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Abstract. A hybrid hierarchical conformational sampling evolutionary algorithm
is presented in this chapter, relying on different parallelization models. After first
reviewing general conformational sampling aspects, e.g. existing approaches, com-
plexity matters, force field functions, a focus is considered for the protein structure
prediction problem. Furthermore, having as basis the highly multimodal nature of
the energy landscape structure, a hybrid evolutionary approach is defined, enclosing
conjugate gradient and adaptive simulated annealing enforced components. An in-
sular model is employed, the conformational sampling process being conducted on a
collaborative basis. Nonetheless, although low energy conformations were obtained,
no close to native conformations were attained. Consequently, a higher complexity
hierarchical paradigm has been constructed, with incentive following results.

1 Introduction

Entitled as a silent revolution in a recollection of the last century preeminent dis-
coveries [37, 21], contemporary computational biology extends over mathemati-
cal modeling, molecular biology and computer science, comprising inter-linked
scientific research disciplines. In silico conformational modeling and simulation,
although computationally expensive, ascertained significant advancements in the
entire life sciences spectrum [50, 47]. Conclusive examples may be found by re-
minding the completion of the human genome mapping, attained this decade, Hu-
man Genome Project [56, 36], the Folding@Home project [42, 49] fighting can-
cer, and Alzheimer’s disease, etc. Nonetheless, no advancement on the current state
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Fig. 1. First row: a NCα C back-bone structure resulting as a combination of multiple amino-
acids; secondary and ternary structures follow. R designates the specific amino acid’s side
chain characteristic, ω , Φ and Ψ relate to dihedral angles. Second row, A & B: tryptophan-
cage protein (PDB ID 1L2Y), multiple near-native conformations, respectively, a ribbon-
ball&stick representation of a single conformation.

of the art is possible unless extensive grid computing is employed. At the core
of avant-garde conformational sampling and molecular dynamics simulations, grid
computing nowadays offers an unprecedented sine qua non computational support
[20, 35], in this context, connecting the computational biology and computer science
domains.

The foundations of this chapter address ab initio conformational sampling [40],
having Protein Structure Prediction, further referred to as PSP, as a reference topic.
Of particular interest for the parallel grid computing domain, the problem consists in
determining the ground-state conformation of a specified protein, given its amino-
acids sequence – the primary structure. In this context, the ground-state confor-
mation term designates the associated tridimensional native form, referred to as
zero energy structure. From a structural point of view, proteins are complex or-
ganic compounds composed of amino-acid residue chains joined by peptide bonds
– for a graphical illustration, please refer to Fig. 1. Assenting to a concise defi-
nition, conformational sampling entails the exploration of an exponentially large
space of possible configurations [41, 13, 9], derived on the basis of an extensive
number of degrees of liberty, which define the flexibility of the under study confor-
mation. An energetically stable configuration has to be computationally predicted
with the support of an underlying, generally highly multimodal, force field function
[45]. Of quintessential impact and reinforced by the in vivo realm ubiquitousness
of proteins, the intrinsic relation connecting the structure of a protein and the cor-
responding biological function determines fundamental consequences for computer
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assisted drug design, the understanding of immune response mechanisms, etc. In
addition, computational modeling and prediction offer an alternative to laboratory
in vitro experimentation, unfeasible for large domain analysis.

For the herein presented conformational sampling study a paradigm combin-
ing an Evolutionary Algorithm (EA) and an Adaptive Simulated Annealing (ASA)
technique is considered – to be further detailed in the following sections. A study
comprising different local search algorithms and outlining the efficacy of the ASA
method on several benchmark conformations was previously presented in [55]. In
addition, an extensive analysis of different intensification and diversification opera-
tors has been presented in [54]. EAs are stochastic search iterative techniques, with
a large area of application – epistatic, multimodal, multicriterion and highly con-
strained problems [8]. A direct subclass of the EAs, Genetic Algorithms (GAs) are
Darwinian-evolution inspired, population-based metaheuristics that allow a pow-
erful exploration of the conformational space. However, they have limited search
intensification capabilities, which are essential for neighborhood-based improve-
ment (the neighborhood of a solution refers in this context to a part of the problem’s
landscape). At the opposite extreme, the class of the different Simulated Anneal-
ing [34] algorithms presented in the literature, further denoted as SAs, offers weak
ergodicity optimization techniques capable of dealing with multimodal functions
of a large nonlinearity and discontinuity degree. Simulated annealing algorithms
were developed by Kirkpatrick [34] as a generalization of the Metropolis Monte
Carlo techniques [39], including as extension a temperature schedule which offers
an improved control over the acceptance rate. The underlying paradigm simulates
metal recrystallization in the process of annealing, the entropy of an initially disor-
dered system being adiabatically reduced to low entropy states while maintaining
at each step a thermodynamic equilibrium. The SAs represent a viable alternative
to gradient based local search methods, being less prone to getting trapped in local
minima. Furthermore, the implementation of an SA algorithm does not impose com-
plex development constraints – as a counterpart and as opposed to EAs, simulated
annealing techniques are extensively sequential in their nature thus being difficult
to parallelize.

Furthermore, the currently available computational resources allow for higher
complexity algorithmic constructions, rendering possible the design of hierarchical
parallel and distributed approaches. Nonetheless, a complex algorithmic underlying
layer has to be unfolded in order to effectively exploit the existing computational
resources. A transparent deployment has to be ensured, endorsing large-scale dis-
tributed applications to be expanded over geographically dispersed clusters. The
parallel construction of the here considered approaches is sustained by an MPI [23]
based version of ParadisEO [7, 8], a framework dedicated to the reusable design of
parallel hybrid meta-heuristics. A broad range of features is provided by the frame-
work, including EAs support, local search methods, parallel and distributed models,
hybridization mechanisms, etc. For a complete overview of the existing dedicated
frameworks on parallel and grid specific metaheuristcs refer to [10, 8, 51, 1, 7].
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The contents of this study inscribe in the context of ANR Dock – Conforma-
tional Sampling and Docking on Computational Grids1, designated under the Dock-
ing@Grid acronym, a French National Research Agency three years funded project,
scheduled to end by fall 2009. Encompassing distinct areas of expertise, the founda-
tions of the project are set on the complementarity of the participant research teams
and laboratories, specifically, (1) DOLPHIN, INRIA Lille – Nord Europe, Funda-
mental Computer Science Laboratory of Lille, LIFL, (2) Biology Institute of Lille,
IBL CNRS/INSERM and (3) Life Sciences Division, CEA/iRTSV – Grenoble. As a
final phase of the project, an in vitro biological validation of the attained results will
be conducted under the competences of the Life Sciences Division, CEA. Note that
all presented experimentations were performed on Grid’5000, a nation-wide com-
putational grid, consisting of almost 5000 computational cores, shared in a network
of nine academic centers. Conformational sampling results are reported on the basis
of a large number of deployments, with up to almost 1000 computational cores.

The remainder of this chapter is organized as follows. An introduction discussing
in brief protein structure prediction aspects is offered in Section 2, followed by an
incremental presentation of the considered algorithmic components in Section 3.
Encoding and evaluation function details are discussed, the formal basis of a con-
jugate gradient and of an adaptive simulated annealing algorithm being illustrated.
A first hybrid parallel approach is afterwards introduced, implementation and exe-
cution environment details being also presented. As part of Section 4 the employed
benchmark conformations are outlined, finally, experimental outcomes being dis-
cussed. As entailed by the drawn conclusions, a hierarchical parallel algorithm is
proposed, addressing minima characterization issues – definition details and results
are given. Conclusions and further directions are finally drawn.

2 Protein Structure Prediction

As outlined in the introduction, the PSP problem consists in determining the ground-
state conformation of a specified protein, given its amino-acids sequence. The inter-
atomic interactions to be considered for the protein structure prediction problem
are a resultant of electrostatic forces, entropy, hydrophobic characteristics, hydro-
gen bonding, etc. Precise energy determination also relies on modeling solvent de-
rived effects through dielectric constants and continuum model based terms – a
more detailed, force field oriented discussion is presented in a following section.
A trade-off is accepted in practice, opposing accuracy against the approximation
level, varying from exact, physically correct mathematical formalisms to purely-
empirical approaches. The main categories to be mentioned are de novo, ab initio
electronic structure calculations, semi-empirical methods and molecular mechanics
based models [16, 58, 40].

Accurate mathematical models, describing molecular systems, are formulated
upon the Schrödinger equation [16], which makes use of molecular wavefunctions

1 http://dockinggrid.gforge.inria.fr
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for modeling the spatio-temporal probability distribution of the constituent entities.
Nonetheless, although offering the most accurate approximation, the Schrödinger
equation cannot be solved exactly for more than two interacting particles [16, 58].
At the opposite extreme, empirical methods rely upon molecular dynamics (clas-
sical mechanics based methods), and were introduced by Alder and Wainwright
[2, 3]. Empirical methods do not make use of the quantum mechanics formalism,
relying solely upon classical Newtonian mechanics, i.e. Newton’s second law, and
often represent the only applicable methods for large molecular systems, namely,
proteins and polymers. After more than a decade protein simulations were initiated
on bovine pancreatic trypsin inhibitor – BPTI [38].

Considering complexity aspects, as an example, for a reduced size molecule com-
posed of 40 residues, a number of 1040 conformations must be taken into account
when considering, in average, 10 conformations per residue. Furthermore, if a num-
ber of 1014 conformations per second is explored, a time of more than 1018 years is
needed for determining the ground-state conformation. For example, for the [met]-
enkephalin pentapeptide, composed of 75 atoms and having five amino-acids, Tyr-
Gly-Gly-Phe-Met, and 22 variable backbone dihedral angles, a number of 1011 local
optima is estimated. Detailed aspects concerning complexity matters were discussed
in [13, 9]. As a conclusion, no simulation or resolution is possible unless extensive
computational resources are used – it may be inferred that no polynomial time res-
olution is achievable if no or less a priori knowledge is employed.

For a comprehensive introductory article on the structure of proteins and related
aspects please consult [40, 12]; a glossary of terms is also available in [57]. In ad-
dition, an extended referential resource for protein structural data may be accessed
through the Brookhaven Protein Data Bank2 [4].

3 A Parallel Hybrid Metaheuristic for the PSP

The exploration and intensification capabilities of the EAs do not suffice as
paradigm, when addressing rough molecular energy function landscapes. Small
variations of a torsional angle value may generate extremely different individuals,
with respect to the fitness function. As a consequence, a nearly optimal configura-
tion, considering the torsional angle values, may have a high energy value, and thus,
it may not be taken into account for the future iterations of the algorithm. In order
to correct the above exposed problem, a local search based method may be applied
as a refinement step, alleviating the drawbacks determined by the conformation of
the landscape – thus, a Lamarckian optimization technique is constructed.

3.1 Encoding of the Conformations and the Force Field Function

The algorithmic resolution of the PSP, in heuristic context, is directed through the
exploration of the molecular energy surface. The sampling process is performed

2 http://www.rcsb.org – Brookhaven Protein Data Bank; offers geometrical structural data
for a large number of proteins.
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by altering the structure of the under study conformation, i.e. backbone structure,
associated torsional angles, etc., in order to obtain different structural variations.
With implications over the sampling methodology, different encodings have been
mentioned in literature. The trivial approach would consist of using a direct cod-
ing of the atomic Cartesian coordinates [46]. Nonetheless, as a main disadvantage
of direct encoding based representations, filtering and correcting mechanisms are
required, inducing a non-negligible overhead. Different other models were devel-
oped, including, for example, all-heavy-atom coordinates, Cα coordinates or back-
bone and residue atoms coordinates representations, hydrophobic/hydrophilic mod-
els [15], etc. For the herein described method, an indirect, less error-prone, torsional
angle based representation has been preferred. More specifically, each conforma-
tion is coded as a vector of torsional angle values, denoted in the following as γ ,
γ =def (γ1 ,γ2 , · · · , γN ), αi ≺ γi ≺ βi , where N represents the liberty degree of the con-
formation and αi , βi stand as the lower and upper limits of the γi encoding value,
1≤ i≤ N. For a graphical illustration, please refer to Fig. 2.

E = ∑
bonds

Kb(b−b0)2

+ ∑
angles

Kθ (θ −θ0)2

+ ∑
torsions

Kφ (1− cosn(φ −φ0))

+ ∑
Van der Waals

Ka
i j

d12
i j
− Kb

i j

d6
i j

+ ∑
Coulomb

qiq j
4πεdi j

+ ∑
desolvation

Kq2
i Vj+q2

jVi

d4
i j

Fig. 2. Scoring function quantifying the inter-atomic interactions

The energy function, hereafter noted as E , is defined by relying on an indepen-
dently calibrated Consistent Valence Force Field (CVFF) [14] based force field. The
quantification of energy is performed by using empirical molecular mechanics, as
depicted in Fig. 2. As classically employed for empirical force field definitions,
a set of specific constants is associated with each interaction type, here denoted
by Kb,Kθ ,Kφ and Ka

i j for, respectively, bonds, angles, torsional angles and van der
Waals interactions. An optimal value for the considered entity (bond, angle, torsion)
is introduced through a corresponding (A−A0) equation term, where A, A0 spec-
ify the sampled value, respectively the a priori experimentally determined optimal
value. More specific, for the herein example, b represents bond lengths, θ angular
values, φ torsional angles and qa, di j and Vp the electrostatic charge associated to
given atoms, the distance between the i and the j atoms, respectively, a volumetric
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Fig. 3. Free energy surface for the tryptophan-cage protein around a deep optimum confor-
mation. High energy points are depicted in light colors, the low energy points resulting in
darker areas.

measure for the p atom. No further details are here included as being out of scope
for the herein study – please refer to [45] for additional information.

An example of free energy surface representation for the tryptophan-cage is given
in Fig. 3. The lighter areas of the surface correspond to high-energy conformations.
The sampling values used for constructing the representation were computed by em-
ploying the Gibbs free energy over an ensemble of locally sampled conformations
Ei – refer to Horvath et al. [26] for additional references and details:

G =−kT

[
∑exp

(
− Ei

kT

)]

where k = 1.3806504(24)×1023 J K−1 designates the constant of Boltzmann, offer-
ing, in numerical form, a connection between the molecular level and macroscopic
observed effects, expressed as an ensemble result. Further, T represents a temper-
ature term, the ensemble being equivalent to approx. 0.6 kcal mol−1 at 300K –
introductory notions and references were presented in [26].

An extensive discussion reviewing the force fields designed for protein simula-
tions, with in-depth details, is offered in [45]. The first part of the study covers the
evolution of the force fields over the last three decades, discussing various formula-
tions which include the Amber, CHARMM and OPLS force fields.

3.2 Conjugate Gradient Local Search

The conjugate gradient method, an extension of the steepest gradient descent
method, has been independently developed in the early 1950’s by Eduard Stiefel
and Magnus R. Hestenes, with the cooperation of J.B. Rosser, G. Forsythe and L.
Paige [25]. Depending on the setup of the parameter values, the method converges to
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the closest local minimum, hence not being well adapted for the global optimization
of large highly multimodal functions. References of early works on more advanced
conjugate gradient methods lead to the publications of R. Fletcher, C.M. Reeves,
M.J.D. Powell, E. Polak and G. Ribière [17, 18, 44], appeared a decade later.

For the rest of this section a nonlinear conjugate gradient approach is considered,
simply referred to as conjugate gradient. If the force field based energy function E
is continuous and differentiable in γi ∈ γ,1≤ i≤ N, the ∇E gradient is defined as a
vector of partial derivatives:

∇E =
[

∂E
∂γ1

∂E
∂γ2

· · · ∂E
∂γN

]T

(1)

Hence, considering an iterative approach, at each iteration, the current point γ+

can be updated by setting γ+ ← γ+− τε ∇Eγ+ , where the τε step has a positive,
small enough value, adapted for the function under study, and where ∇Eγ+ denotes
the gradient vector computed at the γ+ solution point. Compared to the steepest
descent method, the conjugate gradient algorithm considers not only the gradient
vector at the current point but also the previous directions. Hence, at each iteration
k of the algorithm, the γ+

{k} solution is updated as follows:

γ+
{k+1} ← γ+

{k} − τε δk, δk =def

⎧⎨
⎩

∇Eγ+
{k}

, if k = 0

∇Eγ+
{k}
− ξkδk−1, if k > 0

(2)

The algorithm is mainly based on the ξk factor which, in terms of convergence,
defines the behavior of the method. Classically employed forms of the ξk term are
defined as a combination of the previously computed gradient vectors, including
different formulations, e.g. Fletcher-Reeves, Hestenes-Stiefiel, Polak-Ribière, etc.
[17, 18, 44].

The basic pseudo-code of the nonlinear conjugate gradient method is given in
Algorithm 1. The first step of the algorithm, for k = 0, is similar to the steepest
descent method, the following steps relying in addition on the previously computed
gradient vectors. For the herein example, the Fletcher-Reeves form has been chosen
for the ξk term. Further, having computed the ξk, δk terms (lines 3-8), a line search
is applied in order to minimize E(γ+

{k} − τε δk) by varying the τε factor. For details
on line search algorithms refer to [48]. Different stopping criteria can be chosen –
common approaches consider an a priori specified threshold for the gradient vectors
(e.g. the absolute value of all the components of the ∇Eγ+

{k}
gradient vector falling

below 1.0e-5) or for the attained improvement. In addition, a maximum number of
iterations can be imposed.

The here employed component relies on analytical gradient formulation, the ex-
ploration being conducted on fine-grain landscape information. As a consequence,
the method may not be well adapted for dealing with the conformational
sampling landscape particularities, offering nevertheless fine-tuning minimization
advantages.
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Algorithm 1. Nonlinear Conjugate Gradient Pseudo-Code.

1: Set k← 0, γ+
{k} ← γ (γ , γ+

{k} represent the current and the best known solution at iteration k, respectively)

2: repeat
3: if k = 0 then
4: Set δk ← ∇Eγ+

{k}
5: else

6: Set ξk ←
∇ET

γ+
{k}

∇Eγ+
{k}

∇ET
γ+
{k−1}

∇Eγ+
{k−1}

7: Set δk ← ∇Eγ+
{k}
−ξkδk−1

8: end if

9: Find τε minimizing E(γ+
{k} − τε δk)

10: Set γ+
{k+1} ← γ+

{k} − τε δk

11: Set k← k +1
12: until |Eγ+

{k}
−Eγ+

{k−1}
|< τprec or ∇Eγ+

{k}
< τlb.

3.3 Adaptive Simulated Annealing Algorithm

Classical SA algorithms [34] rely on a Boltzmann sampling distribution, including
as components a probability density function of the state space, g(γ), an acceptance
probability function h(ΔE) and an annealing schedule T (k). Gradient information
is not employed in classical constructions of the algorithm. The annealing schedule
is defined over a number of discrete steps. The acceptance function has the role
of quantifying the probability of performing a transition from an Ek energy state
to a new state with energy Ek+1. Classical definitions make use of the Metropolis
criterion [39] which makes use of the Boltzmann probability density function:

h(ΔE) =
e−Ek+1/T

e−Ek+1/T + e−Ek/T
=

1

1 + eΔE/T
∼= e−ΔE/T , ΔE = Ek+1−Ek (3)

Given a Gaussian-Markov system, with a probability density state space func-

tion g(Δδ ) = (2πT )−N/2e−‖Δδ‖2/(2T), for an appropriate initial temperature T0,
the global minimum can be found if the temperature is decreased no faster than
T (k) = T0/ lnk. Low discrimination between solutions is considered in the initial
phases of the algorithm, the method acting like a global search exploration. Near
the final phases, local search is performed at low temperatures. Nonetheless, the
main difficulty in designing a Boltzmann SA consists in determining the starting
temperature as well as an efficient schedule for the problem under study. In prac-
tice, a T0/ lnk schedule does not offer a fast enough annealing. While no longer
guaranteeing asymptotic convergence, exponentially decreasing schedules are pre-
ferred instead, e.g. T (k) = e((c−1)k)T0,T (k) = c T (k− 1),k ≥ 1, with 0	 c < 1,
c≈ 0.98.
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Fig. 4. A – Temperature decrease as defined for the ASA Ti schedules. B – ASA probability
density function.

The Adaptive Simulated Annealing (ASA), an enhanced version of the basic SA
algorithm, has been initially presented in the work of Ingber [27, 28, 31, 29, 30].
ASA exploits the characteristics of a specifically designed generating function al-
lowing for an exponentially faster annealing process, as compared to the classical
Boltzmann distribution based approach. In addition to employing a temperature pa-
rameter for the acceptance function, hereafter noted as Ta, distinct Tiki parameters
and probability density functions are associated to each of the control parameters.

In the following, for simplicity, Tiki is denoted as Ti, with Ti0 representing the ini-
tial temperature of the Ti schedule. As detailed in Ingber’s articles, by considering

Ti =def Ti0e(−ciki
Qi/N ), with ci = mie−niQi/N , asymptotic convergence is attained. The

mi,ni control parameters can be employed for adjusting and fine-tuning the algo-
rithm for a specific problem. While for Qi > 1 (quenching factors) an accelerated
exploration is performed, the asymptotic convergence proof no longer stands, the
algorithm being prone to getting trapped in local minima.

The adaptive features of the algorithm are determined by sensitivity derived fac-
tors, namely the Ta, Ti temperature schedules, which are employed in deciding over
and controlling the acceptance, respectively, generation of new solutions – refer to
Fig. 4 for a graphical depiction. The considered factors enclose descriptive informa-
tion over the structure of the landscape to explore. The ASA generation function is
defined over a set of uniform random variables, ui ∈U [0,1], as exposed below:

γk+1
i

= γk
i
+ δi(βi−αi), where δi is defined as: (4)

δi = sgn(ui−0.5) Ti[ (1 + 1/Ti)|2ui−1| −1 ],δi ∈ [−1,1] (5)

In the herein context αi, βi denote the lower, respectively upper limit of the γi

encoding value. Acceptance is performed according to the Metropolis criterion. Af-
ter a specified number of accepted solutions, reannealing takes place, adjusting the
algorithm’s parameters. Gradient based sensitivities are used for updating the ac-
ceptance temperature, Ta, the Ti temperature schedules and the ki step indexes. No
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restriction is imposed on defining different sensitivity measures, other than gradient
based ones. Considering γ+,γa the best known solution and the last accepted solu-
tion, respectively, at a given step of the algorithm, for each component γ+

i
∈ γ+, the

associated sensitivity si is computed, to be employed in the reannealing step:

si =
∣∣∣∣ ∂E
∂γ+

i

∣∣∣∣ , smax = max
1≤i≤N

si, T ′i =
smax

si
Ti, k′i =

[
ln(Ti0/T ′i )

ci

]N

(6)

Ta0 = E(γa), Ta = E(γ+), k =
[

ln(Ta0/Ta)
c

]N

(7)

The main phases of the ASA method are depicted hereafter in Algorithm 2. The
quenching factors Q,Qi, the initial temperatures Ta0,Ti0, the mi,ni control parame-
ters and the k,ki step indexes are initialized in the first two lines. Lines 3 and 4 set the
best known and the last accepted solutions which, for this step, are identical to the
initial solution. The algorithm includes a main exploration loop (lines 5-32) and a
secondary internal loop for generating new solutions (lines 6-11). Newly generated
solutions are accepted based on the Metropolis criterion (line 13), the reannealing of
the temperature schedules (lines 18-24) being performed at a pre-specified number
of accepted solutions. At the end of each iteration of the main loop, step indexes
and temperature schedules are updated in order to reflect the advancement of the
algorithm (lines 26-31). The algorithm finishes after a fixed number of iterations or
at a pre-specified threshold of iterations with no improvement.

As opposed to classical SA algorithms, the influence of the initial parameters
over the exploration is alleviated, the annealing schedule being adaptively modified
as to reflect the current exploration stage. While not directly employed in generating
new solution points, gradient information is used for modifying the factors which
intervene in the sampling process, consequently avoiding the direct disadvantages
of steepest descent gradient based approaches. An improved scaling is offered as
factors are independently modified on each dimension.

As a final remark, although including adaptive mechanisms, a large number of
fine-tuning parameters are included. The effective calibration of the algorithm does
not stand simplified tractableness basis, demanding for advanced parameter opti-
mization. A possible approach, as suggested by Ingber, consists in using the ASA
algorithm per se as a control parameters optimization component. Nevertheless,
considering that performance evaluations require for the algorithm to be executed on
one or multiple benchmarks, a high computational impact is implied. Subsequently,
parallel support is required, entailing the optimization process to be carried on the
support of a scalable distributed algorithm. Therefore, as part of the herein work, a
meta-evolutionary algorithm has been employed in order to answer the mentioned
concerns [53], given that ASA does not comport a high parallelization affinity.

A detailed description of the ASA algorithm, including comparison, test case
studies and applications is available in the work of Ingber [30, 29, 27, 28, 31].



302 A.-A. Tantar, N. Melab, and E.-G. Talbi

Algorithm 2. ASA Pseudo-Code.

1: Set c, Q, k = 0, Ta0 = E(γ)
2: Set Qi, mi,ni , ci = mie−niQi/N , ki = 0, Ti0 = 1.0, for 1≤ i≤ n

3: Set γ+← γ (γ , γ+ represent the current and the best known solution, respectively)
4: Set γa ← γ (γa represents the last accepted solution)

5: repeat
6: for all γi ∈ γ , 1≤ i≤ N do
7: repeat

8: δi ← sgn
(
ui− 1

2

)
Ti

[ (
1+ 1

Ti

)|2ui−1|
−1

]
, ui ∈U [0,1]

9: γ ′
i
← γi +δi(βi−αi)

10: until αi < γ ′
i
< βi

11: end for

12: ΔE ← E(γ ′)−E(γ)

13: if u < e−ΔE/Ta , u ∈U [0,1] then

14: Accept γ ′ as the current solution: γ ← γ ′, γa ← γ ′
15: if E(γ ′) < E(γ+) then
16: Update the best known solution: γ+← γ ′
17: end if

18: if reannealing limit reached then
19: for all ki, Ti, 1≤ i≤ N do

20: si ←
∣∣∣∣ ∂ E

∂ γ+
i

∣∣∣∣ , γ+
i
∈ γ+, smax =

def max
1≤i≤N

si

21: Ti ← smax
si

Ti, ki ←
[

ln(Ti0/T ′i )
ci

]N

22: end for

23: Ta0 ← E(γa ), Ta← E(γ+), k←
[

ln(Ta0/Ta)
c

]N

24: end if
25: end if

26: for all ki, Ti, 1≤ i≤ N do
27: ki← ki +1

28: Ti ← Ti0e(−ciki
Qi/N )

29: end for

30: k← k +1
31: Ta ← Ta0e(−ckQ/N )

32: until stopping criterion met.

3.4 Hybrid Parallel Genetic Algorithm

Evolutionary algorithms rely on a set of intensification vs. diversification directed
operators for iteratively evolving an initial randomly generated population. At each
iteration of the algorithm (generation), a selection process is conducted, the fitness
of each individual being evaluated on a problem specific fitness function, i.e. the
force field function for the herein case. The pseudo-code in Alg. 3 exposes the
generic structure of an EA. Following a broad classification perspective, the main
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Algorithm 3. EA Pseudo-Code.

t ← 0
Generate(P(0))
while ¬Termination Criterion(P(t)) do

Evaluate(P(t))
P′(t)← Selection(P(t))
P′(t)← Apply Reproduction Ops(P′(t))
P(t +1)← Replace(P(t), P′(t))
t ← t +1

end while

subclasses of EAs are the Genetic Algorithms (GAs), Evolutionary Programming,
Evolution Strategies, etc. In this context, a genotype represents the raw encoding of
the individuals while the phenotype offers the equivalent representation features. At
each generation, the genotype of a selected set of individuals is altered by applying
mutation and crossover operators in order to intensify the exploration over an inter-
est region or for diversification purposes as to avoid a premature convergence. Last,
offsprings are reinserted in the population according to a pre-specified criterion.

The herein considered GA was parallelized in a hierarchical manner, including,
in addition to the exposed basic pseudo-code, three levels of parallelism – the in-
sular model, the parallel evaluation of the population and the synchronous multi-
start model. A conceptual simplistic depiction of the different models is offered in
Fig. 5. At execution time, a set of identically configured algorithms is deployed,
independently evolving a local assigned population whereas fitness evaluations are
dispatched on remote worker nodes. A stochastic tournament strategy approach is
used for the selection and the replacement phases of the algorithm. Furthermore,
in addition to classical simple diversification and intensification operators, e.g. ran-
dom mutation, two-points crossover, each algorithm encloses an analogous set of
conjugate-gradient extended operators. The defined alternate set of operators func-
tion by first applying the enclosed mutation, respectively, crossover standard mech-
anisms, the resulting offspring(s) being further refined by the local search com-
ponent. Embedding the standard and the gradient enhanced version, a combined
operator is provided, allowing for a selective, rate dependent, application of the in-
ternal sub-operators, e.g. allowing for the standard mutation operator to be applied
on 90% of the subjected solutions, respectively, for the extended operator on the
remaining 10%. An eloquent practical exemplification is found when considering a
high-energy barrier surrounded optimum conformation. With no refinement, a close
to optimum solution is subject to attain, with a high probability, an elevated fit-
ness energy. Consequently, the solution, although encoding valuable information,
exhibits a high probability of being discarded, in the selection process. A balanced
design has to be assured, nevertheless, e.g. by specifying appropriate operator rates,
gradient steps, etc., as to avoid a potential premature convergence of the algorithm.
Additionally, a refined local optimum solution stands as a key minima representative
over the surrounding high-energy conformations, locally characterizing the afferent
landscape region.
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Fig. 5. The three main EAs parallelization models: island (a)synchronous cooperative model
– left side of the figure, parallel evaluation of the population and distributed evaluation of a
single solution – right side, upper, respectively lower part.

A synchronous ASA multi-start local search refinement phase is additionally in-
terposed, succeeding the completion of a fixed number of iterations. Independent
local explorations are simultaneously launched, for each of the to be refined so-
lutions, obtained by random selection out of the local population. Further, allow-
ing for convergence and diversity control, an asynchronous inter-islands exchange
of genetic material is performed, at a predefined number of iterations. A cyclic,
ring topology model communication pattern is set, i.e. accepting only one source
and one destination per island. The specified migration model, allows for a coor-
dinated global convergence, as determined by the migration frequency, number of
exchanged solutions, etc., whilst reducing the external impact on the local island ex-
ploration process. A strong local attractor is required to cycle the entire ring, through
multiple selection steps, before attaining global acceptance. Emigrant solutions are
retrieved by means of a stochastic tournament selection, at the opposite end, the
worst individuals in the target population being replaced by immigrant solutions.
Survival of the best individual is assured by a weak-elitism scheme. For each lo-
cal search refinement and migration phase, one tenth, respectively, one sixth of the
population, is subject to undergo the local optimization, respectively, information
exchange process.

Note that, except for selection and replacement, all operations, including the lo-
cal search enhanced operators, are performed in parallel by delegation to worker
nodes. A detailed discussion of the ParadisEO framework architecture and the
afferent components developed in order to sustain the construction of the herein
presented algorithmic model, execution roles, communication topologies, etc., is
presented in [7, 8].
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3.5 ParadisEO Based Implementation

ParadisEO3, initially designed and developed by Sebastien Cahon [7, 8], is an ex-
tendible open source C++ framework based on a clear conceptual separation of the
meta-heuristics from the problems they are intended to solve. The EO suffix stands
for Evolving Objects, the framework being basically an extension of the Evolving
Objects (EO) [33] LGPL C++ open source project, the result of an European joint
work [33]. EO includes a paradigm-free Evolutionary Computation library, dedi-
cated to the flexible design of EAs through evolving objects, superseding the most
common dialects (Genetic Algorithms, Evolution Strategies, Evolutionary and Ge-
netic Programming).

Furthermore, most common parallel/distributed models, i.e. synchronous island
model, synchronous multi-start, etc., are provided in the ParadisEO-PEO module
(Parallel EO). A portable design over distributed-memory machines and shared-
memory multi-processors is offered, relying on standard libraries such as Message
Passing Interface (MPI) [23, 24] and POSIX Threads (PThreads) [6]. A transparent
exploitation of the enclosed parallel models, in (non) dedicated parallel environ-
ments, is assured. Nevertheless, with the continuous evolution of the distributed
computing grids and with the perpetuous development of the available computing
resources, there is a sine qua non requirement to pass beyond the physical design
of the grids. Extending the existing framework, in order to offer a grid-enabled Par-
adisEO implementation, demands for a Grid middleware layer and a Grid Appli-
cation Programming Interface. Furthermore, an infrastructure interface is required,
providing communication and resource management tools. The here adopted ap-
proach consists in using the Globus Toolkit [20, 19] computing system as a Grid
Infrastructure - an outline is presented in [52].

A layered architecture of the ParadisEO framework is presented in Fig. 6. From
a top-down view, the first level supplies the optimization problems to be solved
using the framework. The second level represents the ParadisEO framework, in-
cluding optimization solvers, embedding single and multicriterion meta-heuristics
(evolutionary algorithms and local searches). The third level provides interfaces for
standard MPI based programming. At this level virtually any standard conforming
MPI distribution may be placed as layer. The fourth and lowest level supplies com-
munication and resource management services. A broad range of experimentations
were conducted on employing the Globus Toolkit with MPICH/MPICH-G2 [23],
MPICH-VMI [43] and OpenMPI [22].

With no exception, all tests have been deployed on the Grid’5000 (https://
www.grid5000.fr) French nation-wide experimental computational grid, connect-
ing several sites which host clusters of PCs interconnected by RENATER4 (the
French academic network). At this time, Grid’5000 is gathering more than 4000
computational cores with more than 100 Tb of non-volatile storage capacity, re-
grouping nine centers: Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes,

3 http://paradiseo.gforge.inria.fr
4 http://www.renater.fr
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Fig. 6. A layered architecture of ParadisEO.

Sophia-Antipolis, Toulouse. Following time dependent requirements and compu-
tational resources availability constraints, determined by the shared nature of the
environment, experimentations were conducted on most of the Grid’5000 sites. As
dictated by a per experiment demand, a varying number of resources has been used,
ranging from a reduced number of computational cores, for tuning and prototyping
purposes, to up to almost 1000 cores for the actual deployment and testing - see
Table 1 for details.

Table 1. Environment details for a conformational sampling experimentation cumulating al-
most 1000 computational cores, over multiple clusters

Cluster/Site∗ CPUs Cores Architecture Details

Azur/Sophia 59 118 Dual AMD OpteronT M 2.0GHz/1MB/333MHz, 2GB RAM
Helios/Sophia 53 212 Quad Core AMD OpteronT M 2.2GHz/1MB/400MHz, 4GB RAM
Sol/Sophia 27 108 Quad Core AMD OpteronT M 2.6GHz/1MB/667MHz, 4GB RAM
Sagittaire/Lyon 60 120 Dual AMD OpteronT M 2.0GHz/1MB/400MHz, 2GB RAM
Capricorne/Lyon 51 102 Dual AMD OpteronT M 2.4GHz/1MB/400MHz, 2GB RAM
Orsay/Paris 152 304 Dual AMD OpteronT M 2.4GHz/1MB/NA, 2GB RAM

Overall 402 964
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4 Experimental Outcomes

4.1 Conformational Sampling Benchmarks

Assessing conformational sampling algorithms requires to set a trade-off over the
considered benchmarks. A first aspect to be considered regards complexity matters,
i.e. reduced size conformations are of no interest (there is no need of determining
the structure of a water molecule using computational grid resources) whilst highly
complex molecules may be highly computationally restrictive (due to resource con-
straints, force field calibration limitations, etc.). A second aspect is defined on vali-
dation requirements - the crystallographic structure of the benchmark molecule has
to be known in order to be able to have performance evaluations.

The herein adopted molecular complexes for the conformational sampling al-
gorithms assessment, are the tryptophan-cage (trp-cage - Protein Data Bank ID:
1L2Y), the tryptophan-zipper (trp-zipper - Protein Data Bank ID: 1LE1) and the
α-cyclodextrin. Tryptophan-cage and tryptophan-zipper belong to the class of mini-
proteins presenting particularly fast folding characteristics. Cyclodextrins, in α , β or
γ conformations, with 6, 7, 8 glucose units, respectively, due to their toroidal struc-
ture, are important for drug-stability applications, being used as protectors against
micro-environment interactions or as homogeneous distribution stabilizers, etc.

The selected benchmark conformations can be considered, to a certain extent,
as being significant and representative as they include different structural patterns,
hence, requiring a flexible enough algorithm to predict the different enclosed sec-
ondary structures. Refer to Fig. 7 for a graphical representation of the three molec-
ular conformations. An equivalent schematic representation is also exposed in order
to better illustrate the structural characteristics of each molecule (as the cyclic struc-
ture of α-cyclodextrin). The α-cyclodextrin molecule, while not being a protein,
has been included in the study due to its particular cyclic structure. In addition, the
addressed conformations, given the number of defined torsional angles, namely 64,
54, 73 angles for α-cyclodextrin, 1LE1, 1L2Y, respectively, offer the advantage of
not requiring an extremely expensive energy evaluation computation time.

4.2 Execution Configuration and Outcomes

A ring insular model consisting of three algorithms has been deployed at run-time,
each island evolving a fixed-size population of 300 solutions for 300 generations.
No specific parameter tuning has been considered, the employed configuration be-
ing incrementally constructed in a series of trial executions. As previously outlined,
combined mutation and crossover operators have been employed, e.g. the classi-
cal two-point crossover operator and the conjugate-gradient enhanced version, in
mutual exclusive manner, with a 0.85, respectively, a 0.15 rate. Analogously, the
mutation operators are applied with equal rates, for the classical and local search
extended version, having an overall 0.05 probability. A selection rate of 0.75 has
been set, with a 0.95 probability of accepting a better individual over a worse one.
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α-cyclodextrin

1LE1

1L2Y

α-cyclodextrin

1LE1

1L2Y

Fig. 7. Structural overview of the considered benchmarks – α-cyclodextrin, tryptophan-
zipper (1LE1) and tryptophan-cage (1L2Y).

Although the induced fitness degradation, with a 0.05 probability, worse solutions
are accepted in order to exploit the potentially significant enclosed information. Re-
placement is conducted on similar basis, with a 0.75 probability of discarding a
worse solution. The refinement phase has been set to be applied at every five gener-
ations, relying exclusively on the ASA component, described in Section 3.3. A fine-
grained gradient minimization is additionally carried out on the resulting conforma-
tions, exploiting the analytical foundations of the conjugate gradient local search
operator. A worse-replacement strategy is used for reinserting the final refined solu-
tions into the initial population.

Another element with important consequences over the convergence of the con-
structed algorithm is given by the asynchronous migration rate. Frequent migrations
may result in a premature convergence while distant migrations fall at the opposite
extreme - exploration conducted on distinct algorithms with independent evolution
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Fig. 8. 1L2Y – An execution example depicting the profile of the island model algorithm (A,
B), in the second row, the evolution of the ASA component being captured (C, D).

curves. For the herein case, one sixth of the local population is set to emigrate, in
asynchronous manner, at every five generations - migrations may occur at different
times, depending on the advancement of each algorithm.

A meta-evolutionary genetic algorithm has been designed for finding an opti-
mal parameterization of the adaptive simulated annealing algorithm. No special
strategies or operators were designed, a simple distributed EA being considered;
the algorithm has been executed inside the same grid environment. In this case each
individual of the meta-algorithm represents an encoding of the different parameter-
ization values – control parameters of the adaptive simulated annealing algorithm,
initial temperature, number of accepted solutions determining reannealing, quench-
ing factor, etc. The fitness of each individual has been computed as the average
improvement obtained after running the adaptive SA on a set of five known difficult
conformations. For each fitness evaluation run, for each of the five conformations,
a maximum number of 3000 samplings was set. As an example, one of the chosen
resulting parameterizations had a reannealing limit of 111 accepted conformations
with 97 sampling points at each temperature and a large quenching factor of 33.16.

For the synchronous multi-start execution, two approaches were considered. The
adaptive simulated annealing algorithm is either executed in order to sample 3000
solutions in one run, either 10 short runs with 300 samples each are iteratively
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launched. In addition, at the end of one ASA run, the outcome conformation is
further optimized by applying a 30 step gradient.

As a first remark, after compiling the execution results, the use of conjugate gra-
dient extended operators determined a dramatic improvement. Analyzing, for exam-
ple, the results obtained by using the genetic algorithm alone, for the α-cyclodextrin
conformation, an average of 3790.56 kcal mol−1 (stdev. 708.54 kcal mol−1) has
been attained, with a maximum, minimum of 5845.27 kcal mol−1, respectively 2470
kcal mol−1. At the opposite extreme, the set of solutions found by the gradient hy-
bridized genetic algorithm resulted in an average of 201.37 kcal mol−1 (stdev. 21.82
kcal mol−1), with a minimum of 161.69 kcal mol−1 and a maximum of 243.05
kcal mol−1. A number of 30 independent executions were performed for the gradi-
ent hybridized GA as well as for the GA alone, with no hybridization.

Finally, for all studied benchmarks, the ASA-hybridized GA (best scored confor-
mations) attained a below native reference energy: 28.9 kcal mol−1 for the 1L2Y
protein (reference energy at 46.6 kcal mol−1), -3.5 kcal mol−1 for 1LE1 (11.1
kcal mol−1) and 161.6 kcal mol−1 for α-cyclodextrin (242.4 kcal mol−1). Nev-
ertheless, although descending below the energy of the native conformation, the
corresponding RMSD (Root Mean Square Deviation) values were constantly out-
side acceptable limits, with minimum values close to or above 4Å.

A graphical illustration, capturing the island model algorithm evolution, is given
in Fig. 8. The depicted examples outline, in a first step, results obtained for the hy-
brid island based algorithm, while the second part offers an overall perspective of
the ASA execution-time improvement rate. For each island, at every generation, the
fitness of the best found conformation is depicted (A), a median trend evolution line
being traced. Although the algorithms advance at different rates, with several thresh-
olds, convergence is attained near 300 generations. A corresponding fitness distance
correlation (FDC) [32] plot is additionally illustrated (B), offering an overview of
the fitness dynamics, e.g. convergence rate information, over generations fitness
variance, etc. An ideal case would consist of a 1.0 FDC value, expressing a perfect
correlation between fitness and inter-solutions distance values, while, at the oppo-
site end, a -1.0 FDC value indicates a completely uncorrelated landscape, providing
no useful information. A symmetrical spread may be observed (B), with an ascend-
ing positive correlation trend, as determined by the advancement of the exploration.
Additionally, an outline of the ASA improvement bias is shown in the second row
of the figure, traced as a plot exposing initial vs. final energy (C) and, second, as a
histogram (D). Approximately one sixth of the refined conformations allowed for an
above 10% improvement while only a reduced fraction of 3% resulted in an above
90% improvement (D). The equivalent run-time evolution graph (C), exclusively
considering the ASA refinement outcomes, revealed several clusters, attributed to
strong attractors determining basins in the conformational landscape (visible at ˜
40.0 kcal mol−1, 60.0 kcal mol−1, final energy - C).

As an overall conclusion, first, the hybrid parallel algorithm design incurs strong
exploration capabilities, although, second, far from native outcome conformation
were returned. Appearing as energy landscape artifacts, with high RMSD - low en-
ergy conformations, due to the force field parameterization, the obtained solutions
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do not stand as valid conformations. As a consequence it can be concluded that a
higher level extensive exploration approach is required with a more robust evalua-
tion protocol.

4.3 Advanced Hybrid Hierarchical Parallel Algorithm

As determined by the drawn conclusions, a cluster sampling, domain decompo-
sition oriented algorithm has been considered. A straightforward extension of the
representation model has been constructed by considering, for a chromosome, an
overlapping associated domain. Defining symmetric boundaries, for a given con-
formation, γ = (γ1 ,γ2 , · · · , γN ), a landscape domain is delimited, further denoted as
< γ, η >≡ ([γ1−η1 ,γ1 +η1 ], [γ2−η2 ,γ2 +η2 ], · · · , [γN −ηN ,γN +ηN ]). The intro-
duced definition and representation synthetically maps, over the conformer concept,
nevertheless encompassing a less conformational structure significance, i.e. no un-
derlying specific base template is associated to the given domain. Therefore, the term
of cell is preferred in the following, describing, by direct association, a bounded
structural subspace, as opposed to conformer, in order to designate a < γ, η > en-
tity. For simplicity, the assumption of having ηi = δ , 1≤ i≤N, is considered in the
following, where δ represents an a priori fixed arbitrary positive value. Addition-
ally, having as basis the formulated assumption, a direct notation < γ >≡< γ, η >,
with ηi = δ , 1 ≤ i≤ N, is employed in the following, as to designate a cell. An in-
tuitive graphical representation is given in Fig. 9, depicting the transition from a
highly multimodal energy landscape to a smoother, conformer fitness space. From
an implementation point of view, the representation is constructed as an extension
of the previously defined model, permitting the reuse of the entire developed algo-
rithmic architecture, with no or less modifications.

A direct evaluation would consist of considering a < γ > cell as designating an
ensemble of solutions. Consequently, the problem resides in defining an appropri-
ate evaluation function which, for a specified δ value and for a given cell, < γ >,
offers a coherent evaluation, quantifying the stability of an overlapping conformer.
Nevertheless, no complete characterization of a particular cell is possible, unless
accounting for the cumulated interaction and contribution of an infinite number of
conformations, confined within the cell boundaries. Consequently, an extrapolation
formalism has to be defined, the evaluation function being constrained to infer on
a finite, representative subset of conformations. Furthermore, the evaluation func-
tion has to be reproducible. Otherwise stated, assuming that representative indepen-
dently sampled subsets Si ⊆< γ >, i ∈ N are given, comparable evaluation results
have to be provided. The construction of a representative cell subset hence demands
for a within cell sampling to be performed, algorithmic basis being provided by the
already defined approach.

Holding for the aforementioned specifications and having as support intuitive
underlying physical concepts, a Gibbs free energy evaluation is considered – refer
to Section 3.1 and Horvath et al. [26] for additional references and details. The
function relies on the individual evaluation of a set of sampled solutions, γs ∈S ,
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A – Conformational Energy Landscape B – Free Energy Landscape

Fig. 9. Underlying conceptual basis of a free energy clustered sampling algorithm. A finite
set of solutions, sampled within the boundaries of a specified cell (A), is employed for con-
structing a free energy evaluation – resulting in a singular free energy surface point (B). A
more tractable landscape is obtained at the price of a higher computational load.

S ⊆ < γ >. Extrapolating over the formalization details, an entropy equivalent
measure is obtained, offering a characterization of the within < γ > cell key minima
depth and width. As determined by the nature of the evaluation function, a less
sensitive to extreme perturbation energy values evaluation is attained, resulting in
a smoothing effect. A graphical simplified corresponding exemplification, for the
1L2Y protein, is illustrated in Fig. 9.

As mentioned in the previous paragraphs, the construction of a representative set
has to be addressed, as part of the fitness function definition. A first design deci-
sion consists in determining an optimal δ value. High values result in a reversion
towards the initially addressed problem while, at the opposite end, reduced values
imply the exploration space to be segmented into a large number of cells. The for-
mer case, while offering the advantage of simplifying the search space clustering,
requires the support of a thorough intensive sampling, posing a reproducibility prob-
lem and, hence, inducing a high computational load. In analogous manner, the latter
case, while assuring for representative sampled sets, results in an expensive explo-
ration process, due to an explosion of the number of cells to be explored. With no
or less information acquired, at the extreme case, the initial conformational energy
landscape is potentially reproduced. Consequently, a sampling algorithm dependent
balance has to be assured in order to allow for a pertinent segmentation of the search
space and as to exploit the information which can be derived by assessing an ensem-
ble of conformations. Therefore, a second correlated design decision, concerns the
exploration algorithm to be employed – a random sampling would stand as a simple
and fast candidate solution although offering no reproducibility guarantee, unless
reduced size cells are considered. An exploration intensive approach, allowing for
the search to be conducted over extended landscape domains, although enforcing
the imposed demands, can potentially result in a redundant oversampling.
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Assembling the introduced representation model and the free energy evaluation
function, a meta-evolutionary algorithm has been constructed, the exploration being
conducted over clusters in the conformational energy space. A hierarchical design is
offered, comporting multiple parallelization levels. As highly complex aspects are
addressed, no effective approach can be defined unless extensive distributed compu-
tational resources are employed. A first parallelization layer is inserted at the global
meta-exploration level, the evaluation of each solution being synchronously dele-
gated to local samplers. Further, each of the sampling processes deploys several
island algorithms, for each island, a parallel evaluation of the conformations being
performed at each generation, with additional synchronous multi-start refinement
and migration processes. A schematic representation is given in Fig. 10. Note that,
following the parallelization hierarchy, a highly scalable approach is attained, as de-
termined by the decomposition of the parallel tasks. Given that, the implied design
decisions mainly depend on the selected local sampling algorithm, the defined ar-
chitecture is presented starting with the lower exploration layer as to end with the
meta-exploration algorithm level.

As main criterion in proposing a local sampler solution, the requirement for an
exploration intensive algorithm has been considered, as to allow for free energy
evaluations on large cells within acceptable reproducibility limits. As demonstrated
by the previous results, the algorithmic model proposed in Section 3.4, stands as
a powerful candidate solution. Consequently, the same exact architecture has been
used, with several modifications as detailed in the following. In depth details and
analysis test cases, standing as basis for the herein obtained results, were also pre-
sented in [54, 55], addressing multiple operators, local search algorithms, adaptive
and dynamic mechanisms, etc. Nonetheless, as we are here interested in expos-
ing the hierarchical nature of the algorithms, opposing local and global sampling
paradigms, no further details are here included.

Conducting several trial experimentations, it has been determined as coherent
and sufficient to set a value of δ = 45, corresponding to a π/4 angular value and
allowing for wide extended cells to be defined. Further, a discrete representation
has been adopted, where, for a < γ > cell corresponding genotype, the enclosed
< γi >, 1 ≤ i ≤ N, loci has been defined as having values from the {0, · · · ,7} set,
with a corresponding angle value in the [δ (< γi >−1), δ (< γi > +1)] interval. An
inter-cells overlap has been allowed as to avoid boundary constraints, e.g torsional
angle values requiring fine tuning near boundary limits. Note that the representation
employed by the local sampling algorithm has not been modified, a mapping being
defined as to assure the coherence of the representation.

Having as a pragmatic constraint the requirement of allowing for a fast sampling
process to be conducted, a reduced population size of only 30 solutions has been
assigned, for each island of the sampling algorithm, to be evolved over 10 genera-
tions. The exact same configuration of the operators and inter-algorithm migration
topologies has been maintained, as presented in Section 3.4, with a down-scaling
of the afferent parameter values. Local search refinement has been set to be trig-
gered at every 5 generations, additionally, migrations being performed at every 2
generations, with an exchange of 10 individuals. Furthermore, a maximum of 10
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Fig. 10. A conceptual model depicting the architecture of the meta-exploration algorithm.
Global exploration is carried at a conformer level, for each conformer associated cell, local
sampling based free energy evaluations being computed.

conjugate gradient steps has been set, as opposed to the initial default configuration
of 30 steps. As the exploration is carried out inside specified cell boundaries, all the
determined solutions, as provided by each island, contribute to the construction of a
representative sampling set. Therefore, at the end of the sampling process, a screen-
ing is performed, a set of the best found 30 distinct conformations being assembled.
The gathered set further stands as basis for computing the free energy evaluation,
characterizing the initial subjected cell.

Discrete combined operators have been employed, as to maintain a coherence of
the representation, without introducing repairing mechanisms. Mutation has been
defined as to be carried on a swap, random flip and a complete shuffle operators, with
equal rates and with a 0.3 overall probability. In analogous manner, a uniform and a
two-points crossover operators, with equal rates and with a 0.95 overall probability
have been specified. A fitness sharing selection strategy is included, the distance, for
two specified cells, < γa >, < γb >, being defined as the percentage of positional
different loci. In this context, two solutions are considered to be part of the same
cluster if found at a distance below 0.25, i.e. less than a quarter of the loci having
different values. Additionally, the replacement is carried on a stochastic tournament
strategy, with weak elitism enabled and with a 0.95 probability of discarding a worse
solution over a better one.

At execution time, a maximum walltime of 50 hours has been imposed, the al-
gorithm being executed in successive runs over a variable number of computational
resources, with an average of ˜400 cores. The algorithm has been set to evolve a
population of 30 solutions for 100 generations, each solution defining a cell to be
sampled. As resulting from the obtained outcomes, the proposed approach offered
impressive results – refer to Fig. 11 for a graphical illustration. As an example,
for the 1LE1 protein, the algorithm ranked first the cell centered around the na-
tive reference, within the cell, the first ranked solution, with a -13.32 kcal mol−1
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0.5049Å, -13.31 kcal mol−1 0.5259Å, -12.25 kcal mol−1 0.5167Å, -11.99 kcal mol−1

1.3689Å, 160.49 kcal mol−1 1.0582Å, 160.49 kcal mol−1 0.7264Å, 160.69 kcal mol−1

Fig. 11. Tryptophan-zipper (first row) and α-cyclodextrin (second row) – best found confor-
mations, ranked in concordance with the associated energy.

conformational energy fitness, standing as a perfect match, with a 0.5049Å RMSD.
Additionally, an average RMSD of 0.6431Å has been attained for the 30 first ranked
conformations, with a minimum, maximum RMSD of 0.3611Å (-9.23 kcal mol−1),
respectively 2.0860Å (-7.14 kcal mol−1). In similar manner, for the α-cyclodextrin
molecule, for the top 30 ranked conformations, a 3.7595Å average has been at-
tained, with a minimum, maximum value of 0.5313Å (162.01 kcal mol−1), respec-
tively 8.9869Å (675.54 kcal mol−1) – remarkable to notice, only 4 out of the 15 first
ranked conformations had an RMSD above 1.0Å. As exposed in Fig. 11, for the first
three α-cyclodextrin conformations, an RMSD of 1.3689Å (160.49 kcal mol−1),
1.0582Å (160.49 kcal mol−1), respectively 0.7264Å (160.69 kcal mol−1) has been
obtained. Although no similar results have been attained, in the given time frame,
for the tryptophan-cage protein, undergoing independent studies, carried out in the
context of the Docking@Grid project, confirmed an over-fitting bias of the em-
ployed force field, resulting in non-consistent results when addressing α-helices
vs. β -sheets patterns.

5 Conclusions and Future Work

Allowing for extreme hybrid constructions to be defined and enclosing intrinsic
parallel support, evolutionary algorithms comport, nevertheless, a high structural
complexity level. Different evolutionary parallel models were employed, initial ex-
perimentations standing as a proof for the intensive exploration capabilities of the
approach. An extension of the initial approach was defined, addressing conformers
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instead of singular conformations. A free energy evaluation function was introduced
in the model, endorsing the evaluation of clusters of conformations as an ensemble
and quantifying the width and the depth of the representative conformer minima re-
gion. Impressive results were attained for the tryptophan-zipper protein and for the
α-cyclodextrin conformational benchmark, with a below 1.0Å RMSD average for
the first 30 ranked 1LE1 conformations. All experimentations were conducted on
Grid’5000 [11], different MPI distributions [23, 43, 22] being employed at execu-
tion time. To conclude with, an effective high-performance parallel hybrid confor-
mational sampling algorithm was constructed, answering the initially defined ANR
Dock Project – Conformational Sampling and Docking on Computational Grids
directions.

An unlimited number of consequent prospective directions may be considered,
enforcing the obtained outcomes, the exploration of novel parallel paradigms, etc.
A consequential study entailing exploration approach enhancements stands as an
adjacent objective in order to encompass high-throughput conformational screening
support. Finally, extensive background for arising technologies, e.g. General Pur-
pose GPUs (Graphics Processing Units) [5], MPICH-G4/MPIg, etc., is considered
as to expand the ParadisEO framework, including fault-tolerance, desktop comput-
ing and volatile environments support.
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