig.3 are depicted in Fig.5. Tensors that lie on smooth 
salient features (i.e., curves or surfaces) strongly support each other. For this reason, 
tokens belonging to large surface areas have larger saliency values than that of tokens 
belonging to small surface areas. Since corrupted regions have small areas, they can be 
detected based on surface saliency values. With our method, the surface saliency map 
is very flat and small saliency areas are easily detected. The noise map contains all 
tokens whose surface saliency values are lower than a threshold. 

3.3   Recovering Corrupted Regions  

The noise map that is used as marked regions in image inpainting indicates corrupted 
regions that should be restored. An image completion method can be used on these 
corrupted regions. Since in our application the corrupted regions are small, an adaptive 
median filter also can be used. The adaptive median filter applying on each channel of 
the original image is presented as following algorithm.  
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Algorithm 1. ADAPTIVE MEDIAN FILTER 
 
For each noise pixel ,  in the noise map: 

 
STEP 1: Collect all pixels that are not marked in the noise map of a considering channel of 
the original image in the  window surrounding the noise pixel. The number of pixels 
is N. 

 
STEP 2: Test if the number of pixels is enough. 
If (N < TH) then 2, 2 and GOTO STEP 1.  
Else GOTO STEP 3 

 
STEP 3: Assign median value among the enumerated values for pixel at , . 

 
 

The improved version in current iteration is compared with the improved version in 
previous iteration. If the different between them is not much, the algorithm stops. Oth-
erwise, it is fed into a new iteration. 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 

Fig. 5. Surface saliency map, (a) using method in [12], (b) using our proposed method, (c): 
saliency value for color code 

4   Experimental Results 

Several color text images are selected to evaluate the performance of the proposed 
method. Some examples are represented in Fig. 6. The original images are shown in 
the second column. After detecting noise region by tensor voting, the restored images 
by adaptive median filter and image completion [11] are depicted in the third and the 
last columns, respectively. The first column shows the index of the current iteration. 
With a few iterations (less than 3), all small noises are gone and the enhanced version 
of the original image is achieved. These enhanced images are now ready for next 
processing steps such as binarization. The image completion method [11] gives a better 
result compared to the simple adaptive median filter, especially in the boundary of the 
image. The image completion also remains good texture information of the corrupted 
regions. This method, however, very complex compared to the adaptive median filter. 
It takes several minutes to complete recovering noises in a 256x256 image. In the first 
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image of Fig. 6, the number of dominant colors is 4 but with 3-means clustering me-
thod we can correct some noises in the first iteration. Remaining errors in improved 
version are completely corrected in the second iteration. Our proposed method con-
verges in a fewer number of iterations compared to the method in [12]. 
 

1 

  

2  

 
 

 
 

1 

 
 

 
 

 
 

1 

  

2  

 

Fig. 6. Some automatic image restoration results, (a): iteration index, (b): original images, (c): 
results by adaptive median filter, (d): results by image completion [11] 
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(a) (b) (c) (d) 

Fig. 6. (continued) 

5   Conclusions 

In this paper, an automatic image restoration for text images having small noise re-
gions is proposed based on 3D tensor voting. The k-means clustering method is used to 
create input data for the tensor voting framework. By analyzing the surface saliency 
map, small regions considered as noise regions are detected. After the noise regions are 
located correctly, an adaptive median filter or image completion method can be applied 
to recover corrupted regions by using information of neighboring pixels. The experi-
mental results show that our method can generate good results for many complex text 
images. 
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Abstract. In this paper, we introduce a novel incremental subspace

based object tracking algorithm. The two major contributions of our

work are the Robust PCA based occlusion handling scheme and revised

incremental PCA algorithm. The occlusion handling scheme fully makes

use of the merits of Robust PCA and achieves promising results in occlu-

sion, clutter, noisy and other complex situations for the object tracking

task. Besides, the introduction of incremental PCA facilitates the sub-

space updating process and possesses several benefits compared with

traditional R-SVD based updating methods. The experiments show that

our proposed algorithm is efficient and effective to cope with common

object tracking tasks, especially with strong robustness due to the intro-

duction of Robust PCA.

1 Introduction

During the past decades, object tracking is rapidly developed since it is widely
used in many different areas, like surveillance, human computer interface, en-
hanced reality and so forth. The accuracy and robustness of object tracking
influence the performance of these applications. Therefore, object tracking has
been a hot research area in computer vision and a lot of researches have been
explored in this area. The main challenge of object tracking is the difficulty in
handling the appearance variability of a target object. There are two categories
of appearance variabilities, intrinsic and extrinsic appearance variabilities. The
intrinsic appearance variabilities mainly include shape deformation and pose
variation of a target object. On the other hand, changes in illumination, changes
in viewpoint and partial occlusion belong to extrinsic variabilities. All the ap-
pearance variabilities pose great challenges to accurately locate the target ob-
ject including the well-known methods [1,2]. However, subspace based methods,
solving this problem by modeling such appearance variabilities in low-dimension
space, prove to be efficient and effective in [3,4]. [3] first brought eigenspace to
model appearance changes of target objects. The advantages of this subspace
representation are several folds. Firstly, the subspace representation provides a
compact notion of ”thing” to be tracked rather than ”stuff”, which means struc-
ture information is fully utilized in the appearance representation. Besides, this
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method also survives in large appearance changes. But the needs to train the
appearance model before starting the program and solve complex optimization
problems limit the use of this method. Later, Lim et al improves this method
in [4] by using R-SVD [7] to incrementally update the subspace and Particle
Filter to replace the complex optimization steps. Due to the merits of stochastic
methods, local minimum problem caused by deterministic optimization meth-
ods is well solved. Based on [3], [15] makes use of Rao-Blackwellized Particle
Filter, achieving promising results in clutter environment. Lin et al[16] further
optimizes the framework of [4] according to the idea of Fisher Discriminant
Analysis(FDA). The import of the second subspace makes the method more
discriminative since the utilization of background appearance. Meantime, Ho
et al [11] replaces the traditional L2 reconstruction error norm with uniform
L2 reconstruction error norm and achieves promising experimental results. Re-
cently, Zhang et al [12] utilizes the framework of Graph Embedding and proposes
a new discriminative subspace representation. Besides, Log-Euclidean Rieman-
nian Subspace [14] and Tensor Subspace [13] are also brought in to handle the
appearance variabilities. Although the theory parts and experimental results of
these methods sound attractive, the overall framework is almost the same and
similar with [4]. The possible differences lie on the subspace representation and
corresponding R-SVD based updating algorithm. The import of Log-Euclidean
and Tensor subspace strengthen the robustness and accuracy of tracking results.
However, in the meantime, they also add additional complexities to the track-
ing framework, and the tracking speed may be influenced by the complicated
subspace representations. Accordingly, the disadvantages may limit the wide
use of these methods. Our method, on the other hand, avoids the complexity
of elaborately subspace representation and adopts the traditional PCA-based
representation. To obtain robust and accurate tracking performance, a Robust
PCA [5] is utilized in our framework.

Two components are inevitable in subspace based methods. One is the sub-
space representation and the other is the algorithm to update the subspace in-
crementally. Although different subspaces are utilized to model the appearance
variabilities, almost all the above methods update their corresponding subspace
based on the R-SVD algorithm. In this paper, however, we will adopt a new
incremental subspace updating algorithm, which possesses several beneficial ad-
vantages compared with R-SVD. Furthermore, according to the experiments of
previous subspace methods, although occlusion may be handled well in the sim-
ple situations, the performance is deteriorated when the scenes become complex.
On the other hand, if the subspace is updated when occlusion happens, outliers
will bias the subspace and probably make the tracking results drift from the
target region. In order to cope with these problems, a novel occlusion handling
scheme is proposed in our paper. The main idea of this scheme is based on
Robust PCA.

The rest of paper is structured as follows. Section 2 describes our subspace rep-
resentation. Updating scheme(Incremental PCA) and our algorithm framework
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are discussed in section 3. Section 4 gives some experimental results of our
method and section 5 concludes this paper.

2 Robust PCA Based Learning

Principle Component Analysis is one of the traditional dimension reduction
methods which has been widely used in computer vision group. Since PCA min-
imizes L2 reconstruction error, it is also considered as one of most successful
reconstructive methods. By projecting a new sample into a pretrained subspace,
the reconstruction error can be regarded as a useful tip for deciding whether the
new sample is a kind of object that is similar with the training set. Hence, the
intrinsic nature of PCA makes it practical in object tracking area. There are nu-
merous works dedicated to make use of the merits of PCA in the object tracking
programs. Some of fundamental and influential works are[3,4]. Although many
works try to further improve the discriminability of subspace based methods,
robustness is actually one of the essential problems currently which limits the
wide application of subspace based methods. According to our experimentations,
it can be easily found that the tracking methods lose their targets not because
of lacking discriminative abilities but because of lacking robustness, especially in
complex situations that occlusion and fast movement of target object happen.
Thus, our method is proposed not to strengthen the discriminability of subspace
based methods but to increase the robustness of PCA based methods.

2.1 Robust PCA

Let n be the number of images in the training set, each of which having m pixels.
The training data set then can be represented by X = [x1,x2, · · · ,xn],xi ∈ Rm,
where xi refers to the ith training image. We will use the notation U, U ∈ Rm×k

for the truncated eigen basis where k means the number of bases we keep.
For the traditional PCA, U = [u1,u2, · · · ,uk],ui ∈ Rm is calculated by min-

imizing the reconstruction error:

E =
n∑

i=1

⎛⎝xi −
k∑

j=1

aijuj

⎞⎠2

(1)

where aij = uj
Txi. To solve Eq. 1, either Eigen Decomposition or SVD(Singular

Value Decomposition) can be used. The goal of reconstructive methods is to find
ai once a new sample arrives. In traditional PCA, ai = UTxi. However, when
there are outliers or noises in the image xi, the coefficients ai may be influenced
by these contaminated pixels. Robust PCA, on the other hand, can limit the
influences of outliers and noises and achieve robust results.

In the following part, a brief discussion of Robust PCA will be presented. For
the detail information, we can refer to [5]. To achieve robustness, subsampling
is employed in the calculation of coefficients a. The full process can be reviewed
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as a hypothesize-and-select paradigm using only subsets of image pixels. There
are two major steps, generating hypotheses and selection.

First of all, suppose U is calculated from a training data set, let us return to
Eq. 1. Due to only subsets of pixels of a new image sample being considered, we
need to seek the solution of a which minimizes

E(r) =
q∑

i=1

⎛⎝xri −
k∑

j=1

aj(x)uj,ri

⎞⎠2

(2)

where r = [r1, r2, · · · , rq], k < q < m refers to q points selected from m pixels in
a new image x.

The minimization of Eq. 2 can be easily solved by least square. Then, in the
first step of Robust PCA, several hypotheses are generated, each one referring to
a subset of points(r). For each hypothesis, in each step of minimization, we get
one temporary solution of coefficients a and the corresponding reconstruction
error for each point(ξi = xi−

∑k
j=1 ajuji). Through trimming part of the points

whose ξi are above a threshold, a new solution of a can be obtained with the
trimmed set of points. This iterative step continues until the number of points in
the hypothesis is below a predefined threshold. In the final hypothesis, a notion
of compatible points is defined as follow:

D = {j|ξ2
j < θ}, where θ =

2
m

n∑
i=k+1

λi (λi is eigen value) (3)

The cardinality of the compatible points set is denoted as s = |D| which can
provide useful information for the selection step.

According to this method, several candidate hypotheses for a (each a repre-
sents a potential coefficients vector computed from a subset of sample points
with Eq. 2) are generated. The optimal one is selected to maximize the following
function:

ci = K1si −K2||ξ||Di , where ||ξ||Di =
∑
j∈Di

ξ2
j

where si and ||ξ||Di refer to the number of compatible points and the reconstruc-
tion error over the set Di(Di refers to a set of pixels from one image, from which
the coefficients a is computed), and the coefficients K1 and K2 are parameters.

2.2 Occlusion Handle Scheme

In this subsection, a carefully designed occlusion handling scheme will be dis-
cussed. Though the scheme is mainly applied to deal with the occlusion situation,
it is useful for some complex situations like out-of-plane rotation and clutter
background as well.

For the tracked object, there will be three possible states for each frame. One
is the normal state, meaning that all the conditions are normal and there is
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Fig. 1. State Transition Graph

no special arrangement for this state. The second kind of state is partial occlu-
sion(POcclusion), which is mainly used for preventing the false updating of the
subspace when occlusion happens. The last state is full occlusion(FOcclusion),
in which we need to increase the particle number and state variance in order to
relocate the target object. Besides, since the target may be fully occluded, we
do not update the target position with the new estimation. For simplicity, we
denote t as the frame number in the video. Fig. 1 is a simple description of the
possible transitions for the three states.

At time frame t, the five transitions happen when certain requirements are met.
T 1: γt > θ1 T 2: γt > kθ1 T 3: γt > kθ1

T 4: γt ≤ kθ1 T 5: δt < θ2

If none of these requirements are met, it means that the target keeps still
in the original state. In the above requirements, θ1, θ2 are thresholds to decide
whether current state is occluded, and k(k > 1) is a coefficient. γt and δt refer to
the reconstruction difference based on the robust coefficients(at) and summation
of these differences. They can be calculated as follows:

δt =
∑

t−θ3<j≤t

αt−jγj γt = ||xt − Utat||2 (4)

where θ3 is the number of frames to consider and α is a forget factor(α = 0.9 in
our experiments).

Intuitively, we can easily interpret these five transitions as below. When no
occlusion happens, the robust reconstructed image will differ little from the orig-
inal image, which means that the requirement of T1 cannot be met. However,
once occlusion happens, γt will be certainly larger than θ1 and the target will
fall to the partial occlusion state, which means the subspace should not be up-
dated due to the noises and outliers in the new image samples. In the same
time, we set a higher threshold kθ1 for indicator of full occlusion. When full
occlusion happens, we keep the target object still in the last position until the
full occlusion state is stopped. Besides, in order to locate the target object when
the target appears again, the variance of state variable and number of particles
are increased. Once we find a state meeting the requirement of T4, the variance
of state variable and number of particles return to the original values. If the
requirement of T5, the latest summation of reconstruction differences is below
the threshold θ2, is met, it means that the target is no longer in occlusion state
and the updating step can be started again.
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Fig. 2. Tracking results based on occlusion handling scheme

We illustrate the state transitions in Fig. 2. There are two examples in Fig. 2.
In the first row, the first and fifth images refer to the normal state. The second
and fourth images represent the partial occlusion state. Full occlusion state is
illustrated in third image. There are two subimages in each image, representing
the target object in the frame and reconstructed target object with robust co-
efficients. It is obvious that updating with the reconstructed target object can
prevent noises and outliers from biasing the subspace. The second row shows
another successful example of our occlusion handling scheme.

We illustrate the state transitions in Fig. 2 with two examples. There are
two subimages in each image, representing the target object in the frame and
reconstructed target object with robust coefficients. It is obvious that updating
with the reconstructed target object can prevent noises and outliers from biasing
the subspace.

3 Proposed Tracking Algorithm

3.1 Overview of the Approach

The framework of our method is similar with [4]. There are two major com-
ponents of the framework, locating the target region and updating the sub-
space. The visual tracking problem can be formulated as an inference problem
based on Hidden Markov Model, where Xt and It refer to hidden state vari-
able(target region) and observed variable(video frame) respectively. Let Xt =
(xt, yt, θt, st, αt, φt), where xt, yt, θt, st, αt, φt denote x translation, y translation,
rotation angle, scale, aspect ratio and skew direction at time t. According to
Bayesian theorem, we have:

p(Xt|It) ∝ p(It|Xt)
∫

p(Xt|Xt−1)p(Xt−1|It−1)dXt−1 (5)

Due to the difficulties in directly calculating the posterior probability p(Xt|It),
stochastic approximation methods like particle filter [1] are adopted to approx-
imate the probability with a stochastically generated set of weighted samples.
The dynamic model(p(Xt|Xt−1)) is modeled by a Gaussian distribution:

p(Xt|Xt−1) = N(Xt; Xt−1, ψ) (6)
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To introduce probabilistic interpretation, the observation model is modeled with
PPCA [10], which is widely used in subspace based object tracking methods.
For simplicity, the observation model in our method is governed by a Gaussian
distribution:

p(It|Xt) = N(It; µ, UUT + εI) ∝ exp(−||(It − µ)− Uat||2) (7)

where I is an identity matrix, ε is the additive Gaussian noise in the observation
process, µ is the mean of training images and at is the coefficients of Xt outputted
by Robust PCA. The detail proof can refer to [8].

3.2 Incremental PCA

Once a new target location is estimated, the subspace need to adapt to the new
appearance change unless the target is predicted as occlusion in our occlusion
handling scheme. Although almost all of previous works adopt the R-SVD [7]
based incremental methods, we try to use a different incremental scheme(IPCA)
[6]. The benefits are several folds. The first is of course the computation efficiency.
Also, IPCA is more extendable and flexible due to the possibility to integrate
spatial and temporal weights. Furthermore, IPCA can perfectly integrated with
Robust PCA and our occlusion scheme and do not require any training images
of the target object before the tracking task starts. The IPCA algorithm can
be viewed in Algorithm. 1. For convenience, we suppose t > k in our algorithm
framework. For t ≤ k, it is also easy to deduce from the algorithm.

Algorithm 1. Incremental PCA
Input: Subspace eigen vectors Ut ∈ Rm×k, eigen value Dt ∈ Rk, coefficients At ∈ Rk×t,

mean vector µt ∈ Rm, new input image xt+1 ∈ Rm

Output:Ut+1, Dt+1, At+1, µt+1

1. Get the Robust coefficients of xt+1 on current subspace: a =

RobustPCA(Ut, Dt, µt) with Eq. 2

2. Reconstruct the image: y = Uta + µt

3. Calculate reconstruction error r ∈ Rm : r = xt+1 − y
4. Form new basis vector: U ′ = [ Ut

r
||r|| ]

5. Determine coefficients in new basis: A′ =

[
A′

t a
0 ||r||

]
A′

t =

{
At if t < θ4

At(:, 2 : t) if t ≥ θ4

6. Perform PCA on A′ obtaining mean value µ′′, eigenvectors U ′′ and Dt+1, discard

the last part of columns of U ′′ and denotes it as U∗ = U ′′(:, 1 : k).

7. At+1 = U∗T (A′ − µ′′1), Ut+1 = U ′U∗, µt+1 = µt + U ′µ′′

Since previous target information are well preserved in sample coefficients(At),
the calculation of subspace bases do not depend on the storage of previous
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samples(xi, i = 1, · · · , t). This greatly reduces the number of memory storage.
Besides, in order to reduce the impact of earliest frames and increase the influ-
ence of latest frames, the earliest frame will be omitted if the number of frame
coefficients we keep is above a threshold(θ4). Also, the updating sample is not
the original one which may contain noises and outliers. We use the images recon-
structed based robust PCA coefficients. This is feasible only in IPCA framework
in which most of the operations are based on sample coefficients.

3.3 Summary of Our Tracking Algorithm

The two major components, target location estimation and online updating
scheme, are seamlessly embedded into our algorithm framework with occlusion
handling scheme to increase the robustness of our algorithm. To get a general
idea of how our method works, a summary of our tracking algorithm is depicted
in Algorithm 2. The first three steps in Algorithm 2 are similar with traditional
particle filter based algorithms except the introduction of the results of Robust
PCA in Eq. 7. The addition of the final two steps increase the robustness of our
algorithms with the help of occlusion handling scheme.

Algorithm 2. Summary of Proposed Algorithm
For each frame It:

1. Generate particle set {x(i)
t }i=1:N with dynamic model p(Xt|Xt−1) (Eq. 6)

2. Compute the weight of each particle with Eq. 7

3. Find the particle with largest weight, marked it as xopt
t

4. Decide the target state according to occlusion handling scheme and execute corre-

sponding measures (Section 2.2)

5. If the target stays in Normal state, update the subspace with IPCA(Algorithm 1)

4 Experimental Results

Numerous videos have been tested for our proposed algorithms. Due to the
limitation of paper length, only a compelling example is illustrated here(Fig. 3).
The first row shows the results of our proposed algorithm. In order to illustrate
the state transition of our method, we draw the particle information in the second
row. When full occlusion happens in the fourth and fifth images, the number of
particles and the variance of particle state variables are both increased. Once the
target is relocated again, these variables return to normal values showed in the
sixth image. The third row shows the tracking results of ISL, which fails when
occlusion happens. Some of the quantitive results are also given in the following
table, in which the first row shows the average location error(pixels) of ISL and
the second row is the result of our method. The video and ground truth files are
downloaded from [9].
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faceocc faceocc2 coke11 sylv tiger1 tiger2

42.5432 35.8175 31.1371 16.3283 40.3083 53.6643

12.0424 19.3204 27.7316 15.8316 34.5523 49.6800

Fig. 3. Tracking results of our robust method(the first row) and ISL(the third row).

The second row shows the particle information of our method. The frame number is

106, 115, 117, 119, 126, 129.

5 Conclusion

We have presented a robust incremental subspace based object tracking algo-
rithm whose efficiency and robustness can be found out in our experiments. The
two major contributions of our method are the occlusion handling scheme and
the revised incremental PCA algorithm. With the help of Robust PCA, the oc-
clusion handling scheme contributes a lot to the robustness of our method, which
not only successfully solve the occlusion problem but also can improve the track-
ing results in noisy and clutter scenes. On the other hand, instead of using the
traditional R-SVD based updating methods, the incremental PCA algorithm
gives more flexibility and efficiency to our method.

Although the experiments show promising results for our method, there are
also several shortcomings needing to improve. The tracking speed is still a com-
mon problem related with subspace based tracking algorithms. Besides, our
method may fail when the target object experiences fast out-of-plane movements
or large light variance. We aim to address these issues in our future works.
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Abstract. Reversible data hiding has drawn considerable attention in

recent years. Reversible data hiding recover the original image without

any distortion after the hidden data have been extracted. However, one of

drawbacks for existing reversible data hiding is underflow and overflow.

To overcome these problems, we propose a new reversible data hiding

algorithm based on histogram modification of block image. The experi-

mental results and performance comparisons with other reversible data

hiding schemes are presented to demonstrate the validity of our proposed

algorithm.

Keywords: Reversible Data Hiding, Histogram Shift, Underflow and

Overflow, Block Image, Hash Code.

1 Introduction

Multimedia contents can be easily and widely distributed by the illegal copy,
which is serious to contents owners. Data hiding technique can be a good so-
lution to protect copyright of the contents by embedding secret information.
In recent years, reversible data hiding had been studied vigorously for sensitive
image authentication, such as military image and medical image. Reversibility
means that original image is completely recovered from embedded image without
distortion after embedded message has been extracted.

There are some reversible data hiding algorithms. Fridrich et al. [1] losslessly
compresses some selected bit plane(s) to leave space for data embedding. Dif-
ference expansion scheme by Tian [2] selects some expandable difference values
of pixels, and embed one bit into each of them. However, location map should
be embedded with payload data to know which difference values have been se-
lected for the difference expansion. Alattar [3][4] has extended Tian’s work by
generalizing the difference expansion technique for any integer transform.

Recently, some reversible data hiding algorithms based on histogram modi-
fication have been reported in the literature. Ni et al. [5][6] utilizes the zero or
the minimum points of histogram of an image and slightly modifies the pixel

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 829–837, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Partitioning of an Image and Four Level Hierarchical Block Structure

grayscale values to embed data into the image. However, side information for
zero point and peak point should be transmitted to the receiving side for em-
bedded data retrieval. Lee et al. [7] exploited the histogram of difference image
between odd and even lines to embed more data. In addition, there is no need
to transmit any side information to the receiving side for data retrieval.

Although these reversible data hiding algorithms using histogram modification
make enough space for data hiding and generate good visual quality after data
embedding, these algorithms don’t consider problems of underflow and overflow.
To overcome the problems of underflow and overflow, we propose a new reversible
data hiding algorithm based on histogram modification of block image. Section
2 and 3 describe the embedding and extracting algorithm for the proposed re-
versible data hiding algorithm, respectively. In section 4, simulation results are
compared with other reversible data hiding algorithms. Finally, conclusions are
drawn in section 5.

2 Proposed Data Embedding Algorithm

To protect the underflow and overflow problems, we proposed a new reversible
data hiding scheme based on histogram modification of non-overlapped block
images. Because of systemic insertion of 128 bits hash codes in partition images,
our method has the merit of verification of integrity in addition to the reversibil-
ity. Data embedding procedure is consists of four main steps: partitioning &
making watermark, classifying block, and shifting & Embedding.

2.1 Partitioning and Making Watermark

Given an 512×512 image, partitioning of the image into non-overlapping blocks
constitutes the lowest level of the hierarchy as shown in Fig. 1. To make space
for embedding the 128 bits hash code and payload data, four level hierarchical
block structure is constructed.
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Fig. 2. Embedded Data Construction in the Block

The 128 bits hash code will be used for the verification of integrity. The 128
bits hash code is generated by MD5 algorithm with the original input 512×512
image. MD5 algorithm generates a unique fixed length output of 128 bits from
a variable length message.

Fixed 2 bits hash code which are regularly separated from the 128 bits hash
code and variable payload data will be inserted into every 16×16 block as shown
in Fig. 2. The size of payload data is variable because embedding space is variable
according to the size of peak histogram of block image.

The same hash code is inserted into every 128×128 block with raster scan
order. Consequently, the same hash code is embedded sixteen times repeatedly.
Due to this systematic structure, we can find out whether embedded image have
a distortion or not after extraction of embedded data.

2.2 Classifying Block

To embed the watermark data in the 16×16 block, enough space should be
reserved at the both end sides of the histogram. To protect the underflow and
overflow problems, we need 6 empty points at the both end sides at least.

According to the shape of histogram, the block is categorized into three classes
as shown in Fig. 3.

– Class 1: The shifting and embedding is done.
– Class 2: Only shift operation is done. Class 2 should be required to distin-

guish whether the watermark is embedded or not when some hist exits at
the both end sides.

– Class 3: Don’t execute any operation but keep intact to avoid underflow and
overflow problems.

2.3 Shifting and Embedding
In the histogram of block image, we first find a peak point. A peak point cor-
responds to the grayscale value having the maximum number of pixels in the
given block image. To avoid the side information transmission problem of [5][6],
we use two points on both sides of peak point.
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Fig. 3. Histogram of Block Image and Classifying Block

Next, the block image is scanned in a raster scan order. During the scanning
process, the grayscale value of pixels between “peak point + 2” and 249 is
incremented by “3”. In addition, the grayscale value of pixels between 6 and
“peak point - 2” is decremented by “3” as shown in Fig. 4(b). This step is
equivalent to shifting the range of the histogram to the right-hand side and
left-hand side by 3 unit, respectively.

(b) 3 Points Shifting(a) Histogram of Block Image (c) Watermark Embedding
xa xb el er xc xd

Fig. 4. Histogram Shift and Embedding

To embed the watermark data, the block image is scanned once again in the
same sequential order. Once a pixel with grayscale value of “peak point + 1” is
encountered, we check the first bit of watermark data. If the corresponding bit is
“1”, xc is incremented by 1. Otherwise, xd is incremented by 1. To compensate
increment at xc or xd, the value of “peak point + 1” is decremented by 1. From
the second bit of watermark data, if the bit to be embedded is “1”, the er is
incremented by 1. Otherwise, the pixel value remains intact.

If the value of the “peak point + 1” is entirely exhausted or originally zero,
we use the left side of the peak point. To use the grayscale value of “peak point
- 1”, the block image is scanned once again in the same sequential order. The
left side embedding procedure is similar to that of the right side.

The embedding rules are summarized in Table 1. The meaning of abbreviation
is as follows: RSE (right side embedding), LSE (left side embedding), FEDO (first
embedded data is one), FEDZ (first embedded data is zero).
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Table 1. Embedding Rules

xaxbxcxd Meaning

0 0 0 1 RSE & FEDO

0 0 1 0 RSE & FEDZ

0 1 0 0 LSE & FEDZ

1 0 0 0 LSE & FEDO

1 0 0 1 RSE & FEDO , LSE & FEDO

0 1 1 0 RSE & FEDZ , LSE & FEDZ

1 0 1 0 RSE & FEDZ , LSE & FEDO

0 1 0 1 RSE & FEDO , LSE & FEDZ

When we complete embedding procedure, we get the modified histogram as
shown in Fig. 4(c). During explanation of embedding procedure, we can know
why the payload data is variable. The size of the embedded data is dependent
on the size of the “peak point ± 1”. If we meet the class 2 or class 3 during
embedding process, insertion of the corresponding 2 bits of hash code is skipped.

3 Proposed Data Extraction Algorithm

3.1 Classifying Block of Watermarked Block Image

It is not easy to distinguish classes because the block histograms resemble each
other in shape after shifting and embedding data. However, it is possible to
classify the classes by analysis of the shape around the “peak point” and both
end sides. The method for classification is summarized in Table 2. For example,
if the block histogram has the 0 2 empty points at the both end sides and
xa, xb, el, er, xc, xd equal to zero, this block is class 2 because only shift operation
is done in class 2.

3.2 Data Extraction and Recovery

Extraction is only applicable to the Class 1. To understand the extraction algo-
rithm more clearly, it is presented in terms of pseudocode.

1. Right side check
(a) Scan the block image in the same sequential order as that used in the

embedding procedure.

Table 2. Classifying Rules

Both End Sides Around Peak Point

Class 1 3 over empty points xa, xb, el, er, xc, xd 	= 0

Class 2 0 ∼ 2 empty points xa, xb, el, er, xc, xd = 0

Class 3 0 ∼ 2 empty points xa, xb, el, er, xc, xd 	= 0
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Fig. 5. Verification of Integrity, 6th16 × 16 block error in the 8th128 × 128 block

(b) Check the xc and xd around the peak point.
i. If xcxd is 10, the first extracted bit is “0” and subtract 2 from the

current pixel value for recovery.
ii. If xcxd is 01, the first extracted bit is “1” and subtract 3 from the

current pixel value for recovery.
iii. After parsing xcxd

A. whenever we meet “peak point + 1” pixel value, we extract “0”
B. whenever we meet “er” pixel value, we extract “1” and subtract

1 from the current pixel value for recovery.

(c) If xcxd is 00, go to “Left side check”

2. Left side check

(a) The block image is scanned once again in the same sequential order.
(b) Check the xa and xb around the peak point.

i. If xaxb is 10, the first extracted bit is “1” and add 3 to the current
pixel value for recovery.

ii. If xaxb is 01, the first extracted bit is “0” and add 2 to the current
pixel value for recovery.

iii. After parsing xaxb

A. whenever we meet “peak point - 1” pixel value, we extract “0”
B. whenever we meet “el” pixel value, we extract “1” and add 1

from the current pixel value for recovery.

3. Assemble the extracted data

(a) Gather sixteen 128 bits hash codes
(b) Concatenate payload data
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3.3 Verification of Integrity

After gathering sixteen hash codes, we can verify the integrity of recovered image
as shown in Fig. 5. Because the same hash code is repeatedly inserted in the every
128×128 block, if some bits of the concatenated hash code are different from
other hash codes, the corresponding 16×16 block can be corrupted by attack. In
class 2 and class 3, we cannot decide because the the fixed 2 bits hash code was
not embedded.

4 Experimental Results

In order to evaluate the performance of the proposed scheme, we perform com-
puter simulations on many 8-bits grayscale images with 512×512 pixels. Fig. 6
shows the original and embedded images. It is observed that there is no visible
degradation due to embedding in the watermarked images.

(a) Original Images (Lena, Baboon, Pollen, Dark Tiffany, Hurricane)

(b) Watermarked Images

Fig. 6. Original and Watermarked Images

Table 3. Simulation Results for the Proposed Algorithm

Images Class 1 Class 2 Class 3 Capacity PSNR

Lena 1024 0 0 2048+27714 39.49

Baboon 1024 0 0 2048+15689 39.13

Pollen 840 161 23 1680+31450 40.70

Tiffany 897 4 123 1794+17214 39.96

Hurricane 864 15 145 1728+20916 40.10

Table 3 summarizes the experimental results of the proposed algorithm. Our
proposed reversible data hiding algorithm is able to embed about 17.7 ∼ 33.1
kbits into a 512×512×8 grayscale image while guaranteeing visual quality. Per-
formance comparison with other reversible data hiding algorithms in terms of
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Table 4. Performance Comparison with Other Algorithms

Images
Ni[6] Lee[7] Proposed

Capacity PSNR Capacity PSNR Capacity PSNR

Lena 2723 53.62 23692 52.55 29762 39.49

Baboon 4322 51.34 18533 52.29 17737 39.13

Pollen 16580 48.28 28795 53.94 33130 40.70

Tiffany 4301 24.81 16465 30.95 19008 39.96

Hurricane 2928 47.40 17816 27.66 22644 40.10

capacity and PSNR is presented in Table 4. The results of Ni et al. [6] is obtained
by one zero point and one maximum point. Italic type means that underflow and
overflow problems have occurred in watermarked image. In case of underflow and
overflow problems, the value of PSNR is considerably decreased.

5 Conclusions

We have proposed a reversible data hiding algorithm based on the histogram
modification of block image. To solve the underflow and overflow problems,
we embed the watermark data into a selected block image. Experimental re-
sults showed that the proposed scheme provides high embedding capacity while
keeping low distortion in watermarked image and overcoming the overflow and
underflow problems. In addition, we can verify the integrity by comparing the
extracted hash codes. It is expected that the proposed reversible data hiding al-
gorithm having these properties can be deployed for a wide range of applications
which requires the original image.
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Abstract. Formation Micro Imager (FMI) can directly reflect changes of wall 
stratum and rock structures. It is also an important method to divide stratum and 
identify lithology. However, people usually deal with FMI images manually, 
which is extremely inefficient and may incur heavy burdens in practice. In this 
paper, with characteristics of rock structures from FMI images, we develop an 
efficient and intelligent rock structure recognition system by engaging image 
processing and pattern recognition technologies. First, we choose the most ef-
fective color and shape features for rock images. Then, the corresponding single 
classifier is designed to recognize the FMI images. Finally, all these classifiers 
are combined to construct the recognition system. Experimental results show that 
our system is able to achieve promising performance and significantly reduce the 
complexity and difficulty of the rock structure recognition task.  

Keywords: FMI, rock structure, feature extraction, multiple classifier system. 

1   Introduction 

As the oil and gas exploration becomes gradually complicated, the traditional well 
logging method has many problems such as they are difficult in recognizing effective 
layers and also hard to estimate reserves parameters. These problems seriously influ-
ence the objectivity of reserves assessments. In contrast, Formation Micro Imager 
(FMI) technology can provide rich information on fractured reservoirs, and most  
importantly it can be applied to identify fractured reservoirs qualitatively and can help 
explain them quantitatively [1-2]. Some FMI image samples are as shown in Fig.1. 

    

Fig. 1. FMI images 
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However, the most commonly way to deal with FMI images in China is still  
dependent on manual processing, which hence incurs heavy workload and inefficiency. 
Moreover, the results obtained manually are usually affected by the experience of the 
operators and may not be consistent in practice. Furthermore, it is fairly difficult to 
make fully use of FMI images for agencies without enough expertise and experienced 
geologists [3]. Hence, it is of great significance to develop an efficient intelligent 
recognition system using FMI images, for promoting oil and gas exploration. 

In this paper, by applying pattern recognition technologies, we develop a rock 
structure recognition system based on FMI images. This system extracts useful features 
effectively and then recognizes rock structures with FMI images automatically. First, 
we chose the color and shape features for rock images. Then, the corresponding single 
classifier is designed to recognize the FMI images. Finally, all these classifiers are 
combined to construct the recognition system. 

The rest of the paper is organized as follows. Section 2 describes the recognition 
system framework. And experimental results of the recognition system are shown in 
Section 3. Finally, some conclusions are drawn in Section 4. 

2   System Framework and Analysis 

2.1   System Framework 

Rock structures can be classified by the proposed recognition system with image 
processing and pattern recognition technologies. This system includes three main 
modules, i.e., image pre-processing, feature extraction, and structure recognition, 
which is shown in Fig.2. 

 

Knowledge

 database

The intelligent rock structure recognition system

 Image

database

Pre-processing
 Feature

extraction

Structure

recognition

Recognition

    results

Original FMI

     images

 

Fig. 2. The rock structure recognition system framework 

The image pre-processing step is to filter out the noise. The main task for feature 
extraction is to extract characteristics of the rock, such as color and shape features. 
Structure recognition applies and combines multiple classifiers (k-nearest neighbor 
classifiers). Image database and knowledge database mainly provide the references for 
recognizing images and categories of the rock structures. In this paper, we will mainly 
focus on feature extraction and the combination of multiple classifiers.  
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2.2   Feature Extraction 

Feature extraction is a very important step, and it heavily affects the final recognition 
accuracy. Following many other systems, we select color and shape features for our 
recognition system.  

In fact, shape describes the important difference among the rocks with different 
structures. Traditional methods merely exploiting color features cannot efficiently 
categorize rocks. As a result, combing color and shape features can largely improve the 
recognition accuracy. In this paper, rock structure features include the proportion of 
white color accounted in the image and the shape information. 

2.2.1   Color Feature Extraction 
From different rock structures, we find that particles distribute uniformly and are  
always white, which is an important feature of some rock structures. 

 

               

Fig. 3. Particle distribution comparison 

As it is shown in Fig.3, the particles in the left image are uniform in distribution, 
while the particles in the right one are very uneven in distribution. Consequently, we 
propose the following color feature extraction method. The block FMI image is divided 
into blocks and the white color proportion in every one is counted. After that the pro-
portion values between the blocks are compared and calculated as features. If the values 
are even, the distribution is uniform; otherwise, it is not uniform. 

2.2.2   Shape Feature Extraction 
To a large extent, shape features can reflect the structure information of objects, and 
most efficient features for classifying are mainly composed of shape characteristics 
[4-5]. There are a lot of methods for shape feature extraction. In the early experiments 
we tried to use traditional edge detection methods to extract structure information. The 
FMI images are processed with Sobel and Canny transformation, and then the edges of 
the images are acquired. The results are as shown in Fig.4. From Fig.4, some broken 
edges can be detected. However, some false edges are also detected. Considering the 
nature of FMI images and also motivated from idea exchange with geologists, we 
propose a more simple and efficient way to extract shape features of rock, which  
includes puncture, tour and projection steps. 

Puncture is a method proposed for rhyolite and crack rock. The image is scanned 
progressively either by row or by column, and a puncture occurs when scanning 
through a rhyolite or crack structure. This feature is the times that puncture happens in 
the whole image. 
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 (a)                           (b)                          (c) 

Fig. 4. Fig(a) is the original FMI image, Fig(b) is the image processed by Sobel transformation, 
and Fig(c) is the image processed by Canny transformation 

Tour means to scan the image progressively by row or by column. When the line 
enters a block, a tour starts to count the pixels until it gets out of the block. This feature 
is the average count of the tour, which means the total count divided by the number of 
blocks. 

Projection is to divide the image into several blocks in proportion, project all the 
values of the color to the bottom, and accumulate them into one value in every block. 
This feature is very useful for the rock which texture is very uniform or very loose in 
distribution. 

The features mentioned above can be calculated with different segmentation ways 
(by row, by column, or by block). And these shape features can be also used with color 
features. Consequently, all these features can be grouped into different feature vectors 
for rock classification.  

2.3   Classifier Design and Integration 

There are several commonly used classifiers: the minimum distance classifier, the 
nearest neighbor classifier, the k-nearest neighbor classifier, and the BP neural network 
classifier.  

2.3.1   The Minimum Distance Classifier 
The minimum distance classifier uses a base template in the feature space to represent a 
pattern, and the classification is based on the distance between the feature vector of the 
sample to be identified and this template. 

If 
iM  is the base template of pattern class iω (i = 1, 2, …, C): 

1 2 n

T
i i i iM  = (m , m ,..., m ) , i = 1, 2, ..., C. (1)

And if X is the feature vector of the sample to be identified: 

T
1 2 nX = (x , x ,..., x ) , (2)
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Here, 
id(X, M ) is the distance between the sample X and

iM , the base template of the 

pattern class
iω , and principle is that if

id(X, M ) is the smallest value in all distances, 

the sample belongs to pattern class iω . Practices proved that this is a very simple and 

effective method. 

2.3.2   The Nearest Neighbor Classifier and the K-Nearest Neighbor Classifier 
Assume that there are C pattern classes 1 2 c, ,..., ω ω ω , and there are iN samples in each 

corresponding class, whose pattern classes are known, where i = 1, 2,…, C. 
The nearest neighbor classifier uses all the samples in every pattern class as repre-

sentative points, and classifies the unidentified sample X into the class whose samples 
are nearest to it. Therefore, the nearest neighbor classifier can partially resolve the 
influence caused by the differences among the sample even vectors. The discrimination 

function for pattern class iω  is: 

( )  =  m in ,  =  1,2,..., k
i i i

k
g X X X k N− .  (3)

where the i in k
iX means pattern class iω , and k means the sample k in iω . If Eq. (4) is 

satisfied, then jX ω∈ . 

( )  =  m in ( ),  =  1 ,2 ,..., cj i
i

g X g X i .  (4)

The k-nearest neighbor classifier is a general version of the nearest neighbor classifier. 
The principle is to find k nearest samples the closest to unidentified X, and it belongs 
to the pattern class that most of the k samples belong to. Taking into account the 
efficiency decrease caused by classifiers integration and that the features selected in 
every layer can discriminate the rock in some extent, hence this system adopts simple 
and practical classifiers: the nearest neighbor classifier and the k-nearest neighbor 
classifier. 

2.3.3   Classifier Combination 
Single classifiers can be integrated into a final one. Generally, there are three methods 
to integrate them according to the decision-making information provided by each 
classifier. 

The first one is decision output-oriented integration method. Although the informa-
tion outputted by classifiers is very little, it is still commonly used and other forms of 
output can be transformed to this one. The second one is sorting output oriented inte-
gration method. This type of approaches first sorts the categories by its possibility 
according to the output, and then integrates them based on various strategies. The third 
one is the measure output-oriented method. This method exports a measure value for 
every category, such as probability, confidence level, or distance measure [6]. 

With FMI images, this rock structure recognition system is supposed to classify the 
rock into five types of structures: lava, tuff, tuff breccia, volcanic breccia, and ablation 
breccia. All these types of structures are very complex, and a single feature is not  
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sufficient for such a complex task. Accordingly, this system needs to recognize rock 
structure by many effective features [7]. 

In this paper, for every type of rock structure, a specific feature vector is selected, 
and the classifiers are integrated hierarchically. Every layer uses a specific feature 
vector to recognize rocks of specific structure. If the rock is not recognized at the 
current layer, it will go on to the next layer until it is finally identified [8]. In order to get 
better performance, a voting mechanism is adopted based on the k-nearest neighbor 
classifier [9-10]. 

2.4   System Workflow 

The system workflow is as shown in Fig.5, and the process is described as follows: 

Step 1: Pre-process the image to be classified. 
Step 2: Extract the features from the processed image. 
Step 3: Recognize the image. If it is lava, go to Step 8. Else, go to Step 4. 
Step 4: Recognize the image. If it is tuff, go to Step 8. Else, go to Step 5. 
Step 5: Recognize the image. If it is tuff breccia, go to Step 8. Else, go to Step 6. 
Step 6: Recognize the image. If it is volcanic breccia, go to Step 8. Else, go to Step 7. 
Step 7: Recognize the image. If it is ablation breccia, go to Step 8. Else, classify it  

                  into some appointed type directly then go to Step 8. 
Step 8: Export the result of recognition. 

Start

Pre-processing

Extracting features

Is it lava?

Is it tuff?

Is it tuff breccia?

Is it volcanic breccia?

Is it ablation breccia?

Recognition result

End

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

 

Fig. 5. System workflow 
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3   Experiments 

In these experiments, we classify rock structures with some real FMI rock images 
obtained by the oil and gas exploration. Because of high cost of image capture and 
secrecy protection, the size of our experiment data is rather small (shown in Table 2). 
The experiments include two parts: one is for feature selection and the other is for rock 
classification. The results of feature selection are shown in Table 1, where we can find 
that different optimal feature vectors for different situations. 

Table 1. The optimal feature vector 

Rock Structure Feature Zoning Mode Quantity of Zones 
Lava Black Vertical Puncture Vertically 60 
Tuff Black Horizontal Puncture Horizontally 5 

Tuff Breccia White Pixels Rate By block 5*2 
Volcanic Breccia White Vertical Tour Vertically 5 
Ablation Breccia Projection Vertically 25 

Then we use the above optimal features as a feature vector for rock classification. 
The recognition results can be seen in Table 2. 

Table 2. The experimental results of this system 

Rock Structure 
Number of 

Training Set 
Number of 
Testing Set 

Classified 
correct 

Classified 
wrong 

Accuracy 
Rate % 

Lava 1 34 29 5 85.3 
Tuff 1 16 12 4 75.0 

Tuff Breccia 1 12 10 2 83.3 
Volcanic Breccia 1 16 13 3 81.3 
Ablation Breccia 1 12 9 3 75.0 

It can be concluded from Table 2 that with this optimal feature vector, the average 
accuracy rate of this system is above 80%. We can also see that, the vector partially 
reflects the structure characteristics. For example, the vertical puncture is corre-
sponding to the rhyolite structure of lava. This feature is important and proves critical 
for recognizing lava. The accuracy rate is satisfying and can meet the demands of 
geologists in the oil and gas exploration. Note that, we do not compare our system with 
other competitive algorithms because we rarely see any intelligent rock structure rec-
ognition systems in the literatures. 

In our experiments, we only use one training sample for each category. Obviously, 
the recognition performance can be largely improved with more training samples. As 
shown in Table 2, the classification accuracy of Tuff and Ablation Breccia rocks are 
only 75%. And another possible improvement is to investigate more effective features 
so as to achieve higher accuracy.  
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4   Conclusions 

In this paper, we utilized the characteristics of rock structures from FMI images and 
developed an efficient intellectual rock structure recognition system using image 
processing and pattern recognition technologies. The recognition system is able to 
select useful color and shape features, and adopt multiple classifiers for the final deci-
sion of a rock structure. Experiments with real FMI images captured from the oil and 
gas exploration showed that our system can largely reduce the complexity and diffi-
culty of the recognition of rock structure, and effectively raise the automatic level of 
exploration. Some further issues include collecting more training samples and ex-
ploiting more effective features. 
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Abstract. This paper presents a simple method for mining both

positive and negative association rules in databases using singular value

decomposition (SVD) and similarity measures. In literature, SVD is used

for summarizing matrices. We use transaction-item price matrix to gen-

erate so called ratio rules in the literature. Transaction-item price matrix

is formed by using the price data of corresponding items from the sales

transactions. Ratio rules are generated by running SVD on transaction-

item price matrix. We then use similarity measures on a subset of rules

found by Pareto analysis to determine positive and negative associations.

The proposed method can present the positive and negative associations

with their strengths. We obtain subsequent results using cosine and cor-

relation similarity measures.

1 Introduction

Data mining is used for discovering knowledge from large databases. As being an
interdisciplinary approach data mining utilizes algorithms developed in computer
science, mathematics, artificial intelligence, machine learning, statistics, opti-
mization and other fields. As one of the early tools of recommender systems [1]
Apriori algorithm [2] has been widely used for finding positive item associations.
Apriori algorithm searches for the relations between product groups satisfying
user supplied support and confidence levels and finds frequently bought product
groups by customers. Although Apriori algorithm and its variations mostly use
transactional data format, some forms of it require the data in transaction-item
matrix format. Basically this type of matrix consists of binary data. Transaction-
item (user-item) matrix is also the source of the data used in various collaborative
filter based recommender systems.

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part I, LNCS 5863, pp. 846–855, 2009.
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Like the main stream research in association mining, item price data have
long been neglected in recommender systems for finding relations between items.
From this point of view, Apriori algorithm has a disadvantage of omitting the
price paid by the customers to the purchased products despite of readily available
data in transactions. This paper explores possibility of using transaction-item
price data to find relationships (associations) between items. An early work,
[3], studies ratio rules derived from the expense data to understand how much
money would be spent on an item compared to the other items. In [3], a sample
supermarket expense dataset was used in constructing the discussions for the
ratio rules. Singular Value Decomposition (SVD) is used for finding the ratio
rules which simply are eigenvectors corresponding to eigenvalues.

Similarly we adopt transaction-item price dataset from apparel retailing to
assess the usability of price data for finding item relations. Our ultimate goal is
to use these results in determining cross-price elasticities among multiple items.
However our early findings indicate that we can use these results for determin-
ing both positive and negative item relationships as well. Our approach is sum-
marized as follows: We first use SVD to decompose the transaction-item price
matrix to find the eigenvectors i.e. ratio rules. We then deploy Pareto analysis
to determine the important rules. This is indeed equivalent to picking the most
influential eigenvalues and their eigenvectors. We then utilize some similarity
measures, specifically cosine and correlation coefficient, to determine the sign
and strength of relationships between items.

We also compare the outcome of our approach with traditional association
mining results in this paper. We show that some of the positive associations can
be recovered by our approach, however some associations are not found by our
approach. This is indeed an important indication of the price sensitivity of the
associations. Meaning that if the prices items high at the beginning, which is the
case for the apparel retailing, items are more likely purchased alone. However
the prices of the items are reduced as season progresses and as the prices of the
items are marked down appropriately, it becomes more likely that certain items
would be purchased together. This will obviously contribute a positive affect on
the associations among such items.

Our aim in this paper is to show that item price data could potentially useful
in determining positive and negative relationships between items. We summarize
the contributions of the paper in the remaining of this section.

1.1 Contributions

The following contributions are provided in this paper:

– Transaction-item price matrix has been utilized in an association mining
framework,

– Positive and negative relationships can be found by using transaction-item
price matrix,

– Evidence is presented that positive associations can be attributed to the
price reductions.
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As listed above the paper has three main contributions. The rest of the paper is
structured as follows. In Section 2, we give a brief description of the preliminaries.
In Section 3, we introduce our methodology. A short illustrative example is pre-
sented in Section 4. We present results of our approach on a real dataset coming
from apparel retailing in Section 5. We then conclude our paper in Section 6.

2 Preliminaries

Ratio rule mining technique uses eigensystem analysis. We can use SVD to find
eigenvalues and eigenvectors of a non-square matrix. The number of eigenvalues
of a matrix is equal to rank of this matrix. SVD method can simply be described
for the matrix X , with transaction (customer) information in rows and product
information in columns, by the following formula:

X = U × ∧× T ′ (1)

U and T are orthonormal matrices called left and right singular values respec-
tively. ∧ is the diagonal matrix with eigenvalues of X corresponding amplitude of
eigenvectors described by T . All of the eigenvectors described by T are not used
as ratio rules. There is a heuristic method for determining which eigenvalues are
accepted for ratio rules [3]. According to this heuristic method the cutoff for the
rules is %85 of the cumulative sum of eigenvalues. If the leading eigenvectors are
very significant then using the rest of them as rules is unnecessary. Thus we can
find a cutoff level for the rules by using Pareto analysis.

Pareto analysis is fundamentally using Pareto principle which can simply be
phrased as follows: %80 of produced outputs are from %20 of inputs. To find
which inputs have strong effects to generate the outputs you can plot the graph
of inputs to corresponding outputs. This paper utilizes Pareto analysis as the
number of eigenvectors in inputs and eigenvalues as outputs. The worst case
scenario is that the eigenvalues are all equal. In this case, the Pareto plot has a
slope of 45 degrees. For this reason, the cutoff level is determined by the slope
of the line segments where the slope is lower than of 45 degrees. In other words
if a line segment has a slope lower than 45 degrees it can be considered as the
cutoff point for the rules.

3 The Methodology

Generating eigenvectors i.e. ratio rules is a straight forward step in our frame-
work. After determining the most significant rules (i.e. truncated SVD) by Pareto
analysis, we can deploy some similarity measures to summarize the relationships
between products. In the literature there are many similarity measures [4] used
for many different problem types.

The purpose of this paper is to find both positive and negative relationships
(similarities) between products on significant rules found by SVD. There are two
types of important information embedded in these rules. The first one summa-
rizes the amount (i.e. ratio) of price paid, which represents the general behavior.
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The second one is the sign information which represents the direction of the
relationships between products. Therefore, we can deploy transaction-item price
data to find the relationships between products.

One could use more measures to find similarities, however, for the brevity of
the study we use two of them: correlation and cosine. Correlation and cosine
similarity measures can vary between -1 and 1. If the value of the measure is
negative, this means that the products have negative association between them.
If the value of the measure is near zero then it can be concluded that the products
are not related. Otherwise, if the value of the similarity measure is positive, then
it can be concluded that the products have positive association between them.
We give brief definitions of these similarity measures below.

3.1 Correlation Similarity Measure

Correlation coefficient similarity measure can be expressed by the following

equality: ρ(x, y) =
σ2

xy

σxσy
where σ2

xy represents covariance between vector x and
vector y and σx represents the standard deviation of vector x. Correlation coef-
ficient is a widely used statistic in determining significant linear relationships.

3.2 Cosine Similarity Measure

Cosine similarity measure depends on the degree between two vectors. Cosine
similarity measure can be expressed by equality: cos(x, y) = x·y

‖x‖‖y‖ where x · y
is the dot product between vector x and vector y. ‖x‖ is the 2-norm of vector x.

4 An Illustrative Example

In the following, we present an illustrative example (see Table 1) to depict our
methodology. Each transaction is composed of price paid for three products.
Notice that this is just a sample data. Obviously, if a product is not purchased
at all then the corresponding price is equivalent to 0. We can potentially consider
this dataset as an expense dataset, since the numbers correspond to the amount
paid. However in our study we prefer to call it transaction-item price matrix.
Table 1 lists the sample data used in this section.

After applying SVD to the data matrix, we find the eigenvalues and eigenvec-
tors as follows:

∧ =

⎛⎝11, 6123 0 0
0 7, 2180 0
0 0 3, 1708

⎞⎠

T ′ =

⎛⎝−0, 5036 −0, 6440 −0, 5759
−0, 6414 −0, 1678 0, 7486

0, 5788 −0, 7464 0, 3286

⎞⎠
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Table 1. Illustrative Example Data

Transaction Product 1 Product 2 Product 3

Transaction 1 3 1 0

Transaction 2 2 2 0

Transaction 3 2 1 0

Transaction 4 5 5 0

Transaction 5 0 1 4

Transaction 6 0 2 2

Transaction 7 0 1 2

Transaction 8 0 2 5

Transaction 9 0 3 1

Transaction 10 1 3 4

Transaction 11 4 2 3

Matrix T ′ corresponds to eigenvectors of matrix X and diagonal of matrix ∧
corresponds eigenvalues of corresponding eigenvectors. In Figure 1, the cumula-
tive importance of the rules derived from the eigenvalues is depicted against the
number of rules considered. The slopes of the plot indicate the importance of
the rules.

Eigenvalue that results in a line segment with a slope under an angle of 45
degrees is the cutoff for rules. However, in order to have a similarity measure we
need at least two eigenvectors in our analysis. Since we have three eigenvectors
(T ′), we can only use two of them for a similarity measure. Notice that if we use
all the eigenvectors (ratio rules) in our analysis then the similarity measures, for
example cosine, will yield meaningless result that all the products are unrelated.
This is due to the fact that all the eigenvectors are orthogonal to each other.

The sample case has the line segment slopes of [1.58 0.98 0.43] corresponding
to Rule 1, Rule 2, and Rule 3, respectively. The first line segment has a slope
bigger than 1. Technically we should avoid including Rule 2 to our analysis since
it has a slope lower than 1. However we need at least two rules to generate
similarity measures. The first two rules are given again below.

– Rule 1: [-0.5036, -0.6440, -0.5759]
– Rule 2: [-0,6414, -0.1678, 0.7486]

Based on the above rules we will have the following matrix which can also be
called as ratio rules matrix (RR) to determine similarities:

RR =
(
−0.5036 −0.6440 −0.5759
−0, 6414 −0.1678 0.7486

)
The columns of the ratio rules matrix above correspond to the products. Sim-
ilarity measures can be calculated by using this matrix to determine product
relations (similarities). Using similarity measures over columns of ratio rules
(rule-product) matrix results in product to product similarities. Notice that we
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Fig. 1. Pareto Graph for Toy Example

can also use the sign of each value of the ratio rules matrix for determining
product similarities. In this case we will have the following discretized ratio
rules matrix to determine product similarities.(

−1 −1 −1
−1 −1 1

)
After applying cosine based similarity measure on ratio rules matrix RR above,
we get the following product similarities for the sample problem:⎛⎝ 1 0, 7959 −0, 2469

0, 7959 1 0, 3901
−0, 2469 0, 3901 1

⎞⎠
A correlation coefficient measure will be as follows:⎛⎝ 1 −1 −1

−1 1 1
−1 1 1

⎞⎠
If we use a discretized ratio rules matrix on cosine based similarity measure, this
will yield the following product similarities:⎛⎝1 1 0

1 1 0
0 0 1

⎞⎠
Similarity measures over continuous data shows that product 1 and product 3
have negative association between them. Applying the correlation coefficient sim-
ilarity measure on discrete rules yields inconclusive results. Similarity measures
over discrete rules are inconsistent, because there is no variation (univariate) in
other words the standard deviation is equal to 0.

5 Analysis

We use the sales data of summer season of year 2007 from a leading apparel
retail firm in Turkey for the analysis. Like in any other retail environment, the
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Merch. Group �� Category �� Model �� SKU

Fig. 2. A Typical Representation of the Product Hierarchy (shown horizontally for

brevity)

products in an apparel retail firm can be represented in a hierarchy. A typical
hierarchy is shown in Figure 2. The major layers are shown in this hierarchy
where merchandise group is shown at the top of the hierarchy, however additional
layers can be inserted depending on the structure of the apparel business. Stock
keeping unit (SKU) layer is the lowest level in this hierarchy. However SKU
level data include unnecessary detail for the analysis. So we decided to use the
model level data i.e. the data is aggregated at the size and the color levels for a
particular garment.
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Fig. 3. Pareto Graph of Eigenvalues

For the purpose of this study, we pick the top 50 models out of 710 models
belonging to one merchandise group based on the sales figures. Since the firm
has provided us data belonging to a particular merchandise group (e.g. women’s
apparel), the top 50 models are from the same merchandise group. We then select
the transactions with at least 5 products (items) involved (purchased) to reduce
the adverse effect of sparsity of the data matrix. This gives us 3,525 transactions
from the sales data with 50 models i.e. a 3525× 50 data matrix.

There are 50 eigenvalues and corresponding eigenvectors found by using SVD.
By applying Pareto analysis and visually inspecting the Figure 3, it is acceptable
to conclude that approximately the leading 30 eigenvalues are significant for the
given data matrix. We can then calculate the similarity measures to determine
the product relationships. It should be noted that the similarity measures used
in this paper vary between -1 and 1. In such a scale, measure values near zero
(in both directions) represent unrelated products. However there is no clear
cut threshold to determine the separation. The lower threshold (nearer zero)
is, the more relationships will be found from the similarity measure matrix.
For example, in Figure 4, we vary the threshold for the negative relationships
between -0.1 and -1. In other words, if we have a similarity value between two
products lower than the threshold level (since the similarity in the negative
side of the spectrum), we can conclude that these two products have a negative
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Fig. 4. Number of Negative Relations based on Cosine Similarity

relationship. In the same figure, it is evident that by using the first 29 ratio rules
(eigenvectors) with a -0.1 threshold level from cosine similarity measure, we will
find 68 negative relationships among 50 products. Correlation coefficient based
similarity measure yields 75 negative relationships which has comparable number
of relationships with cosine similarity. Out of 68 negative relationships found by
the cosine similarity measure, there are only four relationships that could not
be accounted by the correlation similarity measure. We can conclude that both
measures behave similarly in terms of finding negative relationships. By using
the discretized ratio rules, we usually find more relationships than continuous
case in our experiments. However these relationships are questionable as seen in
the illustrative example given in Section 4.

Similarly, we can vary the similarity threshold to observe the positive rela-
tionships as in Figure 5. Recall that a similarity threshold means that any two
items which have a positive similarity measure above this threshold are consid-
ered similar. For the positive relationships, at 0.1 threshold level cosine similarity
measure finds 168 positive relationships by using 29 ratio rules mentioned above.
Based on the correlation coefficient similarity measure, our approach finds 177
and 75 positive and negative relationships respectively. Again we use 0.1 and
-0.1 threshold levels for the positive and negative relationships respectively. Out
of 168 positive relationships found by cosine similarity measure, there are only
three relationships that could not be found by the correlation similarity measure
which covers 177 positive relationships. These three relations that are not ac-
counted by the correlation similarity measure are the borderline cases i.e. they
are just below the threshold level. Again, we can conclude that both cosine
and correlation similarity measures behave similarly in terms of finding positive
relationships as well.

To compare our approach with the traditional association mining, we apply
Apriori algorithm with a support count level 100 which is approximately 2.84%
support and 10% confidence levels. We find 73 frequent pairs i.e. positive rela-
tionships meaningful. There are 24 pairs overlapping with our approach (cosine
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Fig. 5. Number of Positive Relations based on Cosine Similarity

similarity measure at 0.1 threshold level with 168 positive relationships) out of
73 frequent pairs from Apriori algorithm. For the negative association, we uti-
lize indirect association mining from [5] which yields 91 negative relationships.
Very few of 68 relationships found by our approach match with the results from
indirect association mining.

Discrepancies between the traditional association mining and our approach
can be attributed to the price sensitivities (multiple items cross-price elastici-
ties) of the products. In apparel retailing, the price of the items are always higher
at the beginning of the season. Later in the season, there might be significant re-
ductions in the prices. When the prices of two items are sufficiently lowered, then
the likelihood of purchasing both items increases. If both items are purchased
together in a significant level during the sales season, the traditional association
mining can pick this behavior as a positive association. However both items can
show a different behavior at normal price levels. That’s why our approach can
identify this relationship as negative, since both items are not usually purchased
together at normal prices, but at highly reduced prices.

6 Discussion and Conclusion

We have shown that transaction-item price data can be utilized for finding both
positive and negative relationships. We also compare our approach with tradi-
tional association mining techniques: Apriori and indirect association mining.

Our analysis indicate that it may not always safe to conclude from a tradi-
tional association mining that two items have positive association for all the time,
even though they satisfy the minimum support and confidence level constraints.
This conclusion might be true if only both items are on sale at significant price
reductions. In addition, we should point that the behavior of Apriori algorithm
might change drastically at different price levels. To our best knowledge, there
are no published results pointing this issue before.
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Abstract. In this paper, we develop an algorithm to create a production plan for 
a sofa factory. We propose a heuristic to create a schedule. We also model the 
problem using a linear programming. . Both approaches are compared using the 
real case study in the furniture factory. The heuristic performs almost the same 
as in the integer linear program. It also gives a better plan than the tradition  
approaches. We integrate our heuristic to production planning software which 
contains database of task steps, models and standard times. Then, it produces a 
schedule to suggest how the orders are processed. 

Keywords: Production planning, scheduling, sofa factory. 

1   Introduction 

In most of factory, production planning is the important phase. It affects many things 
such as resource planning, cost of production, customer satisfaction etc. If the plan is 
not good enough, it may incur the job missing deadline which makes the late job 
delivery and unsatisfies the customers. Also, if the job is not planned well, the over-
use or underuse of the resource may occur,i.e., overuse/underuse of the persons in the 
production or overuse of the material etc.   

In this work, we consider a production planning algorithm in the sofa factory. We 
are interested in developing a software to advise the production plan. The mathemati-
cal model is used to represent the sofa production planning problem. Integer linear 
programming is used to solve it. Its solutions are compared to the proposed heuristic 
and other conventional  algorithms such as FCFS,  SPT and LPT. It is shown that the 
heuristic performs about the same as the linear programming solution and better than 
the other conventional ones. We integrate our algorithm in the production software. 
The software contains the database of the sofa models, production steps, and standard 
time. It shows the schedule suggesting whether the orders can be accomplished on 
time and if not, how the due date can be adjusted. 

Many previous works exist in production planning [1-2,3,5,6,8]. David Yancey 
(1990) proposed FACTOR which uses for a discrete production [8]. In planning, it 
covers operational calendar, maintenance schedule, purchase order, etc. D. Toal et al. 
(2007) used database and expert systems to help support complex production 
processes[6]. Nowadays, there exists many uses of expert systems for scheduling a 
production process [5] also in a quality and production control etc. Chaimanee 
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(2007) developed a production scheduling in a flow production consisting of n jobs 
and m machines, trying to find proper starting time for each job which minimizes the 
total cost [1]. The problem is modeled as a  linear equation system and use a linear 
programming to solve. 

This paper is organized as follows: Section 2 presents some backgrounds about 
production planning and necessary mathematical model for the problem. Section 3 
displays the application to our production planning problem and proposes the schedul-
ing approach. Next, we present the mathematical model of the problem and the mea-
surement. Then, we present the experiment data in Section 5 and Section 6 concludes 
the work. 

2   Backgrounds 

In a production, many steps are involved including: production planning, implementa-
tion and control, inventory management. In production planning, it composes of many 
phases: forecasting, master planning, material requirement planning [4]. 

In planning, we focus on scheduling which refers to planning, implying how a job 
is ordered, which job is executed next, what kinds of resources are needed for each 
job, when the output is expected. The schedule is possible under a given capacity and 
load. 

There exists several approaches to solve the production planning such as using a 
chart, using linear programming, using non-linear programming, and using heuristics. 
To use a manual chart, it may be applicable for only a small system, containing 2-3 
variables. To use a linear or non-linear system, we need to model a system of linear 
/non-linear equations. When we have a system containing many variables and con-
straints, we will model them in a set of equations. The mathematical model is needed 
then we solve them using a non-linear or linear programming technique. For the last 
method, we may develop a heuristic to select a job to schedule. The heuristic will be 
based on a cost function which is used to decide when and where to schedule the job. 
Using the mathematical models, it gives an accurate and maybe optimal solutions. But 
it may be difficult to model and time-consuming to solve them. Using a heuristic may 
be easier and give a closed-to-optimal solution under an acceptable time constraint. 

Several heuristic rules exist such as following: 

1. First Come First Served (FCFS) : it will schedule the job based on the arrival 
time. 

2. Shortest Processing Time (SPT) : it will schedule the job which consumes the 
smallest time first. 

3. Last Come First Served (LCFS): it will schedule the job which comes last 
first. 

4. Longest Processing Time (LPT): it will schedule the job with the longest time 
first. 

5. Earliest Due Date (EDD): It will schedule the job which contains the remaining 
time as the earliest due date first. 

In each sofa, it contains many things such as frame, suspension system, cushion and 
upholstery. Each sofa model may use different material for each part. In Sofa production, 
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it consists of several steps as shown in Figure 1. First, we need to cut and sew (cutting 
and sewing). Then we perform cushion assembly. Next, in main assembly, there are two 
portions: main assembly 1 and main  assembly2. First production contains the following 
steps: frame making (not including here), accessory assembly, foam assembly. In the 
second assembly, we need to do upholstery assembly, leg and other part assembly,  
cleaning and packing. 

   

 

Fig. 1. Steps for a sofa production 

We assume that each step use the standard time for every model in the factory. As 
shown in Table , it is a standard time for one model. We estimate the time by observ-
ing the worker for each step and adding the allowance time. 

Table 1. Standard time for each step 

No.   Steps Time (Hours)  Process 

1 cutting 0.20 Cutting & sewing
2 Sewing 0.25 Cutting & Sewing
3 Fiber fill & foam 0.25 Cushion assembly  
4 Upholstery 0.30 Cushion assembly
5 Accessory assembly 0.20 Main assembly 1
6 Foam assembly 0.24 Main assembly 1
7 Upholstery assembly 0.24 Main assembly 2
8 Leg & other assembly 0.13 Main assembly 2
9 packing 0.12 Main assembly 2
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In the production, the sale department will take an order from a customer, then the 
production plan is given. After that, the material requirement is analyzed and then the 
schedule is performed. For each model, we will have a table for material requirement. 

3   Linear Programming Model and Measurement 

For the problem, we may model the production planning assuming the following [7]: 

1. Assume that total number of steps in the production is n. We know the time 
spent for each step, the number of jobs are totally m  jobs, and the due date (for job 
delivery). 

2. Assume that each job can not be broken down, each unit can product one job, 
and the efficiency of each unit is 100%. 

The linear equations consist of the goal: Minimize Z  

and the constraints are 

Ci,j  ≥  Pi.j                  or i = 1 and j = 1                                                 (1) 

  Ci,j -  Pi.j  ≥  Ci-1,j                          for i  = 2,3,..,n  and j = 1,2,..,m                           (2) 

    Ci,j ≥ Ci-1,j - Pi-1.j+ Pi.j+8       for   i  = 1,2,..,n and j = 2,3,..,m                           (3) 

Ci,j -  Ti  + Ei = di                    for i  = 2,3,..,n and j = 2,3,..,m                        (4) 

where 

Pi,j is the time to process a job at position i  on unit  j where i  = 1,2,..,n  and j = 
1,2,…,m. 

di is the due date of a job at i  where  i  = 1,2,..,n. 
Ci,j is the finished time of the job at position i  on machine unit j where i  = 

1,2,..,n  and j = 1,2,..,m. 
Ei is the period where a job at position  i  finished before its due date  = max{di 

– Ci,m , 0 } where i  = 1,2,..,n . 

Ti is the time period a job at position    i   finished after its due date  =  

max{ Ci,m – di, 0 } where i  = 1,2,..,n. 

For the first constraint, the time that a job finished at position 1 is not less than the 
time period to process the job. The second constraint says that the two jobs on the 
same unit must execute after one another. They cannot be overlapped. The third con-
straint says that the job on the same unit can start after the first job is finished at least 
8 hours. The last constraint says that the finished time of each job on the last unit 
must be equal to its due date subtracted by the period that its finishes early or added 
by the period that its finishes late.  
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We measure the efficiency of the schedule using the following terms. 

1. Mean flow time: it is the average flow of jobs in the system, computed by the 
equation. 1

 (5)

where    is the flow of job i. 

 is the time that job  i is finished.  
For a schedule, we want a schedule that has a small mean flow time.  
2.  Mean Tardiness: is the average tardiness of a job in the system.  1

 (6)

where   0,  L  is the Time that job i finished before or after due date= (Ci - di) if the value is 

negative, L   = 0 which means that the job is finished before the due date. If positive, L   = 1, then the job is finished after the due date  
3. The number of tardy jobs: is the number of jobs that are finished after the due 

date. It is computed by  

 (7)

where  = 1 when    > 0 

        = 0 when   ≤ 0 
Our goal also wants to minimize the number of tardy jobs. 

4   Heuristic 

Figure 2 shows the heuristic. First, the order is taken. Then the schedule is performed. 
We perform using EDD first. Then we check the schedule. If the due date is the same, 
we use FCFS for those. Then we check if the order date is the same, we use SPT for 
those. Then, we check the schedule if  we can make on time, report the schedule. If 
not we need to adjust the due date and then the schedule is finalized. 

 
 
 

 

 
 

Fig. 2. Algorithm for schedules all orders 

The algorithm assumes that we have the orders in prior. We test the algorithm with 
the real production data.  The experimenopts are in the following section. 
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Table 2. Data Set Sample I 

Order. No  Model 

Type  / # seats 

1 
- 

se
at

 

2 
- 

se
at

s 3 
- 

se
at

s 

Si
ng

le L
ef

t-
A

rm
ed

R
ig

h
t-

ar
m

ed

C
or

ne
r

St
oo

l

EQ-038/08 Arclusis   4 23 
  Arclusis   21 12 
EQ-040/08 Leon   11 11 11 11 
  Joy   12 12 
  Cocoon   14 17 
EQ-043/08 Arclusis   17 17 27 18 18 18 
EQ-044/08 Arclusis   20 20 
  Arclusis   30 15 15 15 
EQ-045/08 Doze   17 22 
  Doze   17 21 
EQ-046/08 Joy   14 
  Toledo   70 
  Dice   50  

 5   Examples 

We compare our heuristics to conventional ones such as FCFS, SPT, LPT in terms of 
mean flow time ( ) , mean tardiness time (T’), and the number of delayed jobs (NT). 
Also, we compare our solution to the linear programming solution. The results are 
presented in the following. 

5.1   Sample Data Set 

We took a sample data from a sofa factory. The data contains the order for one month. 
The data is presented in Table 2. In the table, Column “Type/#Seats” shows types of 
the sofa and the number of seats for a given model name (Column “Model”). Under 
each of these type columns, the number of order is shown.  

Table 3. Time Spent for each order and schedule for sample data set 1 

Tasks 
Time to execute each order (day) (Pi,j) 

038 040 043 044 045 046 

CUTTING& SEWING 30 40 35 36 39 26 
CUSHION ASSEMBLY 35 31 39 41 31 11 

MAIN  ASSEMBLY1 30 29 34 36 27 30 
MAIN  ASSEMBLY2 33 49 46 47 36 49 

Total Time (days) 128 149 154 160 133 116 
Assuming the worker works 8 hrs per day. 

Order date 5/8/08 30/8/08 5/9/08 5/9/08 5/9/08 11/8/08 
Due date 17/10/08 2/10/08 27/10/08 27/10/08 3/10/08 13/10/08  

Table 3 presents order information for Table 2. We pre-compute the time spent for 
each order according to the sofa model. The time spent here is recorded for each step 
of the production. This assumption is taken since we know the sofa model, the steps 
taken for each model and the standard time for each step accordingly. Under a grouped 
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Table 4. Schedule for sample data set 1 

Methods 
Task order 

038 040 043 044 045 046 

Heuristic 4 1 5 6 2 3

FCFS 1 2 3 4 5 6

 SPT 2 4 5 6 3 1
LPT 5 3 2 1 4 6  

Table 5. Comparison for all schedules for data set I 

Factor Heuristic FCFS SPT LPT 

 (min) 169.83 298 231 179.17 

 (min) 0 0 0 38 

 (min) 0 0 0 2 
 

Table 6. Comparison for all schedules for data set II 

Factor Heuristic FCFS SPT LPT 

 (min) 206.17 208 179.67 224 

 (min) 0 0 345 0 

 (min) 0 0 2 0 
  

 

Fig. 3. Software for managing the proposed production planning 

column “Time to execute each order”, there are order numbers corresponding to each 
row of Table 2. Under each order number column, the number of days for each order is 
written.  Then the order date and the due dates are described for each order. 
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Table 7. Legend for Figure 4 

Steps Our heuristic Actual 
CUTTING & SEWING       _____________       _____________ 
CUSHION  ASSEMBLY       _____________       _____________ 
MAIN  ASSEMBLY1       _____________       _____________ 
MAIN  ASSEMBLY2       _____________       _____________  

 
Table 4 shows the order for each task for different approaches. Table 5 presents the 

comparison for the , , and  values. We can see that our approach has the 

smallest ,  while FCFS has the largest value of mean flow time. LPT has two tardy 
tasks. We also test again against the data set II. Though the data set is not shown here, 

it is shown that our heuristic give the smallest  . Also, in this case SPT, has two 
tardy tasks (Table 6). 

We also verify our results compared to the linear programming model (in Section 3). 
We used LINDO to solve the equations and found that our solution are exactly the same 
as in that of the linear programming solution. Hence, from the experiments, it is 
shown that the proposed heuristic performs quite well. 

We implement our algorithm in the planning software in Figure 3. The software 
contains database for each sofa model and type including standard time for each step. 
After it takes order information, it suggests the schedule based on our algorithm. It 
shows the schedule suggesting whether the orders can be accomplished on time and if 
not, how the due date can be adjusted. 

Figure 4 compares the schedule produced by our software to the real production. 
Table 10 shows legends for each step for each approach. We can see that the proposed 
schedule is still optimistic. In reality, factors such as the readiness of the task, should 
be considered. This will be added in the further. In the actual production, there exists  
a problem of availability of resources such as human labor, materials which makes the 
tasks even delay.  

6   Conclusion 

We proposed a heuristic and software for sofa production planning. Our heuristic 
considers the due date, the order date, and the processing time. We compared to the 
conventional approach which considers only each factor such as EDD, SPT, LPT. It is 
found that our heuristic performs better. Also, we verify the solution obtained by our 
heuristic with the integer linear programming model. It is seen that our solutions are 
closed to the linear programming solution. We integrate our algorithm into the pro-
duction planning software. The software has a database for the models, types of sofa, 
steps to performs and standard time. It computes the schedule using our heuristic. We 
compare our schedule with the actual schedule in the production. It is seen that our 
schedule is still optimistic since the readiness of the tasks are not yet considered. If so, 
the schedule will be more realistic. This will be considered in the software in the 
future. 
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Abstract. This paper presents the main results of our on-going work,

one month before the deadline, on the 2009 UC San Diego data min-

ing contest. The tasks of the contest are to rank the samples in two

e-commerce transaction anomaly datasets according to the probability

each sample has a positive label. The performance is evaluated by the lift

at 20% on the probability of the two datasets. A main difficulty for the

tasks is that the data is highly imbalanced, only about 2% of data are

labeled as positive, for both tasks. We first preprocess the data on the

categorical features and normalize all the features. Here, we present our

initial results on several popular classifiers, including Support Vector

Machines, Neural Networks, AdaBoosts, and Logistic Regression. The

objective is to get benchmark results of these classifiers without much

modification, so it will help us to select a classifier for future tuning.

Further, based on these results, we observe that the area under the ROC

curve (AUC) is a good indicator to improve the lift score, we then propose

an ensemble method to combine the above classifiers aiming at optimiz-

ing the AUC score and obtain significant better results. We also discuss

with some treatment on the imbalance data in the experiment.

1 Introduction

The 2009 UC San Diego data mining contest is a yearly competition for under-
graduate students, graduate students, and postdoctoral researchers in colleges
since 2004. The goal of this year’ contest is to design computational methods
to rank the example in the two datasets, where data are from anomalous web
transactions, according to the probability each example has a positive label. The
following is a description of the data and we summarize them in Table 1.

– The contest consists of two tasks, one is named “easy” and the other is named
“hard”. They are two datasets involving 19 features from web transaction
anomaly data, where two features are the state and email information of the
transaction and the other 17 features can be deemed as continuous features.
The features corresponding to state and email information are categorical
features.
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Table 1. Data Description

Task # Feature
Train

Test
Total Positive Negative

Easy 19 94,682 2,094 92,588 36,019

Hard 19 100,000 2,654 97,346 50,000

– For the task 1 (the “easy” task), the training data consist of 94,682 examples
and the test set consists of 36,019 examples. The test set is drawn from the
same distribution as the training set.

– For the task 2 (the “hard” task), the training data consist of 100,000 exam-
ples and the test set consists of 50,000 examples, where the test set is drawn
from the same distribution as the training set.

There are difficulties encountered from the distribution of the data as well as
the evaluation criterion:

– The class distribution in the datasets is highly imbalanced. There are roughly
fifty times as many negative examples as positive. In this case, standard
classifiers tend to have a bias in favor of the larger classes and ignore the
smaller ones.

– The evaluation criterion is lift at 20% on the probability each example has a
positive label of the datasets. That is, it takes the first 20% of the sorted list
of predicted values with the biggest values, and makes a list of the original
indices of this top 20%. The result counts the number of true positives in
the list. That means a perfect classifier can get the best score as 5. The
evaluation is different to the objective in standard classifiers, which aim at
optimizing the error rate.

Based on the data characteristics and specific evaluation criterion, we first pre-
process the data on the categorical features and normalize them. Here, we present
the results of our first stage testing. Hence, our objective is to test on several
popular classifiers, including Support Vector Machines (SVMs), Neural Networks
(NNs), AdaBoosts, and Logistic Regression, to get their benchmark results, with-
out much modification. These basic results can be used to choose a better clas-
sifier for further tuning. Further, after observing that the area under the ROC
curve (AUC) [3,5] is a good indicator to improve the test performance, we then
ensemble the above four classifiers to get a powerful classifier by optimizing the
AUC score. Significant better results are obtained on both tasks.

The rest of this paper is organized as followings: In Section 2, we illus-
trate the test procedure and describe the methodologies adopted. In Section 3,
we detail the procedure of parameter seeking on the models, the current re-
sults, observations, and our other testing. Finally, we conclude the paper in
Section 4.
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2 Flow and Methodologies

The test consists of three main processing steps: 1) data preprocessing, including
categorical features preprocessing and data normalization; 2) classifiers building
with parameters tuning and models ensemble; 3) output of test results: the
probability of each sample being assigned to positive label. In the following
subsections, we will describe the above procedure in details.

2.1 Data Preprocessing

The data consist of 17 continuous features and two categorical features contain-
ing the state and the email information. For the state feature, there are 54 states
in the transaction datasets. Most transactions are recorded the state as “CA”
and some states, e.g., “AE”, “AP”, etc. only appear in several transactions.
Hence, we categorize the state feature based on the number of the transaction
happened on the state. Concretely, we first set the state as a specific category
when the number of the transaction on that state is in one digit order. Next, we
set the state into a new category based on the number of transactions in the order
of each 100, each 1,000, and 10,000. After that, we obtain 20 and 17 categories
to represent all 54 states in the state feature for the “easy” task and the “hard”
task, respectively. We then expand the state feature into a 20-dimensional and
17-dimensional features with 1 indicating the corresponding categorized state
and 0 when the state does not appear in that transaction and that category.

In the email feature, some domains, e.g., ‘AOL.COM’, ‘COMCAST.NET’, etc.,
appear frequently. Other domains, e.g., ‘.MIL’, etc., seldom appear in the transac-
tions. Similarly, based on the frequency of domains appearing in the transactions,
we categorize the email domains into 19 types and expand the email feature into
19-dimensional features.

After concatenating the continuous features with expanded state features and
expanded email features, we obtain the corresponding training data and test
data. We further use a standard method to normalize them: making the sum
square for each feature in the training data to 1, and normalize the test data
according to the weight in the training data. Due to the number of features
is relative small comparing to the number of training data, we do not perform
feature selection on both tasks further.

2.2 Classifiers

In the test, we first explore several popular classifiers, including Support Vector
Machines (SVMs) [21], Adaboost [19], Neural Networks [2], and Logistic Regres-
sion [8], to get their benchmark results. These results are used to select a better
classifier for further tuning.

Support Vector Machines. Highly imbalance of the data is a major difficulty
in the contest. To solve the imbalance problem, in SVM, we seek a decision
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boundary, f(x) = wT x+b, where w ∈ Rd and b ∈ R, by adding different weights
on the cost of different label of data as follows:

min
w,b,ξ

1
2
wT w + C+

∑
i:yi=1

ξi + C− ∑
i:yi=−1

ξi (1)

s.t. yi(wT xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N.

where training data are {(xi, yi)}N
i=1, with N instance-label pairs. C+ and C−

are weights of training errors with respect to the positive and negative samples,
respectively. In the test, we set C+ to be 50 times larger than C−. Since the
task is in large scale, we just seek linear classifier for SVMs. The output scores
are then re-scaled by 1/(1 + exp(−f(x))).

Here, we adopt a very basic routine on the SVMs to get benchmark results.
Other methods, e.g., support vector method for the AUC score [12] may be
adopted to get better performance; probability output of svms [17] may be
adopted to fit the evaluation metric of the task.

Neural Networks. Neural networks (NNs), also called artificial neural net-
works, are computational models that can capture the non-linear property or
structural relation embedded in the data [2]. Their powerful computation ability
motivates us to test the performance on the tasks. Here, we adopt a radial basis
function (RBF) network, which uses radial basis functions as activation func-
tions and combines these radial basis functions in a linear form. Here, we use an
implementation of a RBF network in [16]. The drawbacks of the RBF network
are that there are some parameters need to be tuned and the model is easy to
seek a local optimal solution.

Adaboost. Boosting is a very efficient and effective method to find a classifica-
tion rule by combining many “weak” learners, in particular when each of which
is only moderately accurate. In the test, we also tried tried the AdaBoost [19].

The main idea of AdaBoost is to construct a highly accurate classifier by
combining many weak learners. The weak learners are only moderately accurate
but should be diverse. Currently, there are some extensions or generalizations
from the basic AdaBoost algorithm first introduced by Fruend and Schapire [6].
These extensions include the Real AdaBoost [19], the Modest Adaboost [22],
and etc.

Here, we choose Real AdaBoost [19] implemented by [20], which supports real-
value prediction and obtains better performance. The weak learner we used is clas-
sification and regression tree (CART). This is because CART is inherently suited
for imbalanced dataset since its tree is constructed according to the correct clas-
sified ratio of positive and negative examples and the model selection procedure
can be done simply and efficiently by iteratively increasing the number of weak
learners and stopping when the generalization ability on the validation set does
not improve. In the test, we change the number of splits in the CART and the
number of iterations for the Real Adaboost to get a better benchmark result.
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Logistic Regression. Logistic regression (LR) [8] is a standard tool to predict
the probability of occurrence of an event by fitting data to a logistic curve. It
can output the probability directly, which exactly fit the evaluation criterion of
the contest. The output of logistic regression is a probability in the following
form:

PLR =
1

1 + e−(wT x+b)
, (2)

where the parameters w and b are estimated by maximum likelihood. The ad-
vantage of the logistic regression is that there is no parameter to be tuned and
the model can achieve relative better results.

2.3 Models Ensemble

Literature states that combining divergent but fairly high performance models
into an ensemble can usually lead to a better generalization performance [7,13,14].
Other than combining divergency, ensemble method may also play the role of
voting to help the generalization performance [18]. Here, we combine the output
of the above four base classifiers in a linear form as follows:

Pfinal = w1 ∗ PSV M + w2 ∗ PRBF + w3 ∗ PAdaboost + w4 ∗ PLR (3)

The above weights, wi, i = 1, . . . , 4, are selected uniformly from [0, 1] to tune
a powerful ensemble classifier. The voting scheme is then incorporated by the
values of the weights. Large value in the corresponding weight means that it
votes towards the result of the corresponding classifier.

From the preliminary results on individual classifiers, we notice that the test
performance, or the lift score, is proportional to the AUC score. A higher AUC
score on the training data corresponds to a higher lift score on the test data.
Hence, in tuning the ensemble model, we seek to optimize the AUC score of the
model. Since wi can be set to 0, some models will be automatically discarded
when seeking a better ensemble model.

3 Experiments and Current Results

In the test, we first test the basic performance of individual models. In order to
quickly obtain preliminary results, we use different training size on the models.
More specifically, we randomly split the training data into 10 folds, where nine
folds are used for training the SVMs, RBF nets, and Logistic Regression, and the
rest fold is used to test the AUC score of these models. For the Real AdaBoost,
we use only one twentieth of the training data in the training procedure and use
the rest for test, due to the computation consideration. Since only one submission
is allowed in one day for the contest and we observe that the AUC score is a good
indicator to attain better test result, we apply the trained classifier corresponding
to highest AUC score in each individual model for the test data to get the lift
score. In the following, we detail the parameters seeking in different models:
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Fig. 1. Validation results curve on the training data

SVMs: an SVM implemented by LibSVM [4] with linear kernel is adopted due
to the computational consideration. The parameter of C− in SVMs is tested
from 10−4 to 103 and C+ is set to 50 times larger than C−.

AdaBoost: the Real AdaBoost implemented by [20] are tested with different
number of splits in the tree and different number of maximum iteration. The
number of splits in the tree is enumerated from 1 to 4 and the maximum
iteration is tested from 5 to 100 with each step being 5.

NNs: RBF nets implemented by [16] are tested the number of inner nodes
from 1 to 10 with other parameters being default.

Logistic Regression: no parameters need to be set.
Ensemble Model: weights, wi, i = 1, . . . , 4, are selected uniformly from [0, 1]

to tune a powerful ensemble classifier on the obtained above best models.

We show the results of individual models in Fig. 1 and report the best re-
sults obtained for all models in Table 2. From results, we have the following
observations:

– The parameter C in SVMs is less sensitive to the task 1 and less sensitive to
the task 2 when C is large.

– The AUC scores increase as the number of inner nodes increases for RBF
nets and become less sensitive when the number of inner nodes is large.
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Table 2. Results on different models. Lift scores are obtained when uploaded the

results on the test sets. AUC scores are results on the inner test sets.

Method
Easy Hard

AUC (%) Lift AUC (%) Lift

SVM 88.5 3.699 79.7 2.771

RBF 74.0 1.964 72.4 2.664

AdaBoost 90.3 3.826 81.1 3.024

LR 90.1 3.82 80.1 2.984

Ensemble 92.0 4.235 82.2 3.115

– The AUC scores decrease as the number of split nodes increases for both
tasks. They attain the maximum scores when the number of iterations equals
50 for both tasks.

– For individual models, Adaboost obtains the best lift score and AUC score
for both tasks while Logistic Regression attains the second best lift score and
AUC score. A higher AUC score on the test result of the training dataset
corresponds to a higher lift score obtained from the submitted results.

– After obtained the ensemble model, we obtain a significant improvement on
both AUC score and lift score for both tasks, which are the best among
all the models. The experimental results indicate that the ensemble model
works like as a voting scheme: a model with better performance has a larger
weight.

In the above, we report the preliminary results on the contest. Since the number
of given features is relative small, there may be non-linearity embedded in the
data, we also use some techniques, e.g., spline [23], to expand the features and
achieve better results. Finally, we find that a bottleneck is the highly imbalance
in the data. Usually, standard classifiers tend to bias in favor of the larger class
since by doing so it can reach high classification accuracy. Researchers usually
adopt methods such as down-sampling of major class, up-sampling of minor class,
or class-sensitive loss function, to tackle the imbalance data problem [15,24]. A
more systematic method, the Biased Minimax Probability Machine, to solve
the imbalance data problem is also proposed in the literature [11,10,9]. Due to
computation consideration, for Adaboost, we modify the model by adjusting
the dependent variable [1]. For other methods, we adopt a standard method,
down-sampling on the negative samples, to alleviate the imbalance problem.
However, the above methods are in heuristic way and data dependent. Seeking
good parameters or good sub-samples is time consuming and we do not find
much improvement on it. After trying several other methods, we can improve
the lift score to 4.26 for the “easy” task and 3.19 for the “hard” task. Our results
are ranked in top 20 for the “easy” task and top 10 for the “hard” task in one
month before the deadline.
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4 Conclusions

In this paper, we summarize our on-going work on the 2009 UC San Diego data
mining contest. We have preprocessed the categorical features and tested on
several standard classifiers, e.g., SVMs, RBF nets, AdaBoost, and Logistic Re-
gression, without much modification, to get the preliminary results. The results
reported in this stage can be used as reference to select classifiers for further
tuning. Further, after notice that the AUC score on the training data is a good
indicator to improve the lift score on the test data, we propose an ensemble
model to optimize the AUC score and achieve significant better results.

References

1. Bell, R.M., Haffner, P.G., Volinsky, J.C.: Modifying boosted trees to improve per-

formance on task 1 of the 2006 kdd challenge cup. ACM SIGKDD Explorations

Newsletter 2, 47–52 (2006)

2. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,

Oxford (1996)

3. Bradley, A.: The use of the area under the ROC curve in the evaluation of machine

learning algorithm. Pattern Recognition 30(7), 1145–1159 (1997)

4. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001),

http://www.csie.ntu.edu.tw/~cjlin/libsvm

5. Fawcett, T.: An introduction to roc analysis. Pattern Recognition Letters 27,

861–874 (2006)

6. Freund, Y., Schapire, R.E.: Game theory, on-line prediction and boosting. In: Proc.

of the Ninth Annual Conference on Computational Learning Theory, pp. 325–332

(1996)
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Abstract. In contrast to traditional machine learning algorithms, where all data
are available in batch mode, the new paradigm of streaming data poses additional
difficulties, since data samples arrive in a sequence and many hard decisions have
to be made on-line. The problem addressed here consists of classifying streaming
data which not only are unlabeled, but also have a number l of attributes arriving
after some time delay τ . In this context, the main issues are what to do when the
unlabeled incomplete samples and, later on, their missing attributes arrive; when
and how to classify these incoming samples; and when and how to update the
training set. Three different strategies (for l = 1 and constant τ ) are explored
and evaluated in terms of the accumulated classification error. The results reveal
that the proposed on-line strategies, despite their simplicity, may outperform clas-
sifiers using only the original, labeled-and-complete samples as a fixed training
set. In other words, learning is possible by properly tapping into the unlabeled,
incomplete samples, and their delayed attributes. The many research issues iden-
tified include a better understanding of the link between the inherent properties
of the data set and the design of the most suitable on-line classification strategy.

Keywords: Data mining, Streaming data, On-line classification, Missing
attributes.

1 Introduction

Most of traditional learning algorithms assume the availability of a training set of la-
beled objects (examples or instances) in memory. In recent years, however, advances in
information technology have lead to a variety of applications in which huge volumes of
data are collected continuously, thus making impossible to store all data, or process any
particular object more than once. Under these circumstances, data are not available as a
batch but comes one object at a time (called streaming data). In general, a data stream
is defined as a sequence of instances [2, 11]. Data streams differ from the conventional
model in important elements [4] that bring new challenges: (i) The objects in the stream
arrive on-line; (ii) The system has no control over the order in which incoming data ar-
rive to be processed; (iii) Data streams are potentially unbounded in size.

Classification is perhaps the most widely studied problem in the context of data stream
mining. Although substantial progress has been made on this topic [1,6,14], a number of
issues still remain open. For example, many classification models do not make adequate
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use of the history of data streams in order to accommodate changes in class distribution
(known as concept drift [8,15,16]). The scenario we consider in this paper faces a new
problem that may appear in several real-world applications. We assume that each object
of a data stream is a vector of d attribute values without a class label. The aim of the
classification model is to predict the true class of each incoming object as soon as possi-
ble (ideally, in real time). However, suppose that the attribute values are obtained from
different sensors. These may produce that the attribute values will become available at
different times if some sensor requires more processing time to compute an attribute
value than the others or even, if some sensors fail. Therefore we are considering the
problem of classifying streaming data where one or more attributes arrive with a delay.
As an example, when a sensor fails in a production process, it might not be feasible to
stop everything and in this case, the system should employ the information available at
present time. Three main issues here are: (i) How to classify the incoming sample with
missing attributes; (ii) Whether to update the training (reference) set after predicting the
class label of an incomplete object or wait until the attribute vector has been completed;
and (iii) What to do when the missing attributes arrive.

In the literature, there exist many algorithms for handling data with missing attributes
in off-line learning [7, 9, 10], but no one is absolutely better than the others. The most
representative categories of these are:

1. Removing examples with missing attributes: The simplest way of dealing with
missing values is to discard the examples that contain the missing values. This
technique may lose relevant information.

2. Projection: The l missing attributes are ignored. This implies to map the d dimen-
sional input vectors onto an (d− l) instance space.

3. Imputation: It tries to guess the missing values. In fact, usually missing values
depend on other values, and if we find a correlation between two attributes, we
may use it to impute missing items. Imputations may be deterministic or random
(stochastic). In the first case, imputations are determined by using the complete
data, and are the same if the method is applied again. In the second case, imputa-
tions are randomly drawn.

Despite the problem of missing attributes has been widely studied in off-line learning, to
the best of our knowledge it has not previously been considered in the context of on-line
learning with streaming data, which makes the problem considerably more challenging.
This paper reports a preliminary study of three straightforward strategies for an early
classification of streaming data with missing attributes. By early we mean that classifi-
cation of an incoming object is done before the whole attribute vector is known. Many
applications can benefit from performing this early classification, since there may be
some kind of loss associated with waiting for the missing attributes to arrive. In the
present work we concentrate on the case of a single missing attribute which happens to
be the same and arrive with a constant delay.

2 Classification of Streaming Data with Delayed Attributes

At time step t in the scenario of attributes arriving with a delay, we have a reference
set St (a set of labeled examples with all attributes available). Then, a new unlabeled
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object xt+1 with one missing attribute x
(i)
t+1 arrives. After predicting the label for xt+1,

the system receives the value of the attribute x
(i)
t−τ+1 corresponding to the object that

came τ steps earlier, xt−τ+1. Therefore, objects from xt−τ+2 to xt+1 are still with one
missing attribute.

Here, one key question is whether to use the unlabeled data with missing attributes
to update the reference set St and in such a case, how to do it. In addition, we have to
decide how to best utilize the value of the missing attribute x

(i)
t when this arrives.

When a new unlabeled object xt+1 arrives, the system has to provide a prediction
for its label based on the information available up to time t. In this situation, it would
be desirable to make use of the confidence with which the previous classifications have
been made. That is why a modification of the k-Nearest Neighbors (k-NN) rule [17] is
here used, since its stochastic nature results suitable to properly manage the confidence
measurements. On the other hand, for handling the missing attribute of object xt+1, we
employ the projection strategy because of its simplicity and its proven good behavior.

2.1 A Classifier with Confidence Measurements

All instances in the reference set have a confidence value for each class, indicating the
probability of belonging to the corresponding class. When a new unlabeled object xt+1

from the data stream arrives, its confidence values (one per class) are estimated. Thus
the object will be assigned to the class with the highest confidence value.

To estimate the confidence values of the incoming object xt+1, its k nearest neigh-
bors (NN) from the reference set St are used. The confidences of its k nearest neighbors,
which contribute a weight by each class to the object xt+1, and the distances between
them and the new object xt+1 are also employed. More formally, let k be the number
of nearest neighbors, let nj be the j-th nearest neighbor of xt+1, let pm(nj) denote
the confidence (probability) that the j-th nearest neighbor belongs to class m, and let
d(xt+1,nj) be the Euclidean distance between the object xt+1 and nj . The confidence
of the object xt+1 in relation with the class m, say Pm(xt+1), is given by:

Pm(xt+1) =
k∑

j=1

pm(nj)
1

ε + d(xt+1,nj)
, (1)

where ε is a constant value (ε = 1), which is employed to avoid uncertain values in the
division when the object xt+1 is very similar or very close to its j-th nearest neighbor.

The above expression states that the confidence that an object xt+1 belongs to a
class m is the weighted average of the confidences that its k nearest neighbors belong
to class m. The weight is inversely proportional to the distance from the object to the
corresponding k nearest neighbors. In order to get a proper probability, the confidence
Pm(xt+1) in Eq. (1) is divided by the sum of the confidences of the k nearest neighbors
to all the c classes:

pm(xt+1) =
Pm(xt+1)∑c
r=1 Pr(xt+1)

, (2)

As the objects of the reference set St are labeled elements, their confidence values were
initially set to 1 for the true class (the class to which they belonged), and zero for the
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remaining classes. During the on-line learning, the confidence of all new objects added
into the training set will be updated according to the probability values of Eq. (2).

2.2 Managing Incomplete Objects and Their Delayed Attribute

Assuming that at step t we have a reference set St available, on-line classification of
incomplete data streams consists of three elements: (i) The technique to handle the sit-
uation of a missing attribute x

(i)
t+1 of the new unlabeled object xt+1; (ii) The classifier

to predict the class label for this object; and (iii) The strategy to manage the new infor-
mation derived from the value of the attribute x

(i)
t+1 when it arrives τ steps later.

Regarding the first issue, as stated before, the projection strategy is used: the arriving
object as well as those in the reference set are simply mapped onto the d−1 dimensional
space. Second, as for the prediction of the class label for xt+1, the k-NN classifier based
on posterior probabilities (Sect. 2.1), is used. Finally, since it is not obvious which is
the best way to profit from the new information gained with the arrival of the attribute
x

(i)
t−τ+1 at time step t + 1, three different strategies are explored:

1. Do-nothing: This is a passive strategy where, while the incoming object is incor-
porated into the current reference set St, nothing is done when the value of the
missing attribute x

(i)
t−τ+1 arrives after τ time steps. However, the attribute value of

the corresponding object, xt−τ+1, is set to the value x
(i)
t−τ+1.

2. Put-and-reclassify: This is a proactive strategy differing from the do-nothing strat-
egy in that the object xt−τ+1 is also reclassified, this time using all attributes.

3. Wait-and-classify: This is a reactive strategy where, unlike the two previous strate-
gies, the new object xt+1 is not included in the reference set St until its missing
attribute is received after τ time steps. Only by then, the complete object is classi-
fied and incorporated into the reference set St+1+τ .

The different nature of these strategies will allow to gain some insight into which may
be the best way to proceed in the context of on-line classification of streaming data with
missing (but delayed) attributes. This will also provide cues on what further research
avenues to follow. The assessment of the different strategies proposed has been done on
extensive experimental work, which is subsequently presented.

3 Experiments and Results

The experiments here carried out are directed to empirically evaluate each strategy des-
cribed in the previous section, pursuing to determine which of these is the most suitable
for the classification of incomplete streaming data. The ultimate purpose of this prelim-
inary study is to investigate whether the employment of attribute values that arrive with
a delay allows to improve the system performance or not.

Experiments were conducted as follows:

Data sets: Fifteen real data sets (summary of whom is given in Table 1) were employed
in the experiment. Data were normalized in the range [0, 1] and all features were
numerical. In the table, the data sets are sorted by increasing size.
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Table 1. Characteristics of the real data sets used in the experiments

Data set Features Classes Objects Reference Set Data Stream Source
iris 4 3 150 12 138 UCI1

crabs 6 2 200 12 188 Ripley2

sonar 60 2 208 120 88 UCI
laryngeal1 16 2 213 32 181 Library3

thyroid 5 3 215 15 200 UCI
intubation 17 2 302 34 268 Library

ecoli 7 8 336 56 280 UCI
liver 6 2 345 12 333 UCI
wbc 30 2 569 60 509 UCI

laryngeal2 16 2 692 32 660 Library
pima 8 2 768 16 752 UCI

vehicle 18 4 846 72 774 UCI
vowel 11 10 990 110 880 UCI

german 24 2 1000 48 952 UCI
image 19 7 2310 133 2177 UCI

1UCI [3]
2Ripley [12]
3Library http://www.bangor.ac.uk/˜mas00a/activities/real_data.htm

Partitions: For each database, 10 runs were carried out. A random stratified sample of
d × c, being d the number of attributes and c the number of classes, was taken as
the initial labeled reference set S0. The remaining part of each database was used
as the incoming on-line streaming data. To simulate independent and identically-
distributed sequences, the data were shuffled before each of these 10 runs.

Incomplete objects: A new object with one missing attribute from the on-line data
was fed to the system at a time step. Both the most and the least relevant attributes
of each database were simulated to be missing. Attribute relevance was estimated
by means of the Jeffries-Matusita distance [5].

Delay: The value of the missing attribute comes after τ = 5 time steps. When the de-
layed attribute arrives, the corresponding object is completed with the true attribute
value.

Classification: At each time step t, the respective strategy to handle delayed attributes
was applied. The accumulated classification error (the total number of misclassifi-
cations divided by the number of samples processed up to t) was computed. In this
way we created a progression curve (trend line), which is the classification error as
a function of the number of on-line objects seen by the classifier. The results were
averaged across the 10 runs giving a single progression curve for each data set.

For each of the 10 runs of the experiment, all strategies received the same partitions of
the data into initial labeled reference set and streaming data set. These on-line data were
presented to all methods in the same order so that performance differences can not be
attributable to different data (order).

http://www.bangor.ac.uk/~mas00a/activities/real_data.htm
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3.1 Results

Table 2 reports the average errors estimated across all incoming objects for each strat-
egy. To evaluate whether the performance improves at all with streaming data, we have
also included the error using only the initial reference set S0. For each database, the
first row corresponds to the classification errors when the least relevant attribute arrives
with a delay. The second row is for the most relevant attribute. Highlighted in bold are
the results being better than those obtained by using only the initial reference set for
classification. Underlined values correspond to the best strategy for each database and
each attribute. As can be seen, out of the 15 databases, the strategies here proposed give
better results than using the initial reference set on 14 cases when the missing attribute

Table 2. Average errors estimated across all incoming objects

Initial Put-and- Wait-and-
Data set reference set Do-nothing reclassify classify

iris 0.1076 0.0954 0.0919 0.0893
0.1236 0.1134 0.1111 0.1093

crabs 0.4695 0.4332 0.4226 0.4313
0.4875 0.4341 0.4334 0.4456

sonar 0.2299 0.2205 0.2206 0.2207
0.2319 0.2225 0.2223 0.2239

laryngeal1 0.1974 0.2033 0.2044 0.2051
0.1931 0.1915 0.1915 0.1957

thyroid 0.1860 0.1639 0.1751 0.1763
0.2531 0.2336 0.2158 0.2168

intubation 0.3214 0.3714 0.3631 0.3655
0.3581 0.3899 0.3859 0.3838

ecoli 0.2060 0.2146 0.2115 0.2120
0.1834 0.1841 0.1786 0.1782

liver 0.4689 0.4610 0.4607 0.4648
0.4732 0.4686 0.4631 0.4695

wbc 0.0427 0.0417 0.0414 0.0423
0.0467 0.0432 0.0411 0.0428

laryngeal2 0.0545 0.0538 0.0533 0.0526
0.0538 0.0526 0.0524 0.0516

pima 0.3120 0.3290 0.3271 0.3287
0.3415 0.3383 0.3353 0.3400

vehicle 0.4451 0.4336 0.4334 0.4368
0.4383 0.4366 0.4337 0.4339

vowel 0.4410 0.4180 0.4162 0.4169
0.4960 0.4608 0.4530 0.4541

german 0.3156 0.3225 0.3216 0.3202
0.3367 0.3434 0.3350 0.3334

image 0.1204 0.1117 0.1169 0.1166
0.1410 0.1269 0.1254 0.1251
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corresponds to the most relevant, and on 10 for the least relevant attribute. Performance
differences are small among the proposed strategies as well as between each of them
and the baseline case.

Detailed results for two databases are provided in Fig. 1, with the x and y axes
representing, respectively, the number of objects fed to the system at each time step, and
the accumulated classification error averaged over the 10 runs. The results on the vowel
database (Fig. 1(a)) are very interesting, since all the proposed strategies outperform
the baseline case (which uses only the full and labelled samples in the initial reference
set). Furthermore, the accumulated classification error decreases over time, which is a
clear evidence of how the system is learning from the incoming, incomplete, unlabeled
samples. Finally, in this case, where the delayed attribute was the one with the most
relevance, the strategies Put-and-reclassify and Wait-and-classify can be seen to work
better than Do-nothing. A likely explanation for this behavior is that, since the attribute
is important for the correct classification, it is worth waiting for the delayed attribute
to arrive either for reclassifying the object (Put-and-reclassify), or for incorporating the
object into the reference set only once it is complete (Wait-and-classify).

Results for the image database (Fig. 1(b)) illustrate again how the considered strate-
gies can boost the classification performance with respect to the conservative baseline
approach. Interestingly, it is the Do-nothing strategy which now behaves better than the
other two. Since the delayed attribute was the least relevant, it might happen that this
attribute is hindering the classifier rather than helping it. As a consequence, and in the
context of the projection technique that is being used in this work, it turns out to be
better to passively ignore the attribute when it arrives than trying to make the most of it.

While in all examples above the missing attribute was delayed τ = 5 time steps, it
is interesting to evaluate how the actual delay affects the performance of the strate-
gies under analysis. To this end, the same testing procedure was repeated for τ ∈
{5, 15, 30, 45} for several data sets. It was found that the Do-nothing and Put-and-
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Fig. 1. Average error computed for ten runs. The baseline case (i.e., using only the initial reference
set) is included for comparison with an off-line strategy. The missing attribute was either the most
(a) or the least relevant (b).
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Fig. 2. Average accumulated classification errors, using the Wait-and-classify strategy, when the
value of the missing attribute arrived τ = 5, τ = 15, τ = 30 and τ = 45 time steps after the
incomplete object. In both figures the delayed attribute corresponds to the most relevant.

reclassify strategies did not exhibit a significant performance difference for distinct
delays. However, differences were observed for the Wait-and-classify strategy, as il-
lustrated in Fig. 2 for two of the tested databases.

In those data sets where this strategy did not work well, such as intubation (Fig. 2(a)),
the accumulated error decreased when the delay increased. This can be explained as
follows: the missing attribute happens to be unimportant (even harmful) and therefore,
the longer it takes the attribute to arrive, the longer it takes to be incorporated into
the object (and then into the training set) and thereby, less time it is affecting in the
classification of subsequent objects. However, in cases such as sonar (Fig. 2(b)), where
this strategy tends to work well, the more the delay, the higher the error. In this situation,
the missing attribute appears to be necessary for the correct prediction of incoming
objects.

4 Conclusions and Further Extensions

We have explored three strategies for the classification of streaming data with a single
missing attribute. More specifically, we have presented a preliminary study for handling
on-line data where the complete attribute vector arrives with a constant delay. Despite
their simplicity, the results of the three strategies have shown some gains in performance
when compared to the use of the initial reference set. Although these benefits are still
marginal, the most important finding is that it seems possible to design some method to
consistently handle the incomplete data in on-line classification of data streams.

The ultimate purpose of this work was to describe a novel, relevant problem that can
be present in some real-world applications. Our study has revealed several interesting
research directions regarding the classification of streaming (and incomplete) unlabeled
data, such as: (i) An analysis of how the relevance of the missing attribute(s) affects the
different classification strategies; (ii) The design of more elaborated methods for early
classification of streaming data; (iii) The study of the benefits of different techniques



Exploring Early Classification Strategies of Streaming Data 883

for handling missing attributes; (iv) An analysis of the case where the environment does
change with time, and the reference sets will have to track these changes; and (v) An
exploration of a more general situation with more than one delayed attribute and varying
time delays.
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Abstract. In this paper, we investigate the impact of the non-numerical information 
on exchange rate changes and that of ensemble multiple classifiers on forecasting 
exchange rate between U.S. dollar and Japanese yen. We first engage the fuzzy 
comprehensive evaluation model to quantify the non-numerical fundamental  
information. We then design a single classifier, addressing the impact of exchange 
rate changes associated with this information. In addition, we also propose other 
different classifiers in order to deal with the numerical information. Finally, we  
integrate all these classifiers using a support vector machine (SVM). Experimental 
results showed that our ensemble method has a higher degree of forecasting accu-
racy after adding the non-numerical information. 

Keywords: exchange rate, forecasting, non-numerical information, support 
vector machine, classifier ensemble. 

1   Introduction 

With the development of economic globalization, exchange rate, as an important link 
of the international economic relations, is becoming more and more important. As a 
consequence, analyzing and forecasting the exchange rate accurately is of great  
significance, especially for making policies and investment decisions.  

However, predicting exchange rate has always been a very difficult task. It involves 
a large number of economic, political, military and other factors. Currently, the neural 
network has been widely used to forecast exchange rate and become the main method 
for forecasting. In the literature, different structures of neural networks have been 
adopted and they can usually achieve remarkable results [1-5]. De Matos compared the 
performance of the multilayer feedforward network (MLFN) and the recurrent neural 
network (RNN) with the Japanese Yen Futures forecasting. Hsu and others developed 
a clustering neural network (CNN) to forecast the direction of movement of U.S. Dol-
lar against German Mark. Similarly, combining the genetic algorithm and the neural 
networks, Shazly designed a hybrid neural network to predict the three-month forward 
rate of the Pound, German Mark, Japanese Yen and Swiss Franc.  

From the study above, the predicting accuracy obtained with a certain neural net-
work is usually higher than that of the traditional statistical prediction models and the 
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random walk model. However, there are still many limitations to this family of meth-
ods. First, these neural network based methods usually adopt a single classifier model, 
which may not be able to deal with a large number of input features adequately and 
appropriately. More importantly, due to the limited capacity of a single neural  
network and its inherit nature, these methods can merely utilize the quantified infor-
mation. As a result, the non-numerical information, proven to be critical for the pre-
diction accuracy, is usually discarded.  

In order to deal with these problems, we adopt an integration method so as to com-
bine multiple classifiers. We investigate the impact of non-numerical information for 
the exchange rate changes and engage a classifier ensemble method to forecast  
exchange rate between U.S. dollar and Japanese yen. First, we exploit the fuzzy com-
prehensive evaluation model to quantify the non-numerical fundamental information. 
Second, the corresponding single classifier is designed to present the impact of  
exchange rate changes with this information. In addition, other different classifiers are 
also proposed to deal with the numerical information. Finally, all these classifiers are 
integrated with a support vector machine (SVM).  

The rest of the paper is organized as follows. Section 2 describes the non-
numerical information quantification. And multiple classifiers ensemble is shown in 
Section 3. Section 4 describes experiments of forecasting exchange rate between U.S. 
dollar and Japanese yen. Finally, some conclusions and final remarks are set out in 
Section 5. 

2   The Non-numerical Information Quantification 

Exchange rate forecasting is a complex problem and involves many factors. Previous 
approaches merely adopt the numerical information. The non-numerical information 
which is difficult to be quantified is always discarded. However the impact of ex-
change rates changes with this information is also important and hence cannot be 
ignored. 

2.1   The Non-numerical Information Selection 

With analyzing the theories of exchange rate determination and considering the sig-
nificant impacts on exchange rate changes, we select several important non-numerical 
information items which mainly include the following six aspects: government and 
banking policy, market psychology, news media, oil price, political situation and 
unexpected factors.  

The above information is mainly from the following websites:  
http://edu.xinhuaonline.com; http://www.reuters.com/; http://www.fx185.com/.  
We collected a total of 85 trading days of the relevant information from January 1 

to May 2, 2008 about the United States and Japan, and study the non-numerical in-
formation for the impact of exchange rate changes between the two currencies. 

2.2   The Non-numerical Information Quantification 

The non-numerical information is quantified by the fuzzy comprehensive evaluation 
model [6]. The process is described as follows.  
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First, calculate the weight of the non-numerical information with the binary com-
parison method. Then, evaluate the degree of membership according to the size of the 
affection to exchange rate changes. At last, quantify the non-numerical based on the 
weight and the degree of membership.  

After calculation and analysis, the degree of impact is described as follows: Gov-
ernment and banking policy＞market psychology＞news media＞oil price＞political 
situation＞unexpected factors. According to this relationship, the weight of the  
non-numerical information is calculated. The results are shown in Table 1. 

Table 1. The matrix table and weight 

Indicators 
Government and 
banking policy 

Market 
psychology

News 
media

Oil 
price 

Political 
Situation

Unexpected
factors Σ  Weight 

Government and 
banking policy 

1 1 1 1 1 1 6 0.286 

Market psychology 0 1 1 1 1 1 5 0.238 

News media 0 0 1 1 1 1 4 0.190 
Oil price 0 0 0 1 1 1 3 0.143 

Political situation 0 0 0 0 1 1 2 0.095 

Unexpected factors 0 0 0 0 0 1 1 0.048 

Σ  1 2 3 4 5 6 21 1 

While computing the degree of membership, we mainly consider the impact of ex-
change rate changes. If the information is favorable to the exchange rate rising, its  
degree of membership is close to 1. Contrarily, it is close to 0. If the change of exchange 
rate is not obvious, it is 0.5. Because the exchange rate involves two countries, the 
membership degree of the two countries is contrary in the table. 

At last, we obtain the quantified value of this information with the weight and the 
degree of membership. Partial results are shown in Table 2. 

3   Classifier Ensemble for Exchange Rate Forecasting 

The exchange rate forecasting with multiple classifiers is proposed to deal with ex-
change rate changes with many economic indicators. First, we use different classifiers 
to deal with the economic indicator. Then we integrate these results from each single 
classifier. The classifier ensemble structure is shown in Fig. 1.  

Output

Output 1
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Output n

Classifier 

Integration

Input 1

Input 2
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Classifier 2

Classifier n
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˙

 

Fig. 1. The structure of the multiple classifiers system 
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Table 2. The non-numerical information quantification results 

America 
Information Government and 

banking policy 
Market 

psychology
News 
media 

Oil 
price 

Political 
situation 

Unexpected 
factors 

Weight 0.286 0.238 0.190 0.143 0.095 0.048 

Quantify 
value 

1/2/2008 0.5 0.4 0.5 0.3 0.5 0.5 0.4719 

1/3/2008 0.5 0.6 0.5 0.6 0.5 0.5 0.5224 
1/4/2008 0.6 0.5 0.6 0.6 0.5 0.4 0.5243 

1/7/2008 0.5 0.5 0.5 0.7 0.5 0.4 0.5152 

1/8/2008 0.5 0.5 0.6 0.3 0.4 0.5 0.5081 

1/9/2008 0.5 0.5 0.6 0.4 0.6 0.4 0.5180 
1/10/2008 0.5 0.4 0.4 0.6 0.5 0.5 0.4886 

1/11/2008 0.5 0.3 0.4 0.6 0.5 0.5 0.4691 

1/14/2008 0.5 0.6 0.5 0.4 0.6 0.5 0.5176 

1/15/2008 0.5 0.4 0.4 0.7 0.5 0.5 0.5100 
1/16/2008 0.5 0.4 0.4 0.6 0.4 0.5 0.4605 

1/17/2008 0.5 0.4 0.4 0.6 0.5 0.5 0.4786 

1/18/2008 0.7 0.3 0.4 0.4 0.5 0.5 0.4806 

1/22/2008 0.7 0.4 0.4 0.4 0.5 0.5 0.4701 
1/23/2008 0.5 0.6 0.5 0.6 0.5 0.5 0.5095 

1/24/2008 0.7 0.6 0.4 0.3 0.5 0.5 0.5262 

1/25/2008 0.5 0.4 0.5 0.4 0.5 0.5 0.4848 

… … … … … … … … 

3.1   Integrated Forecast  

The integrated forecast is based on the intuitive idea that by combining several sepa-
rate prediction models, the forecasting effect may be better than a single one [7].   

In the experiments, denote there are n separate classifiers to predict, and for any 
input x , the output is ( )if x , associated with the i classifier. The integrated prediction 

model is displayed as follows.  

1

( ) ( )
n

i
i

f x w f x
=

=∑ . (1)

where, the ( )if x  is the results of integrated forecasting, the weight of each individual 

classifier in integrated forecast is ( 1, 2, )iw i n= … , 0 1iw≤ ≤ ，

1
1

n

i
i

w
=

=∑ .  
The method of integrated forecast has advantages in reducing the variance of the 

forecasting error. However, how to calculate the weight and which integrated ap-
proach to be adopted are difficult problems. At present, there are two categories of 
methods, the linear integration and the non-linear integration. We use the integration 
of support vector regression prediction model to forecast the exchange rate. 

3.2   Ensemble Forecast with Support Vector Machine 

In order to overcome the problems caused by the neural networks, the SVM based 
method is designed [8-9]. It uses the support vector regression (SVR) to solve the 
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problem of weight in Eq. (1). The basic idea is using the structural risk minimization 
to obtain the weight vector of the integrated forecast. 

In fact, the support vector regression ensemble can be seen as a non-linear process-
ing system [10]. It is displayed as following.  

1 2( , , )ny f x x x= …  (2)

where, 
1 2( , , )nx x x…  is the forecast result of separate prediction model, y  is the inte-

grated forecast result, ( )f i  is a non-linear function which is confirmed by the SVR. 

The solving steps are described as follows. 
First, regress the forecast result of separate prediction model. Then, turn the results 

to the support vector using the kernel function. At last, study and output the optimal 
solution. The structure is shown in Fig. 2. 

Fig. 2. The integration of support vector regression prediction model 

4   Experiments and Analysis 

4.1   Data Sources 

In this paper, we select U.S. Dollar / Japanese Yen to forecast the exchange rate. The 
experimental data are from the website: http://www.federalreserve.gov/release/.  

We use the data of 61 days from January 2 to March 31, 2008 except for Weekends 
and holidays as the training set to establish the multi-classifier system. Similarly, we 
adopt the 24 days from April 1 to May 2, 2008 as the testing set. Specific data can be 
retrieved from the related websites.  

4.2   Data Preprocessing and Evaluation Criteria 

We first normalize the raw data of the exchange rate and transfer them into the special 
form which is suitable for the neural network processing. The data are mapped to [0.1, 
0.9] according to repeatedly tested and compared in the experiments. The mapping 
function is described as follows.  

…

…

y

1w
2w nw

1 2( , , , )nx x x x= …1x 2x
nx

1( , )K x x 2( , )K x x ( , )nK x x

1

( , )
n

i i
i

y w K x x b
=

= +∑

Non-linear 

transformation

Input : 

Output:
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( min)( )

max min

x h l
y l

− −= +
−

. (3)

where, y  is the standardized data, x  denotes the raw data, max  is the largest data of 

the raw data, min  is the smallest one and h  is the upper bound of a specific interval 
as well as l  is the lower bound, 0.1 0.9l h≤ ≤ ≤ . 

In order to evaluate the forecast performance, we use the Mean Absolute Error 
(MAE) and the Direction Accuracy (DA) as the evaluation criteria. The formula for 
calculating MAE is as follows. 

1

1
| |

N

i i
i

MAE x x
N =

= −∑ . (4)

where, ix is the forecast result, ix is the actual value, N  is the forecast period. 

However, from the perspective of investors, the MAE can not bring direct sugges-
tions to their investment. Due to the direction of exchange rate changes is more  
important for them to make decisions. So, we use the DA to evaluate the effect of 
forecasting.  

1

N
i

i

A
DA

N=

=∑ . (5)

Here, if  1 1( )( ) 0i i i ix x x x+ +− − ≥ , 1 .iA = Else, 0 .iA =  

4.3   Experimental Results and Analysis 

4.3.1   The Effectiveness of Non-numerical Information 
The quantified non-numerical information (in Table. 2) can be directly integrated with 
the exchange rate value and numerical index. In order to verify the effective of the 
quantitative methods and the selected information, we use the SVM and the RBF 
(Radial Basis Function) to carry out the experiment. Results are shown in Table 3 and 
Table 4 respectively.  

Table 3. The forecast results of SVM 

Input variables Not the non-numerical information The non-numerical information 

 MAE DA MAE DA 

Exchange value 0.0574 52.17% 0.0467 66.96% 
Exchange value and   

the large deposit rates 
0.0462 53.12% 0.0369 86.96% 

Exchange value and   
the bond yields 

0.0480 43.48% 0.0370 78.27% 

Exchange value and 
the lending rate 

0.0472 50.05% 0.0373 70.83% 

Exchange value and 
the treasury rates 

0.0509 53.41% 0.0403 65.22% 

Exchange value and 
the federal funds rate 

0.0465 50.15% 0.0372 75.12% 
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Table 4. The forecast results of RBF 

Input variables Not the non-numerical information The non-numerical information 

 MAE DA MAE DA 
Exchange value 0.0674 52.17% 0.0572 66.96% 

Exchange value and   
the large deposit rates 

0.0467 52.36% 0.0368 82.61% 

Exchange value and   
the bond yields 

0.0543 47.83% 0.0405 73.91% 

Exchange value and 
the lending rate 

0.0431 51.18% 0.0432 65.22% 

Exchange value and 
the treasury rates 

0.0508 53.62% 0.0382 83.58% 

Exchange value and 
the federal funds rate 

0.0438 54.17% 0.0384 66.67% 

Observed from the tables, the effect of forecast is better if we add the economic in-
dicators. Moreover, with the non-numerical information, not only the MAE indicator 
is significantly lower, but also the DA is improved greatly. It fully demonstrates that 
the six types of information, as well as quantitative methods are effective. 

4.3.2   The Integrated Forecast Results  
We use the above method to forecast the exchange rate. The output of single classifi-
ers forms a feature vector and the integration is seen as a secondary forecast.  

In the experiment, we adopt one single classifier to process every different economic 
indicator. The process is showed as follows: (1) study the implicit principles with single 
classifier, (2) integrate these forecast results from every single classifier, and (3) finally 
obtain the forecast results. The experimental results are shown in Table 5. 

Table 5. The integrated forecast results 

Input variables Not the non-numerical information The non-numerical information 

 MAE DA MAE DA 
Integrate all 

the indicators 0.0393 78.26% 0.0367 86.96% 

If we compare Table 5 with Table 3 and Table 4, the forecasting accuracy in terms 
of both MAE and DA is observed to be greatly improved and is much better than that 
of the single classifier. Additionally, the non-numerical information can also benefit 
the exchange rate forecasting. The results show that the integrated network can utilize 
different type of neural network architectures and information so as to make a better 
forecasting. It can overcome the defects of the single classifier and consequently 
achieves better performance. 

5   Conclusion 

In this paper, we adopt the integration method of multiple classifiers to forecast the 
exchange rate. We have investigated the impact of the non-numerical information on 
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the exchange rate changes between the dollar and Japanese yen. Experimental results 
showed that our integrated method effectively improved the performance of exchange 
rate forecast. Specially, the DA is improved greatly. However, how many economic 
indicators to be integrated for reaching the best effect of forecasting is still an open 
problem. We are aware of that, with the global financial crisis intensifying, the ex-
change rate forecasting is a big challenge, which needs more theories, methods, and 
technologies from all related fields, such as economics, mathematics, and computer 
science. We will investigate these issues in the future. 
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Erratum to “Backpropagation Learning Algorithm for Multilayer
Phasor Neural Networks” by Gouhei Tanaka and Kazuyuki Aihara

The part from the last equation in page 490 should be corrected as follows:
—— incorrect ——

ule
iϕl =

Nk∑
k=1

wlkeiθk =

(
Nk∑
k=1

wR
lk cos θk

)
+ i

(
Nk∑
k=1

wI
lk sin θk

)
,

which leads to

tanϕl =
ul sinϕl

ul cos ϕl
=

∑
k wI

lk sin θk∑
k wR

lk cos θk
.

By differentiating both sides with respect to θk, we obtain

1
cos2 ϕl

∂ϕl

∂θk
=

(wI
lk cos θk)(ul cos ϕl) + (ul sin ϕl)(wR

lk sin θk)
u2

l cos2 ϕl
.

Hence,

∂ϕl

∂θk
=

wR
lk sin θk sinϕl + wI

lk cos θk cos ϕl

ul
.

—— correct ——

ule
iϕl =

Nk∑
k=1

wlkeiθk

=
Nk∑
k=1

(
wR

lk cos θk − wI
lk sin θk

)
+ i

Nk∑
k=1

(
wI

lk cos θk + wR
lk sin θk

)
,

which leads to

tanϕl =
ul sinϕl

ul cos ϕl
=

∑
k

(
wI

lk cos θk + wR
lk sin θk

)∑
k

(
wR

lk cos θk − wI
lk sin θk

) .

By differentiating both sides with respect to θk, we obtain

1
cos2 ϕl

∂ϕl

∂θk
=

(−wI
lk sin θk + wR

lk cos θk)(ul cos ϕl) + (ul sin ϕl)(wR
lk sin θk + wI

lk cos θk)
u2

l cos2 ϕl
.

Hence,

∂ϕl

∂θk
=

wR
lk cos(ϕl − θk) + wI

lk sin(ϕl − θk)
ul
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