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Introduction

Francisco Fernández de Vega and Erick Cantú-Paz

The growing success of biologically inspired algorithms in solving large and
complex problems has spawned many interesting areas of research. Over the
years, one of the mainstays in bio-inspired research has been the exploita-
tion of parallel and distributed environments to speedup computations and
to enrich the algorithms. From the early days of research on bio-inspired
algorithms, their inherently parallel nature was recognized and different par-
allelization approaches have been explored. Parallel algorithms promise re-
ductions in execution time and open the door to solve increasingly larger
problems. But parallel platforms also inspire new bio-inspired parallel algo-
rithms that, while similar to their sequential counterparts, explore search
spaces differently and offer improvements in solution quality.

Our objective in editing this book was to assemble a sample of the best
work in parallel and distributed biologically inspired algorithms. We invited
researchers in different domains to submit their work. We aimed to include
diverse topics to appeal to a wide audience. Some of the chapters summa-
rize work that has been ongoing for several years, while others describe more
recent exploratory work. Collectively, these works offer a global snapshot of
the most recent efforts of bioinspired algorithms’ researchers aiming at prof-
iting from parallel and distributed computer architectures—including GPUs,
Clusters, Grids, volunteer computing and p2p networks as well as multi-core
processors.

We hope this volume will be of value to a wide set of readers, including, but
not limited to specialists in Bioinspired Algorithms, Parallel and Distributed
Computing, as well as computer science students trying to figure out new
paths towards the future of computational intelligence.

This book is a collective effort, and we must thank all the contributing
authors, whose effort and dedication have given rise to the present work.
Last but not least we appreciate the encouragment, support and patience
offered by Professor Janusz Kacprzyk, as well as by Springer during the
editing process.

F. Fernández de Vega, E. Cantú-Paz (Eds.): Paral. and Distrib. Comp. Intel., SCI 269, pp. 1–9.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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1 Road Map

The chapters included in this book reflect the diversity of the research ac-
tivity in parallel and distributed bio-inspired algorithms. We attempted to
organize the book around three different themes: platforms, algorithms, and
applications. We do not explicitly separate the chapters into sections, because
most of the chapters can be categorized into more than one group.

On the chapters that describe different platforms, we have descriptions
of implementations of bio-inspired algorithms on very diverse computing re-
sources such as computational grids, graphic processing units, volunteer net-
works, peer-to-peer systems, and graphic processing units. The next group of
chapters describe diverse algorithms. We begin with a review of parallel esti-
mation of distribution algorithms, followed by two chapters on different multi-
objective optimization algorithms, and a chapter on efficient update strategies
for multi-agent simulations. The final group of chapters includes applications
in machine learning, embedded system optimization, protein structure pre-
diction, and modeling of laser dynamics.

The reminder of this section has brief summaries of each chapter.

Chapter 1. When Huge is Routine: Scaling Genetic Algorithms and Esti-
mation of Distribution Algorithms via Data-Intensive Computing by Xavier
Llorà, Abhishek Verma, Roy H. Campbell, and David E. Goldberg.

Recent data-intensive computing platforms such as Google’s MapReduce
and Yahoo!’s open source Hadoop enable the routine processing of petabytes
of data. In their chapter, Llorà, Verma, Campbell and Goldberg show how
data-intensive computing platforms can greatly benefit the parallelization of
evolutionary algorithms. The authors explore the use of Hadoop and Mean-
dre, a tool developed in the National Center for Supercomputing Applications
of the University of Illinois at Urbana-Champaign. To illustrate the promise
of these platforms to speedup evolutionary algorithms, the authors imple-
mented representative EAs that span the range from classic algorithms to
estimation of distribution algorithms: a selectorecombinative genetic algo-
rithm, a compact GA, and the extended compact GA.

Llorà et al. present details of their implementations that preserve the be-
havior of the three algorithms and show experimental results that suggest
that the evolutionary algorithms scale well on both platforms. In fact, linear
speedups are limited only by the availability of resources.

Chapter 2. Evolvable Agents: a framework for Peer-to-Peer Evolutionary
Algorithms by J.L.J. Laredo and J.J. Merelo and P.A. Castillo.

In this chapter, Laredo, Merelo, and Castillo present an overview of the
properties, performance and issues of EAs implemented on peer-to-peer
(P2P) systems. On P2P systems, the computational resources are provided
by a group of users who share their spare CPU cycles via the Internet. The
authors present a way to parallelize EAs on P2P systems based on an Evolv-
able Agent model, in which a population of agents perform selection, variation
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and fitness evaluation. The authors describe their newscast algorithm that
defines the communication structure among the evolvable agents. The main
issues for the parallelization of EAs on P2P systems are decentralization,
scalability and fault tolerance, and the authors describe their approaches to
each of these challenges. In terms of decentralization, the proposed algorithm
is fully distributed and there is no central control, so but its very nature,
the algorithm is not centralized. The authors study the scalability of the al-
gorithm with experiments using trap functions and show that their method
scales better to the problem size than a canonical GA. The fault tolerance of
the algorithm is demonstrated with a series of experiments where the churn
of nodes, expressed as the session length of the participating peers, is mod-
eled with a Weibull distribution. The authors also present some results on
dynamic optimization problems.

Chapter 3. Evolutionary Algorithms on Volunteer Computing Platforms:
The MilkyWay@Home Project by Nate Cole, Travis Desell, Daniel Lombraña
González, Francisco Fernández de Vega, Malik Magdon-Ismail, Heidi New-
berg, Boleslaw Szymanski, and Carlos Varela.

Volunteer computing grids are composed of Internet-connected computers
volunteered by users worldwide. They present a huge potential of comput-
ing power that can be harnessed to solve very high-scale problems. In their
chapter Cole et al. describe their project to harness volunteer computing to
find substructure in the Milky Way galaxy using evolutionary algorithms, the
MilkyWay@Home project.

The authors describe the BOINC platform, a volunteer computing technol-
ogy that is an offshoot of the celebrated SETI@Home project. In a nutshell,
BOINC consists of a server that hosts the experiments and creates “work
units” and clients that run on the volunteer machines and execute the work.
For running evolutionary algorithms on volunteer grids, there are two basic
approaches: distribute fitness evaluations or execute experiments in parallel
(for example to sweep different parameter settings). In the application de-
scribed in this chapter, the approach is to distribute fitness evaluations to
the volunteers.

The authors compare their volunteer approach using 1000 volunteered
computers to computations on 1024 nodes on a BlueGene/L computer and
note that, while the approach used on the volunteer computers may take more
iterations, it is more accessible and more experiments can be performed, as
the computing resources are not shared among many researchers as the Blue-
Gene/L. In addition, the volunteer framework can perform numerous searches
at a fraction of the cost of dedicated resources. These results are very promis-
ing for the use of volunteer computing for computationally intensive scientific
modeling.

Chapter 4. Self-coordinated on-chip parallel computing: a Swarm Intelli-
gence approach by Danilo Pani and Luigi Raffo.
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Multicores are becoming prevalent, but suffer from being difficult to pro-
gram. The authors claim that new ideas are needed to support the develop-
ment of massively parallel architectures. One of these ideas is to search for
inspiration in natural systems.

Pani and Raffo define Swarm Intelligence (SI) as “a bioinspired paradigm
that takes inspiration from natural swarms, large sets of simple individuals
with limited capabilities able to carry out complex tasks exploiting coop-
eration and self organization.” They pioneered the use of SI for the design
of digital architectures. This chapter recounts their work from their first
explorations to their latest results: a coprocessing unit for fixed point ar-
ray processing. Their approach shows significant performance improvements
without any programming effort and without complex tools for compilation
and mapping.

Along the way, Pani and Raffo identify the limitations of their experiments
and show how they overcame those limits.

Chapter 5. Large Scale Bioinformatics Data Mining with Parallel Genetic
Programming on Graphics Processing Units by William B. Langdon.

Graphic Processing Units (GPUs) promise teraflop computing in a desktop
for a few hundred US dollars. Langdon gives an overview of the use of GPUs
in bioinformatics and computational intelligence. He describes a successful
application of genetic programming on GPUs to a Bioinformatics to find a
small number of indicative mRNA gene transcript signals from breast cancer
tissue samples.

GPUs provide a restricted type of parallel processing, in which each of
the many processors simultaneously runs the same program on different data
items. This is often referred to a single instruction multiple data (SIMD) or
more precisely single program multiple data (SPMD). In the case of Lang-
don’s application, the single instruction belongs to the interpreter and the
multiple data are the multiple GP trees. The single interpreter is loaded onto
every stream processor within the GPU, and so in every clock tick, the GPU
can interpret a part of 128 different GP trees.

The data mining system described in the chapter works in two steps. The
first step is used to identify approximately 100 000 inputs to chose from to
create a classifier in the second step. The first step has a population of five
million trees laid out on a rectangular grid divided into 256x256 squares.
At the end of the run, the genetic composition of the best individual in each
square was recorded and the inputs that appeared frequently were used in the
second step. The final result is a non-linear classifier with only three inputs
that has good accuracy on predicting the patient’s outcome 10+ years in the
future. On this application, Langdon achieved a speedup of more 7x over a
program run on the same CPU used to host the GPU.

Chapter 6. A Review on Parallel Estimation of Distribution Algorithms
by Alexander Mendiburu, José Miguel-Alonso and José A. Lozano.
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Estimation of distribution algorithms (EDAs) are a class of evolutionary
algorithms that learn a probabilistic model from the individuals selected in
a given generation. Instead of the usual genetic operators of crossover and
mutation, EDAs create new individuals by sampling from the learned prob-
abilistic model.

The chapter by Mendiburu, Miguel-Alonso and Lozano begins with an
introduction to EDAs and a summary of parallel computing technology. Next,
the authors identify two basic approaches for parallelizing EDAs: direct and
island-based. The rest of the chapter is devoted to describe several algorithms
that follow each of the approaches.

Mendiburu et al. identify the parts that consume the most time as learn-
ing the probabilistic model and evaluating the individuals. Parallelizing the
evaluation of individuals is simple using a manager-worker scheme, but learn-
ing the probabilistic model can be more complicated. The authors describe
increasingly complex probabilistic models: model without dependencies, and
models that consider all possible dependencies. The first class of models are
easy to parallelize by splitting the work required across of variables opens
the possibility for directly distributing work to several computing nodes. For
the more sophisticated models, the authors offer a review of algorithms that
learn the model structure and its parameters.

On the island-based approaches, the authors recognize that EDAs can use
the same paradigm that other EAs use for exchanging information through
migration of individuals, but can also exchange the probabilistic models
learned in each island. There is some empirical work that suggests that ex-
changing and combining models instead of individuals offers some advantages,
but in general there are many opportunities to expand the research in this
area, and Mendiburu et al. identify some future avenues for research.

Chapter 7. Parallel Multi-Objective Optimization using Self-Organized Het-
erogeneous Resources by Sanaz Mostaghim.

In this chapter, Mostaghim shows a multi-objective optimization algorithm
on heterogeneous computing resources. The focus is on a multiobjective par-
ticle swarm algorithm. In the approach presented in this chapter, the user is
not involved in task partitioning, scheduling, or synchronization. Instead the
heterogeneous computing resources are presented as a unified resource.

Mostaghim studies how to automatically partition the optimization task
between the available processors. In the partitioning every computing re-
source is responsible for one part of the optimal front. Tasks are also sched-
uled automatically and the algorithm takes into account the heterogeneity of
the computing resources. Synchronization happens using the global archive
and different nodes look for areas of the optimal front that are less populated
and start optimizing on those areas.

Mostaghim demonstrates his approach with experiments on an environ-
ment containing 100 computing nodes of five different types. The experi-
ments measure the solution quality over a range of waiting times (how long
before fast processors wait for slow ones) and artificial failures on the system
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intended to simulate realistic collections of heterogeneous computing re-
sources.

Chapter 8. The Role of Explicit Niching and Communication Messages in
Distributed Evolutionary Multi-Objective Optimization by Lam T. Bui, Daryl
Essam and Hussein A. Abbass.

In this chapter Bui, Essam, and Abbass consider an Evolutionary Multi-
objective Optimization framework in which each sub-area of the search space
is associated with a separate population and is used to build a local model.
These models are allowed to interact using rules inspired from Particle Swarm
Optimization.

This chapter investigates several aspects of the communication between
populations. First, it examines the effect of the contents of the messages. In
most parallel and distributed EAs, it is common to communicate subsets of
individuals, but the communication cost can be reduced by using summary
information of the system’s progress instead of the solutions themselves. The
chapter also investigates the effect of the frequency of the communications
and considers different communication architectures.

The effect of the content of the messages has not been studied in detail
before. Bui et al. consider three choices for the contents of messages: (1) local
non-dominated solutions that are used to build a global archive to guide
the system, (2) local directions of improvement that are used to build a
global direction of the system, and (3) the direction of improvement and the
size of the non-dominated sets, which is used to weight the contribution of
each local direction to the global direction. For all three kinds of messages,
the authors examine the communication costs in master-slave, island, and a
hybrid architecture of several master-slave processes connected.

The effectiveness and efficiency of the different combinations of messages
and architectures is tested using several benchmark functions. The authors
also propose several approximate equations that can be helpful in under-
standing the scalability of the different communication alternatives.

Chapter 9. Adaptive Scheduling Algorithms for the Dynamic Distribution
and Parallel Execution of Spatial Agent-Based Models by Matthias Scheutz
and Jack Harris.

Spatial agent-based models lend themselves to efficient parallel implemen-
tations. These models explicitly define an environment, which is usually a
metric space, and every agent is situated in a particular location in the envi-
ronment at any given time. Each agent has a state that is generally updated
on every cycle of the simulation using information about the current state
and perhaps the state of other agents. Every agent also has an interaction
range that, given the agent’s location, determines at any given time the set
of other agents in the environment with which it can interact.

One way to parallelize these models is to distribute simulations across
multiple computers. Scheutz and Harris propose a novel update scheduling
algorithm for simulations of spatial agent-based models. The algorithms take
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advantage of the inherent parallelism in agent-based models and the inter-
action ranges of agents. The authors propose four heuristic methods for up-
dating the states of the agents and show that three of them can improve
performance over the standard update strategy that is based on collecting
state information from all the other agents in each cycle. In essence, the
heuristics try to determine in advance which agents need each others’ state
information and distribute the agents based on these dependencies. The pro-
posed heuristics permit for agents to be at different cycles within one sim-
ulation, as long as the cycle differences do not lead to inconsistent update
sequences. The idea is that the simulation can update the state of some agents
while others wait for information from other computing nodes necessary for
their update.

Scheutz and Harris experiment with an agent-based simulation taken from
a biological domain and achieve from than 50% shorter simulation run times.

Chapter 10. On the Use of Distributed Genetic Algorithms for the Tuning of
Fuzzy Rule Based-Systems by Ignacio Robles, Rafael Alcalá, José M. Beńıtez
and Francisco Herrera.

In their chapter, Robles, Alcalá, Beńıtez and Herrera present a study using
distributed genetic algorithms to tune fuzzy rule-based systems. In particular,
the authors consider linguistic fuzzy rule-based systems with two components:
a rule base and a database. The rule base that contains rules of the general
form IF antecedent(s) THEN consequent(s). The database contains the lin-
guistic term sets used in linguistic rules as well as the membership functions
that define the semantics of linguistic labels. For example, for a linguistic
variable such as temperature, there can be three fuzzy sets corresponding to
low, medium, and high temperatures. The membership functions of the three
fuzzy sets are defined by certain parameters that need to be tuned to specific
applications.

For tuning the membership functions, Robles et al. use an algorithm they
call gradual distributed Real-Coded Genetic Algorithm. The algorithm uses
eight subpopulations with different genetic operators. The basic idea is that
some of the subpopulations will do aggressive exploration, and communicate
individuals to subpopulations dedicated to exploitation.

The authors examine the performance of their approach using four bench-
mark problems and compare it to the performance of a sequential algorithm.
The results suggest that complex problems benefit more from the distributed
approach.

Chapter 11. Parallel and distributed optimization of dynamic data struc-
tures for multimedia embedded systems by José L. Risco Mart́ın and David
Atienza and J. Ignacio Hidalgo and Juan Lanchares.

One of the biggest challenges to implement multimedia applications on
embedded devices is the limited memory available. Applications that run on
desktops usually do not pay attention to power consumption, memory access
patterns, or memory usage, but these are important factors in embedded
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systems. Therefore, to implement applications, designers must find the best
set of dynamic data types that minimizes cost and obeys the constraints
of the target device. Risco Mart́ın, Atienza, Hidalgo and Lanchares present
a method to optimize dynamic data structures for multimedia embedded
systems based on a parallel multi-objective EA.

They explore different classical MOEAs and propose an algorithm that
combines NSGA-II and SPEA2, two well-known MOEAs. Their algorithm
follows an island approach, where each island executes a different MOEA
and individuals migrate between islands every 100 generations.

Risco Mart́ın et al. perform experiments in a real-life dynamic embedded
application and show that NSGA-II and SPEA2 reach huge speed-ups (up
to 469X faster) with respect to traditional heuristics and the parallel algo-
rithms achieve significant speedups with respect to the sequential versions
in a multi-core architecture. Moreover, using multiple metrics, the authors
show that the quality of the solutions is improved by the combination of NS-
GAII and SPEA2 in a parallel implementation. In terms of scalability, the
authors obtained empirical evidence that shows that on increasing the size
of the population, the performance of the parallel MOEA improves as more
workstations are used.

Chapter 12. A Grid-based Hybrid Hierarchical Genetic Algorithm for Pro-
tein Structure Prediction by Alexandru-Adrian Tantar, Nouredine Melab,
El-Ghazali Talbi.

In this chapter Tantar, Melab and Talbi address the problem of protein
structure prediction with a combination of an EA and Adaptive Simulated
Annealing. This is a very difficult problem that consists of determining the
conformation of a given protein given its aminoacid sequence.

To address this problem, the authors present a hierarchical hybrid parallel
genetic algorithm. The hierarchical parallelization consists of using an island
model GA at the highest level, then parallelizing the fitness evaluations in
each island, and furthermore each evaluation is executed on several proces-
sors. The hybridization consists of using conjugate gradient optimization as
an additional search operator and using a synchronous adaptive simulated
annealing on a subset of the individuals after a fixed number of generations.

Tantar et al. present an implementation on up to a thousand cores dis-
tributed in different grids across several academic institutions. The authors
describe increasingly sophisticated approaches to their hybridization. Their
experiments with their initial parallel hybrid approach did not obtain very
good results, so they experimented with alternative representations and free
energy evaluation functions. The representations and the evaluation functions
required additional tuning that was performed with a meta-evolutionary al-
gorithm. Each individual of the meta-EA was composed of multiple islands,
each with parallel fitness evaluations. With the meta-EA implementation the
authors obtained very good solutions for two of the three molecules that were
investigated.
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Chapter 13. Laser Dynamics Modelling and Simulation: An application of
Dynamic Load Balancing of Parallel Cellular Automata by J.L. Guisado, F.
Jiménez-Morales, J.M. Guerra, F. Fernández de Vega, K.A. Iskra, P.M.A.
Sloot, and Daniel Lombraña González.

This chapter is an application of cellular automata to the modeling of
laser dynamics. The authors create a set of transition rules for the cellular
automata that can reproduce different aspects of laser systems. Their exper-
imental results show that there is qualitative agreement between the simu-
lations and the behavior expected from modeling the laser with differential
equations. To pursue more realistic simulations, larger lattices are needed and
make it necessary to use parallel implementations. The authors first study the
performance of a master-worker version of their algorithm on a small com-
puter cluster and find good speedups and scalability results. Next, the authors
study the question of the efficiency of the algorithms on non-dedicated het-
erogeneous clusters of computers using a dynamic load balancing approach.
The authors added artificial tasks to the cluster and observed that the dy-
namic load balancing made a large difference in execution time, reducing it
by a factor of almost five compared to not using load balancing.



When Huge Is Routine: Scaling Genetic
Algorithms and Estimation of Distribution
Algorithms via Data-Intensive Computing

Xavier Llorà, Abhishek Verma, Roy H. Campbell, and David E. Goldberg

Abstract. Data-intensive computing has emerged as a key player for processing
large volumes of data exploiting massive parallelism. Data-intensive computing
frameworks have shown that terabytes and petabytes of data can be routinely pro-
cessed. However, there has been little effort to explore how data-intensive computing
can help scale evolutionary computation. In this book chapter we explore how evo-
lutionary computation algorithms can be modeled using two different data-intensive
frameworks—Yahoo!’s Hadoop and NCSA’s Meandre. We present a detailed step-
by-step description of how three different evolutionary computation algorithms, hav-
ing different execution profiles, can be translated into the data-intensive computing
paradigms. Results show that (1) Hadoop is an excellent choice to push evolutionary
computation boundaries on very large problems, and (2) that transparent Meandre
linear speedups are possible without changing the underlying data-intensive flow
thanks to its inherent parallel processing.

1 Introduction

Data-intensive computing branding is relatively recent, however data flow started to
get traction back in the mid 90’s with the appearance of frameworks such as IBM
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promoted FBP[33] or NCSA’s D2K [45], and later simplified and popularized by
Google’s MapReduce model [11] and Yahoo!’s open source Hadoop project1. Re-
cent advances on data-intensive computing have lead to frameworks that are now
able to exploit massive parallelism to efficiently process petabytes of data. These
frameworks, due to their data-flow nature, provide specialized programming envi-
ronments tailored for developing flow applications that, up to a certain degree, trans-
parently benefit from the available parallelism.

The current data deluge is happening across different domains and is forcing a
rethinking of how large volumes of data are processed. Most of these data-intensive
computing frameworks share a common underlying characteristic: data-flow ori-
ented processing. Availability of data drives, not only the execution, but also the
parallel nature of such processing. The growth of the internet and its easy commu-
nication medium has pushed researchers from all disciplines to deal with volumes
of information where the only viable path is to utilize data-intensive frameworks
[43, 6, 14, 32]. Although large bodies of research on parallelizing evolutionary com-
putation algorithms are available [8, 1], there has been little work done in exploring
the usage of data-intensive computing [23, 28].

The inherent parallel nature of evolutionary algorithms makes them optimal can-
didates for parallelization [8]. Moreover, as we will layout in this paper, evolutionary
algorithms and their inherent need to deal with large volumes of data—regardless
if it takes the form of populations of individuals or samples out of a probabilistic
distribution—can greatly benefit from a data-intensive computing modeling. In this
book chapter we will explore the usage of two frameworks: Yahoo!’s Hadoop model
and its MapReduce implementation, and NCSA’s semantic-driven data-intensive
computing framework – Meandre2 [30]. Hadoop provides a simple scalable pro-
gramming model based on the implementation of two basic functions: the map and
the reduce functions. The map function provides uniform and parallel process to
large volumes of data in forms of chunks, whereas the reduce function aggregates
the results produced by mappers. On the other hand, Meandre allows explicit de-
scriptions of complex, and possibly iterating, data flows via a directed multigraph
of components describing the data flow processing. Two main benefits of such a
modeling are: (1) favoring encapsulation, reutilization, and sharing via Lego-like
component modeling, and (2) massive parallel data-driven execution. The first ben-
efit targets improving software engineering best practices and a detailed discussion
is beyond the scope of this paper and can be find elsewhere [30].

To illustrate the benefits for the evolutionary computation community of adopt-
ing such approaches we selected three representative algorithms and developed their
equivalent data-intensive computing equivalents. It is important to note here that we
paid special attention to guarantee that the underlaying mechanics were not altered
and the properties of these algorithms maintained. The three algorithms transformed
were: a simple selectorecombinative genetic algorithm [16, 17], the compact genetic
algorithm [21], and the extended compact genetic algorithm [22]. We will show how

1 http://hadoop.apache.org/
2 Catalan spelling of the word meander. http://seasr.org/meandre

http://hadoop.apache.org/
http://seasr.org/meandre
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a simple selectorecombinative genetic algorithm [16, 17] can be modeled using the
data-intensive computing via Hadoop’s MapReduce approach and Meandre data-
intensive flow modeling. We will review (1) some of the basic steps of the trans-
formation process required to achieve its data-intensive computing counterparts, (2)
how to design components that can maximally benefit from a data-driven execu-
tion, and (3) analyze the results obtained. The second example, the compact genetic
algorithm [21], we focus on how Hadoop’s MapReduce modeling can help scale be-
ing a clear competitor of traditional high performance computing version [41]. The
third example addresses the parallelization of the model building of estimation of
distribution algorithms. We will show how Meandre’s data-driven implementation
of the extended compact classifier system (eCGA) [22] produces, de facto, a paral-
lelized implementation of the costly model building stage. Experiments show that
speedups linear to the number of cores or processors are possible without any further
modification.

It is important to note here, that each of these algorithms has different profiles.
For instance, the simple selectorecombinative genetic algorithm requires dealing
with large populations as you tackle large problems, but the operators are straight
forward. The compact genetic algorithm instead is memory efficient, but requires
the proper updating of a simple probability distributions. Finally the extended com-
pact genetic algorithms requires to deal with large populations as you scale your
problem size, and also requires an elaborated model building process to induce the
probability distribution required. In this book chapter, we will focus on the massive
parallel data-driven execution that allows users to automatically benefit from the
advances of the current multicore era — which has opened the door to petascale
computing — without having to modify the underlying algorithm.

The rest of this chapter is organized as follows. Section 2 presents a quick in-
troductory overview of the two data-intensive frameworks we will use through the
chapter, Hadoop and Meandre. Then, Section 3 introduces the three evolutionary
computation algorithms that we will use in our experimentation with the two intro-
duced frameworks, a simple selectorecombinative genetic algorithm , the compact
genetic algorithm, and the extended compact genetic algorithm. These algorithms
are transformed and implemented using data-intensive computing techniques, and
the proposed implementations are discussed on Section 4. Section 5 presents the re-
sults achieved and using the data-intensive implementations showing that scalability
is only bounded by the available resources, and linear speedups are easily achievable.
Finally we review some related work in section 6 and present some conclusions and
possible further work on section 7.

2 Data-Intensive Computing

This section presents a quick overview of the two data-intensive frameworks we
will use throughout the rest of this book chapter. The first one is Hadoop3 — Ya-
hoo!’s open source MapReduce framework. Modeled after Google’s MapReduce

3 http://hadoop.apache.org

http://hadoop.apache.org
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paper [11], Hadoop builds on the map and reduce primitives present in functional
languages. Hadoop relies on these two abstractions to enable the easily development
of large-scale distributed applications as long as your application can be modeled
around these two phases. The second framework is Meandre [30]—NCSA’s data-
intensive computing infrastructure for science, engineering, and humanities. Mean-
dre provides a more flexible programming model that allows to create complex data
flows, which could be regarded as complex and possible iterating MapReduce stages.
Meandre can also benefit of some Hadoop tools, such as Hadoop’s distributed file
system.

2.1 MapReduce and the Hadoop Model

Inspired by the map and reduce primitives present in functional languages, Google
popularized the MapReduce[11] abstraction that enables users to easily develop
large-scale distributed applications. The associated implementation parallelizes large
computations easily as each map function invocation is independent and uses re-
execution as the primary mechanism of fault tolerance.

In this model, the computation takes a set of input key/value pairs, and produces
a set of output key/value pairs. The user of the MapReduce library expresses the
computation as two functions: Map and Reduce. Map, written by the user, takes
an input pair and produces a set of intermediate key/value pairs. The MapReduce
framework then groups together all intermediate values associated with the same
intermediate key I and passes them to the Reduce function. The Reduce function,
also written by the user, accepts an intermediate key I and a set of values for that
key. It merges together these values to form a possibly smaller set of values. The
intermediate values are supplied to the user’s reduce function via an iterator. This
allows the model to handle lists of values that are too large to fit in main memory.

Conceptually, the map and reduce functions supplied by the user have the follow-
ing types:

map(k1,v1) → list(k2,v2)
reduce(k2, list(v2)) → list(v3)

i.e., the input keys and values are drawn from a different domain than the output
keys and values. Furthermore, the intermediate keys and values are from the same
domain as the output keys and values.

The Map invocations are distributed across multiple machines by automatically
partitioning the input data into a set of M splits. The input splits can be processed
in parallel by different machines. Reduce invocations are distributed by partition-
ing the intermediate key space into R pieces using a partitioning function, which
is hash(key)%R according to the default Hadoop configuration. The number of
partitions (R) and the partitioning function are specified by the user. The overall
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Fig. 1. MapReduce data flow overview

execution is thus orchestrated in two steps: first all mappers are executed in parallel,
then the reducers process the generated key value pairs by the reducers. A detailed
explanation of this framework is beyond the scope of this article and can be found
elsewhere [11]. We will also use the Yahoo!’s open source MapReduce framework
through this article.

2.2 Data-Intensive Flow Computing with Meandre

Meandre [30] is a semantic-enabled web-driven, dataflow execution environment.
It provides the machinery for assembling and executing data flows. Flows are soft-
ware applications composed by components that process data. Each flow represents
as a directed multigraph of executable components—nodes—linked through their
input and output ports. Based on the inputs, properties, and its internal state, an exe-
cutable component may produce output data. Meandre also provides component and
flow publishing capabilities enabling users to assemble a repository of components
by reusing and sharing. Users can discover by querying and reuse components and
flows previously published by other researchers. It is important to mention here, that
component and flow abstract can act as self-contained elements—other approaches
like Chimera still rely on external information [14]. Meandre builds on three main
concepts: (1) dataflow-driven execution, (2) semantic-web metadata manipulation,
and (3) metadata publishing. A detailed description of the Meandre data-intensive
computing architecture is beyond the scope of this paper and can be found else-
where [30].
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2.2.1 Dataflow Execution Engines

Conventional programs perform their computational tasks by executing a sequence
of instructions. One after another, each code instruction is fetched and executed. All
data manipulation is performed by these basic units of execution. In a broad sense,
this approach can be termed “code-driven execution.” Any computation task is re-
garded as a sequence of code instructions that ultimately manipulates data. However,
data-driven execution (or dataflow execution) revolves around the idea of applying
transformational operations to a flow or stream of data. In a data-driven model, data
availability determines the sequence of code instructions to execute.

An analogy of the dataflow execution model is the black box operand approach.
That is, any operand (operator) may have zero or more data inputs. It may also
produce zero or more data through its data outputs. The operand behavior may be
controlled by properties (behavior controls). Each operand performs its operations
based on the availability of its inputs. For instance, an operand may require that data
is available in all its inputs to perform its operations. Others may only need some, or
none. A simple example of a black box operand could be the arithmetic ‘+’ operand.
This operand can be modeled as follows:

1. It requires two inputs.
2. When two inputs are available, it performs the addition.
3. It then pushes the result to an output.

Such a simple operand may have two possible implementations. The first one
defines a executable component (Meandre terminology for a black box operator)
with two inputs. When data is present on both inputs, then the operator is executed—
fired. The operator produces one piece of data to output, which may become the
input of another operator. Another possible implementation is to create a component
with a single input that adds together two consecutive data pieces received. The
component requires an internal variable (or state) which stores the first data piece
of a pair. When the second data piece arrives, it would be added to the first and an
output is produced. The internal variable would then be cleared and the component
will treat the next data piece received as the first of a new pair. As we will see later
in this paper, both implementations have merit, but in certain conditions we will
choose one over the other based on clarity and efficiency requirements.

Meandre uses the following terminology:

1. Executable component: A basic unit of processing.
2. Input port: Input data required by a component.
3. Firing policy: The policy of component execution (e.g. when all/any input ports

contain data).
4. Output port: Outputs data produced by component execution.
5. Properties: Component read-only variables used to modify component behavior.
6. Internal state: The collection of data structures designed to manage data between

component firings.

Figure 2 presents a schema of the component and flow anatomy. Components
with input and output ports can be connected to describe a complex task, commonly
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(a) A component is described by several
input and output ports where data flows
through. Also, each component have a set of
properties which govern its behavior in the
presence of data.

(b) A flow is a directed graph where multi-
ple components are connected together via
input/output ports. A flow represents a com-
plex task to solve.

Fig. 2. A data-intensive flow is characterized by the components it uses (basic process units)
and their interconnection (a direct multigraph). Grouping several components together de-
scribes a complex task. It also emphasize rapid development by component reutilization.

referred as flow. Dataflow execution engines provide a scheduler that determines the
firing (execution) sequence of components4.

2.2.2 Components

Meandre components serve as the basic building block of any computational task.
There are two kinds of Meandre components: (1) executable components and (2)
flow components. Regardless of type, all Meandre components are described us-
ing metadata expressed in RDF. Executable components also require an executable
implementation form that can be understood by the Meandre execution engine5.
Meandre’s metadata relies on three ontologies: (1) the RDF ontology [5, 7] serves
as a base for defining Meandre components; (2) the Dublin Core elements ontology
[44] provides basic publishing and descriptive capabilities in the description of Me-
andre components; and (3) the Meandre ontology describes a set of relationships that
model valid components, as understood by the Meandre architecture—refer to [30]
for a more detailed description.

2.2.3 Programming Paradigm

The programming paradigm creates complex tasks by linking together a bunch of
specialized components—see Figure 2. Meandre’s publishing mechanism allows

4 Meandre uses a decentralized scheduling policy designed to maximize the use of multi-
core architectures. Meandre also allows works with processes that require directed cyclic
graphs—extending beyond the traditional MapReduce directed acyclic graphs.

5 Java, Python, and Lisp are the current languages supported by Meandre to implement a
component.
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components developed by third parties to be assembled in a new flow. There are
two ways to develop flows on Meandre: (1) using visual programming tools, or
(2) using Meandre’s ZigZag scripting language—see [30]. For simplicity purposes,
throughout the rest of this paper flows will be presented as ZigZag scripts.

3 Three Diverse Genetic Algorithms Models

Evolutionary computing encompass a large diversity of algorithms and implementa-
tions. In order to illustrate the usefulness of data-intensive computing, we will focus
on three widely used models: selectorecombinative genetic algorithms [16, 17], the
compact genetic algorithm [21], and the extended compact genetic algorithm [22].
As we will describe in the rest of this section, each of these algorithms posses dif-
ferent profiles. Ranging from purely population-based to model-based algorithms,
to create their data-intensive computing counterparts—as we will show in the next
section—will require to pay close attention to their basic needs.

3.1 A Simple Selectorecombinative Genetic Algorithm

Selectorecombinative genetic algorithms [16, 17] mainly rely on the use of selection
and recombination. We chose to start with them because they present a minimal set
of operators that will help us illustrate the creation of a data-intensive flow coun-
terpart. As we will see, the addition of mutation operators will be trivial after the
setting up the proper data-intensive flow. The rest of this section will present a quick
description of the algorithm we transformed and implemented it using Meandre, a
discussion of some of the elements that need to be taken into account, and finally
review the execution profile of the final implementation.

The basic algorithm we will target to implement as a data-intensive flow can be
summarized as follows:

1. Initialize the population with random individuals.
2. Evaluate the fitness value of the individuals.
3. Select good solutions by using s-wise tournament selection without replacement

[19].
4. Create new individuals by recombining the selected population using uniform

crossover6[42].
5. Evaluate the fitness value of all offspring.
6. Repeat steps 3–5 until some convergence criteria are met.

3.2 The Compact Genetic Algorithm

The compact genetic algorithm [21], is one of the simplest estimation distribution al-
gorithms (EDAs) [36, 24]. Similar to other EDAs, cGA replaces traditional variation

6 For this particular exercise we have assumed a crossover probability pχ =1.0.
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operators of genetic algorithms by building a probabilistic model of promising solu-
tions and sampling the model to generate new candidate solutions. The probabilistic
model used to represent the population is a vector of probabilities, and therefore im-
plicitly assumes each gene (or variable) to be independent of the other. Specifically,
each element in the vector represents the proportion of ones (and consequently ze-
ros) in each gene position. The probability vectors are used to guide further search
by generating new candidate solutions variable by variable according to the fre-
quency values.

The compact genetic algorithm consists of the following steps:

1. Initialization: As in simple GAs, where the population is usually initialized with
random individuals, in cGA we start with a probability vector where the proba-
bilities are initially set to 0.5. However, other initialization procedures can also
be used in a straightforward manner.

2. Model sampling: We generate two candidate solutions by sampling the probabil-
ity vector. The model sampling procedure is equivalent to uniform crossover in
simple GAs.

3. Evaluation: The fitness or the quality-measure of the individuals are computed.
4. Selection: Like traditional genetic algorithms, cGA is a selectionist scheme, be-

cause only the better individual is permitted to influence the subsequent genera-
tion of candidate solutions. The key idea is that a “survival-of-the-fittest” mecha-
nism is used to bias the generation of new individuals. We usually use tournament
selection [19] in cGA.

5. Probabilistic model update: After selection, the proportion of winning alleles is
increased by 1/n. Note that only the probabilities of those genes that are different
between the two competitors are updated. That is,

pt+1
xi

=

⎧⎨
⎩

pt
xi

+ 1/n If xw,i �= xc,i and xw,i = 1,
pt

xi
−1/n If xw,i �= xc,i and xw,i = 0,

pt
xi

Otherwise.
(1)

Where, xw,i is the ith gene of the winning chromosome, xc,i is the ith gene of
the competing chromosome, and pt

xi
is the ith element of the probability vector—

representing the proportion of ith gene being one—at generation t. This updating
procedure of cGA is equivalent to the behavior of a GA with a population size of
n and steady-state binary tournament selection.

6. Repeat steps 2–5 until one or more termination criteria are met.

The probabilistic model of cGA is similar to those used in population-based in-
cremental learning (PBIL) [3, 4] and the univariate marginal distribution algorithm
(UMDA) [35, 34]. However, unlike PBIL and UMDA, cGA can simulate a genetic
algorithm with a given population size. That is, unlike the PBIL and UMDA, cGA
modifies the probability vector so that there is direct correspondence between the
population that is represented by the probability vector and the probability vector
itself. Instead of shifting the vector components proportionally to the distance from
either 0 or 1, each component of the vector is updated by shifting its value by the
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contribution of a single individual to the total frequency assuming a particular pop-
ulation size.

Additionally, cGA significantly reduces the memory requirements when com-
pared with simple genetic algorithms and PBIL. While the simple GA needs to store
n bits, cGA only needs to keep the proportion of ones, a finite set of n numbers that
can be stored in log2 n for each of the � gene positions. With PBIL’s update rule, an
element of the probability vector can have any arbitrary precision, and the number
of values that can be stored in an element of the vector is not finite.

Elsewhere, it has been shown that cGA is operationally equivalent to the order-
one behavior of simple genetic algorithm with steady state selection and uniform
crossover [21]. Therefore, the theory of simple genetic algorithms can be directly
used in order to estimate the parameters and behavior of the cGA. For determining
the parameter n that is used in the update rule, we can use an approximate form of
the gambler’s ruin population-sizing7 model proposed by Harik et al. [20]:

n = −logα · σBB

d
·2k−1√π ·m, (2)

where k is the BB size, m is the number of building blocks (BBs)—note that the
problem size � = k ·m,—d is the size signal between the competing BBs, and σBB is
the fitness variance of a building block, and α is the failure probability.

3.3 The Extended Compact Genetic Algorithm

The extended compact genetic algorithm (eCGA) [22], is based on a key idea that
the choice of a good probability distribution is equivalent to linkage learning. The
measure of a good distribution is quantified based on minimum description length
(MDL) models. The key concept behind MDL models is that given all things are
equal, simpler distributions are better than the complex ones. The MDL restriction
penalizes both inaccurate and complex models, thereby leading to an optimal proba-
bility distribution. The probability distribution used in eCGA is a class of probability
models known as marginal product models (MPMs). MPMs are formed as a product
of marginal distributions on a partition of the genes. MPMs also facilitate a direct
linkage map with each partition separating tightly linked genes.

The eCGA, later extended to deal with n-ary alphabets in χ-eCGA [10], can be
algorithmically outlined as follows:

1. Initialize the population with random individuals.
2. Evaluate the fitness value of the individuals.
3. Select good solutions by using s-wise tournament selection without replacement

[19].
4. Build the probabilistic model: In χ-eCGA, both the structure of the model as well

as the parameters of the models are searched. A greedy search is used to search
for the model of the selected individuals in the population.

7 The experiments conducted in this paper used n = 3�.
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5. Create new individuals by sampling the probabilistic model.
6. Evaluate the fitness value of all offspring.
7. Repeat steps 3–6 until some convergence criteria are met.

Two things need further explanation: (1) the identification of MPM using MDL, and
(2) the creation of a new population based on MPM.

The identification of MPM in every generation is formulated as a constrained
optimization problem,

Minimize Cm +Cp (3)

Subject to

χki ≤ n ∀i ∈ [1,m] (4)

where χ is the alphabet cardinality—χ = 2 for the binary strings—Cm is the model
complexity which represents the cost of a complex model and is given by

Cm = logχ(n + 1)
m

∑
i=1

(
χki −1

)
(5)

and Cp is the compressed population complexity which represents the cost of using
a simple model as against a complex one and is evaluated as

Cp =
m

∑
i=1

χki

∑
j=1

Ni j logχ

(
n

Ni j

)
(6)

where m in the equations represent the number of BBs, ki is the length of BB i ∈
[1,m], and Ni j is the number of chromosomes in the current population possessing
bit-sequence j ∈ [1,χki ]8 for BB i. The constraint (Equation 4) arises due to finite
population size.

The greedy search heuristic used in χ-eCGA starts with a simplest model assum-
ing all the variables to be independent and sequentially merges subsets until the
MDL metric no longer improves. Once the model is built and the marginal proba-
bilities are computed, a new population is generated based on the optimal MPM as
follows, population of size n(1− pc) where pc is the crossover probability, is filled
by the best individuals in the current population. The rest n · pc individuals are gen-
erated by randomly choosing subsets from the current individuals according to the
probabilities of the subsets as calculated in the model.

One of the critical parameters that determines the success of eCGA is the pop-
ulation size. Analytical models have been developed for predicting the population-
sizing and the scalability of eCGA [40]. The models predict that the population size
required to solve a problem with m building blocks of size k with a failure rate of
α = 1/m is given by

8 Note that a BB of length k has χk possible sequences where the first sequence denotes be
00· · ·0 and the last sequence (χ −1)(χ −1) · · · (χ −1).
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n ∝ χk
(

σ2
BB

d2

)
m logm, (7)

where n is the population size, χ is the alphabet cardinality (here, χ = 3), k is the

building block size, σ 2
BB

d2 is the noise-to-signal ratio [18], and m is the number of
building blocks. For the experiments presented in this paper we used k = |a|+ 1

(where |a| is the number of address inputs), σ 2
BB

d2 =1.5, and m = �
|I| (where � is the

rule size).

4 Data-Intensive Computing in Action

The previous section described the three algorithms we will target to create their
data-intensive computing counterparts. This section we will take a stab at designing
efficient and scalable version of these algorithms to show the benefits of banking on
either MapReduce or Meandre approaches.

4.1 A Simple Selectorecombinative Genetic Algorithm

4.1.1 MapReducing SGAs

In this section, we start with a simple model of Genetic algorithms and then trans-
form and implement it using MapReduce. We encapsulate each iteration of the GA
as a seperate MapReduce job. The client accepts the commandline parameters, cre-
ates the population and submits the MapReduce job.

Map: Evaluation of the fitness function for the population matches the MAP func-
tion, which has to be computed independent of other instances. As shown in the
algorithm in Listing 1, the MAP evaluates the fitness of the given individual.
Also, it keeps track of the the best individual and finally, writes it to a global file
in the Distributed File System (HDFS)9. The client reads these values from all
the mappers at the end of the MapReduce and determines whether to start the
next iteration.

Partitioner: If the selection operation in a GA (Step 3) is performed locally on
each node, it reduces the selection pressure [38] and can lead to increase in
the time taken to converge. Hence, decentralized and distributed selection algo-
rithms [9] are preferred. The only point at which there is a global communica-
tion is in the shuffle between the Map and Reduce. At the end of the Map phase,
the MapReduce framework shuffles the key/value pairs to the reducers using the
partitioner. The partitioner splits the intermediate key/value pairs among the re-
ducers. The function GETPARTITION() returns the reducer to which the given
(key,value) should be sent to. In the default implementation, it uses HASH(key) %

9 This cleanup functionality can be implemented by overriding the close() function, but it’s
overlaps with reduce() function and hence sometimes throws FileNotFoundException.
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Listing 1. Map phase of each iteration of the Genetic Algorithm

procedure I n i t i a l i z a t i o n :
begin

max := −1
end

procedure Map ( key , v a l u e ) :
begin

i n d i v i d u a l := I n d i v i d u a l r e p r e s e n t a t i o n ( key )
f i t n e s s := C a l c u l a t e F i t n e s s ( i n d i v i d u a l )
Emit ( i n d i v i d u a l , f i t n e s s )

{Keep t r a c k o f t h e c u r r e n t b e s t }
i f f i t n e s s >max then

max := f i t n e s s
maxInd := i n d i v i d u a l

{F i n i s h e d a l l l o c a l maps}
i f p r o c e s s e d a l l i n d i v i d u a l s then

Write b e s t i n d i v i d u a l to g l o b a l f i l e in DFS
end

numReducers so that all the values corresponding to a given key end up at the
same reducer which can then apply the REDUCE function. However, this does not
suit the needs of Genetic algorithms because of two reasons: Firstly, the HASH

function partitions the namespace of the individuals N into r distinct classes :
{N0,N1, . . . ,Nr−1} where Ni = {n : HASH(n) = i}. The individuals within each
partition are isolated from all other partitions. Thus, the HASHPARTITIONER in-
troduces an artificial spatial constraint based on the lower order bits. Because of
this, the convergence of the genetic algorithm may take more iterations or it may
never converge at all.

Secondly, as the genetic algorithm progresses, the same (close to optimal) in-
dividual begins to dominate the population. All copies of this individual will be
sent to one single reducers which will get overloaded. Thus, the distribution pro-
gressively becomes more skewed, deviating from the uniform distribution (that
would have maximized the usage of parallel processing). Finally, when the GA
converges, all the individuals will be processed by that single reducer. Thus, the
parallelism decreases as the GA converges and hence, it will take more iterations.

For these reasons, we override the default partitioner by providing our own
partitioner, which shuffles individuals randomly across the different reducers as
shown in Listing 2.

Reducer: We implement Tournament selection without replacement[19]. A tour-
nament is conducted among tSize randomly chosen individuals and the winner is
selected. This process is repeated population number of times. Since randomly
selecting individuals is equivalent to randomly shuffling all individuals and then
processing them sequentially, our reduce function goes through the individuals
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Listing 2. Random partitioner for the Genetic Algorithm

i n t g e t P a r t i t i o n ( key , va lue , numReducers ) :
r e t u r n RandomInt ( 0 , numReducers − 1)

sequentially. Initially the individuals are buffered for the last rounds, and when
the tournament window is full, SELECTIONANDCROSSOVER is carried out as
shown in the Listing 3. When the crossover window is full, we use the Uniform
Crossover operator. For our implementation, we set the tSize to 5 and the cSize
to 2.

Optimizations: After initial experimentation, we noticed that for larger problem
sizes, the serial initialization of the population takes a long time. According to
Amdahl’s law, the speedup is bounded because of this serial component. Hence,
we create the initial population in a separate MapReduce phase, in which the
MAP generates random individuals and the REDUCE is the Identity Reducer. 10

We seed the pseudo-random number generator for each mapper with mapperId ·
currentTime. The bits of the variables in the individual are compactly represented
in an array of long long ints and we use efficient bit operations for crossover and
fitness calculations. Due to the inability of expressing loops in the MapReduce
model, each iteration consisting of a Map and Reduce, has to executed till the
convergence criteria is satisfied.

4.1.2 SGAs as Data-Intensive Flows

The first step in designing a data-intensive flow implementation of the algorithm
presented in the previous section is to identify what data will be processed. This
decision is similar to the partition step of the methodology proposed by Foster [13],
to design general purpose parallel programs, where data is maximally partitioned
to maximize parallelization. The two possible options here are to deal with popula-
tions or individuals. E2K [27]—a data-flow extension for D2K [45]—chose to use
populations. Such a decision only allows parallelizing the concurrent evolution of
distinct populations. In this paper we will choose the second option. Our data-flow
implementation is going to be built around processing individuals. In other words,
a population will be a stream of individuals—a stream initiator and a stream ter-
minator will enclose each stream defining a population. Making the decision of
processing streams of individuals will allow creating components that perform the
genetic manipulation as the stream goes by. This approach may be regarded as an
analogy of pipeline segmentation on central processing units.

Inspecting the algorithm presented in section 3.1, we need to create components
that implement each of the operation required: initialization, evaluation, selection,
and recombination. Initialization and evaluation are straight forward; the first one

10 Setting the number of reducers to 0 in Hadoop removes the extra overhead of shuffling and
identity reduction.
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Listing 3. Reduce phase of each iteration of the Genetic Algorithm

procedure I n i t i a l i z a t i o n :
begin

p r o c e s s e d := 0
A l l o c a t e t o u r n a m e n t A r r a y [1 . . . 2∗ t S i z e ]
A l l o c a t e c r o s s o v e r A r r a y [ c S i z e ]

end

procedure Reduce ( key , v a l u e s ) :
begin

whi l e v a l u e s . hasNext ( )
begin

i n d i v i d u a l := I n d i v i d u a l r e p r e s e n t a t i o n ( key )
f i t n e s s := v a l u e s . g e t V a l u e ( )
i f p r o c e s s e d <t S i z e
then

{Wait f o r i n d i v i d u a l s t o j o i n i n t h e t o u r n a m e n t and p u t
them f o r t h e l a s t rounds}

t o u r n a m e n t A r r a y [ t S i z e + p r o c e s s e d%t S i z e ] := i n d i v i d u a l
e l s e

{Conduct a t o u r n a m e n t o v e r t h e p a s t window}
S e l e c t i o n A n d C r o s s o v e r ( )

p r o c e s s e d := p r o c e s s e d + 1

{F i n i s h e d a l l r e d u c e s }
i f p r o c e s s e d a l l i n d i v i d u a l s
then

{Cleanup f o r t h e l a s t t o u r n a m e n t windows}
f o r k=1 to t S i z e
begin

S e l e c t i o n A n d C r o s s o v e r ( )
p r o c e s s e d := p r o c e s s e d + 1

end
end

end

procedure S e l e c t i o n A n d C r o s s o v e r :
begin

c r o s s o v e r A r r a y [ p r o c e s s e d%c S i z e ] := Tournament ( t o u r n a m e n t A r r a y )
i f ( p r o c e s s e d−t S i z e )%c S i z e = c S i z e − 1
then

{Perform c r o s s o v e r whenever t h e c r o s s o v e r window i s f u l l }
n e w I n d i v i d u a l s := C r o s s o v e r ( c r o s s o v e r A r r a y )
f o r i n d i v i d u a l in n e w I n d i v i d u a l s

Emit ( i n d i v i d u a l , dummyFitness )
end
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Fig. 3. Meandre’s flow for the proposed selectorecombinative genetic algorithm flow

creates the stream of individuals that forms a population, and the second one up-
dates the fitness of the individuals as they are streamed by. The recombination
components—as introduced in section 2.2—will require and internal state. As in-
dividuals stream by, it requires two individuals in order to perform the uniform
crossover operation.

The selection component requires a bit more thinking. One may think that a sim-
ilar implementation to the one used for the recombination component may work
approximately accurate enough. However, such an implementation would be equiv-
alent to implement a spatial based selection method instead of a tournament one.
Spatially constraint selection methods have been shown to elongate the takeover
time, and thus reduce the selection pressure when compared to tournament selection
without replacement [9, 38, 39, 29, 15]. Also, following on the temptation of accu-
mulate all the individuals and then recreate the stream as we conduct tournaments
against the accumulated population also seems prone to introduce a large sequential
bottleneck and, thus, leaving the execution profile prone to the Amdahl’s law [2].
The answer is simpler. Create all the required tournaments when you get the stream
initiator. Then as individuals are streamed in perform the possible tournaments and
start streaming the new selected population. Thus, we will guarantee that as individ-
uals are still streamed in, we are already streaming out of the component a newly
selected population, minimizing Ambdahl’s law impact.

Figure 3 presents the components discussed above and how they get assembled
to for the final data-intensive flow. The sbp (stream binary population) streams a
population of individuals to start the flow. Individuals get streamed into the soed
(single open entry door) component. This is a special component. Its only goal is
to make sure that all the individuals on the initial population are streamed into the
evaluation eps component before the next streamed population arrives. The goal
of this component is to avoid having individuals from the next population mixed
with the previous population ones. It is important to note here that individuals my
still be streamed in from the initialization when new individuals are already being
streamed out the recombination ucbps component, and hence, we must guarantee
that the two populations do not get mixed. Evaluated individuals are then streamed
into the tournament selection twrops component, and the selected individuals are
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Listing 4. Portion of the ZigZag script implementing a selectorecombinative genetic algo-
rithm using Meandre components.

#
# Main i m p o r t and a l i a s e s
#

# Omi t t ed . . .

#
# Component i n s t a n c e s
#
sbp , soed , eps = SBP ( ) , SOED( ) , EPS ( )
n o i t , twrops , ucbps = NOIT ( ) , TWROPS( ) , UCBPS ( )
p r i n t = PRINT ( )
#
# The f l o w
#
@new pop , @cross pop = sbp ( ) , ucbps ( )
@pop ed = soed (

i n i t i a l s t r e a m : new pop . p o p u l a t i o n ;
s t r e a m : c r o s s p o p . p o p u l a t i o n

)
@eval pop = eps ( p o p u l a t i o n : pop ed . s t r e a m )
@sel pop = twrops ( p o p u l a t i o n : e v a l p o p . p o p u l a t i o n )
@cnt = n o i t ( p o p u l a t i o n : s e l p o p . p o p u l a t i o n )
ucbps ( p o p u l a t i o n : c n t . p o p u l a t i o n )
p r i n t ( p o p u l a t i o n : c n t . f i n a l p o p u l a t i o n )

streamed into the noit (number of iterations) component which allows a popula-
tion stream to go by a given number of iterations and then diverts the population
to a secondary output port to print the final output to the console. If the finaliza-
tion criteria is not met, the selected individuals are streamed into the recombination
ucbps component. New offspring will be sent for evaluation passing through the
soed safe gate. Program 4 presents the ZigZag script implementing this flow. A
detailed description on how to implement Meandre components and write ZigZag
scripts can be found elsewhere—see [30] and http://seasr.org/meandre.

4.2 The Compact Genetic Algorithm and Hadoop

We encapsulate each iteration of the CGA as a seperate single MapReduce job. The
client accepts the commandline parameters, creates the initial probability vector
splits and submits the MapReduce job. Let the probability vector be P = {pi : pi =
Probability o f the variable(i)= 1}. Such an approach would allow us to scale over
a billion variables, if P is partitioned into m different partitions P1,P2, . . . ,Pm where
m is the number of mappers.

http://seasr.org/meandre
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Listing 5. Map phase of each iteration of the CGA

procedure Map ( key , v a l u e ) :
begin

s p l i t N o := key
p r o b S p l i t A r r a y := v a l u e
Emit ( s p l i t N o , [ 0 , p r o b S p l i t A r r a y ] )
f o r k := 1$ to t o u r n a m e n t S i z e
begin

i n d i v i d u a l := n i l
ones := 0
f o r prob in p r o b S p l i t A r r a y
begin

i f Random ( 0 , 1 ) < prob
then

i n d i v i d u a l := 1
ones := ones + 1

e l s e
i n d i v i d u a l := 0

Emit ( s p l i t N o , [ k , i n d i v i d u a l ] )
Wri te toDFS ( k , ones )

end
end

end

Map. Generation of the two individuals matches the MAP function, which has
to be computed independent of other instances. As shown in the algorithm
in Listing 5, the MAP takes a probability split Pi as input and outputs the
tournamentSize individuals splits, as well as the probability split. Also, it keeps
track of the number of ones in both the individuals and writes it to a global file
in the Distributed File System (HDFS). All the reducers, later read these values.

Reduce: We implement Tournament selection without replacement. A tourna-
ment is conducted among tournamentSize generated individuals and the winner
and the loser is selected. Then, the probability vector split is updated accordingly.
A detailed description of the reduce step can be found on Listing 6.

Optimizations: We use optimizations similar to the After initial experimentation,
we noticed that for larger problem sizes, the serial initialization of the popula-
tion takes a long time. Similar to the optimizations used while MapReducing
SGAs, we create the initial population in a seperate MapReduce phase, in which
the MAP generates the initial probability vector and the REDUCE is the Identity
Reducer.

The bits of the variables in the individual are compactly represented in an array
of long long ints and we use efficient bit operations for crossover and fitness
calculations. Also, we use long long ints to represent probabilities instead of
floating point numbers and use the more efficient integer operations.
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Listing 6. Reduce phase of each iteration of the CGA

procedure I n i t i a l i z e :
begin

A l l o c a t e a n d i n i t i a l i z e ( OnesArray [ t o u r n a m e n t S i z e ] )
winner := −1
l o s e r := −1
p r o c e s s e d := 0
n := 0
f o r k :=1 to t o u r n a m e n t S i z e
begin

f o r r =1 to numReducers
do

Ones [ k ] := Ones [ k ] + ReadFromDFS ( r , k )
i f Ones [ k ] > winner
then

w i n n e r I n d e x := k
e l s e

i f Ones [ k ] < l o s e r
then

l o s e r I n d e x := k
end

end

procedure Reduce ( key , v a l u e s ) :
whi l e v a l u e s . hasNext ( )
begin

s p l i t N o := $key
v a l u e [ p r o c e s s e d ] := v a l u e s . g e t V a l u e ( )
p r o c e s s e d := p r o c e s s e d + 1

end
f o r prob in v a l u e [ 0 ]
begin

i f v a l u e [ winner ] . b i t [ n ] != v a l u e [ winner ] [ n ]
then

i f v a l u e [ winner ] . b i t [ n ] = 1
then

n e w P r o b S p l i t [ n ] := v a l u e [ 0 ] + 1 / p o p u l a t i o n
e l s e

n e w P r o b S p l i t [ n ] := v a l u e [ 0 ] − 1 / p o p u l a t i o n
end
Emit ( s p l i t N o , [ 0 , n e w P r o b S p l i t ] )

end
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4.3 The Extended Compact Genetic Algorithm and Meandre

As we did with the selectorecombinative genetic algorithm, and loosely following
Foster’s methodology [13], we will identify what data is going to drive our exe-
cution. In this particular case, the relevant pieces of information used by eCGA’s
model building are the gene partitions used to compute the MPM. The greedy model-
building algorithm requires exploring a large number of possible partition merges
while building the model—being O(�3) the worst case scenario. Thus, this would
suggest that the partitions of genes should be the basic piece of data to stream. At
each step of the model building process, a stream of partitions will need to be evalu-
ated to compute each combined complexity score. The evaluation of each partition
is also independent of each other, further simplifying the overall design.

Fig. 4. Meandre’s flow for eCGA

Figure 4 presents the four components we will use to implement a data-intensive
version of eCGA model builder. The init ecga component creates a new pop-
ulation, evaluates the individuals (using and MK deceptive trap [17] where k =
4 and d = 0.25), pushes the selected population obtained using tournament se-
lection without replacement (s = 6), and starts streaming the initial set of gene
partitions that require evaluation. Then, the update partition component com-
putes the combine complexity of the partition and streams that information to the
greedy ecga mb component. This component implements the greedy algorithm
that receives the evaluated partitions and decides which ones to merge. In case
that a partition merge is possible, the new set of partitions to be evaluated are
streamed into the update partition component. If no merger is possible, the
greedy ecga mb component pushes the final MPM model to the print model
component. Program 7 present the ZigZag script implementing the data-intensive
computing version of eCGA.
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Listing 7. ZigZag script implementing the extended compact genetic algorithm using Mean-
dre components.

#
# Main i m p o r t and a l i a s e s
#

# Omi t t ed . . .

#
# Component I n s t a n c e s
#
i n i t e c g a , g reedy ecga mb = INIT ECGA ( ) , GREEDY ECGA MB ( )
u p d a t e p a r t i t i o n s = UPDATE ECGA PARTITIONS ( )
p r i n t m o d e l , p r i n t p o p = PRINT MODEL ( ) , PRINT POP MATRIX ( )
#
# The f l o w
#
@ i n i t e c g a = i n i t e c g a ( )
@ u p d a t e p a r t = u p d a t e p a r t i t i o n s (

e c g a p a r t i t i o n c a c h e :
i n i t e c g a . e c g a p a r t i t i o n c a c h e ;

e c g a p a r t i t i o n t o u p d a t e i :
i n i t e c g a . e c g a p a r t i t i o n t o u p d a t e i ;

e c g a p a r t i t i o n t o u p d a t e j :
i n i t e c g a . e c g a p a r t i t i o n t o u p d a t e j

)
@greedy mb = greedy ecga mb (

e c g a p a r t i t i o n c a c h e :
u p d a t e p a r t . e c g a p a r t i t i o n c a c h e

)
u p d a t e p a r t i t i o n s (

e c g a p a r t i t i o n c a c h e :
greedy mb . e c g a p a r t i t i o n c a c h e ;

e c g a p a r t i t i o n t o u p d a t e i :
greedy mb . e c g a p a r t i t i o n t o u p d a t e i ;

e c g a p a r t i t i o n t o u p d a t e j :
greedy mb . e c g a p a r t i t i o n t o u p d a t e j

)
p r i n t m o d e l ( ecga mode l : greedy mb . ecga mode l )

5 Experiments

This section presents the results obtained using the Hadoop and Meandre frame-
works to scale the proposed GAs and EDAs. The section begins presenting the
results achieved using both frameworks to speedup traditional genetic algorithms.
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Then it reviews the results obtained using Hadoop to speedup cGA—more fitted to
tackle large data-volume problems width relatively easy to implement algorithms.
Finally the section concludes presenting the promising scalability results achieved
using Meandre on eCGA being, to the best of our knowledge, one of the first at-
tempts that has succeeded in showing that efficient parallelization of eCGA model
building is possible.

5.1 Selectorecombinative Genetic Algorithms

To illustrate the benefits of both frameworks, we implemented and tested the selec-
torecombinative genetic algorithm following the descriptions presented above.

5.1.1 Hadoop and SGAs

We implemented the simple ONEMAX problem on Hadoop (0.19)11 and ran it on
our 416 core (52 nodes) Hadoop cluster. Each node runs a two dual Intel Quad cores,
16GB RAM and 2TB hard disks. The nodes are integrated into a Distributed File
System (HDFS) yielding a potential single image storage space of 2 ·52/3 = 34.6TB
(since the replication factor of HDFS is set to 3). A detailed description can be found
elsewhere12. Each node can run 5 mappers and 3 reducers in parallel. Some of the
nodes, despite being fully functional, may be slowed down due to disk contention,
network traffic, or extreme computation loads. Speculative execution is used to run
the jobs assigned to these slow nodes, on idle nodes in parallel. Whichever node
finished first, writes the output and the other speculated jobs are killed. For each
experiment, the population for the GA is set to n logn where n is the number of
variables.

We ran two sets of experiments. In the first one, we kept the load set to 1,000 vari-
ables per mapper. As shown in Figure 5(a), the time per iteration increases initially
and then stabililizes around 75 seconds. Thus, increasing the problem size as more
resources are added does not change the iteration time. Since, each node can run
a maximum of 5 mappers, the overall map capacity is 5 · 52(nodes) = 260. Hence,
around 250 mappers, the time per iteration increases due to the lack of resources
to accommodate so many mappers. In the second set of experiments,we utilize the
maximum resources and increase the number of variables. As shown in Figure 7(b),
our implementation scales to n = 105 variables, keeping the population set to n logn.
Adding more nodes would enable us to scale to larger problem sizes. The time
per iteration increases sharply as the number of variables is increased to n = 105

as the population increases super-linearly (n logn), which is more than 16 million
individuals.
11 http://hadoop.apache.org
12 http://cloud.cs.illinois.edu
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Fig. 5. Results obtained using Hadoop when implementing a simple selectorecombinative
genetic algorithm

5.1.2 Meandre and SGAs

We run some experiments to illustrate the properties of data-intensive computing
modeling. Unless noted otherwise, the experiments were run on an Intel 2.8GHz
Quad Core equipped with 4Gb of RAM, running Ubuntu Linux 8.0.4, and Sun JVM
1.5.0 15. The problem we solved was a relatively small OneMax [16, 17], for 5,000
bits and a population size of 10,000—details on the population sizing can be found
elsewhere [17]. The goal of the experiment was to reveal the execution profile of the
converted algorithm. Figure 6(a) presents the average time spent by each component.
Times are averaged over 20 runs, all evolving the optimal solution. The first thing to
point out is that evaluation is not the most expensive part of the execution. OneMax
is so simple, that the cost of selection and crossover dominates the execution.

Such counter intuitive profile would be a problem is we took a traditional par-
allelization route based on master/slave configurations delegating evaluations [8]—
which works its best on the presence on costly evaluation functions. Thanks to choos-
ing a data-intensive computing—and Meandre’s ability to automatically parallelize
components13—we can also automatically parallelize the costly part of the execu-
tion: the uniform crossover14. Also, we can, at the same time parallelize the eval-
uation, which in this situation may have little effect. However, the key property to
highlight is that either in this cases, or in the case of having a costly evaluation
function, the underlying data-intensive flow algorithm does not need to be changed,
and component parallelization will help, for a given problem, parallelize the costly

13 Multiple instance of a component can be spawned to process in parallel incoming individ-
uals.

14 Same considerations would apply in case of having a mutation component.



34 X. Llorà et al.
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Fig. 6. Execution profile of the original data-instensive flow implementing a selectorecom-
binative genetic algorithm and its automatically parallelized version of epb and ucbps
components (parallelization degree equal to the number of available cores, 4). Times are
in milliseconds and are averages over twenty runs.

parts of the execution profile—see Figure 6(b). Hence, the inherent nature of data-
intensive computing can help focus attention where is really needed. Also, paral-
lelization, can introduce new bottlenecks—see twrops times on Figure 6(b)—,
which now we could also parallelize to make such bottleneck disappear. Next sec-
tion will show the scalability benefits that this data-intensive approach can help
unleash.

5.2 The Compact Genetic Algorithm and Hadoop

To better understand the behavior of the Hadoop implementation of cGA, we re-
peated the two experiment sets done in the case of the Hadoop SGA implementa-
tion. For each experiment, the population for the cGA is set to n logn where n is
the number of variables. As done previously, first we keep the load set to 200,000
variables per mapper. As shown in Figure 7(a), the time per iteration increases ini-
tially and then stabililizes around 75 seconds. Thus, increasing the problem size
as more resources are added does not change the iteration time. Since, each node
can run a maximum of 5 mappers, the overall map capacity is 5 ·52(nodes) = 260.
Hence, around 250 mappers, the time per iteration increases due to the fact that no
available resources (mapper slots) in the Hadoop framework are available. Thus, the
execution must wait till mapper slots are released and the remaining portions can be
executed, and the whole execution completed.
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Fig. 7. Results obtained using Hadoop when implementing a the compact genetic algorithm.

In the second set of experiments, we utilized the maximum resources and increase
the number of variables. As shown in Figure 7(b), our implementation scales to
n = 108 variables, keeping the population set to n logn.

5.3 The Extended Compact Genetic Algorithm and Meandre

We ran three different experiments. First we measure the executions profile of the
implement data-intensive eCGA. Figure 9(a) presents the average time spend in each
component over 20 runs—� = 256 and n = 100,000. All the runs lead to learning
the optimal MPM model thanks to the oversized population. Figure 9(a) highlights
the already known fact that most of the execution time of the model building process
is spent evaluating the gene partitions. Also, the initialization is being negatively af-
fected by the partition updates, since it is being held back since it produces partitions
much faster than they can be evaluated. This fact can be observed on Figure 9(b).
After providing four parallelized partition evaluation components, not only the over-
all wall clock time drop, but also the initialization time too, since now, the update
input queues can keep up with the initial set of partitions generated.

We repeated these experiments providing {1,2,3, and 4} parallelized upda-
te partition components and measured the overall speedup against the tradi-
tional eCGA model building implementation. Figure 8 presents the speedup results
graphically. The first element to highlight is that, only using one update par-
tition component instance we obtained a superlinear speedup. This is the result
of few improvements on the implementation of the components, which allowed to
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Fig. 8. eCGA speedup compared to the original non data-intensive computing implemen-
tation. Figure show the speedup as a function of the number of update partitions
parallelized components available.
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Fig. 9. Execution profile of the original data-instensive flow implementing eCGA and its
automatically parallelized version of its update partitions component (parallelization
degree equal to the number of available cores, 4). Times are in milliseconds and are averages
of twenty runs.

remove extra layers of unnecessary function calls present in the original code. Also,
the fact that partitions results are streamed into the greedy model builder adds and
extra improvement—similar to pipeline segmentation as discussed earlier and the
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availability of idle cores15—by advancing computations instead of waiting for the
last partition to be calculated. The final speedup graph shows a clear linear increase
in performance as more cores are efficiently used despite resources contention when
using all the cores available. Finally, we ran the same experiment on a SGI Al-
tix machine with a multiprocessor NUMA architecture at the National Center for
Supercomputing Applications (NCSA)16 and requested 16 and 32 nodes. The aver-
aged speedup was computed over 20 independent runs. Again, the speedup showed
a linear speedup of 14.01 and 27.96 of 16 and 32 processors. The slight drop on
performance is the results of memory contention of the NUMA interconnection ar-
chitecture of the SGI Altix machine.

6 Related Work

Several different models like fine grained [31], coarse grained [26] and dis-
tributed [25] models have been proposed for implementing parallel GAs. Tradition-
ally, MPI has been used for implementing parallel GAs. However, MPIs do not scale
well on commodity clusters where failure is the norm, not the exception. Generally,
if a node in an MPI cluster fails, the whole program is restarted. In a large cluster, a
machine is likely to fail during the execution of a long running program, and hence
fault tolerance is necessary. MapReduce [11] is a programming model that enables
the users to easily develop large-scale distributed applications. Hadoop17 is an open
source implementation of the MapReduce model. Several different implementations
of MapReduce have been developed for other architectures: Phoenix [37] for multi-
cores, CGL-MapReduce [12] for streaming applications.

To the best of our knowledge, MRPGA [23] is the only attempt at combining
MapReduce and GAs. However, they claim that GAs cannot be directly expressed
by MapReduce, extend the model to MapReduceReduce and offer their own imple-
mentation. We point out several shortcomings: Firstly, the Map function performs
the fitness evaluation and the “ReduceReduce” does the local and global selection.
However, the bulk of the work - mutation, crossover, evaluation of the convergence
criteria and scheduling is carried out by a single co-ordinator. As shown by their
results, this approach does not scale above 32 nodes due to the inherent serial com-
ponent. Secondly, the “extension” that they propose can readily be implemented
within the traditional MapReduce model. The local reduce is equivalent to and can
be implemented within a Combiner [11]. Finally, in their mapper, reducer and fi-
nal reducer functions, they emit “de f ault key” and 1 as their values. Thus, they

15 The hardware used for this experiment did not provide a fair way to execute the data-
intensive flow using only one core. If that could have been possible, a normal linear
speedup curve would have been obtained when extra cores were added and the time of
executing on one core used to compute the speedup instead of the time of the original
sequential implementation.

16 http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/
SGIAltix/TechSummary/

17 http://hadoop.apache.org

http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/SGIAltix/TechSummary/
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/SGIAltix/TechSummary/
http://hadoop.apache.org
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do not use any characteristic of the MapReduce model - the grouping by keys or
the shuffling. The Mappers and Reducers might as well be independently executing
processes only communicating with the co-ordinator.

We take a different approach, trying to hammer the GAs to fit into the MapRe-
duce model, rather than change the MapReduce model itself. We implement GAs in
Hadoop, which is increasingly becoming the de-facto standard MapReduce imple-
mentation and used in several production environments in the industry.

7 Conclusion

In this paper we have shown that implementing evolutionary computation algo-
rithms using a data-intensive computing paradigms is possible. We have presented
step-by-step transformations for three illustrative cases—selectorecombinative ge-
netic algorithms and estimation of distribution algorithms—and reviewed some best
practices during the process. Transformations have shown that either Hadoop’s
MapReduce model, or Meandre’s semantic-driven data-intensive flows can help
scale easily and transparently evolutionary computation algorithms. Moreover, our
results have also shown the inherent benefits of the underlying usage of data-
intensive computing frameworks and how, when properly engineered, these algo-
rithms can directly benefit from the current race on increasing the number of cores
per chips without having to change the original data-intensive flow.

Results have shown that Hadoop is an excellent choice when we have to deal with
large problems, as long as resources are available, being able to maintain iteration
times relatively constant despite the problem size. We have also shown that using
Meandre linear speedups are possible without changing the underlying algorithms
based on data-intensive computing thanks to the its inherent parallel processing.
We have also shown that such results hold for multicore architectures, but also for
multiprocessor NUMA architectures.

We are current exploring how the extended compact genetic algorithm could be
implemented using a MapReduce paradigm, as well as finishing Meandre’s imple-
mentation of the compact genetic algorithm. Our future work is focused on analyz-
ing other evolutionary computation algorithms that may display different execution
profiles than the ones used in this book chapter, and what challenges they may face
when developing their data-intensive computing counterparts.
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Evolvable Agents: A Framework for
Peer-to-Peer Evolutionary Algorithms

Juan Luis Jimenez Laredo, Juan Julian Merelo Guervos,
and Pedro Angel Castillo Valdivieso

Abstract. Distributed evolutionary computation programs often needs increasingly
big amounts of computational power when tackling large instances of hard opti-
mization problems, and Peer-to-Peer (P2P) systems could be an option for building
the large virtual supercomputer in which they could be run. Even as distributed
Evolutionary Algorithms (EA) do take advantage of parallel execution by simulta-
neously promoting diversity and reducing runtime, there are still many challenges
on the parallelization of EAs in P2P systems. In this chapter we present a survey
of the state of the art in P2P EAs and our solutions to the main P2P issues such as
decentralization, massive scalability and fault tolerance.

1 Introduction

The aim of this chapter is to provide a general overview on the issues, properties
and performance of Peer-to-Peer (P2P) Evolutionary Algorithms (EAs). As in any
other distributed EA, a P2P EA has got two different facets, the algorithmic and the
computational performance. The first is related to the structural changes that the al-
gorithm suffers when deployed on several processors while the latter corresponds to
the computational speedup that can be expected. Indeed, distributed EAs are studied
as a way of preserving genetic diversity while improving the runtime of the algo-
rithm [5]. To this end, a good understanding on the physical platform, P2P systems
in this case, benefits an adequate design.

From a general point of view, P2P systems are application level networks (ALN)
able to constitute a single virtual computer composed of a potentially large number
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of interconnected resources. The computational power is provided by a group of
users connected to the Internet who share their spare CPU cycles (e.g. the BOINC
project is a successful case of virtual supercomputer based on volunteers sharing
their computers’ CPU cycles [2]). However, there are still many challenging issues
in the parallelization of EAs in P2P systems. Questions such as decentralization
(such a computation paradigm is devoid of any central server), scalability (since
P2P systems are large-scale networks) or fault tolerance (given that resources are
added and eliminated dynamically, often as a consequence of a decision from an
user that volunteers CPUs under his control) become of the maximum interest and
have to be addressed.

P2P systems define a rich set of topologies for the interconnection of nodes at
application level, so-called overlay networks [25]. In parallel, within the EC area,
spatially structured EAs focus on the study of different topologies as population
structure for an EA (see [28] for a survey). Hence, a distributed P2P EA can be
designed as a spatially structured EA in which the population structure is defined by
a P2P overlay network.

Additionally to the standard approaches in EAs stating that mate choice depends
just on fitness (panmixia), spatially structured EAs define a population in which any
given individual has a restricted number of neighbours and the chances for mat-
ing are, therefore, reduced within the neighbourhood. Population structures can be
modeled as a graph in which the vertices are individuals1 and edges represent rela-
tionships between them. Since a graph can be easily mapped to a network topology,
a spatially structured EA can be easily distributed.

The key to the P2P EA presented in this chapter is the Evolvable Agent model
(EvAg) proposed by the authors in [16]. It consists of a fine grained and decentralized
approach for parallelizing EAs with a population of concurrent and self-scheduled
agents performing the evolutionary steps of selection, variation and evaluation of
individuals. The population structure is based on a gossiping P2P protocol called
newscast and presented in [14]. Newscast behaves asymptotically as a small-world
graph in which every pair of nodes are connected through a short sequence of inter-
mediate nodes [31].

An inherent advantage of using P2P protocols as population structure is that they
are designed to tackle large-scale graphs and they present consequently a good scal-
ability behavior (see the study of scalability of the newscast protocol by Voulgaris et
al. in [30]). This way, results in [17] about the scalability of the EvAg model are spe-
cially remarkable under large instances of hard optimization problems. As a general
property of these problems, the evaluation cost increases with respect to the size of
the problem instance. Hence, large instances imply a bigger computational cost on
the evaluation function. Additionally, the problem complexity increases with size,
making the problem more difficult to solve. Resolution methods based on popula-
tion, as EAs, require large population sizes in order to tackle such instances with
enough reliability and cycle-sharing P2P systems are a large and mostly free source
of computing power.

1 In this chapter, we refer equally to the terms individual and node, since each individual has
its own schedule and could potentially be placed in a different node.
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Besides scalability, fault tolerance is also a main issue in the design of P2P appli-
cations since resources in P2P systems are prone to failure. Such systems are subject
to the dynamics of peers: a node joins the system, contributes some resources and
leaves it afterwards [22]. The independent arrival and departure of thousands of
peers causes a collective effect called churn. The EvAg model has been tested in
[18] under different churn conditions. In spite of the departure of nodes, possibly
containing valid solutions, the EvAg model is able to reach the success criterion (a
success rate of 0.98) in all the test-cases. Furthermore, assuming no restrictions in
the amount of available peers, the runtime of the algorithm scales independently of
either the churn scenario or the population size, which confirms that the EvAg model
is robust and fault tolerant.

Finally, there are two major current lines of application in which P2P EAs are
promising: Results in [17] show the suitability of such algorithms for tackling large
instances of problems with high requirements in computing power via the massive
scale-up of P2P systems. On the other hand, the EvAg model has been applied to
dynamic optimization problems (DOP) in [20]. The P2P approach outperforms the
results of the state of the art algorithm Self-Organizing Random Immigrants GA
(SORIGA) presented in [27]. SORIGA adopts a Self-Organized Criticality model in
order to maintain a sub-population of random individuals and their offspring which
varies in size by a power-law distribution. Key to such an improvement is that, as a
spatially structured EA, EvAg preserves genetic diversity at the inhomogeneities of
the small-world relationships between individuals.

All the above mentioned issues are discussed in detail within the different sec-
tions of this chapter. Section 2 reviews the state of the art literature related to P2P
EAs, from the first attempts to the current lines of research. Section 3 provides
some insights into the role that the population structure plays on the environmen-
tal selection pressure of an EA, so that, in Section 4, the overall architecture of the
EvAg model can be better understood as a spatially structured and decentralized EA.
From that point, the rest of the chapter focuses on the properties of the EvAg model
under the different issues of P2P EAs. In Section 5, a scalability analysis of the
model is presented, in Section 6 the fault tolerance is assessed under different churn
scenarios and in Section 7, the proposed P2P EA is applied to DOP. Finally, Sec-
tion 8 extends the content of the chapter by exposing some conclusions and future
challenges.

2 State of the Art

The idea of distributed Evolutionary Algorithms was proposed quite early (e.g.
Grefenstette in [12]); nowadays, parallel EAs are approached mainly using three
models: master-slave, islands and fine grained spatially structured EAs. However,
P2P EAs are more recent and not all the models fit with the issues involving P2P
systems, such as decentralization, massive scalability or fault tolerance, as we will
see below.
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• In the master-slave model the algorithm runs on the master node and the individ-
uals are sent for evaluation to the slaves, in an approach usually called farming.
Such an architecture does not match decentralized structures and the master rep-
resents a single point of failure.

• One of the most usual and widely studied approaches in parallel EAs is the island
model (see [5] for a survey). The idea behind this model is that the global pan-
mictic population is split in several sub-populations or demes called islands. The
communication pipes between islands are defined by a given topology, through
which they exchange individuals (migrants) with a certain rate and frequency.
The migration will follow a selection policy in the source island and a replace-
ment policy in the target one. Practitioners use to establish a fixed population size
P in scale-up studies, a number of islands N and a population size per island of
P/n where n = 1, . . . ,N. The work by Hidalgo and Fernández [13] requires a spe-
cial attention. They experimentally show how the algorithmic results are strongly
dependent on the number of islands. Our experimentation in [19] with the Island
model is consistent with such a conclusion since it shows to be very sensitive to
parameter calibration and P2P systems do not provide a priori knowledge of the
global environment that an island model would need in order to set parameters
such as the number of islands, the population size per island and the migration
rate.

• Most of the works regarding finer grained approaches for parallel EAs focus on
the algorithmic effects of using different topologies i.e. Giacobini et al. study the
impact of different neighbourhood structures on the selection pressure in regu-
lar lattices [7] and different graph structures such as a toroid [8] or small-world
[10]. This last structure has shown empirically to be competitive against panmic-
tic EAs [23, 9]. Fine grained approaches are more suitable for decentralization as
stated in [32, 15], where the key underlying idea is that individuals evolve within
a defined set of neighbours. Following this line, we presented in [16] a formal
model for P2P EAs, it is the Evolvable Agent model that we analyse in this chap-
ter. The model uses the gossiping protocol newscast [14] as population structure.
Newscast was proposed within the DREAM project [4], one of the pioneers in
distributed P2P EAs. Although, the island-based parallelization of DREAM was
shown in [21] to be insufficient for tackling large-scale decentralized scenarios.

On the other hand, protocols such as newscast have been designed taking into ac-
count both EAs and P2P architecture: as a gossiping protocol, newscast is scalable
and robust [30]. There are evidences that such properties extend to P2P EAs us-
ing newscast as population structure. The scalability analysis in [17] shows that the
EvAg model is able to tackle large instances of hard optimization problems in rea-
sonable time (i.e. the runtime scales with fractional power with respect to the prob-
lem instance). Additionally, the study of fault tolerance in [18] shows that, whenever
a P2P system guarantees enough peers at the beginning of an experiment, the de-
parture of nodes does not inflict a penalization either on the convergence nor on the
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runtime. Such a study uses the model of churn proposed by Stutzbach and Rejaie in
[26]. Indeed, Fernández de la Vega in [29] advanced that Evolutionary Algorithms
are fault tolerant because of their nature and design.

3 Population Structure as a Complex Network

To help understand the role of the population structure in a P2P EA, we introduce the
structural design of a simple and easy understandable complex network proposed by
Watts and Strogatz in [31]. As described by the authors, the procedure for building
a small-world topology can start from a ring lattice with n vertices and k edges per
vertex. With a given probability p, each edge is rewired at random. This way for a
rewiring factor of p = 0 the ring lattice is kept while for p = 1 a random graph is
generated. It is within the intermediate values of p where the graph gets small-world
structure.

Fig. 1. Small-world graph built from a ring lattice with n = 16, k = 2 and p = 0.2. Being
the Average Path Length (APL) the average shortest distance between any pair of nodes, this
graph has APL = 3.7, the original ring lattice had APL = 4.26 while a complete graph (i.e.
panmictic) would have APL = 1.0.

Figure 1 shows a small-world topology built from a ring lattice. Despite having
a larger average path length than panmictic graphs, the inhomogeneity in such kind
of topologies was shown in [10] to induce qualitatively similar selection pressures
on EAs than panmictic population structures.

The influence in the environmental selection pressure of such population struc-
tures can be represented by their takeover time curves. Goldberg and Deb in [11] de-
fine the takeover time as the time that takes for a single, best individual to take over
the entire population without any other mechanism than selection. Hence, takeover
time is the proportion of best individuals as a function of time.
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Fig. 2. Takeover time curves in a panmictic graph, Watts-Strogatz graph with p = 0.2 and the
original ring lattice with k = 2. All the results for n = 1600 and binary tournament.

Figure 2 shows that the takeover time curve in the Watts-Strogatz graph is similar
to a panmictic graph meaning that the induced selection pressures with both topolo-
gies are roughly equivalent. As in Watts-Strogatz small-world topologies, this chap-
ter shows that P2P topologies can induce similar selection pressures to the panmictic
one, allowing in addition a better scalability behaviour at the lower edge cardinality
of P2P systems.

4 Overall Model Description

The overall procedure of our approach consists of a population of Evolvable Agents
(EvAg), described in Section 4.1, whose main design objective is to carry out the
main steps of evolutionary computation: selection, variation and evaluation of in-
dividuals [6]. Each EvAg is a node within a newscast topology in which the edges
define its neighborhood. For the sake of simplicity, we assume a newscast node as a
peer. However, a peer could hold several nodes in practice.

4.1 Evolvable Agent

An EvAg itself is an EA composed of a single individual [15, 16]. In spite of the
model not having a population in the canonical sense, adjacent EvAgs provide each
other with the genetic material that they require to evolve. Therefore, we talk about
a population of EvAgs instead of a population of individuals.



Evolvable Agents: A Framework for Peer-to-Peer Evolutionary Algorithms 49

Algorithm 1 shows the pseudo-code of an EvAg where the agent owns an evolving
solution (St).

Algorithm 1. Evolvable Agent
St ⇐ Initialize Agent
loop

Sols ⇐ Local Selection(Newscast) See algorithm 2
St+1 ⇐ Recombination(Sols)
St+1 ⇐ Mutation(St+1)
Evaluate(St+1)
if St+1 better than St then

St ⇐ St+1
end if

end loop

The selection takes place locally into a given neighborhood where each agent
selects the current solutions (St) of adjacent agents. Selected solutions are stored in
Sols ready to be recombined. Within this process a new solution St+1 is generated. If
the newly generated solution St+1 is better than the old one St , it replaces the current
solution.

4.2 A Note on Local Performance

Locally to a computer, every EvAg is scheduled within a thread and dispatched by
the operating system. The multi-threading nature of the model implies an impact on
the local throughtput, expressed as:

T hroughputEA =
Computational E f f ort

Time
(1)

where Computational Effort is usually understood in EC as the number of fitness
evaluations.

Either the context exchange of the threads or the mutual exclusion mechanisms
have a computational cost which is avoid in sequential approaches.

Nevertheless, Symmetric Multiprocessing (SMP) architectures are becoming
nowadays very popular as desktop machines and sequential approaches are unable
to take advantage of more than a single processor. This way, the local performance
of the EvAg model can be assessed by measuring the speed-up in the throughput
with respect to a sequential GA (sGA):

Speed−up =
T hroughputEvAg

T hroughputsGA
(2)
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To this end, the computational cost of the evaluation function (i.e. the indepen-
dent variable in the throughput equation) is scaled from few milliseconds to one
second.

Figure 3 shows that the throughput speeds-up asymptotically, having a limit on
the number of processors. Therefore, the performance in single processor machines
tends to be equivalent to sequential approaches as the evaluation cost increases while
is clearly outperformed in SMP machines. An additional advantage of the EvAg
model is that the load balance is transparent for the programmer since it is carried
out by the operating system.
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Fig. 3. The figure depicts how the EvAg throughput speeds up with respect to the one yielded
by sGA when the evaluation function cost scales for a population size of 400 individuals. The
test-bed is a single processor (left) and a dual-core processor (right).

4.3 Population Structure

In principle, the EvAg model places no restrictions in the choice of population struc-
ture, although this choice will have an impact on the dynamics of the algorithm since
it establishes the environmental selection pressure. As it has been previously said,
we apply the newscast protocol to create the population structure.

Algorithm 2 shows the pseudo-code of the main tasks in the self-organized pro-
cess which builds the newscast graph. Each node maintains a cache with one entry
per node in the network at most. Each entry provides information about a foreign
node: A time-stamp of the entry creation (it allows the replacement of old items),
and an agent identifier.

There are two different tasks that the algorithm carries out within each node.
The active thread which initiates communication and the passive thread that waits
for the exchange of information. In addition, the local selection procedure provides
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the EvAg with other agents’ current solutions (EvAgh(St) and EvAgk(St)). After
ΔT time each EvAgi initiates a communication process (active thread). It selects
randomly an EvAg j from Cachei with uniform probability. Both EvAgi and EvAg j

exchange their caches and merge them following an aggregation function. In our
case, the aggregation consists of picking up the newest items (newscast) for each
cache entry in Cachei, Cache j and merging them into a single cache that EvAgi and
EvAg j will share. We have fixed ΔT to once per evaluation.

Algorithm 2. Newscast protocol in node EvAgi

Active Thread
while EvAgi not finished do

sleep ΔT
EvAg j ⇐ Random selected node from Cachei
send Cachei to EvAg j
receive Cache j from EvAg j

Cachei ⇐ Aggregate (Cachei,Cache j)
end while

Passive Thread
while EvAgi not finished do

wait Cache j from EvAg j

send Cachei to EvAg j
Cachei ⇐ Aggregate (Cachei,Cache j)

end while

Local Selection(Newscast)
[EvAgh,EvAgk] ⇐ Random selected nodes from Cachei

The cache size plays an important role in the newscast algorithm. It represents
the maximum number of connections (edges) that a node could have. For example, a
topology with n nodes and a cache size of n, will lead to a panmictic graph topology.
Therefore, the cache size is smaller than the number of nodes (typically around
log(n)) in order to get small-world features such as a small average path length and
a high clustering coefficient (for further details on the dynamics refer to [30]).

Figure 4 compares the takeover time curves for a panmictic and two different
parametrized newscast graphs. As explained in the previous section, similar curves
denote equivalent selection pressures induced by both kind of topologies. Never-
theless, the node degree in panmictic graphs is n− 1 while the average degree in
newscast is approximately 2c pointing out a better scalability of the small-world
approach given that c � n. Within the rest of the sections, the cache size has been
fixed to 20 based on the study of performance for different cache sizes in [16].
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Fig. 4. Takeover time curves for a panmictic graph and two newscast graphs with c = 10 and
c = 20. Results are averaged from 50 independent runs for n = 1600 and binary tournament.

5 Scalability

To investigate how EvAg scales on landscapes of different characteristics, experi-
ments were conducted on trap functions [1]. A trap function is a piecewise-linear
function defined on unitation (the number of ones in a binary string). There are two
distinct regions in search space, one leading to a global optimum and the other lead-
ing to the local optimum (see Figure 5). In general, a trap function is defined by the
following equation:

trap(u(−→x )) =

⎧⎨
⎩

a
z (z−u(−→x )), i f u(−→x ) ≤ z

b
l−z (u(−→x )− z), otherwise

(3)

where u(−→x ) is the unitation function, a is the local optimum, b is the global opti-
mum, l is the problem size and z is a slope-change location separating the attraction
basin of the two optima.

Fig. 5. Generalized l-trap function
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For the following experiments, 2-trap, 3-trap and 4-trap functions were designed
with the following parameter values: a = l−1; b = l; z = l−1. With these settings,
2-trap is not deceptive, 4-trap is deceptive and 3-trap lies in the region between
deception and non-deception. Under these conditions, it is possible not only to ex-
amine how EvAg scales on trap functions, but also to investigate how the scalability
varies when changing from non-deceptive to deceptive search landscapes. Scalabil-
ity tests were performed by juxtaposing m trap functions and summing the fitness
of each sub-function to obtain the total fitness.

The bisection method [24] was used for each trap and each size m to determine
the optimal EvAg population size P, that is, the lowest P for which 98% of the runs
solve the traps functions. To find it, mutation rate is set to 0, so as to search a
minimum population size such that using random initialization it is able to provide
enough building blocks to converge to the optimum without other mechanism than
recombination and selection.

Algorithm 3 depicts the method based on bisection. The method begins with a
small population size which is doubled until the algorithm ensures a reliable con-
vergence. We define the reliability criterion as the convergence of the algorithm
to the optimum 49 out of 50 times (0.98 of Success Rate). After that, the interval
(min,max) is halved several times and the population size adjusted within such a
range. min and max stand respectively for the minimum and maximum population
size estimated.

Algorithm 3. Method based on Bisection
P = Initial Population Size
while Algorithm reliability < 98% do

min = P ; max, P = Double (P)
end while
while max−min

min > 1
16 do

P = max+min
2

(Algorithm reliability < 98%) ? min = P : max = P
end while

EvAg was tested with pc = 1.0, uniform crossover and binary tournament. The
standard GA stands for a 1-elitism generational GA and was used as a baseline for
comparison, to this end, both aproaches were equally parameterized.

From the graphics in figure 6 it can be concluded that EvAg scales better than a
standard GA on 2, 3 and 4-trap, but the improvement is much more noticeable when
solving the deceptive 4-trap function. Under these conditions (4-trap), a standard
GA faces extreme difficulties because lower order building blocks mislead the search
towards local optima instead of combining to form higher order building-blocks, thus
challenging the GA’s search mechanisms. A possible explanation for EvAg’s better
scalability lies in its ability to maintain genetic diversity at a higher and consequent
reduction of its optimal population size (P). With a lower optimal P, EvAg needs
fewer evaluations to reach the optimum, when compared to standard GAs.
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Fig. 6. Scalability with trap functions. Optimal population size and Average Evaluations to
Solution (AES) values for a standard GA (sGA) and the Evolvable Agent Model (EvAg).

6 Fault Tolerance

P2P systems are large networks of volatile resources in which the collective dynam-
ics of the peers are known as churn. Therefore, addressing churn in a P2P EA turns
into a requirement of design rather than a mere study of fault tolerance.

Following the work by Stutzbach and Rejaie in [26], there are two main group-
level properties of churn which characterize the behaviour of all participating peers:
The inter-arrival time and the session length, respectively, the time between two
sessions and the time from the beginning to the end of a session.

In this study we have assumed that all nodes start at the same time with a cer-
tain session length. The session length can be modeled randomly from a Weibull
distribution using the following formula:

X = λ (−ln(U))
1
s (4)
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where U is drawn from the uniform distribution, s stands for the shape and λ for the
scale of the Weibull distribution. The analysis by Stutzbach and Rejaie exposes that
the session length of different P2P systems fit with a shape of s ≈ 0.40 but the values
of λ differ. Additionally, the simulator driven experiments define the time unit as a
simulator cycle which could apply for different time metrics in real time. Hence, we
setup the following values for λ = 1,5,10,∞ depicted in Figure 7. It shows the com-
plementary cumulative distribution functions (CCDF), representing the percentage
of remaining nodes at each moment of the experiment for the different values of λ
(e.g. in the cycle 10, ∼8% of the peers remain for λ = 1 and ∼50% for λ = 10).
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Fig. 7. Complementary cumulative distribution functions

In spite of the initial assumption, the set of churn scenarios allows a worst case
analysis in which the system loses peers to zero. Once that a node leaves the exper-
iment, it does not rejoin again (i.e. there is no inter-arrival).

Under these conditions, several instances of the 4-trap function (i.e. L =
8,16,32,64) have been used in order to assess the impact of churn in the EvAg
model. Hence, there are three variables that affect the Success Rate (SR) of the al-
gorithm: The size of the problem (L), which will conduct to a scalability analysis,
the intensity of churn (λ ) and the population size (P).

Any of the variables have the following influence on the SR if we assume a fixed
value for the rest of them. In the case of the problem instance, the bigger the size,
the lower the SR. With respect to churn, the more departures of nodes, the lower the
SR. Finally, the bigger the population size, the higher the SR.

Being λ and L two independent variables under the condition of obtaining a SR of
0.98, the population size can be expressed as a function f (λ ,L) = P and empirically
estimated using the bisection method. Furthermore, the runtime of the algorithm is
also analysed as a function of the three variables g(λ ,L,P) since one of the goals in
any distributed EA is to reduce the time for obtaining a solution.

Figure 8 shows the scalability of the population size (P) as different curves of
L, that is, L scales and λ remains fixed in f (λ ,L) = P. The scalability of f (λ ,L)
fits with a complexity order of O(L(1.0,1.1)) in any of the scenarios. Hence, churn
does not damage the scalability order (i.e. the curves are just shifted by a constant
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Fig. 8. Scalability of the population size f (λ ,L) = P for the 4-trap in 4 scenarios of churn
(λ )

which is churn dependent) and a reliable convergence can be guaranteed by ensuring
enough resources. This fact points to the robustness of the Evolvable Agent model.

Additionally, Figure 9 shows the runtime of the algorithm g(λ ,L,P). g is inde-
pendent from λ , with an order O(L0.6). In this case, churn does not affect the scal-
ability (neither shifting the curves with a constant) and the runtime is dependent on
the problem instance L. That means that we can expect the same runtime under any
churn scenario if we ensure enough resources to satisfy the 0.98 of SR condition.
Therefore, the algorithm is robust under churn.

Fig. 9. Scalability of the runtime g(λ ,L,P) for the 4-trap in 4 scenarios of churn (λ ) using P
estimated in f (λ ,L)

Figure 10 provides a better idea to the extent of these results. It represents the
percentage of individuals of P for which each experiment is expected to end. The
effects of churn are more pernicious as the instances scale. In the worst case (i.e.
L = 64 and λ = 1), the initial population ends with a ∼3% of the individuals, still
guaranteeing a SR of 0.98.
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Fig. 10. Complementary cumulative distribution functions and average runtime

7 P2P EAs in Dynamic Optimization Problems

With respect to DOPs, population size P was set to 240. In order to evaluate EvAg’s
results a standard generational GA (GGA) with 1-elitism and SORIGA were also
tested with the same parameter values.

For that purpose, the DOP generator presented in [33] was used to build differ-
ent changing environments based on 3-trap and 4-trap functions. Given a station-
ary problem ( f (x)(x ∈ {0,1}L)) where L is the chromosome length, DOPs may be
designed by applying a binary mask to each solution before its evaluation in the
following manner:

f (x,t) = f (x XOR M(k)) (5)

where t is the generation index, k = tτ is the period index and f(x, t) is the fitness of
the string x. M(k) is incrementally generated as follows:

M(k) = M(k−1) XOR T (k) (6)

where T (k) is an intermediate binary mask for every period k. T(k) has ρ×L ones.
ρ is a value between 0 and 1 that controls the intensity, or severity, of changes (i.e.
ρ = 0 stands for a stationary problem and ρ = 1 represents the highest degree of
change). Therefore, by setting ρ and τ it is possible to control two of the most
important features of DOPs test environments: severity (ρ) and speed (τ) of change
[3]. Nine different scenarios for each trap were designed by setting ρ to 0.05, 0.6
and 0.95, and τ to 10, 100 and 200 generations. Stationary functions were designed
with 10 subfunctions each, meaning that size of dynamic 3-trap is L = 30 and size
of dynamic 4-trap is L = 40. EvAg, GGA and SORIGA were tested with uniform
crossover, bit-flip mutation, binary tournament, pc = 1.0, N = 240 and 1-elitism
(GGA). SORIGA’s parameter rr was set to 3.

GAs performance analysis on DOPs must be addressed in a different manner
from static environments’ usual procedure. Dynamic behaviour throughout the run
must be examined, rather than the final convergence. For that purpose, the evaluation
of the algorithmic performance is done by measuring the mean best-of-generation
values (this is the standard procedure for DOPs). In addition, the progression of
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Fig. 11. Dynamics when tracking 4-trap functions (L = 40) for ρ = 0.05 and ρ = 0.6. Best of
generation curves

best-of-generation values may be plotted in a graph, thus helping to understand how
the algorithm reacts to changes in the environment. Different mutations rates were
tested, and results in table 1 show the best configurations, that is, the mutation rates
that attained the higher values when averaging the mean best-of-generation of the
nine scenarios.

Table 2 helps to understand the relevance of the results in table 1 by showing
the results of pairwise t-test that compares the algorithms’ performance. The (+)
sign means that algorithm 1 is significantly better than algorithm 2, (∼) means that
the performance is equivalent and (−) means that the second GA is better. While
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Table 1. Results on dynamic 3-trap and 4-trap (averaged over 30 independent runs). Mean of
best of generation and corresponding standard deviation values.

τ 10 100 200
ρ 0.05 0.6 0.95 0.05 0.6 0.95 0.05 0.6 0.95

3-trap GGA 25.72 21.88 24.19 29.4 26 25.57 29.81 26.7 25.6
(pm = 1

L ) ±0.97 ±0.27 ±0.24 ±0.44 ±0.33 ±0.17 ±0.11 ±0.33 ±0.22
L = 30 SORIGA 26.43 22.74 24.10 29.74 27.71 26.67 29.86 28.8 27.95

(pm = 1
2L ) ±0.62 ±0.3 ±0.26 ±0.05 ±0.17 ±0.16 ±0.02 ±0.1 ±0.16

EvAg 25.71 22.83 26.37 28.91 27.04 27.83 29.61 27.64 28.03
(pm = 1

L ) ±0.38 ±0.43 ±0.34 ±0.26 ±0.17 ±0.39 ±0.27 ±0.2 ±0.33
4-trap GGA 28.92 26.63 31.66 30.52 32.55 35.1 30.61 33.08 35.3

(pm = 1
L ) ±0.33 ±0.39 ±0.52 ±0.57 ±0.34 ±0.11 ±0.44 ±0.29 ±0.129

L = 40 SORIGA 28.64 26.54 29.4 34.12 32.4 34.7 35.92 33.43 35.02
(pm = 1

8L ) ±0.71 ±0.36 ±0.55 ±1.57 ±0.37 ±0.14 ±1.4 ±0.38 ±0.09
EvAg 31.71 27.82 32.71 34.89 33.76 36.9 35.32 34.87 37.17

(pm = 1
L ) ±0.53 ±0.39 ±0.46 ±0.5 ±0.28 ±0.31 ±0.51 ±0.25 ±0.33

Table 2. Pairwise t-test on dynamic 3-trap and 4-trap. Evolvable Agent vs. GGA and
SORIGA.

t-test τ 10 100 200
ρ 0.05 0.6 0.95 0.05 0.6 0.95 0.05 0.6 0.95

3-trap EvAg vs. GGA ∼ + + − + + − + +
EvAg vs. SORIGA − ∼ + − − + − − +

4-trap EvAg vs. GGA + + + + + + + + +
EvAg vs. SORIGA + + + + + + +− + +

in 3-traps GGA and SORIGA still outperform EvAg in some scenarios, in 4-traps
our proposal achieves better results, with statistical significance, in all the scenarios
except one. EvAg abilities to solve DOPs appear to emerge when facing a harder
problem for GAs.

Figure 11 shows the dynamic behaviour of EvAg and GGA throughout the run.
It is clear that EvAg is more able to track the optimum, maintain a lower distance to
the solution during the search, in all scenarios.

8 Conclusions

This chapter reviews the main issues in distributed EAs over P2P systems such as
decentralization, scalability or fault tolerance, the state of the art solutions to deal
with them and some promising fields of application as DOPs.
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To that end, the EvAg model has been presented and assessed empirically under
different scenarios using trap-functions as a benchmark. Given that trap-functions
have been designed to be difficult for EAs, the results should be easily extended to
more general discrete or combinatorial optimization problems.

The evolution takes place among a population of EvAgs in which the population
structure is managed by the gossiping protocol newscast. The population size scales
with a complexity order of O(L(1.0,1.1)) which demands for a big amount of re-
sources. Besides, the expected runtime scales with fractional order which makes the
algorithm efficient. Investigating scalability is of extreme importance when chang-
ing from a ”toy problem” test environment to real-world problems which may re-
quire very large chromosomes to codify the solutions. Additionally, the approach
shows to be robust under churn, once that an adequate population size guarantees
a reliable convergence to the optimum, the departure of nodes does not inflict a
penalization in the runtime.

Finally, this kind of topology preserves well the genetic diversity by relaxing the
environmental selection pressure at the small-world relationships between individu-
als. This might be one of the reasons for the good results in DOPs. The EvAg model
responds to changes outperforming standard GAs and SORIGA, one of the state of
the art algorithms in DOPs.

In order to deploy the algorithm in real P2P platforms, the future challenges of
P2P EAs focus on engineering issues rather than design ones. For instance, the im-
pact of the latency between peers will have to be assessed on the run-time perfor-
mance, it might be expected that the idle processing time decreases as the problem
instances scale (i.e. bigger instances require a bigger computational time while the
communication time can be assumed as fixed). Additionally, the bootstrapping of
the system (i.e. the way an experiment is spread from a single peer to the rest of
the system) or the fact that P2P systems are composed of heterogeneous nodes will
have to be taken into account.
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5. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic
Publishers, Norwell (2000)

6. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg
(2003)



Evolvable Agents: A Framework for Peer-to-Peer Evolutionary Algorithms 61

7. Giacobini, M., Tomassini, M., Tettamanzi, A., Alba, E.: Selection intensity in cellular
evolutionary algorithms for regular lattices. IEEE Transactions on Evolutionary Compu-
tation 9(5), 489–505 (2005)

8. Giacobini, M., Alba, E., Tettamanzi, A., Tomassini, M.: Modeling selection intensity for
toroidal cellular evolutionary algorithms. In: Deb, K., et al. (eds.) GECCO 2004. LNCS,
vol. 3102, pp. 1138–1149. Springer, Heidelberg (2004)

9. Giacobini, M., Preuss, M., Tomassini, M.: Effects of scale-free and small-world topolo-
gies on binary coded self-adaptive CEA. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP
2006. LNCS, vol. 3906, pp. 86–98. Springer, Heidelberg (2006)

10. Giacobini, M., Tomassini, M., Tettamanzi, A.: Takeover time curves in random and
small-world structured populations. In: GECCO 2005: Proceedings of the 2005 confer-
ence on Genetic and evolutionary computation, pp. 1333–1340. ACM, New York (2005)

11. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic
algorithms. In: Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann, San
Francisco (1991)

12. Grefenstette, J.J.: Parallel adaptive algorithms for function optimization. Technical Re-
port CS-81-19, Vanderbilt University, Computer Science Department, Nashville (1981)

13. Hidalgo, I., Fernández, F.: Balancing the computation effort in genetic algorithms. In:
The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1645–1652. IEEE
Press, Los Alamitos (2005)

14. Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet. Technical
Report IR-503, Vrije Universiteit Amsterdam, Department of Computer Science, Ams-
terdam, The Netherlands (October 2002)

15. Laredo, J.L.J., Eiben, E.A., Schoenauer, M., Castillo, P.A., Mora, A.M., Merelo, J.J.:
Exploring selection mechanisms for an agent-based distributed evolutionary algorithm.
In: GECCO 2007, pp. 2801–2808. ACM Press, New York (2007)

16. Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J.: Exploring population structures
for locally concurrent and massively parallel evolutionary algorithms. In: IEEE Congress
on Evolutionary Computation (CEC 2008), WCCI 2008 Proceedings, pp. 2610–2617.
IEEE Press, Hong Kong (2008)

17. Laredo, J.L.J., Eiben, A.E., van Steen, M., Castillo, P.A., Mora, A.M., Merelo, J.J.: P2P
Evolutionary Algorithms: A suitable approach for tackling large instances in hard opti-
mization problems. In: Luque, E., Margalef, T., Benı́tez, D. (eds.) Euro-Par 2008. LNCS,
vol. 5168, pp. 622–631. Springer, Heidelberg (2008)

18. Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J., Fernandes, C.: Resilience to
churn of a peer-to-peer evolutionary algorithm. Int. J. High Performance Systems Ar-
chitecture 1(4), 260–268 (2008)

19. Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J.: Evolvable agents, a fine grained
approach for distributed evolutionary computing: walking towards the peer-to-peer com-
puting frontiers. Soft Computing - A Fusion of Foundations, Methodologies and Appli-
cations 12(12), 1145–1156 (2008)

20. Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J., Rosa, A., Fernandes, C.: Evolv-
able agents in static and dynamic optimization problems. In: Rudolph, G., Jansen, T.,
Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 488–497.
Springer, Heidelberg (2008)

21. Laredo, J.L.J., Castillo, P.A., Paechter, B., Mora, A.M., Alfaro-Cid, E., Esparcia-Alcázar,
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Evolutionary Algorithms on Volunteer
Computing Platforms:
The MilkyWay@Home Project
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Francisco Fernández de Vega, Malik Magdon-Ismail, Heidi Newberg,
Boleslaw Szymanski, and Carlos Varela

1 Introduction

Evolutionary algorithms (EAs) require large scale computing resources when
tackling real world problems. Such computational requirement is derived from
inherently complex fitness evaluation functions, large numbers of individuals
per generation, and the number of iterations required by EAs to converge
to a satisfactory solution. Therefore, any source of computing power can sig-
nificantly benefit researchers using evolutionary algorithms. We present the
use of volunteer computing (VC) as a platform for harnessing the computing
resources of commodity machines that are nowadays present at homes, com-
panies and institutions. Taking into account that currently desktop machines
feature significant computing resources (dual cores, gigabytes of memory, gi-
gabit network connections, etc.), VC has become a cost-effective platform for
running time consuming evolutionary algorithms in order to solve complex
problems, such as finding substructure in the Milky Way Galaxy, the problem
we address in detail in this chapter.

In order to tackle the complexity of evolutionary algorithms when applied
to real world problems, different parallel models and computer architectures
have been used in the past, for instance the parallel transputer network ar-
chitecture [5] or a 10 nodes Beowulf style cluster [7] improved later to 1000
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Pentiums nodes1. Nowadays, large efforts are still carried out to improve re-
sults while reducing computing time, by embodying parallel techniques within
EAs (see e.g., [21, 18]).

One of the most promising technologies capable of circumventing the high
computational requirements of EAs, and thus reducing the solution time of
many applications is the grid computing paradigm [32]. Grid computing gen-
erally refers to the sharing of computing resources within and between orga-
nizations by harnessing the power of super computers, clusters and desktop
PCs, which are geographically distributed and connected by networks. Grid
nodes use a special software, called middleware, to coordinate distributed
computations.

Two of the most used middleware frameworks in the world are Globus
[22] and gLite [33]. These middleware frameworks are normally complex and
focused on upmarket hardware and facilities. For this reason, other grid mid-
dleware employs commodity hardware to reduce economic investment and to
handle the complexity of deployment to idle desktops, thus giving rise to desk-
top grids (DGC). Examples of DGC middleware are Condor [37], Xtremweb
[19] and BOINC [2].

Two main kinds of DGC are available, enterprise grids and volunteer com-
puting grids. Enterprise grids are typically more homogeneous and usually
entail processors connected by a Local Area Network (LAN) under a single
root of administrative control, albeit with potentially different administrative
units below. On the other hand, volunteer computing grids (e.g., as enabled
by BOINC [2]) are composed of Internet-connected processors volunteered
by users worldwide, resulting in larger but more heterogeneous grids.

Desktop grids have the potential to provide significant processing power
since desktop computers have become an essential working tool in any market.
Companies and institutions provide commodity machines to their employees
to improve their efficiency when solving their everyday tasks. The hardware
specifications of those desktop machines become more powerful everyday: for
example, quad cores, 4 gigas of RAM memory and up to 1 Terabyte hard
disks, are not uncommon. Thus, desktops are really good candidates for run-
ning complex and time consuming computational experiments. Furthermore,
if we take into account that most of those desktops are underutilized by
their owners, there is a potential for a large processing and storage capability
within current energy usage [4].

At the same time, researchers commonly face the opposite problem: real
world problems approached with EAs require more computing resources than
what researchers have at their disposal. Thus, a question naturally arises: why
not to exploit those unused available desktop resources to help scientific ap-
plications? Desktop grid computing, and in particular, volunteer computing,
provides a plausible answer to this question (for the sake of simplicity, we will
employ the term volunteer computing (VC) from now on as an umbrella for
1 For further details see
http://www.genetic-programming.com/machine1000.html

http://www.genetic-programming.com/machine1000.html
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different but related terms: DGC, enterprise grids and volunteer computing,
given the specific study described and the real-world application shown in
this chapter).

VC is being successfully used for addressing problems related to climate
prediction models [1], high energy physics [47], protein folding [44] and as-
tronomy [3], [47], to name but a few. Frequently, projects rely completely on
the computing power of volunteers, converting the users in a fundamental
part of the project.

Yet, the number of projects using VC is still relatively narrow, and partic-
ularly unknown by Computational Intelligence community of researchers. In
this chapter, we analyze the application of VC to real life problems addressed
by means of Evolutionary Algorithms (EAs), and also possible extensions to
other Computational Intelligence techniques. We show the VC technology, its
cooperation with EAs for solving hard problems, and a real-life application:
The Milky Way at home project.

The chapter is organized as follows: Section 2 presents related work on vol-
unteer computing and evolutionary algorithms. Section 3 describes a specific
astronomy problem to which we apply EAs on VC: finding sub-structure in
our own Milky Way. Section 4 describes asynchronous versions of evolutionary
algorithms, especially designed to be executed on heterogeneous, failure-prone
volunteer computing environments. Section 5 discusses their implementation
in the MilkyWay@Home project highlighting interesting results. Finally, we
conclude with remarks and potential avenues for future work.

2 Related Work

The Berkeley Open Infrastructure for Network Computing (BOINC) [2] is
the generalization of the well known SETI@Home project [3]. This volunteer
computing middleware framework aggregates the computing power of idle
desktop machines provided by volunteers worldwide (e.g., home computers
or office workstations). One of the main advantages of using VC systems
is that they provide large-scale parallel computing capabilities for specific
classes of applications at a very low cost. Consequently, VC is a promising
platform for running real world optimization problems solved by means of
EAs.

The following sub-sections present the first VC projects, the VC technology
more widely used and its relationships with Parallel EAs: possibilities of
collaboration and first proposals.

2.1 Volunteer Computing

The first successful VC project was “The Great Internet Mersenne Prime
Search” (GIMPS) [52]. The aim of this project is to find new mersenne primes.
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The project has engaged 11,875 volunteers who provide 73,439 CPUs giving,
as of April 2009, a processing power of 44.3 Teraflops.

Another successful VC project is Distributed.net [50]. The aim of this project
is to win the RSA Secret Key challenge which consist of deciphering an RSA
text with different difficulties. Distributed.net has won two of the challenges,
the 56 and 64 RC5 bit encryption challenges [39, 38]. Additionally the Dis-
tributed.net team is also running a distributed project named OGR which tries
to find the Optimal Golomb Ruler [51] for 24 or more marks. At the time of this
writing, Distributed.net has found a solution for the OGR-24, 25 and 26. Cur-
rently they are trying to find a solution to the OGR of 27 marks.

Both projects, GIMPS and Distributed.net, are specialized VC projects
for a given application. Thus, those systems cannot be used as a general
tool for running any kind of research project. Nevertheless, GIMPS and Dis-
tributed.net are good examples of successful ad hoc VC projects.

Over the years, several general purpose VC middleware have been devel-
oped including Xtremweb [19], Condor [37] and BOINC [2] (as described
above, we consider all the technology from the point of view of VC, and
avoid subtle distinctions about DGC or VC technology).

From all the general purpose VC middleware frameworks, BOINC is the
most used one. BOINC has the largest pool of volunteers/users around the
world. As of April 2009, BOINC has 1, 622, 500 users, providing 3, 849, 182
processors which give 1, 399.4TeraFLOPS of aggregated computing power to
VC applications. For this reason, BOINC is the best candidate for deploying
an application using volunteer computing. BOINC volunteers are willing to
collaborate with new projects of interest.

In summary, VC is a good candidate to run computationally intensive
problems and could thus be employed to obtain “free” computing resources
for running real world EA tackling hard problems. In reality, resources are not
completely “free”, since a community of volunteers needs to be continuously
informed of the scientific goals and outcomes of the project. New volunteers
need to be recruited, and existing volunteers need to be retained. However, the
benefit of the keeping volunteers informed is the ensuing “open democratic
science” where people can choose which research projects are worthy of their
computing resources.

2.2 BOINC: A Volunteer Computing Technology

As explained above, BOINC has the largest user and volunteer community.
Currently, there are 28 official supported projects and 23 non-verified BOINC
projects 2. These projects belong to different research fields like: astronomy,
physics, chemistry, biology, medicine, cognitive science, earth and environ-
mental science, mathematicians, games, etc.
2 For further details see http://boinc.berkeley.edu/projects.php and
http://boinc.berkeley.edu/wiki/Project_list

http://boinc.berkeley.edu/projects.php
http://boinc.berkeley.edu/wiki/Project_list
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BOINC is a multiplatform and open source middleware that comes from
the SETI@home project [3]. SETI@home aims at finding extraterrestrial in-
telligence by analyzing radio telescope data. SETI@home has engaged the
largest community of BOINC users, when writing this chapter 944, 691 users
are providing 2, 239, 695 hosts which produces a computer power equal to
515.6 TeraFLOPS.

Due to the success of SETI@home, the developers decided to create
BOINC, based on the SETI@home software. The goal was to provide a gen-
eral tool for developing new DGC projects based on their technology. The
main features of BOINC are:

• Project autonomy. Each BOINC project is independent, so each project has
its own servers and databases. Additionally there is no central directory
or approval process for the projects.

• Volunteer flexibility. Volunteers can decide in which and how many projects
they will take part. Volunteers also decide how their resources will be
shared between different projects.

• Flexible application framework. Applications coded in C, C++ or Fortran
can be run within BOINC with little or no modification.

• Security. BOINC employs digital signatures to protect clients from dis-
tributing viruses or malware.

• Server performance and scalability. The BOINC server is extremely effi-
cient, so that a single mid-range server can handle and dispatch millions
of jobs per day. The server architecture is also highly scalable by adding
more machines and distributing the load between them.

• Open source. The BOINC code is released under the Lesser GNU General
Public License version 3 [23].

BOINC is suitable for applications that have one or both of the following
requirements:

• large computation requirements,
• storage requirements.

The main requirement for running an application within BOINC is that it
is divisible into multiple sub-tasks or jobs that can be run independently. As
we may foresee, EAs are perfect candidates for running projects supported by
BOINC: the standard parallel evaluation of individuals could be performed
on different volunteer computers.

If the project is considering to employ basically volunteer resources, the
project’s web site must be compelling to attract volunteers and take into
account the volunteer’s bandwidth connections: lots of users do not have fast
upload/download speeds.

BOINC is composed by two key elements: the server and the clients.
BOINC employs a master-slave architecture. In order to facilitate the com-
munications between the clients and the server, the HTTP protocol is used
and the clients start always the communications. Thanks to this approach,
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the clients can collaborate with science even if they are behind a firewall
or a proxy –general security set up for communications on institutions like
companies or universities.

The BOINC server is in charge of:

• Hosting the scientific project experiments. A project is composed by a
binary (the algorithm or application) and some input files.

• Creation and distribution of jobs. In BOINC’s terminology a job is called
a “work unit” (WU). A WU describes how the experiment must be run
by the clients (the name of the binary, the input/output files and the
command line arguments).

On the other hand, the BOINC client connects to the server and asks for
work (WU). The client downloads the necessary files (WU) and starts the
computations. Once the results are obtained, the client uploads them to the
server.

BOINC measures the contributions of volunteers with credit. A credit is a
numerical measure of the work done by a given volunteer and his computers.
Volunteers care so much about the obtained credit when collaborating with a
project, and it is one of the leitmotif of continuing collaborating with a given
project. Thus, it is very important to handle correctly the granted credit to
users, as BOINC projects can grant/handle credit differently.

Volunteer computing has a main drawback: resources are not reliable. For
this reason, many types of attacks are possible in BOINC: hacking the server,
abuse of participant hosts, etc. From all the possible attacks, there are two
which are very important:

• Result falsification. Attackers return incorrect results.
• Malicious executable distribution. Attackers break into a BOINC server

and, by modifying the database and files, attempt to distribute their own
executable (e.g. a virus) disguised as a BOINC application.

In order to avoid these possible attacks, BOINC provides several mecha-
nisms to reduce the likelihood of some of the above attacks:

• Result falsification can be reduced using replication: a result is sent to at
least two different clients to check out that the obtained result has not been
forged. BOINC provides different types of replication: fuzzy, homogeneous
or adaptive replication.

• Malicious executable distribution is avoided as BOINC uses digital signa-
tures to distribute the binaries. The server uses two signatures, one public
and the other private to sign the applications. The private signature is
used to sign locally the binaries and the public signature is distributed
to clients for checking the origin of the application by the clients. It is
important to have the private key stored in safe storage not connected to
Internet to avoid possible network break-ins.

To sum up, BOINC provides enough facilities to reduce as much as possible
likelihood of attacks under a volunteer computing infrastructure. However,
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without the cooperation of administrators, the security could be risked if for
example BOINC keys are stored in the server machine or protocols like Telnet
are being used for accessing the machine.

2.3 Parallel Evolutionary Algorithms and VC

EA practitioners have found that the time to solution on a single computer
is often prohibitively long. For instance, Trujillo et al. employed more than
24 hours to obtain a solution for a real world computer vision problem [54].
Times to solution can be much worse, taking up to weeks or even months.
Consequently, several researchers have studied the application of parallel
computing techniques and distributed computing platforms to shorten times
to solution [20, 53].

Examples of these efforts are the old-fashioned Transputer platform [5],
new modern frameworks such as Beagle [26], or grid based tools like Paradiseo
[8]. However, there are not many real world problems that are using VC for
running experiments using EAs.

Considering the VC technology, two main parallel approaches for running
EAs are useful for profiting volunteer computing resources:

• Parallel fitness evaluation. Individuals can be distributed to be evaluated
on different volunteer computers simultaneously. This is useful when the
fitness evaluation time is the most time-consuming part of the algorithm.

• Parallel execution of experiments. When a number of runs are required for
obtaining statistically significant results, different runs can be distributed
on a number of computers. This model is also useful for high-throughput
parameter sweep experiments.

The latest case is particularly useful when running experiments in conjunc-
tion with VC technology: no changes are required in the main EA algorithm.
The algorithm is simply sent to a number of computers, with different input
parameters if required.

If we focus on some of the techniques comprised within EAs, only Chávez
et al. [42] presented an extension to the well-known genetic programming
framework LilGP [14], that runs within a BOINC infrastructure. In this
work, the experiments were a proof of concept using a couple of well-known
GP problems: the ant on the Santa fe trail and the even parity 5 problem.
Moreover, the experiments only used a controlled environment without the
collaboration of external volunteers.

A more generic approach was presented by Lombraña et. al. [27, 35]. The
idea was to run a modern and widely used framework for EAs, ECJ [36],
within a BOINC infrastructure. In this case, the experiments used a real
environment but only a reduced number of volunteers where engaged. Fur-
thermore, the experiments were again complex GP benchmarks but no real
world optimization problems were addressed.
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Another approach was presented by Samples et al. [45]. Samples et. al.
showed the feasibility of using DGC for a typical genetic programming pa-
rameter sweep application using a pool of desktop PCs. Nevertheless, the
lack of a standard middleware and a genetic programming tool has kept this
approach from being commonly adopted by researchers.

All the previous approaches were simple proof-of-concepts, thus, to the best
of the author’s knowledge, the only real-world problem that is already using
VC and Evolutionary Algorithms is the MilkyWay@home project; which is
described in depth within the next sections.

3 Finding Milky Way Galaxy Substructure

The Milky Way spheroid is one of the major components of the Galaxy. It
occupies a roughly spherical volume with the other components (disks, bulge,
bar, etc.) embedded in it. Despite its volume it produces only a small fraction
of the starlight emitted by the Galaxy. The stellar spheroid is composed of
primarily older and more metal poor stars that produce little light compared
to the brighter, more massive, stars that form in the gas-rich components
of the disk. The majority of the mass of the Milky Way exists within the
spheroid as dark matter; however, the nature, distribution, and structure of
this mass is unknown.

With the construction and operation of large scale surveys such as the
Sloan Digital Sky Survey (SDSS), the Two Micron All Sky Survey (2MASS),
and many other current and upcoming projects there is an “astronomical”
amount of data to be sorted through. This huge amount of data is not only
composed of photometric studies, but large numbers of stellar spectra are
being taken with many surveys being operated or completed solely focused on
taking a large number of incredibly accurate spectra, the Sloan Extension for
Galactic Understanding and Exploration (SEGUE) for example. This increase
in the amount of data, as well as the increase in the accuracy of this data
has led to many discoveries involving the spheroid and substructure in the
Galaxy. The Sagittarius dwarf spheroidal galaxy (Sgr dSph) and its associated
tidal stream, were the first known example of a current merger event to be
discovered [30, 28, 29, 58]. Since its discovery, the study of substructure has
dominated the research efforts towards the spheroid. This has resulted in
the discovery of several additional dwarf galaxies, tidal streams and globular
clusters of the Milky Way as can be found in [41, 57, 55, 15, 40, 6, 56], and
[59] among others.

For many years, the spheroid was imagined to have evolved from outward
flows from the disk of the Galaxy [17], or to have formed in conjunction
with the rest of the Galaxy and gradually evolved to its current state [46].
It has also long been imagined to have a smooth and continuous power law
density distribution [25]. However, the advancement in technology and anal-
ysis techniques have discovered the large amount of substructure, discussed
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above, and has shown that at least some of the spheroid was constructed via
merger events and that the spheroid was composed of debris from hierarchical
structure formation [24]. A shift in the thinking of the spheroid has therefore
come about, and the more substructure that is discovered the stronger the
case that the spheroid is non-smooth and was constructed primarily in this
manner.

3.1 Why Substructure?

Dwarf galaxies and star clusters are gravitationally bound systems, which
can themselves be bound in the gravitationally potential of the Milky Way.
As dwarf galaxies approach the center of the Milky Way, the differential
gravitational forces can pull stars out of their bound orbits in the dwarf
galaxy, and cause them to orbit the Milky Way instead. Stars with lower
energy are pulled ahead of the dwarf galaxy core while stars with higher
energy fall behind, resulting in the creation of long streams of stars, also
known as tidal streams, that extend the longer the dwarf is bound by the
Milky Way. As this disruption continues, the streams will become longer and
cover more of the sky as more and more of the stars are stripped from the
smaller body. Over time, all traces of the merging body will fade as the stars
become more and more dispersed and become assimilated into the Milky Way
spheroid. These long tidal streams of stars provide a unique opportunity for
these are the only stars in which it is possible to know not only where they
are and where they are going, but also where they have been. They trace out
the path the merging body took as it traversed the gravitational potential
of the Milky Way. In this way substructure in the spheroid can be seen as
something of a cosmic fingerprint powder bringing all of the details of the
spheroid itself into focus.

By studying the substructure of the spheroid, specifically that of tidal
streams, it is possible to study the galactic potential. This is not done via
direct measurement, but is primarily studied via simulations, which are ad-
justed to replicate the observational data. The more observational points
with which to compare and the more accurate those points are, the more
precisely the simulation can constrain the models of the Galactic potential.
As previously stated, the majority of the mass of the Milky Way is within
the spheroid and this is composed of dark matter. Therefore, the dominant
component of the Galactic potential is provided by the spheroid and specifi-
cally the dark matter of the spheroid. Thus, by constraining the models of the
Galactic potential it is possible to determine the distribution of dark matter
within the Galaxy.

It is important to develop techniques that are accurate and efficient means
of studying substructure, so the results may then be used to compare against
the simulations. There are primarily two methods used for discovery and
study of substructure: kinematical and spatial. The kinematical approach
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attempts to find co-moving groups of stars that can be identified by groups
of stars in a similar location with common velocity. These are indicators
that the stars might have come from a common structure instead of simply
being part of the smooth spheroid. This approach, though potentially more
powerful, is limited in that it requires a spectroscopic analysis of all stars
studied in order to determine the velocities. Accurate stellar spectroscopy
is significantly harder to obtain than photometry. The second approach for
substructure discovery and analysis is to simply search for overdensities in the
star counts within the data. This is done by looking for statistically relevant
deviations from the assumed background distribution of the spheroid. This
technique benefits from the fact that only a photometric analysis of the data
need be accomplished, thus the amount of data available for a study of this
kind is much greater. The majority of the substructure discoveries in the
Milky Way spheroid have been made through analysis of the photometric
data.

3.2 The Maximum Likelihood Approach to
Substructure

We have developed a maximum likelihood method for the discovery and anal-
ysis of substructure within the stellar spheroid. This method seeks to pro-
vide an efficient, automated, accurate, and mathematically rigorous means
to study substructure. The method has been designed to determine the spa-
tial characteristics of tidal debris and the stellar spheroid through the use of
photometric data.

The SDSS is a large, international collaboration that has generated an
enormous amount of data over 10,000 square degrees of the sky. The SDSS
data was taken with a 2.5m dedicated telescope at Apache Point Observatory
in New Mexico. Due to its placement in the northern hemisphere, the data
covers primarily the north Galactic cap with some minimal coverage in the
south. The SDSS survey area is composed of 2.5◦ wide stripes taken on great
circles across the sky (the entire sky is comprised of 144 such stripes) with
data taken at high Galactic latitude. Since the SDSS imaging survey is well
calibrated and is comprised of mostly contiguous data, it is a good candidate
for studying substructure as it traces across the sky.

Specifically, we extract stars of the color of blue F turnoff stars in SDSS
data to study substructure. The relatively large number of F turnoff stars
make them a good candidate for a statistical study of this nature. Also, the
color of F turnoff stars within the spheroid is bluer than that of the Milky
Way disk, therefore contamination of stars from non-spheroid components
can be minimized necessitating a model for only one Galaxy component,
the spheroid. Finally, F turnoff stars were chosen for this study for it is
possible to reasonably estimate their distance although not as well as other
less numerous “standard candles.” By modeling the distribution of absolute
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magnitudes that F turnoff stars can take, it is possible to utilize stars of this
type quite effectively.

Tidal streams generally follow very complex paths across the sky and are
therefore difficult to model. However, over small volume, such as a 2.5◦ wide
stripe of data taken by the SDSS, the tidal stream may be approximated as
linear. In this manner, the tidal stream is estimated in a piecewise fashion
across the sky with each stripe of data maintaining its own set of stream
parameters. In this way, the tidal stream density distribution is modeled as a
cylinder with Gaussian fall off from its axis. The tidal stream model is thus
parameterized by the cylinder position, its orientation, and the standard de-
viation of the Gaussian fall off. The smooth spheroid component is modeled
as a standard Hernquist profile and is therefore parameterized with a scal-
ing factor in the Galactic Z direction, and a core radius of the power law
component. Finally, the absolute magnitude distribution in F turnoff stars is
modeled as a Gaussian distribution with fixed variance.

Utilizing the above models we developed a likelihood function for the prob-
ability of the data given the model and the parameters. The input data set is
thus composed of a three column file in which each row represents the spatial
position of an F turnoff star as observed via the SDSS telescope. An opti-
mization method is then applied to the likelihood function and the best-fit
parameters are determined for the given dataset and the models. A detailed
description of the model descriptions and likelihood function can be found
in [11]. The approach of this algorithm offers a unique advantage in that the
spheroid and tidal debris are fit simultaneously. Because of this, it becomes
possible to probabilistically extract the tidal debris distribution from that
of the spheroid. In this manner, the structures can then be separately an-
alyzed via additional means. This provides a method of independent study
previously unavailable to researchers.

After successfully testing the algorithm upon a simulated data set, the
initial goal has been to analyze the Sgr tidal stream across all of the SDSS
data. The algorithm has successfully been used to analyze the stream in the
three stripes of data in the southern Galactic cap. The results presented in
[11] for the analysis of stripe 82 were a success, for the well established values
determined via other methods were recovered, and the error bars upon the
results generated via this method are much smaller than those previously
achieved. However, the true potential of this method can be seen in the
analysis of the two surrounding stripes [10]. These include a new detection
of the Sgr tidal stream in the south as well as the great improvement in the
position of the previous detection in the opposing stripe. Figure 1 depicts
the results of analyzing these three stripes and how these results compare
to a model of the Sgr dSph disruption. Ongoing research seeks to create a
complete map of the leading Sgr tidal stream throughout the north Galactic
cap (and fill in the northern part of the figure). A preliminary analysis of part
of this data has already shown significant discrepancy between the model of
the Sgr dSph disruption and the spatial properties being determined via this
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Fig. 1. Sagittarius dwarf disruption with fits to SDSS southern stripes. Plotted
here is the Sgr dSph face on, which is nearly orthogonal to the plane of the Milky
Way. A galaxy consistent with the Milky Way has been overlayed and the Solar
position is marked with a star. The dotted arrow shows the orbital path of the dwarf
and the current position of the Sgr dwarf core is clearly labeled. The points following
this orbital path are a subsampling of an N-body simulation consistent with the
result from [34]. The complete arrows depict the position and spatial direction of
the Sgr tidal stream within the three southern SDSS stripes (from left:79, 82, and
86). The remaining points represent a subsampling of those stars found to fit the
density profile of the stream within the stripe using the separation technique to
extract the stream from the stellar spheroid.

method. However, the breadth of this discrepancy will not be known until a
complete analysis of the data has been performed. It is also quite interesting
to note that in order to accurately fit the data in the northern stripes, it is
necessary to fit multiple tidal streams within the same dataset, for there is
substructure beyond the Sgr tidal stream in the data collected from the north.
Therefore, even though the analysis of the Sgr tidal stream is the primary
concern of the project at this stage, an analysis of other substructure will be
occurring simultaneously.

Following the completion of the Sgr tidal stream study, we would like to use
the information obtained to attempt to constrain the models for the Galactic
potential by fitting a simulation of the Sgr dSph to the values obtained in
this study. This will be difficult, for an appropriate measure of the “goodness
of fit” must be determined with which to compare the simulation and the
analysis results. Also, the computational complexity of an undertaking of
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this nature is far beyond that of even the current algorithm. This is due to
not only having to analyze the data, but having to actually create the data
via N-body simulation. Another topic of great interest that will provide a
significant challenge, is an effort to determine the true distribution of the
smooth spheroid component. To do this, all substructure must be removed
from the data via this algorithm and then all remaining data (representing
the smooth spheroid) fit at once. This will demand significant changes to the
current algorithm to fit over multiple datasets at once, plus a method for
determining the correct model must be determined as well.

4 Asynchronous Search

Maximum likelihood estimation attempts to find the set of parameters of
a mathematical function that best fits a given data set. The mathematical
function represents a scientific model, for example, the geometrical substruc-
ture of the stars in a galaxy wedge, given certain parameters such as a star
stream position, width, intersection angle, etc. The data set represents the
“ground truth”, for example, the observed photometric galaxy data, or the
result of an N-body simulation.

Population based search methods such as differential evolution (DE) [48],
genetic algorithms (GA) [9], and particle swarm optimization (PSO) [31, 16]
use the notion of generations of individuals in a population that evolves
over time. Analogous to their biological counterparts, the most fit individuals
have better probability of survival and reproduction in newer generations.
We call genetic search the process of using genetic algorithms to search in
n-dimensional space for the best set of parameters that optimizes a given
n-arity function. In genetic search, individuals are sets of parameters to a
function, and their fitness value is computed by applying the function to the
parameter set. For this work, individuals are sets of real valued numbers,
which are the input parameters to the maximum likelihood calculation.

Traditional population based search methods, such as differential evolu-
tion, genetic search and particle swarm optimization are typically iterative
in nature, which limits their scalability by the size of the population. This
section introduces an asynchronous search (AS) strategy, which while being
similar to traditional population based search methods in that it keeps a
population of parameters (or individuals) and uses combinations and modi-
fications of those individuals to evolve the population. The main difference
is that AS uses a master-worker approach instead of a parallel model of con-
currency. Rather than iteratively generating new populations, new members
of the population are generated in response to requests for work and the
population is updated whenever work is reported to the master.

Asynchronous search consists of two phases and uses two asynchronous
message handlers. The server can either be processing a request work or
a report work message and cannot process multiple messages at the same
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time. Workers repeatedly request work then report work. In some ways this
approach is very similar to steady-state genetic search, where n members of
the population are replaced at a time by newly generated members.

In the first phase of the algorithm (while the population size is less than
the maximum population size) the server is being initialized and a random
population is generated. When a request work message is processed, a random
parameter set is generated, and when a report work message is processed,
the parameters and the fitness of that evaluation are added to the server’s
population. When enough report work messages have been processed, the
algorithm proceeds into the second phase which performs the actual genetic
search.

In the second phase, report work will insert the new parameters and their
fitness into the population but only if they are better than the worst current
member and remove the worst member if required to keep the population
size the same. Otherwise the parameters and the result are discarded. Pro-
cessing a request work message will either return a mutation or reproduction
(combination) from the population. Section 4.1 describes different methods
for this in detail.

This algorithm has significant benefits in heterogeneous environments be-
cause the calculation of fitness can be done by each worker concurrently
and independently of each other. The algorithm progresses as fast as work
is received, and faster workers can processes multiple request work messages
without waiting on slow workers. This approach is also highly scalable, as the
only limiting factor is how fast results can be inserted into the population
and how fast request work messages can be processed. It is also possible to
have multiple masters using an island approach for even greater scalability.
This approach is also highly resilient to client side faults, because unreturned
work does not effect the server side genetic search.

4.1 Combination Operators

The previous section gave a generic outline for asynchronous search which
allows for various combination and mutation operators to be used in gener-
ating new parameter sets to be evaluated. This makes the algorithm easily
adaptable, which is a desirable quality because no particular search method
is ever optimal for all optimization problems. This section describes using the
asynchronous search strategy to implement both genetic search (AGS) and
particle swarm optimization (APSO).

4.1.1 Asynchronous Genetic Search (AGS)

Asynchronous genetic search generates new individuals using either mutation
or a combination operator, as follows.
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Mutation Operators

The standard mutation operator for an optimization problem with a con-
tinuous domain is to take an individual from the population, and randomly
regenerate one of its parameters within the bounds of that parameters. This
is often modified so that the range in which the parameter can be modified
is gradually reduced as the search progresses, which can result in improved
convergence rates.

Average Operator

The standard and most simple combination operator for real variables over
a continuous domain is to take the average of two parent individuals and use
that as the child.

Double Shot Operator

Desell et al. [12] show that using a double shot operator as opposed to a
standard average operator can significantly improve convergence rates for the
astronomical modeling application. The double shot operator produces three
children instead of one. The first is the average of the two parents, and the
other two are located outside the parents, equidistant from the average (see
Figure 2). This approach is loosely based on line search, the point outside the
more fit parent is in a sense moving down the gradient, while the point outside
the less fit parent is moving up the gradient created by the two parents. The
motivation for the latter point is to escape local minima.

Fig. 2. The double shot operator generates three children: the average, a point
outside the worse parent (higher), and a point outside the better parent (lower),
the latter two points are a distance from the average equal to the distance between
their parents.

Probabilistic Simplex Operator

Unfortunately, all of these approaches require synchrony by creating depen-
dence between fitness calculations. While it is not possible to effectively per-
form the traditional Nelder-Mead simplex search in a highly heterogeneous
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Fig. 3. The simplex method takes the worst point and reflects it through the cen-
troid of the remaining points. The probabilistic simplex operator randomly gener-
ates a point on some section of the line connecting the worst point and its reflection.

and volatile environment like BOINC, a probabilistic operator can mimic its
behavior. The Nelder-Mead simplex search takes N + 1 sets of parameters,
and performs reflection, contraction and expansion operators between the
worst set of parameters and the centroid of the remaining N (see Figure 3).
After calculating the centroid, a line search is performed by expanding or
contracting the simplex along this line. Because in our asynchronous model
it is not possible to iteratively perform expansions and contractions, a ran-
dom point is selected on the line joining the worst point and its reflection.
There are three parameters involved in this operator, N , the number of points
used to form the simplex (chosen randomly from the population), and two
limits l1 and l2 which specify where on the line the point can be generated.
For example, l1 = −1 would set one limit to the reflection and l2 = 1 would
set the other limit to the worst point. For the purposes of this study, we use
l1 = −1.5 and l2 = 1.5 and examine how children generated from different
parts of this line effect the

4.1.2 Asynchronous Particle Swarm Optimization (APSO)

Particle swarm optimization was initially introduced by Kennedy and Eber-
hart [31, 16] and is a population based global optimization method based on
biological swarm intelligence, such as bird flocking, fish schooling, etc. This
approach consists of a population of particles, which ”fly” through the search
space based on their previous velocity, their individual best found position
(cognitive intelligence) and the global best found position (social intelligence).
The population of particles is updated iteratively as follows, where x is the
position of the particle at iteration t, v is it’s velocity, p is the individual
best for that particle, and g is the global best position. Two user defined
constants, c1 and c2, allow modification of the balance between local (cogni-
tive) and global (social) search, while another constant the inertia weight, w,
scales the particle’s previous velocity. The search updates the positions and
velocities of the particles as follows:
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vi(t + 1) = w ∗ vi(t)+ c1 ∗ rand() ∗ (pi − xi(t))+ c2 ∗ rand() ∗ (gi − xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

In a parallel computing scenario, the search typically progresses iteratively.
The fitness of each particle is computed in parallel, then the local and global
best points are updated. Following this a new positions for each particle are
computed and the process repeats.

PSO can be made asynchronous by noting that the method in which the
particles move around the search space is not completely dependent on the
fitness computed in the previous iteration. A particle will continue to move
using its previous velocity and the current local and global best positions
found until a new local or global best position is found. By relaxing this
restriction slightly by allowing to a particle to continue to move in absence of
knowledge of the fitness of previous states, we can utilize the asynchronous
search strategy and remove the scalability limitations of traditional PSO.

APSO works as follows. New positions for particles are generated in a
round robin fashion in response to request work messages. Instead of waiting
for previously sent out particles to be evaluated, new particles are generated
using the current known global best and known local best. This allows the
search to progress and generate new particles asynchronously. When a parti-
cle is evaluated, its fitness, position, velocity are reported and the search is
updated if the particle is a new local or global best. In this way the APSO
performs nearly identically to PSO, without scalability limitations. As more
processors request work, particles are generated further ahead increasing the
exploratory component of the search.

5 MilkyWay@Home: Finding Galactic Substructure
Using Genetic Search on Volunteered Computers

5.1 Convergence

5.1.1 Asynchronous Genetic Search

The hybrid simplex method was evaluated using the astronomical modeling
problem detailed by Purnell et al [43]. Performing the evaluation of a sin-
gle model to a small wedge of the sky consisting of approximately 200,000
stars can take between 15 minutes to an hour on a single high end processor.
Because of this, to be able to determine the globally optimal model for that
wedge in any tractable amount of time requires extremely high powered com-
puting environments. To measure the effect of asynchronicity on the hybrid
genetic search, both synchronous and asynchronous computing environments
are used, 1024 processors of an IBM BlueGene/L and a BOINC volunteer
computing project with over 1,000 volunteered computers.
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Fig. 4. Fitness of the best member found averaged over five searches for the double
shot approach and the simplex hybrid with N = 2..5, using the BOINC volunteered
computers and the BlueGene supercomputer.

Figure 4 shows the performance of the double shot approach, and the sim-
plex approach with varying numbers of parents N being used to calculate
the centroid on both environments. Previous work has shown that the dou-
ble shot approach significantly outperforms iterative genetic search and asyn-
chronous genetic search using only the average and mutation operators [49].
All approaches converged to the known global optimum of the data. For both
computing environments, a population of size 300 was used, and the mutation
operator was applied 20% of the time, all other members were generated with
the corresponding operator. The range of the probabilistic line search for the
simplex hybrid was defined by the limits l1 = −1.5 and l2 = 1.5. For the syn-
chronous execution on the BlueGene, each model evaluation was performed



Evolutionary Algorithms on Volunteer Computing Platforms 81

by dividing the work over the 1024 processors, and immediately attempting
to insert the member into the population - in this way only the most evolved
population was used to generate new members and the population was con-
tinuously updated. The asynchronous execution on BOINC generates new
members from the current population whenever users request more work. Af-
ter a user has completed the evaluation of a member, it’s sent to the server
and inserted into the population. There is no guarantee of when the fitness
of a generated member will be returned, or even if it will be returned at all.

On the BlueGene, the hybrid simplex method shows dramatic improve-
ment over the double shot approach, with the difference increasing as more
parents are used to calculate the centroid. While the double shot method typ-
ically converges in around 18,000 iterations, the simplex hybrid with N = 4
converges in approximately 8,000. Compared to the 50,000 iterations reported
for traditional iterative genetic search [12], the convergence rate is excellent.
Using BOINC shows similar results, however the convergence rates are not as
fast on the BlueGene, which is to be expected. Generally, increasing the num-
ber of points used to calculate the centroid results in better searches, however
on BOINC the simplex with N = 2 and double shot operators initially seem
to converge more quickly than the more informed simplex with N = 4..10,
which was not the case on the BlueGene. The asynchronous approach on
BOINC may take more iterations, but BOINC is much more accessible as
it is dedicated to the project at hand, while use of the BlueGene is shared
among many researchers. Because of this, even though the quantity of fitness
evaluations done per second is similar for both computing environments, the
BOINC framework can perform more searches and does so at a fraction of
the cost. These results are very promising for the use of asynchronous search
and volunteer computing for computationally intensive scientific modeling.

5.1.2 Asynchronous Particle Swarm Optimization

Asynchronous particle swarm optimization (APSO) was also tested using the
BOINC computing platform, with results competitive to asynchronous ge-
netic search. Figure 5 shows how the search progressed using different values
of the inertia weight w. Typically, regular particle swarm optimization uses
w = 1, c1 = 2, and c2 = 2 as standard values for constants, however we
found that in an asynchronous setting, lower values of w performed signif-
icantly better. While all values did eventually reach the global optimum, a
value of 0.4 tended to find the optimum the fastest. It is however interest-
ing to note that while values 0.6 and 0.8 initially converge faster, they then
spend much longer zeroing in on the correct value. It could be said that this
is evidence of a higher inertia weight being more exploratory, finding good
possible areas to search, but these higher values lack the required exploitation
of those good areas needed to ultimately find a correct value. It also supports
results found by Dingxue et al. which find that using an adaptive value for
w improves convergence [13].
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Fig. 5. Fitness of the best particle found averaged over five searches for asyn-
chronous particle swarm optimization on the BOINC volunteered computers, using
constants c1 = c2 = 2.0 and inertia weight w = 0.4, 0.6 and 0.8.

5.2 Operator Analysis

To better understand the effect of the operators in evolving the population,
as well as the effect of asynchronicity and of a highly heterogeneous comput-
ing environment on the fitness returned, the number of members processed
between the generation and reporting of a members fitness was tracked, as
well as information about how it was generated. For both environments, the
best N was used. Figure 6 shows the percentage of members inserted into
the population and at what position in the population they were inserted
based on what part of the line they were generated with using the simplex
hybrid with N = 4 on the BlueGene. The population is sorted from the best
fit to the least, so the lower the position at which a member is inserted, the
better its fitness with respect to the rest of the population. Figures 7 and 8
show the same information for BOINC and N = 4. To provide a measure of
how far the population evolved while a member was being evaluated, these
results are partitioned by how many other members were reported before the
fitness of the current member was reported. The range of the probabilistic
line search for the simplex was defined by limits l1 = −1.5 and l2 = 1.5 and
the statistics are taken from five separate searches.

On the BlueGene, the best insert rate and quality was from points around
the centroid (generated between limits of 0.5 and -0.5). While inside of the
worst point (1.0 to 0.5) had the highest insert rate, the quality of inserted
members was rather low. Points near the reflection of the worst point through
the centroid (-1.5 to -0.5) tended to have low insert rates, however when
they were inserted they tended to be very fit. Points outside of the worst
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Fig. 6. Average insert rate and insert position of members based on what part of
the line calculated by the simplex hybrid they were generated on, for N = 4 using
the BlueGene supercomputer. A lower insert position means the member is more
fit than the rest of the population.

member (1.0 to 1.5) had the worst insert rate and the least fit. These results
suggest that the probabilistic simplex search could be further optimized by
restricting the range to limits l1 = −1.5 and l2 = 0.5, by eliminating the
poorest performing range of 0.5 to 1.5.

BOINC showed similar results for quickly reported results (less than 200
members reported while the member was being evaluated) with points gen-
erated near the centroid (-0.5 to 0.5) having the best fitness and insert rate
(see Figures 7 and 8). One notable exception was that points generated on
the inside of the worst point (0.5 to 1.0) had a notably lower insert rate and
that points generated near the worst point (0.5 to 1.5) quickly degraded in
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Fig. 7. Average insert rate of members based on what part of the line calculated
by the simplex hybrid they were generated on, for N = 5 using the BOINC frame-
work. The results are partitioned by how many other members were reported while
the used members were being generated (0..100 to 1601+) to show the effects of
asynchronicity and of a heterogeneous computing environment.

terms of insert rate compared to other points. With over 1600 evaluations
being reported during a members round trip time, not a single point gener-
ated past the worst point was inserted. Another point of interest is that while
points generated near the reflection (-1.5 to -0.5) had lower insertion rates
than those near the centroid (-0.5 to 0.5), as the report time increased, their
average insert position stayed the same and eventually had better fitness than
points generated near the centroid. As with the BlueGene, the results suggest
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Fig. 8. Average insert position of members based on what part of the line calcu-
lated by the simplex hybrid they were generated on, for N = 4 using the BOINC
framework. A lower insert position means the member is more fit than the rest
of the population. The results are partitioned by how many other members were
reported while the used members were being generated (0..100 to 1601+) to show
the effects of asynchronicity and of a heterogeneous computing environment.

that refining the limit on the probabilistic simplex operator to l1 = −1.5 and
l2 = 0.5 would improve the convergence rates. Additionally, it appears that
the result report time does have an effect on which part of the line used by
the probabilistic simplex operator is better to draw new members from. An
intelligent work scheduling mechanism could assign members generated near
the reflection to processors with slower reporting times, and those generated
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near the centroid to processors with faster reporting times. Also, as the search
progresses, there are fluctuations as to where the best points are generated
from. An adaptive search could refine the limits to improve convergence rates.
It is important to note that even the slowest processors retain their ability to
evaluate members that are of benefit to the search, which is an important at-
tribute for any algorithm running on massively distributed and heterogeneous
environments.

6 Conclusions

Volunteer computing platforms can significantly enable scientists using evo-
lutionary algorithms by providing them access to thousands of processors
worldwide. The heterogeneity inherent in this worldwide computing infras-
tructure can be tackled by using asynchronous versions of evolutionary algo-
rithms, which are better suited to deal with the wide variety of processing
speeds and failure characteristics found in volunteer computing environments.

We have shown a specific application in astronomy, MilkyWay@Home,
that uses asynchronous genetic search on BOINC to discover substructure in
the Milky Way Galaxy from Sloan Digital Sky Survey data. The availability
of more processing power for scientists has the potential to enable better
science: more complex models can be tested on larger data sets, streamlining
the scientific process.

Additional research directions include adapting additional evolutionary al-
gorithms to the heterogeneous and failure-prone nature of volunteer comput-
ing environments, creating generalized scientific computing frameworks that
lower the barrier of entry to new scientific domains, and developing hybrid
mechanisms that can make efficient use of diverse distributed computing en-
vironments including supercomputers, grids, clusters, clouds and the Internet.
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Bell, E.F., Brinkmann, J., Ivezić, Ž., Lupton, R.: The Field of Streams: Sagit-
tarius and Its Siblings. Astrophysical Journal Letters 642, L137–L140 (2006)

7. Bennet, F.H.I., Koza, J.R., Shipman, J., Stiffelman, O.: Building a parallel
computer system for $18,000 that performs a half peta-flop per day. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, Orlando,
Florida, USA, pp. 1484–1490 (1999)

8. Cahon, S., Melab, N., Talbi, E.: ParadisEO: A Framework for the Reusable
Design of Parallel and Distributed Metaheuristics. Journal of Heuristics 10(3),
357–380 (2004)

9. Cantu-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles,
Reseaux et Systems Repartis 10(2), 141–171 (1998)

10. Cole, N., Jo Newberg, H., Magdon-Ismail, M., Desell, T., Szymanski, B., Varela,
C.: Tracing the Sagittarius Tidal Stream with Maximum Likelihood. In: Amer-
ican Institute of Physics Conference Series, vol. 1082, pp. 216–220 (2008),
doi:10.1063/1.3059049

11. Cole, N., Newberg, H.J., Magdon-Ismail, M., Desell, T., Dawsey, K., Hayashi,
W., Liu, X.F., Purnell, J., Szymanski, B., Varela, C., Willett, B., Wisniewski,
J.: Maximum Likelihood Fitting of Tidal Streams with Application to the Sagit-
tarius Dwarf Tidal Tails. The Astrophysical Journal 683, 750–766 (2008)

12. Desell, T., Cole, N., Magdon-Ismail, M., Newberg, H., Szymanski, B., Varela,
C.: Distributed and generic maximum likelihood evaluation. In: 3rd IEEE In-
ternational Conference on e-Science and Grid Computing (eScience2007), Ban-
galore, India, pp. 337–344 (2007)

13. Dingxue, Z., Zhihong, G., Xinzhi, L.: An adaptive particle swarm optimization
algorithm and simulation. In: IEEE International Conference on Automation
and Logistics, pp. 2399–2042 (2007)

14. Bill Punch, D.Z.: Lil-gp,
http://garage.cse.msu.edu/software/lil-gp/index.html

15. Duffau, S., Zinn, R., Vivas, A.K., Carraro, G., Méndez, R.A., Winnick, R., Gal-
lart, C.: Spectroscopy of QUEST RR Lyrae Variables: The New Virgo Stellar
Stream. The Astrophysical Journal Letters 636, L97–L100 (2006)

16. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory.
In: Sixth International Symposium on Micromachine and Human Science, pp.
33–43 (1995)

17. Eggen, O.J., Lynden-Bell, D., Sandage, A.R.: Evidence from the motions of old
stars that the Galaxy collapsed. The Astrophysical Journal 136, 748 (1962)

18. Fernández, F., Tomassini, M.L.V.: An empirical study of multipopulation ge-
netic programming. Genetic Programming and Evolvable Machines (2003)

http://doi.acm.org/10.1145/581571.581573
http://garage.cse.msu.edu/software/lil-gp/index.html


88 N. Cole et al.

19. Fedak, G., Germain, C., Neri, V., Cappello, F.: XtremWeb: A Generic Global
Computing System. In: Proceedings of the IEEE International Symposium on
Cluster Computing and the Grid (CCGRID 2001) (2001)

20. Fernandez, F., Spezzano, G., Tomassini, M., Vanneschi, L.: Parallel genetic pro-
gramming. In: Alba, E. (ed.) Parallel Metaheuristics, Parallel and Distributed
Computing, ch. 6, pp. 127–153. Wiley-Interscience, Hoboken (2005)
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Self-coordinated On-Chip Parallel Computing:
A Swarm Intelligence Approach

Danilo Pani and Luigi Raffo

Abstract. Self organization is the property of some natural systems to organize
themselves without a central coordination unit to perform specific tasks. Swarm In-
telligence is a bioinspired paradigm coming from the observation of natural swarms,
such as honey bees and bird flocks. Swarms exploit self organization to achieve co-
ordination, speed-up and fault tolerance. This interesting paradigm has been applied
in different research fields, mainly in robotics and optimization algorithms. Our pi-
oneering studies about the application of this powerful paradigm to digital VLSI
systems demonstrated that Swarm Intelligence can be applied to the design of scal-
able computing architectures composed of a large set of self-coordinated hardware
agents. In this Chapter we present this approach with a review of our research works
in this field from the first explorations to the latest results: the FPGA implementa-
tion of a coprocessing architecture expressly conceived resorting to the Swarm In-
telligence principles. Some experimental results are presented to evaluate the main
features of this innovative approach, which shows interesting performance improve-
ments without any programming effort and without complex tools for compilation
and mapping, compared to other state-of-the-art coprocessing architectures.

1 Introduction

Multimedia, cryptography, scientific computations and many current applications
require growing computational capabilities. Interactive applications are character-
ized by fluctuations in the workload at run time that depend on the user’s choices
and are unpredictable at compilation time. A great flexibility in multiple tasks ex-
ecution to adapt the system responses to the different loads is then required. The
development of efficient digital architectures, able to support this kind of intensive
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computations even in multitasking scenarios, represents one of the primary goals of
today’s digital designers.

To achieve this goal, the traditional Von Neumann and Harvard architectural
models, implicitly based on the assumption that the space on chip is a limited re-
source so that it is better to trade “space for time” [18], need to be overcome in-
troducing explicit parallelism exploitation. It has been demonstrated that traditional
processing cores of today’s size do not scale well to future technologies [5]. As a
matter of fact, CMOS scaling is leading wire delay and power to be the most impor-
tant performance limiters. Rethinking the conventional approach to microprocessor
design, focusing on scalable and distributed alternatives to current centralized mi-
croprocessors, is necessary to face the new technological challenges [29]. Further-
more, in deep sub-micron technologies, high clock rates and densities will make
chips more prone to permanent and transient faults at run time [31], whereas pro-
duction processes are less reliable with the reduction of the transistors size, causing
an increase in defects at production time. Large monolithic cores are completely
unable to face this new challenge.

One of the main problems of single-chip multicore solutions, and probably the
biggest one, is programmability since for several years manufacturers have retained
the uniprocessor monolithic design approach to provide software compatibility [14].
Even if the multicore model suggests a great flexibility, the commercial multicore
architectures (with more than 256 cores on the same chip) strongly relies on design-
time resources mapping to deal with the huge hardware complexity [1, 3], thus
limiting flexibility and fault-tolerance, while leaving to the programmer the role to
explicitly exploit parallelism. This is also true, with several relaxed constraints, for
less application-specific platforms characterized by a smaller number of cores [4].

In this scenario, it seems clear that some new ideas are required to evolve from the
“centralized mindset” towards decentralization and self organization [30], to support
the development of scalable massively parallel architectures able to provide an eas-
ier control while guaranteeing high performance, flexibility, multitasking and fault
tolerance. Some natural systems exhibit these properties, employed for different
purposes. Swarm Intelligence (SI) [20] is a bioinspired paradigm that takes inspira-
tion from natural swarms, large sets of simple individuals with limited capabilities
able to carry out complex tasks exploiting cooperation and self organization. This
interesting paradigm has been applied in many research fields, mainly in robotics
and optimization algorithms [9]. Recently we demonstrated the possibility to use it
for the design of scalable computational tiled architectures composed of a large set
of self-coordinated “hardware agents” [27, 6, 10].

This chapter presents the latest advances in SI applied to this field. SI, and ex-
plicitly the cooperative behaviors behind the self-coordination in swarm systems,
was used for different purposes: self organization of the processing without low-
level centralized control and without complex software toolchains, automatic load
balancing, simultaneous multitasking and fault tolerance. A brief scientific review
of the previous works aimed to exploit SI for the design of digital computational
platforms is presented, starting from the absolutely first studies in the field to ar-
rive to the latest developments, a coprocessing unit for fixed point array processing.
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The effectiveness and the limits of the proposed approach, which shows significant
performance improvements without any programming effort and without complex
tools for compilation and mapping, are discussed. The architecture also supports
fault tolerance by cell exclusion, effective in reducing the influence of the presence
of faulty elements without spare resources. Since the fault tolerance characteristics
are quite complex, they are not presented in details in this Chapter.

2 Background on Swarm Intelligence

It is quite difficult to give a precise definition of Swarm Intelligence. Several defi-
nitions already exist and somehow point out different aspects of the same idea. The
term was originally coined by Beni in 1988 [8] in the context of cellular robotic
systems where many simple agents occupy one- or two-dimensional environments
to generate patterns and self-organize through nearest-neighbor interactions. To ex-
plain the term swarm, Kennedy et al. [20] quote a FAQ document from Santa Fe
Institute about the Swarm simulation system telling that:

We use the term “swarm” in a general sense to refer to any such loosely structured
collection of interacting agents. The classic example of a swarm is a swarm of bees, but
the metaphor of a swarm can be extended to other systems with a similar architecture.
An ant colony can be thought of as a swarm whose individual agents are ants, [...]
an immune system is a swarm of cells and molecules, and an economy is a swarm
of economic agents. Although the notion of a swarm suggests an aspect of collective
motion in space, as in the swarm of a flock of birds, we are interested in all types of
collective behavior, not just spatial motion.

In this sense SI is simply the emergent collective intelligence of groups of simple
autonomous agents with global adaptive behavior [9]. The term “agent” should be
carefully considered since it may generate confusion. Here, an autonomous agent is
a subsystem that interacts with its environment, which probably consists of other
agents, but acts relatively independently from all other agents. The autonomous
agent does not follow commands from a leader [23].

Natural swarms largely rely on self organization, resorting to simple local inter-
actions to coordinate the activity of the whole colony. Since the whole system is not
a single entity but rather a self-coordinated set of elementary entities, it is able to
plastically adapt itself to different environmental conditions without any centralized
control. Self organization is responsible for agents recruitment and tasks execution.
Cooperation inside the colony allows to adapt the effort in a task execution to the
available resources, that is very important when more than one task needs to be exe-
cuted at the same time and tasks arise in run-time unpredictably. The loose structure
of swarms entails several consequences very useful for digital architectures design.
For instance, a natural swarm is intrinsically fault tolerant, and performance in a
task execution can be modulated by the number of agents involved, until a reason-
able threshold is reached (performance scalability).

Communication within swarms is accomplished in different ways but it is always
true that the information exchange is local and the information is also local, i.e. each
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agent does not have the perception of the whole system, but only of parts of it. Local
interactions can be either direct (such as antennation, visual contact, etc.) or indirect
(mediated by the environment). In the first case, interactions require the simultane-
ous involvement of two or more individuals, whereas in the second one they could
take place asynchronously with some delay. Stigmergy [17] is a form of indirect
interaction mediated by the environment used by some natural swarms to implic-
itly coordinate their activities. This strategy allows environmental modifications and
agent responses to take place in different times [9]. An example of stigmergy is the
clustering behavior typical of some species of ants, leading to cemetery organiza-
tion, larval sorting, etc. Those ants move randomly in the nest, picking up the items
(corpses, larvae, etc.) and putting them down next to other items. Doing this, carri-
ers attach to the items a small quantity of pheromone and, in turn, carriers perceive
the presence of clusters of items following pheromone concentrations. Then, clus-
ters become more and more attractive to put down items, so that the overall effect
is the formation of large clusters of items in the nest. Since ants do not use direct
interactions to accomplish the task, but they perform it perceiving the environmental
modifications, this is a natural example of stigmergy.

The powerfulness of stigmergy is that this mechanism implicitly allows large
scalability in the size of the group of agents. In fact, one problem is that as the size
of the group increases, the number of potential communications increases exponen-
tially and the amount of information being transferred becomes soon unwieldy. With
stigmergy, the communications overhead for each agent does not increase with the
size of the group: the agent merely follows the same fixed set of rules and modifies
its behavior according to the environmental perception. Several other advantages are
fault tolerance, adaptation, speed, modularity, autonomy and parallelism [19].

Nowadays SI is exploited in several fields. One pioneering application was in the
field of optimization algorithms for hard NP problems [13, 16, 35], with some re-
cent interesting extensions to continuous optimization problems [34]. The particular
field of swarm robotic led to the creation of simple little robots realizing real world
operative tasks [21, 24, 32, 36]. Adaptive routing algorithms for communication
networks were developed starting from SI approaches [33, 11], with several works
in the field of wireless sensor networks [12], and even some algorithms were devel-
oped for Computer Aided Design (CAD) tools for VLSI design partitioning [22].
In the following of this Chapter we will show the application of SI to the design of
innovative parallel distributed system-on-chip architectures.

3 Swarm Architectures: The Proposed Metaphor

Traditional approaches to parallelization are based on a fixed partitioning of the
work between the available units, with severe drawbacks: the system shows poor
flexibility and is unable to really adapt to different workloads at run-time, although
supporting them. The scalability is somehow limited by centralized-control strate-
gies, and fault tolerance is seldom supported so that even in the so called “tiled
architectures” [7], the fault of a single unit entails the fault of the whole system. We
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have seen that natural swarms are able to carry out highly complex tasks exhibiting
all the characteristics required to address these issues. The central idea expressed in
this Chapter is that it is possible to create a set of interacting elementary hardware
agents [26] asking them to carry out efficiently a segment of the current computa-
tion but leaving the possibility to organize themselves in the best way to perform it.
A system can be considered self-organized if it is organized without any external or
central dedicated control entity. Obviously there will always be some constraints to
be met, so that the system should behave as the user expects, and the user should
remain in control at a high level even if without a direct control [15].

3.1 First Explorations

To the best of our knowledge, the first studies aimed to apply SI paradigm to the
design of innovative digital architectures date 2004 [25, 26]. In those studies, we
introduced cooperative processing with low-level hardware agents to implement a
common Digital Signal Processing task. In this case, hardware agents were simple
sequential multipliers with an elementary smart control unit. A swarm of 8 of these
agents was able to cooperate by means of simple rules to perform the sum of 8
products. The system adopted an improvement of the sequential Modified Booth
Algorithm (MBA), which analyzes the multiplier operand split into triplets with one
bit overlap [28] and exploits cooperation at sub-operation level (triplets processing)
between the agents without any centralized control.

In this case, we chose the direct interactions on a shared bus (bus arbitrage was
managed in a distributed way) for agent communications. This choice reduces con-
currency, thus limiting the cooperation. Nevertheless, the swarm approach leads to
an amplification effect in the execution speed, i.e. by means of cooperation the sys-
tem achieves better performance compared to the case of simple parallel processing
with fixed partitioning on the same architecture or equivalents. This is due to the
fact that agents exploit the reformulated MBA and then perform a reduced number
of operation steps as a function of data complexity, which is related to the triplets
content [26]. This implies that starting from 8 multiplications, not all of them will
require the same processing time, and then cooperation can take place allowing un-
loaded agents to help overloaded ones. The result is an overall latency reduction, as
shown in Figure 1.

The main limit of the system, developed as a proof-of-concept architecture, is
the reduced application field. Limitedly to the exploitation of SI, it presents other
three main drawbacks: it is potentially able to support fault tolerance but was not
designed for that purpose, architectural scaling is limited by the bus-based struc-
ture even if some strategies have been proposed [26], and concurrency is limited
by both direct interaction scheme (requiring a synchronization) and again bus-based
structure. Furthermore, the hardware overhead required to produce the computa-
tional substrate was too high with respect to the required functionality, suggesting an
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Fig. 1. A, B, ..., H are the agents, horizontal lines indicate no activity, Acc. stands for the
final summation phase. Alphanumerical labels indicate with the letter the original owner of
the triplet-multiplicand pair in process and with the number the triplet number.

evolution of the architecture aimed to introduce cooperation at operation level rather
than at sub-operation one.

3.2 Towards an Artificial Swarm System

To overcome the limits shown by the original approach, we rethought the system
starting from an abstract representation of it, identifying different layers: environ-
ment, communication medium, agents. The environment can be conceived as a set
of wells that can be filled with data to be processed. In our metaphor, such wells are
small local memories with a memory management unit (memory wells). The com-
munication medium can be conceived as a set of dedicated pipes locally intercon-
necting only nearest-neighboring wells. In our metaphor, communication medium
is implemented by switches able to perform routing operations without any own
initiative. Hardware agents form the third layer, where data are processed. At this
level cooperative behaviors and computational capabilities are implemented. In our
metaphor, a hardware agent is an Arithmetic Logic Unit (ALU) with a smart con-
trol implemented as a set of finite state machines (FSMs). A hardware agent stands
over a memory well, and consumes only data taken from it. It senses the environ-
ment (the workload level of its well and those of the neighboring ones) directing
the switches to perform data movements from its well towards adjacent wells with
different load. In this way the environment is modified in 2 ways: by means of the
direct processing of data by an agent (which decreases the amount of data stored in
its well), and by means of explicit data movements. These 2 mechanisms, triggered
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by the agents, alter the state of the environment in a way that will affect the behav-
ior of other agents, for whom the environment is a stimulus. This is an example of
stigmergy, according to the definition given in [20].

This simple approach is based only on local interaction within a regular sub-
strate of simple tiles and apparently is simply a form of workload balance. Instead,
it entails several consequences. Indirect interactions do not require neither synchro-
nization on the same communication channel nor handshakes, since environment
and agents are different entities. Since agents communication overhead does not in-
crease with the size of the group, stigmergy implicitly allows scalability. The largest
number of available tiles can be involved in a task (even in presence of simultaneous
multitasking) without any centralized control, thus exploiting at the most the com-
putational platform at any time. This also gives to the architecture less sensitivity to
the presence of faulty tiles and faulty agents can be simply excluded by the colony
(no reconfiguration is required). Last, software toolchains for compilation/mapping
are avoided since data are simply injected into the processing array without any
assignment to the hardware resources. Obviously, to achieve these goals, the archi-
tecture design must be carefully carried out and several limits arise. We will see
in the next Sections how this approach has been converted into an efficient parallel
architecture.

4 The Latest Advances in Digital Swarm Architectures

In this Section an architecture implementing the idea and the guidelines presented
in Section 3.2 is presented, along with its FPGA implementation [10]. The system is
a coprocessing unit for fixed point array operations that can be interfaced with any
host processor through an On chip Peripheral Bus (OPB), an embedded system bus
developed by IBM. The whole system has been designed and implemented using
the Xilinx FPGA EDK 8.1 IDE and simulated by means of ModelSim HDL simu-
lator. The coprocessor model is described in Verilog, at register transfer level (RTL)
to ensure the maximum control over the automatic synthesis outcomes. The target
hardware device was the XCL4VLX200, belonging to the Virtex-4 family by Xil-
inx. The Xilinx MicroBlaze, a 32 bit customizable RISC soft core with a MIPS-like
instruction set, enhanced with hardware multiplier, divider and barrel shifter, was
selected as host processor.

4.1 The Swarm Coprocessor

A block diagram of the swarm coprocessing system presented in this Section is
depicted in Fig. 2. The Swarm Coprocessor architecture is sketched in Fig. 3; it is
composed of 4 main modules: the Swarm Processing Array (SPA), the Decentralized
Column Selector (DCS), the Task Manager and the Coprocessor Data Memory.
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Fig. 2. Block diagram of the Swarm coprocessing system
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Fig. 3. The Swarm Coprocessor architecture. The computational and border tiles of the
Swarm Processing Array have been highlighted.

4.1.1 The Swarm Processing Array

The SPA is the coprocessor core. It is an evolution of the tiled architecture presented
in [6], which in turn comes from the original one presented in [27]. It is a 2D grid of
locally interconnected undifferentiated tiles (with a row of different tiles hereafter
called border tiles for data feeding). Even with this regular structure, the adoption
of a simple packet switching network able to provide only nearest-neighbors com-
munications allows to reproduce the loose structure of the swarms. The absence
of global routing rules, which implies that tiles cannot send packets to other non-
neighboring tiles, is a communication limit typical of natural swarm systems, which
can be overcome by the adoption of stigmergy. In the implementation presented in
this paper, the SPA is composed of 3×8 tiles plus 8 border tiles.
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The SPA is conceived for fixed point array processing, so the main goal of every
hardware agent is to compute a set of pairwise operations, hereafter called atomic
operations, between the elements of two arrays. Atomic operations, encapsulated in
operation-packets, are the building blocks of a task and more than one task can co-
exist on the same SPA at the same time. Every tile of the SPA is composed of 4 main
blocks: a Local Memory, a Buffered Switch, a Processing Unit and a Smart Agent,
as depicted in Figure 3. A hardware agent can be seen as the couple Processing Unit
- Smart Agent. The Processing Unit is a sequential ALU characterized by the atomic
operation set presented in Table 1. These basic operations are exploited by the Task
Manager of the coprocessor to give rise to the final coprocessor operation set.

Table 1. Atomic operations with operands a and b

Operation Description

MUL res = a×b
ADD res = a+b
SUB res = a−b
CMP res = a > b,a = b,a < b, and index of occurrence
SHR res = b >> a
SHL res = b << a
MAC resn = resn−1 +(a×b)
ACC resn = resn−1 +(a+b)

Tasks can return scalars or arrays, respectively composed of one or more result-
packets. Tasks composed of one of the first six atomic operations in Table 1 return
arrays, the other two return scalars. Both operation-packets and result-packets are
50-bit wide. Operation-packets are represented in Fig. 4, and are composed of the
two operands and the operator, the index of the operands (vector index), the dis-
placement of the packet with respect to the original column (x disp) for routing
purposes, the operation format (int q), the wrap/saturate option w/s and the flag as-
serting if the packet is a result or not c/r. Vector index field, only useful when the
result of the task is a vector, is 8-bit wide thus limiting the size of the vectorial
operands involved in this kind of task to 256 elements. Int q encodes the operands
format among integer and fixed point Q15, Q14, Q13. The processing unit in every
tile uses this information to apply the proper format performing the required shifts.
To preserve the highest precision, tasks involving accumulations are not computed
applying truncation and shift at the intermediate results but only after the last accu-
mulation has been performed (in the border tile). In the result-packet (Fig. 5), the
value is stored in the place previously taken by the operands, and in the place of the
vector index and opcode a single 11 bits field is present. This field stores the index
of the produced result (for tasks returning a vector) or the number of accumulations
performed to achieve it (for tasks returning a scalar). This implies that in the latter
case the maximum size of the operands is 2048.
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Fig. 6. A simplified representation of the memory well

A detailed description of the switch and the hardware agent is given in [27].
Compared to that implementation, in successive versions we changed the structure
of the memory well defining the final structure depicted in Figure 6. Operation-
packets to be processed by the hardware agent attached to a memory well are in WI
(32 words), whereas result-packets to be returned to the border tiles are placed in
the output queue WO ALU (4 words). The operation-packets to be transferred for
load balancing purposes or after fault detection are putted in the WO COOP queue
(4 words). This solution allows a better throughput since it is possible to define
priority mechanisms able to avoid the block of the ALU of the hardware agents
when the output queue is full and the network is slow due to excessive traffic. A
memory manager is responsible for the correct operation of the queues, including
tags management and monitor of the actual workload in WI.

Even if the different atomic operations require a different (possibly variable [27])
number of clock cycles to be performed (hereafter named packet weight), it is not
correct to consider the workload as the sum of the operation-packet weights in a
memory well since the weight of a packet determines its execution speed but should
not influence the decision about the number of packets to move for cooperative
purposes. This means that the workload must reflect only the number of operation-
packets in a memory well and not their weights. Without this assumption, a “bub-
ble effect” could arise, leading heavier tasks to be executed before the light ones,
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saturating the network [6]. This is an example of an emergent behavior, i.e. an un-
predicted behavior of the system caused by the autonomy left to the agents.

As stated in Section 1, there is not enough space to deal with the fault tolerance
approach. Shortly, we can say that fault detection is performed by means of both
functional tests during inactivity periods and analysis of the operation latency dur-
ing processing. It is clear that such techniques are not sufficient to provide a good
robustness, but they can be enhanced with any of the available Built-in Self Test
(BIST) solutions. Once a fault has been detected, the tile is excluded from the array.
If the switch is still able to perform data movements, the tile is simply bypassed,
otherwise all its ports will be blocked. Simple fault recovery mechanisms have been
also implemented to avoid data losses and to ensure the “transparency” of the ex-
cluded tile that otherwise would negatively influence the stigmergic interactions [6].

4.1.2 The Decentralized Column Selector

The DCS role is to identify the best column of the SPA for the assignment of a new
task ensuring the highest degree of cooperation. The module operates continuously a
kind of tournament selection, periodically comparing the Available Resources (AR)
of the current best column with those of all the other unassigned columns (one at
a time). AR takes into account not only the actual load of the columns but also the
number of healthy tiles in a column (NHT) [10]. To ensure scalability, the current
implementation is distributed so that every agent concurs to the computation of the
final value of AR.

Indicating WLT as the workload of a tile, the available space in the local memory
of that tile can be computed as ART = 32−WLT . To take into account the load of
the adjacent columns, influencing the cooperation, we can add to ART the properly
weighted contributions of the horizontally neighboring tiles (ARTL and ARTR ). This
way, for a given column, AR′

T (n) is the quantity propagated by the tile in the n-th
row towards the border tile:

AR′
T (n) = AR′

T (n−1)+ ART(n)+ 0.25(ARTL(n)+ ARTR(n)) (1)

Since AR is more complex to compute than WL, tiles can equivalently work with
WLT , so that at the border tile of a column arrives:

AR′
col = 48×NHT −

nrows

∑
i=1

W L′
T (i) (2)

where WL′
T (i) = WLT (i) + 0.25WLTL(i) + 0.25WLTR(i) with obvious semantics.

Central columns can rely on a higher degree of cooperation, being able to exploit up
to three columns per side compared to the outermost ones. To take into account this
aspect we introduced an offset γ , which takes different values for different columns,
as a function of their positions into the SPA, so that ARcol = AR′

col + γ .
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4.1.3 The Task Manager

The Task Manager module is composed of 4 submodules, as depicted in Fig. 3:
the Bus Interface, the Operation Manager, the Address Generator and the Array
Interface. Its role is twofold:

• provide an interface between the SPA and the host processor, able to exploit the
coprocessor as a peripheral on a standard bus;

• extend the operation set proper of the SPA (Table 1) to the one presented in
Table 2, with transparent support for both matrix and vector operations.

Table 2. Swarm Coprocessor operation set. The allowed operands type is specified in the last
columns as matrices (M) or vectors (V).

Coprocessor Operation Function Name Description Op. type
(α is a scalar value) M V

Addition copr add RES = A+B
√ √

Scalar addition copr adds RESi = Ai +α ∀i
√ √

Subtraction copr sub RES = A−B
√ √

Scalar subtraction copr subs RESi = Ai −α ∀i
√ √

RESi = 100 if Ai > α
Compare copr cmp RESi = 010 if Ai = α ∀i

√ √
RESi = 001 if Ai < α

Left Shift copr lsh RESi = Ai << α ∀i
√ √

Right Shift copr rsh RESi = Ai >> α ∀i
√ √

Matrix multiplication copr mul RES = A ·B √
Element-wise multiplication copr mulv RESi = Ai ·Bi ∀i

√
Scalar multiplication copr muls RES = α ·A √ √
Dot product copr mac res = ∑N−1

i=0 (Ai ·Bi) ∀i
√

Accumulation copr acc res = ∑N−1
i=0 (Ai +Bi) ∀i

√
Sample-by-sample FIR filter copr f ir res[n] = ∑N−1

i=0 A[i] ·B[n− i]†
√

† with circular buffering.

In particular, there are 2 interfaces, respectively representing the front end for
the host processor and the one for the SPA, namely the Bus Interface and the Array
Interface. The Operation Manager is used when a matrix operation is issued to the
coprocessor. Since the SPA operation set does not include any matrix operation, they
are split by this module into several SPA tasks to be loaded in different columns. For
matrix products, an operand is decomposed by rows and the other one by columns,
whereas for all the other operations the matrix operands are decomposed by rows.
The Address Generator is a module dedicated to the generation of the addresses for
the coprocessor data memory with different scanning patterns: row/column (used
for matrix products), circular (used for FIR filtering), and sequential (used in all the
other operations). In Section 4.2 we will see how these modules act in the context
of the coprocessor execution flow.
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4.1.4 The Coprocessor Data Memory

This RAM memory is internal to the coprocessor module and can be accessed by
the host processor via the OPB bus. It is a 3-port memory: one for the host processor
and the others to manage the bidirectional data flow to and from the coprocessor. Its
size can be changed arbitrarily and in the last implementation presented in literature
[10] it is 16K-word, 16-bit plus 2 parity bits per word.

4.2 Swarm Coprocessor Execution Flow

To explain the execution flow onto the Swarm Coprocessor, it is better to divide the
software flow by the hardware one.

4.2.1 Software Execution Flow and Programming Model

To perform an operation using the Swarm Coprocessor, the programmer can exploit
a library of simple C functions. Two specific data types are defined: Copr and Ma-
trix. Copr is a structure used to identify the Swarm Coprocessor and to provide a
control in order to avoid data hazards. It stores the addresses of both Bus Interface
and Coprocessor Data Memory, and an array of pointers to the output variables in
processing on the coprocessor. From the host processor side, each data in the Copro-
cessor Data Memory is encapsulated into a Matrix structure. It includes the variable
(scalar, one-dimensional array, multidimensional array) address in the Coproces-
sor Data Memory, its number of elements and a flag indicating if this variable is
expected to be updated by the coprocessor or not during the current computation.

To perform a sum of 2 matrices with the Swarm Coprocessor, for example, the
programmer uses the following library function:

int copr_add(Copr * , Matrix * , Matrix * , Matrix * , int );

passing in input the pointer to the Copr structure and those relative to the operands
and the result. The last integer is a control mask used to set the operation parameters
needed to fill up the fields of the operation-packets and other information such as
the cooperation level. Cooperation level specifies, for the column executing that
operation, if the cooperation with other columns is allowed only to be helped (partial
stigmergy), helping and being helped (normal stigmergy), or not helping and not
being helped (inhibited stigmergy). In this way different priorities are assigned to
the operations and it is possible to achieve a deterministic execution time (or at least
a near bound) limiting self organization. With the only exception of the first pointer,
the other parameters are passed to the Task Manager by means of 4 write operations
in 4 memory mapped registers of the Bus Interface.

All the functions work the same way. At first, two controls are performed: the
first halts the execution if more operations than the number of SPA columns have
been issued and they did not finish yet; the second one checks for data hazards,
halting the execution of the function to avoid read after write (RAW) and write after
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write (WAW) hazards. It should be noted that if the programmer wish to access a
variable stored in the Coprocessor Data Memory, the second kind of control should
be manually performed in the user code. To this aim, a specific list of data currently
in processing is automatically maintained by the software framework in the Copr
structure. This kind of data hazard problem is due to the fact that the architecture
is conceived to allow independent Coprocessor Data Memory accesses by both the
processor and the coprocessor, the latter supporting also multitasking, so that more
than one task can access the same data area. After such controls, the array of the
Copr structure is scanned until a free location is available, and the new entry is set,
incrementing the number of operations issued.

When an operation is finished, an interrupt service routine (ISR) responds to the
interrupt asserted by the coprocessor. It recognizes which operation finished reading
the address of the result from the Bus Interface and then updating the list of the data
currently in processing. This software infrastructure, which is also needed for the
analysis of dependencies to avoid data hazards, rests on a set of drivers providing
basic OPB functions. They are required since, for instance, to access a variable
stored in the Coprocessor Data Memory from the host processor no direct access
through pointers or addresses is allowed.

4.2.2 Hardware Execution Flow Inside the Coprocessor

At a hardware level, the operation issued by the processor is received in the Bus
Interface in the aforementioned 4 registers, and then transferred to a FIFO accessi-
ble by the Operation Manager, which identifies the opcode and defines which task
(or set of tasks) must be generated. Once generated the tasks, the Address Generator
provides the scanning patterns to access the variables in the Coprocessor Data Mem-
ory, and the Array Interface transfers the task to the column identified by the DCS.
The Array Interface fills the FIFO IN memory in the boundary tile of the selected
column (2×1024 16-bit locations). In turn, the boundary tile can start creating the
operation-packets with its Packing Unit (Figure 3), sending them to the first tile
below in the SPA, as soon as the first data are available.

Tasks are loaded by columns: the memory well of the northernmost tile is filled
up; when it is full the second one is filled up and so on, moving towards the southern
border of the SPA (Figure 3). Stigmergy is inhibited in the column in charge until
either the task is completely loaded or the column is full; then the cooperation level
value determines the stigmergic behavior for that column. During load, tiles start
transforming their operation-packets into result-packets, which are sent towards the
border tile. Stigmergy works spreading the workload and thus involving in the task
not only the tiles of that column but also those of the neighboring ones, within a
range of 3 columns per side. result-packets received by the boundary tile can be
either sorted in the FIFO OUT memory (if the task produced an array) or partially
accumulated (if the task must return a scalar). In the last case the result is stored in
the FIFO OUT memory (1×256 16-bit locations) only when the task is finished. It
should be noted that the accumulations performed by the boundary tiles for cumu-
lative tasks are less than the required number, since computational tiles perform the
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allowed accumulations during processing, sending the result-packet to the border
tile only when their memories are empty or when an operation-packet from another
task must be processed.

When the task is finished, the boundary tile informs the Array Interface which
in turn is responsible for the selection of the column enabled to transfer its results
from the FIFO OUT to the Coprocessor Data Memory, using a priority criteria that
is based on the specific operations in processing. When the results transfer ends,
an interrupt is asserted to the processor and the address of the result is placed on a
FIFO provided by the Bus Interface, ready to be read by the host processor.

5 Architecture Evaluation

To evaluate a digital architecture, area and frequency parameters are usually taken
into account. We must say that these 2 parameters do not fit well with the FPGA
implementation presented in this Chapter, since the system was rather conceived for
standard cells synthesis. This means that some choices, as the one to implement all
the memory wells as register banks rather than RAMs, are not suited for a FPGA
realization, where they lead to waste hardware resources. A synthesis of the SPA
on standard cell CMOS 0.13μm technology resulted in an operating frequency of
900KHz for the global system, with the Processing Units of the tiles running at
450KHz. The architecture is truly scalable, i.e. the area grows linearly with the
number of tiles without side effects on the operating frequency. Every tile requires
about 44K equivalent gates, with the 78% of this area occupied by the memories.

To evaluate the performance of the system, we had recourse to HDL simulations.
To perform such simulations, UART and timer modules were needed (Figure 2).
The UART was used as standard output in order to print the results onto a console,
using a named pipe-based interface between the UART simulation model and the
console [2]. The timer was used to perform a cycle accurate profiling, counting the
clock cycles needed to complete a specific operation or an entire application.

5.1 Cooperative Processing at a Glance

We said above that the most evident effect of the proposed cooperative approach
is workload balance. We can visually analyze the effect of the cooperation on the
execution of a single task (a dot product between two 2048-element integer vectors)
into the SPA looking at Figure 7. The workload spreading over time inside the array,
by columns, is represented in false colors with or without stigmergy.

To produce this graphical representation, during a simulation we monitored the
workload of every tile at every clock tick. Then we obtained a single value per clock
cycle for every column by summing the contribute of each tile. Performance im-
provements achievable by means of stigmergy and self organization into the SPA
of the Swarm Coprocessor are clearly visible. It is worth to note that the task
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Fig. 7. Non-cooperative and cooperative execution of a copr mac into the Swarm Coproces-
sor

management is completely decentralized and does not require any configuration,
i.e. the system resorts to self organization to provide a consistent speed-up.

This behavior is adaptive since, if multiple tasks are in execution on the copro-
cessor at the same time, cooperative behaviors will progressively reduce their effect
on the overall processing time. The case with two tasks (copr mac between two
130-element arrays) is depicted in Figure 8, where different snapshots have been
sampled at the same instants of time for the execution enabling or not stigmergy.
The height of the bars represents the workload of the various tiles. Looking at the
time axis it is possible to note that cooperation remarkably reduces the computa-
tional latency to 47% of the case without cooperation [6].
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Fig. 8. Workload distribution evolution in different instants of time within the SPA when 2
copr mac tasks are in execution, enabling or not stigmergy
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5.2 Single-Operation Profiling

One way to evaluate the performance of the Swarm Coprocessor is to load it with a
single task, varying the size of the arrays. For each configuration, the execution on
the coprocessor was profiled enabling or disabling stigmergy on the SPA, and then
running the task on the host processor for a performance comparison. In the last
case operands and results have been stored in the host processor data memory rather
than on the Coprocessor Data Memory to improve the processor performances re-
ducing the access latency. Even with these attentions, the comparison is not fair
because the coprocessor exploits a larger number of computational units to perform
the same task, even if not explicitly preprogrammed by the user. Alternatively en-
abling and disabling stigmergy it is possible to achieve approximately two bounds
for the performance on the coprocessor. In this way, the performance in any load
condition will fall within the region limited by such curves in the latency vs. task
size plane.

Figure 9 presents the results of a small set of tasks, due to the limited space: 2 of
them return an array (copr add and copr mulv), the other 2 a scalar (copr acc and
copr mac). The Swarm Coprocessor achieves a speed-up of 11 for the tasks with
vectorial result and of 30 on those with scalar result. This difference is motivated in
the light of considerations about the size of the tasks and the required bandwidth.
As a matter of fact, cumulative tasks can use larger operands than vectorial ones
(2048 rather than 256) for the reasons presented in Section 4.1.1. In this way they
can exploit at the most the cooperative approach used by the Coprocessor to carry
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Fig. 9. Comparison of the latencies to perform some tasks on vectors of integers on the
MicroBlaze processor (best configuration) and on the processor-coprocessor system, enabling
or not the stigmergy (and then cooperation) in the SPA
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out the required processing. Furthermore cumulative operations generate less result-
packets compared to the vectorial ones, and this reduces bandwidth requirements
avoiding the saturation of the network.

Figure 9 also shows that latency grows linearly with the task size for both the
coprocessor and the processor. OPB communication and interrupt service overheads
are quantifiable in 240− 400 clock cycles depending on the number of tasks in
execution on the coprocessor. For this reason the processor performs better than the
Swarm Coprocessor for tasks below the 20 atomic operations.

5.3 Simple Applications Profiling

The Swarm Coprocessor was also tested on simple real-world applications (matrix
multiplications, image threshold, weighted sum of vectors, matrix square norm),
comparing its performance to that of the host processor, considering their best oper-
ating conditions. The results are presented in Table 3. Beyond matrix multiplication,
which is automatically split into N×M tasks by the Task Manager, the other applica-
tions require a manual decomposition in tasks by the programmer. This is common
to several DSP optimization procedures.

Table 3. Latency comparison using or not the Swarm Coprocessor on simple applications

Matrix Multiplication Simple applications

An×192 ·B192×n W. sum Image th. Matrix ‖ · ‖2

n = 8 n = 16 n = 32 (1×256) (16×100) (8×1024)

Host + Copr. 769 3331 20868 1564 6046 5030
Host 11717 87813 678917 4630 24612 57400

Image threshold can be decomposed into 3 tasks: a comparison with the threshold
(copr cmp), a shift by 2 of the previously achieved result (copr rsh, see Table 2),
and the multiplication of this result for the scalar standing for the maximum in the
grey scale (copr muls). Since every task is executed on the outcome of the previous
one, after every assignment the execution on the processor is frozen, hence leading
to an inefficient scheduling.

The weighted sum of vectors can be better parallelized since the application of
the two coefficients of the linear combination to the vectorial operands (copr muls)
can be accomplished in parallel, whereas the final summation cannot (copr add).

The squared norm of a matrix is decomposed into N copr mac tasks, one for
each row, and then the final accumulation (copr acc) is performed. This benchmark
is more parallelizable than the others if N > 2.

It should be noted how the intrinsic parallelism of the application greatly influ-
ences the performance. As a matter of fact, a greater performance improvement can
be achieved on matrix operations, where the overhead for the assignment of the task
is scarce with respect to the amount of tasks autonomously created in the Swarm
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Coprocessor by the Operation Manager. This leads the matrix product, in spite of
the single operation assigned, to produce a speed up of 36. Beyond matrix multi-
plications, matrices element-wise operations are always split in several (N, being N
the number of rows of the two matrices) tasks, so that even in this case the over-
head for operation assignment is compensated by the number of tasks automatically
generated by the Swarm Coprocessor front-end.

The coprocessor performance is sufficient to execute also real-time operations.
In these cases, stigmergy should be inhibited to avoid the non-determinism in the
processing time due to the cooperation between columns. However, cooperation
is still exploited within the same column. Performance was analyzed on FIR fil-
ters with 512 and 1024 taps and a variable number of channels (1, 4, 8). These
tasks are supported by a circular addressing in the Task Manager Address Genera-
tor. The maximum sampling rates achievable with Swarm Coprocessor range from
71KHz (for 8 channels, 1024 taps) to 368KHz (for 1 channel, 512 taps), respec-
tively 9.2 and 20.3 times the sampling rate achievable with the host processor alone.
For such estimates we are referring to the operating frequencies of the standard cell
implementation.

5.4 Multitasking Behavior

We stated above that the performance of the Swarm Coprocessor grow with the
parallelism of the application. This is true for the simple applications presented in
Section 5.3, but mostly for multitasking applications, where the different compu-
tations can be assigned at the same time to the coprocessor. This is clearly visible
in Figure 10, where the length of the bars is a measure of the latency of a task:
black bars are referred to the case without any cooperation, grey ones to the case
with cooperation enabled. When the tasks concentration is denser, performance im-
provements caused by cooperation are less appreciable. The same holds for the very
small tasks too. It can be noted that the task assignment to the different columns
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Fig. 10. Multitasking within the SPA enabling (in grey) or disabling (in black) stigmergy
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changes when stigmergy is enabled since the DCM chooses the best column at run
time, and the central columns are preferred to the outermost (if available) due to the
parameter γ that takes into account the potential cooperation level associated to the
position of the column (Section 4.1.2). It is worth to note that, in large architectures,
it would be impossible to efficiently perform similar run-time analyses taking the
relative decisions in a centralized way.

6 Conclusions

In this Chapter we presented and analyzed a new approach to the design of digi-
tal architectures for parallel distributed on-chip processing. It is based on the ex-
ploitation of Swarm Intelligence, a bio-inspired multi-agent paradigm that, com-
pared to other agent-based approaches, focuses on the simplicity of the agents and
their communication strategies. Our interpretation of this paradigm takes advantage
of these aspects to be successful in the realization of a multi-agent model based
on “hardware agents” with very low complexity compared to microprocessors ex-
ecuting “agent codes”. Agents are able to achieve a global coordination in the ex-
ecution of multiple tasks in parallel exploiting cooperative processing without any
centralized control. This fully-decentralized control approach, which does not re-
quire any configuration or pre-programming, allows to avoid the development of
complex compilation/mapping tools. All the decisions are taken by the agents at run
time, and the programmer’s job is limited to the exploitation of a set of simple C
libraries, as common to many other code-optimization problems.

The usage of indirect interactions (stigmergy) for communications within the
architecture it is possible to achieve good performance enhancing concurrency (and
then parallelism), locality and intrinsically supporting fault tolerance. Even if this
chapter does not deal with fault tolerance issues, we demonstrated the potentiality of
the proposed solution with respect to this topic [6]. As in natural swarms, the effect
of faults in some tiles is a slight reduction of the system performance, sometimes too
small to be appreciable. It should be noted that fault detection and recovery (both at
agent and colony level) is supported without any reconfiguration or exploitation of
spare resources.

The main limits of the current architecture are the reduced set of supported oper-
ations and the impossibility to deal with some complex tasks exposing data depen-
dencies. As a matter of fact, some algorithms require the definition of an execution
flow graph that could not be mapped onto the proposed architecture. The current
research work aims to extend the Swarm model to address this issue, allowing the
identification of the agents without direct addressing and extending the operation
set. Furthermore, a floating point version of the system is currently under testing.

Even after 5 years from the first exploration in this field, only a few steps have been
taken towards the systematization of this new approach, and the contributes of the
scientific community are needed to deeply investigate it. When emerging technolo-
gies will require novel design strategies, the Swarm Intelligence model could be an
alternative solution, in the era of decentralization, for parallel integrated computing.
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Large Scale Bioinformatics Data Mining with
Parallel Genetic Programming on
Graphics Processing Units

William B. Langdon

Abstract. A suitable single instruction multiple data GP interpreter can achieve
high (Giga GPop/second) performance on a SIMD GPU graphics card by simulta-
neously running multiple diverse members of the genetic programming population.
SPMD dataflow parallelisation is achieved because the single interpreter treats the
different GP programs as data. On a single 128 node parallel nVidia GeForce 8800
GTX GPU, the interpreter can out run a compiled approach, where data parallelisa-
tion comes only by running a single program at a time across multiple inputs.

The RapidMind GPGPU Linux C++ system has been demonstrated by predict-
ing ten year+ outcome of breast cancer from a dataset containing a million inputs.
NCBI GEO GSE3494 contains hundreds of Affymetrix HG-U133A and HG-U133B
GeneChip biopsies. Multiple GP runs each with a population of five million pro-
grams winnow useful variables from the chaff at more than 500 million GPops per
second. Sources available via FTP.

1 Introduction

Due to their speed, price and availability, there is increasing interest in using mass
market graphics hardware (GPUs) for scientific applications. Since our initial exper-
iments GPU development has continued apace. For example, AMD has launched its
800 × 750MHz processor ATI Radeon HD 4870. Whilst almost simultaneously
nVidia launched its 240 × 1296MHz GTX 280 GPU. Both claim to deliver about
one Tetraflop at a cost of a few hundred dollars.

The next section will describe scientific and engineering computing on GPUs.
(Known as GPGPU). So far there are a few reported successful applications of
GPUs to Bioinformatics. These will be described in Section 3. In Section 4 we will
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describe one where genetic programming [24] is used to datamine a small number
of indicative mRNA gene transcript signals from breast cancer tissue samples taken
during surgery. Section 5 describes how we run GP [18, 2, 27, 45] in parallel on a
GPU. Whilst the rest of Section 5 (i.e. 5.1 and 5.2) and Section 6 describe the medi-
cal problem and the way a powerful GPU [29, 26] simultaneously picks three of the
million mRNA measurements available and finds a simple non-linear combination
of them which predicts long term outcomes at least as well as DLDA, SVM and
KNN using seven hundred measurements [37].

2 Using Games Hardware GPUs for Science

Owens et al. have recently surveyed scientific and engineering applications running
on mass market graphics cards (known as general purpose computing on GPUs,
i.e. GPGPU) [42, 43]. Whilst there is increasing interest, so far both Bioinformat-
ics and computational intelligence are under represented. As with other GPGPU
applications, the drivers are: locality, convenience, cost and concentration of com-
puter power. Indeed the principle manufactures (nVidia and ATI) claim faster than
Moore’s Law increase in performance (e.g. [11, p4]). They suggest that GPU float-
ing point performance will continue to double every twelve months, rather than the
18-24 months observed for electronic circuits in general [38] and personal computer
CPUs in particular. Indeed the apparent failure of PC CPUs to keep up with Moore’s
law in the last few years [42, p890]. makes GPU computing even more attractive.
Even today’s top of the range GPU greatly exceed the floating point performance of
their host CPU. This speed comes at a price.

GPUs provide a restricted type of parallel processing, often referred to a single
instruction multiple data (SIMD) or more precisely single program multiple data
(SPMD). Each of the many processors simultaneously runs the same program on
different data items. See Figure 1. Being tailored for fast real time production of
interactive graphics, principally for the computer gaming market, GPUs are tailored
to deal with rendering of pixels and processing of fragments of three dimensional
scenes very quickly. Each is allocated a processor and the GPU program is expected
to transform it into another data item. The data items need not be of the same type.
For example the input might be a triangle in three dimensions, including its orien-
tation, and the output could be a colour expressed as four floating point numbers
(RGB and alpha). Indeed vectors of four floats can be thought of as the native data
type of current GPUs. RapidMind’s software translates other data types to floats
when it transfers it from the CPU’s memory to the GPU and back again when re-
sults are read back. Note integer precision may only be 24 bits, however GPUs will
soon support 64 bits.

Typical GPUs are optimised so that programs can read data from multiple data
sources (e.g. background scenes, placement of lights, reflectivity of surfaces) but
generate exactly one output. This parallel writing of data greatly simplifies and



Large Scale Bioinformatics Data Mining with Parallel Genetic Programming 115

SP

SP

SP

SP

SP

SP

SP

SP

direction

reflected light

Light

and intensity

Program to
calculate

Fig. 1. An example of SIMD parallel processing. The stream processors (SP) simultaneously
run the same program on different data and produce different answers. In this example each
programs has two inputs. One describes a triangle (position, colour, nature of its surface: matt,
how shiny). The second input refers to a common light source and so all SP use the same
value. Each SP calculates the apparent colour of its triangle. Each calculation is complex.
The stream processors use the colour of the light, angles between the light and its triangle,
direction of its triangle, colour of its triangle, etc.
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speeds the operation of the GPU. Even so both reading and writing from memory are
still bottlenecks. This is true even though GPUs usually come with their own mem-
ory and memory caches. (The nVidia 8800 comes with 768Mbytes). Additionally
data must be transfered to and from the GPU. Even when connected to the CPU’s
RAM via PCI, this represents an even narrower bottle neck. Faster hardware (e.g.
PCI Express x16) is available for some PC/GPU combinations. However this does
not remove the bottle neck. CPU–GPU communication can also be delayed by the
operating system check pointing and rescheduling the task.

The manufactures’ publish figures claiming enormous peak floating point perfor-
mance. In practise such figures are not obtainable. A more useful statistic is often
how much faster an application runs after it has been converted to run on a GPU.
However the number of GP operations per second (GPops) should allow easier com-
parison of different GP implementations.

Many scientific applications and in particular Bioinformatics applications are in-
herently suitable for parallel computing. In many cases data can be divided into
almost independent chunks which can be acted upon almost independently. There
are many different types of parallel computation which might be suitable for Bioin-
formatics. Applications where a GPU might be suitable are characterised by:

• Maximum dataset size ≈ 108

• Maximum dataset data rate ≈ 108 bytes/second
• Up to 1011 floating point operations per second (FLOPs)
• Applications which are dominated by small computationally heavy cores. I.e. a

large number of computations per data item.
• Core has simple data flow. Large fan-in (but less than sixteen) and simple data

stream output (no fan-out).

Naturally as GPUs become more powerful these figures will change.
In some cases, it might be possible to successfully apply GPUs to bigger prob-

lems. For example, a large dataset might be broken into smaller chunks, and then
each chunk is loaded one at a time onto the GPU. When the GPU has processed it,
the next chunk is loaded and so on, until the whole dataset has been processed. The
time spent loading data into (and results out of) each GPU may be important. If the
application needs a data rate of 100Mbyte/second we must consider how the data
is to be loaded into a personal computer at this rate in the first place. Alternatively
it may be possible to load data from a scientific instrument directly connected to
the GPU.

nVidia say their GeForce 8800 (Fig. 2) has a theoretical upper limit of
520 GFLOPS [39, p36], however we obtained about 30 GFLOPS in practice. De-
pending on data usage (cf. Section 7), it appears that 100 GFLOPS might be reached
in practise. While tools to support general purpose computation on GPUs have been
greatly improved, getting the best from a GPU is still an art. Indeed some publica-
tions claim a speed up of only 20% (or even less than one) rather than 7+, which we
report.

http://www.nvidia.com/page/8800_tech_specs.html
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Fig. 2. nVidia 8800 Block diagram. The 128 1360 MHz Stream Processors are arranged in
sixteen blocks of eight. Blocks share 16 KB memory (not shown), an 8/1 KB L1 cache, four
Texture Address units and eight Texture Filters. The 6×64 bit bus (brown) links off chip
RAM at 900 (1800) MHz [39, 40]. There are 6 Raster Operation Partitions (ROP).

3 GPUs in Bioinformatics and Computational Intelligence

As might be expected GPUs have been suggested for medical image processing
applications for a few years now. However we concentrate here on molecular bioin-
formatics. We anticipate that after a few key algorithms are successfully ported to
GPUs, within a few years Bioinformatics will adopt GPUs for many of its routine
applications. As might be expected, early results were mixed.

Charalambous et al. successfully used a relatively low powered GPU to demon-
strate inference of evolutionary inheritance trees (by porting RAxML onto an
nVidia) [4]. However a more conventional MPI cluster was subsequently used [50].
Sequence comparison is the life blood of Bioinformatics. Liu et al. ran the key
Smith-Waterman algorithm on a high end GPU [31]. They demonstrated a reduc-
tion by a factor of up to sixteen in the look up times for most proteins. Smith-
Waterman has also been ported to the Sony PlayStation 3 [54] and the GeForce 8800
(CUDA) [35]. Schatz et al. also used CUDA to port another sequence searching tool
(MUMmer) to another G80 GPU and obtained speed ups of 3–10 when matching
short DNA strands against much longer sequences [49]. By breaking queries into
GPU sized fragments, they were able to run short sequences (e.g. 50 bases) against
a complete human chromosome. Gobron et al. used OpenGL on a high end GPU to
drive a cellular automata simulation of the human eye and achieved real-time pro-
cessing of webcam input [13]. GPUs have also been used in medical engineering.
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E.g. a GeForce 8800 provided a 15-20 fold speedup, improving the haptic response
of a real time interactive surgery simulation tool [32]. Dowsey et al. wrote 2D gel
electrophoresis image registration code in Cg (“C for graphics”) so that it could be
off loaded onto an nVidia GPU [7].

The better GPU applications may claim speed ups of a factor of ten or so, however
the distributed protein folding system folding@home obtains sixty times as much
free computation per donated GPU as it does per donated CPU [42, p983]. The
same authors also claim almost a 3600 fold speed up on a biomolecule dynamics
simulation, albeit at the cost of using four FX 5600 GPUs [42, p995].

Computational intelligence applications of GPUs have included artificial neural
networks (e.g. multi layer perceptrons and self organising networks [34]), genetic
algorithms [12] and a few genetic programming experiments [30, 33, 36, 8, 47, 16,
14, 17, 15, 5, 21, 26, 48, 52, 1].

Most GPGPU applications have only required a single graphics card, however
Fan et al. have shown large GPU clusters are also feasible [9]. In 2008 the first
computational intelligence on GPU special session (CIGPU-2008) was held in Hong
Kong [53]. It is anticipated that this will become an annual event. As Owens [43]
makes clear games hardware is now breaking out of the bedroom into scientific and
engineering computing.

4 Gene Expression in Breast Cancer

Miller et al. describes the collection and analysis of cancerous tissue from most of
the women with breast tumours from whom samples were taken in the three years
1987–1989 in Uppsala in Sweden [37]. Miller’s primary goal was to investigate
p53, a gene known to be involved in the regulation of other genes and implicated
in cancers. In particular they studied the implications of mutations of p53 in breast
cancer. The p53 genes of 251 women were sequenced so that it was known if they
were mutant or not. Affymetrix GeneChips (HG-U133A and HG-U133B) were used
to measure mRNA concentrations in each biopsy. Various other data were recorded,
in particular if the cancer was fatal or not.

Affymetrix GeneChips estimate the concentration of strands of messenger RNA
by binding them to complementary DNA itself tied to specially treated glass slides.
GeneChips are truly amazing. When working well they can measure the activity, in
terms of mRNA concentration, of almost all known human genes in one operation.
Each of the two types of GeneChips used contained more than half a million DNA
probes arranged in a 712× 712 square (12.8mm)2 array. (Current designs now ex-
ceed five million DNA probes on the same half inch square array.) Obviously such
tiny measuring devices are very subject to noise and so between eleven and twenty
readings are taken per gene. In fact each reading is duplicated with a control which
differs only by its central DNA base. These controls are known as mismatch MM
probes.

There has been considerable debate about the best way of converting each of the
eleven or more pairs of readings into a single value to represent the activity of a gene.
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Also in more recent designs (e.g. exon arrays), Affymetrix have replaced the MM
probes of each pair with general area control probes. Miller et al. used Affymetrix’
MAS5 program. MAS5 uses outlier detection etc. to take a robust average of the
twenty two or more data. The academic community has also developed its own
tools. These have tended to replace the manufacturer’s own analysis software. Such
tools also use outlier detection and robust averaging. Some, such as GCRMA [55],
ignore the control member of each pair.

Miller et al. separately normalised the natural log of the HG-U133A and HG-
U133B values and then used MAS5 to calculate 44 928 gene expression values for
each pair patient [37]. (Normalisation is needed to avoid the need to carefully con-
trol the amount of mRNA used and since Biologists are usually more interested in
the relative strengths of gene activity, rather than absolute values.) Between 125 and
5 000 of the most variable were selected for further analysis. They used diagonal
linear discriminant analysis to fit the whole data set. They say DLDA gave bet-
ter results than k nearest neighbours and support vector machines. The DLDA p53
classifier used 32 genes.

Recently we have surveyed defects in more than ten thousand Affymetrix Gene
Chips using a new technique [25, 28]. While [37] claims GeneChips with “visible
artefacts” were re-run, we found spatial flaws in all their data. GeneChips should
have an almost random speckled pattern due to the pseudo random placement of
gene probes. The large light gray areas in Figure 3 indicate spatial flaws. Spatial
flaws occur most often towards the edges of GeneChips. Figures 4 and 5 shows

Fig. 3. First HG-U133B Breast Cancer GeneChip. Data have been quantile normalised. (This
is like converting to a standard score and effectively replaces data by its logged value). Large
spatial flaws can be seen at the top and lower right hand corners.
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Fig. 4. Density of spatial flaws in 98 HG-U133A Breast Cancer GeneChips. Red more than
twenty of 98 GeneChips are flawed (Black at least one).

Fig. 5. Density of spatial flaws in 98 HG-U133B Breast Cancer GeneChips showing HG-
U133B have more spatial errors than HG-U133A, c.f. Fig. 4.
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the location and density of known errors in some data used for training GP and
subsequent testing.

5 GeneChip Data Mining Using Genetic Programming on a
GPU

Section 3 has listed the previous experiments evolving programs with a GPU. These
have either represented the programs as trees or as networks (Cartesian GP) [16] and
used the GPU for fitness evaluation. Harding compiled his networks into GPU pro-
grams before transferring the compiled code onto the GPU. We retain the traditional
tree based GP and use an interpreter running on the GPU. Next we shall briefly re-
cap how to interpret multiple programs simultaneously on a SIMD computer [20]
and then detail tricks needed to address 512MBytes on a GPU.

Essentially the interpreter trick is to recognise that in the SIMD model the “single
instruction” belongs to the interpreter and the “multiple data” are the multiple GP
trees. The single interpreter is used by millions of programs. It is quite small and
needs to be compiled only once. It is loaded onto every stream processor within the
GPU. Thus every clock tick, the GPU can interpret a part of 128 different GP trees.
The guts of a standard interpreter is traditionally a n-way switch where each case
statement executes a different GP opcode. A SIMD machine cannot (in principle)
execute multiple different operations at the same time. However they do provide a
cond statement.

A cond statement has three arguments. The first is the control. It decides which
of the other two arguments is actually used. cond behaves as if the calculations
needed by its second and third arguments are both performed, but only one is used.
Which one depends upon the cond’s first argument.

We use conditional statements like x=cond(opcode==’+’, a+b, x) to
perform an operation only if required. If the current instruction is + cond sets x to
a+b. Otherwise it does nothing (by setting x to itself). (See Figures 6, 7 and 8.) Note
the SIMD interpreter executes every cond for every instruction in the program. (In
a normal interpreter a switch statement would direct the interpreter to execute just
the code needed for the current instruction.) If there are five opcodes, this means
for every leaf and every function in the program, the opcode at that point in the tree
will be obeyed once but so too will four cond no-ops. As we showed in [26] the
no-ops and indeed the functions cost almost nothing. It is reading the inputs from
the training data which is expensive.

GPUs, at present, cannot imagine anyone having a screen bigger than 2048×
2048 and therefore do not support arrays with more than 222 elements. Each training
example has data from both HG-U133A and HG-U133B, i.e. 2×7122 = 1013888
floats. Therefore we pack four training examples per array. Since we split the avail-
able data into more or less equal training and holdout sets, the GPU fitness evalua-
tion code need process at most only half the 251 patients’ data at a time. The code
allows 32 arrays (i.e. upto 128 patients). This occupies 512MB. All data transfers
and data conversions are performed automatically by RapidMind’s package. Rapid-
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No

Push onto individuals stacks

IF Addition
Pop+Pop, Push result

IF Subtraction
Pop−Pop, Push result

IF Multiply
Pop * Pop, Push result

IF Division
Pop/Pop, Push result

All programs finished? Yes

Result is on top of each stack

IF Leaf

Fig. 6. The SIMD interpreter loops continuously through the whole genetic programming
terminal and function sets for everyone in the population. GP individuals select which oper-
ations they want as they go past and apply them to their own data and their own stacks.

#define OPCODE(PC) ::PROG[PC+(prog0*LEN)]
PC=0;
FOR(PC,PC<(LEN-1),PC++) {
//if leaf push data onto stack
top = cond(OPCODE(PC)==’+’, stack(1)+stack(0), top);
top = cond(OPCODE(PC)==’-’, stack(1)-stack(0), top);
top = cond(OPCODE(PC)==’*’, stack(1)*stack(0), top);
top = cond(OPCODE(PC)==’/’, stack(1)/stack(0), top);
//remaining stack operation not shown

} ENDFOR

Fig. 7. GPU Reverse Polish Notation SIMD interpreter. prog0 indicates which RPN pro-
gram is being evaluated on which stream processor. The central loop cycles through all op-
erations on all stream processors. Each individual program uses cond statements to execute
only those operations it needs.

Mind keeps track of when data are used and modified. Since the training data are not
modified, they are stored in the GPU at the start of the run. Each generation, only
the data which has changed, i.e. the GP individuals and their fitness’s, are trans-
fered between the host computer and the GPU. The architecture is shown shown in
Figure 9.
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Value<8,float> stack;

#define PUSH(V) \
join(join(V,stack(0,1,2)),stack(3,4,5,6))

//conditionally POP stack (fake by using rotation)
#define OP3(XCODE,OP) \
stack = cond(XCODE==OPCODE, \

join(OP,stack(2,3,4),stack(5,6,7,1)), \
stack);

Fig. 8. Partial implementation for GPU stack operations. Since RapidMind does not support
index operations on writing to arrays the whole stack is updated. On PUSH the eight element
stack is shuffled to the left using nested join() and the value is placed in stack(0). The
upper most element is lost. GP genetic operations ensure tree depth does not exceed eight and
so there can be no stack overflow. (However GP can evolve solutions which happily cause
stack over run. Nature will find a way.) OP3 uses cond so that the operation OP on the
two elements on top of the stack only takes place if the current instruction OPCODE is the
right one. Then the stack is shifted down one place and the result of the operation is put in
stack(0).

The interpreter has to be structured to work within another GPU restriction. Like
most other GPUs, the nVidia 8800 allows each GPU program at most sixteen inputs.
I.e. the interpreter cannot access all 32 training data arrays simultaneously. Since it
must access other data arrays (programs, fitness, debugging, etc.) as well as the
training arrays, the interpreter was split into four equal parts, each of which deals
with eight arrays (i.e. upto 32 patients). A parameterised C++ macro is used to define
the interpreter code for one array. To access the 32 arrays of training data, the macro
is used eight times in each of the four programs.

The four sets of outputs are summed and combined into a single fitness value
per GP individual. For convenience the summation and fitness calculation are done
by three auxiliary GPU programs. Only the final result is transfered to the host
computer. RapidMind’s optimising compiler deals with all seven GPU programs as
one unit and therefore can, in principle, optimise across their boundaries. C++ code
to invoke the GPU via RapidMind is shown in Figure 10.

As described in [29] the interpreter represents the GP trees as linearised reverse
polish expressions. By using a stack these can be evaluated in a single pass. For
simplicity, the expressions are all the same length. Smaller trees are simply padded
with no-ops. Because of the enormous number of inputs, it is no longer possible
to code each opcode into a byte [29] instead at least 20 bits are needed. In fact
we use a full word per opcode. This means a population of five million fifteen node
programs can be stored in 320Mbyte on the PC. Here we again run into the 222 GPU
addressing limit. Since each program occupies sixteen words (fifteen, plus one for a
stop code), the population is broken into twenty 256k units.
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GP population from host
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Fit
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Fitness to host Computer
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Fig. 9. GPU software architecture needed to overcome 222 and no more than sixteen arrays
GPU limits in order to access 512MB of training data and a population of five million GP
programs. The population is split into twenty 256k parts by the host CPU. Twenty times per
generation 256 thousand GP programs are passed to GPU (red) and interpreted by it. On
average, the GPU takes slightly less than a second to interpret them and return their fitness
values. There are four parameterised instances of the SIMD interpreter (pink). Each deals
with upto 32 training cases. Each uses 1+8+2 arrays (plus others for control and debug, not
shown, total 12 or more). Each instance is limited to sixteen arrays. We pack four sets of
patient data (4× 1013888) per array. Four groups of eight arrays allows 512M of training
data. After running each group of 1

4 million programs, 1
4 million fitness values are returned

to the host PC.

It takes slightly less than a second to evaluate all 262 144 programs. This fits
tolerably well with our earlier finding [29] that, to get the best from the GPU, its
work should be fed into the GPU in units of between 1 and 10 seconds.

5.1 GP for Large Scale Data Mining

We have previously described using genetic programming to data mine GeneChip
data [24]. Our intention is to automatically evolve a simple (possibly non-linear)
classifier which uses few simple inputs to predict the future about ten years ahead.
To ensure the solutions are simple (and for speed) the GP trees are limited to fifteen
nodes. (Whilst this is obviously small, it is not unreasonable. For example, Yu et al.
successfully evolved classifiers limited to only eight nodes [56].)
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#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace std;
using namespace rapidmind;

const int NP = 2560*2048; //NP is Number of programs in Population
const int LEN =15+1; //Max GP individual length, allow stop code

//Number gp individual Programs loaded onto GPU
const int GPU_NP = 4*1024*1024/LEN; //22bit limit

//virtual array prog0 is used to simulate indexOf
Array<1,Value1i> prog0 = grid(GPU_NP);

for(int n=0;n<(NP/GPU_NP);n++) {
// Access the internal arrays where the data is stored
unsigned int* in_PROG = PROG.write_data();
memcpy(in_PROG,&Pop[n*GPU_NP*LEN],LEN*GPU_NP*opsize);

Array<1,Value1i> TP0;
Array<1,Value1i> TN0;
Array<1,Value1i> TP1;
Array<1,Value1i> TN1;
Array<1,Value1i> TP2;
Array<1,Value1i> TN2;
Array<1,Value1i> TP3;
Array<1,Value1i> TN3;
Array<1,Value1i> TP;
Array<1,Value1i> TN;

Array<1,Value1f> F;

bundle(TP0,TN0) = gpu->m_update0(prog0);
bundle(TP1,TN1) = gpu->m_update1(prog0);
bundle(TP2,TN2) = gpu->m_update2(prog0);
bundle(TP3,TN3) = gpu->m_update3(prog0);
TP = gpu->sum(TP0,TP1,TP2,TP3);
TN = gpu->sum(TN0,TN1,TN2,TN3);
F = gpu->fitness(TP,TN);

const float* fit = F.read_data();
memcpy(&output[n*GPU_NP],fit,GPU_NP*sizeof(float));

}//endfor each GPU sized element of Pop

Fig. 10. Part of C++ code to run GP interpreter on the GPU twenty times (NP/GPU NP)
per generation. At the start of the loop the next fragment of Pop is copied into RapidMind
variable PROG. PROG’s address is given by write data(). RapidMind variables TP0 to
TN are used to calculate fitness, cf. Figure 9. They are not used by the host CPU and are never
transfered from the GPU to the CPU. The four m update�(prog0) programs each run the
GP interpreter on 256k programs on 32 patients’ data. They are identical, except they are
parameterised to run on different quarters of 128 training cases. The RapidMind bundle()
provides a way that is compatible with C++ syntax for a GPU program to return two or more
values. All evaluation is run on the GPU until read data() is called. read data() not
only transfers the fitness values, in F, but also resynchronises the GPU and CPU.
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In our earlier work we had only one GeneChip for each of the 60 patients (and
that was an older design). Also the data set did not include the probe values but only
7129 gene expression values [24]. We now have the raw probe values (and compute
power to use them). Therefore we will ask GP to evolve combinations of the probe
values rather than use Affymetrix or other human designed combinations of them.
This gives us more than a million inputs. The first step is to use GP as its own feature
selector.

Essentially the idea is to use Price’s theorem [46]. Price showed the number of fit
genes in the population will increase each generation and the number of unfit genes
will decrease. We run GP several times. We ignore the performance of the best of
run individual and instead look at the genes it contains. The intention was the first
pass would start with a million inputs and we would select in the region of 10 000 for
the second pass. Then we would select about 100 from it for the third pass. Finally
a GP run would be started with a much enriched terminal set containing only inputs
which had showed themselves to be highly fit in GP runs. However we found only
two selection passes were needed, cf. Section 6.

The question of how big to make the GP population can be solved by consider-
ing the coupon collector problem [10, p284]. On average n(log(n)+ 0.37) random
trials are needed to collect all of n coupons. Since we are using GP to filter inputs,
we insist that the initial random population contains at least one copy of each in-
put. That is we treat each input as a coupon (so n = 1013888) and ask how many
randomly chosen inputs must we have in the initial random population to be reason-
ably confident that we have them all. The answer is 14 million. If we overshoot by
a few thousands, we are sure to get all the leafs into the initial population. Since a
program of fifteen nodes has eight leafs and half of these are constants we need at
least 1

4(14 million) = 3.6 million random trees. An initial population of five million
ensures this.

In [29] we used a fairly gentle selection pressure. Here we need our programs
to compete, so the tournament size was increased to four. However we have to be
cautious. At the end of the first pass, we want of the order of 100 000 inputs to
chose from. This means we need about 25 000 good programs (each with about
four inputs). We do not want to run our GP 25 000 times. The compromise was to
use overlapping fine grained demes [19] to delay convergence of the population,
cf. Figure 11. The GP population is laid out on a rectangular 2560× 2048 grid
(cf. Figure 12). This was divided into eighty 256× 256 squares. At the end of the
run, the genetic composition of the best individual in each square was recorded.
Note to prevent the best of one square invading the next, parents were selected to
be within 10 grid points of their offspring. Thus genes can travel at most 100 grid
points in ten generations. The GP parameters are summarised in Table 1.

5.2 Data Sets

As part of our large survey of GeneChip flaws [28] we had already down loaded all
the HG-U133A and HG-U133B data sets in GEO [3] (6685 and 1815 respectively)
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Fig. 11. Screen shot of a 512×400 GP population, i.e. 204 800 programs (from run approx-
imating π [29]) evolving under selection, crossover and subtree mutation after 100 genera-
tions. Colour indicates fitness (left) and syntax (right). Below are two histograms (log scale)
showing distribution of population by fitness and genotypic distance from the first optimal
solution. (Colour scales below each histograms.) Local convergence and the production of
species is visible (esp. right). See http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2 movie.html
and Google videos for animation and more explanation.

2560

2048

256

21
21 256

256

Each parent is best of
four chosen from 441

Fig. 12. Left: The GP population of five million programs is arranged on a 2560×2048 grid,
which does not wrap around at the edges. At the end of the run the best in each 256×256 tile
is recorded. Right: (note different scale) parents are drawn by 4-tournament selection from
within a 21×21 region centred on their offspring.

http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2_movie.html
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Table 1. GP Parameters for Uppsala Breast Tumour Biopsy

Function set: ADD SUB MUL DIV operating on floats
Terminal set: 7122 Affymetrix HG-U133A and 7122 HG-U133B probe mRNA concentra-

tions.
1001 Constants -5, -4.99, -4.98, ... 4.98, 4.99, 5

Fitness: AUROC
(

1
2

TP
No. pos + 1

2
TN

No. neg

)
less 1.0 if number of true positive cases (TP=0) or number of true negative cases
(TN=0) [23].

Selection: tournament size 4 in overlapping fine grained 21× 21 demes [19], non elitist,
Population size 2560×2048

Initial pop: ramped half-and-half 1:3 (50% of terminals are constants)
Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-

tree 5%). Max tree size 15, no tree depth limit.
Termination: 10 generations

and calculated a robust average for each probe. These averages across all these hu-
man tissues were used to normalise the 251 pairs of HG-U133A and HG-U133B
GeneChips and flag locations of spatial flaws. (Cf. Figures 3–5. R code to quantile
normalise and detect spatial flaws is available via http://bioinformatics.essex.ac.uk/
users/wlangdon.) The value presented to GP is the probe’s normalised value mi-
nus its average value from GEO. This gives an approximately normal distribution
centred at zero. Cf. Figure 13.

The GeneChip data created by [37] were obtained from NCBI’s GEO (data set
GSE3494). Other data, e.g. patients’ age, survival time, if breast cancer caused death
and tumour size, were also down loaded. Whilst [37] used the whole dataset: with
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Fig. 13. Uppsala breast cancer distribution of log deviation from average value.

http://bioinformatics.essex.ac.uk/users/wlangdon/
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more than a million inputs we were keen to avoid over fitting, therefore the data
were split into independent training and verification data sets.

Initially 120 GeneChip pairs were randomly chosen for training but results on
the verification set were disappointing. Accordingly we redesigned our experiment
to chose training data in a more controlled fashion. To reduced scope for ambiguity
we excluded patients who: a) survived for more than 6 years before dying of breast
cancer, b) survived for less than 9.8 years before dying of some other cause, c) pa-
tients where the outcome was not known. We split the remaining data as evenly as
possible into training (91) and verification (90) sets.

It is known that age plays a prominent role in disease outcomes but the patients
were from 28 to 83 years old. So we ordered the data to ensure both datasets had
the same age profile. We also balanced as evenly as possible outcome (140 v. 41),
tumour size, estrogen receptor (ER) status and progesterone receptor (PgR) status.

6 Results

GP was run one hundred times with all inputs taken from the 91 training examples
using the parameters given in Table 1. After ten generations the best program in
each of the eighty 256×256 squares was recorded. The distribution of inputs used
by these 100× 80 programs is given in Figure 14. Most probes were not used by
any of the 8000 programs. 24 810 were used by only one. 2091 by two, and so on.

The 3422 probes which appeared in more than one of the 8000 best of generation
ten programs were used in a second pass. In the second pass GP was also run 100
times.
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Fig. 14. Distribution of usage of Affymetrix probe in 8000 best of generation 10 GP pro-
grams. Both distributions are almost a straight lines (note log scales). Cf. Zipf’s law [57].
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Eight probes appeared in more than 240 of the best 8000 programs of the second
pass. These were the inputs to a final GP run. (The GP parameters were again kept
the same).

The GP found several good matches to the 91 training examples. Ever mindful
of overfitting [6], as a solution we chose one with the fewest inputs (three). GP
found a non-linear combination of two PM probes and one MM probe from near the
middle of HG-U133A, cf. Figure 15 and Table 2. The evolved predictor is the sum of
two non-linear combination of two genes (decorin/C17orf81 and C17orf81(2.94 +
1/S-adenosylhomocysteine hydrolase), cf. Figure 16). Both sub-expressions have
some predictive ability. The three probes chosen by GP are each highly correlated
with all PM probes in their probeset and so can be taken as a true indication of the
corresponding gene’s activity. The gene names where given by the manufacturer’s
netaffx www pages. Possibly terms like decorin/C17orf81 are simply using division
as a convenient way to compare two probe values. Indeed the sign indicates if two
values are both above or both below average.

decorin

−

C17orf81

/

C17orf81

*

+*

/1.54

C17orf81

hydrolase
S−adenosylhomocysteine

2.94

x

Fig. 15. GP evolved three input classifier. (Using Affymetrix probe names) survival is pre-
dicted if 1.54 201893 x at.2pm

219260 s at.7pm −2.94219260 s at.7pm− 219260 s at.7pm
200903 s at.8mm < 0.

The evolved classifier gets 70% of the verification set correct. If we use the three
input predictor on the whole Uppsala dataset (excluding the fifteen cases where the
outcome is not known), it gets right 184 out of 236 (78%). Figure 17 shows this non-
linear classifier gives a bigger separation between the two outcomes than a 32-gene
model requiring non-linear calculation of more than seven hundred probe values
[37, Fig. 3 B].

We tried applying our evolved classifier to a different Breast tumour dataset [44].
Unfortunately we have less background data and no details of follow up treat-
ment for the second group of patients. Also they were treated in another hospital
a decade later. Undoubtedly cancer treatment has changed since our data was col-
lected. These, and other differences between the cohorts, may have contributed to
the fact that our classifier did less well on the second patient cohort. For example,
the Kaplan survival plot to eight years [25, Figure 6] is less well separated than in
Figure 17 for twelve years.
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Table 2. Top twenty Affymetrix probes used most in 8000 best of generation 10 second pass
GP programs. Cf. Figure 14. The top eight were used in the final GP run.

Used X,Y chiptype Affy id NetAffx Gene Title
1 579 350,514 A 200903 s at 8.mm S-adenosylhomocysteine hydrolase
2 493 325,511 A 219260 s at 7.pm C17orf81. chromosome 17 open reading frame 81
3 363 254,667 A 201893 x at 2.pm decorin
4 291 392,213 A 219778 at 4.pm zinc finger protein, multitype 2
5 286 366,310 B 230984 s at 10.mm 230984 s at was annotated using the Accession

mapped clusters based pipeline to a UniGene identi-
fier using 17 transcript(s). This assignment is strictly
based on mapping accession IDs from the original
UniGene design cluster to the latest UniGene design
cluster.

6 265 324,484 A 216593 s at 9.mm phosphatidylinositol glycan anchor biosynthesis,
class C

7 263 542,192 B 233989 at 4.mm EST from clone 35214, full insert. UniGene ID Build
201 (01 Mar 2007) Hs.594768 NCBI

8 245 269,553 B 223818 s at 2.pm remodeling and spacing factor 1
9 209 416,107 B 226884 at 10.pm leucine rich repeat neuronal 1

10 194 613,230 B 235262 at 6.mm Zinc finger protein 585B. 235262 at was annotated
using the Accession mapped clusters based pipeline
to a UniGene identifier using 7 transcript(s). This as-
signment is strictly based on mapping accession IDs
from the original UniGene design cluster to the latest
UniGene design cluster.

11 185 61,573 A 221773 at 4.pm ELK3, ETS-domain protein (SRF accessory protein 2)
12 177 619,316 B 235891 at 6.mm 235891 at was annotated using the Genome Target

Overlap based pipeline to a UCSC Genes,ENSEMBL
ncRNA identifier using 2 transcript(s).

13 159 531,613 A NA
14 157 426,349 A 213706 at 11.pm glycerol-3-phosphate dehydrogenase 1 (soluble)
15 144 57,434 B 242689 at 10.mm Ral GEF with PH domain and SH3 binding mo-

tif 1. 242689 at was annotated using the Accession
mapped clusters based pipeline to a UniGene identi-
fier using 5 transcript(s). This assignment is strictly
based on mapping accession IDs from the original
UniGene design cluster to the latest UniGene design
cluster.

16 140 15,353 A 213071 at 4.pm dermatopontin
17 137 65,606 B 229198 at 6.mm ubiquitin specific peptidase 35
18 136 107,597 A 202995 s at 4.pm fibulin 1
19 136 108,393 A 209615 s at 5.pm p21/Cdc42/Rac1-activated kinase 1 (STE20 ho-

molog, yeast)
20 136 135,279 A 202995 s at 2.pm fibulin 1
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Fig. 16. The GP classifier (Figure 15) is the weighted addition of two two input classifiers
(left and right).
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Fig. 17. Kaplan-Meier survival plots, such as the one above, are often used to measure the
fraction of patients surviving a certain time after treatment (in this case breast cancer surgery).
The three input GP classifier (given in Figure 15) predicts 167 survivors and 69 breast cancer
fatalities. The right end of the top line shows that 148 of the 167 predicted to survive lived
for more than 12 years. In contrast the lower curve refers to the 67 patients whose gene
expression values suggested they would not survive ten years (However 33 of the 67 lived at
least 12 1

2 more years).

7 Discussion/Practicalities

In [26] we present detailed timing arguments which show the GP RapidMind inter-
preter is limited not by the calculations need to interpret the millions of programs
but the time taken to fetch their inputs from the GPU’s own memory, cf. Figure 18.
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So replacing interpreted code by compiled code, without addressing the memory
bottle neck, would give negligible speed up. Indeed the interpreter is already faster
than some compiled GPU approaches.

PCI

600Mbyte/S 

180Mbyte/S 

128 Processors

3.6 Gbyte/S 

768 MByte

86.4 Gbyte/S GPU Chip

6 x (2 x 64MByte)

4Gbyte/S

Fig. 18. nVidia 8800 Block diagram. The 128 Stream Processors are connected to the host
PC via its PCI express bus. Measurements show RapidMind data both into the GPU and back
to the host are efficient (600 and 180 Megabytes per second, i.e. about three quarters of the
maximum possible with this PCI). 4 Gigabytes per second is likely to be available soon. The
8800 has twelve 64 megabyte RAM chips. These are paired to give six 16 million × 64 bit
words of storage. Each is connected to the GPU main silicon die by its own 64 bit wide bus. In
principle this gives 86.4 GBytes per second of on board memory I/O, however in practise with
RapidMind it is impossible to use more than one the six buses simultaneously. Nevertheless
it appears that multi-threading of 32-bit access enables the 128 stream processors to obtain
about 3.6 GBytes per second.

To a first approximation, any artificial intelligence supervised learning technique,
which used this training data in the same way will take about a second or more to test
1
4 million random classifiers; be they rules, artificial neural networks or programs.

7.1 Speed Up

For this application, the GP interpreter’s runs 535 million GP operations per second.
535 MGPop/S is only slightly less than we measured previously [29] with training
sets containing ten times as many examples but only about 5kB of training data in
total.

To determine speed up, the RapidMind C++ GPU interpreter was converted into
a normal C++ GP interpreter and run on the same CPU as was used to host the GPU.
I.e. an Intel CPU 6600 2.40GHz. Within the differences of floating point rounding,
the GPU program and the new program produced the same answers but in terms of
the fitness evaluation the GPU ran 7.59 times faster.
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On a different example with more training examples but each containing much
less data we obtained a GPU speed up of 12.6 [29]. The GPU interpreter’s per-
formance on a number of problems has been in the region 1

2 to 1 giga GPops,
cf. Table 3. In contrast the performance of compiled GPs on GPUs has varied widely,
e.g. with number of training examples and program size.

Table 3. Nvidia GeForce 8800 GTX. Genetic Programming Primitives Interpreted Per Sec-
ond.

Experiment No. of Terminals Functions Population Program size Stack Test cases Speed
Inputs+Consts size depth 106 OP/S

Mackey-Glass 8+128 4 204 800 11.0 4 1200 895
Mackey-Glass 8+128 4 204 800 13.0 4 1200 1056
Protein 20+128 4 1 048 576 56.9 8 200 504
Lasera 3+128 4 18 225 55.4 8 151 360 656
Laserb 9+128 4 5 000 49.6 8 376 640 190
Cancer 1 013 888+1001 4 5 242 880 ≤15.0 4 128 535
GeneChip 47+1001 6 16 384 ≤63.0 8 200a 314
Sexticb 1+na 8 12 500 66.0 17 1024 650c

a The 200 test cases used were randomly sampled from 300 000 available every generation
b x6 −2x4 +x2 approximated by a CUDA system [48] using an optimised RPN interpreter
c If we excluded Java code running on the host PC and considered only fitness evaluation on

the GPU 1300 MGPop/S was achieved.

7.2 Computational Cube

In genetic programming fitness evaluation, which usually totally dominates run
time, can be thought of along three dimensions: 1) the population 2) the training
examples and 3) the programs or trees themselves. While it need not be the case,
often the GP uses a generational population. Meaning:

1. the whole population is evaluated as a unit before the next generation is created.
2. Often either the whole of the training data, or the same subset of it, is used to

calculate the fitness of every member of the population. (Sometimes, in other
work, between generations we change which subset is in use.)

3. In many, but by no means all, cases the programs to be tested have a maxi-
mum size and do not contain dynamic branches, loops, recursion or function
calls. Even for trees, this means the programs can be interpreted in a single pass
through a maximum number of instructions. (Shorter programs could, in princi-
ple, be padded with null operations.)

We can think of these three dimensions as forming a cube of computations to be
done. See Figure 19.

In our implementation (Section 5) the computational cube is sliced vertically
(Figure 19) with one GPU thread for each program and each thread looking after all
the fitness cases for an individual program. Explicit code in the thread works along
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Fig. 19. Evaluating a GP population of four individuals each on the same five fitness cases.
There are upto 4×5×12 GP operations to be performed by, in principle, 240 GPU threads.
Each cube needs the opcode to be interpreted, the fitness test case (program inputs) and the
previous state of the program (i.e. the stack).

the length of the program and processes all the fitness cases for that program. We
believe this model of parallel processing works well generally.

Recently we have implemented horizontal slicing. That is, each fitness case has
its own GPU thread. The fundamental switch in the GP interpreter makes little dif-
ference to the GPU and is readily implemented. Indeed in this respect the GPU
is quite flexible. It is relatively straightforward to radically re-arrange the way in
which the GPU parallel hardware is used. We have not as yet tried slicing the com-
putational cube along the programs’ lengths.

In principle it is possible for each GP instruction to be executed in a different
computational thread. In normal programs this would not be contemplated since the
complete computational state would have to be passed through each thread. How-
ever the complete state for many GP applications is purely the stack. In many cases
this is quite small. Therefore executing each function and each GP terminal in a
separate GPU thread could be considered. This dimension, also requires dealing
with programs that are of different lengths. It is also unattractive since variable data
needs to be passed, whilst the corresponding data along the other dimensions are
not modified, which saves writing them back to memory.
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The efficient use of current GPUs requires many active threads, perhaps upto
sixty four per stream processor. With a powerful GPU this means thousands of
threads must be kept active to get the best from the hardware, cf. Figure 20. While
the computational cube is an attractive idea it is easy to see that far from having
too few threads it would be easy to try to divide a GP fitness computation into lit-
erally millions of parallel operations, which could not be efficiently implemented.
However dividing it along two of the possible three planes is effective.
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Fig. 20. Park-Miller random numbers per second (excluding host-GPU transfer time) on
nVidia 8800 GTX. In the test environment the rate depends upon how effectively the 128
parallel stream processors can be used. Only when there are more than 8192 separate threads
do the 128 stream processors effectively saturate [22].

7.3 Tesla and the Future of General Purpose GPU Computing

Unsurprisingly a large fraction of the 618106 transistors of the GPU chip are de-
voted to graphics operations, such as anti-aliasing. This hardware in unlikely to be
useful for scientific computing and so represents an overhead. It appears the newly
introduced Tesla cards retain this overhead. However if Tesla makes money, the next
generation of GPGPU may trade transistors to support graphics operations for tran-
sistors to support more scientific data manipulation. E.g. for bigger on chip caches.

7.4 Absence of Debugger and Performance Monitoring Tools

RapidMind allows C++ code to be moved between the CPU, the GPU and CELL
processors without recompilation. Their intention is the programmer should debug
C++ code on the CPU. This allows programmers to use their favourite programming
environment (IDE), including compiler and debug tools. Recently RapidMind has
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introduced a “debug backend” but it too actually runs the code being debugged on
the host CPU. Linux GNU GCC/GDB and Microsoft visual C++ are both supported.
Owens et al. say Google’s PeakStream, which has some similarities with RapidMind
but was inspired by Brook, “is the first platform to provide profiling and debugging
support” [42, p886].

The RapidMind performance log can be configured to include details about com-
munication between the CPU and the GPU. Details include, each transfer, size of
transfer, automatic data conversion (e.g. unsigned byte to GPU float) and represen-
tation used on the GPU. (E.g. texture size, shape and data type.) However for the
internal details of GPU performance and location of bottle necks, one is forced to
try and infer them by treating the GPU as a black box.

Recent software advances under the umbrella term of general purpose comput-
ing on GPUs (GPGPU) have considerably enhanced the use of GPUs. Nevertheless,
GPU programming tools for scientific and/or engineering applications are prim-
itive and getting the best out of GPUs “remains something of a black art” [42,
p896,p897]. This is exacerbated by 1) the small number and consequent instabil-
ity of hardware and software vendors in the GPGPU market. 2) Hardware specific
program interfaces (APIs) which have been much more likely to require modifica-
tion to existing programs to take advantage of new hardware than the corresponding
interfaces in CPUs. 3) Lack of vendor independent APIs [42].

For GPU manufactures GPGPU remains an add-on to their principal market:
games. Accompanying the rapid development in hardware they make correspond-
ing changes in their software. This means the manufacturer’s APIs tend to tested
and optimised for a few leading games. This can have unfortunate knock effects on
GPGPU applications [42]. Potentially GPU developers can isolates themselves from
this by using higher level tools or languages, like RapidMind.

Despite their undoubted speed, if GPUs remain difficult to use, they will re-
mained limited to specialised niches. To quote John Owens “Its the software,
stupid” [41].

7.5 C++ Source Code

C++ code can be down loaded via anonymous ftp or http://www.cs.ucl.ac
.uk/staff/W.Langdon/ftp/gp-code/gpu gp 2.tar.gzAlso gpu gp
1.tar.gz has a small introductory example [29]. Whereasrandom-numbers/
gpu park-miller.tar.gz is for generating random numbers [22].

8 Conclusions

We have taken a large GeneChip breast cancer biopsy dataset with more than a
million inputs to demonstrate a successful computational intelligence application
running in parallel on GPU mass market gaming hardware (an nVidia GeForce 8800
GTS). We find a 7.6 speed up.

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu_gp_2.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu_gp_2.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu_gp_1.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu_gp_1.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
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Initial analysis of the GPU suggests that the major limit is access to its 768Mbytes
where the training data is stored. Indicating that, if other computational intelligence
techniques, access the training data in similar ways, they would suffer the same
bottle neck.

Whilst primarily interested in mutation of the p53 gene, Miller et al. tried sup-
port vector machines and k nearest neighbour but say diagonal linear discriminant
analysis worked better for them [37]. They used DLDA to construct a non-linear
model with more than 704 data items per patient. The non-linear model evolved by
genetic programming uses only three. It has been demonstrated on a separated ver-
ification dataset. As Figure 17 shows, on all the available labelled data (236 cases),
the classifier evolved using a GPU gives a wider separation in the survival data.
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A Review on Parallel Estimation of Distribution
Algorithms

Alexander Mendiburu, Jose Miguel-Alonso, and Jose A. Lozano

Abstract. Estimation of Distribution Algorithms (EDAs) are a set of techniques
that belong to the field of Evolutionary Computation. They are similar to Genetic
Algorithms (GAs), in the sense that, given a problem, they use a population of in-
dividuals to represent solutions, and this population is made to evolve towards the
most promising solutions. However, instead of using the usual GA-operators such
as mutation or crossover, EDAs learn a probabilistic model that tries to capture the
main characteristics of the problem. Based on this idea, several EDAs have been
introduced in the last years, showing a good performance and being able to solve
problems of different complexity. One important drawback of EDAs is the signifi-
cant computational effort required by the utilization of probabilistic models, when
applied to real-world problems. This fact has led the research community to apply
parallel schemes to EDAs, as a viable way to reduce execution times. Schemes al-
ready proposed for GAs have been used as the foundation for these parallel schemes.
In this chapter, we make a review of parallel EDAs, with a main focus: identify-
ing those parts that are susceptible of parallelization. Then we describe a collec-
tion of parallelization strategies proposed in the literature. Additionally, we provide
some recommendations for those that are considering the implementation of parallel
EDAs on state-of-the-art parallel computers.

1 Introduction

The increasingly high computing power achievable from commodity computers has
encouraged the design and implementation of non-trivial algorithms to solve differ-
ent kinds of complex optimization problems. Some of these problems can be solved
via an exhaustive search over the solution space, but in most cases this brute force
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approach is unaffordable. In these situations, heuristic methods (deterministic or
non deterministic) are often used, which search inside the space of promising solu-
tions. Some heuristic approaches are specifically designed to find good solutions for
a particular problem, but others are presented as a general framework adaptable to
many different situations.

Among this second group (general designs), there is a family of algorithms that
has been widely used in the last decades: Evolutionary Algorithms (EAs). This fam-
ily comprises, as main paradigms, Genetic Algorithms (GAs) [18, 25], Evolution
Strategies [58], Evolutionary Programming [17] and Genetic Programming [28].

The main characteristic of these algorithms is that they use techniques inspired
by the natural evolution of the species. In nature, species change across time; in-
dividuals evolve, adapting to the characteristics of the environment. This evolution
leads to individuals with better characteristics. This idea can be translated to the
world of computation, using similar concepts:

Individual: Represents a possible solution for the problem to be solved. Each indi-
vidual has a set of characteristics (genes) and a fitness value (based on its genes)
that denotes the quality of the solution it represents.

Population: In order to look for the best solution, a group of several individuals is
managed. An initial population is created randomly, and will change across time,
evolving towards members with different (and supposedly better) characteristics.

Breeding: Several operators can be used to emulate the breeding process present
in nature: mixing different individuals (crossover) or changing a particular one
(mutation). These operators are used to obtain new individuals, expected to be
better than the previous ones.

In the last two decades, GAs have been widely used to solve different problems,
improving in many cases the results obtained by previous approaches. However,
GAs require a large number of parameters (for example, those that control the cre-
ation of new individuals) that need to be correctly tuned in order to obtain good
results. Generally, only experienced users can do this correctly and, moreover, the
task of selecting the best choice of values for all these parameters has been sug-
gested to constitute itself an optimization problem [19]. In addition, GAs show a
poor performance in some problems (deceptive and separable problems) in which
the existing crossover and mutation operators do not guarantee that better individu-
als will be obtained changing or combining existing ones.

Some authors [25] have pointed out that making use of the relations between
genes can be useful to drive a more “intelligent” search through the solution space.
This concept, together with the limitations of GAs, motivated the creation of a new
type of algorithms grouped under the name of Estimation of Distribution Algorithms
(EDAs).

EDAs were introduced in the field of Evolutionary Computation in [42], although
similar approaches can be previously found in [72]. In EDAs there are neither
crossover nor mutation operators. Instead, the new population of individuals is sam-
pled from a probability distribution, which is estimated from a database that con-
tains the selected individuals from the current generation. Thus, the interrelations
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between the different variables that represent the individuals are explicitly expressed
through the joint probability distribution associated with the individuals selected at
each generation. A common pseudo-code for all EDAs is described in Fig. 1.

Pseudo-code for the EDA framework.

Step 1. Generate the first population D0 of M individuals and evaluate all of them
Step 2. Repeat at each generation l until a stopping criterion is fulfilled
Step 3. Select N individuals (DSe

l ) from the Dl population following a selection method
Step 4. Induce from DSe

l an n (size of the individual) dimensional probability model that
shows the interdependencies between variables

Step 5. Generate a new population Dl+1 of M individuals based on
the sampling of the probability distribution pl(x) learnt in the previous step

Fig. 1. Common outline for all Estimation of Distribution Algorithms (EDAs)

Steps 3, 4 and 5 will be repeated until a certain stop criterion is met (e.g., a
maximum number of generations, a homogeneous population or no improvement
after a specified number of generations).

The probabilistic model learnt at step 4 has a significant influence on the behavior
of the EDA from the point of view of complexity and performance. EDAs are usually
classified into three groups, attending to their ability to capture the dependencies
between variables:

• Without dependencies: It is assumed that the n–dimensional joint probability
distribution factorizes as a product of n univariate and independent probabil-
ity distributions. Algorithms that use this model are, among others, Univariate
Marginal Distribution Algorithm (UMDA) [40], Bit-Based Simulated Crossover
(BSC) [70], compact Genetic Algorithm (cGA) [20], Population Based Incre-
mental Learning in continuous domains (PBILc) [65] or Distribution Estimation
Using MRF with direct sampling (DEUM) [67].

• Bivariate dependencies: Only the dependencies between pairs of variables are
taken into account. This way, the process of estimating the joint probabil-
ity can still be fast. This group includes Mutual Information Maximization
for Input Clustering (MIMIC) [16], Bivariate Marginal Distribution Algorithm
(BMDA) [56], or MIMIC approach to the continuous domain (MIMICc) [29,30].

• Multiple dependencies: All possible dependencies between the variables are
considered, without taking into account the complexity of this process. In this
group we can find algorithms like Estimation of Bayesian Networks Algorithm
(EBNAs) [31], Estimation of Gaussian Networks Algorithms (EGNAs) [29, 30,
33], different flavors of the Bayesian Optimization Algorithm (BOA) [44, 50,
51, 52, 53], Learning Factorized Distribution Algorithm (LFDA) [41], Extended
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Compact Genetic Algorithm (ECGA) [21], Markov Network Estimation of Dis-
tribution Algorithm (MN-EDA) [60] and Iterated Density Evolutionary Algo-
rithms (IDEA) [6, 7, 8].

For detailed information about the characteristics of EDAs, and the algorithms
that form part of this family, see [32, 36, 54, 57].

2 EDAs and Parallelism

The advances that hardware platforms and software tools have experienced during
the last decades have provided new, powerful tools to the research community, al-
lowing researchers to tackle old problems using different approaches, or even to
solve problems that were formerly unaffordable. In particular, the availability of
powerful computational resources, such as clusters of computers, computational
grids, graphics processing units and so on, has encouraged the development of par-
allel and distributed applications that can make use of these resources. Compared to
their sequential counterparts, these parallel programs have shorter execution times,
improve solution accuracy, or manage larger problems.

Before introducing the different parallelization proposals developed for EDAs,
we provide a brief introduction to the most common computing platforms and pro-
gramming paradigms available nowadays.

Most current server-class, desktop and laptop computers belong to the family of
multiprocessors: a single board contains one or more processors, a certain amount
of memory and other devices. Current processors contain two, four or more CPUs
(cores). Multi-core processors are evolving towards many-core processors. Mem-
ory and other devices are shared among all the CPUs in the board. The potential
of these machines can be fully exploited running several programs simultaneously
(improving throughput) or running programs designed to carry out several tasks
concurrently. The design of these programs require an API that allows the program-
mer to express how the tasks to perform are assigned to a collection of “threads”,
that communicate and synchronize between them. The most common APIs to these
purposes are POSIX threads [11] and OpenMP [14]. Note that communication is
implicit, via shared variables, and this mechanism is directly supported by the un-
derlying hardware. Synchronization, required to access resources without conflicts,
is explicit.

Clusters are another class of parallel computers. A cluster is composed of a set
of independent computers (called nodes, which can be single- or multi-core) and an
interconnection network that allows nodes to communicate and synchronize. The
network can be a cheap Local Area Network (LAN), such as Ethernet, or a more
expensive but better performing System Area Network (SAN), such as Infiniband
or Myrinet. Note that nodes do not share memory; therefore, communication must
be done via the network. Thread-based programming paradigms cannot be directly
used in clusters. For these machines, the most common API is the Message Pass-
ing Interface [39]. MPI programs are expressed as independently-running processes
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that, when required, exchange messages between them. Synchronization can be
explicit (barriers) or implicit (a receiving process blocks until a message arrives).
When executing an MPI program, each process can run in a different cluster node.

MPI can be used in multiprocessors, using implementations that emulate message
passing by means of shared variables. This is a convenient feature of MPI, because
the same program can run in a multiprocessor, a cluster of single-processors, or a
cluster of multiprocessors. However, when available, communication using shared
variables is more efficient than message passing. For this reason programmers try
to combine both paradigms, using threads for intra-node parallelism and MPI to
communicate processes running in different nodes.

Computational grids extend the cluster concept, connecting machines (including
clusters) using the Internet as the interconnection network. In theory, MPI applica-
tions can run, unmodified, in grid environments. However, there are a few consid-
erations that we must bear in mind when deploying a parallel application on a grid:
(1) the public Internet is not the best network in the world in terms of quality of
service, which means that communication between processes may become a serious
bottleneck, and (2) grid resources may not be available all the time, so applications
are more prone to fail; programmers must introduce fault-tolerance mechanism to
make applications more robust (and this fact can implicate a considerable overload).

In addition to a multi-core processor, many desktop computers include also a
powerful Graphics Processing Unit (GPU). These sophisticated graphics rendering
devices have a highly parallel structure, specifically designed for the efficient ma-
nipulation and display of graphics. But they can also be used to run other kinds of
applications -sometimes at amazing speeds. GPU vendors provide APIs that allow
programmers to harness the potential of their hardware, although they are not simple
and require many tricks. Portability between different hardware platforms is another
issue that has not been solved yet.

The modularity of EDAs makes this family of algorithms good candidates to be
parallelized in any of the platforms discussed above. The parallelization approaches
presented in the literature can be classified into these two groups:

• Direct parallelization: Those whose behavior is exactly the same of the corre-
sponding sequential version. The main goal is the reduction of execution time,
and the applicability to larger problems. Figure 2.a shows a (possible) general
scheme, in which the program involves processes that play different roles. One
of the processes is the Manager, in charge of driving the execution of the algo-
rithm. The remaining processes play the Worker role, and devote their effort to
compute the hardest parts of the algorithm.

• Island-based approach: Those that create different sub-populations and exchange
information between them, trying to improve the behavior of the sequential algo-
rithm (mainly in terms of the quality of the obtained solution). Figure 2.b shows
the general scheme. In these algorithms, each island executes an “independent”
EDA instance (processes may all run the same EDA, or different EDAs), ex-
changing at certain points information (individuals or dependency relations) with
other islands, using a topology defined for that purpose (ring, star, etc.).
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Fig. 2. Parallel schemes for EDAs

3 Direct Parallelization of Sequential EDAs

As stated previously, we call “direct parallelization” to the process of designing a
parallel implementation of an original (sequential) EDA, with the goal of reducing
the execution time, and without introducing any major change. This means that both
the original and the parallel versions have the same behavior.

Several EDAs have been successfully applied to provide solutions for a range of
complex problems. However, their application may become unfeasible if the indi-
vidual size grows to a few hundred variables, or the fitness function is too complex.
A fast and parallel EDA would provide two main advantages compared to the se-
quential counterpart: (1) it would allow the utilization of these approaches to solve
larger or more complex problems in reasonable execution times, and (2) it would be
able to complete a higher number of generations in the same execution time.

When parallelizing an existing sequential algorithm, it is mandatory to analyze
carefully this sequential approach in order to detect if the algorithm is suitable to
be parallelized. If this is the case, the parts that consume most of the execution
time should be studied using profiling tools. Regarding EDAs, there are two steps
that must be considered to design an efficient parallel algorithm: learning of the
probabilistic model, and creation of the new population (sampling and evaluation of
the individuals).

3.1 Learning of the Probabilistic Model

In Section 1 we introduced the general scheme of EDAs. Looking at the fourth
step, we can observe that the main goal is to detect the possible (in)dependencies
between the different variables. Probabilistic graphical models (PGMs) [26,34,49],
which have become a popular representation for encoding uncertain knowledge, are
commonly used to this purpose –they represent the joint probability distribution (the
joint probability density function in the case of variables with continuous values).

PGMs use a graph to represent the (in)dependencies between the variables1

(nodes) adding links between variables to represent such (in)dependencies.

1 This term is equivalent to the term “gene” used in GAs.
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Depending on the link, there are two types of PGMs. Those that use undirected links
(edges) –for example Markov networks– and those that use directed links (arcs) –for
example Bayesian networks [13] or Gaussian networks [66].

Learning a PGM requires two steps. Firstly, the graph that represents the relations
between the variables is learnt; secondly, the probabilities (usually called parame-
ters) are calculated. Depending on the method (complexity level) used to create
PGMs from data, EDAs are classified into three groups: (1) all variables are con-
sidered independent, (2) only bivariate dependencies are taken into account, and
(3) all dependencies are examined. In the following sections we present some tech-
niques used in the previous groups, including helpful ideas from the point of view
of parallelism2.

3.1.1 Without Dependencies

The simplest way –first group– to estimate the joint probability distribution is to
consider that all the variables are independent. Therefore, the joint probability dis-
tribution learnt at a given l generation from a set of selected individuals (DSe

l ) is:

pl(x) = p(x|DSe
l−1) =

n

∏
i=1

pl(xi) (1)

where each univariate marginal distribution is estimated from marginal frequencies:

pl(xi) =
∑N

j=1 δ j(Xi = xi|DSe
l−1)

N
(2)

being

δ j(Xi = xi|DSe
l−1) =

{
1 if in the jth case of DSe

l−1, Xi = xi

0 otherwise
(3)

In this particular case, as all the variables are considered independent, the same
fixed and linkless structure is used in every generation. Therefore, we only need
to calculate the parameters. This is performed going over all the variables of the
selected individuals.

In this case, the procedure of learning the PGM is simple and fast; therefore, it
does not usually require any parallelization. However, if we wanted to write a paral-
lel version of this procedure, there is a clear and easy way to distribute the work. The
manager creates n subtasks, one for each variable to compute, and distributes these
tasks (learn parameters) between the different workers (according to the scheme
presented in Figure 2.a). In [61], the authors present an efficient and parallel version
of a simple EDA (in particular, cGA) that is able to solve large-scale problems with
millions of variables. To achieve this goal, the algorithm was parallelized follow-
ing a manager-worker scheme with MPI, and was accurately designed (for example,

2 By default we present proposals for the discrete domain, but these ideas and conclusions
can be easily applied to the continuous domain.
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using vectorization techniques so that a single instruction can perform multiple op-
erations at the same time). This proposal clearly shows how helpful parallelism can
be in this field.

Once the simplest probability model has been explained, it is time to go one step
forward and focus on models that take into account (in)dependencies between pairs
of variables, or even consider any kind of (in)dependencies. We will focus on the
last group, because it is more general and includes the other one.

3.1.2 Multiple (in)dependencies

Different parallel proposals have been presented for the algorithms that belong to
this group. These algorithms use as PGMs Markov networks, Gaussian networks, or
Bayesian networks. In this case, we will focus on Bayesian networks to explain the
main parallel approaches.

Formally, a Bayesian network [13] over a domain X = (X1, . . . ,Xn) is a pair
(S,θ) that represents a graphical factorization of a probability distribution. The
structure S is a directed acyclic graph (DAG) which reflects the set of conditional
(in)dependencies between the variables. The factorization of the probability distri-
bution is written by:

p(x) =
n

∏
i=1

p(xi|pai), (4)

where pai is the set of parents of Xi (variables from which there exists an arc to Xi

in the graph S). The second part of the pair, θ , is a set of parameters for the local
probability distributions associated with each variable. If variable Xi has ri possi-
ble values, x1

i , . . . ,x
ri
i , the local distribution, p(xi|paj

i ,θ i) is an unrestricted discrete
distribution:

p(xk
i |paj

i,θ i) ≡ θi jk, (5)

where pa1
i ,. . . ,paqi

i denote the values of Pai and the term qi denotes the number of
possible different instances of the parent variables of Xi. In other words, parame-
ter θi jk represents the conditional probability of variable Xi being in its kth value,
knowing that the set of its parent variables is in its jth value. Therefore, the local
parameters are given by θ i = (((θi jk)

ri
k=1)

qi
j=1) i = 1, . . . ,n.

Two main techniques are used to learn the structure of the PGM –in this example,
the Bayesian network. One is known as “score+search”, and the other as “detecting
conditional (in)dependencies”.

“score+search”

This method is based on two components: a score metric and a search algorithm.
The score metric is used to measure the quality of the Bayesian network structure,
given a data file of cases. Bayesian Information Criterion (BIC) [63], K2 [15] or
Bayesian Dirichlet equivalence (BDe) [22] are some of the scores commonly used
by the community. The search algorithm is required to look for the structure that
maximizes the selected score. For example, Algorithm B [10] is a common method
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used to learn Bayesian networks. This algorithm uses a hill climbing strategy. Start-
ing with an arc-less structure, it adds in each step the arc that maximizes the score.
When no improvement can be achieved, the algorithm stops. An alternative to Al-
gorithm B could be the use of the model created in the previous generation, instead
of beginning each time with an empty structure. Other proposals try to improve the
search by including the arc reversal operator, in addition to add and delete.

An important property of the BIC, K2, and DBe scores (from the point of view
of parallelism) is that they are decomposable. This means that the global score can
be calculated as the sum of the separate local scores for the variables. Focusing on
the BIC score, it can be expressed as:

BIC(S,D) =
n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk log
Ni jk

Ni j
− 1

2
logN

n

∑
i=1

qi(ri −1), (6)

where:

• S is the structure and D is a dataset (set of selected individuals).
• n is the number of variables of the Bayesian network (size of the individual).
• ri is the number of different values that variable Xi can take.
• qi is the number of different values that the parent variables of Xi, Pai, can take.
• Ni j is the number of individuals in D in which variables Pai take their jth value.
• Ni jk is the number of individuals in D in which variable Xi takes its kth value and

variables Pai take their jth value.

According to its decomposable property, it can be expressed as the sum of the
local scores for each variable Xi:

BIC(S,D) =
n

∑
i=1

BIC(i,S,D), (7)

where

BIC(i,S,D) =
qi

∑
j=1

ri

∑
k=1

Ni jk log
Ni jk

Ni j
− 1

2
log(N)qi(ri −1). (8)

Due to this, if we update S with the arc modification ( j, i), then only BIC(i,S,D)
needs to be recalculated.

The structural learning algorithm involves a sequence of actions that differs be-
tween the first step and all the subsequent steps. In the first step, given a structure
S and a database D, the change in the BIC is calculated for each possible arc mod-
ification. Thus, we have to calculate n(n− 1) terms as there are n(n− 1) possible
arc modifications. The arc modification that maximizes the gain of the BIC score,
whilst maintaining the DAG structure, is applied to S. Supposing that an arc from
node j to node i was added, only the local BIC score for node i has to be calculated.
Other local scores have not changed its value because of the decomposable property
of the BIC score. In this case, the number of terms to be calculated is n−2. Figs. 3
and 4 show a parallel approach (introduced in [35, 38]) for this learning process.
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Manager side. “score+search” technique.

Step 1. for i = 1, . . . ,n
Send order Calculate BIC(i,S,D)
Receive local scores from workers

Step 2. if score can be improved
Modify arc ( j, i)
Send order Modify arc ( j, i)
Send order Calculate BIC(i,S,D)
Go to Step 2

else Send order Stop
Step 3. End

Fig. 3. Pseudo-code for the parallel structural learning based on “score+search”. Manager
side

Worker side. “score+search” technique.

Step 1. Define the set of variables to work with (Nwrk)
Step 2. wait for an order
Step 3. case order of

Calculate BIC(i,S,D)
for each j in Nwrk

Calculate new BIC score for the ( j, i) arc modification
Send new scores to the manager
Go to Step 2

Modify arc ( j, i)
Modify arc ( j, i)
Go to Step 2

Stop
End

Fig. 4. Pseudo-code for the parallel structural learning based on “score+search”. Worker side

Regarding this proposal, there are some aspects that deserve additional detail:

• In order to avoid unbalance, in homogenous environments each worker should be
assigned an equal-size subset of the nodes. However, in heterogeneous environ-
ments (a variety of hardware elements with different processing power) an on-
demand scheme would be more appropriate: each worker would ask repeatedly
for a task to complete, until there are no more tasks. Obviously, the on-demand
scheme would make a more intensive use of the communication infrastructure.

• In order to achieve better performances, the manager process could also act as
a worker. Looking at the pseudo-code, we can observe how the manager sends
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the order to calculate BIC scores and then waits idly until all the workers have
finished. Instead of just waiting, the manager could become an additional worker.

• As all the workers need to know the structure, some communication between
manager and workers is needed. As a general rule, in order to reach good lev-
els of performance from distributed-memory parallel computers, communication
should be minimized -specially if the network is slow. However, experiments
carried out on homogenous clusters showed that communication time is tiny,
compared to the time needed to compute the BIC scores.

Table 1, extracted from [38], shows results for the OneMax problem [62], with
an individual size of 500. The machine used to carry out the experiments was a
cluster of 10 nodes. Each node had two AMD ATHLON MP 2000+ processors
(CPU frequency 1.6GHz) and 1GB of RAM. The operating system was GNU-Linux
and the MPI implementation was LAM (6.5.9. version). All the computers were
interconnected using a switched Gigabit Ethernet network.

Good levels of efficiency are observed, when using up to 20 processors. In this ap-
proach it is important to find a balance between the size (complexity) of the problem
and the number of processors used. That is, as the number of processors increases,
the work (number of variables) that each worker manages decreases, and hence, the
relation between computation and communication worsens.

Table 1. Time-related experimental results for two versions of the EBNABIC parallel algo-
rithm

CPUs MPI version MPI&Threads version

Time Speed Up Efficiency Time Speed Up Efficiency

Sequential 2h 25’ 42” - - - - -
2 1h 08’ 44” 2.12 1.06 1h 08’ 13” 2.14 1.07
6 24’ 38” 5.91 0.99 24’ 23” 5.97 1.00
10 15’ 21” 9.49 0.95 15’ 32” 9.38 0.94
20 08’ 54” 16.39 0.82

In summary, this is a good approach to compute the score in a distributed fash-
ion, but there must be taken into account the recommendations recently discussed
about communication requirements in distributed-memory machines where the pro-
gramming paradigm is, usually, MPI. This problem disappears for implementations
based on threads or OpenMP, but these paradigms are limited to shared-memory
computers.

Related to the need of minimizing communications when learning the PGM, [45]
discusses a different approach for the MBOA algorithm (based on decision trees)
that avoids communication while creating the structure. Each worker learns a part
of the structure in an asynchronous (independent) way. To maintain the structure
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acyclic without any communication, the authors propose performing, at each gener-
ation, a random permutation that predetermines the topological order of the nodes.
They claim, using experimental evidence [55], that this a-priori order does not affect
the overall behavior of the algorithm.

“detecting conditional (in)dependencies”

Techniques in this group use independence tests to check the relations between
the variables in the structure. They usually start from a complete graph, verify-
ing whether or not a link should be maintained. A good review of methods for the
induction of Bayesian networks by detecting conditional (in)dependencies can be
found in [69]. From the point of view of parallelism, a usual drawback of these
tests is that they can not be easily distributed in separated subsets (one for each
worker); frequent synchronization is needed, because the result of one test condi-
tions the following tests. Fig. 5, extracted from [38], shows some results obtained
using the PC algorithm to detect conditional (in)dependencies in the same prob-
lem introduced for the “score+search” method (OneMax, with an individual size of
500). Implementation was done using MPI, following an on-demand scheme. It can
be observed that communication becomes an important bottleneck as the number
of processors increases. Again, if the (parallel) computer allows it, an implementa-
tion with threads or OpenMP would reduce the communication effort. In general,
for very communication-demanding algorithms, it is a good idea to mix MPI with
threads or OpenMP to make a more efficient use of today’s multi-core computers.
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Fig. 5. Detail of the computation time for the second version of the EBNAPC algorithm, using
a pure MPI implementation. 2, 6 and 10 CPUs have been used.
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3.2 Sampling and Evaluation of the Population

The fifth step of EDAs, that involves sampling the probability distribution to gener-
ate new individuals, and evaluating the new population, is computationally expen-
sive when dealing with non-trivial evaluation functions. Therefore, this step must
be parallelized. In [12] the author introduces a summary of ideas for the design
of efficient parallel evolutionary algorithms, that includes parallelization of fitness
evaluation procedures. For EDAs the same principles apply. Additionally, the sam-
pling part (creation of the individuals) can also be done in a distributed way.

Once the PGM has been learnt (structure and parameters) –in our example a
Bayesian network–, new individuals must be generated by means of the joint proba-
bility distribution encoded by the network. To do that, individuals will be generated
by sampling directly from the Bayesian network, using an adaptation of the Proba-
bilistic Logic Sampling algorithm (PLS) [23]. Once generated, individuals must be
evaluated using a problem-dependent fitness function. This sampling process is re-
peated, creating and evaluating in each iteration a new individual, until the required
number of new individuals is reached.

From the point of view of parallelism, a very simple manager-worker approach
can be implemented: the manager sends the parameters of the Bayesian network to
the workers (assuming that they know the structure), they sample (create) a subset
of new individuals, evaluate them, and send back the subset to the manager. Again,
a homogeneous computing environment is assumed, so all subsets are of equal size,
but an on-demand scheme (in which workers ask the manager for tasks to perform,
and return new, evaluated individuals) could be more appropriate for heterogeneous
systems.

4 Island-Based Approaches

Although ideas suggesting the utilization of parallel approaches for EAs were dis-
cussed in different papers long time ago [9, 25], it has been only in the last two
decades when the availability of hardware and software has made possible the de-
sign of usable parallel solutions. Sequential EAs deal with a single population, in
which each of the individuals can potentially mate with any other. Using this start-
ing point, two parallel proposals appear: distributed EAs (dEAs) and cellular EAs
(cEAs).

dEAs are known as coarse grain parallel EAs. Algorithms of this kind use several
sub-populations (islands), instead of only one. These populations evolve in a quasi-
independent way and, with some predetermined frequency (usually a number of
generations), some individuals are exchanged between islands. Different topologies
have been tested for different problems, including for example rings and stars. When
implemented in a parallel computer, each island can be mapped onto a processor.

Regarding cEAs (also known as fine grain parallel EAs), individuals are generally
placed on a toroidal n-dimensional grid (one at each position). Every individual has a
neighborhood, and the breeding operators will be applied between the individuals in
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the neighborhood. When implemented in a parallel computer, each individual of the
current population has to be mapped onto a processor. cEAs are particularly well-
suited for massively parallel computing systems, while dEAs can run efficiently in
cluster-type systems.

Figure 6 shows the distribution of the populations in sequential EAs, dEAs and
cEAs. These ideas have been widely applied to GAs; a summary of different parallel
techniques for GAs can be found in [12]. In addition, a review about parallelism and
EAs, and an up-to-date reference on parallel metaheuristics can be consulted in [4]
and [2] respectively.

dEAs are of particular interest due to the utilization of several sub-populations –
called islands– that evolve independently, exchanging some individuals from time to
time. In addition to the parameters commonly used in GAs (such as population size
or breeding operators), these island-based approaches need to fix new parameters:

• Number of islands: Controls the number of sub-populations that will be used.
This number is usually related to the number of available processors.

• Number of individuals exchanged at each migration: Determines the number of
individuals that an island will receive from another island (or islands). The larger
this number is, the more similar the sub-populations will be.

• Migration rate: Indicates how often migrations are made to happen. Usually, this
parameter if expressed in terms of the number of generations between migra-
tions. However, other proposals can be found in the literature that are based on
asynchronous communication [5].

• Topology: Defines the connections between islands: ring, star, grid, and so on.
• Replacement: When a subset of individuals is received in an island, there are

different ways to incorporate them to the present population. The most common
technique is to apply elitism, that is, the subset is added to the population, and
then the worst individuals of the mixed population are deleted.

The main purpose of island-based proposals is to preserve the diversity of the
whole population splitting it in different sub-populations, trying to avoid a prema-
ture convergence. When a good solution appears in an island, some generations will

Fig. 6. (I) sequential EA, in which all individuals belong to the same population, (II) dEA, in
which individuals are distributed in a number of sub-populations, and (III) cEA with individ-
uals distributed in a grid.
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pass until that solution arrives to other islands, allowing this way the search in other
areas of the solution space. However, even if there are several works on this is-
sue [3,12,71] there is not still a clear idea of how these approaches perform in terms
of quality of the results or convergence rate.

Following the ideas developed for GAs, island-based approaches have also been
used with EDAs, for discrete [1, 37, 43, 59] as well as for continuous domains
[24, 37]. In [24], the authors propose the Distributed Probabilistic Model Building
GA (DPMBGA), a new EDA approach that uses Principal Component Analysis to
detect dependencies between the variables and uses normal distributions to create
new individuals. The model exchanges individuals over a ring topology. This algo-
rithm has been extended in [68], introducing the penalty method and the pulling
back method in order to improve the characteristics of the previous version when
solving constraint problems. In [37], an asynchronous distributed framework for
EDAs is presented and implemented for the UMDA algorithm.

The particular characteristics of EDAs allow researchers to explore additional
research lines. One idea is to use a different EDA in each island [2]. In this way,
the weakness of one algorithm could be compensated by the advantages of others.
However, running different algorithms implies different execution times per itera-
tion (generation) and, therefore, the migration method should be adapted (usually,
by means of asynchronous protocols).

Another idea lays down the most representative characteristic of EDAs: the use
of probabilistic models. Taking into account that the probabilistic model comprises
the relevant information about the problem, it should be better to exchange that
knowledge instead of exchanging a few individuals. In [1], the authors use a uni-
variate EDA, exchanging the probability vector between the islands. In each island,
the probability vectors are combined by means of a crossover operator. In [46] the
authors design different island-based (dEAs) topologies, and carry out some exper-
iments using two different types of migration: individuals and probabilistic models.
For the latter approach (exchange of probabilistic models), a univariate EDA for
the discrete domain is used and, in the migration step, each island mixes its current
probabilistic model with the received one. In that preliminary work, the researchers
propose a convex combination of the models (similar to that proposed in PBIL),
while in a later paper [47], the model combination is improved using a local search.
Results obtained from experiments show that, in general, approaches that export and
combine probabilistic models provide better solutions than those that exchange in-
dividuals. Furthermore, solutions provided by the best island-based EDAs are often
superior to those obtained with the sequential, single-population counterpart. This
advantage comes from the availability of different, partially isolated populations, al-
lowing the algorithm to search in different parts of the solution space. Additionally,
diversity is higher, avoiding premature convergence. These conclusions have been
verified in other similar works based on the migration and combination of the prob-
ability models [27, 64]. The same ideas have also been adapted to the continuous
domain in [48], translating the proposals to the UMDAc algorithm.

In summary, this is a new field of research inside the EDA family, and there are
still some aspects that need further work:
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• Island-based approaches need additional parameters. It is not clear which the
best combination of values in order to properly tune an island-based model is.
For example, it is necessary to decide the topology to be used, the number of
islands, the migration scheme, and so on. According to the results, some general
ideas can be obtained but, generally, the values of the parameters seem to be
problem dependent. In addition, there are some voices that impeach the alleged
goodness of these models.

• Approaches that exchange probability models, instead of groups of individuals,
seem more promising. Probability models comprise more information than a few
individuals. This information is easier to analyze, and these models are also able
to provide information about the (in)dependencies between the variables.

• The proposals discussed in this section have been tested using algorithms with
simple (univariate) probabilistic models. These models are able to obtain good
results in a wide range of scenarios but, for problems where there are depen-
dencies between the variables, they usually behave worse than more complex
probabilistic models. The extension of methods that combine probabilistic mod-
els to algorithms that use pairwise or multiple-dependency models is still an open
line of research.

• In terms of computing performance, island models can help to reduce execution
times, because the islands run in parallel, each one with a subset of the popula-
tion. The size of the population plays a crucial role in EDAs based on complex
models (multiple dependencies): the larger the population, the better the obtained
solutions. Therefore, splitting the whole population in several sub-populations
will have, in theory, a negative impact on the quality of the solutions. Several,
large populations could be used, but then the parallel EDA would not run faster
than a single-population, sequential one.

• Some works report that island-based approaches can achieve faster convergence
rates, thus reducing the number of generations (evaluations) required to find the
desired solutions.

As a final remark, we want to state that the two main approaches discussed
through this chapter (direct parallelism and island-based approaches) should not
be seen as incompatible alternatives. In fact, they can be combined, using islands
that run accelerated EDAs. Most current parallel computers are actually clusters of
multiprocessors, and are well suited to run this kind of solutions. For example, the
program implementing an island could be composed of several threads running in
different cores of a cluster node; islands would communicate through an external,
high-speed interconnection network using MPI calls.

5 Conclusions

In this chapter we have made a review of the different proposals that have appeared
in the literature to parallelize Estimation of Distribution Algorithms (EDAs). These
proposals can be classified into two groups: direct parallelism and island-based ap-
proaches.
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Direct parallelism entails the design of parallel versions of sequential EDAs with
the aim of reducing the execution time, while maintaining the behavior of the original
algorithm. Design effort is focused on two phases of the EDAs: the learning of the
probabilistic model, and the sampling and evaluation of the population –specially,
to the evaluation part. These implementations have been shown to effectively reduce
the total execution time, allowing the application of EDAs to large-scale problems.

Island-based approaches use several sub-populations (islands), instead of the
usual single population. Sub-populations evolve independently, using a given EDA
(that is usually the same for all islands, but could also be different). At certain mo-
ments, groups of individuals or probability models are exchanged between the is-
lands. This exchange is done following a particular communication topology: rings,
stars, point to point, and so on. Preliminary work on island-based distributed EDAs
show promising results in terms of execution speed and quality of solutions, but
many research lines are still open in this field.

As a summary, this is a line of work that has helped EDAs to go a step forward in
terms of usability. The increasingly easier (and cheaper) access to multi-core (even
many-core) processors, clusters of computers, grid environments, etc. are encour-
aging researchers to make use of parallel paradigms in order to develop faster and
more efficient programs that solve larger and more complex problems.
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J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 544–551.
Springer, Heidelberg (2004)

2. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. John Wiley & Sons Inc.,
Chichester (2005)

3. Alba, E., Cotta, C., Troya, J.: Numerical and real-time analysis of parallel distributed
GAs with structured and panmictic populations. In: Proceedings of the IEEE Conference
on Evolutionary Computing (CEC), vol. 2, pp. 1019–1026 (1999)

4. Alba, E., Tomassini, M.: Paralelism and evolutionary algorithms. IEEE Transactions on
Evolutionary Computation 6(5), 443–462 (2002)

5. Alba, E., Troya, J.M.: An analysis of synchronous and asynchronous parallel distributed
genetic algorithms with structured and panmictic islands. In: Rolim, J.D.P., Mueller, F.,
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33. Larrañaga, P., Lozano, J.A., Bengoetxea, E.: Estimation of Distribution Algorithms based
on multivariate normal and Gaussian networks. Tech. Rep. KZZA-IK-1-01, Depart-
ment of Computer Science and Artificial Intelligence, University of the Basque Country
(2001)

34. Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)
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Algorithms. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a
New Evolutionary Computation. Advances on Estimation of Distribution Algorithms.
Studies in Fuzziness and Soft Computing, vol. 192, pp. 159–186. Springer, Heidelberg
(2005)

38. Mendiburu, A., Lozano, J.A., Miguel-Alonso, J.: Parallel implementation of EDAs based
on probabilistic graphical models. IEEE Transactions on Evolutionary Computation 9(4),
406–423 (2005)

39. Message Passing Interface Forum: MPI: A message-passing interface standard. Interna-
tional Journal of Supercomputer Applications (1994)

40. Mühlenbein, H.: The equation for response to selection and its use for prediction. Evo-
lutionary Computation 5, 303–346 (1998)

41. Mühlenbein, H., Mahning, T.: FDA - a scalable evolutionary algorithm for the opti-
mization of additively decomposed functions. Evolutionary Computation 7(4), 353–376
(1999)



162 A. Mendiburu, J. Miguel-Alonso, and J.A. Lozano

42. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions
i. binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.)
PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

43. Ocenasek, J.: Parallel estimation of distribution algorithms. Ph. D. thesis, Faculty of
Information Technology, Brno University of Technology (2002)

44. Ocenasek, J., Schwarz, J.: Estimation of distribution algorithm for mixed continuous-
discrete optimization problems. In: 2nd Euro-International Symposium on Computa-
tional Intelligence, pp. 227–232. IOS Press, Kosice (2002)

45. Ocenasek, J., Schwarz, J., Pelikan, M.: Design of multithreaded estimation of distribution
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Parallel Multi-objective Optimization Using
Self-organized Heterogeneous Resources

Sanaz Mostaghim

1 Summary

This chapter is about using a set of parallel self-organized computing resources to
perform multi-objective optimization. These computing resources are presented as a
unified resource to the user where in the traditional parallel optimization paradigms
the user has to assign tasks to the resources, collect the best available solutions and
deal with failing resources. The main goal in this chapter is to involve the user as
less as possible in the optimization process. Here the user only specifies the prefer-
ences and gives the objective functions to the system. The self-organized computing
resources deliver the obtained solutions after a certain time to the user. In such a
system, fast resources continue the optimization as long as the overall computing
time is not over. However as the solutions of a multi-objective problem depend on
each other (via the domination relation) adding a waiting time to the fast processors
would affect the quality of the solutions. This has been studied on a scenario of 100
heterogeneous computing resources in the presence of failures in the system.

2 Introduction

Due to the steady progress in technology and the fact that the number of computing
resources is increasing, today parallel computing on computer grids or multi-core
systems can significantly reduce the computation time for highly complex modeling,
simulation, and optimization problems.
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Generally, distributed and parallel computing are about using several computing
resources in parallel in order to solve time-intensive problems in a low computation
time. Ideally, these computing resources are represented as one unified resource to
the user who defines the task to be run in parallel [1]. A typical task can be a simula-
tion with different input parameters or an optimization algorithm which can be run
in parallel. In such a computing environment we deal with a set of heterogeneous
resources. There are very fast and very slow computing resources, some comput-
ing resources may fail working, or get overloaded. Also, we assume that there is a
limitation on the communication capability between the resources.

In the context of optimization, there are several reasons for using parallel com-
puting, such as:

• in order to solve optimization problems with very time intensive function evalu-
ations,

• in order to solve large scale problems,
• some optimization algorithms require a high computation time in order to deliver

some reasonable solutions,
• when there are several available computing resources and the user wants to use

all of them even for simple optimization tasks.

In optimization, different parallel models have been proposed in the litera-
ture [23]. They follow three major hierarchical models such as: (1) Self-contained
parallel cooperation (2) Problem independent intra-algorithm parallelization, and
(3) Problem dependent intra-algorithm parallelization. The last two models do not
alter the behavior of the algorithms and therefore are generally used to speedup the
search.

The group of Self-Contained Parallel Cooperation algorithms also known as the
Island model is used for parallel systems with very limited communication. In the
island model, every processor runs an independent optimization using a separate
(sub)population. We study this family of the parallel models in the following.

The main topic of this chapter is about multi-objective optimization algorithms
when employing them on a set of heterogeneous computing resources. The solution
of multi-objective optimization problems is usually a set of solutions represented
as an optimal front i.e., none of these solutions can be improved in one objective
without getting worse with respect to some other objective. Some difficulties arise,
though, when we solve multi-objective problems [23, 5, 10, 24, 2, 7].

Typically, solving multi-objective problems using a set of computing resources is
achieved by dividing the task (finding the set of non-dominated solutions) between
the computers. This idea has been studied e.g., in [5, 10]. The task partitioning
can be successfully done, when there is a priori knowledge about the number of
resources and their properties. In this case, if one of the resources fails, its related
part has to be re-assigned. Also, the other issue is the assumption of communication
between the processors like in [5].

In this chapter, we study how to partition the optimization task between the avail-
able processors meaning every computing resource is responsible for generating
one part of the optimal front so that in a collective way all of them obtain a good
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approximation of the true Pareto-optimal solutions. We design the algorithm to be
independent of the number of resources. The resources act as computing agents,
which look for a partition to optimize and try to avoid overlaps. If one of them fails
working, other resources which are done with their own tasks, take care of the miss-
ing partition. Besides this, we allow the cooperative aspect in the heterogeneous
system such that the computing resources indirectly exchange the best found solu-
tions. In this way, the computing resources are represented as a unified resource to
the user, who gives the objectives to the system and receives the optimal solutions
in the end whereas in the traditional parallel systems, the user has to assign the tasks
and permanently monitors the system.

Another aspect here is the fact that in a heterogeneous system we must make use
of all of the resources from very slow to very fast ones. In a non-parallel case all of
the population members are available in each evaluation step. However in our new
approach, the solutions of the fast resources build a disconnected front and continue
the optimization where the slow resources must still finish their tasks. Indeed, this
issue affects the results. If the fast processors wait for the slow ones, the results
are changed as the solutions of a multi-objective problem depend on each other
by the domination relation. This aspect is being studied on a test scenario of 100
heterogeneous resources where we add some waiting time to the fast processors and
study the quality of the obtained solutions. Furthermore, we add some failures to
the system and observe the quality of solutions in such unreliable environments.

The chapter is structured as follows. The next section is assigned to the basics
in multi-objective optimization, and the model of self-contained parallel cooper-
ation in optimization. In Section 3, we explain an approach called self-organized
parallel cooperation and study different aspects in parallelization of multi-objective
algorithms. Section 4 is dedicated to experiments and the last section concludes the
chapter.

2.1 Multi-objective Optimization

A multi-objective optimization problem is of the form

minimize f = (f1(x), f2(x), · · · , fm(x)) (1)

subject to x ∈ S, involving m(≥ 2) conflicting objective functions fi : �n → �
that we want to optimize simultaneously. The parameters x = (x1, x2, · · · , xn)T

belong to the feasible region S ⊂ �n.
We denote the image of the feasible region by Z ⊂ �m and call it a feasible

objective region. The elements of Z are called objective vectors and they consist of
objective (function) values f (x) = (f1(x), f2(x), · · · , fm(x)). A parameter vector
x1 ∈ S is said to dominate a parameter vector x2 ∈ S, iff (a) x1 is not worse than
x2 in all objectives and (b) x1 is strictly better than x2 in at least one objective.

x1 ∈ S is called Pareto-optimal if there does not exist another x2 ∈ S that dom-
inates it. Finally, an objective vector is called Pareto-optimal if the corresponding
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decision vector is Pareto-optimal. The main goal of multi-objective optimization
algorithms is to approximate the set of Pareto-optimal solutions by a set of well-
distributed solutions.

The importance of distributed computing is even greater for multi-objective than
for single objective optimization. In case of having many objective functions, the
number of solutions needed to represent the multi-dimensional Pareto-front is large
and therefore we require a large population size to perform a good exploration in
the parameter space.

2.2 Self-contained Parallel Cooperation

The model of self-contained parallel cooperation, also known as the island model,
is quite adequate for solving multi-objective problems in parallel [23]. This model
is mostly used, if there is a limitation in the communication between the processors.
Here, we can parallelize the optimization so that every processor runs an indepen-
dent optimization with the goal of covering only one part of the Pareto-front. The
optimized regions are collected by a master resource and build the approximated
Pareto-front. Figure 1 shows an example of an ideal partitioning of the Pareto-front
into several partitions and assigning different parts as tasks to k processors. Every
resource contains an optimizer and has to optimize the solutions in the allocated
region. A problem in this approach is, though, that it is not clear initially how to

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

f
1

(x)

f 2(x
)

Processor k−1

Processor 1 Processor 2 Processor 3

Processor k

Fig. 1. An example of partitioning the objective space into sub-regions. The sub-regions are
assigned to the k available resources.
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Archive

Archive

objectives

(a) (b)

System System

Fig. 2. (a) Traditional self-contained parallel cooperation model of optimization. The user
is integrated into the system. (b) The self-organized parallel cooperation model, where the
computing resources are represented as an unified resources to the user.

achieve a well-balanced distribution of the workload, since the solutions are not
necessarily spread evenly over the Pareto-front.

This kind of optimization has been studied as a category of Self-Contained Par-
allel Cooperation [5, 10], where the user is aware of the exact number of available
processors and divides the population of solutions into a fixed number of subpopula-
tions. In such an approach, the user has to define the tasks of each processor, gather
the obtained solutions from the resources, and build a global archive in which the
non-dominated solutions are stored. Figure 2 (a) illustrates the system which opti-
mizes the objective functions. The user is involved in the optimization process; in
case that a processor fails working, the user manually reassigns the tasks.

3 Self-organized Parallel Cooperation

Based on the idea of self-contained parallel cooperation, we study a model contain-
ing a set of self-organized resources. This so called self-organized parallel coopera-
tion is intended to change the system of computing resources into a unified resource
to the user. Figure 2 (b) shows the main concept. The system contains the cooper-
ating computing resources which are represented as a unified resources to the user.
In contrast to the traditional parallel models (Figure 2 (a)), the user is not involved
in the assignment of tasks to processors and is not aware of the number of resources
and their corresponding properties such as speed. In such a system, the user defines
the tasks (the objectives and the preferences) and obtains the optimal solutions after
a certain time.

Generally, designing an algorithm for parallel implementation requires the fol-
lowing steps [8]: (1) Task partitioning which allocates independent tasks to multiple
recourses (2) Task scheduling and assignment (3) Task synchronization which is
about exchanging the information from the processors in order to ensure correct
progress. These three aspects are considered in the self-organized model as follows:
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• Task partitioning: The computing resources must find the most proper partition of
the objective space to optimize. In traditional methods [5, 10], the space has been
divided into a fixed number of sub-regions for a fixed number of resources. The
resources consider their own sub-region as the feasible region and the solutions
that are not in this region are considered to be infeasible. In this way, they force
their populations to reside in the corresponding sub-region. In the self-organized
parallel cooperation, this is completely different: The resources always look for
the least populated part of the approximated front and start optimization in those
areas (next section).

• Task scheduling: All of the resources from very fast to the slow ones have to
collaborate to perform the optimization task. Also, in case of failures in one or
more computing resources, the other resources take care of the failing subtasks.

• Task synchronization: There must be an indirect way of communication between
the resources to ensure correct progress. The computing resources have to collect
their results, remove the overlaps, and report the currently best solutions to the
user.

In the following, we consider K heterogeneous computing resources which per-
form a multi-objective optimization algorithm for a specific range of parameters
and a set of given objective functions. The resources may contain different al-
gorithms and deliver a set of non-dominated solutions after a certain time Ti,
∀i = 1, 2, · · · , K . We assume that the computing resources can communicate with a
main master node in which we keep a global repository (called Archive) for storing
the non-dominated solutions.

3.1 Task Partitioning

Depending on the optimization goals and the user preferences, every processor se-
lects a sub-region of the objective or parameter space for optimization. For instance,
the user preferences could be (a) a set of well-distributed solutions in the objective
space or (b) a set of solutions with very good convergence to one predefined point
or an area in the objective space or (c) both.

In the self-organized parallel cooperation model, the resources find the sub-
regions based on the so far obtained solutions. For this purpose, as soon as a proces-
sor updates the global archive, it must evaluate the so far obtained non-dominated
solutions in the archive. The evaluation of the archive members can be done by us-
ing a metric to observe the quality of the so far obtained solutions with respect to
the user preferences.

3.1.1 Diversity and Convergence

Consider that a good distribution of solutions along the non-dominated front is the
preference of the user. The resources must find the large gaps in the so-far-obtained
front and concentrate on finding some optimal solutions in those regions. For this
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Fig. 3. Marginal Hypervolume Measure. The area between the non-dominated solutions and
a predefined point called ref is shown by the solid line. The area (hypervolume) without A is
smaller than the area without B indicating the importance of B.

purpose one proper metric is the marginal hypervolume measure. The hypervolume
is the area dominated by all solutions stored in the archive [26]. The marginal hyper-
volume of a solution is the area dominated by the solution that is not dominated by
any other solution. Figure 3 illustrates this. Solution A has a smaller contribution to
the whole hyper-volume value than solution B. Therefore, solution B would be se-
lected first. So the processor looking for a good sub-space can select the area around
B to explore more in the next optimization run. B is called to be a reference point.
In general as a reference point, the solution from the archive is selected which has
not been selected before and which has the largest marginal hypervolume. In order
to avoid that several computing resources select the same point, only if all archive
solutions have been used as reference points, they are allowed to be re-used.

After selecting a proper reference point, the computing resource starts the opti-
mization in that direction. The directed optimization can be performed in several
ways such as by reference based method or reference direction approach in
the context of non-evolutionary approaches [14] or by using the preference based
multi-objective evolutionary approaches such as in [3]. We propose to use a guided
“multi-objective particle swarm optimization” [17, 6, 20]. By giving the reference
point as a global guide, the particles are drawn toward the reference point and hence
the optimization concentrates around the desired area.
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3.1.2 Multi-objective Particle Swarm Optimization

Algorithm 1 shows one typical structure of a Multi-Objective Particle Swarm Op-
timization (MOPSO). The Algorithm starts with a set of uniformly distributed ran-
dom initial individuals (also called particles) defined in the search space S. A set
of N particles are considered as a population Pt at the generation t. Each parti-
cle i has a position defined by xi = (xi

1, x
i
2, · · · , xi

n) and a velocity defined by
vi = (vi

1, v
i
2, · · · , vi

n) in the parameter space S.

Algorithm 1. MOPSO Algorithm

Require: N
Ensure: A

1. Initialization: Initialize population Pt, t = 0:
for i = 1 to N do

Initialize x i
t , v i

t = 0 and p i
t = x i

t

end for
Initialize the archive At := {}
2. Evaluate: Evaluate(Pt)
3. Update: At+1 := Update(Pt, At)
4. Move: Pt+1 := Move(Pt, At)
for i = 1 to N do

p i,g
t := FindBestGlobal(At+1, x

i
t )

for j = 1 to n do
vi

j,t+1 = wvi
j,t + c1R1(p

i
j,t − xi

j,t) + c2R2(p
i,g
j,t − xi

j,t)

xi
j,t+1 = xi

j,t + vi
j,t+1

end for
if x i

t+1 ≺ p i
t then

p i
t+1 = x i

t+1

else
p i

t+1 = p i
t

end if
end for
5. Termination: Unless a termination criterion is met t = t + 1 and goto Step 2

Beside the population, another set (called Archive) At can be defined in order
to store the obtained non-dominated solutions. Due to the presence of an archive,
good solutions are preserved during generations and therefore, convergence might
be guaranteed [21]. In Step 2 of the Algorithm, the individuals are evaluated and
the non-dominated solutions are added to the archive. Thereby, the archive is kept
domination-free. Obviously, during the execution of the function Update, domi-
nated solutions must be removed. This is done in Step 3 of the Algorithm 1.

In Step 4, the particles are moved to the new positions in the space. The velocity
and position of each particle i is updated as below:
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vi
j,t+1 = wvi

j,t + c1R1(pi
j,t − xi

j,t) + c2R2(p
i,g
j,t − xi

j,t) (2)

xi
j,t+1 = xi

j,t + vi
j,t+1

where j = 1, . . . , n, i = 1, . . . , N , c1 and c2 are two positive constants, R1 and R2

are random values in the range [0, 1] and

• w is the so called inertia weight of the particle. This is employed to control
the impact of the previous history of velocities on the current velocity, thus to
influence the trade-off between global and local exploration abilities of the par-
ticles [22, 13]. A larger inertia weight w facilitates global exploration while a
smaller inertia weight tends to facilitate local exploration to fine-tune the current
search area. Suitable selection of the inertia weight w can provide a balance be-
tween global and local exploration abilities requiring fewer iterations for finding
the optimum on average [22, 13]. A nonzero inertia weight introduces the prefer-
ence for the particle to continue moving in the same direction as in the previous
iteration.

• c1R1 and c2R2 are called control parameters [13]. These two control parame-
ters determine the type of trajectory the particle travels. If R1 and R2 are 0.0, it
is obvious that v = v + 0 and x = x + v (for w = 1). It means the particles
move linearly. If they are set to very small values, the trajectory of x rises and
falls slowly over time.

• p i,g
t is the position of the global best particle in the population, which guides

the particles to move toward the optimum. The important part in MOPSO is to
determine the best global particle p i,g

t for each particle i of the population. In
single-objective PSO, the global best particle is determined easily by selecting
the particle that has the best position. But in MOPSO, p i,g

t must be selected from
the updated set of non-dominated solutions stored in the archive At+1. Selecting
the best local guide is achieved in the function FindBestGlobal(At+1,x i

t ) for
each particle i [17].

• pi
t is the best position that particle i could find so far [4]. This is like a memory

for the particle i and keeps the non-dominated (best) position of the particle by
comparing the new position x i

t+1 in the objective space with p i
t (p i

t is the last
non-dominated (best) position of the particle i).

The steps of a MOPSO are iteratively repeated until a termination criterion is
met, such as a maximum number of generations, or when there has been no change
in the set of non-dominated solutions for a given number of generations. The output
of an elitist MOPSO method is the set of non-dominated solutions stored in the final
archive.

In MOPSO, we also define a parameter called turbulence factor which is ba-
sically designed to avoid the local optima. With a probability value equal to the
turbulence factor, a particle is moved to a random position in the search space. It is
obvious that if we increase the turbulence factor, the number of random solutions
increases.
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One advantage of MOPSO is that the particles move in the parameter space. This
can be used to easily guide the particles toward a preferred area by selecting the pref-
erence point as the global best particle for all the particles in the population [25, 18].
This is called Guided MOPSO. Guided MOPSO can not only be used for solving
preference based optimization problems but can highly be useful in solving Many-
Objective Optimization problems [19].

3.2 Task Scheduling

As soon as a resource finds the reference point, it starts the optimization. The
scheduling is therefore straight forward. Algorithm 2 shows the routine performed
in each of the resources. In the case that the entire system can be used for a certain
time Ttotal(≥ Ti), (i = 1, 2, · · · , K) fast resources might be able to perform several
optimization tasks depending on their computation power. In this algorithm, when-
ever a processor is done with the optimization, the obtained results are integrated
into the (global) archive in which only non-dominated solutions are kept.

Algorithm 2. Task of resource i
repeat

Find a task partition
Perform the optimization
Send update to main archive

until (Ti ≤ Ttotal)

3.3 Task Synchronization

The indirect communication between the resources is indeed achieved via the
archive. Every computing resource must select a task to optimize and continue the
optimization as long as the total computation time is not over.

Note that the above approach studied in Sections 3.1–3.3 reduces the waiting
time of the traditional self-contained parallel cooperation model in which the fast
resources do not wait for the slow ones. Indeed, saving computation time is a de-
sirable fact, but note that the solutions of a multi-objective problem depend on each
other. This means that if the fast processors wait for the slow ones, the quality of so-
lutions might get better. This will be studied in the experiments (Section 4). In this
approach, any desirable interaction between a decision maker and the system can
be easily implemented. Also the communication overhead between the resources is
reduced to the communication between the resources and a master node managing
the archive which could be viewed as some type of blackboard system. Except for
the master node, failures are automatically compensated, because other processors
will draw their attention to a region that has not been worked on. Obviously, though,
a failure of the master node would require a restart of the optimization process.
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4 Experiments

The major goal of the experiments is to investigate the influence of failures and
waiting time on the results of a multi-objective optimization method when using
a heterogeneous environment. Therefore, we only select one standard test function
and observe the quality of solutions when running the system for a certain time and
adding failures to the resources. The system is also analyzed by adding waiting time
to the resources to wait for a certain percentage of the others. The experiments are
performed on a simulation environment containing 100 resources with 5 different
computation speeds (types). The simulation is based on the real scenario in a typical
Grid. There are 3, 3, 20, 43, and 31 number of type 1 (very fast), type 2, type 3, type
4, and type 5 (very slow) resources, respectively.

The test function selected from [11, 9] contains 10 parameters and 2 objectives:

f1(x) = 1 − exp(−
n∑

i=1

(xi − 1√
n

)2)

f2(x) = 1 − exp(−
n∑

i=1

(xi +
1√
n

)2)

where xi ∈ [−4, 4] and n = 10. The quality of the solutions is computed by the
hypervolume metric [26] averaged over 20 runs.

4.1 Waiting Time

The first experiments are intended to analyze the behavior of the system when
adding waiting time to the processors. Therefore, the following parameter setting
is proposed. Every resource contains a multi-objective particle swarm optimization
from [17] with one particle running for one generation. The total time Ttotal is set to
be 120, meaning the fast resources are able to evaluate 120 particles. The given user
goals besides the objective functions are to achieve a good convergence and spread
of solutions. For this, we employ the idea of using marginal hypervolume presented
in the example in Section 3.1.

The main archive stored in the master node is set to be empty at the beginning
(first run). The selected parameter settings indicate that the first runs of the 100 re-
sources include only a random sampling of the search space until the fast processors
finish the evaluations and update the archive. As soon as the archive is updated, the
preference of the user can be considered.

Figure 4 shows the quality of the archive members over time. Different plots
illustrate the quality if the done resources wait for j other resources to finish and
update the archive (j = 0, 10, 20, 30, 40, 50).

We observe that if the resources do not wait, the results are worse than if they
wait for at least 10 to 20 percent of the resources. This is an expected result as
in multi-objective optimization the results depend on each other through the domi-
nance relation. If the resources wait for (in this case) up to 20 percent, they achieve
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Fig. 4. The quality of the obtained solutions over time. The plots show the quality if the
computing resources wait for at least 0, 10, 20, 30, 40 and 50 other computing resources to
continue the optimization. A long waiting time indicates the worst quality, whereas waiting
time for less than 20 percent is shown to increase the quality.

a better quality than if they do not wait. In fact, in every step of optimization it is
better to have enough evaluations to find more dominated and non-dominated so-
lutions. Hence the waiting time has the advantage of having more solutions. This
leads to a better direction in the optimization than not waiting. However, waiting for
a large number of other resources means that the fast processor stay for a long time
in idle mode which is on the other hand not desirable when having a fixed time for
the entire optimization process (like in the Grid).

4.2 Unreliable Environment

The next experiments are dedicated to study failures in the system. Here we also
analyze the waiting time. The failures are simulated by randomly removing some
number of resources from the system. Figure 5 shows the quality of the archive
members for different failure rates. The failure rates change from 0 to 35 percent.
The result of having zero failure rate is the same as the results in Figure 4. Here we
observe if we increase the failure rate, the best results are obtained by zero waiting
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Fig. 5. The quality after the total time of 120 for different failure rates. The different plots
indicate the waiting time for the resources.

time. This indicates that in unreliable systems, the fast resources have to make use
of the available computing time and do not wait for the slow resources, where in a
reliable environment waiting for up to 20 percent of the slower resources leads to a
better quality of the results.

5 Conclusions

In this chapter, we study a parallel model called self-organized parallel coopera-
tion for solving multi-objective optimization problems using a set of heterogeneous
computing resources. Apart from gaining computation time through the paralleliza-
tion, the quality of the solutions can be improved by this approach. The computing
resources (computing agents) run optimization algorithms to solve different parts of
the approximated front in the way that they observe the so far obtained quality of
solutions over time and select a sub space to optimize.

This approach has been studied on a scenario containing 100 computing re-
sources with 5 different speeds. The scenario is depicted from a real grid envi-
ronment with different failure percentage of computing resources. Furthermore, we
analyze the quality of solutions, when keeping the fast processors to wait for the
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slow ones for a certain time. The experiments illustrate that when dealing with re-
liable environments, i.e., here no failure rates, the best solutions are obtained when
the fast processors wait for some of the slow ones. However in unreliable environ-
ments, where some resources randomly fail during the run time, waiting does not
result in the best quality.

This approach can be studied in the context of interactive optimization methods
in which the user changes the preferences during the optimization. However, other
failure models as studied in this chapter and several other aspects in unreliable en-
vironments must be further investigated.
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The Role of Explicit Niching and
Communication Messages in
Distributed Evolutionary
Multi-objective Optimization

Lam T. Bui, Daryl Essam, and Hussein A. Abbass

Abstract. This chapter is dedicated to an investigation on the role of explicit
niching and communication messages in distributed evolutionary multi-
objective optimization. Localization is employed to implement explicit nich-
ing. Several options are selected for communication messages including non-
dominated solutions and statistics such as the centroid of the non-dominated
set, the direction of improvement, or weighted direction of improvement. As a
result, a distributed system using the framework of local models is developed
to support distributed computing in evolutionary multi-objective optimiza-
tion. This system provides a flexibility in applying different architectures such
as master/slave, island as well as the hybridization of the two. An in-depth
analysis is carried out on a simulation study using the system.

1 Introduction

There have been a significant number of contributions to the area of distributed
evolutionary multi-objective optimization [14, 10, 29, 3, 25, 32, 26, 27]. This
fact can be seen partially as a result of a radical revolution in hardware technol-
ogy for distributed computing; for example, clustering systems using switches
with Gigabit-speed have become commonly affordable and therefore been pop-
ular worldwide. For the domain of multiobjective evolutionary algorithms
(MOEAs), communication (exchanging/migrating of solutions) is more diffi-
cult than that in the single-objective domain. Exchanging individuals among
nodes in the single-objective domain is quite deterministic [6], for example
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exchanging one or more best solutions; while in the multi-objective domain,
it is not easy to determine the best solutions since there exists a set of trade-
off good solutions. If all solutions of this set are sent, the communication cost
is likely to become high. If too few solutions are sent, the information might
not be enough to represent the set.

To date, the majority of the work in the multi-objective domain have been
focusing on distributed architectures and communication topologies. A con-
siderably small discussion has been dedicated to the role of communication
messages (information content), an important factor that directly affects the
communication cost of systems, together with parallel niching in distributed
computing. Parallel niching plays an important role in a distributed system.
It requires communication among nodes with communication messages con-
taining niching information.

This chapter argues that communication messages are a major factor af-
fecting the communication cost of a distributed MOEAs system, while ex-
plicit niching considerably contributes to the performance of the distributed
system. In supporting this hypothesis, we employ the Evolutionary Multi-
objective Optimization (EMO) framework using localization that was pri-
marily proposed and used in [5, 4]. There, each sub-area of the search space
is associated with a separate population and is used to build a local model.
These models are allowed to interact using Particle Swarm Optimization
(PSO)-inspired rules (or simply PSO rules [11]) to exchange local/global best
information; and therefore, niching is somewhat maintained over time.

The main contribution of this chapter is a finding on the role of com-
munication messages and explicit niching in distributed population-based
multi-objective optimization. The communication cost can be reduced by
using summary information of the system’s progress instead of the solutions
themselves, while maintaining the performance of the systems. The summary
information on the optimal solutions can be used either partially or entirely
as the content of the communication messages. Further, explicit niching is an
important factor in obtaining the summary information.

A further contribution of the chapter is a flexible distributed framework of
using local models to solve multi-objective optimization problems (MOPs).
Although the approach of building local models based on localization has been
used elsewhere in the literature, the novelty of this work is the treatment of
each local model as a single particle and the use of PSO rules to control
these particles. The explicit niching is maintained over time by these rules.
This provides a control mechanism over the balance between exploration
and exploitation. The system using this framework was shown to offer a
quick convergence to the set of optimal solutions. A theoretical paradigm of
computational time for the framework was developed.

The remainder of the chapter is organized as follows: All the background
information on distributed MOEAs is given in the second section. A short
description is given in Section 3 for the framework of local models. A design
for the proposed system is described in Section 4. An investigation on the
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role of communication in distributed systems is given in Section 5, and the
last section presents conclusions.

2 Distributed Evolutionary Multi-objective
Optimization

In general, distributed MOEAs are classified into four broad streams us-
ing different architectures: Master-slave, Island, Diffusion and Hybrid mod-
els [29]. Master-slave models are the simplest form of distributed MOEAs. A
processing node is set to be a master. This node controls the entire evolu-
tionary process in which it distributes objective evaluations to all slave nodes
and decides how to deal with these objective values. This approach does not
change the course of action of the optimization process, but it helps to reduce
the processing time by distributing it on several processing nodes. Several in-
stances of master/slave can be found in [24, 17, 16, 18, 20, 31, 32, 26].

Island models (sometimes called coarse-grained models) are inspired by
natural phenomena [21, 7, 2, 30, 31, 13, 23, 26, 12]. The population is con-
structed from a set of sub-populations. Each subpopulation, called an island,
runs on a processing node with their own MOEA. The frequency of com-
munication among islands is also defined. The islands cooperate with each
other by exchanging good individuals in order to help other islands avoid
loss of diversity and to simultaneously progress towards the global Pareto
optimal front (POF). This task is usually called migration. It usually follows
a predefined topology.

Diffusion models (or fine-grained models) also use a conceptual population
during the optimization process as in master/slave models. However, each
processor only deals with few individuals [22, 29, 19]. Further, their topology
is usually defined logically as a grid. The neighborhoods are then defined
by a number of possibly overlapping rectangles, whereby good individuals
can diffuse through these overlapping regions. One interesting point is that
the model allows regions to overlap and to also sometimes be merged into
a larger region. This could make the model more elegant when approaching
the global POF, but it might be costly due to the high communication load
of the system.

It is a fact that the master/slave architecture initially attracted a lot of
attention from the research community. That might be because of the relative
easiness in its implementation. However, the island architecture has recently
gained the lead. Note that the island architecture offers a flexibility in control-
ling the course of action via interaction among nodes. Meanwhile, diffusion
and hybrid architectures has had less published work probably because their
implementations are much more complicated than the other two and they
usually (especially diffusion) requires some special support of hardware that
might not always be available in practice.
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Communication is a vital part of the distributed system. However, im-
plementation of communication is dependent on the particular architecture.
For examples, for the master/slave architecture, communication occurs be-
tween the master and all other slaves (no communication among slaves),
while for island models, communication can happen between any two nodes.
In general, for communication, it is important to address the issues of logical
topology (defining neighborhood relationship) [29], communication messages
(exchanging information among processing nodes), and frequency (intervals
of exchanging) [6, 10, 27].

It is also a fact that there has been very little discussion on the use of
summary information for communication messages; for example, in [33], the
authors proposed to use information of the shapes of the non-dominated
sets in the objective space as the communication messages. However, there
was a lack of depth and systematic analysis on the role of communication
messages regarding the use of different kinds of information as communication
messages.

Niching is a popular topic in both single and multi-objective evolutionary
optimization. For MOEAs, niching can be done either in the decision or ob-
jective space. Although the matter of niching in MOEAs has become mature
with a plethora of techniques, it has not yet been deliberately discussed for
distributed MOEAs (especially regarding the communication cost) [29].

Parallel niching is an architecture-dependent process. In general, parallel
niching can be done in two ways: (1) Explicit division (’divide and conquer’)
of the search space, where each population is allowed to track a part of the
search space over time. It is refereed to as explicit niching [14, 10, 28, 3, 25,
12, 15, 27]; and (2) obtaining niching information such as niche count and
communicate them during the course of action. Populations adjust themselves
according to these information [33, 29]. It is referred to as implicit niching.

3 Localization-Based Distributed Evolutionary
Multi-objective Optimization System

Here, we employ the EMO framework using localization that was primarily
proposed and used in [5, 4]. Each sub-area of the search space is associated
with a separate population and is used to build a local model. These models
are allowed to interact using PSO-inspired strategies (RACING, PSOV1, and
PSOV2) to exchange local/global best information.

Our focus is how to build a distributed system based on the framework of
local models with communication. For the system using this framework, it
is called Localization-based Distributed Evolutionary Multi-objective Opti-
mization System (LOS-EMOS), and the strategy of PSOV1 is selected when
running experiments on this system.
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Using the local models, it is expected that computation can easily be
parallelized by running each model on at least one processing node. Note that
there are two types of parallel processing: synchronous and asynchronous.
However, this chapter focuses only on the synchronous type since it has been
widely discussed in the literature and is more predictable and replicable than
its asynchronous counterpart. Further, it is particularly more suitable for the
proposed framework of local models.

3.1 Distributed Architectures

First of all, as indicated above, the original communication channel in the
system using the framework of local models suggests that when applied to
distributed computing, the architecture of master/slave (or shortly the mas-
ter/slave) can be used for LOD-EMOS in the first place. For this architecture:

– Each sub-population (for a local model) is located on a node (slave).
– The global archive will be managed by a central node (master). This master

will be in charge of coordinating all nodes. To reduce the idle time, we
designate a slave to work as the master.

However, it differs from the conventional master/slave architecture in the
way nodes communicate with the master. For example, each node sends its
own non-dominated set to the master for archiving. The master is in charge
of combining all received solutions to build the global archive. It then sends
back to all nodes only the summary information: the centroid of the global
archive. Further, the execution is distributed over all nodes.

Meanwhile, in the conventional master/slave, the master sends all individ-
uals to nodes for evaluation and then receives back all objective values. The
execution is centralized at the master and all slaves are just for individual
evaluations. In general, the master/slave is an effective one, but it can result
in the bottleneck effect from the master node in some cases of slow networks.

Fig. 1. An example of master/slave architecture
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Another alternative to the master/slave in the design of a distributed ar-
chitecture using local models is the island architecture, where nodes directly
communicate with their neighbors. In this design, the neighborhood of nodes
is defined by using ring topology. However, in order to fit local models into
the island architecture, it needs to address the matter of the global centroid.
Since all nodes communicate following the ring, it is not necessary to have
a global centroid for all nodes, instead the global centroid should be used
for the node of interest and its neighbors only. One example is that for each
node in the ring, its global centroid will be the centroid of the local archive
of its previous node; and the communication rules are still applicable. There-
fore, the communication here might be the matter of sending and receiving
the centroids of all private archives of the sub-populations. For the issue of
data transferring, it reduces very much the amount of transferred data in
comparison with the master/slave.

Fig. 2. An example of the island architecture

The last architecture is hybridization of the both above ones where there
are several masters communicated with ring topology. All slaves are broken
down into several groups (clusters); each cluster will be controlled by one
master. Further, a master is selected to coordinate all masters. This is called
clustering architecture. With this architecture, each sub-population will be
located on one slave node. Each master will maintain a global archive for
one cluster. Therefore, the master will receive information from all nodes
of its cluster and from its previous master in the ring. It seems to increase
the workload of data transferring. However, the use of multiple masters will
help to reduce the bottleneck effect of the master/slave architecture with one
master.
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Fig. 3. An example of the clustering architecture

3.2 Communication Messages

Communication messages Type 1- CM1: This type of information is
used to adapt with the original design of the local models where the local
non-dominated solutions are used to build the global archive for the system
guidance. Therefore, local non-dominated solutions from nodes will be the
objects to be transmitted on the communication channel. However, the actual
transmission will depend on the particular architecture:

– Master/slave: With this architecture, the master receives all non-
dominated solutions from all slaves. Note that each solution contains an
array of decision variables and another array of objective values. In turn,
it sends back to slaves summary information only: an array of the global
centroid. In term of the size, this array is equal to the array of decision
variables. Here, it is assumed that the data for each solution is a record of:

• An array of decision variables. Also assume that the data type for de-
cision variables are double (it is a 8-byte data type)

• An array of 8-byte objective values

Further, for a centroid, its size is equal to the size of an array of decision
variables. Therefore, the size of a solution and a centroid will be (n +
m)× 8 and n× 8 respectively, where n is the problem dimension, m is the
number of objectives. Overall, the amount of data transferred during the
optimization process is determined as follows:

A =
G∑

j=1;j=j+f

[ P−1∑
i=1

[N j
i ×(n + m) × 8] + (P − 1)×n × 8

]
(1)
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where G is the number of generations, Ni is the number of non-dominated
solutions in the slave i, f is the communication frequency, and P is the
number of nodes. In the worst case, the number of non-dominated solutions
is equal to the slave’s sub-population size; or Ni = N

P , N is the total
population size

– Island: As indicated in the previous sub-section, each node in the island
architecture has its own global centroid. It needs information of the non-
dominated set of its previous node in the ring to determine the global
centroid. Sine there is no need to combine the non-dominated solutions
from two nodes, the communication messages can be just only the cen-
troid information. Each node sends its own centroid to the other, while
receiving the other’s centroid. This will help to reduce a huge amount of
data transferred in one generation. Therefore, the amount of transferred
data is as follows:

A =
[
a +

G

f

]
×P×n×8 (2)

where:

a =
{

1 if f > 1
0 if f = 1 (3)

– Clustering: In this case, there are serval masters connected via a ring.
Each master is in charge of a cluster (with a number of slaves). Therefore,
the communication includes sending non-dominated solutions from slaves
to masters, from master to master, and centroids from master to slaves.
Eq. 4 is used to calculate the amount of transferred data

A =
∑G

j=1;j=j+f

[ ∑P−M
i=1 [N j

i ×(n + m) × 8+

+ n × 8] +
∑M

i=1[C
j
i ×(n + m) × 8]

] (4)

where M is the number of clusters and Ci is the number of non-dominated
solutions in the archive of the master i.

Communication messages Type 2 - CM2: For this type of communi-
cation, LOD-EMOS will exploit another type of summary information: the
direction of improvement. For each local model, the direction of improvement
is essential for its progress to the POF; and obviously the combination of the
directions from all models gives rise to the global direction of the system.
If this global direction is used to determine the global centroid for the next
time step, the final effect becomes quite the same as the way of using non-
dominated solutions to define the global centroid. This can be considered as
the reduced form of the original method of computing the global archive.
However, in some sense, it still reserves information of the global direction of
improvement. Furthermore, if looking at the aspect of distributed computing,
it reduces significantly the amount of transferring data. In the following, the
effect of using direction on different architectures will be discussed:
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– Master/slave: Again the slaves need to send the master information
about their progress (i.e. the obtained non-dominated sets) and then the
master will send back the global centroid. However, what they send to the
master is only the direction of improvement. Note that it has the equal
size to the size of a centroid. The global direction

−−−→
Dt+1 and centroid

−−→
ct+1
g

will be calculated as follows:

−−−→
Dt+1 =

P∑
i=1

−→
dt

i (5)

−−→
ct+1
g =

−→
ct
g +

−−−→
Dt+1 (6)

Note that in the initial generation, all non-dominated sets are sent to
determine the initial global centroid. Hence, the amount of data will be as
follows:

A = A0 +
G

f
×[2(P − 1)×n×8] (7)

n×8 is the size of transferred data for one record of direction or a centroid;
A0 is the amount of transferred data of the initial generation and

A0 =
[ P−1∑

i=1

[N0
i ×(n + m) × 8] + (P − 1)×n × 8

]
(8)

– Island: In this case, there is no difference between using direction or
non-direction to communicate. Sending a direction or a centroid to other
node causes the same amount of data (see Eq. 2). Further, the final global
centroid of a node is the same for both cases. Therefore, the performance
is exactly the same. The global direction for each slave i is now determined
as in Eq. 9 −−−→

Dt+1
i =

−−−−−→
dt

neighbor (9)

– Clustering: Similar to the master/slave architecture above, the slaves or
masters communicate by using direction instead of non-dominated solu-
tions.

The global direction of each cluster k is calculated as follows:

−−−→
Dt+1

k =
P1∑
i=1

−→
dt

i +
−−−−−−→
dct

neighbor (10)

where P1 is the number of nodes associated with a master, and the amount
of transferred data:

A = A0 +
G

f
×[(2P − M)×n×8] (11)
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A0 =
[ P−M∑

i=1

[N0
i ×(n + m) × 8 + n × 8] +

M∑
i=1

[C0
i ×(n + m) × 8]

]
(12)

Communication messages Type 3 - CM3: This is an extension of the
second type. It still uses the direction of improvement. However, nodes need to
send also the size of their non-dominated sets (assumed 2-byte integer). This
value will be used to weight the contribution of its local direction to the global
direction. It will be useful in some situations such as it gives nodes, which
are in good areas but make only a little move, more influence in the global
direction instead of being forgotten. This also somewhat compensates for the
loss of information that the use of direction can cause in comparison with
CM1. The differences in applying to different architectures are highlighted as
below:

– Master/slave: For this architecture, the global direction is calculated as
follows:

−−−→
Dt+1 =

P∑
i=1

Ni∑P
j=1 Nj

−→
dt

i (13)

Also, the amount of transferring data is calculated as in Eq. 14

A = A0 +
G

f
×[2 × (P − 1)×n×8 + (P − 1)×2] (14)

– Island: For an arbitrary node i, its global direction is calculated by com-
bining its neighbor’s direction and itself. The global direction is as the
following:

−−−→
Dt+1

k =
[

Ni

Ni + Nneighbor

−→
dt

i +
Nneighbor

Ni + Nneighbor

−−−−−→
dt

neighbor

]
(15)

Also, the amount of transferred data is:

A =
[
a +

G

f

]
×(P×n×8 + P×2) (16)

a is calculated as in Eq. 3
– Clustering: In this case, it is necessary to calculate global direction from

M masters.

−−−→
Dt+1

k =
∑P1

i=1
Ni∑ P1

j=1 Nj

−→
dt

i +
[

NCi

NCi+NCneighbor

−→
dct

i

+ NCneighbor

NCi+NCneighbor

−−−−−−→
dct

neighbor

] (17)
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The amount of transferred data:

A = A0 +
G

f
×[(2P − M)×n×8 + P×2] (18)

3.3 Communication Frequency

The frequency of communication is used to determine the time for nodes to
communicate with the masters or other nodes. For LOD-EMOS (or other dis-
tributed systems in general), the frequency is very important since the nodes
rely very much on the globally guided information that is communicated
among nodes. A high frequency might result in premature convergence since
the global information influences too much on the local models and there is
little time for them to conduct their own exploration. The local models would
thus quickly jump into the same areas before finding the true POF. On the
other hand, if the frequency is too low, the effect of using global information
to guide the search will be limited.

In general, the question of a suitable frequency is still open. Several works
have limited theoretical discussions in only two cases: no communication and
communication for every generation [6]. The common empirical choice is to
use a fixed and small frequency. It primarily is also used for experiments in
this chapter.

3.4 Time Analysis

Analysis of the time is essential for a distributed system since it is directly
related to the efficiency of the system in comparison with its serial counter-
part. In general, the computation time of a distributed system includes the
evaluation time, execution time, and the communication time. As pointed
out in [29], researchers ignore the execution time since it is usually much less
than evaluation time and communication time. Also, it is usually the case
that the execution time on serial and parallel is the same. The extra time,
that the parallel system brings in, is the communication time. The parallel
speedup has the meaning only in the case that this time is much less than
the evaluation time.

As analyzed before, the framework of local models does not impose an extra
computational complexity on the selected MOEA. Therefore, the execution
time of the system using the local models is dependent only on the complexity
of the selected MOEA. For example, if NSGA-II is employed, the execution
time is the combination of the time for crossover, mutation, selection, non-
dominated sorting for the local archive and global archive (if necessary). In
this chapter, since the main focus in on the communication, the execution
time is ignored.
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The total computation time T is calculated as follows:

T = Tf + Tc (19)

Tf is the evaluation time and Tc is the communication time. In the serial
mode Tc = 0. Assuming that the environment is homogenous, then

Tf =
GNtf

P
(20)

where tf is the time to evaluate one individual and N is the population size.

Note that for heterogenous ones: Tf = G ∗ max(Nti
f

P )
The communication time is estimated as follows:

Tc = tc ∗ A (21)

where A is the amount of transferring data (the number of bytes) and tc
is the time spent to transfer one byte of data. Note that here tc is assumed
constant over time. In practice, it is dependent on the network bandwidth and
the communication latency. However, as pointed out in [6], for the majority
of modern communication systems, the assumption of a fixed tc can be used
confidently. Note that in [6], the author considered the communication time
between the master and one slave as fixed (or as an unit of time). However,
in our model, the data sent from a node to master can be different from one
to an other, so that we use the unit at the smaller scale.

By definition, the speedup is the ratio between the computation time for
the system to run in serial mode and that in parallel mode [1]. Therefore, it
is determined as the following:

S =
GNtf

GNtf

P + tc ∗ A
(22)

Let α = tf

tc
, Eq. 22 can be rewritten as follows:

S = P
GNα

GNα + AP
(23)

As shown above, A is a linear function of the number of slaves P and
is defined explicitly depending on different architecture and communication
schemes. In general, A can be written as follows:

A = a1P + a2 (24)

Hence, S is rewritten as below:

S = P
GNα

a1P 2 + a2P + GNα
(25)
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From here, it is easy to obtain the optimal value for P by solving the
equation ∂S

∂P = 0:

P ∗ =
√

GNα

a1
(26)

The existence of the optimal value P ∗ indicates that the use of multiple
nodes is not for free. The more nodes added, the more communication is
imposed on the system; also, probably more idle time during the synchro-
nization period. However, it also is clear that the optimal value is dependent
on the value of α; as α increases, the more nodes can be added.

Here, an example is given using the master/slave architecture and CM2.
For it, the speedup is rewritten as follows:

S = P
GNα

16Gn
f P 2 + (A0 − 16Gn

f )P + GNα
(27)

Therefore, a1 = 16Gn
f and a2 = A0 − 16Gn

f .
An example (where P = 60, G = 100, N = 2000, A=100 Kb, and α ranges

from 1 to 1000) is used to calculate the dependency of the speedup to the
number of slaves (also, f = 1 and n = 2). All the results are visualized in
Figure 4. From the figure, once can clearly see that the curve of speed up
approaches the linear one as α gets increased. Further, the optimal value for
P also increases following the ranging of α.

1 10 100 1000
1

10

100

1000

alpha=1

alpha=10

alpha=100

alpha=1000

alpha=10000

Fig. 4. An example of the effect of scaling on the speedup of the system given α= 1,
10, 100, 1000, and 10000
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4 Experimental Studies

A series of experiments were conducted for analysis on the role of communi-
cation messages and explicit niching. Several problems were selected for the
experiments, including DTLZ3 (2 objectives with multi-modality ), DTLZ7
(2 objectives with discontinuity of the POF), ZDT4 (2 objectives with multi-
modality) and ZDT6 (2 objectives with non-uniformity of the POF). There
are no particular reason for selecting these problems except they have been
used widely in the literature. Due to the space limitation, the readers are re-
ferred to [9, 8] for more detailed descriptions of these problems. These prob-
lems were also used to investigate the performance of the distributed systems
using local models with regard to problem scaling since they are scalable.

Here, each sub-population was assigned 100 individuals. The clustering
architecture was tested with two configurations: 2 clusters (2C) and each
was associated with 3 slaves(sub-populations); and 3 clusters (3C), with 2
sub-populations for each. The total number of sub-populations was 6. The
other architectures (master/slave - MS, and island - IS) also were assigned
6 sub-populations (although later on we also tested with more than 6 sub-
populations for the scalability of the system). Updating frequency was set as
5 generations.

Our experiments were carried out on a SGI-Altix system with a maxi-
mal number of 16 processors (Itanium-2 1.3 GHz). The total system shared-
memory is 32Gb. Processors connect with each other and to the system mem-
ory via a network using NUMAlink-4 technology with a very high speed and a
low latency (bandwidth of 6.4Gb/s and hardware latency of several hundreds
of nanoseconds). We also used OpenMP technology to develop our distributed
system.

4.1 Effect of Distributed Architectures and
Communication Messages

In general, the performance of parallel systems is dependent on two factors:
effectiveness and efficiency. For LOD-EMOS, the effectiveness is measured
by the convergence rate and the quality of the obtained non-dominated sets.
For this, the number of evaluations, required by approaches to reach a highly
predefined level of the hypervolume ratio [8]- HR (0.999, for example), is
used. The high level of HR is used to guarantee the quality of the non-
dominated set and the recorded results also reveal how fast the approaches
are in advancing to the global POF. Meanwhile, the efficiency is shown via
the level of speedup that LOD-EMOS gained in comparison with its serial
counterpart. The speedup will be calculated following Eq. 23.

Firstly, the number of evaluations that approaches spent to reach the pre-
defined level of HR were reported in Table 1. These results will be used to an-
alyze how the change of architecture affects the performance of LOD-EMOS.
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Table 1. The average number of evaluations (and the standard error) that each
architecture needed to reach the HR level of 0.999. All communication types were
used. Symbol † indicates that the difference between the master/slave and the others
in each category of communication messages is significant. The texts in bold-style
show the best among different architectures.

Com msg Architectures DTLZ3 DTLZ7 ZDT4 ZDT6

CM1

MS 12400±2371 13560±940 42380±3786 8720±438

3C 12540±2296 11580±758† 42860±3345 8320±562†
2C 12340±3042 11780±431† 40180±4464 8100±540†
IS 12880±2760 14780±1246† 41040±6146 8860±464

CM2

MS 12380±2843 14320±1187 42660±4173 8960±629

3C 12160±2441 11420±912 † 41080±6290 8320±645†
2C 12800±3227 10740±824 † 41560±3509 8220±391†
IS 12880±2760 14780±1246 41040±6146 8860±464

CM3

MS 12440±2337 14100±1144 42860±3878 8800±481

3C 11980±2152 11300±864 † 41040±4514 8340±554†
2C 12300±2260 10880±799 † 40540±4374 8240±567†
IS 12760±3099 14620±1304 40540±3804† 8680±492

It is clear that the clustering architecture was the best, while the island one
showed the worst. This fact can be explained in the way that for clustering,
the use of more than one interconnected global archive might give the local
models more diverse information about the global trend than the single one.
Meanwhile, the use of ring topology in the island architecture might slightly
reduce the usefulness of the globally guided information together with PSO
rules. That is why it required slightly more evaluations.

Regarding the effect of communication messages, it will be elaborated on
all test architectures. Although the use of direction might lose some infor-
mation, the overall performance is still the same as that of the method of
using the non-dominated set (CM1). This result is confirmed for all architec-
tures. As mentioned in the previous section, for CM1, the local model that
contributes more solutions will be more dominating in the global informa-
tion. This might not happen in the case of using direction (CM2 and CM3).
However, for weighted direction (CM3), the effect of domination is somewhat
regained. That is why it had better performance than that of using direction
only; even it outperformed the method of using non-dominated set in some
cases. However, it should be noted that the use of direction is expected to
get no worse results than that of CM1, while helping to reduce the amount
of transferred data.

In general, all approaches reached the global POF within 50 000 evalua-
tions. Therefore, it becomes the checkpoint for investigating the speedup that
LOD-EMOS obtained with each approach. Firstly, the amount of data (the
number of Kbytes) transferred during the optimization process was measured
and reported in Table 2. For CM1, it is obvious that the island architecture
transferred the least amount of data as expected. For every generation, each
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Table 2. The number of KBytes transferred (and the standard error). Symbol †
indicates that the difference between the master/slave and the others is significant.
The texts in bold-style show the best among different architectures.

Com msg Architectures DTLZ3 DTLZ7 ZDT4 ZDT6

CM1

MS 179.944±15.093 1114.483±15.813 134.831±13.038 659.972 ±6.972

3C 631.538±20.499† 1617.720± 13.469† 556.225±10.271† 878.031 ±6.849†
2C 659.581±22.853† 1840.866± 14.517† 591.016±12.974† 1011.644 ±8.810†
IS 8.766±0.000† 16.734 ±0.000† 7.969±0.000† 7.969±0.000†

CM2

MS 17.503 ±0.529 37.237 ± 1.176 15.305 ±0.387 15.513 ±0.320

3C 40.376 ±0.435† 79.499 ± 0.826† 36.354 ±0.272† 36.518 ±0.266†
2C 42.528 ±0.420† 84.246 ± 1.131† 38.237 ±0.350† 38.331 ±0.305†
IS 8.766±0.000† 16.734 ±0.000† 7.969±0.000† 7.969±0.000†

CM3

MS 17.659 ±0.529 37.393 ± 1.176 15.461 ±0.387 15.669 ±0.320

3C 40.564 ±0.435† 79.687 ± 0.826† 36.542 ±0.272† 36.706 ±0.266†
2C 42.715 ±0.420† 84.434 ± 1.131† 38.424 ±0.350† 38.518 ±0.305†
IS 8.965±0.000† 16.934 ±0.000† 8.168±0.000† 8.168±0.000†

local model sent only an array of centroid’s coordinates. Meanwhile, the mas-
ter/slaves and clustering architectures sent more data since they work with
the set of non-dominated solutions; further, the clustering one also includes
the communication data among masters.

The story is much more different in the cases of using direction (CM2 and
CM3). Sending data now is just about the direction of improvement - a record
of several numerical values (the same as the record of a centroid). That is
why the amount of data is significantly reduced (from 10 to 30 times). CM3
sent slightly more data than CM2 did. That is because it also sent the size
of the non-dominated set for the weighting purpose (2-bytes data type). In
general, the island architecture still sent the least amount of data.

Note that Eq. 23 formulates the speedup related to the amount of trans-
ferred data, the number of nodes and α - the ratio between the time require to
evaluate an individual and the time to send one byte of data on the network.
Clearly, this equation indicates the dependency of the speedup on the ratio
α. There might be very little speedup (therefore, little efficiency) if the eval-
uation time is similar to the communication time. For this, α was tested with
both small and large values (1 and 100). All estimated results were reported
in Table 3 where all high speedups (that are equivalent with the efficiencies of
more than 80%) are highlighted . By ”estimated results” we mean Eq. 23 was
used for this since the amount of data transmitted in each case was already
available for calculation.

It is obvious that in the case of α = 1, the speedup of all approaches was
small (except island architectures since it works with the centroid rather
than the whole set) and especially was less than 1.0 for CM1. However,
this speedup increased as the ratio became higher (approaching the linear
speedup that is 6.0 in this case). Among these, the clustering architecture
seemed to have the least efficiency. While the island architecture had already
the speedup of 3.0 when α = 1, the clustering had less than 1.0 for all types
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Table 3. The estimated speedup of LOD-EMOS (and the standard error) with
different architectures and communication styles and using different α. Texts in
bold-style show the high speedup (approaching linear level 6.0).

α Com msg Architectures DTLZ3 DTLZ7 ZDT4 ZDT6

1

CM1

MS 0.260±0.021 0.043±0.001 0.343±0.030 0.073±0.001

3C 0.076±0.002 0.030±0.000 0.086±0.002 0.055±0.000

2C 0.073±0.002 0.026±0.000 0.081±0.002 0.048±0.000

IS 2.883±0.000 1.958±0.000 3.026±0.000 3.026±0.000

CM2

MS 1.900±0.039 1.073±0.028 2.078±0.034 2.059±0.028

3C 1.003±0.009 0.555±0.005 1.094±0.007 1.090±0.007

2C 0.961±0.008 0.527±0.006 1.049±0.008 1.047±0.007

IS 2.883±0.000 1.958±0.000 3.026±0.000 3.026±0.000

CM3

MS 1.888±0.039 1.070±0.027 2.064±0.034 2.046±0.027

3C 0.999±0.009 0.554±0.005 1.089±0.007 1.085±0.006

2C 0.957±0.008 0.526±0.006 1.045±0.008 1.043±0.007

IS 2.849±0.000 1.942±0.000 2.988±0.000 2.988±0.000

100

CM1

MS 4.911±0.075 2.527±0.021 5.145±0.070 3.307±0.016

3C 3.373±0.048 2.003±0.011 3.558±0.027 2.880±0.012

2C 3.309±0.051 1.834±0.010 3.470±0.032 2.669±0.013

IS 5.936±0.000 5.879±0.000 5.942±0.000 5.942±0.000

CM2

MS 5.873±0.004 5.736±0.008 5.889±0.003 5.887±0.002

3C 5.715±0.003 5.464±0.005 5.742±0.002 5.741±0.002

2C 5.701±0.003 5.435±0.007 5.730±0.002 5.729±0.002

IS 5.936±0.000 5.879±0.000 5.942±0.000 5.942±0.000

CM3

MS 5.872±0.004 5.735±0.008 5.888±0.003 5.886±0.002

3C 5.714±0.003 5.463±0.005 5.741±0.002 5.740±0.002

2C 5.700±0.003 5.434±0.007 5.728±0.002 5.728±0.002

IS 5.934±0.000 5.877±0.000 5.940±0.000 5.940±0.000

of communication. It is interesting to see that the speedup in the cases of
multi-modal problems (DTLZ4 and ZDT4) was much more than that of the
unimodal problems (DTLZ7 and ZDT6) for CM1. That is because, for uni-
modal problems, the local models easily found the POF and the size of the
non-dominated sets increased quickly. Therefore, the amount of data also
increased consequently and the system spent more time on communication.

In general, the use of direction (CM1 and CM2) gives LOD-EMOS much
more efficiency in comparison to their counterpart - CM1. It is important to
note that for practical problems (also using the modern networked systems
that can offer the transmission speed of Gigabits ), the ratio α is much higher
than the ones reported in this analysis. In our share-memory system, the ratio
can be up to thousands. More detailed analysis will be given in Section 4.3.

4.2 Effect of Frequencies

In this section, another factor in the design of a distributed system is ana-
lyzed: frequency. Three levels of frequency were tested including: 1, 5 and 10
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generations. The use of one-generation frequency is to create an upper bound
for communication. For this case, the nodes communicate in every genera-
tion. From the communication perspective, this will cause heavier workload,
especially for CM1 where all non-dominated solutions are sent during the
optimization process. Further, for the system performance, it might be not
good for solving multi-modal problems since as the effect of global informa-
tion is too frequent, not much time is allowed for nodes to discover their own
niches. Therefore, the global information might quickly get poor.

Table 4. The average number of evaluations (and the standard error) that each
architecture needed to reach the HR level of 0.999. Frequency is one generation.
Symbol † indicates that the difference between the master/slave architecture and
the others is significant. The texts in bold-style show the best approaches among
different architectures.

Com msg Architectures DTLZ3 DTLZ7 ZDT4 ZDT6

CM1

MS 12240±2499 11080 ±1133 43120±4334 6500±612

3C 13320±2615† 8180 ±826 † 40620±3031† 5760±642†
2C 13040±2832 8180 ±696 † 41080±4825 5780±485†
IS 12700±3719 10300 ±1081† 49680±5354† 7500±859†

CM2

MS 12740±2705 9820 ±826 43300±3847 6560±609

3C 13780±3454 5820 ±790 † 54600±6406† 5820±758†
2C 14060±3243† 4800 ±315 † 56960±7977† 5380±841†
IS 12700±3719 10300 ±1081 49680±5354† 7500±859†

CM3

MS 12960±2709 10960 ±1382 47420±5654 6820±1120

3C 14300±4073 6040 ±945 † 55460±5654† 5920±955†
2C 13580±3855 4940 ±464 † 56920±8775 5440±833†
IS 13660±3304 9700 ±850 † 48000±5584† 7320±1002

To investigate the trade-off effect of changing frequency to the system’s ef-
fectiveness, again, the number of evaluations that approaches needed to reach
the predefined level of HR is employed and they all were reported in Tables
1, 4, 5. From these results, the tradeoff is quite clear. For unimodal problems
(DTLZ7 and ZDT6), the system got worse as the frequency increased. There
are no traps in these problems, the more interaction among local models,
the more benefit the slow ones gained from the faster counterparts. Over-
all, the system got faster convergence. For multi-modal ones (DTLZ3 and
ZDT4), the effect is opposite. The case of a frequency of one generation had
the worst performance where the number of evaluations was much more than
that of the other cases, especially for problem ZDT4. However, the benefit of
reducing frequency is not infinite. The system obtained the best performance
when using frequency of 5 generations; when it changed to 10 generations,
the performance of the system downgraded. This finding is also consistent
with the majority of research results in the literature [6] where the frequency
is usually set at a relatively small value.

For the matter of transferring data, it is obvious from Tables 2, 6, and 7
that when the frequency value got smaller (higher frequency), the amount of
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Table 5. The average number of evaluations (and the standard error) that each
architecture needed to reach the HR level of 0.999. Frequency is ten generations.
Symbol † indicates that the difference between the master/slave architecture and
the others is significant. The texts in bold-style show the best approaches among
different architectures.

Com msg Architectures DTLZ3 DTLZ7 ZDT4 ZDT6

CM1

MS 12640±2394 16740±1172 41840±3765 10040±686

3C 12500±2359 15860±1099† 42200±4258 9860 ±490

2C 12140±2341 15760±1113† 41940±3931 9880 ±584

IS 12780±2623 17100±1896 42700±4674 10000±530

CM2

MS 12740±2750 17480±1248 41880±3528 10120 ±645

3C 12420±2707 16140±1037† 43580±3536 9860 ±604

2C 12580±2469 15660±1244† 40940±4907 9860 ±681

IS 12780±2623 17100±1896 42700±4674 10000 ±530

CM3

MS 13120±2896 17660±1565 41540±4522 10280 ±645

3C 12400±2776 16000±809 † 41220±3686 9900 ±845†
2C 12460±2238 15640±996 † 40940±3308 9920 ±625†
IS 12720±2355 17500±1462 41480±5054 10060 ±663

Table 6. The total amount of data transferred during the optimization process (and
the standard error). All communication types were used. Frequency is one genera-
tions. Symbol † indicates that the difference between the master/slave architecture
and the others is significant. The texts in bold-style show the best approaches among
different architectures.

Com msg Architectures DTLZ3 DTLZ7 ZDT4 ZDT6

CM1

MS 843.814 ±99.975 5708.303±132.825 624.750 ±57.624 3493.109±39.590

3C 3034.287±69.508† 8078.058±82.631† 2732.219 ±53.651† 4467.084±22.295†
2C 3206.561±77.906† 9282.782±133.506† 2863.231 ±65.738† 5182.572±21.640†
IS 42.797 ±0.000† 81.7030.0±00† 38.906 ±0.000† 38.906 0±.000†

CM2

MS 74.221 ±0.529 145.518±1.176 66.867 ±0.387 67.076 0±.320

3C 69.228 ±0.344† 134.679±1.030† 82.760 ±0.272† 82.924 0±.266†
2C 99.246 ±0.420† 192.527±1.131† 89.799 ±0.350† 89.893 0±.305†
IS 42.797 ±0.000† 81.7030±.000† 38.906 ±0.000† 38.906 0±.000†

CM3

MS 75.022 ±0.529 146.319±1.176 67.668 ±0.387 67.876 0±.320

3C 92.384 ±0.435† 177.913±0.826† 83.721 ±0.272† 83.565 0±.266†
2C 100.207 ±0.420† 193.488±1.131† 90.760 ±0.350† 90.854 0±.305†
IS 43.770 ±0.000† 82.6760±.000† 39.879 ±0.000† 39.879 0±.000†

data transferred also increased. That is because if the system communicates
more frequently, the more data will be sent over the network. Therefore, the
workload will be increased.

In general, the implication of this investigation is about the relationship
between frequency and the performance of the distributed system. For a fre-
quent communication (such as 1 generation), the consequence is obvious.
However, a high value of frequency (such as 10 in this study), might help
to reduce the workload, but might also affect the quality of obtained solu-
tions, since it causes the lack of sharing of useful information during the
optimization process.
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Table 7. The total amount of data transferred during the optimization process
(and the standard error). Frequency is ten generations. Symbol † indicates that
the difference between the master/slave architecture and the others is significant.
The texts in bold-style show the best approaches among different architectures.

Com msg Architectures DTLZ3 DTLZ7 ZDT4 ZDT6

CM1

MS 96.289 ±9.809 555.460±12.331 75.384 ±9.605 332.738±4.440

3C 331.454 ±6.867† 826.260±9.520† 298.741±6.467† 452.469±4.291†
2C 353.163 ±10.315† 939.311±9.269† 314.638±7.786† 521.213±2.746†
IS 4.641 ±0.000† 8.859 ±0.000† 4.219 ±0.000† 4.219 ±0.000†

CM2

MS 10.628 ±0.529 24.112 ±1.176 9.055 ±0.387 9.263 ±0.320

3C 34.189 ±0.435† 67.687 ±0.826† 30.729 ±0.272† 30.893 ±0.266†
2C 35.653 ±0.420† 71.121 ±1.131† 31.987 ±0.350† 32.081 ±0.305†
IS 4.641 ±0.000† 8.859 ±0.000† 4.219 ±0.000† 4.219 ±0.000†

CM3

MS 10.706 ±0.529 24.190 ±1.176 9.133 ±0.387 9.341 ±0.320

3C 34.283 ±0.435† 67.780 ±0.826† 30.823 ±0.272† 30.987 ±0.266†
2C 35.746 ±0.420† 71.215 ±1.131† 32.081 ±0.350† 32.174 ±0.305†
IS 4.746 ±0.000† 8.965 ±0.000† 4.324 ±0.000† 4.324 ±0.000†

4.3 Scalability and Speedup

This section is dedicated to an investigation of the scalability of LOD-EMOS.
In Section IV, it has been shown that the scalability of LOD-EMOS depends
very much on the ratio α; in other words, the optimal number of nodes is
related to the value of α. Further, the proposed theoretical paradigm acts as
a boundary for LOD-EMOS. The analysis given in this section serves as an
experimental confirmation of this boundary.

The master/slave architecture was selected for the experiments on the
problem of ZDT4. Again, the amount of data transferred during the opti-
mization process (up to 50 000 evaluations) was recorded. The number of
nodes ranged from 2 to 10. These results were reported in Table 8. Obvi-
ously, the approaches of using directions showed the least amount of data in
all cases of the number of nodes as expected. It is ten times less than that of
CM1. Further, the system got more data as the nodes increased for all types
of communication messages. To get more understanding of how this affects
the speedup, several values of α were tested and all results were visualized in
Figures 5 and 6.

From Figure 5 (for CM1), it is easy to see that the speedup of the dis-
tributed system increased in all cases of nodes as α increased. While the
speedup is less than one when α = 1, it increased to linear speedup for a
small number of nodes (and near-linear when there are about 9 or 10 nodes)
when α reached 1000. As previously pointed out, CM1 usually sends a quite
large amount of data (the whole non-dominated set) among nodes. This might
affect the speedup of the system.

Further, the scalability of the system is also related to the degree of α. It
is clear from the figure that as α was small, the optimal number of nodes is
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Table 8. The amount of data transferred (and the standard error) with different
cases of the number of nodes. Symbol † indicates that the difference between 2
nodes and others is significant. The texts in bold-style show the best case of the
number of nodes.

Nodes CM1 CM2 CM3
2 141.131±27.797 3.201 ±0.185 3.232 ±0.185

3 149.116±32.412 6.201 ±0.219† 6.263 ±0.219†
4 145.159±25.539 9.286 ±0.265† 9.380 ±0.265†
5 136.778±19.990 12.247 ±0.358† 12.372 ±0.358†
6 134.831±13.038 15.305 ±0.387† 15.461 ±0.387†
7 150.503±15.141 18.174 ±0.319† 18.362 ±0.319†
8 163.784±12.717† 21.070 ±0.352† 21.289 ±0.352†
9 170.959±12.274† 24.094 ±0.442† 24.344 ±0.442†
10 176.638±14.108† 27.005 ±0.529† 27.286 ±0.529†
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Fig. 5. The estimated speedup for Master/slave architecture using CM1

about 6. As α increased, the optimal number of nodes also increased. This
is consistent with the theoretical finding in the previous section. This again
indicates that there is is a very little advantage of using distributed system
for problems with cheap objective evaluation.

For CM2 and CM3 (An example is given for CM2 in Fig. 6), the speedup
was much more than that of CM1 regardless of the number of nodes; for
example, when α = 1, their speedup was more than one in all cases, while for
CM1, it was less than one. Further, they certainly reached the linear speedup
when α = 1000. Although their peak was smaller (4 nodes) when α = 1, this
value increased quickly for more than 10 as α = 10.
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Fig. 6. The estimated speedup for Master/slave architecture using CM2

We now focus on the time of LOD-EMOS on our actual SGI-Altix
multiprocessor system. In this system, sending solutions is just the mat-
ter of writing/reading memory addresses. Therefore, the time is very fast
and the communication-related time is dominated by the factors of creat-
ing/schyncronizing threads of OpenMP that might be not much different
between communication styles. We measured the wall-time from the start to
the end of the optimization process, therefore, it might include some extra
time from the operating system (such as scheduling time). Also, the evalua-
tion for ZDT4 is also very fast (about 1.8 microseconds for the evaluation of
an individual). To make more sense, we increased the evaluation time of an
individual to nearly 0.1 millisecond (about 0.07-0.08 millisecond) by adding
a simple loop. Again, the results were averaged from 30 runs with different
random seeds. For each run, 10 trials were performed to get the least time
(in order to minimize the effect of the operating system).

The results were visualized in Figure 7 as the time versus the number of
nodes. For the figure, we can see that as the number of nodes increased, the
time decreased. Among communication styles, the time of CM2 and CM3 is
obviously less than that of CM1. In slower systems, this difference is certainly
higher since the sending of solutions for CM1 will cause more time than CM2
and CM3 (that require sending only the statistical information). Further,
the speed of reduction became smaller (especially CM2 and CM3) when the
number of nodes increased to 10. That is because when the number of nodes
increased, more the communication time was also added to the total time.
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Fig. 7. Computation time of LOD-EMO with OpenMP on SGI-Altix system

5 Conclusion

In this chapter, the framework of local models was investigated under the
effects of different aspects, including architectures, communication and scal-
ability. A system called LOD-EMOS was built from the framework. Three
architectures were proposed for LOD-EMOS: master/slave, island and clus-
tering. Three different types of communication messages were applied to
LOD-EMOS. Further, it was also tested under different schemes for frequency.

From the investigation, it has been found that: (1) Local models can be
adapted easily to different distributed architectures; (2) Direction of improve-
ment can be used to determine the global centroid and therefore can be used
as communication messages; (3) Localization offers a good way to obtain
the direction of improvement; (4) Local models have a capability of dealing
with scalability as the number of nodes increases (an optimal value was been
pointed out).

The developed theory in this chapter is devoted to understanding the role
of communication messages and explicit niching in distributed MOEAs. LOD-
EMOS was used as the platform for the investigation. The built paradigms
(the equations) are approximate and easy to be adapted to particular sit-
uation since they show the boundary for the practical systems. Further, as
pointed out in [6] it is usually difficult to build the exact paradigms, and
if they are built, they are expensive to use and hence have little practical
significance.
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Adaptive Scheduling Algorithms for the
Dynamic Distribution and Parallel Execution of
Spatial Agent-Based Models

Matthias Scheutz and Jack Harris

Abstract. In previous work [7], we proposed a general framework for defining
agent-based models (ABMs) and introduced two algorithms for the automatic paral-
lelization of agent-based models: a general version P-ABMG for all ABMs definable
in the framework and a more specific variant P-ABMS for “spatial ABMs”, which
can utilize the additional spatial information to obtain performance improvements.
Both algorithms can automatically distribute ABMs over multiple processors and
dynamically adjust the degree of parallelization based on available computational
resources throughout the simulation runs. However, they are not sensitive to inef-
ficiencies in the sequence in which agents in each parallel simulation instance are
updated.

In this chapter, we introduce a minimal framework for describing ABMs and pro-
pose various asynchronous scheduling algorithms for agent-based simulations that
address the update inefficencies of simulation schedulers. The proposed algorithms
work in conjunction with P-ABMG and P-ABMS and allow for efficient simulation
runs that can automatically and better utilize the asynchronous nature of parallel
distributed agent-based simulations (including split-ups of specific simulation mod-
els and dynamic load-balancing). We demonstrate the significant performance gains
of the proposed algorithms using an actual agent-based model used for studying
female choice and foraging in biological research.

1 Introduction

Simulations of agent-based models (ABMs) have been successfully applied in a va-
riety fields to reveal and elucidate interaction patterns among entities in complex
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systems that are otherwise difficult to detect and understand. Depending on the in-
vestigated problem, the entities – or “agents”1 – in agent-based models might take a
different form. Model varieties range from chemicals or simple cybernetic creatures
in artificial life, to web pages, computers, or human users in complex networks,
to game-theoretic players in economics, to groups of humans or animals in social
studies, biology, and anthropology (see [7] for more references).

What is common to all these diverse models is that they decompose the behav-
ior of complex systems into tractable actions and interactions of individual agents.
This is typically achieved by defining rules that determine the behavior of individ-
ual agents for all possible contexts in which the agent might find itself. A special
class of agent-based models, the spatial agent-based models, explicitly defines an
environment, which is typically a metric space. Every agent is situated in a particu-
lar location in the environment at any given time, but the location may change over
time (e.g., if the agent is moving). Every agent also has an interaction range that,
given the agent’s location, determines the set of other agents in the environment with
which it can interact at any given time; it cannot interact with or have any effects on
agents outside of its interaction range.2

From a computational perspective, agent-based models are interesting because
they often lend themselves to efficient, parallel implementations. One obvious way
to parallelize agent-based models, for example, is to spawn a separate computational
thread for each agent in a given simulation. These computational processes will take
care of computing the agent’s behavior and will of course have to be synchronized to
ensure that all agents are updated consistently – we will say more about this shortly.
Since for typical models, the number of agents in the model will by far outnumber
the cores or processors available on the computer running the model simulations, it
might also make sense to distribute simulations across multiple computers to better
utilize the intrinsic parallelism in agent-based models. There is, however, a criti-
cal difference between distributing simulations over multiple connected computers
and parallelizing a given model within one computational process on one computer
(e.g., using a parallel programming language like ADA, or a threaded program-
ming language like JAVA). In single process simulations, all agents can access the
same environment and can use synchronization mechanisms available within the
process, while in distributed simulations the environment has to be replicated on
each host computer, and synchronization between agents and environments have to
be achieved using networked “inter-process” synchronization primitives. Whereas
parallelism within one computational process might be already implemented in the
employed simulation environment, dynamic parallelization via distribution of the

1 Agent-based models–sometimes also called “individual-based” models–are often used to
simulate the behavior of complex real-world systems. They are used when possible state
changes of individual entities are known and can be encoded in rules, while no such knowl-
edge exists for global world states (e.g., the state given by the environment and all its
agents).

2 Note that general agent-based models can be viewed as a special case of spatial agent-
based models in that all agents are located in the same location and can interact with all
other agents at any given time.
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environment over multiple computers is not available in any of the common model-
ing environments. Augmenting such environments to support multi-host distribution
requires significant programming expertise, which modelers usually do not possess
or are unwilling to invest their time, given that their research interest lies in the sim-
ulation results and not the computational infrastructure.3 We believe that modelers
should not have to worry about computational issues, but should be able to define
their models in their favorite modeling environment, and the computational infras-
tructure should take care of running these models in the most efficient fashion given
the available resources.

We have previously developed algorithms that will support modelers in achiev-
ing good turn-around times of model simulations by automatically parallelizing and
distributing general and spatial agent-based models [7]. In this chapter, we extend
our previous ideas for scheduling agents in simulations of spatial agent-based mod-
els by introducing novel scheduling algorithms. These algorithms take advantage of
both the inherent parallelism in agent-based models and the interaction ranges of
agents in spatial models. We demonstrate that these algorithms can achieve a signif-
icant performance improvement over standard scheduling algorithms in the context
of our previous parallel and distributed algorithms [7] through a reference imple-
mentation in our SWAGES system [8]. This improvement is achieved by virtue of
tightly integrating the simulation scheduler with the distribution algorithm. While
the proposed algorithms will already be of great utility for modelers, they also pose
a variety of interesting open problems for future research, which we will briefly
address at the end of our exposition.

2 Distributed Simulations of Agent-Based Models

Various kinds of formalisms and frameworks have been developed to capture this
diversity of agent-based models (e.g., some models are essentially physics-based,
while others operate solely on a social level). We have previously attempted to define
general formal frameworks for hierarchical [6] and spatial [7] agent-based models
that were intended to be maximally inclusive. Here, we take the opposite approach
and attempt to make due with the smallest formal framework for spatial agent-based
models that is sufficient for defining and employing our distribution and scheduling
algorithms.

We start with the assumption that each spatial agent-based model (S-ABM) M
has an environment 〈EnvM 〉 that can be modeled as a discrete or continuous metric
space (e.g., with the Euclidean norm). Such models allow for the simulation of in-
teractions among agents based on a notion of distance. Spatial distance is not only
crucial for understanding the behavior of many biological systems and organiza-
tions of agents in physical spaces (e.g., insect swarms, flocks of birds, schools of

3 While we don’t have formal evidence for this claim, in our experience modelers are happy
to put up with very long single computer simulation runs, before they are willing to enter-
tain the possibility of having to manually distribute their models.
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fish, etc.), but it is also essential for the parallelization and distribution algorithms
we will review in this chapter. We also assume that for each agent A in M there is a
clearly defined interaction range IA that, given the position of all agents in the envi-
ronment, determines at any given time the set of agents it can (potentially) interact
with at that time.4 Finally, we assume that each model has a set of initial conditions
InitM and a set of terminating conditions TermM which determine the initial and
final states of a simulation of model M under those conditions. A (discrete-event)
simulation of M is a sequence of updates of all agents A such that for any point in
the sequence and any agent, all agents within its interaction range have had the same
number of updates since the start of the simulation. The rationale for this definition
will become clear later, for now just note that the standard updating sequence in
discrete-time simulations falls under this defintion. This sequencing which we call
“cycle-based update strategy” updates every agent in A before starting over and up-
dating every agent in A again, and repeatedly looping through the set of agents until
a terminating condition is reached.

2.1 A Minimal Framework of Agent-Based Models

We start by defining the notion of spatial agent-based model.

Definition 1 (Spatial agent-based model). A spatial agent-based model M =
〈EnvM ,ATypesM , InitM ,TermM 〉 consists of an n-dimensional bounded or un-
bounded metric space EnvM (consisting of locations that can be occupied by
agents), a set of agent types ATypesM , a set of initial conditions InitM , and a
set of terminating conditions TermM . InitM is a set of agents and TermM is
a set of functions from the powerset of AgentsM (the set of all possible agents
in M into {true, f alse}. An agent A is a triple 〈IDA,TypeA,StateA〉 which con-
sists of the agent’s unique identifier IDA ∈ N (required to be able to dissoci-
ate agents that would otherwise be identical with respect to their remaining in-
formation), an agent type TypeA ∈ ATypesM , and an agent state StateA, where
StateA = 〈LA, IA,TA,UA, ...〉 contains the agent’s location LA ∈EnvM in the environ-
ment, its interaction range IA ∈ EnvM , a translation function TA which determines
for a given location the maximum distance an agent can travel within one update,5

an agent update function UA mapping sets of agent states onto agent states, and any
other pertinent information about the agent particular to the model.6

4 Note that the interaction range is allowed to change over time, but at any given point
in time it has to be defined and uniquely determinable. Furthermore, note that we are not
distinguishing between “sensory” and “actuator” ranges here, see [7] for such a distinction.

5 We will discuss the reason for this function later.
6 Note that formally the definitions of “agent-based model”, “agent”, and “agent state” are

co-recursive, i.e., mutually dependent and thus mutually defined. This type of definition
requires non-well-founded set theory as a formal framework, where the “Solution Lemma”
ensures that these kinds of structures are properly defined and exist [1].
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Equipped with the notion of agent, agent state, and agent-based model we can now
define what we mean by a simulation of an agent-based model:

Definition 2 (Simulation of an S-ABM). A simulation SM ,C0 of an S-ABM M is
defined as a finite sequence of configurations SM ,C0 = 〈C0,C1, . . . ,Ck〉 starting with
configuration C0 and ending with Ck. Each configuration Ci (0 ≤ i ≤ k) is a set of
agents of some type in ATypesM – we will use AgentsM to denote the set of all
possible agents supported by M . C0 is an initial configuration in InitM . Ck is a
terminal condition such that for some function f ∈ TermM f (Ck) = true and there
is no configuration Cj with j < k and f ∈ TermM such that f (Cj) = true. We also
require for all configurations Ci and Ci+1 (0 ≤ i < k) to be “consistent”, i.e., if Cj

“follows” Ci in the simulation sequence (i.e., j = i+ 1) then Cj is obtained from Ci

by (simultaneously) updating a subset of agents A ⊆Ci such that all agents A′ ∈Ci

whose interaction range intersect with that of some A ∈ A are (already) in A . An
agent A ∈Ci (part of a simulation 〈C0,C1, . . . ,Ck〉 of S-ABM M ) is said to be at the
n-th cycle if A has been updated n times, i.e., Un

A(State0
A) = StateA where State0

A was
the state of A in C0 and Staten

A is its state after n updates. Finally, a configuration
Ci is said to be at cycle n if all of its agents are at the n-th cycle.

Note that simulations of agent-based models are, by definition, consistent sequences
of configurations where all subsets of agents with intersecting interaction ranges are
at the same cycle (this is a more permissive notion of configuration than the one
implicitly underlying typical event-based simulations, namely that all agents in a
configuration must be at the same cycle). Consequently, sequences of configurations
that are not consistent (i.e., where agents get updated in an “inconsistent fashion” as
would be the case if an agent that was updated twice already got updated based on
its interaction with an agent that had only been updated once) are not simulations
of agent-based models. However, the above definition of “consistent configuration”
does not require that there be a “unique successor” of a given configuration (as is
typically defined for discrete-event-based simulations), because for any given set of
agents there could be many possible configurations that follow. Consequently, an
initial configuration will give rise to a directed graph of configurations, call it the
“configuration graph of M ”, which could be infinite (e.g., if the sequence contains
only non-final configurations of updates of the same agent that does not change its
state and update thus never lead to a final configuration) – we will use C f gM to de-
note the graph of all configurations of M that successively follow any configuration
from InitM .

While we are, in general, interested in the shortest path through the C f gM since
that path will give us the desired result (i.e., the terminal configuration(s) we are
interested in), the shortest path may not be unique. And, moreover, it is possible
that there are two shortest paths that result in different terminal conditions. Stan-
dard discrete-time simulations do not usually distinguish between different terminal
states that differ only with respect to the ordering of the agents in the “cycle-based
update strategy” (i.e., there might be two agents in the same update cycle that cause
the termination of a simulation), although this problem can be easily avoided by
finishing the updates of all agents within the same cycle (e.g., by requiring as an
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additional condition for termination that all agents are at the same cycle). We will
now formally define the notion of update strategy:

Definition 3 (Update strategy). An update strategy or update policy for an S-ABM
M is a mapping πM : C f gM �→ P(AgentsM ) from possible (consistent) configu-
rations to the powerset of all agents, which effectively in each possible configuration
selects a subset of agents for updating. An update strategy πM is consistent if for
all configurations C ∈ C f gM with πM (C) = A and all A ∈ A at cycle k, there is
no agent A′ ∈ C such that A′ within IA and A′ is at a different cycle l �= k. A simu-
lation 〈C0,C1, . . . ,Ck〉 is updated based on a cycle-based update strategy whenever
for two configurations in sequence in the simulation all agent states are at most one
cycle apart (i.e., for any two configurations in sequence Cl and Cm with Al ∈Cl and
Am ∈Cm, if Al is at the i− th cycle and Am is at the j− th cycle, then |i− j| ≤ 1).

It follows immediately that cycle-based update strategies (such as updating agents
based on some ordering of their unique IDs) are consistent. While cycle-based up-
date strategies are commonly used in and appropriate for discrete-event simulations
on single computer systems, they do not necessarily give rise to good performance
in distributed simulations, as we will see in Section 3.

As a side remark, simulations of agent-based models, as defined above, are deter-
ministic and thus reproducible from initial configurations. However, it is sometimes
desirable to allow for “non-deterministic” state transitions (e.g., to model proba-
bilistic state transitions where each transition has a certain likelihood associated
with it). The above definitions can be straightforwardly augmented to allow for
non-determinism by dropping the requirement that agent updates be functions and
constructing them as annotated relations instead, where the annotation is a numeric
value in [0,1]–the transition probability–such that all annotations of transitions from
a given state with the same update sum to 1.7

2.2 Distributing Simulations of Agent-Based Models

Spatial agent-based simulation models can be automatically parallelized and dis-
tributed in different ways. One obvious way is to run each agent on its own processor.
Before an agent can update its state, it needs to collect the current state information
from all other agents (running on other processors). Once the information is avail-
able, the agent updates its state and begins the update cycle again. All processors
update their respective agents in the very same cycle-based fashion to ensure the
correctness of the results. Another possibility is to determine in advance whether an
agent needs the state of another agent for its update and to distribute agents based on

7 The consequences for implementations are that explicit representations of random number
generators and their seeds are necessary to be able to reproduce simulations. Reproducible
simulation runs are then defined in terms of the seeds of the random number generators
and the initial states (i.e., at any choice point the random number generator will determin-
istically produce a next “random number”, which is used to determine the state transition).
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these dependencies (e.g., subsets of mutually dependent agents end up on the same
processor, which limits the exchange of state information to exchanges among local
agents). Other options are to predict or (empirically) determine the actual update
time of an agent and run computationally expensive agents on separate processors,
while running computationally cheap agents together on one processor.

The ideal case would be a setup where only one partition Π(C0) of the agents
in the initial configuration C0 has to be computed and after distributing and initial-
izing all agents on their respective processors, each processor can update its agents
independently and asynchronously until a final configuration is reached.8 Unfortu-
nately, this case is rarely true of agent-based models given that they are typically
used for the study of interactions among agents. Hence, additional mechanisms are
required to synchronize the states of agents residing in different simulations on dif-
ferent processors. “Synchronization” here means that if a simulation instance run-
ning on processor Pi requires the state of an agent E j from a “remote” simulation
instance running on another processor Pj, then the simulation on processor Pj needs
to be able to send this information back to the simulation on processor Pi.

Which of the above approaches works best will depend on various factors, includ-
ing the complexity of the update function of the involved agents, the distribution of
agent types in a particular setup, the computational overhead of sending state in-
formation requests and receiving them (including network latencies), the pool of
available processors (e.g., individual speeds, etc.) and whether this pool remains
constant throughout a simulation run or can change over time, etc. All these factors
(and their interdependencies) are important for efficient parallelizations of agent-
based models.

We start by formalizing the intuitive idea of splitting up a set of agents and as-
signing them to processors in a given set of processors.

Definition 4 (Split of Configuration). Let M be a S-ABM, C a configuration
in C f gM , and Proc = {P1,P2, . . . ,Pn} a set of available processors (“processor
pool”). Then a split PC

Proc of C is a mapping P : C �→ Proc–called agent-processor
assignment–of agents to processors Pi in Proc.

Note that the agent-processor assignment does not have to be surjective as we might
not need all processors in the processor pool.

Corollary 1. A split PC
Proc induces a partitioning ΠC of a configuration C into i

disjoint subsets of agents ΠCi in C.

Proof. It is straightforward to check that the sets ΠCi := {A|A ∈C∧PC
Proc(A) = Pi}

for each Pi ∈ Rng(PC
Proc) form a partition of C (they are disjoint and their union is

C).

Each “subconfiguration” ΠCi is itself a configuration and can thus be updated in the
same way as C. In the context of parallelizing a simulation, i.e., a sequence of con-
figurations, we can simply split the initial configuration C0 of a simulation among

8 Note that detecting final configurations in a distributed simulation can be very tricky and
will be briefly addressed in the Discussion section.
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the processors in Proc and then continue to update the agents on each processor Pi

independently as long as the states of agents updated by Pi do not depend on the
states of agents updated by other processors Pj. If there is such a dependence, then
there are two options: (1) either the external state information has to be obtained
before the state of the local agents can be updated, or (2) both configurations are
“merged” before the update (we will consider both options below).

Hence, the critical aspect in parallelizing a spatial agent-based simulation is to
detect these dependencies automatically and communicate the necessary informa-
tion among processors. We will first formally define the notion of “update indepen-
dence”, and then propose a sufficient condition for detecting it in Section 2.3.

Definition 5 (Update Independence). An agent A1 is update-independent
UIC(A1,A2) of another agent A2 in a configuration C (with A1,A2 ∈ C), if the
updated state of A1 in each following configuration C′ of C is the same as in
each respective following configuration (C − A2)′ of C − A2 (i.e., the configura-
tion obtained from C by removing agent A2). A1 is called update-dependent on A2

in C if ¬UIC(A1,A2). A1 and A2 are called mutually update-independent in C if
A1 is update-independent of A2 and vice versa (see Figure 1). Two subconfigura-
tions C1,C2 ⊆ C are mutually update-independent UIC(C1,C2) if ∀A1 ∈ C1,A2 ∈
C2[UIC1(A1,A2)∧UIC2(A2,A1)]. A set of configurations C is update-independent if

Configuration C

Configuration C’

A1

A2

A1

A2

Fig. 1. An illustration of “update independence”. Two agents A1 and A2 are both about to
move in different directions (as indicated by arrows) in a configuration C. Since their inter-
action ranges (indicated by dashed circles) within which they can affect their environment
do not overlap, either agent can be removed in C and will end up in the same position in C′
(on the right) if the reduced configuration is updated as when C is updated with both agents.
Hence, A1 and A2 are mutually update-independent.
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∀C1,C2 ∈ CUIC(C1,C2). A split PC
Proc is update-independent if the set of all ΠCi is

update-independent.

In other words, the presence of the other agent Ai cannot have any effect on A
if its removal does not change the update of A. Note that update-independence
is not symmetric (that is why we need the additional notion of “mutual update-
independence”): it is possible that one agent A1 is update-independent in C from
another agent A2, while the latter is not update-independent in C from the former
(e.g., consider A1 with interaction range of 10 located in (0,0) and A2 located in
(0,50) with interaction range 100 for its sensors only; then A2 can sense A1 and
might change its behavior based on the perception without being able to affect A1,
while A1 is oblivious to A2’s presence). Moreover, update independence is not tran-
sitive either for obvious reasons, nor is it reflexive (e.g., an agent’s behaviors might
or might not be completely independent of its own state).

Most importantly in the present context, update-independent configurations have
the nice property that they can be directly “merged”:

Corollary 2. Let C be a configuration and ΠCi update-independent configura-
tions obtained by splitting C via PC

Proc. Then update(C) =
⋃

update(ΠCi) (where
update() is applied to all agents in the configuration).

Proof. By induction on the size of the split. The base case, C = PC
Proc is obvious. As-

sume the Corollary has been shown for splits of size n. Then observe that for splits of
size n + 1, update(C) = update(PC

Proc) = update(
⋃

ΠCi) = update(
⋃−(n+1) ΠCi ∪

ΠCn+1) where
⋃−(n+1) is the union over the first n configurations. By induction as-

sumption, it follows that update(
⋃−(n+1)) is the same as

⋃
update(ΠC−(n+1)), the

union of the updates of all configurations ΠCi except for ΠCn+1 . Now observe that
update(ΠC−(n+1) ∪ΠCn+1) = update(ΠC−(n+1))∪ update(ΠCn+1) given that the up-
date of an agent A ∈ ΠC−(n+1) does not depend on any agent in ΠCn+1 since A is
update-independent from all agents in ΠCn+1 (by def. of update-independence of
two configurations). The analogous argument shows that is is also true for all agents
in ΠCn+1 . Hence, update(C) =

⋃
update(ΠCi).

The fact that update-independent configurations can be directly merged suggests
a straightforward way to parallelize a given agent-based simulation with initial
configuration C0:

P-ABMG (C0,Proc,M ) C := C0
while ¬∃ f ∈ TermM : f (C) = true do

compute an update-independent split PC
Proc of C for Proc

distribute each subconfiguration ΠCi onto Pi in Proc
compute update(ΠCi ) on each Pi and merge all ΠCi into C
Proc := update(Proc)

end while
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It is a direct consequence of merging at the end of each update that the algorithm9

is “step-wise correct” in the following sense:

Definition 6 (Step-wise Correctness). Let A be a parallel algorithm for up-
dating a spatial agent-based simulation SM ,C0 = 〈C0,C1,C2, . . . ,Cf inal〉 of an S-
ABM M . A is stepwise correct if it produces a sequence of split configurations
〈ΠC0 ,ΠC1 ,ΠC2 , . . . ,ΠCfinal 〉 such that Ck =

⋃
(ΠCk) for all 0 ≤ k ≤ f inal.

Corollary 3. P-ABMG is step-wise correct.

Note that the above algorithm is adaptive because the set of available processors is
updated after every configuration update. Hence the algorithm can take the new set
of resources (e.g., a larger number of available processors) into account when the
new split is computed.

Aside from the question of how to compute an update-independent split, to which
we will return shortly, it is clear that a parallelization of a simulation according to the
above algorithm is only worthwhile if the cost of computing such a split, distributing
subconfigurations and merging them subsequently is low compared to the cost of
updating agents. At the same time, if updating an agent is very expensive, splitting
agents based on update-independence might not be the best option in the first place.
For example, if C consists of a large subconfigurationCi of update-dependent agents,
this configuration will be updated on one processor and thus incurs a computation
cost linear in |Ci|, which is in the worst case O(|C|). In such a case it is likely better
to further split agents in |Ci|, distribute them over different processors, and use a
mechanism to request and transfer the states of update-dependent agents in other
subconfigurations as part of the update of an agent on-demand.

2.3 Towards Exploiting Properties of Spatial ABMs

As already mentioned, the important missing ingredient that is needed to be able to
implement parallel algorithms like the above is an efficient way to detect update-
independence. Detecting update-independence directly based on the definition of
update-independence clearly defeats the purpose. In order to determine whether a
split is update-independent for a given pool of processors Proc would require re-
peated computation of a split, independent update of all subconfigurations, and then
a comparison of the merged updated subconfigurations to the update of the whole
configuration. This means that the computational cost (in terms of space and time)

9 Note that P-ABMG is an algorithm because it is always possible to compute a (trivial)
update-independent split in the following inefficient way: choose a split (at random), run
the simulation in parallel for one step, and then compare the result to the simulation up-
dated without a split (i.e., run on a single processor): if the simulation states are the same,
then the split was update-independent (repeat for all permutations). While this way of com-
puting an update-independent split obviously defeats the purpose of parallelizing a model
in the first place (as the whole simulation needs to be updated without being split), it shows
that there is always a way of computing it, hence P-ABMG is an algorithm.
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of parallelizing and updating the subconfigurations in parallel is higher than com-
puting the update of the whole configuration at once.

Fortunately, in spatial ABMs there is another criterion that is sufficient (but not
necessary) for detecting the update-independence of two agents: being within each
others’ interaction range. For, clearly, agents that are not within interaction range of
each other in a given configuration cannot possibly have any effect on each other,
by definition, and are thus mutually update-independent.

Note that being outside of each other’s interaction range is a “conservative” es-
timate for mutual update independence, because two agents can still be update-
independent even if they can sense each other (either because they do not take
perceptions of each other into account or because their perceptions coincidentally
do not have any influence on the update in the particular context). In some cases, a
finer-grained distinction may be possible and desirable (e.g., when a type of agent
always ignores perceptions of its own kind). The general difficulty connected to any
better derivation of potential interactions, however, is how to determine them auto-
matically from the agent update functions, which may not be possible in a practical
implementation if their representations are not explicitly accessible (and even then,
this will, in general, only be possible in a limited way).

Since each agent A, as part of its state, contains a translation function TA which
determines for a given location the maximum distance the agent can travel within
one update cycle, the set of locations that A can influence after k of its update cycles
is given in terms of T k

A (i.e., applying TA repeatedly up to k times to each location
in the set of locations returned after each application). In a continuous 2D metric
environment with TA > 0, this will be the radius of an expanding circular region
(as T k

A amounts to all locations within k · TA). Call this expanding subspace of the
environment that results from the motion of an agent starting in a given configuration
Ci the agent’s “event horizon”:10

Definition 7 (Event Horizon). The event horizon EH(A,Ci,k) of an agent A start-
ing in configuration Ci is the set of all locations T k

A after k updates based on its
location in Ci.

Clearly, the event horizon of agents A in metric environments with TA > 0 is mono-
tonically increasing, symmetric, reflexive, but not transitive (which is important for
computing dependencies among agents). Figure 2 shows the expanding event hori-
zon in a metric 2D environment where TA models the “maximum speed of locomo-
tion” of A.

We can now refine the above algorithm for S-ABMs by merging only those
subconfigurations that have update-dependencies across updates. The others can

10 The term event horizon has been previously used in a slightly different sense in the domain
of parallel simulation. E.g., “event horizon” in [11] refers to the set of events E that can
occur before the first consequent event E ′ generated by an event E ∈ E . Hence, it is the
set of events E that can be safely executed in parallel, because no effects of any events in
that set are seen during that time frame. This is similar to the way the term is used above,
however, our usage refers to the first cycle an agent could affect another agent, rather than
when it will.
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A2 at n

A2 at n+4

A1 at n

Fig. 2. An illustration of the event horizon. Agent A2 moves from its position at cycle n to
the new position at cycle n+4 (indicated by the arrow). The position of the agent represented
by proxy agent A1 at cycle n is known, but not thereafter. The dashed circles indicate the
increasing event horizon of that agent for subsequent cycles (including the maximum of the
two sensory ranges–sensory ranges are indicated by dotted circles). At cycle n+4 A2 inter-
sects with the event horizon of A1 indicating that the actual position of A1 is required before
the update of A2 can be computed.

continue to update without merging. To determine which subconfigurations need
to be merged and which can continue, we introduce the notion of a “proxy agent”,
which serves as a (local) placeholder in a subconfiguration for the last known state
of an agent updated in another subconfiguration (on another processor).

Definition 8 (Proxy agent). A proxy agent A of an agent A (in the following always
denoted by a bar) consists of the agent’s state with the location LA replaced by a set
of possible locations LA and the update function UA replaced by UA (the function
that just repeatedly applies T (A) to LA on each cycle).11

Proxy agents merely have a representational function and cannot be updated like
regular non-proxy agents (i.e., they cannot change their state across configurations).
Yet, they are used to compute the event horizon of the agent in subsequent configu-
rations based on the last known configuration at which the proxy agent was updated
by repeatedly applying UA

k to each L ∈ LA. That way, given the state of a proxy-
agent A j (representing agent A j in subconfiguration Cj) it is is possible to determine
the subspace of the environment on which an agent A j in configuration Ci could
exert any influence in subsequent updates of Ci and thus the number of updates of Ci

(based on the known states and state changes of agents in Ci) before any interaction
between A j and any Ai ∈Ci is possible.

We can now state an important lemma (for a proof, see [7]):

Lemma 1 (Interaction Lemma). Let C1 and C2 be two subconfigurations of a
configuration C containing only non-proxy agents and let C∗

1 and C∗
2 be the

11 We will extend the bar notion of proxy agents to sets of proxy agents (e.g., if Agents is a
set of agents, then Agents is a set of proxy agents obtained from the agents in Agents).
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configurations obtained from C1 and C2 by adding the proxy agents in Agents2 and
Agents1 that represent the states of some non-proxy agents in C2 and C1, respec-
tively. Moreover, let n be the largest number such that no non-proxy agent A1 ∈ C1

has LA1 ∈ EH(A2,C1,n) for any A2 ∈ Ent2 and no non-proxy agent A2 ∈ C2 has
LA2 ∈ EH(A1,C2,n) for any A1 ∈ Ent1. Then for all k ≤ n, Un

M (C1)∪Un
M (C2) =

Un
M (C1 ∪C2). Or put differently, C1 and C2 are mutually update-independent for at

least the first n updates.

The Interaction Lemma confirms that two mutually update-independent sub-
configurations C1 and C2 can be updated independently as long as none of the
event horizons of the proxy agents in either configuration contains a location of
a non-proxy agent in that configuration. When such a configuration is reached,
the actual state of the agent represented by the proxy agent needs to be obtained.
Hence, we can formulate the following refined version of P-ABMG for S-ABMs:

P-ABMS (C0,Proc,M )
oldProc := /0
k := 0
while ¬∃ f ∈ TermM : f (Ck) = true do

if oldProc �= Proc then
compute an update-independent split PCk

Proc for Proc
distribute each configuration ΠCk,i onto Pi in Proc

Π∗
Ck,i

:= {ΠCk, j |ΠCk, j ∈ PCk
Proc ∧ i �= j}∪{ΠCk,i}

oldProc := Proc
end if
compute all EH(ΠCj ,C,k) for the last known state from some configuration C

for proxy agent A j that has a non-proxy agent A within EH(ΠCj ,Ck,k) do
get state of A j at k from processor j and update E j

end for
compute (Π∗

Ck,i
)’ := update(Π∗

Ck,i
) on each processori

update Proc
if oldProc �= Proc then

merge all Ck+1 :=
⋃

UM (ΠCk,i)
end if
k := k +1

end while

It follows that P-ABMS is step-wise correct (see [7] for a proof sketch).

3 Update Strategies for Distributed Parallel Agent-Based
Simulations

The main advantage of P-ABMS over P-ABMG is that it does not require all simula-
tion instances running on different processors to synchronize after all agents in each
of the distributed simulation instances have been updated once. Rather, as long as all
non-proxy agents located in a given simulation instance are located outside the event
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horizon of all proxy agents, the simulation instance can update its agents without re-
quiring information from any of the other simulation instances. On the other hand,
when there are potential interactions, as determined by the proxy agents’ event hori-
zons, simulations do not necessarily have to be merged, instead it suffices to update
only the proxy agents based on the communicated locations of the non-local agents
(in other simulation instances) they represent. Consequently, it is also not necessary
to compute new update-independent splits before every update cycle (although sim-
ulations will still have to be merged and splits will still have to be recomputed, as
with P-ABMG, should the processor pool Proc change to preserve the adaptiveness
in P-ABMS). To elucidate how this asynchronous update could work, we start with
an intuitive example, and then look at the properties of asynchronous updates more
formally.

Suppose agent15,4, i.e., the agent with ID = 15 in simulation instance 4, requires
at its cycle 321 an update for its proxy agent proxy agent64,7 (i.e., the proxy agent
representing the agent with ID = 64 in simulation instance 7). Furthermore, let’s
assume that both simulation instances, 4 and 7, have been running asynchronously
up to that point without communicating with each other. When simulation instance
7 gets the request from simulation instance 4 to send the pertinent information (i.e.,
the reduced state) of agent64,7, agent64,7 is already at cycle 598 (in simulation in-
stance 7 due to the asynchronous updates). At first glance, the mismatch in cycle
numbers seems to prevent an information transfer that can be used in a way that will
keep the distributed simulation consistent. On further examination, however, it turns
out that it is completely unproblematic for simulation instance 7 to communicate the
current reduced state of agent64,7 and for simulation instance 4 to use it (instead of
the state of agent64,7 at cycle 321) – why is that? The answer lies in the event horizon
of proxy agent proxy agent15,4 in simulation instance 7, which represents agent15,4

from simulation instance 4: if there had been any chance for agent15,4 to interact
with agent agent64,7 before cycle 598, then agent64,7 would have ended up being
located within the event horizon of proxy agent15,4 in simulation instance 7 before
that cycle and simulation instance 7 would have requested an update (i.e., reduced
state) from agent15,4 in stimulation instance 4. However, since no such request oc-
curred based on our assumption, agent64,7 never ended up being located within the
event horizon of proxy agent15,4 and therefore never had a chance to interact with
agent15,4, at least until cycle 598. Since there cannot be any earlier interaction, sim-
ulation instance 4 can simply use the reduced state of agent64,7 at cycle 598 and
set its proxy agent proxy agent64,7 to that state, and even skip updating the agent’s
event horizon until all other agents reach cycle 598.

We formally summarize the above argument in a proposition:

Proposition 1. Let Ai,m and A j,n be agents with agent IDs i and j, respectively, and
let Sm and Sn be two simulation instances with Ai,m ∈ Sm at cycle m and Aj,n ∈ Sn at
cycle n, with m < n such that for all cycles m ≤ k ≤ n A j,n, is not in the event horizon
of Ai,k (where Ai,k is the proxy of agent Ai,k in Sn). Then for all cycles m ≤ k ≤ n,
Ai,k is not in the interaction range of A j,k and vice versa.



Adaptive Scheduling for Spatial Agent-Based Models 221

Proof. Suppose there is a cycle l such that m ≤ l < n at which both agents are
within interaction range and suppose further that cycle c ≤ m was the last time that
simulation instance Sn updated its proxy agent Ai,l based on the actual state of Ai,l .
Since the event horizon of is the maximum range at any given cycle within which an
agent can interact and for no cycle c with j ≤ c≤ n was A j,c within the event horizon
of Ai,c, by deviation of Ai,c, Ai,c could not have interacted with A j,c. Contradiction.

Intuitively, it seems clear that the ability of simulation instances to run asyn-
chronously and only communicate agent states when necessary should lead to per-
formance improvements, and we have indeed been able to show previously that
running simulations asynchronously using the above proposition leads to better per-
formance than running simulations in lock-step (as is required for P-ABMG) [7].
However, the extent of the performance improvement depends on several factors,
including the complexity of the agent update function and the distribution of the
agents across simulation environments, but most importantly on the update strategy
given agent update functions and distributions. Unfortunately, there is no general
update strategy that will yield optimal results, i.e., maximum parallelism among
distributed simulation instances.

To see this, consider two simulation instances with two agents each as arranged
in the left part of Figure 3. Agents A and D are non-proxy agents in simulation
instance 1 and proxy agents in simulation instance 2, and, conversely, agents B and
C are non-proxy agents in simulation instance 2 and proxy agents in simulation
instance 1. Each agent only moves in the direction indicated by the arrow pointing
away from its center. The dashed circles indicate the agents’ interaction ranges. We
further assume that the maximum change in location that agents can perform in one
update cycle is large enough so that agent D will be in the event horizon of proxy
agent B in simulation instance 1 and agent C will be in the event horizon of proxy
agent A in simulation instance 2, hence requiring both simulation instances to get the
updated states of the non-proxy agents from the other simulation instance. In fact,
an update strategy that decides to update agents C and D first, can lead to a lock-
step process where on every cycle updates for proxy agents are required, which
will, in turn, trigger updates for the remaining agents. As a result, a “cycle-based
update strategy” (which is the default in many simulation environments) is not a
good choice for the given scenario because it requires updates on every cycle and
forces both simulation instances to be in sync at each cycle, thus effectively forcing
the distributed simulation to run in lock step.

If, on the other hand, simulation instance 1 updated agent A and simulation in-
stance 2 updated agent B a few times before updating agent C, then the communi-
cated state information would show that agent A has moved out of the way and that
agent C could move freely for a certain number of cycles until it has the same cycle
number as proxy agent A. In fact, the best update strategy for a situation where a
simulation has to be run for a fixed number of cycles n is to first update agents A
and B for n cycles and then update agents C and D for n cycles. This is possible
because agent A will never be in the interaction range of any agent in simulation
instance 1, and agent B will never be in the interaction range of any agent in simu-
lation instance 2. Hence, they are update-independent and can be updated until the
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terminating condition is reached. As a result, this update strategy will require only
one communication of the updated states of A and B (namely after the first update of
C and D), then C and D too can be run to completion for n−1 cycles – note that at
least one update of state information is necessary given the initial condition, hence
this update strategy is optimal.

A

D

Simulation 2Simulation 1

C

B

A

D

Simulation 2Simulation 1

C

B

Fig. 3. Two simple scenarios demonstrating that a general optimal update strategy does not
exist (see text for details).

While is it possible to have optimal update strategies for particular scenarios such
as the above, it is now also easy to see that there cannot be a general optimal update
strategy that is best for in every scenario. Consider the right part of Figure 3, which
is the same setup as on the left except that all agents move in opposite directions.
Hence, the optimal update strategy is to “reverse” the update sequence from before,
starting with updating agents C and D for n cycles, followed by updating A and B for
n cycles (with one state update required for each proxy agent after cycle 1). Since
both scenarios are the same – same number of agents, same split – yet the optimal
strategy is different for each scenario, there cannot be a general algorithm that deter-
mines the optimal strategy based on the number of agents and splits alone. Rather,
the direction of movement, which is determined by the agent update function, is
essential for selecting the best update strategy, hence:

Fact 1. There is no general algorithm which for any given split of a spatial agent-
based model simulation can determine the best update strategies for each simulation
instance (without knowledge of the specific agent update function).

Even though there is no general algorithm to determine optimal update strategies,
it still makes sense to attempt to define heuristics that will improve over the above
lock-step behavior caused by the “cycle-based update strategy”. In the following,
we will discuss four proposals of such strategies and later show how three of them
can be an improvement over the “cycle-based update strategy” in an agent-based
model taken from a real-world modeling application.
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3.1 A General Alternative Scheduling Strategy for Agent-Based
Models

Alternative scheduling strategies for ABMs can be used to avoid some of the ineffi-
ciencies associated with “cycle-based update strategies”. Unlike the typical “cycle-
based update strategy”, which require repeatedly updating every agent in a given
configuration once (without updating one agent twice unless all other agents have
been updated at least once), alternative scheduling strategies relax this update con-
straint. Instead, they allow for agents to be at different cycles within one simulation
instance as long as these cycle differences do not lead to inconsistent update se-
quences.

In a way, alternative scheduling strategies apply the idea of P-ABMS, that
parallel simulation instances can run asynchronously as long as none of their agents
are within each others’ event horizon, at the level of an individual simulation
instance: all agents in a subset AS ⊆ C of a configuration C can be updated until
one of the agents A ∈ AS enters the event horizon of some agent B �∈ AS. Note that
for this idea to work, we have to extend our notion of proxy agent to agents within
the same simulation instance. Specifically, we have to first select a subset of agents
AS = π(C) based on our selection policy π given the current configuration C such
that all agents A ∈ AS are at the same cycle n. Then we replace the remaining set of
agents RS := C−AS with proxy agents that will get updated along with the selected
non-proxy agents. This is done to detect possible interactions with agents outside
of AS at which point AS is no longer update-independent. To make this update
strategy work in a consistent fashion, it is important to pay attention to the cycle at
which each agent B ∈ RS is when their respective proxy agent is initialized: if B is
at a cycle ≤ n, then the event horizon of its proxy agent B has to be computed for
cycle n; otherwise the proxy agent will not be updated until its cycle number > n
is reached. We can summarize this scheme as the general alternative scheduling
algorithm AltSchedG:

AltSchedG (C0,π ,M )
C := C0
while ¬∃ f ∈ TermM : f (C) = true do

AS := π(C) (with all A ∈ AS at the same cycle k)
RS := C−AS (*)
RS := {B|B ∈ RS}
C := (C−RS)∪RS
while ¬∃A ∈ AS,B ∈ RS : LA ∈ EH(B,C,cyc(A))∧ ¬∃ f ∈ TermM : f (C) = true ∧
cycle(AS) < k +maxupdate do

C := update(AS∪RS)
end while
C := (C−RS)∪RS (**)

end while

There are several important points to notice about AltSchedG. First note that
AltSchedG is consistent (which follows from the Interaction Lemma) but will in
general not lead to the same simulations as cycle-based strategies. While the latter
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are guaranteed to find a termination condition (if it exists) given that they perform
a breath-first search, whether AltSchedG will find a terminal condition critically
depends on how the update policy π selects subsets of agents and on how long they
are updated using maxupdate (the maximum number of updates to be performed
on a set AS before another set is chosen again based on π). In infinite configuration
graphs, for example, a depth-first update strategy might fail to find a terminating
condition. A simple solution to this problem is to require of π that no agents in a
configurationC be selected that are more than a maximum difference δ cycles ahead
of any other agent in C.

Second, AltSchedG subsumes the standard “cycle-based update strategy” using
maxupdate = 1 and the policy π(C) = C for all C in a model M .

Third, with only minor modifications it lends itself to multiple asynchronous par-
allel runs: simply recursively apply π to RS at the line marked (*) yielding a set
of agents ASi and their associated proxy agents RSi until RSi = /0, and then merge
all updated non-proxy agent sets ASi to obtain the new configuration (instead of
replacing the proxy agents RS with their non-updated counter parts RS in the se-
quential version). This way of parallelizing a single simulation instance might be
preferable over the non-parallelized version even though the parallelization incurs
a small computational overhead because it will be able to automatically utilize real
parallelism available on multi-processor and multi-core machines as well as idle
processor time on a single processor with only one core (e.g., due to wait times on
network communication in the context of P-ABMS, or various OS blocking).

Fourth, by being able to change the update sequence of agents, using AltSchedG

can lead to much shorter simulation runs if the update policy π is sensitive to ter-
minal conditions. For example, suppose in a simulation with 1000 agents the goal
is for at least one agent to reach a particular goal location in the environment and
the terminal condition is thus defined by one of the agents being in that location.
Moreover, suppose that the update policy π gives priority to agents that are close to
the goal location and that in the initial configuration a group of 10 agents which is
outside of the interaction range of other agents is headed directly towards the goal
location. To keep things simple, let us also assume that all agents travel at the same
speed. Repeatedly selecting these 10 agents for update will then cause the simula-
tion to reach a terminal state without ever having to update any of the other agents
(because they will never be in the event horizon of any of the other 990 agents). As
a result, the run time under the “goal-sensitive” policy π is about 1% of the runtime
of the policy corresponding to the “cycle-based update strategy”.

And finally, AltSchedG can be combined with P-ABMS and should lead to a
performance improvement for distributed simulations if general update policies can
be defined that they are sensitive to the update requirements of distributed simulation
instances, which we will address next.

3.2 Combining AltSchedG and P-ABMS

The goal of combining AltSchedG and P-ABMS is to significantly reduce the over-
all runtime of parallel distributed simulations compared to the standard “cycle-based
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update strategy”. Hence, we need to define general policies for AltSchedG that will
select agent groups for updates in a way that better exploits the parallelism of dis-
tributed simulations in P-ABMS. One of the main performance reducing factors that
we have seen in our previous implementation of P-ABMS (with the cycle-based
update strategy run by all simulation schedulers) is that simulation instances are
blocked, i.e., that they cannot update any of their agents without first having ob-
tained updated information on one of their proxy agents. Blocked simulations lead
to idle processor time and cannot continue to utilize their computational resources
until they get the requested updates. Hence, time wasted due to blocking can be re-
duced by any policy that is able to anticipate blocks in a remote simulation instance
and update its local agents in such a way that the update information is available
when requested by the remote simulation instance. Note, however, that giving pref-
erence to agent groups that will reduce remote blocking can be in tension with the
goal of selecting local agent groups (within each simulation instance) that are likely
to make the most progress towards reaching a terminal condition – while we briefly
return to this problem in the Discussion section, we will focus here on how we
can reduce the latencies and delays in running distributed simulations introduced by
remote blocks.

While it is in general not possible for a given simulation instance to detect
whether and when a remote simulation will require information about one of its
local agents, it is possible to compute conservative estimates that if executed by all
simulation instances will improve overall system performance. For example, we can
determine for each local agent the earliest cycle at which the local agent could be
in the event horizon of some proxy (i.e., remote) agent. An update strategy could
then decide to give preference to updates of those agents, which will cause the lo-
cal simulation instance to block earlier than it otherwise would have had it updated
other agents first. The benefit of such “early blocks” is that the remote simulation
instance can get the updated state from the blocked agent as part of the blocked
simulation’s request for an update on the proxy agent. Since the remote simulation
instance uses the same update policy and thus also gives preference to agents that
are likely to need update information in the near future, it is probable that it will
either already or at least soon have an update available. Hence, if all simulation
instances give preference to updates of agents whose state information will be re-
quested by remote simulation instances in the future, the overall effect is that cycles
with blocking agents will occur more frequently in the beginning of a simulation
sequence compared to the standard cycle-based updates. As a result, simulation in-
stances will likely still be able to update some of their (non-blocked) local agents
while they are waiting for state updates for blocked agents as opposed to a simula-
tion instance waiting to update any agents until the state information is received for
all blocked agents. In sum, policies that are sensitive to the information demands of
remote simulation instances will in many cases be able to reduce the idle time of
parallel simulation instances, which in turn will lead to overall shorter simulation
runs (everything else being equal).
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We now define four general policies that are intended to reduce the overhead
associated with blocking simulation instances in a distributed simulation based on
P-ABMS.

Remote Event First

The Remote Event First policy projects out the next potential “event” with an agent
on a remote host (i.e., a local agent ending up in the event horizon of a remote
agent). Remote Event First intuitively has benefits because it increases the number
of agents that can be run at any one time in every simulation instance and reduces
the risk that the simulation instance is completely blocked waiting for state updates
from remote simulation instances. This method of ordering performs a depth-first
traversal through the configuration graph and therefore is not guaranteed to termi-
nate. Variations of Remote Event First (as mentioned above) can be implemented
utilizing mechanisms that disallow an agent to advance too far into the future with-
out catching up other younger agents in the same simulation instance.

Remote Blocks Then Remote Event First

The Remote Blocks Then Remote Event First policy is a cooperative variation of
the Remote Event First policy that works with the other nodes to identify which
agents to run next. This policy can drastically improve performance because it will
quickly unblock a remote agent that is traversing though the simulation timeline.
When an agent becomes blocked, that simulation instance shares this information
with all of the other simulation instances causing them to give immediate priority
to those agents whose updates will allow the blocked agent to progress. If some of
the selected agents are also blocked, a simulation instance will revert back to the
Remote Event First criteria.

Youngest First

A Youngest First policy simply chooses the agent with the lowest cycle time from all
of the potentially update independent agents. This method of ordering has a breadth-
first type of traversal through the configuration graph. The main benefit of such a
selection policy is that it is guaranteed to terminate if an exit criterion is reachable.

Remote Blocks Then Youngest First

The Remote Blocks Then Youngest First policy is a variation of the Youngest First
policy that cooperatively works with the other nodes to identify which agents to
run next as described above. As with the Remote Blocks Then Remote Event First
policy, it will revert to its base strategy of Youngest First when it cannot advance
agents whose updates are requested by remote simulation instances because they
are all blocked.
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4 Implementation of P-ABMS and Experimental Evaluation

We implemented all proposed scheduling algorithms in our agent-based SWAGES
environment in order to provide a (non-optimized) proof-of-concept system that
tightly integrates the scheduler in the simulation environment with the paralleliza-
tion and distribution algorithm. To be able to demonstrate performance gains of
the proposed update strategies over the standard “cycle-based update strategy” us-
ing a practical example, we selected an actual agent-based model from a biological
modeling research domain of female choice [5]. We first discuss the details of our
implementation and then report the results from the empirical evaluations.

4.1 Implementation of P-ABMS in SWAGES

SWAGES is a JAVA-based agent-based simulation and experimentation server
intended for any kind of computing environment (e.g., from homogeneous Be-
owulf clusters to heterogeneous computers connected only via the Internet). It
consists of several distributed components that cooperate closely to achieve high
resource utilization in a heterogeneous dynamically changing computing environ-
ment. SWAGES was used and extended to support the scheduling and monitoring
of the execution of simulations for both cycle-based and non-cycle-based update
strategies for agent based simulation experiments.

Without modification, SWAGES provides the communication infrastructure to
start, run, and supervise simulations. It also gathers and stores simulation results
in an easily accessible manner for future statistical analysis. The server can sched-
ule sets of simulation experiments (e.g., simulations with a variety of different initial
conditions) and ensure their timely completion by monitoring their performance and
detecting problems with the execution (e.g., because the load on a host is too high,
or the simulation crashed), in which case it can take any number of recovery actions
(from resuming a simulation on a different host if its state was saved, to restarting
it anew if no state information was available). Each simulation instance can run on
its own host and maintains a socket connection instance for all communication pur-
poses (e.g., information about the current simulation cycle, simulation parameters,
etc. will be delivered on this connection).

SWAGES required several modifications to be able to implement and work with
non-cycle-update strategies. SWAGES was extended to support the merging of
distributed configuration and distributing simulation environments containing only
subsets of agents across a series of processors. Associated communication support
protocols were also added to provide a mechanism for simulation instances running
on different processors to access the new features. In order to facilitate non-cycle-
based update strategies, a single simulation instance must distribute the agents in ad-
dition to the context in which they are to run (e.g., environmental specification, agent
initial conditions, agent models). This distribution could be performed inside the cen-
tralized server if the server had explicit knowledge of how to initialize an agent.

Since SWAGES can only start simulation instances, but cannot initialize agents
within a simulation instance (or perform any other operation within simulation
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instances), parallelizing and distributing new simulation instances is therefore a
three-step process. First, SWAGES informs a simulation instance that a resource
for distributed parallel simulation is available (i.e., that there is a host computer
where a new simulation instance can be run). If the simulation instance decides that
it wants to split off a subset of its agents and run it on another host, it accepts the
resource offer by sending back a serialized representation of all those agents that are
supposed to be run in the remote simulation instance. SWAGES, in turn, launches a
new simulation environment on another processor and provides it with the serialized
agent set. From that point on, the local and remote simulation instances continue to
update their agents, with the local instance treating the serialized agents as proxy
agents and the remote instance treating all other agents as proxies. Whenever an
update for a proxy agent is required by a simulation instance (because a local agent
ended up in the even horizon of the proxy agent), the simulation instance will request
an update from the simulation instance running the proxy agent via SWAGES.

Updated state information for any agent needs to be shared among all simulation
instances. This can be done in peer-to-peer fashion using some broadcast or shared
memory mechanism, or it could be accomplished using a server to broker the com-
munication. SWAGES uses the latter mechanism and acts a global repository for
the updated agent states computed in the simulation so that proxy representation
can be updated on demand. The updating of a simulation instance and request for
proxy agent state is accomplished in a non-blocking manner to allow agents in other
instances of the algorithm to be chosen and updated during the slow I/O operation
of communicating the updates. During the communication phase newly generated
agent states are shared and received. The information of new update states of remote
agents is stored in their respective proxy representation to be used by the simulation
instance. If a requested agent state does not exist in the central repository, SWAGES
will store the request until the data becomes available and also inform the simula-
tion instance that “owns” the agent that another simulation instance requires updated
state information. This information can be used to influence the update policy in
AltSchedG (e.g., in the Remote Block policy).

To implement the above policies and select a set of (unblocked) agents AS that
can be updated, we start with a set that contains a given agent A chosen by the
policy and then recursively add into A all agents within the event horizon of any
agent already in the set. This final set TC(A) forms a transitive closure of A that
contains all agents that are connected via their overlapping interaction ranges and
is thus update independent from all other agents in the simulation instance (i.e.,
agents in the set C −AS).12 If AS contains a proxy agent, then AS can be updated
only once until that proxy agent’s state updates thus blocking all agents in AS by

12 Another way to view this concept is to consider the collection of agents as a graph of all
agents at a given time. Let each node represent an agent and directed edges represent that
agent’s ability to sense or influence the connecting node. All nodes that are reachable from
a given node define a transitive closure. Therefore, the collection of agents in a transitive
closure is a set of agents that can be updated independently from other agents in the sim-
ulation. Independent updating is possible because agents outside of the transitive closure
have no ability to influence or be influenced by those agents inside the transitive closure.
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placing their updates on hold. Optionally, the list of agent states that were updated
is sent back to the SWAGES server for bookkeeping. If no agent states are updated,
a list of proxy agents causing blocking in that simulation instance is requested. The
SWAGES server responds with any updated agent states requested or previously
requested by that simulation instance. Additionally, a list of identifiers of agents in
that simulation instance that are causing blocking in other simulation instances is
also sent, which can be used in update policies.

4.2 Evaluation

We evaluated the three most promising update strategies defined above: Remote
Event First with Remote Blocks, Youngest First, and Youngest First with Remote
Blocks.13 In addition, we included the “Cycle-Based Update Strategy” as a stan-
dard control condition. For the simulation model, we picked a realistic model from
one of our current agent-based modeling domains, that of female mate choice in
treefrogs. In this model, male and female treefrogs are located in a swamp area.
Male frogs are stationary within the environment and indicate their presence and
readiness for mating by repeatedly making “mating calls” of fixed, but different
quality. Females initially enter the swamp from the rim, listening to the males’ calls
and repeatedly making choices about which of the males to approach based on the
“quality” of male’s mating call. Once a female has picked a male, she will approach
the male based on the directions she obtains from locating the source of the male’s
call (“phonotaxis”). It is known from the biological literature that females show
phonotaxis toward calls of males with higher pulse numbers (e.g., [9, 10]). Our spe-
cific model of female choice is intended to study the influence of male and female
spatial distributions on mating success of females (measured in terms of the over-
all male fitness) when females pursue one of two “choice strategies”: a best-of-n
strategy where they pick the male with the best quality of the closest n males [3],
or a minthresh strategy where they pick the closest male whose quality is above a
minimum threshold [4] (for more details on the model, see [5, 2]).

For the evaluation experiments, ten females were initially positioned based on a
Gaussian function along the rim of the swamp. 27 males were initially positioned by
an inverse Gaussian function in the middle of the swamp (positioning more males
towards the critical rim areas, see the left part of Figure 4). The swamp was modeled
by a continuous rectangular area of 10×25 meters. In comparison, frogs are 4.75cm
in size and can leap up to 1.44cm in one hop. While the male update function does
not change the male frogs behavior unless a female frog is within mating range, in
which case the male will mate, the female update function will map perceived call
qualities onto the direction towards the chosen male and cause the female to leap (at
a fixed speed of 1.44cm/sec) in that direction. When a female is within mating range
of a male (4cm), she will attempt to mate (regardless of whether the male was the

13 Remote Event First was left out because it did not show sufficient performance gains in
our evaluation scenario even though it might work well in others.
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Fig. 4. The initial configuration of male and female frogs in the swamp (on the left) and the
results (on the right) showing the mean overall simulation run-time (in seconds) together with
their standard deviation averaged over all split conditions (see text for details).

chosen one or not, which models the biologically hypothesized behavior). A simula-
tion run starts with placing all agents (male and female) in their initial locations and
updating them until all females have mated (which is always guaranteed to happen
because there are more males than females in the environment).

For the evaluation of the four update strategies, we ran the same initial configu-
ration (keeping male and female distribution fixed as well as the distribution of the
male calls) under 10 different random split conditions distributed on a fixed pool
of processors (i.e., 2, 4, and 8).14 The right graph in Figure 4 shows the results,

14 We did not include the one processor case since there is no significant performance differ-
ence between any of the employed strategies.
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which were obtained by averaging over the total simulation run-time (from start-
ing the SWAGES gridserver with the experiment startup file until the server quit)
across the different split conditions. As can be seen from the results, there is already
an immediate benefit of using any of the update strategies other than the standard
cycle-based strategy with more than one processor, even though the performance
gain really becomes more pronounced as the number of processors increases. In
particular, in the case of 8 processors, changing from the standard update strategy
reduces the overall execution by more than half for all cases. Note that the excel-
lent performance of the Remote Event First with Remote Blocks strategy has to do
with the fact the agent update sequence of this policy closely aligns with the optimal
agent update sequence of this simulation. The optimal agent update sequence of a
simulation is based on the characteristics of the agents in the simulation as well as
the simulation’s terminating condition. Since males do not and females select males
based on closest proximity then the projected remote event of a male-female inter-
section would actually accurately measures the simulations terminating condition
and therefore select the agent updates necessary to achieve the simulation termina-
tion quickly. Also, the small increase in overall run-time has to do with the additional
bookkeeping required for more processors, which is due to the low run-times of Re-
mote Event First with Remote Blocks that shows up explicitly while being absorbed
within the run-time of the other strategies (given that it is only a small fraction).

4.3 Discussion

The empirical evaluation confirms what we were expecting based on the rationale
for defining our update strategies, namely that coordinating the updates of agents in
distributed simulations using simple heuristics that re-order update sequences with-
out changing the “semantics of the simulation” (i.e., the simulation outcome) can
lead to significant performance improvements in the context of parallel distributed
simulations. It is important, however, to keep in mind that the exact gains of us-
ing different update strategies will depend on several factors, at least on (1) the
complexity of the update functions of individual agents, (2) the agent distribution,
(3) the agent interaction range, (4) the agent translation function, (5) the size of the
world, etc. For the above strategies, we expect to see in general the best performance
gains for more complex agents where most of the processor time is spent on agent
update functions relative to the simulation book-keeping. In those cases, any way
that can re-order the update sequence to give priority to agents that either require
information from other simulation instances or could provide information to other
simulation instances (that are required at some future point) will reduce the overall
simulation run-time relative to that of the “cycle-based update strategy”, which is
oblivious to any interactions between parallel simulation instances (recall the exam-
ple from the non-optimality proof where the “cycle-based update strategy” can lead
to a lock-step behavior).

It is also important to note that while the above evaluation shows significant per-
formance improvements over the cycle-based update strategy, there is still room
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for further improvement. For example, it is possible to use a finer-grained distinc-
tion about dependencies among agents that does not amount to computing the full
transitive closure (e.g., an agent really only needs information for agents that can
potentially interact with it at cycle n and not the full transitive closure). Hence, as
long as all agents in its interaction range are at cycle n, it can be updated and by
keeping its previous state at cycle n around it will allow other agents in its interac-
tion range to update at a later point without causing inconsistencies. This type of
optimization can lead to fewer blocked scenarios since there will be fewer agents
identified as dependent that would therefore be required to update at cycle n before
any of the agents advance to cycle n + 1.

Another interesting question is how update strategies that are intended to reduce
remote blocks can be combined with heuristics that prioritize agents based on their
estimated distance to a terminal condition. It is currently unclear whether there is a
general answer to this question (e.g., to always prefer advancing agents close to ter-
minal conditions if there are guarantees for the heuristic such as being admissible).

Finally, we would also like to point out that richer agent-based simulations that
include, in addition to agents, environmental states (e.g., global or local tempera-
ture) or other entities (e.g., non-movable, but consumable food sources) will require
additional mechanisms for distributing and keeping track of those state across sim-
ulations instances effectively. This is also true of locations that can have properties
assigned (e.g., swamp land vs. mountain side).

5 Conclusions

In this chapter, we investigated the utility of using novel update strategies for agents
in simulations of agent-based models. These strategies differ from the standard
cycle-based update strategy with respect to the update sequence of agent updates
from initial to terminating conditions, but without changing any simulation out-
comes. We demonstrated that the performance of parallel distributed agent-based
simulations extended from our previous parallelization and distribution algorithms
can be significantly improved if the proposed heuristics are employed. Specifically,
we were able to achieve more than 50% shorter overall simulation run times in an
agent-based simulation model taken from a biological research domain that investi-
gates female choice behavior in tree frogs.

While any particular performance improvements will always critically depend on
the nature of the employed agents, the proposed heuristics seem promising across
the board. This is because they attempt to anticipate information exchanges between
distributed simulation instances that will likely be required at some future time and
prioritize agent updates of those agents whose state will be required.

Future work will investigate how the heuristics can be adaptively combined to
utilize their individual strengths. We will also investigate ways to improve the de-
tection of update independent subsets of agents that do not solely rely on event
horizons (which are only a rough estimate of possible interactions). In particular,
we are interested in exploring reflection methods that will be able to gain and utilize
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information in the agent update function about whether an agent is likely to inter-
act with another agent. Finally, we will also look at replacements for the transitive
closure computation which is expensive and not needed in its entirety to determine
subsets of agents that can be updated.
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On the Use of Distributed Genetic Algorithms
for the Tuning of Fuzzy Rule Based-Systems

Ignacio Robles, Rafael Alcalá, José M. Benı́tez, and Francisco Herrera

Abstract. The tuning of Fuzzy Rule-Based Systems is often applied to improve
their performance as a post-processing stage once an appropriate set of fuzzy rules
has been extracted. This optimization problem can become a hard one when the size
of the considered system in terms of the number of variables, rules and, particularly,
data samples is big. Distributed Genetic Algorithms are excellent optimization al-
gorithms which exploit the nowadays available parallel hardware (multicore micro-
processors and clusters) and could help to alleviate this growth in complexity.

In this work, we present a study on the use of the Distributed Genetic Algo-
rithms for the tuning of Fuzzy Rule-Based Systems. To this end, we analyze the
application of a specific Gradual Distributed Real-Coded Genetic Algorithm which
employs eight subpopulations in a hypercube topology.

The empirical performance in solution quality and computing time is assessed
by comparing its results with those from a highly effective sequential tuning algo-
rithm. We applied both, the highly effective sequential algorithm and the distributed
method, for the modeling of four well-known regression problems. The results show
that the distributed approach achieves better results in terms of quality and execu-
tion time as the complexity of the problem grows.

Keywords: Genetic Fuzzy Systems, Fuzzy Rule Based-Systems, Distributed Ge-
netic Algorithms, Genetic Tuning.

1 Introduction

Fuzzy rule based-systems (FRBS) have become a wide choice when addressing
modeling and system identification problems [1, 2, 3, 4]. One of the most popular
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approaches for the design of FRBSs is the hybridization between fuzzy logic [5, 6]
and Genetic Algorithms (GAs) [7, 8] leading to the well-known Genetic Fuzzy Sys-
tems (GFSs) [9, 10, 11]. A GFS is basically a fuzzy system augmented by a learning
process based on evolutionary computation, which includes GAs, genetic program-
ming, and evolutionary strategies, among other evolutionary algorithms [12].

The predominant type of GFS is that focused on FRBSs, since the automatic def-
inition of FRBSs can be seen as an optimization or search problem, and GAs are
a well known and widely used global search technique with the ability to explore
a large search space for suitable solutions only requiring a performance measure.
In addition to their ability to find near optimal solutions in complex search spaces,
the generic code structure and independent performance features of GAs make them
suitable candidates to incorporate a priori knowledge. In the case of FRBSs, this a
priori knowledge may be in the form of linguistic variables [13], fuzzy member-
ship function (MF) parameters, fuzzy rules, number of rules, etc. These capabilities
extended the use of GAs in the development of a wide range of approaches for
designing FRBSs over the last few years.

In this framework, a widely-used technique to enhance the performance of
FRBSs is the genetic tuning of MFs [14, 15, 16, 17, 18, 19]. It consists of improv-
ing a previous definition of the Data Base (DB) once the Rule Base (RB) has been
obtained. The classic approaches to perform genetic tuning [14, 15] consist of using
a GA in order to refine the definition parameters that identify the MFs associated to
the linguistic terms comprising the initial DB.

Since the real aim of the genetic tuning process is to find the best global con-
figuration of the MFs and not only to find independently specific ones, this opti-
mization problem can become a hard one when the size of the considered system
in terms of the number of variables, rules and, particularly, data samples (typically
used to guide the search) is big. Moreover, the computing time consumed by these
approaches grows with the complexity of the search space.

In order to deal with this complexity, Distributed Genetic Algorithms (DGAs)
[20, 21, 22] are found to be excellent optimization algorithms for high dimensional
problems. They are able to take advantage of the parallel hardware and software that
has become very affordable and broadly available nowadays. Clear examples in this
line are multicore processors and linux clusters [23, 24, 25]. This situation makes
them perfect to deal with complex search spaces.

In this work, we present a study on the use of the Distributed Genetic Algorithms
for the tuning of FRBS from two points of view: solution quality and computing
time improvements. To this end, we analyze the application of a specific Gradual
Distributed Real-Coded Genetic Algorithm (GDRCGA) to perform an effective ge-
netic tuning of FRBSs [26]. This algorithm employs eight subpopulations in a hy-
percube topology [27] and makes use of a particular linguistic rule representation
model that was proposed in [17] to perform a genetic lateral tuning of MFs. This
approach is based on the linguistic 2-tuples representation [28] which simplifies the
search space by considering only one parameter per MF and, therefore, eases the
derivation of optimal models, particularly in complex or high-dimensional prob-
lems.
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The empirical performance in solution quality and computing time has been as-
sessed by comparing the results of the distributed approach with those obtained from
the specialized sequential algorithm, proposed in [17], to perform a lateral tuning of
the MFs. Both methods are applied for the modeling of four well-known regression
problems. The results show that the distributed approach achieves better results in
terms of quality and execution time as the complexity of the problem grows.

The contribution is structured as follows: in the second section DGAs are pre-
sented and briefly discussed. In the third section, we present a brief introduction to
FRBSs. Next, lateral tuning of FRBSs problem is stated and an efficient sequen-
tial specialized algorithm is reviewed. The fifth section describes the DGA used for
FRBS tuning. An empirical evaluation of the distributed algorithm is presented in the
sixth section. Finally, we close this chapter with some conclusions and final remarks.

2 Distributed Genetic Algorithms

The availability of extremely fast and low cost parallel hardware in the last few
years benefits the investigation on new approaches to existing optimization algo-
rithms. The key of these new approaches is achieving gains not only in time, which
is somehow inherent to parallel computation, but also gains in quality of the solu-
tions found.

Generally, there are two ways to parallelize GAs. The first way is by means of
local parallelization: fitness evaluation of the individuals and, sometimes, the appli-
cation of the genetic operators are carried out in a parallel way [29, 30]. The second
way is by means of global parallelization: complete subpopulations evolve in paral-
lel [31, 32, 33, 34, 35, 36, 27, 37] (distributed approach or DGAs). While the first
one is only achieving gains in time, the second one is also able to improve the global
performance of the underlying algorithm, subsequently achieving additional gains
in the quality of the final solutions. In fact, DGAs [20, 22] are excellent optimization
algorithms and have proven to be an interesting approach when trying to cope with
large scale problems and when the classic approaches take too much time to give a
proper solution.

In this section, our goal is to present an introductory vision of the distributed
models. Firstly, we present a taxonomy of the state of the art of DGAs. Finally, the
key elements to obtain a well-designed DGA are presented.

2.1 Taxonomy of Distributed Genetic Algorithms

Several categorizations of DGAs can be found in literature [20, 21, 22] according to a
wide range of criteria. Some of the most used categories when referring to DGAs are:

• According to the migration policy:

– Isolated: no migrations between subpopulations. These DGAs are also known
as Partitioned Genetic Algorithms [31].

– Synchronous: migrations between subpopulations are synchronized, for ex-
ample, they are carried out at the same time [31, 32].
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– Asynchronous: migrations are carried out when some events occur, generally
related to the activity of subpopulations [33].

• According to the connection schema:

– Static schema: connections between subpopulations are stablished at the start
of the execution and they are not modified.

– Dynamic schema: connection topology changes dynamically along the exe-
cution of the algorithm. Connection reconfigurations may occur depending on
the degree of evolution of the subpopulations.

• According to the homogeneity:

– Homogeneous: genetic operators are the same for all subpopulations as well
as parameters, fitness function, coding scheme, etc. The vast majority of
DGAs proposed in the literature are homogeneous.

– Heterogeneous: subpopulations are all alike [34, 35, 36]. They can differ
from the parameters used, genetic operators, coding scheme, etc. One example
of these heterogeneous GAs are the Gradually Distributed Genetic Algorithms
where genetic operators are applied with different intensities [27].

• According to the granularity:

– Coarse-grained parallelization: The population is split into small subpopu-
lations that are assigned to different processors. Each subpopulation evolves
independently and simultaneously according to a GA. Periodically, a migra-
tion operator exchanges individuals among subpopulations, which gives them
some additional diversity.

– Fine-grained parallelization: The population is split into a big number of
small subpopulations. Generally only one subpopulation is assigned to each
processor. The selection and crossover operators are applied considering ad-
jacent individuals. For example, each individual chooses its best neighbor for
crossover (see Figure 1) and the resulting individual replaces the original one.
When a single individual is assigned to each processor, this type of algorithms
are known as Cellular Genetic Algorithms [37].

Fig. 1. Cellular Genetic Algorithm: a extreme case of fine-grained parallelization
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2.2 Design of Distributed Genetic Algorithms

There are two classic problems [27] in DGAs. A main drawback in DGAs is that
the insertion of a new individual coming from a different subpopulation may not
be effective. The new individual could be highly incompatible with the receiving
subpopulation and therefore it might be ignored or conquer the subpopulation. This
probably happens when subpopulations involved are at different stages of evolution.

The arrival of a highly evolved individual comming from a strong subpopula-
tion will result in a higher selection ratio than for local individuals which are less
evolved. In this way, the subpopulation that sends the highly evolved individual is
imposing it to the receiving subpopulation. This problem is known as the Conquest
Problem.

Symmetrically, when a less evolved individual migrates to a highly evolved sub-
population it will not be selected for reproduction and therefore it will be abandoned.
This means a waste of computational and communication efforts. This problem is
known as the Non-effect Problem.

Both problems could appear in DGAs since subpopulations tend to converge at
different speeds. For example, if parameters used for the genetic operators are differ-
ent, convergence speed will be very different in subpopulations. These problems can
directly affect the global convergence leading to non-optimal solutions and losing
the efectiveness of the distributed approach.

Subsequently, proposing a well-designed DGA is not a trivial task due to the exis-
tence of several factors that can have an influence over the exploration/exploitation
balance of the algorithm. There are several elements to consider when designing
DGAs:

1. Topology: structure of the distributed algorithm which defines relationships be-
tween subpopulations and individuals [31, 32, 38, 39]

2. Migration rate (MRATE): amount of individuals to be exchanged between sub-
populations.

3. Migration frequency (MFREQ): number of generations between two consecu-
tive migrations.

4. Selection strategy: generally there are two ways of selecting the genetic material
to be copied. The first way is randomly selecting an individual from the current
subpopulation. The second way consists on selecting the individual with the best
fitness in every subpopulation to be copied to another. This last would lead into a
more direct evolution because individuals would not have traces of less adapted
individuals. The main disadvantage of selecting the best individual is that it could
lead into premature convergency [40].

5. Replacement strategy: different replacement strategies can be considered, as
replacing the worst individuals with the ones received due to migrations, as re-
placing an individual randomly choosen, etc.

6. Replication of emigrants: should individuals be moved, or copied among sub-
populations? Exchanging copies of individuals could lead to a highly evolved
individuals dominating several less evolved subpopulations [40].
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All these parameters have a deep interaction among them and should be care-
fully determined since a poor choice in one of them can have a strong impact on
the global performance of the algorithm. For instance, choosing a extremely high
MFREQ can lead to an excessive communication load of the network and the effect
of the migrated individuals could be almost imperceptible. Besides, these parame-
ters should be fixed having in mind the hardware that will be used to execute the
algorithm: depending on the network it might be better migrating more individuals
less frequently than the other way around.

Finally, one procedure for designing DGAs comes from the consideration of spa-
tial separation of subpopulations. Schematically:

1. Generate a random population, P.
2. Divide P into m subpopulations: SPi, i = 1, . . . ,m.
3. Define a topology for SP1, . . . ,SPm.
4. For i = 1 to m do:

4.1. Apply in parallel during MFREQ generations the genetic operators.
4.2. Send in parallel MRATE chromosomes to neighbor subpopulations.
4.3. Receive in parallel chromosomes from neighbor subpopulations.

5. If stopping criteria is not meet then go back to step 4.

3 Fuzzy Rule-Based Systems

FRBSs constitute one of the main contributions of fuzzy logic. The basic concepts
which underlie these fuzzy systems are those of linguistic variable and fuzzy IF-
THEN rule. A linguistic variable, as its name suggests, is a variable whose values
are words rather than numbers, e.g., “small”, “young”, “very hot” and “quite slow”.
Fuzzy IF-THEN rules are of the general form: if antecedent(s) then consequent(s),
where antecedent and consequent are fuzzy propositions that contain linguistic vari-
ables. A fuzzy IF-THEN rule is exemplified by “if the temperature is high then the
fan-speed should be high”. With the objective of modeling complex and dynamic
systems, FRBSs handle fuzzy rules by mimicking human reasoning (much of which
is approximate rather than exact), reaching a high level of robustness with respect
to variations in the system’s parameters, disturbances, etc. The set of fuzzy rules of
an FRBS can be derived from subject matter experts or extracted from data through
a rule induction process.

In this section, we present a brief overview of the foundations of FRBSs, with the
aim of illustrating the way they behave. In particular, in Section 3.1, we introduce
the important concepts of fuzzy set and linguistic variable. Finally, in section 3.2,
we deal with the basic elements of FRBSs.
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3.1 Fuzzy Set and Linguistic Variable

A fuzzy set is distinct from a crisp set in that its elements belong to it to a certain
degree. The core of a fuzzy set is its MF: a surface or line that defines the relationship
between a value in the set’s domain and its degree of membership. In particular,
according to the original ideal of Zadeh [5], membership of an element x to a fuzzy
set A, denoted as μA(x) or simply A(x), can vary from 0 (full non-membership) to 1
(full membership), i.e., it can assume all values in the interval [0,1]. Clearly, a fuzzy
set is a generalization of the concept of a crisp set whose MF takes values in {0,1}.

The value of A(x) is the degree of membership of x in A. For example, consider
the concept of high temperature in an environmental context with temperatures dis-
tributed in the interval [0, 50] defined in centigrade degrees. Clearly 0oC is not un-
derstood as a “high temperature” value, and we may assign a null value to express
its degree of compatibility with the high temperature concept. In other words, the
membership degree of 0oC in the class of high temperatures is zero. Likewise, 30oC
and over are certainly high temperatures, and we may assign a value of 1 to express
a full degree of compatibility with the concept. Therefore, temperature values in the
range [30, 50] have a membership value of 1 in the class of high temperatures. From
0oC to 30oC, the degree of membership in the fuzzy set high temperature gradually
increases, as exemplified in Figure 2, which actually is a MF A : T → [0,1] charac-
terizing the fuzzy set of high temperatures in the universe T = [0,50]. In this case, as
temperature values increase they become more and more compatible with the idea
of high temperature.

      A( t )
( g r a d e  o f
m e m b e r s h i p )

T e m p e r a t u r e  ( d e g r e e  c e n t r i g r a d e )

H i g h

0 3 0 5 0

Fig. 2. Membership function

Linguistic variables are variables whose values are not numbers but words or
sentences in a natural or artificial language. This concept has clearly been devel-
oped as a counterpart to the concept of a numerical variable. In concrete, a linguis-
tic variable L is defined as a quintuple [41]: L = (x,A,X ,g,m), where x is the base
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variable, A = {A1,A2, . . . ,AN} is the set of linguistic terms of L (called term-set), X
is the domain (universe of discourse) of the base variable, g is a syntactic rule for
generating linguistic terms and m is a semantic rule that assigns to each linguistic
term its meaning (a fuzzy set in X). Figure 3 shows an example of a linguistic
variable Temperature with three linguistic terms “Low, Medium, and High”. The
base variable is the temperature given in appropriate physical units.

t  ( t e m p e r a t u r e )

H i g hL o w M e d i um

T E M P E R A T U R E

A( t )

1 0 2 0 3 0 4 0

L i n g u i s t i c  V a r i a b l e

T e r m  S e t

S e m a n t i c
R u l e

M e m b e r s h i p
f u n c t i o n s

1

0

Fig. 3. Example of linguistic variable Temperature with three linguistic terms

Each underlying fuzzy set defines a portion of the variable’s domain. But this
portion is not uniquely defined. Fuzzy sets overlap as a natural consequence of their
elastic boundaries. Such an overlap not only implements a realistic and functional
semantic mechanism for defining the nature of a variable when it assumes various
data values but provides a smooth and coherent transition from one state to another.

3.2 Basic Elements of FRBSs

The essential part of FRBSs is a set of IF-THEN linguistic rules, whose antecedents
and consequents are composed of fuzzy statements, related by the dual concepts of
fuzzy implication and the compositional rule of inference.

An FRBS is composed of a knowledge base (KB), that includes the knowledge
in the form of IF-THEN fuzzy rules;

IF a set of conditions are satisfied
THEN a set of consequents can be inferred
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and an inference engine module that includes:

• A fuzzification interface, which has the effect of transforming crisp data into
fuzzy sets.

• An inference system, that uses them together with the KB to make inference by
means of a reasoning method.

• A defuzzification interface, that translates the fuzzy rule action thus obtained to
a real action using a defuzzification method.

FRBSs can be categorized into different families:

• The first includes linguistic models based on collections of IF-THEN rules,
whose antecedents are linguistic values, and the system behaviour can be de-
scribed in natural terms. The consequent is an output action or class to be applied.
For example, we can denote them as:
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Y is Bi

or
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Ck with wik

with i = 1 to M, and with Xi1 to Xin and Y being the input and output variables
for regression respectively, and Ck the output class associated to the rule for clas-
sification, with Ai1 to Ain and Bi being the involved antecedents and consequent
labels, respectively, and wik the certain factor associated to the class. They are
usually called linguistic FRBSs or Mamdani FRBSs [42].

• The second category based on a rule structure that has fuzzy antecedent and
functional consequent parts. This can be viewed as the expansion of piece-wise
linear partition represented as
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Y = p(Xi1, · · · ,Xin),
with p(·) being a polynomial function, usually a linear expression, Y = p0 +
p1 · Xi1 + · · ·+ pn ·Xin. The approach approximates a nonlinear system with a
combination of several linear systems. They are called Takagi and Sugeno’s type
fuzzy systems [43] (TS-type fuzzy systems).

• Other kind of fuzzy models are the approximate or scatter partition FRBSs, which
differ from the linguistic ones in the direct use of fuzzy variables [44]. Each fuzzy
rule thus presents its own semantic, i.e., the variables take different fuzzy sets as
values (and not linguistic terms from a global term set). The fuzzy rule structure
is then as follow:
Ri : If Xi1 is Âi1 and · · · and Xin is Âin then Y is Ĝi

with Âi j to Âin and Ĝi being fuzzy sets. The major difference with respect to the
rule structure considered in linguistic FRBSs is that rules of approximate nature
are semantics free whereas descriptive rules operate in the context formulated by
means of the linguistic semantics.

In linguistic FRBSs, the KB is comprised by two components, a data base (DB)
and a rule base (RB).

• A DB, containing the linguistic term sets used in the linguistic rules and the MFs
defining the semantics of the linguistic labels.
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Each linguistic variable involved in the problem will have associated a fuzzy
partition of its domain represented by the fuzzy sets associated to its linguis-
tic terms. Figure 4 shows an example of fuzzy partition with five labels. In this
case, the linguistic term set for each variable (denoted in a common way by y) is
{Negative Medium (NM), Negative Small (NS), Zero (ZR), Positive Small (PS),
Positive Medium (PM)}, which has associated the fuzzy partition of their corre-
sponding domains shown in the Figure. This can be considered as a discretization
approach for continuous domains where we establish a membership degree to the
items (labels), we have an overlapping between them, and the inference engine
manages the matching between the patterns and the rules providing an output
according to the rule consequents with a positive matching. The determination of
the fuzzy partitions is crucial in fuzzy modelling [45], and the granularity of the
fuzzy partition plays an important role in the FRBS behaviour [46].

N M N S Z R P S P M

A ( y )

y

Fig. 4. Membership functions of the linguistic variables (where y stands for each variable
involved in the system)

If we manage approximate FRBSs, then we do not have a DB due to the fact
that rules use fuzzy values rather than linguistic terms.

• A RB comprises of a collection of linguistic rules that are joined by a rule con-
nective (“also” operator). In other words, multiple rules can fire simultaneously
for a given input.

The inference engine of an FRBS acts in a different way depending on the kind
of problem (classification or regression) and the kind of fuzzy rules (linguistic ones,
TS-ones, etc). It usually includes a fuzzification interface that serves as the input
to the fuzzy reasoning process; an inference system that infers from the input to
several resulting output (fuzzy set, class, etc); and the defuzzification interface or
output interface that converts the fuzzy sets obtained from the inference process into
a crisp action that constitutes the global output of the FRBS. This last component
appears in the case of regression problems, or provide the final class associated to
the input pattern according to the inference model.
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The generic structure of an FRBS is shown in Figure 5.

R 1 :  I F  X 1  I S  A 1  A N D  X 2  I S  B 1  T H E N  Y  I S  C 1  

R 3 :  I F  X 1  I S  A 3  A N D  X 2  I S  B 3  T H E N  Y  I S  C 3  

R 2 :  I F  X 1  I S  A 2  A N D  X 2  I S  B 2  T H E N  Y  I S  C 2  

D A T A  B A S E
R U L E  B A S E

K N O W L E D G E  B A S E :  D a t a  B a s e  +  R u l e  B a s e

I N F E R E N C E  S Y S T E M
D E F U Z Z I F I C A T I O N

( O U T P U T  I N T E R F A C E )

F U Z Z I F I C A T I O N
( I N P U T  I N T E R F A C E )

N u m e r i c a l
 D a t a

F u z z y
S e t

N u m e r i c a l
 D a t a

F u z z y
S e t

Fig. 5. Structure of an FRBS

For more information about fuzzy systems the following books may be consulted
[1, 2, 3, 4, 9, 47, 48]. For different issues associated to the trade-off between inter-
pretability and accuracy of FRBSs, the two following edited books present a collec-
tion of contributions in the topic [18, 49].

Finally, we must point out that we can find a lot of applications of FRBSs in
all areas of engineering, sciences, medicine, etc. At the present it is very easy to
find these applications by using the publisher web search tools and by focusing the
search on journals of different application areas.

4 Genetic Tuning of FRBSs

With the aim of making a FRBS performs better, some approaches try to improve
the preliminary DB definition or the inference engine parameters once the RB has
been derived [9, 10, 11]. In order to do so, a tuning process considering the whole
KB obtained (the preliminary DB and the derived RB) is used a posteriori to adjust
the MFs or the inference engine parameters. A graphical representation of the tuning
process is shown in Figure 6.

Among the different possibilities to perform tuning, one of the most widely-used
approaches to enhance the performance of FRBSs is the one focused on the DB
definition, usually named tuning of MFs, or DB tuning [17, 14, 15, 19, 50]. In [14],
we can find a first and classic proposal on the tuning of MFs. In this case, the tun-
ing methods refine the parameters that identify the MFs associated to the labels
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Fig. 6. Genetic tuning process

T T'

a a' b'b c' c

Fig. 7. Tuning by changing the basic MF parameters

comprising the DB. Classically, due the wide use of the triangular-shaped MFs, the
tuning methods [19, 9, 15, 14] refine the three definition parameters that identify
these kinds of MFs (see Figure 7).

Since the parameters of the MF are interdependent among themselves, in the case
of large scale problems, the tuning process becomes an optimization problem on a
very complex search space. This, of course, affects the good performance of the
optimization methods. A good alternative to solve this problem is the lateral tuning
of MFs [17]. This approach makes use of the linguistic 2-tuples representation [28]
which simplifies the search space and, therefore, eases the derivation of optimal
models, particularly in complex or high-dimensional problems. In order to better
handle the complex search space that the tuning of MFs represents, in this work, we
analyze the use of the DGAs when performing a lateral tuning of the MFs.

In the next subsection, we describe the efficient lateral tuning of FRBSs. Then,
the sequential evolutionary algorithm proposed in [17] to perform the lateral tuning
of FRBS is briefly described.
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4.1 Lateral Tuning of FRBSs: The Linguistic 2-Tuples
Representation

In [17], a new procedure for FRBSs tuning was proposed. It is based on the lin-
guistic 2-tuples representation scheme introduced in [28], which allows the lat-
eral displacement of the support of a label and maintains the interpretability at a
good level. This proposal introduces a new model for rule representation based
on the concept of symbolic translation [28]. The symbolic translation of a label
is a number in [−0.5,0.5) which expresses its displacement between two adjacent
lateral labels (see Figure 8.a). Let us consider a generic linguistic fuzzy partition
S = {s0, . . . ,sL−1} (with L representing the number of labels). Formally, we repre-
sent the symbolic translation of a label si in S by means of the 2-tuple notation,

(si,αi), si ∈ S, αi ∈ [−0.5,0.5). (1)

The symbolic translation of a label involves the lateral variation of its associated
MF. Figure 8 shows the symbolic translation of a label represented by the 2-tuple
(s2,−0.3) together with the associated lateral variation.

Fig. 8. Symbolic Translation of a Label and Lateral Displacement of the associated MF

In the context of FRBSs, the linguistic 2-tuples could be used to represent the
MFs used in the linguistic rules. This way to work, introduces a new model for rule
representation that allows the tuning of the MFs by learning their respective lat-
eral displacements. Next, we present this approach by considering a simple control
problem.

Let us consider a control problem with two input variables (X1,X2), one output
variable (Y ) and an initial DB defined by experts to determine the MFs for the fol-
lowing labels:

• X1: Error →{Negative,Zero,Positive}
• X2: ∇Error →{Negative,Zero,Positive}
• Y : Power → {Low,Medium,High}
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Based on this DB definition, examples of classic and linguistic 2-tuples repre-
sented rules are:

• Classic Rule:
Ri: If the Error is Zero and the ∇Error is Positive Then the Power is High.

• Rule with 2-Tuples Representation:
Ri: If the Error is (Zero,0.3) and the ∇Error is (Positive, -0.2) Then the Power
is (High, -0.1).

With respect to the classic tuning, usually considering three parameters in the
case of triangular MFs, this way to work involves a reduction of the search space
that eases a fast derivation of optimal models, improving the convergence speed and
avoiding the necessity of a large number of evaluations.

In [17], two different rule representation approaches have been proposed, a global
approach and a local approach. The global approach tries to obtain more inter-
pretable models, while the local approach tries to obtain more accurate ones. In
our case, tuning is applied at the level of linguistic partitions (global approach). By
considering this approach, the label sv

i of a variable v is translated with the same αv
i

value in all the rules where it is used, i.e., a global collection of 2-tuples is used in
all the fuzzy rules.

Notice that from the parameters αv
i applied to each label we could obtain the

equivalent triangular MFs. Thus, an FRBS based on linguistic 2-tuples can be rep-
resented as a classic Mamdani FRBS [51]. Refer to [17] for further details on this
approach.

4.2 Sequential Algorithm for the Lateral Tuning of FRBSs

In [17], an effective sequential GA was proposed to perform a lateral tuning of
previously obtained FRBSs. A short description of this algorithm is given below
(see [17] for a detailed description).

As the basis optimization procedure the genetic model of CHC [52] was used.
Evolutionary model of CHC makes use of a “Population-based Selection” approach.
N parents and their corresponding offsprings are combined to select the best N indi-
viduals to compose the next population. The CHC approach makes use of an incest
prevention mechanism and a restarting process to provoke diversity in the popula-
tion, instead of the well known mutation operator.

This incest prevention mechanism is considered in order to apply the crossover
operator, i.e., two parents are crossed if their hamming distance divided by 2 is
higher than a predetermined threshold, T . Since a real coding scheme is considered,
each gene is transformed by considering a Gray Code with a fixed number of bits
per gene (BITSGENE) determined by the system expert. In our case, the threshold
value is initialized as:

T = (#GenesCT ∗BITSGENE)/4.0. (2)
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Following the original CHC scheme, T is decreased by one when the population
does not change in one generation. In order to avoid very slow convergence, T is
also decreased by one when no improvement is achieved with respect to the best
chromosome of the previous generation. The algorithm restarts when T is below
zero. A scheme of the evolutionary model of CHC is shown in Figure 9.

Initialize population

and THRESHOLD

Crossover of

N parents

Evaluation of the

New individuals

THRESHOLD < 0.0
Restart the population

and THRESHOLD

yes

no

Selection of the

best N individuals

If NO new  individuals,

decrement THRESHOLD

Fig. 9. Scheme of CHC

In the following, the components used to design the evolutionary tuning pro-
cess are explained. They are: DB codification and initial gene pool, fitness function,
crossover operator and restarting process.

4.2.1 Data Base Codification and Initial Population

A real coding scheme is considered, i.e., the real parameters are the GA representa-
tion units (genes). Let us consider n system variables and a fixed number of labels
per variable L. Then, a chromosome has the following form (where each gene is
associated to the tuning value of the corresponding label),

(α1
1 , . . . ,αL

1 ,α1
2 , . . . ,αL

2 , . . . ,α1
n , . . . ,αL

n ) (3)

To make use of the available information, the initial FRBS obtained from an auto-
matic fuzzy rule learning method is included in the population as an initial solution.
To do so, the initial pool is obtained with the first individual having all genes with
value ‘0.0’, and the remaining individuals generated at random in [-0.5, 0.5).

4.2.2 Fitness Function

To evaluate a given chromosome the well-known Mean Square Error (MSE) is used:

MSE =
1

2 ·N
N

∑
l=1

(F(xl)− yl)2, (4)

with N being the data set size, F(xl) being the output obtained from the FRBS
decoded from the said chromosome when the l-th example is considered and yl

being the known desired output.
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4.2.3 Crossover Operator

The crossover operator is based on the the concept of environments. These kinds
of operators show a good behavior in real coding. Particularly, the BLX-α operator
[53] is considered.

This operator allows tuning the degree of exploration and exploitation of the
crossover in an easy way. BLX-α crossover works as follows: let us assume that
X = (x1, . . . ,xg) and Y = (y1, . . . ,yg) with xi,yi ∈ [ai,bi) = [−0.5,0.5) ⊂ R(i =
1, . . . ,g) are the two real-coded chromosomes that are going to be crossed. Using the
BLX-α crossover, one descendant Z = (z1, . . . ,zg) is obtained, where zi is randomly
(uniformly) generated within the interval [li,ui], with li = max{ai,cmin −A}, ui =
min{bi,cmax + A}, cmin = min{xi,yi}, cmax = max{xi,yi} and A = (cmax − cmin) ·α .

Figure 10 shows how the BLX-α operator works at different stages of the evolu-
tion process.

Fig. 10. Different cases/stages of the application of the BLX-α crossover operator, where α
= 0.5

4.2.4 Restarting Process

To get away from local optima, this algorithm uses a restart approach [52]. In this
case, the best chromosome is maintained and the remaining are generated at random
within the corresponding variation intervals [-0.5, 0.5). It follows the principles of
CHC [52], performing the restart procedure when the threshold T is below zero.

5 A Distributed Genetic Algorithm for the Lateral Tuning of
FRBSs

One of the problems when performing tuning with complex data sets is the com-
plexity of the search space. Sometimes even an advanced GA can not deal with the
complex search space in terms of time and quality of the results.
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Gradual Distributed Real-Coded Genetic Algorithms (GDRCGAs) are a kind of
heterogeneous DGAs based on real coding where subpopulations apply genetic op-
erators in different levels of exploitation/exploration. This heterogeneous applica-
tion of genetic operators produce a parallel multiresolution which allows a wide
exploration of the search space and effective local precision. Due to appropiate con-
nections between subpopulations in order to gradually exploit multiresolution, these
algorithms achieve refinement or expansion of the best emerging zones of the search
space.

In order to analyze how DGAs can help the tuning problem, we have selected
an efficient GDRCGA [27], that keeps a good balance between exploration and ex-
ploitation of the search space. As we said before, we apply this algorithm to perform
a lateral tuning of previously obtained FRBSs. In this section, we describe the dif-
ferent characteristics of the DGA used: topology, migrations scheme and the main
components of the different subpopulations.

5.1 Main Components of the DGA

The GDRCGA [27] used for FRBS tuning employs 8 subpopulations in a hypercube
topology as seen in Figure 11.

E1

E2E3

E4

e4 e1

e3 e2

Back side (Exploitation)

Front side (Exploration)

+

+ -

-

Fig. 11. Hypercube topology for GDRCGA

In this topology two important groups of subpopulations can be clearly identified:

1. Front side: this side of the hypercube is oriented to explore the search space.
In this side, four subpopulations, E1, ...,E4, apply genetic operators adapted for
exploration in a clockwise increasing degree.

2. Back side: subpopulations in the back side of the hypercube, e1, ...,e4, apply
exploitation oriented genetic operators in a clockwise increasing degree.
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One of the key elements of DGAs is the migration policy of individuals between
subpopulations. In this particular model, an immigration process [54] is achieved
since the best chromosome in every subpopulation abandons it and moves to an
immediate neighbor. Due to this immigration policy, three different immigration
movements can be identified depending on the subpopulations involved:

1. Refinement migrations: individuals in the back side move clockwise to the im-
mediate neighbor, i.e. from e2 to e3. Chromosomes in the front side move coun-
terclock from a more exploratory subpopulation to a less exploratory oriented
one.

2. Expansion migrations: individuals in the back side move counterclock to the
immediate neighbor and chromosomes in the front side move clockwise from a
less exploratory subpopulation to a more exploratory oriented one, i.e. from E4

to E1.
3. Mixed migrations: subpopulations from one side of the hypercube exchange

their best individual with the counterpart subpopulation in the other side: inter-
change between Ei and ei, i = 1 . . .4.

Figure 12 shows the three different migration movements described above.

E1

E2E3

E4

e4 e1

e3 e2

E1

E2E3

E4

e4 e1

e3 e2

E1

E2E3

E4

e4 e1

e3 e2

Refinement migrations Expansion migrations

Mixed migrations

Fig. 12. Three different migration movements for the GDRCGA

As stated in [27], the frequency in which migration movements occur is crucial to
avoid the classic withdraws of DGAs: the conquest and noneffect problems. In order
to reduce the negative effect of these problems, immigrants stay in the receiving
subpopulations for a brief number of generations. Besides, a restart operator is used
to avoid stagnation of the search process. This restart operator randomly reinitializes
all subpopulations if non-significant improvement of the best element is achieved for
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a number of generations. Also an elitism strategy is used in order to keep the best
adapted individual of every subpopulation.

5.2 Common Components of Individual Subpopulations

The main component used in the different subpopulations of the distributed model
are:

• DB codification and initial subpopulations: the coding scheme used to repre-
sent the displacement parameters is the same one described in section 4.2.1 for
the specialized sequential algorithm. Each subpopulation is also initialized in the
same way explained in section 4.2.1, i.e., by including the initial FRBS as the
first individual in each subpopulation and the remaining individuals generated at
random.

• Selection mechanism: linear ranking selection (LRS) [55] with stochastic uni-
versal sampling [56]. Using LRS the selective pressure can be easily adjusted. In
LRS, the individuals are sorted in order of decreasing raw fitness, and then the
selection probability, ps, of each individual Ii is computed according to its rank
rank(Ii), with rank(Ibest) = 1, by using the following non-increasing assignment
function:

ps(Ii) =
1
N
· (ηmax − (ηmax −ηmin) · rank(Ii)−1

N −1
) (5)

where N is the population size, and ηmin ∈ [0,1] specifies the expected number
of copies for the worst individual. The selection pressure is determined by ηmin.
If ηmin is low, high pressure is achieved. The values of ηmin used for each sub-
population are shown in Table 1.

Table 1. Values of ηmin for each subpopulation

Exploitation Exploration
+ ← − − → +
e4 e3 e2 e1 E1 E2 E3 E4

0,9 0,7 0,5 0,1 0,9 0,7 0,5 0,1

• Crossover operator: the crossover operator used, BLX-α , is the same that was
used in the specialized sequential algorithm and it is described in section 4.2.3.
As stated before, distinct parameter values are used between subpopulations in
order to achieve different degrees of exploitation/exploration. The values used
for each subpopulation are shown in Table 2.

In the absence of selection pressure, values of α , which are α < 0.5 make the
subpopulations converge towards values in the center of their ranges, producing
low diversity levels in the population and inducing a possible premature conver-
gence towards non-optimal solutions. Only when α = 0.5, there is a balanced
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relationship reached between convergence (exploitation) and divergence (explo-
ration). In this case, the probability that a gene will lie in the exploration interval
is equal to the probability that it will lie in an exploration interval [53].

Table 2. Values of α for each subpopulation

Exploitation Exploration
+ ← − − → +
e4 e3 e2 e1 E1 E2 E3 E4

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

• Mutation operator: non-uniform mutation operator [57] applied with probabil-
ity Pmut = 0.125. This operator is one of the most used mutation operators in
real-coded GAs. The mutation operator works as follows. Let Xt = (xt

1, . . . ,x
t
n)

the chromosome selected for mutation. This operator generates a mutated chro-
mosome Xt+1 = (xt+1

1 , . . . ,xt+1
n ) where:

xt+1
i =

{
xt

i + Δ(t,xu
i − xt

i) if r ≤ 0.5

xt
i −Δ(t,xt

i − xl
i) otherwise

(6)

where t is the current generation number and r is an uniformly distributed random
number between 0 and 1. xl

i and xu
i are lower and upper bounds of the i-th gene

of the chromosome. The function Δ(t,y) is defined as follows:

Δ(t,y) = y(1−u(1− t
T )b

) (7)

where u is an uniformly distributed random number between 0 and 1, T is the
maximum number of generations and b is a parameter determining the strength
of the mutation.

6 Empirical Evaluation

In this section, we analize the empirical results we obtained in order to assess the
merits of the distributed approach when applied to lateral tuning of MFs. To evaluate
the usefulness of the studied approach, we have used four real-world problems.
Table 3 summarizes the main characteristics of the four datasets and shows the link
to the KEEL software tool webpage [58] (http://www.keel.es/) from which they can
be downloaded.

The studied distributed algorithm described in Section 5 (GDRCGA) is com-
pared with the specialized sequential GA (CHC) [17] in terms of quality of the
solutions achieved (MSE) as well as in running time. In both cases, the well-known
ad-hoc data-driven learning algorithm of Wang and Mendel [59] is applied to ob-
tain an initial set of candidate linguistic rules. The initial linguistic partitions are
comprised of five linguistic terms in the case of datasets with less than 9 variables
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Table 3. Data sets used to evaluate the algorithm

Data set Variables Instances
Electrical Maintenance 5 1056

Abalone 9 4177
Weather-Izmir 10 1461

Treasury 16 1049

and three linguistic terms in the remaining ones. We consider strong fuzzy parti-
tions of triangular-shaped MFs. Once the initial RB is generated, the different post-
processing algorithms can be applied.

A five-fold cross-validation approach has been used, i.e., we randomly split the
data set into 5 folds, each containing the 20% of the patterns of the data set, and
used four folds for training and the other for testing. So, a total of five runs have
been carried out with different independent test sets. For each dataset, we therefore
consider the average results of the five runs. The average results of the initial FRBSs
obtained by the Wang and Mendel algorithm are shown in Table 4 (initial reference
results).

Table 4. Initial mean squared errors and deviations in both, training and test sets, obtained by
Wang & Mendel

Dataset Training σtra Test σtest

Electrical M. 57606 2841 57934 4733
Treasury 1.636 0.121 1.632 0.182

Weather-Izmir 6.944 0.720 7.368 0.909
Abalone 3.341 0.130 3.474 0.247

An interesting point to be taken into account is the evolution of the MSE as the
number of evaluations increases. So, three different numbers of evaluations have
been choosen: 10000, 25000 and 50000 evaluations per run. The results in terms of
quality of the solutions attained are shown in Table 5. An important fact to notice is
that the MSE achieved with the distributed method is lower than the error obtained
with the specialized GA in all data sets at 50000 evaluations. The distribuited ap-
proach also obtains good results with fewer iterations in some cases (e.g. Electrical
Maintenance with 25000 iterations), but clearly its real effectiveness will be reached
when the computation load is higher.

Generally, when comparing a distributed or parallel approach with any other se-
quential algorithm, an interesting measure is the execution time gain ratio. This ratio
could be defined as follows:

R =
Tseq

Tdist
(8)
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Table 5. Mean squared errors in training and test sets obtained by CHC and GDRCGA. The
winner for each pair of training is in italics. The winner for each pair of test is boldfaced

CHC GDRCGA
Data set Evaluations Training Test Training Test

Electrical 10000 2.59363671E+04 2.92591821E+04 2.65539710E+04 2.89024830E+04

Maintenance
25000 2.48690100E+04 2.80510895E+04 2.39248797E+04 2.67720415E+04
50000 2.46214328E+04 2.78282761E+04 2.26682075E+04 2.54097540E+04

Abalone
10000 2.61355003E+00 2.79981355E+00 2.65916770E+00 2.79026550E+00
25000 2.60333453E+00 2.79298130E+00 2.59992700E+00 2.76143590E+00
50000 2.60303744E+00 2.79117626E+00 2.57035010E+00 2.75904570E+00

Weather-Izmir
10000 1.68875432E+00 1.89318352E+00 1.89195950E+00 1.95458830E+00
25000 1.64117336E+00 1.86996710E+00 1.66238700E+00 1.87669540E+00
50000 1.64010963E+00 1.86891124E+00 1.57019250E+00 1.86195430E+00

Treasury
10000 1.71238672E-01 1.86722425E-01 2.12486800E-01 2.16882700E-01
25000 1.33618274E-01 1.50895419E-01 1.42194200E-01 1.67407400E-01
50000 1.20604483E-01 1.37784224E-01 1.15845500E-01 1.31803000E-01

where Tseq is the time spent by the sequential algorithm and Tdist is the execution
time of the distributed approach. The higher the value of R, the better. Time gain
ratio values obtained in the empirical experimentation are shown in Table 6.

Table 6. Time gain ratio with 50000 evaluations

Data set Tseq Tdist R
Electrical Maintenance 187,3 391,6 0,479

Trasury 525,3 739,7 0,710
Weather-Izmir 849,8 867,1 0,980

Abalone 1980,9 942,5 2,101

In Table 6, the time gain ratio, R, increases with the problem complexity. In the
less complex data sets the ratio obtained is substantially lower because the sequen-
tial specialized GA is very fast and the time spent in communications of the dis-
tributed approach slows it down in comparison. As the complexity of the data set
increases the time gain ratio also increases, showing that the distributed approach in
the most complex data set is more than two times faster than the sequential special-
ized GA. The distributed algorithm takes longer than the sequential algorithm when
dealing with small size data sets mainly due to two reasons: interprocess communi-
cation in the distributed approach implies additional execution time which can not
be parallelized and the specialized algorithm is optimized for small size data sets
where the search space is not too complex.

On the other hand, observation of the evolution of the MSE is also an interesting
factor to take into account. Two different data sets have been choosen in order to
study the evolution of the MSE: Electrical Maintenance and Treasury. These two
data sets were choosen because of their different complexity: Treasury data set is
far more complex than Electrical Maintenance.
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Fig. 13. Evolution of the MSE in training (convergence): Electrical Maintenance and Treasury
datasets

Figure 13 shows the convergence of both algorithms in both problems. Due to
the distributed nature of the algorithm and consequently the spatial separation im-
plied, it needs more evaluations to converge than the sequential algorithm. It always
presents the same behaviour in comparision to the sequential approach: with a small
number of evaluations it yields a higher error than the sequential one, but when the
number of evaluations is high it gives solutions with a better quality.

As it has been stated, the distributed approach needs more iterations to achieve
convergency for complex data sets. This situation can be observed in Figure 13 (right
side): GDRCGA achieves better MSE values when the search process has consumed
two thirds of the number of evaluations. On the other hand, when dealing with less
complex data sets like Electrical Maintenance (Figure 13 left side), the distributed
approach quickly achieves better MSE values from almost the begining of the search
process and keeps gaining distance from the sequential CHC algorithm. In fact,
GDRCGA begins achieving better MSE values shortly after the search process has
consumed one third of the number of evaluations available. These two situations can
be also verified in Table 5.

Besides studying the evolution of the MSE in training (convergence), it is also in-
teresting to analyze the effects that it produces on the MSE in test regarding the same
data sets. Figure 14 shows the MSE in test of Treasury and Electrical Maintenance
datasets. Again, we can observe that the distributed approach needs more evalu-
ations to outperform the sequential algorithm in the more complex problem (see
Figure 14 right side) while better results are obtained practically from the beginning
in the simpler one (see Figure 14 left side). However, two interesting characteristics
can be highlighted. Firstly, the evolution in the test error shown by GDRCGA seems
quite more stable in both problems. Secondly, GDRCGA shows practically the same
trend in training and test in both datasets, while the sequential approach worsen the
test error once the half of the evaluations are consumed in the more complex dataset
(overfitting). These characteristic are quite recommendable in the fuzzy modeling
framework.
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Fig. 14. Effects on the MSE in test: Electrical Maintenance and Treasury data sets

7 Conclusions and Final Remarks

In this chapter, we have presented an study on the use of the DGAs for the lateral
tuning of FRBSs. To this end, we have analyzed the performance of a specific GDR-
CGA employing 8 subpopulations in a hypercube topology [26]. This algorithm has
been compared with the specialized GA presented in [17] to perform the lateral
tuning of FRBSs.

From the empirical results obtained, we can conclude that as the complexity of
the problem grows, the distributed approach outperforms the specialized sequential
algorithm. Moreover, the distributed procedure makes effective use of the wall time
in relation to the computing times required by the sequential algorithm. Also, when
dealing with complex search spaces, the distributed approach is able to converge
to better quality solutions than the sequential algorithm. This behaviour makes the
distributed tuning algorithm very useful when dealing with large scale problems
where the complexity of the search space is high.

Since execution time and quality of the results are two properties always in con-
flict somehow, the distributed approach could be graduated in order to achieve faster
execution times with a small cost in quality and viceversa.
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timizations in both hardware and software. Software optimization has no received
much attention, although modern multimedia applications exhibit high resource uti-
lization. In order to efficiently run this kind of applications in embedded systems,
the dynamic memory subsystem needs to be optimized. A key role in this opti-
mization is played by the Dynamic Data Types (DDTs) that reside in every real-
life application. It would be desirable to organize this set of DDTs to achieve the
best performance in the target embedded system. This problem is NP-complete, and
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1 Introduction

Latest multimedia embedded systems typically require reliable and powerful com-
puting, superior graphical performance, multiple I/O configurations and long prod-
uct life support. Currently, these systems are able to run applications initially de-
signed for high performance desktop computers [6], which having large run-time
memory management requirements, need to be mapped onto an extremely compact
device. However, embedded systems struggle to execute these complex applications
because they hold very different constraints regarding memory usage features. Thus,
designers must pay attention in the porting process to the lack of memory of the tar-
get embedded system as well as the fact that such systems extensively employ the
dynamic memory subsystem.

A desktop application is typically implemented using data structures or Dynamic
Data Types (DDTs) [2] (dynamic arrays, linked lists, etc) to store their data. The
DDT for each container is usually selected to achieve the best performance with-
out bearing in mind other requirements such as power consumption, memory ac-
cesses and memory usage, an important factor in embedded systems. Thus, to map
a desktop application, designers must reach the best set of DDTs that minimizes the
system behavior according to some constraint of the target device, such as mem-
ory accesses, memory usage and energy consumption [3]. This is an NP-complete
problem and cannot be fully explored.

This task has been typically performed in the past using a pseudo-exhaustive
evaluation of the design space of DDTs, including multiple executions of the ap-
plication, to attain a Pareto Front (PF) of solutions [8], which tries to cover all the
optimal implementation points for the required design metrics. The construction of
this PF has been proven a very time-consuming process, sometimes even unafford-
able [10]. To solve this problem we propose to use parallel processing based on
Multi Objective Evolutionary Algorithms. This combination is very useful because
we can explore more solutions in less time. Besides, the use of parallel processing
allows us to design new algorithms that improve the number and the quality of solu-
tions. However, before explaining deeply our proposal we begin by reviewing some
related work.

Several works have been made in the field of embedded memory subsystem op-
timization, both in static and dynamic memory. In the case of static memory, Benini
et al. [4] and Panda et al. [24] presented in the last decade two thorough surveys
on static data and memory optimization techniques for embedded systems. More
recently, in [6], [10] and [7], authors achieve to reduce the memory subsystems re-
quirements by 50% using a linear time algorithm by exploring a coordinated data
and computation reordering for array-based data structures in multimedia applica-
tions. Nevertheless, they are not suitable for exploration of complex DDTs em-
ployed in modern multimedia applications.

In the field of dynamic embedded software, there are some approaches that pro-
pose power-aware transformation and use pruning strategies based on heuristics to
find the best solution [33] [24] [23]. These proposals have some weakness. On the
one hand, they need to study and develop efficient pruning cost-function and a fully
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manual optimization, which is not very efficient. On the other hand, these works do
not bear in mind that the final behavior of the system presents inter-dependencies in
the set of DDT implementations.

Regarding exploration methods, Multi-Objective Evolutionary Algorithms
(MOEAs) started to be used to solve different CAD optimization problems (as pro-
posed Michalewicz in [20]). In our case, the use of MOEAs to explore DDTs has
become a good alternative. In [6] and [33] several transformations are established
for DDTs and static data profiling and static memory access patterns to physical
memories, and they are used to obtain information in order to find the best solution.
In this context, MOEA-based optimization has been applied to solve linear-and non-
linear problems by exploring the entire state space in parallel. Thus, it is possible
to perform optimization in non convex regular functions, and to select the order of
algorithmic transformations in concrete types of source codes [24]. However, such
techniques are not applicable to DDT implementations due to it is not possible to
know the DDT behavior (the number of elements stored in the DDT, number of read
accesses, number of write accesses, etc.), at compile-time.

In the field of dynamic memory optimizations in embedded systems, Atienza
et al. [3] have performed an initial analysis of one single type of MOEA showing
the potential benefits of MOEAs for this kind of problems. Nevertheless, their work
does not provide a complete analysis of tradeoffs between different technologies
of sequential and parallel MOEAs. We tackle this problem in the present research
work.

In order to be able to use parallel evolutionary algorithms for multi-objective
problems, different paradigms of the parallel processing and their corresponding pa-
rameters have to be analyzed. In [31], Veldhuizen studies some important questions
in the formulation of parallel Multi-Objective Evolutionary Algorithms (pMOEA)
such as migration, replacement and niching schemes. Besides, he gives a classifica-
tion of pMOEA based on the island paradigm: (1) islands execute the same MOEA
[34]; (2) islands execute different MOEA [14]; (3) each island evaluates a different
subset of objective functions [32]; and (4) each island considers a different region
of the search domain [30].

In this work, we propose a new method that uses parallel processing and evolu-
tionary algorithm to explore the design space of DDT implementation. To this end,
we use Discrete Event Systems Specifications (DEVS) [35] over Service Oriented
Architecture (SOA) [21], which offers DEVS-based simulations as a web service
based on standard technologies, called DEVS/SOA. We explore several classical
Multi-Objective Evolutionary Algorithms (MOEA) [11] and propose an algorithm
which combines NSGA-II and SPEA2 within a DEVS/SOA framework. It allows
designers to reach a larger number of solutions than classical approaches. Our par-
allel design may be included in the second group mentioned before (islands exe-
cuting different MOEAs). Since our migration policy is synchronous, we have com-
bined two elitist evolutionary algorithms with different complexity, namely Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [36] and Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [12], implementing three variations of a pMOEA. SPEA2 is



266 J.L. Risco-Martı́n et al.

O(N3) and NSGA-II is O(mN2), where N is the population size and m is the number
of objectives.

Our experiments in a real-life dynamic embedded application show that: (1)
NSGA-II and SPEA2 reach important speed-ups (up to 469× faster) with respect to
other traditional heuristics; (2) the parallel algorithm can achieve significant speed-
ups with respect to the sequential versions in a multi-core architecture. Moreover,
we compare the sequential and parallel approaches by means of multiple metrics,
showing that the quality of the solutions is improved by the combination of NSGA-
II and SPEA2 in a parallel implementation; and (3) such combination is executed
on 16 workstations of two cores each, where several population sizes were deployed
as per our experiments. The experiments returned very promising results. In partic-
ular, we got empirical evidence that on increasing the size of the population, the
performance of the pMOEA improves as we increase the number of workstations
used.

The rest of the paper is organized as follows. Definitions of MOEAs and un-
derlying technologies such as DEVS and DEVS/SOA are given in Section 2. In
Section 3 the Dynamic Data Types optimization problem is explained. In Section 4,
we present our multi-objective optimization process. A description of the MOEAs,
including an explanation of our parallel proposal, which combines NSGA-II and
SPEA2 algorithms, is also detailed. Section 5 details our experimental setup as well
as shows some performance and quality metrics used in our experiments in Section
6. Finally, in Section 7 we summarize the main conclusions and future work.

2 Background

2.1 Multi-objective Evolutionary Algorithms

Multi-objective optimization aims at simultaneously optimizing several objectives
sometimes contradictory (memory accesses, memory usage and energy consump-
tion for our problem). For such kind of problems, there does not exist a single
optimal solution, and some trade-offs need to be considered. Without any loss of
generality, we can assume the following m-objective minimization problem:

Minimize z = ( f1(x), f2(x), . . . fm(x))
sub ject to x ∈ X (1)

where z is the objective vector with m objectives to be minimized, x is the decision
vector, and X is the feasible region in the decision space. A solution x ∈ X is said to
dominate another solution y ∈ X (denoted as x ≺ y) if the following two conditions
are satisfied.

∀i ∈ {1,2, . . . ,m} , fi (x) ≤ fi (y)
∃i ∈ {1,2, . . . ,m} , fi (x) < fi (y) (2)
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If there is no solution which dominates x ∈ X , x is said to be a Pareto Optimal
Solution (POS). The set of all elements of the search space that are not dominated by
any other element is called the Pareto Optimal Front (POF) of the multi-objective
problem: it represents the best possible solution with respect to the contradictory
objectives.

In both algorithms, the sequential and parallel versions, we attempt to reach the
higher number of non-dominated solutions as possible.

Nowadays, many MOEAs have been developed. They can be classified into
two broad categories: non-elitist and elitist, also called first and second generation
MOEAs [8]. In the elitist approach, EAs store the best solutions of each generation
in an external set. This set will then be a part of the next generation. Thus, the best
individuals in each generation are always preserved, and this helps the algorithm to
get close to its POF. Algorithms such as PESA-II [9], MOMGA-II [38], NSGA-II
and SPEA2 are examples of this category. In contrast, the non-elitist approach does
not guarantee preserving the set of best individuals for the next generation [8]. Ex-
amples of this category include MOGA [15], HLGA [16], NPGA [18] and VEGA
[28].

When implementing a MOEA, the designer has to overcome two major problems
[37]. The first problem is how to get close to the POF [11]. The second problem is
how to keep diversity among the solutions in the obtained set. These two problems
become common criteria for most current algorithmic performance comparisons and
they will be used in the experimental results section.

Table 1. Common evolutionary algorithm framework

1. Initialize the Population P
2. (elitist EAs) Select elitist solutions from P to create external set EP
3. Create mating pool from one or both P and EP
4. Reproduction based on the pool to create the next generation P using evolutionary operators
5. (elitist EAs) Combine EP into P
6. Go to step 2 if the terminated condition is not satisfied

Although all the cited MOEAs are different from each other, we can find some
common steps in these algorithms, which are summarized in Table 1. As we have al-
ready mentioned, two representative elitist algorithms, namely, SPEA2 and NSGA-
II were selected.

2.2 DEVS and DEVSJAVA

DEVS formalism consists of models, the simulator and the experimental frame. We
will focus our attention to the specified two types of models i.e. atomic and coupled
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models. The atomic model is the irreducible model definition that specifies the be-
havior for any modeled entity. The coupled model is the aggregation/composition
of two or more atomic and coupled models connected by explicit couplings. The
formal definition of parallel DEVS (P-DEVS) is given in [35]. An atomic model is
defined by the following equation:

M = 〈X ,S,Y,δint ,δext ,δcon,λ 〉 (3)

where,

• X is the set of input values
• S is the state space
• Y is the set of output values
• δint : S → S is the internal transition function
• δext : Q×Xb → S is the external transition function

– Q = {(s,e) : s ∈ S,0 ≤ e ≤ ta(s)} is the total state set, where e is the time
elapsed since last transition

– Xb is a set of bags over elements in X

• δcon is the confluent transition function, subject to δcon (s,�) = δint(s)
• λ : S → Y is the output function
• ta(s) : S → ℜ+

0 ∪∞ is the time advance function.

The formal definition of a coupled model is described as:

N = 〈X ,Y,D,EIC,EOC, IC〉 (4)

where,

• X is the set of external input events
• Y is the set of output events
• D is a set of DEVS component models
• EIC is the external input coupling relation
• EOC is the external output coupling relation
• IC is the internal coupling relation.

The coupled model N can itself be a part of component in a larger coupled model
system giving rise to a hierarchical DEVS model construction.

Fig. 1 shows a coupled DEVS model. M1 and M2 are DEVS models. M1 has
two input ports: “in1” and “in2”, and one output port: “out”. The M2 has one input
port: “in1”, and two output ports: “out1” and “out2”. They are connected by input
and output ports internally (this is the set of internal couplings, IC). M1 is connected
by external input “in” of Coupled Model to “in1” port, which is an external input
coupling (EIC). Finally, M2 is connected to output port “out” of Coupled Model,
which is an external output coupling (EOC).

The DEVSJAVA [1] is a Java based DEVS simulation environment. It provides
the advantages of Object Oriented framework such as encapsulation, inheritance,
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Fig. 1. Coupled DEVS model

and polymorphism. DEVSJAVA manages the simulation time, coordinates event
schedules, and provides a library for simulation, a graphical user interface to view
the results, and other utilities. Detailed descriptions about DEVS Simulator, Exper-
imental Frame and of both atomic and coupled models can be found in [35].

2.3 DEVS/SOA

The Service oriented Architecture (SOA) is a framework consisting of various W3C
standards, in which various computational components are made available as “ser-
vices” interacting in an automated manner achieve machine-to-machine interoper-
able interaction over the network. Web-based simulation requires the convergence
of simulation methodology and WWW technology (mainly Web Service technol-
ogy). The fundamental concept of web services is to integrate software application
as services. Web services allow the applications to communicate with other appli-
cations using open standards. We are offering DEVS-based simulators as a web
service, which are based on these standard technologies: communication protocol
(Simple Object Access Protocol, SOAP), service description (Web Service Descrip-
tion Language, WSDL), and service discovery (Universal Description Discovery
and Integration, UDDI).

Fig. 2 shows the framework of our distributed simulation using SOA. The com-
plete setup requires one or more servers that are capable of running DEVS Simula-
tion Service. The capability to run the simulation service is provided by the server
side design of DEVS Simulation protocol supported by the latest DEVSJAVA Ver-
sion 3.1.

The Simulation Service framework is two layered framework. The top-layer is
the user coordination layer that oversees the lower layer. The lower layer is the true
simulation service layer that executes the DEVS simulation protocol as a Service.
The lower layer is transparent to the modeler and only the top-level is provided to
the user.

The top-level has three main services: upload DEVS model, compile DEVS
model, and simulate DEVS model. The second lower layer provides the DEVS
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Fig. 2. DEVS/SOA distributed architecture

Simulation protocol services: initialize simulator i, run transition in simulator i, run
lambda function in simulator i, inject message to simulator i, get time of next event
from simulator i, get time advance from simulator i, get console log from all the
simulators, and finalize simulation service.

The explicit transition functions, namely, the internal transition function, the ex-
ternal transition function, and the confluent transition function, are abstracted to a
single transition function that is made available as a Service. The transition function
that needs to be executed depends on the simulator implementation and is decided at
the runtime. For example, if the simulator implements the Parallel DEVS (P-DEVS)
formalism, it will choose among internal transition, external transition or confluent
transition.

The client is provided a list of servers hosting DEVS Service. He selects some
servers to distribute the simulation of his model. Then, the model is uploaded and
compiled in all the servers. The main server selected creates a coordinator that cre-
ates simulators in the server where the coordinator resides and/or over the other
servers selected. This whole framework is known as DEVS/SOA framework and
details are available at [22], [21].

Summarizing from a user’s perspective, the simulation process is done through
three steps (Fig. 3): (1) write a DEVS model (currently DEVSJAVA is only sup-
ported), (2) provide a list of DEVS servers (through UDDI, for example). Since we
are testing the application, these services have not been published using UDDI by
now. Select N number of servers from the list available, and (3), run the simulation
(upload, compile and simulate) and wait for the results.
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Fig. 3. Execution of DEVS SOA-Based M&S

3 The Dynamic Data Types Exploration Problem

DDTs are software abstractions by means of which we can manipulate and access
data. The implementation of DDT has two main effects on the performance of an
application. First, it involves storage aspects that determine how data memory is al-
located and freed at run-time, and how this memory is tracked. Second, it includes
an access component, which can refer to two different basic access patterns: sequen-
tial (or iterator-based) and random access.

Fig. 4 shows an example of DDTs exploration. The initial code contains two
containers, c1 and c2, instantiated as a vector and a list, respectively. After the ex-
ploration process, we can obtain for example a candidate solution that recommends
c1 to be instantiated as Single Linked List (SLL) and c2 as Double Linked List of
Arrays (DLLAR).

More generally we can state that the application to optimize contains a set of con-
tainers C, which are candidates to be instantiated as a certain DDT from the set of
possible implementation of DDTs library D presented in [3] [10]. Thus, the goal of
our optimization flow is to obtain a set of pairs (container, DDT)

{
ci ∈C,d j ∈ D

}
,

such that minimizes memory accesses, memory usage and power consumption for
the target embedded system. Additional constraints as the minimum and maximum
values for all three objectives may be defined. Clearly, this is a multi-objective opti-
mization problem.

To measure the quality of a solution, we have defined the equations to evaluate
the behavior of DDT implementations by means of parameters such as the number
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Fig. 4. Code before and after the exploration of Dynamic Data Types

of sequential accesses, random accesses, average size, etc. In our case we have
classified the DDT implementations in basic DDT and multi-layer implementations
relevant for embedded multimedia applications. Table 2 contains the DDTs imple-
mented [3].

Table 2. DDT library

DDT Description

AR Array
AR(P) Array of pointers
SLL Single-linked list
DLL Doubly-linked list
SLL(O) Single-linked list with roving pointer
DLL(O) Doubly-linked list with roving pointer
SLL(AR) Single-linked list of arrays
DLL(AR) Doubly-linked list of arrays
SLL(ARO) Single-linked list of arrays and roving pointer
DLL(ARO) Doubly-linked list of arrays and roving pointer

Once we have fixed the problem optimization process for DDTs, we can describe
the whole process shown in Fig. 5. It has three main steps: Profiling of the ap-
plication, estimation of the parameters and multi-objective optimization algorithms
execution. These three steps are described in the next sections.
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Fig. 5. DDTs optimization flow

3.1 Profiling of the Application

In order to evaluate the different metrics we need to obtain the real execution infor-
mation from the application. Unfortunately, the execution of the whole application
is not a viable solution. An alternative good solution recently proposed [10] is to ob-
tain a profiling report of the application where the following information is logged:
number and location of the accesses of an element, addition of an element, removal
of an element, the clearing of the container, iterator operations such as pre-increment
or dereference, constructor, destructor, copy constructor and swap operation. To this
end, we need to replace all the candidate variables in the application by our vector
DDT implementation, which logs all the information needed to evaluate them the
using equations developed in [3].

3.2 Parameters Estimation

In this phase, we extract all information needed from the profiling report. The pur-
pose is to measure the quality of a solution (ci,d j) in the DDT exploration, using
several parameters, namely, the number of candidate variables, number of elements
stored in the container in the worst case (Ne), average of the number of elements
stored (Nve), size of the elements in bytes (Te), size of the pointers in bytes (Tre f ),
number of read accesses (Nr), number of write accesses (Nw) and cache misses
(Npa). All these parameters can be extracted from the profiling report. To this end,
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we have developed a tool called Profile Analyzer. Cache misses are also obtained
by means of simulation, generating memory traces from the profiling report and the
DDT library, using them as input for the Dinero IV cache simulator [13] for the
particular memory configuration of the target embedded system. This phase is the
most-time consuming part of the exploration, although it is done only once for each
target architecture, and for each tested application.

3.3 Optimization

The last phase is the optimization process. It takes as input the parameters obtained
in the previous phase and minimizes three objectives: memory accesses (MA), mem-
ory usage (MU) and energy (E), defined by the following equations, where Hw rep-
resents the effect that hardware parameters (memory architecture, CPU power, line
sizes, memory access time, etc.) have on the optimization [25].

MA(c,d) = fMA(Ne,Nve,Nr,Nw)
MU(c,d) = fMU (Te,Tre f ,Ne) (5)

E(c,d) = fE(Nr,Nw,Npa,Hw)

Memory accesses of the system fMA is given by the following equation:

fMA ∝ Ne × (Nr + Nw)+ Nve (6)

The exact form of equation 6 depends on each DDT selected in (c,d). It takes
into account the number of random and sequential accesses to the elements stored
in the DDT, as well as the number of creations and destructions of the container.

Memory usage fMU is given by the following equation:

fMU ∝ Tre f + Ne ×
(
Tre f + Te

)
(7)

As in equation 6, the exact form of equation 7 depends on each DDT selected. It
calculates the amount of memory used by each element stored in the DDT.

Finally, energy equation of the system is given by the following equation:

fE = tex ×CPUpow +
(Nr + Nw)× (1−Npa)×CaccE +
(Nr + Nw)×Npa ×CaccE ×ClineS +
(Nr + Nw)×Npa ×DRAMaccP ×(

DRAMaccT +
ClineS

DRAMbandW

)
(8)

where tex is the system’s total execution time, CPUpow is the total processor power
excluding the cache power, CaccE is the cache access energy, ClineS is the cache
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line size, DRAMaccP is the active power consumed by the DRAM, DRAMaccT is the
DRAM latency time, and DRAMbandW is the bandwidth of the DRAM.

There exist four components in the energy equation 8. The first term tex×CPUpow

calculates the processor energy given that execution time takes tex amount of time.
The second term, (Nr + Nw)× (1−Npa)×CaccE calculates the amount of energy
consumed by the cache. The third term, (Nr + Nw)×Npa ×CaccE ×ClineS calculates
the energy cost of writing to cache for each cache miss. The last term, calculates the
energy cost of the DRAM to service all the cache misses.

The equation for calculating the system’s total execution time tex is given by:

tex = (Nr + Nw)× (1−Npa)×CaccT +
(Nr + Nw)×Npa ×DRAMaccT +

(Nr + Nw)×Npa × ClineS

DRAMbandW
+

Tbus (9)

where CaccT is the access time of the cache.
There exist four components in the system’s execution time shown in equation 9.

The first term (Nr + Nw)× (1−Npa)×CaccT is for calculating the amount of time
taken for the processor to access the cache. The second term (Nr + Nw)×Npa ×
DRAMaccT calculates the amount of time required for the DRAM to respond to each
cache miss. The third term calculates the amount of time taken to fill a cache line
on each cache miss. The bus communication time cost is supposed to be constant
(Tbus). As the bus communication time is expected to be similar to other systems,
such decision will not adversely affect the final results.

Units for time variables in the equations are in seconds, bandwidth is in Bytes/sec.,
cache line size is in Bytes, power variable is in Watts, and energy unit is in Joules.

These equations are used by the optimization algorithm to evaluate the fitness of
the solutions found in the exploration process. When the optimization process ends,
it gives the DDT instantiation policy, i.e., which container should be implemented
by which DDT. We also obtain the gain on memory accesses, memory usage and
energy consumption.

3.4 Encoding a Solution

In order to apply a MOEA correctly we need to define a genetic representation of
the design space of all possible DDT implementations alternatives. Moreover, to be
able to cover all possible inter-dependencies of DDT implementations for different
dynamic variables of an application, we must guarantee that all the individuals rep-
resent real and feasible solutions to the problem and ensure that the search space is
covered in a continuous and optimal way [11].

Table 3 shows the representation of a chromosome. Genes are represented in
the first row. Each of the chromosomes represents the set of DDT that should be
used to instantiate all the corresponding containers in the application from Table 2.
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For example, the second container c2 ∈ C will be instantiated by an array (AR). A
chromosome contains n genes, where n is the number of the containers logged in the
application, n = size(C). We may use an integer to represent the values of a gene,
and the constraint a gene must satisfy is: 1 ≤ ddt ≤ size(D).

Table 3. Example of an individual

Dynamic Data Type AR AR SLL . . . DLL
Container c1 c2 c3 . . . cn

Consequently, if an application contains n containers, each individual (chromo-
some) has to be constituted by n integer fields (i.e., n genes). Our current implemen-
tation of the exploration framework optimizes up to 3128 variables using variations
of the 10 possible DDTs contained in Table 2 for each of them. Thus, it can cover
large real-life dynamic embedded applications.

4 Parallel Implementation

In this section we describe the parallel MOEA designed and how it is implemented
in a DEVS environment.

4.1 pMOEA

We are employing pMOEAs for better performance when solving the exploration
of DDTs in embedded applications described in Section 3, i.e., we are improving
the quality of the solutions found and the time to obtain them. When developing
pMOEA, some parameters must be defined [31]: MOEA(s) parallelized, topology,
population size, migration rate, and replacement.

Regarding MOEAs and topology, we propose a coarse-grained pMOEA where
each island may execute a different MOEA, in our case either NSGA-II [12] or
SPEA2 [36]. We have used these two MOEAs because of their different complexity,
but other algorithms could be included. SPEA2 is O(N3) and NSGA-II is O(mN2),
where N is the population size and m is the number of objectives. Our islands are
suited for a ring topology [5]. Experiments with other topologies are left for future
study.

With respect to the population size of each island, few studies have been made in
the literature[31]. For example, in [27], the sequential population is divided by the
number of islands, remaining the size of the external set constant and equal to the
initial population size. In this way, the number of islands increases, the execution
time is reduced and the number of non-dominated solutions grows up. However,
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some metrics such as hypervolume or spread loose quality. In this work, we apply
the following equation to the population size [26]:

Pi =
P
I

+ α ×
(

P− P
I

)
(10)

where Pi is the population size of island i ∈ [1..I], P is the population size in the
sequential approach, I > 1 is the number of islands and α ∈ [0..1] is a scaling factor.
Note that when I tends to infinity, Pi is constant: α ×P. It is a design parameter that
depends on the migration rate and hardware configuration (i.e. network bandwidth,
processor types, etc). The purpose is to obtain better solutions in less computing
time when the number of islands is increased. After several tests, we have set α = 2

I .
Regarding the external file size, we apply the following equation [26]:

PE
i = Pi + NI (11)

where NI is the total number of immigrants that island i will receive.
As in most of the pMOEAs, migration from one subpopulation to another is con-

trolled by several parameters specified at the beginning of the execution and remains
unchanged. These parameters are: (a) the topology defined by the connections be-
tween islands, a ring in our case; (b) a migration rate that controls how many individ-
uals migrate; and (c) a migration interval that determines the migration frequency.
Our migration rate is set to P/100, where P is the population size in the sequen-
tial algorithm. The best P/100 individuals are selected in the following way. First,
we extract the set of non-dominated solutions in the current population Pi. Second,
we sort the resulting set with respect to one random objective, and extract the first
P/100 individuals. Moreover, since NSGA-II is faster than SPEA2 (O(mN2) vs.
O(N3), NSGA-II could finish first while SPEA2 is still exploring early generations.
Thus, our migration policy is synchronized every 100 generations.

4.2 DEVS and DEVS/SOA Implementation

Fig. 6 provides a scheme of the parallel procedure with two atomic models (top
of the figure) and their execution over time (bottom of the figure). Each atomic
model represents an island and includes two pair of request, response output and
input ports. Request connections are used to ask for the best individual of the adja-
cent atomic model, and response connections are used to send this individual when
available (every 100 generations, in Fig. 6). In other words, the specific MOEA
(NSGA-II or SPEA2) is applied to each atomic model separately, and the best par-
tial results are periodically sent from one atomic model to its neighbor on a ring
communication topology.

We have implemented three variations that are tested in a multi-core and dis-
tributed architecture. The only difference between these variations is the MOEA
algorithm that is controlling the subpopulation, i.e. running on each atomic model:
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1. NSK configuration: K atomic models executing NSGA-II and the same quantity
running SPEA2, 2K islands in total.

2. SSK configuration: 2K atomic models, but running all of them SPEA2 algorithm.
3. NNK configuration: 2K atomic models using the NSGA-II algorithm.

The fitness function, the operators, and the stop criterion are the same as in the
sequential version.

The algorithm shown in Fig. 6 follows a multi-threaded design, which is suitable
to be executed in multi-core architectures. Another approach we have implemented
consists of executing our proposed pMOEA in a set of workstations connected over
a LAN. To this end, using our DEVS/SOA framework, we have executed 32 atomic
models on 16 workstations each of two cores. The algorithm is exactly the same, but
each workstation executes two atomic models. Individuals are sent between different
workstations using web services [22]. Fig. 7 depicts an illustrative example of two
workstations each running two MOEAs. Every workstation executes two MOEAs as
a DEVS coupled model. The coupled models are connected in the desired topology
(a ring in our case), which again is another design parameter that could impact the
performance. Our atomic models are suited for a ring topology as well.

Fig. 6. A graphic representation of the DEVS model (multi-core architecture) and its evolu-
tion over time
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Fig. 7. A graphic representation of the DEVS model (multi-core/distributed architecture)

5 Experimental Methodology

In this section we describe the complete method applied to compare the different
type of sequential and parallel MOEAs while optimizing a real-life dynamic em-
bedded application.

We have evaluated the proposed optimization framework for a 3D Physics En-
gine for elastic and deformable bodies [19], which is a 3D engine that displays the
interaction of non-rigid bodies. It includes 3128 dynamic containers in its source
code for which we select the optimal DDT implementation in Table 2. It can cover
all of the real-life embedded applications we are aware off.

5.1 Embedded System HW/SW Specification

The model of the embedded system architecture consisted of a processor with an
instruction cache, a data cache, and embedded DRAM as main memory. The data
cache uses a write-through strategy. The system architecture is illustrated in Fig. 8.

To analyze the effect of MOEAs on embedded system’s memory accesses, mem-
ory usage and energy consumption, we utilized processor energy from [6], and the
access time and energy values for caches of 32KB and embedded 16MB DRAM
main memory from [29] and [17], respectively. The processor and memory specifi-
cation is described in Table 4.

5.2 Performance Metrics

To compare the performance of different MOEAs, we need to evaluate the obtained
set of non-dominated solutions considering: (1) Convergence to POF. (2) Diversity
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Fig. 8 System architec-
ture: Instruction cache,
data cache, and embedded
DRAM as main memory

Table 4. System specification

Processor Energy 168mW, 100MHz

Embedded DRAM 100MHz
Energy 19.5 mW
Latency 19.5 ns
Bandwidth 50MB/s

on POF. Since the size of possible DDT implementations is large and it is not pos-
sible to cover the exact set of the POF, we compare the obtained Pareto Front (PF)
with each other. In this direction, we select the following metrics to evaluate the
performance of our approach.

5.2.1 Coverage

We use the coverage metric [37] to measure convergence. Let PF ′, PF ′′ be two sets
of non-dominated solutions. The coverage metric can be defined as follows:

C(PF ′,PF ′′) =
|p′′ ∈ PF ′′;∃p′ ∈ PF ′ : p′≺p′′|

|PF ′′| (12)

The value C(PF ′,PF ′′) = 1 means that all points in PF ′′ are dominated by or
equal to points in PF ′. On the other hand, C(PF ′,PF ′′) = 0 means that no so-
lutions in PF ′′ are covered by the set PF ′. Both C(PF ′,PF ′′) and C(PF ′′,PF ′),
have to be considered, since C(PF ′,PF ′′) is not necessary equal to C(PF ′′,PF ′). If
C(PF ′,PF ′′) > C(PF ′′,PF ′), the rate of dominated solutions in PF ′ is higher than
in PF ′′.
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5.2.2 Hypervolume or S-Metric

This metric calculates the volume (in the objective space) covered by members of a
nondominated set of solutions Q [37]. Let vi be the volume enclosed by solution i ∈
Q. Then, a union of all hypercubes is found and its hypervolume (HV ) is calculated.

HV =
⋃|Q|

1
vi (13)

The hypervolume of a set is measured relative to a reference point, usually the
anti-optimal point or “worst possible” point in space. (We do not address here the
problem of choosing a reference point, if the anti-optimal point is not known or does
not exist one suggestion is to take, in each objective, the worst value from any of
the fronts being compared). If a set X has a greater hypervolume than a set Y , then
X is taken to be a better set of solutions than Y . Since this metric is not free from
arbitrary scaling of objectives, we have evaluated the metric by using normalized
objective function values.

5.2.3 Non-dominated Solutions

Given that DDTs optimization is a difficult problem, finding a high number of non-
dominated solutions could be itself a hard challenge for any multi-objective opti-
mizer. In this sense, the number of non-dominated solutions can be considered as a
measure of the ability of the algorithm for exploring difficult search spaces.

We compare the obtained sets of non-dominated solutions by means of the above
three criteria.

6 Experimental Results

To compare the performance of both sequential and parallel algorithms, the num-
ber of generations, and probability of crossover and mutation are set to the same
values. After different tests, we have fixed them to the values indicated in Table 5.
The sequential population size is set to 200 for each atomic model. In our parallel
simulations, the population size follows equation 10. Migration rate and frequency
are those described in Section 4. In all cases, the external archive size (where non-
dominated solutions are stored) is set to the value given by equation 11.

Next, we summarize the results obtained by the sequential and parallel evolution-
ary algorithms. As it was mentioned in Section 4, we are able to run our MOEAs
under three configurations: (1) a stand-alone atomic model (sequential architecture),
(2) several atomic models running in separated threads (multi-core architecture)
which utilize multiple processors when available, and (3) several atomic models
running in separated threads and distributed amid a set of workstations (multi-
core/distributed architecture). The distributed version is configured by using the
DEVS/SOA framework. The experiments have been made using 16 workstations
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Table 5. Parameters for evolutionary algorithms

Parameter Value

Population size 200
Number of generations 8000
Probability of crossover 0.80
Probability of mutation 0.01

Intel R© CoreTM 2 CPU 6600 2.40GHz with 2GB DDR memory connected via
100Mbps Ethernet network.

6.1 Sequential DEVS Architecture

We have tested the sequential DDTs exploration speed in comparison to different
alternative methods for the 3D Physics Engine application on a Intel R© CoreTM 2
CPU 6600 2.40GHz with 2GB DDR memory. Execution times are calculated by av-
eraging results of 10 trials. The results obtained for the different tested exploration
methods are shown in Table 6. We have compared our algorithms with state-of-
the-art pruning and optimization methods for DDT implementations presented in
[33], [10]. In these cases breadth-first, deep-first and branch & bound exploration
heuristics are used to minimize overall memory access, memory usage and energy
consumption in embedded multimedia applications. In this context, we have used
a weighted sum of the three objectives as the fitness function for these three algo-
rithms. Since there are 103128 feasible solutions (10 DDTs for 3128 containers) it
is unfeasible to reach the complete POF by means of exhaustive exploration. The
results in Table 6 outline that the exploration process with our method (using NSGA-
II and SPEA2) is much faster than using directly the implementations of DDTs and
other heuristics, namely, 470× faster. Note that although in theory VEGA is faster
than both NSGA-II and SPEA2, our design framework is able to obtain better speed-
ups. This is because of our Profile Analyzer tool (Section 3), which can extract all

Table 6. Comparison between the proposed sequential algorithms and other techniques

Exploration method Time (seconds)

Breadth-First 11.23×105 ±98.62
Depth-First 43.20×104 ±87.13
Branch&Bound 10.80×103 ±55.42
VEGA [3] 7.20×103 ±103.20
NSGA-II 2.39×103 ±0.78
SPEA2 3.83×103 ±4.37
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the needed information from the profiling report, and it is done once for the target
embedded application.

6.2 Multi-core DEVS Architecture

In order to exploit our 2-cores architecture, we have explored DDTs with some con-
figurations of the three algorithms proposed (i.e., NNK , NSK and SSK) on an Intel R©

CoreTM 2 CPU 6600 2.40GHz with 2GB DDR memory. All the values presented
are calculated by averaging results of 50 trials.

Fig. 9. Comparison between our sequential and multi-core algorithms

Fig. 9 shows the comparisons between the execution times of both sequential
and parallel algorithms. Regarding pMOEAs, the number of islands is increased,
the execution time is reduced. With respect to NN, SS and NS, we can see that the
execution time is greater than in the sequential version. It is because equation 10 has
been designed to balance the loss of non-dominated solutions when the number of
islands grows up. However, as Fig. 9 depicts, NN2 is faster than NSGA-II, and SS2 is
faster than SPEA2. To conclude, except in the case of two islands, all the pMOEAs
are faster than the sequential version, even if more islands than cores are used (see
SS2 vs. SPEA2 in Fig. 9, for example). Between pMOEAs, the fastest one is NN2,
as each island uses the smallest population size with the fastest algorithm.

Fig. 10 depicts the number of non-dominated individuals obtained. NSGA-II of-
fers the same non-dominated solutions as SPEA2. NS offers 49.3% more optimal
solutions than both NSGA-II and SPEA2, and NS2 4.69% more than NS. Thus,
with respect to ND, NSK offers more optimal alternatives to the system designer for
the implementation of the final embedded application.
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Fig. 10. Non-dominated individuals obtained by NSGA-II, SPEA2, NNK , SSK and NSK , with
K = 1,2

Fig. 11. Hypervolume or S-metric obtained by NSGA-II, SPEA2, NNK , SSK and NSK , with
K = 1,2

Fig. 11 shows the hypervolume or S-metric obtained. NSK algorithms reach better
values compared to the other MOEAs, sequential or parallel. Thus, the result set
from NSK algorithms is taken to be a better set of solutions than those obtained
from other algorithms.
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Table 7. Coverage metric

NSGA-II SPEA2 NN NS SS NN2 NS2 SS2 AVG
NSGA-II – 0.0660 0.0959 0.0813 0.1132 0.1546 0.1208 0.1246 0.1081
SPEA2 0.2260 – 0.1719 0.1149 0.1684 0.1518 0.1100 0.1519 0.1564

NN 0.3030 0.2450 – 0.1476 0.1776 0.2122 0.1764 0.2130 0.2107
NS 0.3890 0.3180 0.4031 – 0.3213 0.2153 0.2207 0.2299 0.2996
SS 0.3440 0.3170 0.3223 0.1030 – 0.2404 0.1256 0.2677 0.2457

NN2 0.3680 0.2810 0.2795 0.0693 0.2478 – 0.1092 0.1869 0.2202
NS2 0.3620 0.3650 0.3131 0.1575 0.2429 0.2580 – 0.2897 0.2840
SS2 0.3580 0.3570 0.2753 0.1723 0.2984 0.2937 0.1249 – 0.2685
AVG 0.3357 0.2784 0.2659 0.1208 0.2242 0.2180 0.1411 0.2091 –

Finally, Table 7 shows the coverage values obtained. Last row and last col-
umn show the averaged coverage over each column and each row, respectively.
Regarding convergence comparisons, Table 7 shows that, in average, NSK algo-
rithms are better than any other algorithm. For example, Cavg(NS,∗) > Cavg(∗,NS)
is 0.2996 > 0.1208 or Cavg(NS2,∗) > Cavg(∗,NS2) is 0.2840 > 0.1411. In the same
way, Cavg(NS,∗) > Cavg(SS,∗) is 0.2996 > 0.2457 and Cavg(∗,NS) < Cavg(∗,SS) is
0.1208 < 0.2242.Thus, NSK offers more optimal alternatives to the system designer
for the implementation of the final embedded application.

Fig. 12. Comparison of the real application with results obtained by our design framework
(logarithmic scale).
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For comparative reasons with the original application, we present Fig. 12 to illus-
trate the optimization process that our methodology performs. In this test, we com-
pare the evaluation of our multi-objective function to the results obtained by all the
algorithms used in our design framework. Since breadth-first, depth-first and branch
& bound exploration methods offer the same solution, these results are grouped and
labeled as BDB in Fig. 12. In the case of evolutionary algorithms, the set of solu-
tions obtained is averaged. The figure shows the achieved level of optimization and
final gains after applying the proposed design flow shown in Fig. 5. Furthermore,
as this figure indicates, evolutionary algorithms offered the best compromise among
objectives.

6.3 Multi-core DEVS/SOA Architecture

Finally, the NSK configuration was distributed on a set of 16 workstations Intel R©

CoreTM 2 CPU 6600 2.40GHz with 2GB DDR memory, connected via a 100Mbps
Ethernet network. To this end, we placed two threads per workstation and the com-
munication among workstations was made through our DEVS/SOA framework. All
the values presented are calculated by averaging results of 10 trials.

Fig. 13. Execution times (a), non-dominated solutions (b), and hypervolume (c) as a function
of the number of workstations. Each workstation executes two DEVS atomic models
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We tested our algorithm using from 1 to 16 workstations. This leads to 2, 4, 6,
..., 32 MOEAs running in parallel, namely NS1, NS2, NS3, ..., NS16, and different
population sizes (128, 256, 512 and 1024). The tests were performed by changing
only the number of workstations in order to observe and study the increase in perfor-
mance (speed-up, ND and HV ). In all these cases the number of generations was set
to 8000. The population and external archive size of each island was set following
equations 10 and 11, respectively.

In light of the results presented in Fig. 13, as the size of the population increased,
the execution time of the parallel version improved proportionally to the number of
islands (see Fig. 13a). Also, Fig. 13b indicates that the number of non-dominated
individuals increased at logarithmic rate as the number of islands increased. Finally,
as Fig. 13c depicts, the hypervolume remains constant along all the simulations,
with non-significant variations.

This shows that the proposed pMOEA is better suited for large populations. It is
also worthwhile to mention that with small populations, a parallel and distributed
version of a genetic algorithm is most likely to converge to a local minimum due to
a small gene pool.

7 Conclusions and Future Work

New multimedia embedded applications are increasingly dynamic, and rely on
DDTs to store their data. The selection of optimal DDT implementations for each
variable in a particular target embedded system is a very time-consuming process
due to the large design space of possible DDTs implementations. In this research
work we have studied several MOEAs to solve this problem. Particularly, we have
proposed a new parallel algorithm (NSK) which combines in a novel manner two
widely used MOEAs. The problem is formulated as a multi-objective combinato-
rial optimization problem, for which we used three objective functions: memory
accesses, memory usage and energy consumption. The results obtained shows that
this parallel approach performs very well. In fact, NSK reaches more optimal solu-
tions than the other sequential and parallel algorithms, obtaining an execution time
that decreases with the number of islands used.

We also have executed NSK in a cluster of 16 workstations of two cores each.
Our results show that if the size of the population is increased, the performance of
the parallel version improves proportionally with respect to the number of avail-
able islands. As a result, we can conclude that not only parallel implementations
improve the speed of the optimization process, but also the quality and the variety
of the solutions, especially for large populations. Although we conducted our re-
search experiments in a LAN setting, deploying the application over a grid enabled
DEVS/SOA infrastructure allows us to capitalize on the speedup that we achieved
in our proposed NSK .

Future work includes the development of dynamic control parameters, such as,
the topology, and a deeper study of migration rates and frequency. We are also work-
ing on exploring other alternatives with new combinations of different MOEAs to
those used in this research work.
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A Grid-Based Hybrid Hierarchical Genetic
Algorithm for Protein Structure Prediction

Alexandru-Adrian Tantar, Nouredine Melab, and El-Ghazali Talbi

Abstract. A hybrid hierarchical conformational sampling evolutionary algorithm
is presented in this chapter, relying on different parallelization models. After first
reviewing general conformational sampling aspects, e.g. existing approaches, com-
plexity matters, force field functions, a focus is considered for the protein structure
prediction problem. Furthermore, having as basis the highly multimodal nature of
the energy landscape structure, a hybrid evolutionary approach is defined, enclosing
conjugate gradient and adaptive simulated annealing enforced components. An in-
sular model is employed, the conformational sampling process being conducted on a
collaborative basis. Nonetheless, although low energy conformations were obtained,
no close to native conformations were attained. Consequently, a higher complexity
hierarchical paradigm has been constructed, with incentive following results.

1 Introduction

Entitled as a silent revolution in a recollection of the last century preeminent dis-
coveries [37, 21], contemporary computational biology extends over mathemati-
cal modeling, molecular biology and computer science, comprising inter-linked
scientific research disciplines. In silico conformational modeling and simulation,
although computationally expensive, ascertained significant advancements in the
entire life sciences spectrum [50, 47]. Conclusive examples may be found by re-
minding the completion of the human genome mapping, attained this decade, Hu-
man Genome Project [56, 36], the Folding@Home project [42, 49] fighting can-
cer, and Alzheimer’s disease, etc. Nonetheless, no advancement on the current state
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Fig. 1. First row: a NCα C back-bone structure resulting as a combination of multiple amino-
acids; secondary and ternary structures follow. R designates the specific amino acid’s side
chain characteristic, ω , Φ and Ψ relate to dihedral angles. Second row, A & B: tryptophan-
cage protein (PDB ID 1L2Y), multiple near-native conformations, respectively, a ribbon-
ball&stick representation of a single conformation.

of the art is possible unless extensive grid computing is employed. At the core
of avant-garde conformational sampling and molecular dynamics simulations, grid
computing nowadays offers an unprecedented sine qua non computational support
[20, 35], in this context, connecting the computational biology and computer science
domains.

The foundations of this chapter address ab initio conformational sampling [40],
having Protein Structure Prediction, further referred to as PSP, as a reference topic.
Of particular interest for the parallel grid computing domain, the problem consists in
determining the ground-state conformation of a specified protein, given its amino-
acids sequence – the primary structure. In this context, the ground-state confor-
mation term designates the associated tridimensional native form, referred to as
zero energy structure. From a structural point of view, proteins are complex or-
ganic compounds composed of amino-acid residue chains joined by peptide bonds
– for a graphical illustration, please refer to Fig. 1. Assenting to a concise defi-
nition, conformational sampling entails the exploration of an exponentially large
space of possible configurations [41, 13, 9], derived on the basis of an extensive
number of degrees of liberty, which define the flexibility of the under study confor-
mation. An energetically stable configuration has to be computationally predicted
with the support of an underlying, generally highly multimodal, force field function
[45]. Of quintessential impact and reinforced by the in vivo realm ubiquitousness
of proteins, the intrinsic relation connecting the structure of a protein and the cor-
responding biological function determines fundamental consequences for computer
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assisted drug design, the understanding of immune response mechanisms, etc. In
addition, computational modeling and prediction offer an alternative to laboratory
in vitro experimentation, unfeasible for large domain analysis.

For the herein presented conformational sampling study a paradigm combin-
ing an Evolutionary Algorithm (EA) and an Adaptive Simulated Annealing (ASA)
technique is considered – to be further detailed in the following sections. A study
comprising different local search algorithms and outlining the efficacy of the ASA
method on several benchmark conformations was previously presented in [55]. In
addition, an extensive analysis of different intensification and diversification opera-
tors has been presented in [54]. EAs are stochastic search iterative techniques, with
a large area of application – epistatic, multimodal, multicriterion and highly con-
strained problems [8]. A direct subclass of the EAs, Genetic Algorithms (GAs) are
Darwinian-evolution inspired, population-based metaheuristics that allow a pow-
erful exploration of the conformational space. However, they have limited search
intensification capabilities, which are essential for neighborhood-based improve-
ment (the neighborhood of a solution refers in this context to a part of the problem’s
landscape). At the opposite extreme, the class of the different Simulated Anneal-
ing [34] algorithms presented in the literature, further denoted as SAs, offers weak
ergodicity optimization techniques capable of dealing with multimodal functions
of a large nonlinearity and discontinuity degree. Simulated annealing algorithms
were developed by Kirkpatrick [34] as a generalization of the Metropolis Monte
Carlo techniques [39], including as extension a temperature schedule which offers
an improved control over the acceptance rate. The underlying paradigm simulates
metal recrystallization in the process of annealing, the entropy of an initially disor-
dered system being adiabatically reduced to low entropy states while maintaining
at each step a thermodynamic equilibrium. The SAs represent a viable alternative
to gradient based local search methods, being less prone to getting trapped in local
minima. Furthermore, the implementation of an SA algorithm does not impose com-
plex development constraints – as a counterpart and as opposed to EAs, simulated
annealing techniques are extensively sequential in their nature thus being difficult
to parallelize.

Furthermore, the currently available computational resources allow for higher
complexity algorithmic constructions, rendering possible the design of hierarchical
parallel and distributed approaches. Nonetheless, a complex algorithmic underlying
layer has to be unfolded in order to effectively exploit the existing computational
resources. A transparent deployment has to be ensured, endorsing large-scale dis-
tributed applications to be expanded over geographically dispersed clusters. The
parallel construction of the here considered approaches is sustained by an MPI [23]
based version of ParadisEO [7, 8], a framework dedicated to the reusable design of
parallel hybrid meta-heuristics. A broad range of features is provided by the frame-
work, including EAs support, local search methods, parallel and distributed models,
hybridization mechanisms, etc. For a complete overview of the existing dedicated
frameworks on parallel and grid specific metaheuristcs refer to [10, 8, 51, 1, 7].
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The contents of this study inscribe in the context of ANR Dock – Conforma-
tional Sampling and Docking on Computational Grids1, designated under the Dock-
ing@Grid acronym, a French National Research Agency three years funded project,
scheduled to end by fall 2009. Encompassing distinct areas of expertise, the founda-
tions of the project are set on the complementarity of the participant research teams
and laboratories, specifically, (1) DOLPHIN, INRIA Lille – Nord Europe, Funda-
mental Computer Science Laboratory of Lille, LIFL, (2) Biology Institute of Lille,
IBL CNRS/INSERM and (3) Life Sciences Division, CEA/iRTSV – Grenoble. As a
final phase of the project, an in vitro biological validation of the attained results will
be conducted under the competences of the Life Sciences Division, CEA. Note that
all presented experimentations were performed on Grid’5000, a nation-wide com-
putational grid, consisting of almost 5000 computational cores, shared in a network
of nine academic centers. Conformational sampling results are reported on the basis
of a large number of deployments, with up to almost 1000 computational cores.

The remainder of this chapter is organized as follows. An introduction discussing
in brief protein structure prediction aspects is offered in Section 2, followed by an
incremental presentation of the considered algorithmic components in Section 3.
Encoding and evaluation function details are discussed, the formal basis of a con-
jugate gradient and of an adaptive simulated annealing algorithm being illustrated.
A first hybrid parallel approach is afterwards introduced, implementation and exe-
cution environment details being also presented. As part of Section 4 the employed
benchmark conformations are outlined, finally, experimental outcomes being dis-
cussed. As entailed by the drawn conclusions, a hierarchical parallel algorithm is
proposed, addressing minima characterization issues – definition details and results
are given. Conclusions and further directions are finally drawn.

2 Protein Structure Prediction

As outlined in the introduction, the PSP problem consists in determining the ground-
state conformation of a specified protein, given its amino-acids sequence. The inter-
atomic interactions to be considered for the protein structure prediction problem
are a resultant of electrostatic forces, entropy, hydrophobic characteristics, hydro-
gen bonding, etc. Precise energy determination also relies on modeling solvent de-
rived effects through dielectric constants and continuum model based terms – a
more detailed, force field oriented discussion is presented in a following section.
A trade-off is accepted in practice, opposing accuracy against the approximation
level, varying from exact, physically correct mathematical formalisms to purely-
empirical approaches. The main categories to be mentioned are de novo, ab initio
electronic structure calculations, semi-empirical methods and molecular mechanics
based models [16, 58, 40].

Accurate mathematical models, describing molecular systems, are formulated
upon the Schrödinger equation [16], which makes use of molecular wavefunctions

1 http://dockinggrid.gforge.inria.fr
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for modeling the spatio-temporal probability distribution of the constituent entities.
Nonetheless, although offering the most accurate approximation, the Schrödinger
equation cannot be solved exactly for more than two interacting particles [16, 58].
At the opposite extreme, empirical methods rely upon molecular dynamics (clas-
sical mechanics based methods), and were introduced by Alder and Wainwright
[2, 3]. Empirical methods do not make use of the quantum mechanics formalism,
relying solely upon classical Newtonian mechanics, i.e. Newton’s second law, and
often represent the only applicable methods for large molecular systems, namely,
proteins and polymers. After more than a decade protein simulations were initiated
on bovine pancreatic trypsin inhibitor – BPTI [38].

Considering complexity aspects, as an example, for a reduced size molecule com-
posed of 40 residues, a number of 1040 conformations must be taken into account
when considering, in average, 10 conformations per residue. Furthermore, if a num-
ber of 1014 conformations per second is explored, a time of more than 1018 years is
needed for determining the ground-state conformation. For example, for the [met]-
enkephalin pentapeptide, composed of 75 atoms and having five amino-acids, Tyr-
Gly-Gly-Phe-Met, and 22 variable backbone dihedral angles, a number of 1011 local
optima is estimated. Detailed aspects concerning complexity matters were discussed
in [13, 9]. As a conclusion, no simulation or resolution is possible unless extensive
computational resources are used – it may be inferred that no polynomial time res-
olution is achievable if no or less a priori knowledge is employed.

For a comprehensive introductory article on the structure of proteins and related
aspects please consult [40, 12]; a glossary of terms is also available in [57]. In ad-
dition, an extended referential resource for protein structural data may be accessed
through the Brookhaven Protein Data Bank2 [4].

3 A Parallel Hybrid Metaheuristic for the PSP

The exploration and intensification capabilities of the EAs do not suffice as
paradigm, when addressing rough molecular energy function landscapes. Small
variations of a torsional angle value may generate extremely different individuals,
with respect to the fitness function. As a consequence, a nearly optimal configura-
tion, considering the torsional angle values, may have a high energy value, and thus,
it may not be taken into account for the future iterations of the algorithm. In order
to correct the above exposed problem, a local search based method may be applied
as a refinement step, alleviating the drawbacks determined by the conformation of
the landscape – thus, a Lamarckian optimization technique is constructed.

3.1 Encoding of the Conformations and the Force Field Function

The algorithmic resolution of the PSP, in heuristic context, is directed through the
exploration of the molecular energy surface. The sampling process is performed

2 http://www.rcsb.org – Brookhaven Protein Data Bank; offers geometrical structural data
for a large number of proteins.
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by altering the structure of the under study conformation, i.e. backbone structure,
associated torsional angles, etc., in order to obtain different structural variations.
With implications over the sampling methodology, different encodings have been
mentioned in literature. The trivial approach would consist of using a direct cod-
ing of the atomic Cartesian coordinates [46]. Nonetheless, as a main disadvantage
of direct encoding based representations, filtering and correcting mechanisms are
required, inducing a non-negligible overhead. Different other models were devel-
oped, including, for example, all-heavy-atom coordinates, Cα coordinates or back-
bone and residue atoms coordinates representations, hydrophobic/hydrophilic mod-
els [15], etc. For the herein described method, an indirect, less error-prone, torsional
angle based representation has been preferred. More specifically, each conforma-
tion is coded as a vector of torsional angle values, denoted in the following as γ ,
γ =def (γ1 ,γ2 , · · · , γN ), αi ≺ γi ≺ βi , where N represents the liberty degree of the con-
formation and αi , βi stand as the lower and upper limits of the γi encoding value,
1 ≤ i ≤ N. For a graphical illustration, please refer to Fig. 2.

E = ∑
bonds

Kb(b−b0)2

+ ∑
angles

Kθ (θ −θ0)2

+ ∑
torsions

Kφ (1− cosn(φ −φ0))

+ ∑
Van der Waals

Ka
i j

d12
i j
− Kb

i j

d6
i j

+ ∑
Coulomb

qiq j
4πεdi j

+ ∑
desolvation

Kq2
i Vj+q2

jVi

d4
i j

Fig. 2. Scoring function quantifying the inter-atomic interactions

The energy function, hereafter noted as E , is defined by relying on an indepen-
dently calibrated Consistent Valence Force Field (CVFF) [14] based force field. The
quantification of energy is performed by using empirical molecular mechanics, as
depicted in Fig. 2. As classically employed for empirical force field definitions,
a set of specific constants is associated with each interaction type, here denoted
by Kb,Kθ ,Kφ and Ka

i j for, respectively, bonds, angles, torsional angles and van der
Waals interactions. An optimal value for the considered entity (bond, angle, torsion)
is introduced through a corresponding (A−A0) equation term, where A, A0 spec-
ify the sampled value, respectively the a priori experimentally determined optimal
value. More specific, for the herein example, b represents bond lengths, θ angular
values, φ torsional angles and qa, di j and Vp the electrostatic charge associated to
given atoms, the distance between the i and the j atoms, respectively, a volumetric
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Fig. 3. Free energy surface for the tryptophan-cage protein around a deep optimum confor-
mation. High energy points are depicted in light colors, the low energy points resulting in
darker areas.

measure for the p atom. No further details are here included as being out of scope
for the herein study – please refer to [45] for additional information.

An example of free energy surface representation for the tryptophan-cage is given
in Fig. 3. The lighter areas of the surface correspond to high-energy conformations.
The sampling values used for constructing the representation were computed by em-
ploying the Gibbs free energy over an ensemble of locally sampled conformations
Ei – refer to Horvath et al. [26] for additional references and details:

G = −kT

[
∑exp

(
− Ei

kT

)]

where k = 1.3806504(24)×1023 J K−1 designates the constant of Boltzmann, offer-
ing, in numerical form, a connection between the molecular level and macroscopic
observed effects, expressed as an ensemble result. Further, T represents a temper-
ature term, the ensemble being equivalent to approx. 0.6 kcal mol−1 at 300K –
introductory notions and references were presented in [26].

An extensive discussion reviewing the force fields designed for protein simula-
tions, with in-depth details, is offered in [45]. The first part of the study covers the
evolution of the force fields over the last three decades, discussing various formula-
tions which include the Amber, CHARMM and OPLS force fields.

3.2 Conjugate Gradient Local Search

The conjugate gradient method, an extension of the steepest gradient descent
method, has been independently developed in the early 1950’s by Eduard Stiefel
and Magnus R. Hestenes, with the cooperation of J.B. Rosser, G. Forsythe and L.
Paige [25]. Depending on the setup of the parameter values, the method converges to
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the closest local minimum, hence not being well adapted for the global optimization
of large highly multimodal functions. References of early works on more advanced
conjugate gradient methods lead to the publications of R. Fletcher, C.M. Reeves,
M.J.D. Powell, E. Polak and G. Ribière [17, 18, 44], appeared a decade later.

For the rest of this section a nonlinear conjugate gradient approach is considered,
simply referred to as conjugate gradient. If the force field based energy function E
is continuous and differentiable in γi ∈ γ,1 ≤ i ≤ N, the ∇E gradient is defined as a
vector of partial derivatives:

∇E =
[

∂E
∂γ1

∂E
∂γ2

· · · ∂E
∂γN

]T

(1)

Hence, considering an iterative approach, at each iteration, the current point γ+

can be updated by setting γ+ ← γ+ − τε ∇Eγ+ , where the τε step has a positive,
small enough value, adapted for the function under study, and where ∇Eγ+ denotes
the gradient vector computed at the γ+ solution point. Compared to the steepest
descent method, the conjugate gradient algorithm considers not only the gradient
vector at the current point but also the previous directions. Hence, at each iteration
k of the algorithm, the γ+

{k} solution is updated as follows:

γ+
{k+1} ← γ+

{k} − τε δk, δk =def

⎧⎨
⎩

∇Eγ+
{k}

, if k = 0

∇Eγ+
{k}

− ξkδk−1, if k > 0
(2)

The algorithm is mainly based on the ξk factor which, in terms of convergence,
defines the behavior of the method. Classically employed forms of the ξk term are
defined as a combination of the previously computed gradient vectors, including
different formulations, e.g. Fletcher-Reeves, Hestenes-Stiefiel, Polak-Ribière, etc.
[17, 18, 44].

The basic pseudo-code of the nonlinear conjugate gradient method is given in
Algorithm 1. The first step of the algorithm, for k = 0, is similar to the steepest
descent method, the following steps relying in addition on the previously computed
gradient vectors. For the herein example, the Fletcher-Reeves form has been chosen
for the ξk term. Further, having computed the ξk, δk terms (lines 3-8), a line search
is applied in order to minimize E(γ+

{k} − τε δk) by varying the τε factor. For details
on line search algorithms refer to [48]. Different stopping criteria can be chosen –
common approaches consider an a priori specified threshold for the gradient vectors
(e.g. the absolute value of all the components of the ∇Eγ+

{k}
gradient vector falling

below 1.0e-5) or for the attained improvement. In addition, a maximum number of
iterations can be imposed.

The here employed component relies on analytical gradient formulation, the ex-
ploration being conducted on fine-grain landscape information. As a consequence,
the method may not be well adapted for dealing with the conformational
sampling landscape particularities, offering nevertheless fine-tuning minimization
advantages.
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Algorithm 1. Nonlinear Conjugate Gradient Pseudo-Code.

1: Set k ← 0, γ+
{k} ← γ (γ , γ+

{k} represent the current and the best known solution at iteration k, respectively)

2: repeat
3: if k = 0 then
4: Set δk ← ∇Eγ+

{k}
5: else

6: Set ξk ←
∇ET

γ+
{k}

∇Eγ+
{k}

∇ET
γ+
{k−1}

∇Eγ+
{k−1}

7: Set δk ← ∇Eγ+
{k}

−ξkδk−1

8: end if

9: Find τε minimizing E(γ+
{k} − τε δk)

10: Set γ+
{k+1} ← γ+

{k} − τε δk

11: Set k ← k +1
12: until |Eγ+

{k}
−Eγ+

{k−1}
| < τprec or ∇Eγ+

{k}
< τlb.

3.3 Adaptive Simulated Annealing Algorithm

Classical SA algorithms [34] rely on a Boltzmann sampling distribution, including
as components a probability density function of the state space, g(γ), an acceptance
probability function h(ΔE) and an annealing schedule T (k). Gradient information
is not employed in classical constructions of the algorithm. The annealing schedule
is defined over a number of discrete steps. The acceptance function has the role
of quantifying the probability of performing a transition from an Ek energy state
to a new state with energy Ek+1. Classical definitions make use of the Metropolis
criterion [39] which makes use of the Boltzmann probability density function:

h(ΔE) =
e−Ek+1/T

e−Ek+1/T + e−Ek/T
=

1

1 + eΔE/T
∼= e−ΔE/T , ΔE = Ek+1 −Ek (3)

Given a Gaussian-Markov system, with a probability density state space func-

tion g(Δδ ) = (2πT )−N/2e−‖Δδ‖2/(2T), for an appropriate initial temperature T0,
the global minimum can be found if the temperature is decreased no faster than
T (k) = T0/ lnk. Low discrimination between solutions is considered in the initial
phases of the algorithm, the method acting like a global search exploration. Near
the final phases, local search is performed at low temperatures. Nonetheless, the
main difficulty in designing a Boltzmann SA consists in determining the starting
temperature as well as an efficient schedule for the problem under study. In prac-
tice, a T0/ lnk schedule does not offer a fast enough annealing. While no longer
guaranteeing asymptotic convergence, exponentially decreasing schedules are pre-
ferred instead, e.g. T (k) = e((c−1)k)T0,T (k) = c T (k − 1),k ≥ 1, with 0 � c < 1,
c ≈ 0.98.
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Fig. 4. A – Temperature decrease as defined for the ASA Ti schedules. B – ASA probability
density function.

The Adaptive Simulated Annealing (ASA), an enhanced version of the basic SA
algorithm, has been initially presented in the work of Ingber [27, 28, 31, 29, 30].
ASA exploits the characteristics of a specifically designed generating function al-
lowing for an exponentially faster annealing process, as compared to the classical
Boltzmann distribution based approach. In addition to employing a temperature pa-
rameter for the acceptance function, hereafter noted as Ta, distinct Tiki parameters
and probability density functions are associated to each of the control parameters.

In the following, for simplicity, Tiki is denoted as Ti, with Ti0 representing the ini-
tial temperature of the Ti schedule. As detailed in Ingber’s articles, by considering

Ti =def Ti0e(−ciki
Qi/N ), with ci = mie−niQi/N , asymptotic convergence is attained. The

mi,ni control parameters can be employed for adjusting and fine-tuning the algo-
rithm for a specific problem. While for Qi > 1 (quenching factors) an accelerated
exploration is performed, the asymptotic convergence proof no longer stands, the
algorithm being prone to getting trapped in local minima.

The adaptive features of the algorithm are determined by sensitivity derived fac-
tors, namely the Ta, Ti temperature schedules, which are employed in deciding over
and controlling the acceptance, respectively, generation of new solutions – refer to
Fig. 4 for a graphical depiction. The considered factors enclose descriptive informa-
tion over the structure of the landscape to explore. The ASA generation function is
defined over a set of uniform random variables, ui ∈U [0,1], as exposed below:

γk+1
i

= γk
i
+ δi(βi −αi), where δi is defined as: (4)

δi = sgn(ui −0.5) Ti[ (1 + 1/Ti)|2ui−1| −1 ],δi ∈ [−1,1] (5)

In the herein context αi, βi denote the lower, respectively upper limit of the γi

encoding value. Acceptance is performed according to the Metropolis criterion. Af-
ter a specified number of accepted solutions, reannealing takes place, adjusting the
algorithm’s parameters. Gradient based sensitivities are used for updating the ac-
ceptance temperature, Ta, the Ti temperature schedules and the ki step indexes. No
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restriction is imposed on defining different sensitivity measures, other than gradient
based ones. Considering γ+,γa the best known solution and the last accepted solu-
tion, respectively, at a given step of the algorithm, for each component γ+

i
∈ γ+, the

associated sensitivity si is computed, to be employed in the reannealing step:

si =
∣∣∣∣ ∂E
∂γ+

i

∣∣∣∣ , smax = max
1≤i≤N

si, T ′
i =

smax

si
Ti, k′i =

[
ln(Ti0/T ′

i )
ci

]N

(6)

Ta0 = E(γa), Ta = E(γ+), k =
[

ln(Ta0/Ta)
c

]N

(7)

The main phases of the ASA method are depicted hereafter in Algorithm 2. The
quenching factors Q,Qi, the initial temperatures Ta0,Ti0, the mi,ni control parame-
ters and the k,ki step indexes are initialized in the first two lines. Lines 3 and 4 set the
best known and the last accepted solutions which, for this step, are identical to the
initial solution. The algorithm includes a main exploration loop (lines 5-32) and a
secondary internal loop for generating new solutions (lines 6-11). Newly generated
solutions are accepted based on the Metropolis criterion (line 13), the reannealing of
the temperature schedules (lines 18-24) being performed at a pre-specified number
of accepted solutions. At the end of each iteration of the main loop, step indexes
and temperature schedules are updated in order to reflect the advancement of the
algorithm (lines 26-31). The algorithm finishes after a fixed number of iterations or
at a pre-specified threshold of iterations with no improvement.

As opposed to classical SA algorithms, the influence of the initial parameters
over the exploration is alleviated, the annealing schedule being adaptively modified
as to reflect the current exploration stage. While not directly employed in generating
new solution points, gradient information is used for modifying the factors which
intervene in the sampling process, consequently avoiding the direct disadvantages
of steepest descent gradient based approaches. An improved scaling is offered as
factors are independently modified on each dimension.

As a final remark, although including adaptive mechanisms, a large number of
fine-tuning parameters are included. The effective calibration of the algorithm does
not stand simplified tractableness basis, demanding for advanced parameter opti-
mization. A possible approach, as suggested by Ingber, consists in using the ASA
algorithm per se as a control parameters optimization component. Nevertheless,
considering that performance evaluations require for the algorithm to be executed on
one or multiple benchmarks, a high computational impact is implied. Subsequently,
parallel support is required, entailing the optimization process to be carried on the
support of a scalable distributed algorithm. Therefore, as part of the herein work, a
meta-evolutionary algorithm has been employed in order to answer the mentioned
concerns [53], given that ASA does not comport a high parallelization affinity.

A detailed description of the ASA algorithm, including comparison, test case
studies and applications is available in the work of Ingber [30, 29, 27, 28, 31].



302 A.-A. Tantar, N. Melab, and E.-G. Talbi

Algorithm 2. ASA Pseudo-Code.

1: Set c, Q, k = 0, Ta0 = E(γ)
2: Set Qi, mi,ni , ci = mie−niQi/N , ki = 0, Ti0 = 1.0, for 1 ≤ i ≤ n

3: Set γ+ ← γ (γ , γ+ represent the current and the best known solution, respectively)
4: Set γa ← γ (γa represents the last accepted solution)

5: repeat
6: for all γi ∈ γ , 1 ≤ i ≤ N do
7: repeat

8: δi ← sgn
(
ui − 1

2

)
Ti

[ (
1+ 1

Ti

)|2ui−1|
−1

]
, ui ∈U [0,1]

9: γ ′
i
← γi +δi(βi −αi)

10: until αi < γ ′
i
< βi

11: end for

12: ΔE ← E(γ ′)−E(γ)

13: if u < e−ΔE/Ta , u ∈U [0,1] then

14: Accept γ ′ as the current solution: γ ← γ ′, γa ← γ ′
15: if E(γ ′) < E(γ+) then
16: Update the best known solution: γ+ ← γ ′
17: end if

18: if reannealing limit reached then
19: for all ki, Ti, 1 ≤ i ≤ N do

20: si ←
∣∣∣∣ ∂ E

∂ γ+
i

∣∣∣∣ , γ+
i
∈ γ+, smax =

def max
1≤i≤N

si

21: Ti ← smax
si

Ti, ki ←
[

ln(Ti0/T ′i )
ci

]N

22: end for

23: Ta0 ← E(γa ), Ta ← E(γ+), k ←
[

ln(Ta0/Ta)
c

]N

24: end if
25: end if

26: for all ki, Ti, 1 ≤ i ≤ N do
27: ki ← ki +1

28: Ti ← Ti0e(−ciki
Qi/N )

29: end for

30: k ← k +1
31: Ta ← Ta0e(−ckQ/N )

32: until stopping criterion met.

3.4 Hybrid Parallel Genetic Algorithm

Evolutionary algorithms rely on a set of intensification vs. diversification directed
operators for iteratively evolving an initial randomly generated population. At each
iteration of the algorithm (generation), a selection process is conducted, the fitness
of each individual being evaluated on a problem specific fitness function, i.e. the
force field function for the herein case. The pseudo-code in Alg. 3 exposes the
generic structure of an EA. Following a broad classification perspective, the main
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Algorithm 3. EA Pseudo-Code.

t ← 0
Generate(P(0))
while ¬Termination Criterion(P(t)) do

Evaluate(P(t))
P′(t) ← Selection(P(t))
P′(t) ← Apply Reproduction Ops(P′(t))
P(t +1) ← Replace(P(t), P′(t))
t ← t +1

end while

subclasses of EAs are the Genetic Algorithms (GAs), Evolutionary Programming,
Evolution Strategies, etc. In this context, a genotype represents the raw encoding of
the individuals while the phenotype offers the equivalent representation features. At
each generation, the genotype of a selected set of individuals is altered by applying
mutation and crossover operators in order to intensify the exploration over an inter-
est region or for diversification purposes as to avoid a premature convergence. Last,
offsprings are reinserted in the population according to a pre-specified criterion.

The herein considered GA was parallelized in a hierarchical manner, including,
in addition to the exposed basic pseudo-code, three levels of parallelism – the in-
sular model, the parallel evaluation of the population and the synchronous multi-
start model. A conceptual simplistic depiction of the different models is offered in
Fig. 5. At execution time, a set of identically configured algorithms is deployed,
independently evolving a local assigned population whereas fitness evaluations are
dispatched on remote worker nodes. A stochastic tournament strategy approach is
used for the selection and the replacement phases of the algorithm. Furthermore,
in addition to classical simple diversification and intensification operators, e.g. ran-
dom mutation, two-points crossover, each algorithm encloses an analogous set of
conjugate-gradient extended operators. The defined alternate set of operators func-
tion by first applying the enclosed mutation, respectively, crossover standard mech-
anisms, the resulting offspring(s) being further refined by the local search com-
ponent. Embedding the standard and the gradient enhanced version, a combined
operator is provided, allowing for a selective, rate dependent, application of the in-
ternal sub-operators, e.g. allowing for the standard mutation operator to be applied
on 90% of the subjected solutions, respectively, for the extended operator on the
remaining 10%. An eloquent practical exemplification is found when considering a
high-energy barrier surrounded optimum conformation. With no refinement, a close
to optimum solution is subject to attain, with a high probability, an elevated fit-
ness energy. Consequently, the solution, although encoding valuable information,
exhibits a high probability of being discarded, in the selection process. A balanced
design has to be assured, nevertheless, e.g. by specifying appropriate operator rates,
gradient steps, etc., as to avoid a potential premature convergence of the algorithm.
Additionally, a refined local optimum solution stands as a key minima representative
over the surrounding high-energy conformations, locally characterizing the afferent
landscape region.
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Fig. 5. The three main EAs parallelization models: island (a)synchronous cooperative model
– left side of the figure, parallel evaluation of the population and distributed evaluation of a
single solution – right side, upper, respectively lower part.

A synchronous ASA multi-start local search refinement phase is additionally in-
terposed, succeeding the completion of a fixed number of iterations. Independent
local explorations are simultaneously launched, for each of the to be refined so-
lutions, obtained by random selection out of the local population. Further, allow-
ing for convergence and diversity control, an asynchronous inter-islands exchange
of genetic material is performed, at a predefined number of iterations. A cyclic,
ring topology model communication pattern is set, i.e. accepting only one source
and one destination per island. The specified migration model, allows for a coor-
dinated global convergence, as determined by the migration frequency, number of
exchanged solutions, etc., whilst reducing the external impact on the local island ex-
ploration process. A strong local attractor is required to cycle the entire ring, through
multiple selection steps, before attaining global acceptance. Emigrant solutions are
retrieved by means of a stochastic tournament selection, at the opposite end, the
worst individuals in the target population being replaced by immigrant solutions.
Survival of the best individual is assured by a weak-elitism scheme. For each lo-
cal search refinement and migration phase, one tenth, respectively, one sixth of the
population, is subject to undergo the local optimization, respectively, information
exchange process.

Note that, except for selection and replacement, all operations, including the lo-
cal search enhanced operators, are performed in parallel by delegation to worker
nodes. A detailed discussion of the ParadisEO framework architecture and the
afferent components developed in order to sustain the construction of the herein
presented algorithmic model, execution roles, communication topologies, etc., is
presented in [7, 8].
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3.5 ParadisEO Based Implementation

ParadisEO3, initially designed and developed by Sebastien Cahon [7, 8], is an ex-
tendible open source C++ framework based on a clear conceptual separation of the
meta-heuristics from the problems they are intended to solve. The EO suffix stands
for Evolving Objects, the framework being basically an extension of the Evolving
Objects (EO) [33] LGPL C++ open source project, the result of an European joint
work [33]. EO includes a paradigm-free Evolutionary Computation library, dedi-
cated to the flexible design of EAs through evolving objects, superseding the most
common dialects (Genetic Algorithms, Evolution Strategies, Evolutionary and Ge-
netic Programming).

Furthermore, most common parallel/distributed models, i.e. synchronous island
model, synchronous multi-start, etc., are provided in the ParadisEO-PEO module
(Parallel EO). A portable design over distributed-memory machines and shared-
memory multi-processors is offered, relying on standard libraries such as Message
Passing Interface (MPI) [23, 24] and POSIX Threads (PThreads) [6]. A transparent
exploitation of the enclosed parallel models, in (non) dedicated parallel environ-
ments, is assured. Nevertheless, with the continuous evolution of the distributed
computing grids and with the perpetuous development of the available computing
resources, there is a sine qua non requirement to pass beyond the physical design
of the grids. Extending the existing framework, in order to offer a grid-enabled Par-
adisEO implementation, demands for a Grid middleware layer and a Grid Appli-
cation Programming Interface. Furthermore, an infrastructure interface is required,
providing communication and resource management tools. The here adopted ap-
proach consists in using the Globus Toolkit [20, 19] computing system as a Grid
Infrastructure - an outline is presented in [52].

A layered architecture of the ParadisEO framework is presented in Fig. 6. From
a top-down view, the first level supplies the optimization problems to be solved
using the framework. The second level represents the ParadisEO framework, in-
cluding optimization solvers, embedding single and multicriterion meta-heuristics
(evolutionary algorithms and local searches). The third level provides interfaces for
standard MPI based programming. At this level virtually any standard conforming
MPI distribution may be placed as layer. The fourth and lowest level supplies com-
munication and resource management services. A broad range of experimentations
were conducted on employing the Globus Toolkit with MPICH/MPICH-G2 [23],
MPICH-VMI [43] and OpenMPI [22].

With no exception, all tests have been deployed on the Grid’5000 (https://
www.grid5000.fr) French nation-wide experimental computational grid, connect-
ing several sites which host clusters of PCs interconnected by RENATER4 (the
French academic network). At this time, Grid’5000 is gathering more than 4000
computational cores with more than 100 Tb of non-volatile storage capacity, re-
grouping nine centers: Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes,

3 http://paradiseo.gforge.inria.fr
4 http://www.renater.fr
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Fig. 6. A layered architecture of ParadisEO.

Sophia-Antipolis, Toulouse. Following time dependent requirements and compu-
tational resources availability constraints, determined by the shared nature of the
environment, experimentations were conducted on most of the Grid’5000 sites. As
dictated by a per experiment demand, a varying number of resources has been used,
ranging from a reduced number of computational cores, for tuning and prototyping
purposes, to up to almost 1000 cores for the actual deployment and testing - see
Table 1 for details.

Table 1. Environment details for a conformational sampling experimentation cumulating al-
most 1000 computational cores, over multiple clusters

Cluster/Site∗ CPUs Cores Architecture Details

Azur/Sophia 59 118 Dual AMD OpteronT M 2.0GHz/1MB/333MHz, 2GB RAM
Helios/Sophia 53 212 Quad Core AMD OpteronT M 2.2GHz/1MB/400MHz, 4GB RAM
Sol/Sophia 27 108 Quad Core AMD OpteronT M 2.6GHz/1MB/667MHz, 4GB RAM
Sagittaire/Lyon 60 120 Dual AMD OpteronT M 2.0GHz/1MB/400MHz, 2GB RAM
Capricorne/Lyon 51 102 Dual AMD OpteronT M 2.4GHz/1MB/400MHz, 2GB RAM
Orsay/Paris 152 304 Dual AMD OpteronT M 2.4GHz/1MB/NA, 2GB RAM

Overall 402 964
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4 Experimental Outcomes

4.1 Conformational Sampling Benchmarks

Assessing conformational sampling algorithms requires to set a trade-off over the
considered benchmarks. A first aspect to be considered regards complexity matters,
i.e. reduced size conformations are of no interest (there is no need of determining
the structure of a water molecule using computational grid resources) whilst highly
complex molecules may be highly computationally restrictive (due to resource con-
straints, force field calibration limitations, etc.). A second aspect is defined on vali-
dation requirements - the crystallographic structure of the benchmark molecule has
to be known in order to be able to have performance evaluations.

The herein adopted molecular complexes for the conformational sampling al-
gorithms assessment, are the tryptophan-cage (trp-cage - Protein Data Bank ID:
1L2Y), the tryptophan-zipper (trp-zipper - Protein Data Bank ID: 1LE1) and the
α-cyclodextrin. Tryptophan-cage and tryptophan-zipper belong to the class of mini-
proteins presenting particularly fast folding characteristics. Cyclodextrins, in α , β or
γ conformations, with 6, 7, 8 glucose units, respectively, due to their toroidal struc-
ture, are important for drug-stability applications, being used as protectors against
micro-environment interactions or as homogeneous distribution stabilizers, etc.

The selected benchmark conformations can be considered, to a certain extent,
as being significant and representative as they include different structural patterns,
hence, requiring a flexible enough algorithm to predict the different enclosed sec-
ondary structures. Refer to Fig. 7 for a graphical representation of the three molec-
ular conformations. An equivalent schematic representation is also exposed in order
to better illustrate the structural characteristics of each molecule (as the cyclic struc-
ture of α-cyclodextrin). The α-cyclodextrin molecule, while not being a protein,
has been included in the study due to its particular cyclic structure. In addition, the
addressed conformations, given the number of defined torsional angles, namely 64,
54, 73 angles for α-cyclodextrin, 1LE1, 1L2Y, respectively, offer the advantage of
not requiring an extremely expensive energy evaluation computation time.

4.2 Execution Configuration and Outcomes

A ring insular model consisting of three algorithms has been deployed at run-time,
each island evolving a fixed-size population of 300 solutions for 300 generations.
No specific parameter tuning has been considered, the employed configuration be-
ing incrementally constructed in a series of trial executions. As previously outlined,
combined mutation and crossover operators have been employed, e.g. the classi-
cal two-point crossover operator and the conjugate-gradient enhanced version, in
mutual exclusive manner, with a 0.85, respectively, a 0.15 rate. Analogously, the
mutation operators are applied with equal rates, for the classical and local search
extended version, having an overall 0.05 probability. A selection rate of 0.75 has
been set, with a 0.95 probability of accepting a better individual over a worse one.
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α-cyclodextrin

1LE1

1L2Y

α-cyclodextrin

1LE1

1L2Y

Fig. 7. Structural overview of the considered benchmarks – α-cyclodextrin, tryptophan-
zipper (1LE1) and tryptophan-cage (1L2Y).

Although the induced fitness degradation, with a 0.05 probability, worse solutions
are accepted in order to exploit the potentially significant enclosed information. Re-
placement is conducted on similar basis, with a 0.75 probability of discarding a
worse solution. The refinement phase has been set to be applied at every five gener-
ations, relying exclusively on the ASA component, described in Section 3.3. A fine-
grained gradient minimization is additionally carried out on the resulting conforma-
tions, exploiting the analytical foundations of the conjugate gradient local search
operator. A worse-replacement strategy is used for reinserting the final refined solu-
tions into the initial population.

Another element with important consequences over the convergence of the con-
structed algorithm is given by the asynchronous migration rate. Frequent migrations
may result in a premature convergence while distant migrations fall at the opposite
extreme - exploration conducted on distinct algorithms with independent evolution
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Fig. 8. 1L2Y – An execution example depicting the profile of the island model algorithm (A,
B), in the second row, the evolution of the ASA component being captured (C, D).

curves. For the herein case, one sixth of the local population is set to emigrate, in
asynchronous manner, at every five generations - migrations may occur at different
times, depending on the advancement of each algorithm.

A meta-evolutionary genetic algorithm has been designed for finding an opti-
mal parameterization of the adaptive simulated annealing algorithm. No special
strategies or operators were designed, a simple distributed EA being considered;
the algorithm has been executed inside the same grid environment. In this case each
individual of the meta-algorithm represents an encoding of the different parameter-
ization values – control parameters of the adaptive simulated annealing algorithm,
initial temperature, number of accepted solutions determining reannealing, quench-
ing factor, etc. The fitness of each individual has been computed as the average
improvement obtained after running the adaptive SA on a set of five known difficult
conformations. For each fitness evaluation run, for each of the five conformations,
a maximum number of 3000 samplings was set. As an example, one of the chosen
resulting parameterizations had a reannealing limit of 111 accepted conformations
with 97 sampling points at each temperature and a large quenching factor of 33.16.

For the synchronous multi-start execution, two approaches were considered. The
adaptive simulated annealing algorithm is either executed in order to sample 3000
solutions in one run, either 10 short runs with 300 samples each are iteratively
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launched. In addition, at the end of one ASA run, the outcome conformation is
further optimized by applying a 30 step gradient.

As a first remark, after compiling the execution results, the use of conjugate gra-
dient extended operators determined a dramatic improvement. Analyzing, for exam-
ple, the results obtained by using the genetic algorithm alone, for the α-cyclodextrin
conformation, an average of 3790.56 kcal mol−1 (stdev. 708.54 kcal mol−1) has
been attained, with a maximum, minimum of 5845.27 kcal mol−1, respectively 2470
kcal mol−1. At the opposite extreme, the set of solutions found by the gradient hy-
bridized genetic algorithm resulted in an average of 201.37 kcal mol−1 (stdev. 21.82
kcal mol−1), with a minimum of 161.69 kcal mol−1 and a maximum of 243.05
kcal mol−1. A number of 30 independent executions were performed for the gradi-
ent hybridized GA as well as for the GA alone, with no hybridization.

Finally, for all studied benchmarks, the ASA-hybridized GA (best scored confor-
mations) attained a below native reference energy: 28.9 kcal mol−1 for the 1L2Y
protein (reference energy at 46.6 kcal mol−1), -3.5 kcal mol−1 for 1LE1 (11.1
kcal mol−1) and 161.6 kcal mol−1 for α-cyclodextrin (242.4 kcal mol−1). Nev-
ertheless, although descending below the energy of the native conformation, the
corresponding RMSD (Root Mean Square Deviation) values were constantly out-
side acceptable limits, with minimum values close to or above 4Å.

A graphical illustration, capturing the island model algorithm evolution, is given
in Fig. 8. The depicted examples outline, in a first step, results obtained for the hy-
brid island based algorithm, while the second part offers an overall perspective of
the ASA execution-time improvement rate. For each island, at every generation, the
fitness of the best found conformation is depicted (A), a median trend evolution line
being traced. Although the algorithms advance at different rates, with several thresh-
olds, convergence is attained near 300 generations. A corresponding fitness distance
correlation (FDC) [32] plot is additionally illustrated (B), offering an overview of
the fitness dynamics, e.g. convergence rate information, over generations fitness
variance, etc. An ideal case would consist of a 1.0 FDC value, expressing a perfect
correlation between fitness and inter-solutions distance values, while, at the oppo-
site end, a -1.0 FDC value indicates a completely uncorrelated landscape, providing
no useful information. A symmetrical spread may be observed (B), with an ascend-
ing positive correlation trend, as determined by the advancement of the exploration.
Additionally, an outline of the ASA improvement bias is shown in the second row
of the figure, traced as a plot exposing initial vs. final energy (C) and, second, as a
histogram (D). Approximately one sixth of the refined conformations allowed for an
above 10% improvement while only a reduced fraction of 3% resulted in an above
90% improvement (D). The equivalent run-time evolution graph (C), exclusively
considering the ASA refinement outcomes, revealed several clusters, attributed to
strong attractors determining basins in the conformational landscape (visible at ˜
40.0 kcal mol−1, 60.0 kcal mol−1, final energy - C).

As an overall conclusion, first, the hybrid parallel algorithm design incurs strong
exploration capabilities, although, second, far from native outcome conformation
were returned. Appearing as energy landscape artifacts, with high RMSD - low en-
ergy conformations, due to the force field parameterization, the obtained solutions
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do not stand as valid conformations. As a consequence it can be concluded that a
higher level extensive exploration approach is required with a more robust evalua-
tion protocol.

4.3 Advanced Hybrid Hierarchical Parallel Algorithm

As determined by the drawn conclusions, a cluster sampling, domain decompo-
sition oriented algorithm has been considered. A straightforward extension of the
representation model has been constructed by considering, for a chromosome, an
overlapping associated domain. Defining symmetric boundaries, for a given con-
formation, γ = (γ1 ,γ2 , · · · , γN ), a landscape domain is delimited, further denoted as
< γ, η >≡ ([γ1 −η1 ,γ1 +η1 ], [γ2 −η2 ,γ2 +η2 ], · · · , [γN −ηN ,γN +ηN ]). The intro-
duced definition and representation synthetically maps, over the conformer concept,
nevertheless encompassing a less conformational structure significance, i.e. no un-
derlying specific base template is associated to the given domain. Therefore, the term
of cell is preferred in the following, describing, by direct association, a bounded
structural subspace, as opposed to conformer, in order to designate a < γ, η > en-
tity. For simplicity, the assumption of having ηi = δ , 1 ≤ i ≤ N, is considered in the
following, where δ represents an a priori fixed arbitrary positive value. Addition-
ally, having as basis the formulated assumption, a direct notation < γ > ≡ < γ, η >,
with ηi = δ , 1 ≤ i ≤ N, is employed in the following, as to designate a cell. An in-
tuitive graphical representation is given in Fig. 9, depicting the transition from a
highly multimodal energy landscape to a smoother, conformer fitness space. From
an implementation point of view, the representation is constructed as an extension
of the previously defined model, permitting the reuse of the entire developed algo-
rithmic architecture, with no or less modifications.

A direct evaluation would consist of considering a < γ > cell as designating an
ensemble of solutions. Consequently, the problem resides in defining an appropri-
ate evaluation function which, for a specified δ value and for a given cell, < γ >,
offers a coherent evaluation, quantifying the stability of an overlapping conformer.
Nevertheless, no complete characterization of a particular cell is possible, unless
accounting for the cumulated interaction and contribution of an infinite number of
conformations, confined within the cell boundaries. Consequently, an extrapolation
formalism has to be defined, the evaluation function being constrained to infer on
a finite, representative subset of conformations. Furthermore, the evaluation func-
tion has to be reproducible. Otherwise stated, assuming that representative indepen-
dently sampled subsets Si ⊆< γ >, i ∈ N are given, comparable evaluation results
have to be provided. The construction of a representative cell subset hence demands
for a within cell sampling to be performed, algorithmic basis being provided by the
already defined approach.

Holding for the aforementioned specifications and having as support intuitive
underlying physical concepts, a Gibbs free energy evaluation is considered – refer
to Section 3.1 and Horvath et al. [26] for additional references and details. The
function relies on the individual evaluation of a set of sampled solutions, γs ∈ S ,
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A – Conformational Energy Landscape B – Free Energy Landscape

Fig. 9. Underlying conceptual basis of a free energy clustered sampling algorithm. A finite
set of solutions, sampled within the boundaries of a specified cell (A), is employed for con-
structing a free energy evaluation – resulting in a singular free energy surface point (B). A
more tractable landscape is obtained at the price of a higher computational load.

S ⊆ < γ >. Extrapolating over the formalization details, an entropy equivalent
measure is obtained, offering a characterization of the within < γ > cell key minima
depth and width. As determined by the nature of the evaluation function, a less
sensitive to extreme perturbation energy values evaluation is attained, resulting in
a smoothing effect. A graphical simplified corresponding exemplification, for the
1L2Y protein, is illustrated in Fig. 9.

As mentioned in the previous paragraphs, the construction of a representative set
has to be addressed, as part of the fitness function definition. A first design deci-
sion consists in determining an optimal δ value. High values result in a reversion
towards the initially addressed problem while, at the opposite end, reduced values
imply the exploration space to be segmented into a large number of cells. The for-
mer case, while offering the advantage of simplifying the search space clustering,
requires the support of a thorough intensive sampling, posing a reproducibility prob-
lem and, hence, inducing a high computational load. In analogous manner, the latter
case, while assuring for representative sampled sets, results in an expensive explo-
ration process, due to an explosion of the number of cells to be explored. With no
or less information acquired, at the extreme case, the initial conformational energy
landscape is potentially reproduced. Consequently, a sampling algorithm dependent
balance has to be assured in order to allow for a pertinent segmentation of the search
space and as to exploit the information which can be derived by assessing an ensem-
ble of conformations. Therefore, a second correlated design decision, concerns the
exploration algorithm to be employed – a random sampling would stand as a simple
and fast candidate solution although offering no reproducibility guarantee, unless
reduced size cells are considered. An exploration intensive approach, allowing for
the search to be conducted over extended landscape domains, although enforcing
the imposed demands, can potentially result in a redundant oversampling.
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Assembling the introduced representation model and the free energy evaluation
function, a meta-evolutionary algorithm has been constructed, the exploration being
conducted over clusters in the conformational energy space. A hierarchical design is
offered, comporting multiple parallelization levels. As highly complex aspects are
addressed, no effective approach can be defined unless extensive distributed compu-
tational resources are employed. A first parallelization layer is inserted at the global
meta-exploration level, the evaluation of each solution being synchronously dele-
gated to local samplers. Further, each of the sampling processes deploys several
island algorithms, for each island, a parallel evaluation of the conformations being
performed at each generation, with additional synchronous multi-start refinement
and migration processes. A schematic representation is given in Fig. 10. Note that,
following the parallelization hierarchy, a highly scalable approach is attained, as de-
termined by the decomposition of the parallel tasks. Given that, the implied design
decisions mainly depend on the selected local sampling algorithm, the defined ar-
chitecture is presented starting with the lower exploration layer as to end with the
meta-exploration algorithm level.

As main criterion in proposing a local sampler solution, the requirement for an
exploration intensive algorithm has been considered, as to allow for free energy
evaluations on large cells within acceptable reproducibility limits. As demonstrated
by the previous results, the algorithmic model proposed in Section 3.4, stands as
a powerful candidate solution. Consequently, the same exact architecture has been
used, with several modifications as detailed in the following. In depth details and
analysis test cases, standing as basis for the herein obtained results, were also pre-
sented in [54, 55], addressing multiple operators, local search algorithms, adaptive
and dynamic mechanisms, etc. Nonetheless, as we are here interested in expos-
ing the hierarchical nature of the algorithms, opposing local and global sampling
paradigms, no further details are here included.

Conducting several trial experimentations, it has been determined as coherent
and sufficient to set a value of δ = 45, corresponding to a π/4 angular value and
allowing for wide extended cells to be defined. Further, a discrete representation
has been adopted, where, for a < γ > cell corresponding genotype, the enclosed
< γi >, 1 ≤ i ≤ N, loci has been defined as having values from the {0, · · · ,7} set,
with a corresponding angle value in the [δ (< γi > −1), δ (< γi > +1)] interval. An
inter-cells overlap has been allowed as to avoid boundary constraints, e.g torsional
angle values requiring fine tuning near boundary limits. Note that the representation
employed by the local sampling algorithm has not been modified, a mapping being
defined as to assure the coherence of the representation.

Having as a pragmatic constraint the requirement of allowing for a fast sampling
process to be conducted, a reduced population size of only 30 solutions has been
assigned, for each island of the sampling algorithm, to be evolved over 10 genera-
tions. The exact same configuration of the operators and inter-algorithm migration
topologies has been maintained, as presented in Section 3.4, with a down-scaling
of the afferent parameter values. Local search refinement has been set to be trig-
gered at every 5 generations, additionally, migrations being performed at every 2
generations, with an exchange of 10 individuals. Furthermore, a maximum of 10
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Fig. 10. A conceptual model depicting the architecture of the meta-exploration algorithm.
Global exploration is carried at a conformer level, for each conformer associated cell, local
sampling based free energy evaluations being computed.

conjugate gradient steps has been set, as opposed to the initial default configuration
of 30 steps. As the exploration is carried out inside specified cell boundaries, all the
determined solutions, as provided by each island, contribute to the construction of a
representative sampling set. Therefore, at the end of the sampling process, a screen-
ing is performed, a set of the best found 30 distinct conformations being assembled.
The gathered set further stands as basis for computing the free energy evaluation,
characterizing the initial subjected cell.

Discrete combined operators have been employed, as to maintain a coherence of
the representation, without introducing repairing mechanisms. Mutation has been
defined as to be carried on a swap, random flip and a complete shuffle operators, with
equal rates and with a 0.3 overall probability. In analogous manner, a uniform and a
two-points crossover operators, with equal rates and with a 0.95 overall probability
have been specified. A fitness sharing selection strategy is included, the distance, for
two specified cells, < γa >, < γb >, being defined as the percentage of positional
different loci. In this context, two solutions are considered to be part of the same
cluster if found at a distance below 0.25, i.e. less than a quarter of the loci having
different values. Additionally, the replacement is carried on a stochastic tournament
strategy, with weak elitism enabled and with a 0.95 probability of discarding a worse
solution over a better one.

At execution time, a maximum walltime of 50 hours has been imposed, the al-
gorithm being executed in successive runs over a variable number of computational
resources, with an average of ˜400 cores. The algorithm has been set to evolve a
population of 30 solutions for 100 generations, each solution defining a cell to be
sampled. As resulting from the obtained outcomes, the proposed approach offered
impressive results – refer to Fig. 11 for a graphical illustration. As an example,
for the 1LE1 protein, the algorithm ranked first the cell centered around the na-
tive reference, within the cell, the first ranked solution, with a -13.32 kcal mol−1
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0.5049Å, -13.31 kcal mol−1 0.5259Å, -12.25 kcal mol−1 0.5167Å, -11.99 kcal mol−1

1.3689Å, 160.49 kcal mol−1 1.0582Å, 160.49 kcal mol−1 0.7264Å, 160.69 kcal mol−1

Fig. 11. Tryptophan-zipper (first row) and α-cyclodextrin (second row) – best found confor-
mations, ranked in concordance with the associated energy.

conformational energy fitness, standing as a perfect match, with a 0.5049Å RMSD.
Additionally, an average RMSD of 0.6431Å has been attained for the 30 first ranked
conformations, with a minimum, maximum RMSD of 0.3611Å (-9.23 kcal mol−1),
respectively 2.0860Å (-7.14 kcal mol−1). In similar manner, for the α-cyclodextrin
molecule, for the top 30 ranked conformations, a 3.7595Å average has been at-
tained, with a minimum, maximum value of 0.5313Å (162.01 kcal mol−1), respec-
tively 8.9869Å (675.54 kcal mol−1) – remarkable to notice, only 4 out of the 15 first
ranked conformations had an RMSD above 1.0Å. As exposed in Fig. 11, for the first
three α-cyclodextrin conformations, an RMSD of 1.3689Å (160.49 kcal mol−1),
1.0582Å (160.49 kcal mol−1), respectively 0.7264Å (160.69 kcal mol−1) has been
obtained. Although no similar results have been attained, in the given time frame,
for the tryptophan-cage protein, undergoing independent studies, carried out in the
context of the Docking@Grid project, confirmed an over-fitting bias of the em-
ployed force field, resulting in non-consistent results when addressing α-helices
vs. β -sheets patterns.

5 Conclusions and Future Work

Allowing for extreme hybrid constructions to be defined and enclosing intrinsic
parallel support, evolutionary algorithms comport, nevertheless, a high structural
complexity level. Different evolutionary parallel models were employed, initial ex-
perimentations standing as a proof for the intensive exploration capabilities of the
approach. An extension of the initial approach was defined, addressing conformers
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instead of singular conformations. A free energy evaluation function was introduced
in the model, endorsing the evaluation of clusters of conformations as an ensemble
and quantifying the width and the depth of the representative conformer minima re-
gion. Impressive results were attained for the tryptophan-zipper protein and for the
α-cyclodextrin conformational benchmark, with a below 1.0Å RMSD average for
the first 30 ranked 1LE1 conformations. All experimentations were conducted on
Grid’5000 [11], different MPI distributions [23, 43, 22] being employed at execu-
tion time. To conclude with, an effective high-performance parallel hybrid confor-
mational sampling algorithm was constructed, answering the initially defined ANR
Dock Project – Conformational Sampling and Docking on Computational Grids
directions.

An unlimited number of consequent prospective directions may be considered,
enforcing the obtained outcomes, the exploration of novel parallel paradigms, etc.
A consequential study entailing exploration approach enhancements stands as an
adjacent objective in order to encompass high-throughput conformational screening
support. Finally, extensive background for arising technologies, e.g. General Pur-
pose GPUs (Graphics Processing Units) [5], MPICH-G4/MPIg, etc., is considered
as to expand the ParadisEO framework, including fault-tolerance, desktop comput-
ing and volatile environments support.
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Application of Dynamic Load Balancing of
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1 Introduction

This chapter reviews the application of a biologically inspired heuristic technique –
Cellular Automata (CA) – for developing high performance simulations of a well
known complex system: the laser.
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F. Jiménez-Morales
Departamento de Fı́sica de la Materia Condensada, Universidad de Sevilla.
P.O. Box 1065, 41080 Sevilla, Spain
e-mail: jimenez@us.es

J.M. Guerra
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CA can be described as a class of mathematical systems. They were introduced
several decades ago, and are well suited to model spatio-temporal phenomena. On
the other hand, CA can be implemented very efficiently on parallel platforms, given
both, their intrinsic parallel nature, with all the components working usually in a
synchronized way, and the discreteness of the individual components using the same
behavior rules. We therefore make use of this feature, and consider the problem of
running Parallel CA simulations on non-dedicated clusters of workstations. We thus
present results of laser dynamics simulations, traditionally modeled using differen-
tial equations.

This new approach can be very useful when modeling lasers given that differ-
ential equations are difficult to integrate or even difficult to apply: lasers ruled by
stiff differential equations, devices with complex boundary conditions, very small
devices for which the approximations implied by the differential equations may not
be valid, etc.

The presented model is based on a synchronous CA using the Single Program,
Multiple Data (SPMD) paradigm, deployed on a non-dedicated cluster of comput-
ers. Therefore, it is not clear in advance if a good performance and efficiency can
be obtained on this kind of non-dedicated platform. We thus analyze the feasibility
of executing our parallel bioinspired model of laser dynamics on an heterogeneous
non-dedicated cluster, and we evaluate its performance including artificial load to
simulate other tasks or jobs submitted by other users. Finally, a dynamic load bal-
ancing strategy is used with two main differences from previous CA implementa-
tions:

• It is possible to migrate the load to cluster nodes that do not belong initially to
the pool.

• The model uses the load balancing tool –the Dynamite system– to give flexibility
to the model.

By studying the performance and scalability of this parallel implementation we
obtain very satisfactory results, including performance increases from 60% to 80%.

This chapter is organized as follows: In Section 2, we will present the problem to
be solved by the proposed algorithm: laser dynamics. We will describe in detail the
proposed algorithm in Section 3. In Section 4, we will review some of the laser prop-
erties which are successfully reproduced by the CA model. Next, we will describe
a parallel implementation of the CA model and we will analyze its performance
and scalability when executed on a heterogeneous non-dedicated cluster, including
dynamic load balancing. In Section 6, we will propose some ideas for future work.
Finally, some conclusions will be drawn in Section 7.

2 The Problem: Laser Dynamics

A laser is a device that generates and amplifies coherent electromagnetic radiation
based on the stimulated emission phenomenon, predicted by Albert Einstein in 1917
[1]. The word laser is an abbreviation of “Light Amplification by Stimulated Emis-
sion of Radiation”. In a laser system radiation is amplified by propagation across a
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medium, in which, the population of an upper energy state is larger than the popula-
tion of a low energy state (population inversion). Some mechanism, usually known
as the pumping system, is needed to enhance the upper state population up to be
larger than the remaining in a lower energy state. When the pumping is above a
threshold value, the radiation traveling through the medium is amplified by the stim-
ulated emission process. The effective amplification is usually enhanced by placing
the laser active medium inside a Fabry-Perot resonator, that provides a feed-back
by making the amplified light bounce between two parallel mirrors. Therefore, the
laser device acts as a regenerative light oscillator and transient, periodic or chaotic
oscillatory processes can be originated in it.

The time dependence of the total number of laser photons and the total population
inversion in the laser medium can be described [2], as a first step, by the Equations
(1) and (2):

dn(t)
dt

= K N(t)n(t)− n(t)
τc

(1)

dN(t)
dt

= R− N(t)
τa

−K N(t)n(t) (2)

This model, based on two coupled nonlinear rate equations is simplified but can
still describe realistically many laser dynamics phenomena. The first equation pro-
vides the variation on the number of laser photons n(t) with time, proportional to
the laser beam intensity. The term +KN(t)n(t) describes the increase in the number
of photons by stimulated emission (K is the coupling constant between the radia-
tion and the population inversion). The term −n(t)/τc accounts for the decaying
(or absorption) process of laser photons inside the laser cavity with a characteristic
decay time τc. The second equation represents the temporal variation of the pop-
ulation inversion N(t). The term +R(t) represents the pumping of electrons with
a pumping rate R to the upper laser level. The term −N(t)/τa introduces the de-
caying of electrons from the upper laser level to lower levels, with a characteristic
decay time τa. The product term −KN(t)n(t) reflects the decreasing of the popula-
tion inversion by stimulated emission. The presence of the product term KN(t)n(t)
in each equation gives them a nonlinear nature. For small amplitude fluctuations its
solutions can show relaxation oscillations in their evolution towards a steady state.
For strong oscillations the two variables n(t) and N(t) are changing in a fast and
typically nonlinear way and there does not seem to be a simple analytic solution
[2, 3].

The four-level laser system shown in Figure 1 is a simplified model that still
gives a realistic description of the main phenomena featured by a laser system: for
instance, an external pumping process can excite electrons and make them jump
from the ground level up to level E3. Similarly, the figure shows the population
inversion process, produced between levels E1 and E2 thanks to the fact that the
life times of energy levels E3 and E1 are negligible as compared to the life time
of level E2. Therefore, electrons in levels E3 and E1 decay very fast but level E2

is metastable. On the other hand stimulated emission occurs when an electron in
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Fig. 1. A four-level laser system and its basic physical processes

level E2 decays down to level E1 stimulated by the presence of a stimulator photon
with energy E = E2 −E1. In addition, there are two processes which are also very
important and which are not represented in Figure1: absorption of electrons in level
E2 (which decay to lower levels due to different processes not related to stimulated
emission) and absorption of laser photons, a fraction of which disappear because
they leave the laser cavity through the semi-reflecting mirror or are absorbed by the
material.

3 Cellular Automata and Laser Dynamics

Cellular Automata (CA) are a class of spatially and temporally discrete mathemat-
ical systems characterized by local interaction and synchronous dynamical evolu-
tion [4]. They provide an excellent approach for modeling and simulating complex
systems and have been used over the recent years in many fields of science and
technology [5, 6]. We study here the modeling of light amplification by stimulated
emission by means of CA, firstly described by Guisado et. al. in [3].

The algorithm is based on a two-dimensional, partially probabilistic, multi-
variable CA that simulates a transverse section of the active medium in a laser
system. The defining characteristics of the CA are described in the following.

3.1 Cellular Space

The CA employ a cellular space consisting of a two-dimensional square lattice
which contains Nc = L × L cells. Periodic boundary conditions are used.
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3.2 State of the Cells

Each of the cells within the CA embodies two variables: ai j(t) and ci j(t). The first
one, ai j(t), represents the state of the electron in cell {i j} (row i and column j)
at time t: when ai j(t) = 0 the electron is in the ground state and when ai j(t) =
1 the electron is in the upper laser state. Also, ci j(t) ∈ {0,1,2, ...,M} represents
the number of laser photons in cell {i j} at time t. This number is bounded by an
upper value M which must be chosen large enough to avoid the saturation of the
system. The state variables represent “bunches” of real photons and electrons. Their
values are linked to the number of photons and electrons in the real system by a
normalization constant.

3.3 Neighborhood

Every cell performs local interactions with a predefined number of surrounding
cells. We employ the well-known Moore neighborhood for establishing interactions
patterns: the neighborhood of any particular cell is formed by the cell itself (C), its
four nearest neighbors located at the north (N), south (S), east (E) and west (W) po-
sitions and the four next nearest neighbors located at the northeast (NE), southeast
(SE), southwest (SW) and northwest (NW) positions, as shown in Figure 2 .

W

NW NE

SES

E

N

C

SW

Fig. 2. Moore neighborhood

3.4 Transition Rules

Every CA model requires a set of rules which defines the behavior and evolution of
the whole system. This set of rules, usually known as transition rules, specify the
state of each cell at time step t + 1 depending on its state and the state of the cells
included in its neighborhood at time step t. Therefore, the rules model the physical
processes working at the microscopic level in the laser system. The application of
the transition rules is the main operation of a CA algorithm. In our case the overall
structure of the CA laser model algorithm is shown in Algorithm 1.
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Algorithm 1. Pseudo-code diagram for the CA laser model
Initialize system
Input data
for time step = 1 to maximum time step do

for each cell in the array do
Apply stimulated emission rule
Apply photon decay, electron decay, and pumping rules
Apply noise photons creation rule

end for
Calculate populations after this time step
Optional additional calculations on intermediate results

end for
Final calculations
Output results

After an initialization step, the transition rules are applied synchronously to each
CA cell inside a time loop. Our CA model employs five transition rules:

• Stimulated emission rule: If the electronic state of a cell has a value of ai j(t) =
1 at time t and the sum of the values of the laser photons states in the nine
neighboring cells is larger than a certain threshold θ (which in our simulations
has been taken to be 1), then at time t +1 a new photon will be emitted in that cell:
ci j(t +1) = ci j(t)+1 and the electron will decay to the ground level: ai j(t +1) =
0. All the cells of the CA must be updated in parallel. To this end, changes from
this rule are computed using a temporal matrix c′i j. After the rule has been applied
to all the cells of the CA, the values of ci j are updated with the contents of c′i j.

• Photon decay rule: Each photon is destroyed τc time steps after being created.
In particular, (tlci jk) represents the number of time steps that will have to elapse
until a particular photon located in cell {i j} (at row i and column j) is destroyed,
where k distinguishes between the different photons that can occupy the same
cell. When a photon is created, tlci jk = τc. After that, 1 is subtracted from tlci jk

at each time step and the photon will be destroyed when tlci jk = 0.
• Electron decay rule: After an electron is excited from the ground level to the

upper laser level, it will decay to the ground level again after τa time steps, if it
has not yet decayed by stimulated emission. In particular, (tlai j) represents the
number of time steps that will have to elapse until a particular electron located
in cell {i j} decays to the ground level. When the electron is initially excited,
tlai j = τa. After that, 1 is subtracted from tlai j at each time step and the electron
will decay to the ground level again when tlai j = 0.

• Pumping rule: If the electronic state of a cell {i j} has a value of ai j(t) = 0 at time
t, then at time t +1 that state will have a value of ai j(t +1) = 1 with a probability
pumping λ .

• Noise photons creation: A small number of laser photons in randomly chosen
positions is introduced at each time step to reproduce spontaneous emission and
thermal contributions, responsible of the initial laser start-up. To this end, for
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a small number of randomly chosen cells {i j} (< 0.01% of total) it is applied
ci j(t + 1) = ci j(t)+ 1.

This CA models a typical four levels laser system, as described in section 2 and
represented by the diagram shown in Figure 1. Thus it has been assumed that the
population of the lower laser level (level 1 in Figure 1) is negligible. For this reason,
stimulated absorption transitions have not been taken into account. Also for the
same reason, the state ai j(t) = 0 doesn’t correspond to the lower laser level, but to
the ground level, which is coupled to the pumping mechanism.

4 Experimental Analysis

We first present a summary of experimental results obtained when applying the pre-
viously described model to the simulation of laser dynamics (for interested readers,
a whole description of results can be found in [3, 7, 8, 9]). We analyze in this sec-
tion how the CA model of laser dynamics can reproduce different aspects of the
phenomenology of laser systems.

Three main parameters influence the behavior of the system: the pumping proba-
bility (λ ), the life time of photons (τc) and the life time of excited electrons (τa). In
a simulation, an initial state is provided (ai j(0) = 0, ci j(0) = 0, ∀i j, except a small
fraction, 0.01%, of noise photons present) and then the system is let to evolve for a
number of time steps. In each step, we measure two macroscopic magnitudes: the
total number of laser photons, n(t), and the total number of electrons in the upper
laser state (population inversion), N(t), defined in Equation 3.

n(t) =
Lx

∑
i=1

Ly

∑
j=1

cij(t), N(t) =
Lx

∑
i=1

Ly

∑
j=1

aij(t) (3)

It is a well-known laser systems’ feature that laser action only happens when the
pumping probability is over a threshold value. This property is correctly reproduced
by the CA model [3] and the dependence of this threshold value on the other two
system parameters (life times τa and τc) is found to be in good agreement with the
laser behavior, as shown in Figure 3.

Two different behaviors which depend on the values of their three main parame-
ters can be found in their time evolution: a constant or an oscillatory behavior [3, 8].
As shown in Figure 4, the model reproduces these two kinds of behavior: the time
evolution obtained from the simulations is similar to that one exhibited by laser sys-
tems, described for example in [2]. A lattice size of 400 × 400 cells was used for
this figure.

Moreover, we can also notice in Figure 5 another complex behavior in the CA
model: irregular oscillations with fluctuations on a wide range of time scales appear
(see [8]). This regime could correspond to a chaotic state, as found in the dynam-
ics of many lasers. Also, the dependence on the system parameters of the type of
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Fig. 3. Dependence of the threshold pumping probability λt from the CA laser model on
the product of the characteristic life times τa and τc (measured in time steps), plotted on a
logarithmic scale. The solid line is the laser behavior predicted by the standard laser rate
equations, and the dots are the results of the simulations.

(a) (b)

Fig. 4. Results of the simulations, showing the time evolution of the two macroscopic mag-
nitudes —number of laser photons n(t) and population inversion N(t)— versus time, for two
different sets of values of the system parameters. The two main characteristic behaviors ex-
hibited by lasers are reproduced by the CA model: (a) (left): Constant behavior. Parameters:
{λ = 0.192, τc = 10, τa = 30}. (b) (right): Oscillatory behavior. Parameters: {λ = 0.0125,
τc = 10, τa = 180}.

behavior exhibited in the time evolution of the system is in a good qualitative agree-
ment with the laser behavior [3], as shown in Figure 6.

In this figure, we show a Contour plot of a magnitude called the Shannon’s en-
tropy of the distribution of the number of laser photons, for a fixed value of τc = 10
time steps and obtained using simulations with a 200 × 200 lattice. This magnitude
is a good indicator of the presence of oscillations in the time evolution of the num-
ber of laser photons (for a precise definition and discussion, see for example [7]).
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Fig. 5. Regime with irregular oscillations, for: λ = 0.031, τc = 10, τa = 180. The number of
laser photons and population inversion are plotted versus time, after a transient of 500 time
steps. Lattice size: 400 × 400 cells.

Fig. 6. Contour plot of the Shannon’s entropy of the distribution of the number of laser pho-
tons obtained from the simulations with a fixed value of τc = 10 time steps. This plot shows
there is a good qualitative agreement between the dependence on the system parameters of
the type of behavior exhibited by the system, as obtained from the simulations, and the laser
behavior, delimited by the black line.

In this plot, R is the laser pumping rate and Rt is the threshold laser pumping rate,
which are linearly related to the pumping probability λ and the threshold pumping
probability λt that appear in the CA model, so that R

Rt
= λ

λt
. Points a, b and c show

the values of the parameters that correspond to Figs. 4 and 5: a corresponds to a
constant behavior (Figure 4 left), b to a oscillatory behavior (Figure 4 right), and c
to a regime with irregular oscillations (Figure 5).
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High values of the Shannon’s entropy (dark zones) correspond to an oscillatory
behavior and low values (bright zones) to a non-oscillatory response. The predic-
tions of the standard laser rate equations are indicated by the black line: areas of
oscillatory behavior should appear above and to the right of this curve and constant
behavior should appear in the remaining areas. There is a good qualitative agree-
ment between the predictions and the results of the simulations indicated by the
Shannon’s entropy, as the high values of this magnitude appear above and to the
right of the black line and their contour resemble the shape of this line.

5 Parallel CA Based Simulation of the Laser

As shown in previous section, the CA based laser model correctly reproduces much
of the phenomenology of the laser system, and can be therefore considered an al-
ternative to the standard modeling approach, which employs differential equations.
Even when such a very simple coarse-grained CA model has demonstrated its use-
fulness, if we pursue more realistic simulations for specific laser devices, and we
want a larger granularity, closer to real macroscopic systems, a 3D CA – or huge
2D CA instead– may be required. Therefore, a very large lattice size will be needed,
which will make necessary parallel computers systems to run the model, avoiding
thus the otherwise prohibitively large runtime of sequential counterparts.

In this section, we describe the parallel implementation of the previous CA model
and study its performance and scalability running on a small computer cluster (in-
terested readers can refer to [9], [10], [11] and [12] for a larger description of results
obtained). We begin by reviewing previous approaches to parallel implementations
of CA models.

5.1 Previous Approaches

As described above, sequential CA-based simulations can only be used for very sim-
ple systems. In order to simulate real world phenomena (which need 3D or large 2D
CA) parallel implementations running on high performance parallel computers must
be used since very long computing time or memory requirements are needed [13].

During the last decade some attempts to introduce parallelism within CA have
been described. Most of them were not intended to implement in a direct way the
inherently parallel CA internal rules of working, which can be easily simulated in
a sequential fashion, but to improve speedup of the whole process by using a large
number of processors.

The first attempts to parallelize CA were carried out by M. Resnick with the
StarLogo system [14] and by Cannataro et. al. [15], although many approaches and
results have been described later by using parallel CA, such as CAMEL [16], Nemo
[17], PECANS [18], DEVS [19] and P-CAM [20]. A review of the topic is presented
by Talia in [13].

Two main kinds of hardware infrastructure can be found in the literature for
implementing parallel CA. The first one consists of using parallel computers. The
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second one requires specialized hardware such as the Cellular Automata Machine
(CAM) [21]. In this work, we focus on using available parallel, cluster or GRID de-
ployments. In fact, general-purpose parallel computers are well-suited for scalable
CA models, from the point of view of speedup, programmability and portability.

Considering the structure of CA, the parallel implementation must take care of
the information about the state of the cells included in the borders of the different
partitions of the system; this information must be exchanged after each time step,
as represented in Fig. 7. Therefore some methodology is required for the imple-
mentation of the parallel CA that allows information exchange among the different
processes involved. Two main solutions are available: using general purpose parallel
programming languages, such as HPF, HPC++ or Linda, or employing a standard
high-level sequential language combined with specific libraries allowing parallel ap-
plications to run, such as MPI (Message Passing Interface), PVM (Parallel Virtual
Machine) or OpenMP (Open Multi Processing).

On the other hand, when considering the information that must be exchanged
among the different processes implementing the parallel CA after each time step,
all of them must wait until all the computing nodes have finished for each time
step before proceeding, i.e. the system operates in a lock-step mode. Therefore,
the performance of the parallel implementation is limited by the slowest running
task. A group of overloaded nodes which execute the computations slower than the
majority of the nodes can degrade the overall performance. As the usual platform
for executing this kind of applications are non-dedicated (and often heterogeneous)
clusters, it raises the following question: Can this algorithm have a reasonably good
performance when running on such platforms?

Several proposals in the literature focus on distributing the active cells between
the nodes for CA featuring some cells that may become idle for a number of time
steps [22, 15, 23]. Similarly, the possibility of moving cells from heavily loaded
nodes to more unloaded ones has been described in [24, 25, 26]. A different possi-
bility is to adjust the size of the partitions to be handled by each cluster node (see
for instance [27, 28]). The idea behind those proposals is to make a balance on the

Fig. 7. In the parallel implementation of a CA, information of the state of the cells included
in the borders of each partition of the system has to be communicated to the neighboring
partition to be used in the computation corresponding to the next time step. In this example,
the CA has been partitioned into parallel stripes. Each partition is assigned to a different
processing node.
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load when some nodes are overloaded. Yet, all of these proposals lack the capability
of migrating jobs to new nodes which are dynamically added to the pool of comput-
ers initially running the CA model. This possibility, if present, would provide extra
flexibility for a real-life non-dedicated parallel computing environment. This is the
main reason why we opted for using a dynamic load balancing approach.

Even when load balancing has already been considered for parallel CA, most of
the approaches include the dynamic load balancing mechanism within the CA al-
gorithm (check for instance the P-CAM system [20] which directly integrates data
decomposition and dynamic load balancing into the framework functionality). Our
proposal tries to split and differentiate both important but non-related sections of the
algorithm, the parallel CA and the load balancing technique. This would allow in the
future to transparently change or improve any of them without affecting each other.

The tool that we have employed is Dynamite [29], an automated load balancing
system that can migrate individual tasks which are part of a parallel program run-
ning with a message passing library. Dynamite is based on Dynamic PVM [30], a
re-implementation of the PVM message passing library that includes the load bal-
ancing functionality. It monitors the utilization of the cluster nodes and migrates
tasks when some of them get under-utilized or over-utilized as defined by config-
urable thresholds.

The Dynamite system is composed of three separate parts (see [31] and [32]
for a complete description): the load-monitoring subsystem, the scheduler –which
determines when a migration becomes necessary, which tasks will be involved and
which particular allocation will be adopted– and the task migration software.

We have chosen Dynamite because of its flexibility, maturity, and availability.
Nevertheless, dynamite is not the only load balancing system available. Other alter-
natives could also be used to execute this kind of simulations, such as the CAMELot-
Grid system [33], and also the general purpose framework designed by Vadhiyar and
Dongarra, implemented and tested in the GrADS system [34]. Even when they have
some advantages over Dynamite, such as their possibility of integration on a grid
computing environment, we preferred Dynamite. The main reason was our interest
for running the experiments on a cluster computing environment –mainly because
of the tightly coupled nature of the parallel CA model– : a parallel CA (a high per-
formance computing application) requires low latency of the communications, and
this cannot be generally attained on a GRID environment (which generally would
be more adequate for running multiple executions of a complete CA for different
values of the parameters –a high throughput computing application–).

5.2 Algorithm Description: Basic Approach

In order to parallelize the CA model, and taking into account all the considerations
included above, we decided to employ the message passing paradigm. Given the se-
lection of Dynamite as a component for implementing and analyzing dynamic load
balancing mechanisms, we selected the parallel virtual machine (PVM) implemen-
tation of this paradigm. A master-worker model was implemented, such as the one
described in Figure 8.
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Fig. 8. Block diagram of the parallel implementation of the CA model of laser dynamics,
showing processes running on different processors (boxes in bold type represent different
processors), communications between them (bold lines) and data flows.

The data decomposition methodology is employed for distributing identical tasks
with different partitions –of equal size– of the data among the pool of computers em-
ployed for the simulation, one partition per processor. Master and worker programs
are therefore in charge of the following tasks:

• Master program:

1. Read input data (system size, number of partitions, parameter values, number
of time steps) and initialize.

2. Spawning of slave programs.
3. Partitioning of the initial data of the automaton.
4. Sending of common information and initial data to each slave.
5. Collection of results from slaves at each time step.
6. Termination of slave programs.
7. Calculations performed using collected data.
8. Output of final data to external files.
9. Timing functions to measure performance.

• Slave program:

1. Reception of common information and initial data from master.
2. Time evolution computation for the assigned partition: application of CA evo-

lution rules.
3. Exchange of state of the boundary cells with slave programs computing the

neighboring partitions.
4. Computation of intermediate results and their communication to master pro-

gram.
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Among the possibilities for establishing the domain decomposition (see [9]), a
1D decomposition has been used, so that the CA is divided into parallel vertical
stripes, each of them assigned to a different computer. Extra ghost cells have been
included both at the left and right sides of each partition (see Fig. 7) which are in
charge of storing the state of border cells belonging to adjacent partition, and allows
to compute all the transition rules for the cells. The state information required from
neighboring cells is the photon state ci j(t), which will be sent from neighboring
subdomains and stored in the ghost cells. Each slave program is responsible for
computing the time evolution on its assigned partition.

At the beginning of each iteration the state of the boundary cells is directly ex-
changed between slave programs computing neighboring partitions, using two cou-
ples of PVM send and receive routines (pvm send and pvm recv). The routine
pvm recv is blocking, so it waits until the specified message has arrived. There-
fore, this exchange plays the role of a synchronization point between all the slave
programs. This is illustrated in Fig. 9 which shows a detail of the tasks executed by
each node and the messages transferred between different nodes versus time, once
the computation has started. This figure also shows that computation periods are

Fig. 9. Gantt chart depicting a detail of the tasks executed by each cluster node and the mes-
sages transferred between different nodes versus time, once the calculation has started. The
exchange of neighboring states between nodes processing adjacent partitions at the beginning
of each iteration acts as a synchronization point.
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much longer than communication periods, so that the application achieves a high
computation-to-communication ratio, of the order of 10.

5.3 Performance and Scalability Analysis

We have measured the performance and scalability of the parallel CA by run-
ning simulations on the Beowulf-type cluster “Abacus” from the University of Ex-
tremadura (Spain), see Table 1.

Table 1. Abacus hardware specifications

Nodes 10
Microprocessor Pentium-4

Clock Frequency 2.7 GHz (6 nodes) and 1.8 GHz (4 nodes)
Network 100 Mbps Fast-Ethernet switch

To avoid indeterminism in the results due to the heterogeneity of the cluster, for
simulations with nodes 1 to 6, slave programs have always been run on the “fast”
(2.7 GHz) machines, and for simulations with 7 to 10 nodes additional “slow” (1.8
GHz) machines have been used to complete the required number of nodes. The
master program has always been run on the master node of the cluster (1.8 GHz).

Three different system sizes and different number of partitions –one per worker
processor– have been considered for the experiments. Figure 10 shows results, and
a significant runtime decrease can be noticed when the number of processors in-
crease. The only exception is the change from 6 to 7 processors where an increase
is registered due to the assigning strategy that has been used: only “fast” nodes are
assigned to jobs with 6 or less processors and for jobs with more than 6 processors
some “slow” processors have to be used.

In order to measure the performance of a parallel application, speedup (Sp) can be
employed as defined by Foster in [35]. This value establishes a comparison between
a parallel algorithm and its sequential counterpart. It can be defined as the ratio of
the runtime of the sequential version of the program running on 1 processor of the
parallel computer (T1) to the runtime of the parallel version running on m processors
of the same computer (Tm):

Sp(m) =
T1

Tm
(4)

Fig. 11 shows the speedup obtained for the parallel implementation of our CA
model for the three different system sizes, compared to the linear speedup –line
y = x . For the smallest system size, a very good performance has been obtained.
For the other two system sizes, still better performance figures are obtained, in fact
super-linear speedup (speedup higher than linear). The main reason is the finite
memory space available for only one processor and therefore the necessity of using
the swap memory. Because of this circumstance, the calculation of very large system
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Fig. 10. Runtime of the experiments, using a logarithmic scale, for different number of parti-
tions of the whole CA, each running on a different processor. Measurements for three differ-
ent system sizes are shown.

Fig. 11. Speedup obtained for the parallel implementation with respect to the sequential pro-
gram for different number of processors and for three different system sizes. For comparison,
the ideally optimal linear speedup has been shown. A very good performance is obtained for
a moderate system size (630 × 630 cells) and a super-linear speedup for larger system sizes.

sizes –as for example a detailed 3D simulation– may not be affordable on a single
PC (for the prohibitively large runtime needed due to the use of swap memory) but
feasible on a cluster, in which the system is partitioned so each individual node
needs less memory and does not have to use swap memory (interested readers can
also check [9]).
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In order to analyze the scalability of the combination parallel application-parallel
computer, the running times obtained for the same experiment when increasing the
system size (which in our problem is represented by the total number of cells of
the CA) and the number of processors by the same factor have been compared.
The results are shown in Figure 12. The same experiment as for Fig. 4(b) has been
used, but involving the computation of 10000 time steps. For an ideally scalable
application, the same running time should be obtained [36]. Our parallel application
shows only a small excess (from 2 % to 5 %) of runtime compared to the optimal
value. Therefore its scalability is good on a small computer cluster.

Fig. 12. Scalability analysis of the combination parallel application-parallel computer. The
runtime for the same experiment but increasing the system size and the number of processors
by the same factor is shown. The optimal ideal value would be the same runtime for all cases
(horizontal line). The results show only a small excess (from 2 % to 5 %) with respect to this
optimal value.

5.4 Load Balancing with Dynamite

Previous sections have shown the interest of deploying a parallel version of the CA
based laser model. We consider now the problem of load balancing: how to obtain
the best results when running experiments on a non-dedicated platform, where dif-
ferent tasks dynamically arrive to run simultaneously with our parallel application.
The problem is thus to decide when and where different tasks must be migrated for
improving speedup.

In order make this study we have included artificial loads that simulate a normal
non-dedicated cluster use. All the experiments shown below have thus been run
under controlled conditions on the cluster. We have considered the computation of
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the time evolution of the system during 10,000 time steps for a single value of the
system parameters: λ = 0.0125, τc = 10, τa = 180.

A sequential program with a loop statement including a single assign instruction
involving double precision numbers was employed as the external load, similarly as
described in [34]. This C program was compiled regularly with no application of
optimization techniques that would allow to improve the runtime of the program.
The artificial load was intended to simulate the normal use of a non-dedicated high
performance computing cluster for different users. Normally, to achieve the best
performance possible, a cluster user would not run more than one process of her
application on any cluster node. For that reason, only one artificial load process was
executed on each cluster node.

The experiments used 6 worker nodes plus the master one for the parallel CA
application, while 10 nodes were available on the cluster. The external load was
systematically assigned to a number of cluster nodes, and time was then measured.
The idea was to study the effect of different levels of loads for both the regular PVM
version of the algorithm, and also the one employing Dynamite, which includes the
load balancing system.

Immediately after starting the CA application, the artificial load task was initi-
ated on a number of nodes, which range from 0 to 5 nodes and were always nodes
to which one of the slave CA applications had been initially allocated also. The ar-
tificial load tasks kept on running for a time longer than the total execution time of
the CA application.

5.4.1 Results and Discussion

Table 2 presents results obtained for the experiments described above, including
execution time and improvement obtained when the load balancing technique is
employed.

Table 2. Execution time and improvement due to load balancing when the application is run
with and without load balancing and running artificial external load on a different number
of cluster nodes. Normal PVM was used for configurations without load balancing and the
Dynamite system for configurations with load balancing.

Configuration Execution time (s) Improvement

No load balancing with artificial load 1895.08 -

Load balancing with load on 1 node 384.59 80 %

Load balancing with load on 2 nodes 564.76 70 %

Load balancing with load on 3 nodes 611.12 68 %

Load balancing with load on 4 nodes 1595.75 16 %

Load balancing with load on 5 nodes 1833.82 3 %

No load, with and without load balancing 233.43 -
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The first row shows the execution time obtained when no load-balancing tech-
nique is employed –standard PVM– while external loads are applied to any number
of nodes, from 1 to 5. Regardless of the number of nodes undergoing external loads,
the execution time is always the same. The reason is that the CA laser model oper-
ates in a lock-step mode, and the slowest running task limits the global performance
obtained.

The following rows show the execution time when Dynamite is employed –
instead of regular PVM, so that the load balancing mechanism is enabled. External
artificial loads are applied again to nodes ranging from 1 to 5. Additionally, each
row offers information about the improvement obtained when compared to previous
execution –first row, when no load-balancing technique was employed.

Finally, the execution time obtained when running the application without any
artificial load, which is the same with and without load balancing, has been shown
as a reference in the last row.
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Fig. 13. Execution progress of the CA laser model application for different levels of artificial
external load on the system. The system size was 840 × 840 cells. The number of cluster
nodes used on the execution is 6.

Fig. 13 represents the number of executed time steps from the application versus
time, which offers an idea of the progression of the application. We can notice an
interesting improvement in the performance obtained when the parallel application
is run on 6 worker nodes plus the master one, while a total number of 10 nodes
are available on the cluster: when external load is run on up to 3 nodes, and given
that idle nodes are available, the load balancing mechanism takes a good advantage,
migrating required tasks, therefore reducing the execution time by a factor or 3. If
more than 3 nodes receive external load, the improvement obtained is lower, but we
still obtain a smaller execution time when compared to the first row of the table.
The execution progress initially follows the same straight line as for no dynamic
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load balancing (i.e. for standard PVM), until the load balancing system identifies the
situation and performs the migration of some of the tasks of the system to balance
the load.

After that, when external loads are run on a small number of nodes, a significant
improvement is found in the execution progress, following again a new straight line
close to that one of the standard PVM. When considering external loads on a higher
number of nodes, sometimes the benefits obtained after migrations produced by the
load balancing mechanism are very low.

We have also found that occasionally, after an advantageous migration of tasks,
the dynamic load balancing system incorrectly migrates tasks to let the system load
unbalanced and obtain a sub-optimal execution progress.

It is also of interest to point out that the dynamic load balancing system incurs
in practically no overhead on the execution time of the application, as its execution
progress is virtually identical for PVM and Dynamite when there is no external load
applied: the same line in Fig. 13 (labeled as ”Without external load”) applies to both
cases.

We have also studied the effect of the system size on the global performance
obtained. To this end, we have run simulations for three different system sizes and
the execution progress has been compared.

The results of the experiments performed are shown in Fig. 14. Given that large
CA sizes might require the use of swap memory of the operating systems, which
would greatly decrease the whole performance of the system, keeping us from cor-
rectly analyzing runtime, we have employed relatively small CA sizes (interested
readers can also see [11]). The figure shows that the use of a load balancing strategy
results in a good performance improvement for all system sizes within the studied
ranges.
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Fig. 14. Execution progress of the CA laser model application for different system sizes. The
number of cluster nodes used on the execution is 6 and artificial external load has been run
on 3 nodes.
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Finally, we have studied the frequency and regularity of activation of the schedul-
ing mechanism, so that a given experiment has been performed a number of times
under exactly the same initial conditions.

Fig. 15 shows four different runs of the same experiment using Dynamite. We
can notice some cases in which the load balancing system lets the load unbalanced
and the execution time is not optimal. Although this behavior was also present in the
experiments reported in previous figures for a 10% - 20% of the executions, these
cases were not taken into account for the results presented.

We can thus conclude that migrations are not performed by the load balancing
system in a very regular and deterministic way, and although results obtained are
globally of interest , we clearly see that the scheduler component of the Dynamite
load balancing system could be improved.
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Fig. 15. Execution progress of 4 different runs of the application with Dynamite carried out
under the same conditions. System size: 840×840 cells.

6 Future Work: Virtualization and Load Balancing

In the previous sections, we have reviewed the application of cellular automata to
model laser dynamics and we have shown that with this approach it is possible to
develop high performance simulations that run efficiently on computer clusters. We
have also shown that these simulations can successfully be run on heterogeneous
non-dedicated clusters, using an adequate load balancing mechanism, with a good
performance. Finally, in this section we will present some ideas about future work in
this subject, regarding the joint use of a dynamic load balancing tool like Dynamite
and virtualization technology, to have a self-adapting cluster computing environ-
ment capable of deploying additional cluster nodes on demand, in the course of a
computation.

Nowadays, the virtualization technology is gaining more adepts quickly. The ben-
efits of using it as a solution for deploying and administering different services like
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HTTP, FTP, etc. within the virtual machines, have achieved a great success. Big pro-
cessor companies like Intel or AMD have their own and specific solutions to provide
a good performance within the virtualization paradigm.

Virtualization is a technology that allows to multiplex the physical hardware to
take advantage of its computer resources [37, 38, 39]. This technology creates a
“virtual” machine (VM) where it is possible to load and run an operating system
and its associated applications, for example a cluster node.

The VM is handled by a software called the virtual machine monitor (VMM)
or hypervisor. The VMM is in charge of virtualizing the underlying hardware and
assures that a problem or a bug within the VM will affect only to the VM and not
to the real hardware and OS. Therefore, security and isolation are two of the main
benefits of using VMs.

The main features of virtualization are the following:

• Resource isolation. Virtualization isolates each VM inside the host machine.
This is very useful from the standpoint of the researcher because a failure inside
a VM will affect only that VM and not the real machine.

• Guest OS instantiation. This feature permits to create an OS image that can be
loaded into any machine that is compatible with the VMM employed for creating
it.

• Snapshots or state serialization (also known as checkpointing [40]). With virtu-
alization it is possible to freeze the execution of a whole OS and restart it exactly
where it was stopped.

There are two different approaches to provide virtualization in x86 platforms.
One of them is the native virtualization. The native virtualization implements this
technology by providing an exact copy of the underlying hardware for the VM, in
terms of functionality. This approach is two-folded: any OS is supported without
modifications, but the performance gets affected due to x86 was not designed to be
virtualized [41]. For this reason, any problematic instruction has to be captured by
the VMM to assure the right operation of the virtual machine.

The other approach is the paravirtualization. This technique implements virtu-
alization by providing a virtual hardware that is similar, instead of identical, to the
underlying hardware in order to circumvent the previous described x86 problem.
In order to use this technique, the guest OS has to be adapted to support the par-
avirtualization while applications can be run without any modifications (the binary
interface is not modified).

Both techniques have different products and software solutions, for instance:
VMware [37, 42], Xen [38] or VirtualBox [39]. Additionally, the processor man-
ufacturers are also interested in virtualization and they are providing specific so-
lutions for virtualization in their microchips (Intel VT-x1 technology and AMD-V
Pacifica 2). Thanks to this new technology, the paravirtualization and native virtual-
ization solutions can improve its performance and features.

1 http://www.intel.com/technology/virtualization/
2 http://www.amd.com/us-en/0,,3715_15781,00.html?redir=wsv08

http://www.intel.com/technology/virtualization/
http://www.amd.com/us-en/0,,3715_15781,00.html?redir=wsv08
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To sum up, the virtualization is a promising technology that can improve the
deployment and maintenance of clusters, due to its main features: resource isolation,
guest OS instantiation and snapshots. On the other hand, take into account research
groups or institutions that have clusters or additionally servers dedicated to other
services like HTTP, FTP, etc. Despite of the load of those machines, it could be
interesting to take advantage of the computing resources that these machines can
add to our cluster by means of VMs. The goal is to install virtual cluster nodes
on non-dedicated cluster nodes to obtain computing resources when requested and
available.

To the best knowledge of the authors, several attempts have been done on inte-
grating virtualization and clusters. J.S. Chase et. al. [43] present new mechanisms
for dynamic resource management in a cluster manager called Cluster-On-Demand.
I. Foster et. al. [44] propose to give custom client clusters to circumvent the hard-
ware and software heterogeneity of clusters. Finally, W. Emeneker et. al. [45] pro-
pose to use virtualization in clusters for job forwarding and spanning. However,
none of the above cited articles use Dynamite, the load balancing tool employed on
this work. Therefore, what we are considering in the context of the problem pre-
sented in this chapter is the deployment of additional cluster nodes on-demand by
means of virtualization. The goal is to improve Dynamite (see Section 5.4) adding
a new virtualization feature that can request more computing power by launching
virtual nodes on other machines, for example other servers from the institution. The
application will determine when it is necessary more computer power and request it
by launching those virtual cluster nodes.

This improvement to Dynamite will benefit the whole cluster as virtualization
gives identical cluster computing nodes as real ones. It is obvious that using a vir-
tualization technology gives some overhead [38, 37], but thanks to new micropro-
cessors from Intel and AMD and the improvements on the technology, virtual nodes
performance is more or less equal to real hardware [38, 37].

Additionally, the use of virtualization technology will allow to checkpoint and
migrate any running virtual cluster node without having to implement any special
library for checkpointing and migration at level process like Overeinder et. al. pro-
posed on his work [30]. Virtualization simplifies this problem by checkpointing the
whole node and migrating it without losing any kind of connectivity or data (see
[38]). Furthermore, the possibility of serializing and migrating a VM (snapshots)
opens new opportunities to load balancing and reliability.

Other benefit of using VMs is the possibility of running cluster nodes on differ-
ent OSs and architectures because virtualization abstracts the underlying hardware.
Thus, it will be possible to run GNU/Linux cluster nodes on Microsoft Windows
machines without any kind of problem. Furthermore, thanks to virtualization it will
be possible to harness all the computers from an institution or research laboratory
independently of its OS platform, providing more computing power to the cluster
when necessary. Bear in mind that Dynamite will launch virtual machines only when
more computing power is required.
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In conclusion, thanks to this new approach it will be possible to have a more
powerful and flexible cluster that auto-adapts itself to the CPU load launching or
stopping virtual nodes on-demand.

7 Conclusions

This chapter has presented the modeling of a well-known complex system, the laser,
by means of a parallel version of a bioinspired algorithm, the cellular automaton.

By means of a series of experiments, we have considered key factors of the par-
allel algorithm when running on clusters of workstation. We have used a cluster
computing environment for being better suited in general than a grid computing
platform to run a parallel CA due to its lower latency on the communications.

Firstly we have shown the feasibility of CA for modeling the laser. Secondly, we
have studied the performance obtained by a parallel version of the model, and finally
we have considered the execution of the algorithm on a non-dedicated cluster, when
external loads dynamically arrive while the CA tasks are being simultaneously run.

We have thus shown that the parallel version of the algorithm –following a
master-worker model using the message passing mechanism- can offer good scala-
bility when running on a cluster, which is of interest for running large versions of
the CA model for modeling realistic laser systems.

We have then moved to a more realistic scenery by considering the presence
of external loads on the cluster system. We have evaluated the performance of the
application including artificial external loads to simulate the effect of other tasks
running simultaneously on the cluster. In this case, a dynamic load balancing strat-
egy has been used, with two main differences with respect to most previous parallel
CA implementations: load can be migrated to new nodes initially not belonging to
the pool and the load balancing functionality is uncoupled from the CA algorithm.
For this purpose, we have run the parallel application on top of a dynamic load bal-
ancing software tool –Dynamite–. This modular approach has the advantage that
changes can be introduced to the CA algorithm or to the dynamic load balancing
strategy without perturbing each other.

In spite that for this kind of application –a synchronous cellular automaton– all
the computing nodes must have finished an iteration before the next one can be
initiated, the results have been very satisfactory. The performance of the parallel
application is improved by the load balancing strategy from 60% to 80% when there
are some idle nodes on the cluster to which some load can be migrated. Still when
there were no such idle nodes, the execution time was always shorter than without
the use of load balancing.

In conclusion, we have reviewed the application of a parallel cellular automata
model to simulate laser dynamics and we have also presented evidence of the feasi-
bility of running large parallel simulations using this approach to simulate realistic
laser devices on heterogeneous non-dedicated clusters if an adequate dynamic load
balancing strategy is used.
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