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Abstract. We focus our attention on the loss of precision induced by
abstract domain operations. We introduce a new technique, hints, which
allows us to systematically refine the operations defined over elements
of an abstract domain. We formally define hints in the abstract inter-
pretation theory, we prove their soundness, and we characterize two
families of hints: syntactic and semantic. We give some examples of
hints, and we provide our experience with hints in Clousot, our abstract
interpretation-based static analyzer for .Net.

1 Introduction

The three main elements of an abstract interpretation are: (i) the abstract ele-
ments (“which properties am I interested in?”); (ii) the abstract transfer functions
(“which is the abstract semantics of basic statements?”); and (iii) the abstract op-
erations (“how do I combine the abstract elements?”).

The loss of precision induced by the abstract elements is exemplified by
Fig. 1(a). The assertion cannot be proved using only convex numerical abstract
domains such as Intervals [4], Pentagons [18], Octagons [23] or even Polyhe-
dra [8]. The reason for that is that the most precise property at the join point
x == −1 ∨ x == 1 cannot be exactly represented in any of those domains. For
instance Intervals (Intv) approximate it with −1 ≤ x ≤ 1, so that the fact that
x �= 0 is lost. Many techniques have been proposed to overcome this problem.
They essentially rely on the refinement of the elements of the abstract domain.
Solutions include trace partitioning [16,20,9], domain completion [5], powerset
construction [1,19], and abstract domain extension [25]. Abstract transfer func-
tions may introduce an orthogonal loss of precision. For instance, in Fig. 1(b)
the expression initializer for z is in a quadratic form. Thus no linear numerical
abstract domain can precisely capture the relation between x, y and z. Stan-
dard domain refinements are of no help. A rough transfer function can simply
abstract away z. A more precise one can approximate z with an interval. How-
ever, a compositional evaluation of the expressions which mimics the concrete
one is not precise enough to discharge the assertion −2 ≤ z. Several authors
suggested methods to infer optimal transfer functions in particular settings as,
e.g., constraint matrices [24], shape analysis [26] or constant propagation [3].
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void AbsEl(int x)

{ if(...) x =-1;

else x = 1;

assert x != 0;

}

(a)

void Transfer(int x, y)

{ assume 2 <= x <= 3;

assume -1 <= y <= 1;

int z = (x + y) * y;

assert -2 <= z;

}

(b)

void DomOp()

{ int x = 0, y = 0;

while (...)

{ if (...) { x++; y += 100; }

else if (...)

if (x >= 4) { x++; y++; }

}

(*) assert x <= y;

assert y <= 100 * x;

}

(c)

Fig. 1. Examples of orthogonal losses of precision in abstract interpretations: (a) a
convex domain cannot represent x �= 0; (b) a compositional transfer function does
not infer the tightest lower bound for z; and (c) the standard domain operations on
Polyhedra are not precise enough to infer the loop invariant x ≤ y

Surprisingly enough, the refinement of the operations over abstract elements
has been widely ignored in the literature (with the exceptions of [14,1,11,12]
which however focused their attention just on the widening operator).

Example. Let us consider the code snippet in Fig. 1(c). In order to prove the as-
sertions valid, the static analysis should infer the loop invariant x ≤ y ≤ 100 · x.
Different abstract domains infer different invariants. The Octagon abstract do-
main (Oct) is a weakly relational domain which captures properties in the form of
±x ± y ≤ k. It infers the loop invariant: 0 ≤ x ∧ 0 ≤ y ∧ x ≤ y. The Polyhedra
abstract domain (Poly) is a fully relational domain. It can infer and represent ar-
bitrary linear inequalities: Abstract elements are in the form

∑
i ai · xi ≤ k. As a

consequence one expects Poly to always be more precise than Oct. However, when
applied to the example, Poly infers the loop invariant: 0 ≤ x∧ 0 ≤ y∧ y ≤ 100 · x:
Even if Poly can exactly represent the constraint x ≤ y, it fails inferring it! This
is quite surprising. The reason for that should be found in the widening operators
over the two domains. The (standard) widening over Octagons explicitly seeks an
upper bound for the difference x− y (in the example 0). The (standard) widening
over Polyhedra preserves the inequalities that are stable over two loop iterations.
In the example, the constraint x ≤ y, even if implied by the abstract states to
be widened, is never materialized. Therefore, the state after widening does not
contain it either. Intuitively, in order to obtain the most precise loop invariant for
DomOp, one needs to refine the widening operator for Poly to be at least as pre-
cise as the one for Oct. One way to refine the widening is by remarking that the
predicate x ≤ y appears as a condition of some assertion, and then trying to ex-
plicitly materialize it. Another possible refinement is by seeking upper bounds for
the expression x − y. The first is an example of syntactic hint. The latter is an
example of semantic hint. Those observations can be extended and generalized to
other abstract domain operators.

The case for hints. The main goal for a static analysis designer is the pre-
cision/speed trade-off. To achieve it, the common practice is to drop some of
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the expressive power of the analysis while maximizing the inference power. In
Clousot, our static analyzer for .Net, we needed additional flexibility. Clousot
is mainly used to validate code contracts expressed by users in form of pre-
conditions, post-conditions and object invariant. First, we observed that usual
weakly-relational abstract domains are not precise enough to be used in a mod-
ular checker: for instance, it is often the case that the argument to establish an
“easy” precondition (e.g., x ≤ y) at the call site involves a complex reasoning
between several linear inequalities which require expensive abstract domains as
Poly. Second, we needed Clousot to be adaptable, in that it can either run in
an interactive environment (faster, but with more noise) or on a build machine
overnight (slower, but much more precise). As a consequence, we took a differ-
ent direction in the design of the abstract domains in Clousot: we retained the
expressive power while we gave up some of the inference (e.g., Pentagons [18]
and Subpolyhedra [17]). Hints, introduced in this paper, are an orthogonal to
the abstract domain, and they allow us to incrementaly increase the precision of
the analysis by refining the transfer functions.

Contribution. We introduce hints, a new technique which allows us to system-
atically refine static analyses. The main ideas of hints are: (i) to have a separate
module to figure out which constraints or families of constraints are of interest
for the analysis; and (ii) to use such a module to refine the operations of the ab-
stract domain. The main difference with related works on automatic refinement
of static analyses is that hints refine the operations over abstract elements and
not the elements themselves nor the transition relations. The main advantages
of hints are that: (i) they enable an easy refinement of static analyses; (ii) they
enable a fine-tuning of the cost/performance ratio; (iii) they make the analysis
more robust with respect to implementation-related precision bugs. Hints are
useful when the abstract operations are not complete w.r.t. the concrete ones,
which is often the case in practice.

We formalize hints using the abstract interpretation theory, and we prove
them correct w.r.t. a generic abstract interpreter. We characterize syntactic
(user-defined, thresholds) and semantic hints (saturation, die-hard, computed,
reductive). We show how they generalize existing techniques as, e.g., widening
with thresholds [2]. We applied hints to SubPolyhedra (SubPoly), a new, very
efficient numerical abstract domain to propagate arbitrary linear inequalities.
SubPoly has the same expressive power as Poly, but drops some of the inference
to achieve scalability. Hints allow SubPoly to recover precision without giving up
performances. Hints are implemented in Clousot, our static analyzer for .NET
available at [21].

2 Abstract Interpretation Frameworks

Abstract interpretation is a general theory of approximations which formalizes
the intuition that the semantics of a program is more or less precise depending
on the observation level. In particular, the static analysis of a program is a
semantics precise enough to capture the properties of interest and coarse enough
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to be computable. The concrete and abstract semantics of a program are defined
as fixpoints respectively over a concrete and an abstract domain. The concrete
and the abstract domains are related by a soundness relation, which induces the
soundness of the abstract semantics [6].

Static approximation: Abstract Domain. In the Galois connections ap-
proach to abstract interpretation [4], the concrete domain and the abstract
domain are assumed to be two complete lattices, respectively 〈C,�,�〉 and
〈A, �̄, �̄〉. The soundness relation is expressed by a pair of monotonic functions
〈α, γ〉, such that ∀e ∈ C.∀ē ∈ A. α(e)�̄ē ⇐⇒ e � γ(ē). In such a setting,
the abstract join operator �̄ is optimal in that: ∀e1, e2 ∈ C. α(�(e1, e2)) =
�̄(α(e1), α(e2)) [5]. In practice, most analyses do not require the existence of
the best approximation for concrete elements, a sound approximation suffices.
For instance, there is no best polyhedron approximating the set of concrete
points B = {(x, y) ∈ R

2 | x2 + y2 ≤ 1}. However, any polyhedron including
B is a sound abstraction. In the relaxed form of abstract interpretation [6],
the abstract domain is not required to be complete under �̄. It is simply a
pre-order 〈A,�,�,�〉. The soundness relation is expressed by a monotonic con-
cretization function γ ∈ [A → C], i.e., no abstraction function is required. The
abstract union � gathers together the information flowing from incoming edges.
It is not required to be the least upper bound (which may not exist at all):
∀ē0, ē1 ∈ A. ē0 � ē0 � ē1 ∧ ē1 � ē0 � ē1. It is a sound, but not optimal, approx-
imation of the concrete join: ∀ē0, ē1 ∈ A. � (γ(ē0), γ(ē1)) � γ(�(ē0, ē1)). The
abstract intersection returns a common lower bound for the operands, which
approximates the concrete meet: ∀ē0, ē1 ∈ A. γ(ē0) � γ(ē1) � γ(ē0 � ē1).

Hereafter we assume: (i) the concrete domain to be the complete lattice
〈P(Σ),⊆,∪,∩〉 where Σ is a set of concrete program states mapping variables to
values; (ii) the abstract domain to be a pre-order 〈A,�,�,�〉, therefore putting
ourselves in the setting of the relaxed form of abstract interpretation.

Dynamic approximation: Widening/Narrowing. In general A is of infinite
height, so that the fixpoint computation may not terminate. A widening oper-
ator � should then be defined to ensure the convergence of the iteration to a
post-fixpoint. Formally � satisfies: (i) ∀ē0, ē1 ∈ A. ē0, ē1 � �(ē0, ē1); and (ii) for
each (possibily infinite) sequence of abstract elements ē0, ē1 . . . ēk the sequence
defined by ē�

0 = ē0, ē
�
1 = �(ē�

0 , ē1) . . . ē�
k = �(ē�

k−1, ēk) is ultimately stationary.
It is worth noting that a widening operator is not commutative. The loss of
precision introduced by the widening can be partially recovered using a narrow-
ing operator. A narrowing � operator satisfies: (i) ∀ē0, ē1 ∈ A. � (ē0, ē1) ��
(ē0, ē1) � ē0, ē1; and (ii) for each (possibly infinite) sequence of abstract elements
ē0, ē1 . . . ēk the sequence defined by ē�

0 = ē0, ē
�
1 =� (ē�

0 , ē1) . . . ē�
k =� (ē�

k−1, ēk)
is ultimately stationary.

Transfer functions. It is common practice for the implementation of an abstract
domain A to provide some primitive transfer functions. The assignment abstract
transfer function, A.assign, is an over-approximation of the states reached after
the concrete assignment (E�E�(σ) denotes the evaluation of the expression E in the



Refining Abstract Interpretation-Based Static Analyses with Hints 347

state σ) : ∀x, E.∀ē ∈ A. {σ[x �→ v] | σ ∈ γ(ē),E�E�(σ) = v} ⊆ γ(A.assign(ē, x, E)).
The test abstract transfer function, A.test, filters the input states (B�B�(σ) denotes
the evaluation of the Boolean expression B in the state σ): ∀B.∀ē ∈ A. {σ ∈ γ(ē) |
B�B�(σ) = true} ⊆ γ(A.test(ē, B)). The abstract checking A.check verifies if an
assertion A holds in an abstract state ē. It has four possible outcomes: true (A holds
in all the concrete states γ(ē)); false (!A holds in all the concrete states γ(ē)); bottom
(the assertion is unreached); top (the validity of A cannot be decided in γ(ē)).

3 Concrete and Abstract Semantics for a While language

We illustrate hints on a simple abstract interpreter for a while language. The con-
crete, reachable states semantics �·� ∈ [Stm × P(Σ) → P(Σ)] is in Fig. 3. The
abstract semantics s̄�·� ∈ [Stm × A → A] is in Fig. 2. It is parametrized by the
abstract domain 〈A,�,�,�〉 and a set of primitives assign, test, and check. The
skip statement has no effect on the abstract state. The effects of the assignment,
the assumption and the assertion are handled by the corresponding primitives of
the abstract domain. Please note that for the purposes of the analysis the effects of
assume and assert coincide: The assertions will be checked in a second phase, af-
ter the analysis has inferred the program invariants for all the program points. The
abstract semantics of sequence is function composition. The abstract semantics of
conditional: (i) pushes the guard and its negation onto the two branches; and (ii)
gathers the effects using the abstract union. The abstract semantics of while is
given in terms of fix, which computes the loop invariant as the limit of the fixpoint
iterations with widening. Given a function F ∈ [A → A], fix(F ) is the limit of the
iteration sequence: I0 = ⊥; In+1 = if F (In) � In then In else In�F (In). The
post-state for while is then obtained by intersecting the loop invariant with the
negation of the guard. It is easy to show that for any program P, ∀e ∈ P(Σ).∀ē ∈
A. e ⊆ γ(ē) =⇒ �P�(e) ⊆ γ (̄s�P�(ē)).

s̄�skip;�(ē) = ē s̄�x = E;�(ē) = A.assign(ē, x, E)
s̄�assume B;�(ē) = s̄�assert B;�(ē) = A.test(B, ē)

s̄�C1 C2�(ē) = s̄�C2�(s̄�C1�(ē))
s̄�if(B) {C1}else {C2};�(ē) = s̄�C1�(A.test(B, ē)) � s̄�C2�(A.test(!B, ē))

s̄�while(B) {C};�(ē) = let Ī = fixλX. ē � s̄�C�(A.test(B, X))
in A.test(!B, Ī)

Fig. 2. The abstract semantics for the while-language

�skip;�(e) = e �x = E;�(e) = {σ[x �→ v] | σ ∈ e, E�E�(σ) = v}
�assume B;�(e) = �assert B;�(e) = {σ ∈ e | B�B�(σ) = true}

�C1 C2�(e) = �C2�(�C1�(e))
�if(B) {C1}else {C2};�(e) = �C1�({σ ∈ e | B�B�(σ) = true}) ∪ �C2�({σ ∈ e | !B�B�(σ) = true})

�while(B) {C};�(ē) = let I =
S

i�C�
i({σ ∈ I | B�B�(σ) = true})

in {σ ∈ I | !B�B�(σ) = true}.

Fig. 3. The reachable states semantics for the while-language
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4 Hints

Hints are precision improving operators which can be used to systematically
refine and improve the precision of domain operations in abstract interpretation.
Domain operations are either basic domain operations (e.g., � or �) or their
compositions (e.g., λ(ē0, ē1, ē2). (ē0 � ē1) � (ē0 � ē2)).

Definition 1 (Hint, �). Let � ∈ [Cn → C] be a concrete domain operation
defined over a concrete domain 〈C,�,�,�〉. Let �̄ ∈ [An → A] be the abstract
counterpart for � defined over the abstract domain 〈A,�,�,�〉. A hint ��̄ ∈
[An → A] is such that:

��̄(ē0 . . . ēn−1) � �̄(ē0 . . . ēn−1) (Refinement)
�(γ(ē0) . . . γ(ēn−1)) � γ(��̄(ē0 . . . ēn−1)) (Soundness).

The first condition states that ��̄ is a more precise operations than �̄. The second
condition requires ��̄ to be a sound approximation of �. An important property
of hints is that they can be designed separately and the combined to obtain
a more precise hint. Therefore, if �1

�̄ and �
2
�̄ are hints, then �

�
�̄ (ē0 . . . ēn−1) =

�
1
�̄(ē0 . . . ēn−1)� �

2
�̄(ē0 . . . ēn−1) is a hint, too. Hints improve the precision of

static analyses without introducing unsoundness and preserving termination:

Theorem 1 (Refinement of the abstract semantics). Let �� and �� be
two hints refining respectively the widening and the abstract union, and let ��
be a widening operator. Let s̄∗�·� be the abstract semantics obtained from s̄�·� by
replacing �with �� and � with ��. Let P be a program. Then, ∀e ∈ P(Σ).∀ē ∈ A.

s̄∗�P�(ē) � s̄�P�(ē) (Refinement)
e ⊆ γ(ē) =⇒ �P�(e) ⊆ γ (̄s∗�P�(ē)) (Soundness).

5 Syntactic Hints

Syntactic hints use some part of the program text to refine the operations of the
abstract domain. They exploit user annotations to preserve as much informa-
tion as possible in gathering operations (user-provided hints), and systematically
improve the widening heuristics to find tighter loop invariants (thresholds hints).

They are the easiest, and probably cheapest form of hints. First, we collect all
the predicates appearing as assertions or as guards. Then, the gathering opera-
tions are refined by explicitly checking for each collected predicate B, if it holds
for all the operands. If this is the case, B is added to the result. The predicate
seeker pred ∈ [Stm → P(BExp)] extracts from the program text the predicates
appearing in conditional and loop guards. User provided hints do not affect the
termination of the widening as we can only add finitely many new predicates:

Lemma 1 (User-provided hints). Let � ∈ {�,�}, and let P be a program.
Then: (i) �pred

� defined below is a hint; and (ii) �pred
� is a widening operator.
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�
pred
� (ē0, ē1) = let S = {B ∈ pred(P) | A.check(B, ē0) = true ∧ A.check(B, ē1) = true}

in A.test(
∧

B∈S B, �(ē0, ē1)).

In example of Fig. 1(b), pred(DomOp) = {x ≤ y, 4 ≤ x, y ≤ 100 · x}. The re-
fined domain operations keep the predicate x ≤ y, which is stable among loop
iterations, and hence is a loop invariant.

We found user-provided hints very useful in Clousot, our abstract interpreta-
tion based static analyzer for .Net. Clousot analyzes methods in isolation, and
supports assume/guarantee reasoning (“contracts”) via executable annotations.
Precision in propagating and checking program annotations is crucial to pro-
vide a satisfactory user experience. User-provided hints help to reach this goal
as the analyzer makes sure that at each joint point no user annotation is lost,
if it is implied by the incoming abstract states. They make the analyzer more
robust w.r.t. incompleteness of � or a buggy implementation which may cause
� to return a more abstract element than the one predicted by the theory. The
downside is that user-provided hints are syntactically based: For instance, if in
Fig. 1(c) we replace the assertion at (∗) with if 10 <= x then assert 5 <= y,
then pred(DomOp) = {10 ≤ x, 5 ≤ y}, so that �pred

�Poly
cannot figure out that x ≤ y,

and hence the analyzer cannot prove that the assertion is valid. Semantic hints
(Sect. 6.3) will fix it.

5.1 Thresholds Hints

Widening with threshold has been introduced in [2] to improve the precision of
standard widenings over non-relational or weakly relational domains. Roughly,
the idea of a widening with thresholds is to stage the extrapolation process, so
that before projecting a bound to the infinity, values from a set T are considered
as candidate bounds. The set T can be either provided by the user or it can be
extracted from the program text. The widening with thresholds is just another
form of hint. Let ē0 and ē1 be abstract states belonging to some numerical
abstract domain. Without loss of generality we can assume that the basic facts in
ē0, ē1 are in the form p ≤ k, where p is some polynomial. For instance x ∈ [−2, 4]
is equivalent to {−x ≤ 2, x ≤ 4}. The standard widening preserves the linear
forms with stable upper bounds: �(ē0, ē1) = {p ≤ k | p ≤ k0 ∈ ē0, p ≤ k1 ∈
ē1, k = if k1 > k0 then + ∞ else k0}. Given a finite set of values T, threshold
hints refine the standard widening by:

�
T
� (ē0, ē1) = {p ≤ k | p ≤ k0 ∈ ē0, p ≤ k1 ∈ ē1,

k = if k1 > k0 then min{t ∈ T ∪ {+∞} | k1 ≤ t} else k0}.

Lemma 2. �T
� is: (i) a hint; and (ii) a widening.

Example 1 (Widening with thresholds). Let us consider the code snippets in
Fig. 4 to be analyzed with Intervals. In the both cases, the (post-)fixpoint is
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void LessThan() {

int x = 0;

while (x < 1000)

x++;

}
(a) Narrowing

void NotEq() {

int x = 0;

while (x != 1000)

x++;

}
(b) Thresholds

Fig. 4. Two programs to be analyzed with Intervals. The iterations with widening infer
the loop invariant x ∈ [0, +∞]. In the first case, the narrowing step refines the loop
invariant to x ∈ [0, 1000]. In the second case, the narrowing fails to refine it.

reached after the first iteration �([0, 0], [1, 1]) = [0,+∞]. In the first case, the
invariant can be improved by a narrowing step to � ([0,+∞], [−∞, 1000]) =
[0, 1000] (see [4] for a definition of narrowing of Intv). In the second case, the
narrowing is of no help as � ([0,+∞],�([−∞, 1000], [1002,+∞])) = [0,+∞].
A widening with Thresholds T = {1000} helps discovering the tightest loop
invariant for both examples in one step as �T

�([0, 0], [1, 1]) = [0, 1000]. ��
Please note that user-provided hints are of no help in the previous example, as
pred(NotEq) = {x �= 1000} does not hold for all the operands of the widening.

The set T of thresholds is a parameter of the analyzer, which can either be
provided by the user, preset to some common values (e.g., T = {−1, 0, 1}), or
extracted from the program text. In Clousot, we use a function const ∈ [Stm →
P(int)] which extracts the constants appearing in the guards. We found the hint
�

const
� very satisfactory: (i) it helps inferring precise numerical loop invariants

without requiring the extra iteration steps required for applying the narrowing;
and (ii) it improves the precision of the analysis of code involving disequalities,
e.g., Fig. 4(b). A drawback is that the set T may grow too large, slowing down
the convergence of the fixpoint iterations. In Clousot, we infer thresholds on a
per-method basis, which helps maintaining the cardinality of T quite small.

6 Semantic Hints

Semantic hints provide a more refined yet more expensive form of operator refine-
ment. For instance, they exploit information in the abstract states to materialize
constraints that were implied by the operands (saturation hints, die-hard hints
and template hints) or they iterate the application of operators to get a more
precise abstract state (reductive hints).

6.1 Saturation Hints

A common way to design abstract interpreters is to build the abstract domain as
a composition of basic abstract domains, which interact through a well-defined
interface [7,15]. Formally, given two abstract domains A0,A1, the Cartesian prod-
uct A× = A0 × A1 is still an abstract domain, whose operations are defined as
the point-wise extension of those over A0 and A1. Let �̄i ∈ [An

i → Ai], i ∈ {0, 1},
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then �̄×((ē0
0, ē

0
1) . . . (ē

n−1
0 , ēn−1

1 )) = (�̄0(ē0
0 . . . ē

n−1
0 ), �̄1(ē0

1 . . . ē
n−1
1 )). The Carte-

sian product enables the modular design (and refinement) of static analyses.
However, a naive design which does not consider the flow of information be-
tween the abstract elements may lead to imprecise analyses, as illustrated by
the following example.

Example 2 (Cartesian join). Let us consider the abstract domain Z = Intv×LT,
where LT = [Var → P(Var)] is an abstract domain capturing the “less than”
relation between variables. For instance, x < y ∧ x < z is represented in LT
by [x �→ {y, z}]. The domain operations are defined as one may expect [18]. Let
z̄0 = ([x �→ [−∞, 0], y �→ [1,+∞]], [·]) and z̄1 = ([·], [x �→ {y}]) be two elements of
Z ([·] denotes the empty map). Then the Cartesian join loses all the information:
�×(z̄0, z̄1) = ([·], [·]). ��
A common solution is: (i) saturate the operands; and (ii) apply the operation pair-
wise. The saturation materializes all the constraints implicitly expressed by the
product abstract state. Let ρ ∈ [A× → A×] be a saturation (a.k.a. closure) proce-
dure. Then the next lemma provides a systematic way to refine an operator �̄×.

Lemma 3. The operator �ρ
�× below is a hint.

�
ρ

�̄×((ē0
0, ē

0
1) . . . (ēn−1

0 , ēn−1
1 )) = let r̄i = ρ(ēi

0, ē
i
1) for i ∈ 0 . . . n − 1 in �̄×(̄r0 . . . r̄n−1).

Example 3 (Cartesian join, continued). The saturation of z̄0 materializes the
constraint x < y : r̄0 = ([x �→ [−∞, 0], y �→ [1,+∞], [x �→ {y}]), and it leaves z̄1

unchanged. The constraint x < y is now present in both the operands, and it is
retained by the pairwise join. ��
It is worth noting that in general �ρ

� does not guarantee the convergence of the
iterations, as the saturation procedure may re-introduce constraints which were
abstracted away from the widening (e.g., Fig. 10 of [23]).

Saturation hints can provide very precise operations for Cartesian abstract
interpretations: They allow the analysis to get additional precision by combin-
ing the information present in different abstract domains. The main drawbacks
of saturation hints are that: (i) the iteration convergence is not ensured, so that
extra care should be put in the design of the widening; (ii) the systematic ap-
plication of saturation may cause a dramatic slow-down of the analysis. In our
experience with the combination of domains implemented in Clousot, we found
that the slow-down introduced by saturation hints was too high to be practical.
Die-hard hints, introduced in the next section, are a better solution to achieve
precision without giving up scalability.

6.2 Die-Hard Hints

These hints are based on the observation that often the constraints that one
wants to keep at a gathering point often appears explicitly in one of the operands.
For instance in Ex. 2 the constraint x < y is explicit in z̄1, and implicit in z̄0

(as x ≤ 0 ∧ 1 ≤ y =⇒ x < y). Therefore x < y holds for all the operands of the
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join so it is sound to add it to its result. Die-hard hints generalize and formalize
it. They work in three steps: (i) apply the gathering operation, call the result
r̄; (ii) collect the constraints C that are explicit in one of the operands, but are
neither present nor implied by r̄; and (iii) add to r̄ all the constraints in C which
are implied by all the operands. Formally:

�
d
(�̄,I)(ē0, ē1) = let r̄ = �̄(ē0, ē1), C = ∪i∈I{κ ∈ ēi | A.check(κ, r̄) = top}

let S = {κ ∈ C | A.check(κ, ē0) = A.check(κ, ē1) = true}
in A.test (∧κ∈Sκ, r̄) .

In defining the die-hard hint for �, one should pay attention to avoid loops which
re-introduce a constraint that as been dropped by the widening. One way to do
it is to have an asymmetric hint, which restricts C only to the first operand (e.g.,
the candidate invariant):

Lemma 4. �d
(�,{0,1}) and �d

(�,{0}) are hints and �d
(�,{0}) is a widening.

6.3 Computed Hints

Hints can be inferred from the abstract states themselves. By looking at some
properties of the elements involved in the operation, one can try to guess useful
hints.

Lemma 5 (Computed hints). Let ē0, ē1 ∈ A, Ξ ∈ [A × A → A] a function
which returns a set of likely bounds of ē0 � ē1. Then �

Ξ
� below is a hint.

�
Ξ
� (ē0, ē1) = let S = {B ∈ Ξ(ē0, ē1) | A.check(B, ē0) = true ∧ A.check(B, ē1) = true}

in A.test(
∧

B∈S B, ē0 � ē1).

Computed hints are useful when the abstract join � is not optimal. Otherwise,
�

Ξ
� is no more precise than �̄. For instance, in a Galois connections-based ab-

stract interpretation, �̄ is optimal, in that it returns the most precise abstract
element approximating the concrete union. As a consequence, no further infor-
mation can be extracted from the operands. It is worth noting that in general
�

Ξ
� is not a widening. However, one can extend the arguments of the previous

section to define an asymmetric hint �Ξ
� .

Template hints. Let A.range ∈ [Exp × A → Intv] be a function that returns
the range for an expression in some abstract state, e.g., it satisfies: ∀E. ∀ē ∈
A. A.range(E, ē) = [l, u] =⇒ ∀σ ∈ γ(ē). l ≤ E�E�(σ) ≤ u. If A.range(E, ēi) =
[li, ui] for i ∈ {0, 1}, then γ(�Intv([l0, u0], [l1, u1])) is an upper bound for E in
∪(γ(ē0), γ(ē1)). As a consequence given a set P of polynomial forms, one can
design the guessing function ΞP :

ΞP (ē0, ē1) = {l ≤ p ≤ u | p ∈ P ∧ [l, u] = 	Intv(A.range(p, ē0), A.range(p, ē1)}.

The main difference between �ΞP

� and syntactic hints is that the bounds for the
polynomials in P are semantic, as they are inferred from the abstract states and
not from the program text. For instance, computed hints infer the right invariant
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in the counter-example of Sect. 1 with the set of templates Oct ≡ {x0 − x1 |
x0, x1 are program variables}. In general, template hints with Oct refine Poly so
to make it as precise as Oct.

void Foo() {

int i = 2, j = 0;

while (...)

if (...) { i = i + 4; }

else { i = i + 2; j++; }

assert 2 <= i - 2 * j; }

Fig. 5. Example requiring the use of
2D-convex hull hints

2D-Convex Hull hints. New linear in-
equalities can be discovered at join points
using the convex hull algorithm. For
instance, the standard join on Poly is de-
fined in that way [8]. However the con-
vex hull algorithm requires an expensive
conversion from a tableau of linear con-
straints to a set of vertexes and gener-
ators, which causes the analysis time to
blow up. A possible solution is to consider
a planar convex hull, which computes possible linear relations between pairs of
variables by: (i) projecting the abstract states on all the two-dimensional planes;
and (ii) computing the planar convex hull on those planes. Planar convex hull,
combined with a smart representation of the abstract elements allows us to au-
tomatically discover complex invariants without giving up performances. Let us
consider the code in Fig. 5 from [8]. At a price of exponential complexity, Poly
can infer the correct loop invariant, and prove the assertion correct. SubPoly re-
fined with 2D-Convex hull hints can prove the assertion, yet keeping a worst-case
polynomial complexity [17].

6.4 Reductive Hints

Intuitively, one way to improve the precision of a unary operator is to iterate
its application [13]. However, an unconditional iteration may be source of un-
soundness. For instance, let − ∈ [Intv → Intv] be the operator which applies the
unary minus to an interval. In general, ∀n ∈ N. ē = −2n(ē) �= −2n+1(ē). We say
that a function f is reductive if ∀x.f(x) � x; and closing if it is reductive and
∀x.f(f(x)) = f(x).

Lemma 6 (Reductive hints). Let � ∈ [C → C] be a unary operator and
�̄ ∈ [A → A] its abstract counterpart. Let � be closing, �̄ be reductive, and n ≥ 0.
Then ��̄(ē) = �̄n(ē) is a hint.

The main application of reductive hints is to improve the precision in handling
the guards in non-relational abstract domains. Given a Boolean guard B and an
abstract domain A, ψ ≡ λē. A.test(B, ē) is an abstract operator which satisfies
the hypotheses of Lemma 6. Abstract compilation can be used to express ψ
in terms of domain operations, their compositions and state update. Lemma 6
justifies the use of local fixpoint iterations to refine the result of the analysis.
For instance, in the abstract domain [Var → {true, false,�,⊥}] the abstract
compilation of the predicate b1 == b2∧b2 == b3 is ψ ≡ λb.(b[b1, b2 �→ b(b1)∧
b(b2)])∧̇(b[b2, b3 �→ b(b2) ∧ b(b3)], where ∧̇ denotes the pointwise extension of
∧. In an initial abstract state b0 = [b1, b2 �→ �; b3 �→ true], ψ(b0) = [b1 �→
�; b2, b3 �→ true] is refined by ψ2(b0) = [b1, b2, b3 �→ true] = ψn(b0), n ≥ 2.
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public BitArray(byte[] bytes) {

Contract.Requires(bytes != null);

this.m_array = new int[(bytes.Length + 3) / 4];

this.m_length = bytes.Length * 8;

int index = 0, j = 0;

for (; (bytes.Length - j) >= 4; j+=4)

this.m_array[index++] = (((bytes[j] & 0xff) | ((bytes[j + 1] & 0xff) << 8))

| ((bytes[j + 2] & 0xff) << 0x10)) | ((bytes[j + 3] & 0xff) << 0x18);

switch ((bytes.Length - j)) {

case 1 : goto Label_00DB;

case 2 : break;

case 3 : this.m_array[index] = (bytes[j + 2] & 0xff) << 0x10; break;

default: goto Label_00FC;

}

this.m_array[index] |= (bytes[j + 1] & 0xff) << 8;

Label_00DB:

this.m_array[index] |= bytes[j] & 0xff;

Label_00FC:

this.version = 0;

}

Fig. 6. Example of code from mscorlib.dll. Out of the 23 total array bound checks,
Clousot with 〈Pnt,�d

�,�〉 validates 13, Clousot with 〈SubPoly, ∅〉 validates 6 more, and
Clousot with 〈SubPoly,�d

�〉 validates the remaining 4.
.

7 Experience

We implemented hints in Clousot, our abstract interpretation-based static an-
alyzer for .Net. Clousot has been designed and it is used as the static checker
for the CodeContracts project [21]. CodeContracts provide a language-agnostic
approach to the definition of object invariants, method preconditions and post-
conditions. Contracts are specified by static methods of the Contracts class,
e.g., Contracts.Requires(x! = null); specifies that the parameter x should be
not null. More details on the specification language can be found in the documen-
tation on the CodeContracts website[21]. The Contracts class will be shipped in
the version 4.0 of the .Net framework [22] (at the moment of writing, in the public
beta 1 phase). Clousot is shipped on the DevLabs [21] website, and it is available
for free downloading for Academic use at http://research.microsoft.com/
en-us/projects/contracts/.

Clousot analyzes each method m in isolation. It assumes the precondition of
m, it progates it through the body, it computes loop invariants, and it uses the
inferred invariants to validate: (i) the method postcondition; (ii) the precondi-
tions of the methods invoked by m; (iii) the user provided assertions; and (iv) the
absence of runtime errors (e.g., null pointers, array out-of-bounds, divisions by
zero, negation of MinInt . . . ) and of buffer overruns [10]. When a method has no
annotations, Clousot simply assumes the worst case scenario (e.g., the param-
eters can assume any value compatible with their type). Orthogonally, Clousot
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can infer pre-conditions and post-conditions to help reduce the annotation bur-
den. Clousot analyzes m incrementally. The user specifies a sequence of pairs of
domains and set of hints 〈A0, H0〉 . . . 〈An, Hn〉. Clousot instantiates the abstract
semantics of m with the abstract domain Ai refined with the hints in Hi. If it can-
not discharge all the proof obligations, Clousot tries to discharge the remaining
proof obligations using the abstract domain Ai+1 refined with the hintsHi+1. We
designed new numerical abstract domains, ranging from imprecise yet very fast
(Pnt, [18]) to very precise but more expensive (SubPoly, [17]). In the incremental
setting of Clousot, hints allow a very fine tuning of the precision/cost ratio. For
instance, the same abstract domain can be refined with several hints: the more the
hints, the more precise the analysis, but also the more expensive it is.

We report the experimental results of refining the abstract operations of the two
extremes of the precision spectrum of Clousot’s numerical abstract domains: Pnt
and SubPoly. Pnt is a weakly relational domain which captures properties in the
form of x ∈ [a, b] ∧ x < y. SubPoly is a strongly relational domain which is as ex-
pressive as Poly, but drops some of the inference power to achieve scalability: Hints
are cardinal to recover precision yet mantaining performace. We run the experi-
ments on a Core2 Duo E6850@3.00Ghz PC, with 4 GB of RAM, running Windows
7. We analyzed four of the main libraries of the current release of the .Net frame-
work (v.3.5), available in every Windows distribution. The mscorlib.dll library
is the core of the .Net framework: it contains the definitions for the Object, Int32
. . . types, but also common data structures such as List, Dictionary, and many
other usefull classes (for reflection, security .. . ). The System.dll library is a higher
layer on mscorlib.dll. System.Web.dll and System.Design.dll contain classes
that simplify the access to the Web and the creation of user interfaces. In order to
provide an uniform and repeatable test bench: (i) we considered shipped assemblies
(hence with no annotations: The annotation processing is undergoing internally at
Microsoft); (ii) we turned off the inference capabilities ofClousot; and (iii) we used
Clousot only to check array creations and accesses (lower and upper bounds): the
shipped assemblies do not contain annotations, so there are no contracts to check.
The framework libraries contains tenths of thousands of array accesses, some of
them are quite easy (e.g., the sequential access of an array in a for loop) but others
require inferringmore complex relations between the array lengths and the indexes.
For instance, Fig. 6 shows the constructor of the BitArray type (we picked it ran-
domly from Clousot’s log). The Pnt and SubPoly abstract domains alone can be
used to prove most of the array accesses correct, however, all the proof obligations
can be discharged only using die-hard hints. One may object that the same result
can be obtained using existing domains such as Oct or Poly. However, Oct is unable
to capture the constraint 4 · m array.Length− bytes.Length == 3, which is nec-
essary to prove that index < m array.Length, and Poly suffers of a huge scalability
problem, which shows up even in small code snippets like the one in Fig. 6.

Figure 7 compares die-hard hints and saturation hints when used to refine the
join and widening of Pnt. The figure reports the analyzed assemblies, the total
number of analyzed methods, the total number of proof obligations checked
(i.e., array creations, lower bounds, and upper bounds), the number of proof
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P.O. Pnt Pnt + d
�,� Slow- Pnt + ρ

{�,�}× Slow-

Assembly Methods Checked Valid Time Valid Time down Valid Time down

mscorlib 17 286 14 059 3:03(0) 14 293 3:10(0) 1.0x 14 220 10:33(4) 3.3x
System 15 497 12 037 9 979 2:28(0) 10 321 2:36(0) 1.0x 10 143 9:43(2) 3.7x

System.Web 23 655 14 304 12 952 2:49(0) 13 034 2:55(0) 1.0x 13 048 8:30(0) 2.9x
System.Design 12 922 10 577 9 562 2:18(0) 10 135 2:21(0) 1.0x 9 947 7:39(5) 3.2x

Fig. 7. The experimental results of refining Pnt with die-hard hints and saturation hints.
Pnt with die-hard hints validates 1 231 more proof obligations. Pnt with saturation hints
are 3x slower, hit 11 timeouts (2 min), and validate 425 less accesses than �d.

obligations validated and the analysis time for the pair-wise gathering operations
and two refinements of the Pnt operations. The values in brackets denote the
number of methods for which the analysis timed out. Time out was set to 2
minutes. Die-hard hints allow Clousot to validate 1 231 accesses more than the
pair-wise joins at no extra cost. On the other hand, saturation hints induce an
average 3x slow-down of the analysis, which causes the analysis to time out for
11 methods, and hence to validate 425 less accesses. We manually inspected
the analysis logs. We found that 〈Pnt,�d

�,�〉 missed only few validations w.r.t.
〈Pnt,�ρ

{�,�}×〉. As a consequence, the use of a saturation procedure with Pnt

seems to be disadvantageous: the cost is too high, and the precision can be
recovered by more precise abstract domains anyway. Furthermore, we checked
some of the proof obligations reported as unproven or unreachable from Clousot.
Most of the unproven conditions are caused by the lack of contracts (mainly
postconditions and object invariants). However, some of the unproven conditions
turned out to be real bugs, and the unreachable ones, after fixing some bug of
the analyzer, were effectively dead-code.

Figure 8 focuses on the analysis of mscorlib using SubPoly refined with hints.
SubPoly is a very expressive abstract domain (as expressive as Poly), whose in-
ference precision can be fine tuned thanks to hints. The first column in the
table shows the results of the analysis with no hints. This is roughly equivalent
to precisely propagating arbitrary linear equalities and intervals, with limited
inference and no propagation of information between linear equalities and inter-
vals. User-provided hints and die-hard hints add more inference power, at the
price of a still acceptable slow-down. Computed hints (with Octagons and 2D-
Convex hull) further slow-down of the analysis, causing the analysis of various
methods to time out. We manually inspected the analysis logs to investigate
the differences. Ignoring the methods that timed-out, with respect to SubPoly∗,
〈SubPoly∗,�ΞOct

� 〉 and 〈SubPoly∗,�Ξ2DCH

� 〉 report respectively 125 and 124 less
false positives. Out of those, only 13 overlap.

One may wonder if computed hints are needed at all. We observed that, when
considering annotated code (unfortunately, just a small fraction of the overall
codebase at the moment of writing), one needs to refine the operations of the
abstract domains with hints in order to get a very low (and hence acceptable)
false alarms ratio (around 0.5%) . In fact, even if (relatively) rare, assertions
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SubPoly SubPoly∗ Slow SubPoly∗ + ΞOct

� Slow SubPoly∗ + Ξ2DCH

� Slow
Valid Time Valid Time down Valid Time down Valid Time down

14 230 4:29(0) 14 432 20:22(0) 4.5x 13 948 81:24(20) 18.2x 14 396 36:33(7) 8.1x

Fig. 8. The experimental results analyzing mscorlib with SubPoly and different seman-
tic hints. SubPoly∗ denotes SubPoly refined with �pred

� and �d
�,�. Computed hints signifi-

cantly slow-down the analysis, but they are needed to reach a very low false alarm ratio.

as in Fig. 1(b) and Fig. 5 are present in real code. Thanks to the incremental
structure of Clousot, we do not need to run SubPoly with all the hints on all
the analyzed methods, but we can focus the highest precision only on the few
methods which require it.

8 Conclusions

We introduced hints, a technique to systematically refine abstract domain op-
erations. Hints allow us improving the precision of abstract operation whenever
those are not complete, e.g., when the underlying abstract domain is not a com-
plete lattice (the common case in practice). We formalized hints in a relaxed
abstract interpretation setting, we proved their soundness, and we distinguished
between syntactic and semantics hints. We showed how some existing techniques
to improve the precision of static analyses, such as widening with thresholds and
reductive iterations are just instances of hints. We applied hints to the numerical
abstract domains defined in our abstract interpretation-based analyzer, showing
how they enable a powerful tuning of the precision/cost ratio. However, hints
are not restricted to numerical domains, and they can be easily generalized to
other kind of domains (for instance, for heap analysis) Future work will consider
combining hints with other forms of refinement, as domain refinement, counter
example-based refinement, and inference of optimal transfer functions.
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