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Preface

This volume contains the proceedings of the 7th Asian Symposium on Program-
ming Languages and Systems (APLAS 2009) held in Seoul, Korea, December
14–16, 2009. The symposium was sponsored by the Asian Association for Foun-
dation of Software (AAFS), Research on Software Analysis for Error-free Com-
puting (ROSAEC) Center of Seoul National University, and SIGPL of Korean
Institute of Information Scientists and Engineers.

Following our call for papers, 56 full submissions from 18 countries were re-
ceived. Each paper was reviewed by at least three Program Committee members
with the help of external reviewers. The Program Committee meeting was con-
ducted electronically over a period of two weeks in August 2009. As a result
of active discussions, 21 papers (37.5%) were selected. I would like to thank all
the members of the APLAS 2009 Program Committee for the tremendous effort
they put into their reviews and deliberations, and all the external reviewers for
their invaluable contributions. The submission and review process was managed
using the EasyChair system.

In addition to the 21 contributed papers, the symposium also featured three
invited talks by Koen Claessen (Chalmers University of Technology, Sweden),
Naoki Kobayashi (Tohoku University, Japan), and Armando Solar-Lezama (Mas-
sachusetts Institute of Technology, USA).

Many people helped to promote APLAS as a high-quality forum in Asia
to serve program language researchers worldwide. Following a series of well-
attended workshops that were held in Shanghai (2002), Daejeon (2001) and
Singapore (2000), the past formal APLAS symposiums were successfully held
in Bangalore (2008), Singapore (2007), Sydney (2006), Tsukuba (2005), Taipei
(2004) and Beijing (2003). Proceedings of the past formal symposiums were
published by Springer as LNCS 5356, 4807, 4279, 3780, 3302 and 2895.

I am grateful to the General Chair, Kwangkeun Yi, for his invaluable sup-
port and guidance that made our symposium in Seoul possible and enjoyable.
I am also indebted to the local organizers, notably Gyesik Lee and Jungsuk
Kang, for their considerable effort in planning and organizing the meeting itself.
I thank Kiminori Matsuzaki for serving as the Poster Session Chair. Last but not
least, I would like to thank the AAFS Chairs, Atsushi Ohori and Joxan Jaffar,
and the Program Chairs of the past APLAS symposiums, especially Ganesan
Ramalingam, for their advice.

December 2009 Zhenjiang Hu
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The Twilight Zone: From Testing to Formal
Specifications and Back Again

Koen Claessen

Chalmers University of Technology, Gothenburg, Sweden
koen@chalmers.se

Talk Abstract

This talk aims to shine some light on the grey area that lies in between two
related but different topics: testing and formal specifications. Testing is the most
widely used verification method used by software developers of all walks of life;
formal specifications are an unambiguous means of stating what software should
do and not do.

The red thread going through the talk is the popular property-based test-
ing tool QuickCheck. QuickCheck uses random testing to check formal speci-
fications that are written in a restricted executable logic, producing minimal
counter examples to failing properties. Thus, using QuickCheck we generalize
the act of executing a specific test case against a specific expected behavior, to
the act of executing many automatically generated test cases against a general
specification.

This is a very powerful method, but it also introduces a number of issues.
Firstly, where does the general specification come from? Often, just formally
specifying software seems equally hard as implementing it! Secondly, how should
a general specification be expressed as a testable property? Thirdly, what test
data should we generate?

The talk contains ongoing work in different efforts within our research group
to deal with these issues: We are developing a companion tool to QuickCheck
that uses random testing to automatically generate specifications from programs
– a good starting point for a full formal specification of the program. We are
looking at how we can systematize the path that starts from a high-level logical
specification and that ends with an effective list of testable properties – this
path often consists of non-trivial choices. We also have a way of calculating
which particular kinds of test data polymorphic functions should be tested on.

Finally, the talk addresses some of the open questions that we do not have
good answers to. In particular, we will see examples of software that is extremely
hard to test effectively using methods that are known to us.

Z. Hu (Ed.): APLAS 2009, LNCS 5904, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Types and Recursion Schemes for Higher-Order
Program Verification

Naoki Kobayashi

Tohoku University

Abstract. Higher-order recursion schemes (recursion schemes, for short)
are expressive grammars for describing infinite trees. The modal μ-calculus
model checking problem for recursion schemes (“Given a recursion scheme
G and a modal μ-calculus formula ϕ, does the tree generated by G satisfy
ϕ?”) has been a hot research topic in the theoretical community for recent
years [1,2,3,4,5,6,7]. In 2006, it has been shown to be decidable, and n-
EXPTIME complete (where n is the order of a recursion scheme) by
Ong [5].

The model checking of recursion schemes has recently turned out to
be a good basis for verification of higher-order functional programs, just
as finite state model checking for programs with while-loops, and push-
down model checking for programs with first-order recursion. First, var-
ious program analysis/verification problems such as reachability, flow
analysis, and resource usage verification (or equivalently, type-state
checking) can be easily transformed into model-checking problems for
recursion schemes [8]. Combined with a model checking algorithm for
recursion schemes, this yields a sound, complete, and automated veri-
fication method for the simply-typed λ-calculus with recursion and fi-
nite base types such as booleans. Secondly, despite the extremely high
worst-case time complexity (i.e. n-EXPTIME completeness) of the model
checking problem for recursion schemes, our type-based model-checking
algorithm [9] turned out to run reasonably fast for realistic programs.
We have implemented a prototype model checker for recursion schemes
TRecS, and are currently working to construct a software model checker
for a subset of ML on top of it.

The talk will summarize our recent results [8,9,10,11] on the model
checking of recursion schemes as well as its applications to higher-order
program verification, and discuss future perspectives.

References

1. Knapik, T., Niwinski, D., Urzyczyn, P.: Deciding monadic theories of hyperalge-
braic trees. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 253–267.
Springer, Heidelberg (2001)

2. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:
Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002)
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TLCA 2005. LNCS, vol. 3461, pp. 39–54. Springer, Heidelberg (2005)
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The Sketching Approach to Program Synthesis

Armando Solar-Lezama

Massachusetts Institute of Technology

Abstract. Sketching is a new form of localized software synthesis that
aims to bridge the gap between a programmer’s high-level insights about
a problem and the computer’s ability to manage low-level details. In
sketching, the programmer uses partial programs to describe the desired
implementation strategy, and leaves the low-level details of the imple-
mentation to an automated synthesis procedure. This paper describes
the sketching approach to program synthesis, including the details of the
Sketch language and synthesizer. The paper will then describe some of
the techniques that make synthesis from sketches possible, and will close
with a brief discussion of open problems in programmer guided synthesis.

1 Introduction

Sketching is a new form of localized program synthesis that allows programmers
to express their high-level insights about a problem by writing a sketch—a partial
program that encodes the structure of a solution while leaving its low-level details
unspecified. In addition to the sketch, programmers provide the synthesizer with
either a reference implementation or a set of test routines that the synthesized
code must pass. The Sketch synthesis engine is able to derive the missing details
in the sketch to produce a working implementation that satisfies the correctness
criteria established by the programmer. By combining the programmers insight
expressed in the sketch with the synthesizer’s ability to reason exhaustively about
all the low-level details of the problem, sketching allows complex algorithms to
be implemented with minimal human effort.

To illustrate the use of sketching on an interesting programming problem,
consider the problem of reversing a linked list. It is relatively easy to write a
recursive solution to this problem, but the performance of the simple implemen-
tation is likely to be unacceptable. A more efficient implementation must use a
loop instead of recursion, and must construct the new list backwards to avoid
the linear storage. Sketching allows the programmer to express these insights as
a partial program without having to think too much about the details of the
implementation.

The sketch for this problem is shown in Figure 1. The body of reverseEfficient
encodes the basic structure of the solution: allocate a new list, and perform a
series of conditional pointer assignments inside a while loop. In order to define the
space of possible conditionals and assignments, the sketch uses regular expression
notation to define sets of expressions in lines 1 to 3. The sketch, in short, encodes

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 4–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



The Sketching Approach to Program Synthesis 5

1: # de f ine LHS {| tmp | ( l | n l ) . ( h | t ) ( . next )? |}
2: # de f ine LOC {| LHS | nul l |}
3: # de f ine COMP {| LOC ( == | != ) LOC |}

l i s t r e v e r s e E f f i c i e n t ( l i s t l ){
4: l i s t n l = new l i s t ( ) ;
5 : node tmp = nul l ;
6 : b i t c = COMP;
7 : while ( c ){
8: repeat (?? )
9 : i f ( COMP ){ LHS = LOC; }
10 c = COMP;

}
}

/ / t e s t harness
void main ( i n t n){

i f ( n >= N){ n = N−1; }
node [N] nodes = nul l ;
l i s t l = newList ( ) ;
/ / Populate the l i s t , and
/ / w r i t e i t s elements
/ / to the nodes ar ray
p o p u l a t e L i s t ( n , l , nodes ) ;

l = reverseSK ( l ) ;

/ / Check t h a t node i i n
/ / the reversed l i s t i s
/ / equal to nodes [ n−i −1]
check ( n , l , nodes ) ;

}

Fig. 1. Complete sketch and specification for the linked list reversal problem

everything that can be easily said about the implementation, and constrains the
search space enough to make synthesis tractable.

Together with the sketch, the programmer must provide a specification that
describes the correct behavior of the reversal routine. The Sketch synthesizer
allows the user to provide specifications in the form of parameterized or non-
deterministic test harnesses. Figure 1 shows the test harness for the list reversal;
the synthesizer will guarantee that the harness succeeds for all values of n¡N.
On a laptop, the complete synthesis process takes less than a minute for N=4.

The sketching approach to synthesis applies just as effectively to concurrent
programs, where the synthesizer’s ability to orchestrate low-level details is even
more desirable given the difficulty that programmers have in reasoning about
the effects of different thread interleavings. To illustrate the use of sketching
in this domain, consider the problem of implementing a barrier. A barrier is a
synchronization mechanism that forces a group of threads to stop at a particular
point in the program until all threads in the group have reached this point.
Figure 2 shows the specification for a barrier. The specification is given as a
simple test method where N threads repeatedly call the next method of the
barrier. The test uses a two dimensional array to check that no thread races
past the barrier before its left and right neighbors have reached the next method.

struct b a r r i e r{
i n t nthreads ; b i t sense ; b i t [N] localSenses ;

}
void main ( ){

b i t [N ] [ T ] g r i d = 0;
b a r r i e r b = newBarr ier (N ) ;
fork ( i n t thread ; N){

for ( i n t i =0; i<T ; ++ i ){
g r i d [ i ] [ thread ] = 1;
next ( b , thread ) ;
assert g r i d [ i ] [ l e f t ( thread ) ] && g r i d [ i ] [ r i g h t ( thread ) ] ;

} } }

Fig. 2. Specification for a sense reversing barrier
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The goal of the synthesizer is to find an implementation of the next method that
doesn’t allow any thread interleavings under which the assertion might fail.

The sketch for the barrier is based on the following high-level insights from [1].
First, the barrier needs to be able to count how many threads have called next;
in the sketch, this is done with a READ AND DEC instruction which reads the
value of b.count into the local variable tmpCount and then decrements it. It’s
tempting to believe that threads can simply wait for the count to reach zero
before continuing, but that doesn’t work when the barrier is called from inside a
loop; such a scheme would make it possible for a thread to go one full iteration
around the loop before the counter has been reset, thus allowing the thread to
go through the barrier a second time. This problem is resolved by the second
insight: rather than waiting on the count, the barrier should keep a global sense
bit; the barrier is released by reversing the sense bit; threads that go a full
iteration around the loop will find the barrier with the inverted sense and will
wait until the sense is reverted again.

1: # def ine VALUES {| lsense | b . nthreads | tmpCount | ??|}
2: # def ine BITVALUES {| ( ! ) ? ( b . sense | lsense ) | ?? |}
3: # def ine COND {| ?? | (VALUES ( == | != ) VALUES) |}

sta t ic void next ( b a r r i e r b , i n t thread ){
4: b i t lsense = b . localSenses [ thread ] ;
5 : i n t tmpCount ;

6 : READ AND DEC( b . count , tmpCount ) ;

7 : reorder{
8: i f (COND ){ b . count = b . nthreads ; }
9: i f ( COND ){ b . sense = BITVALUES ; }
10: i f ( COND ){WAIT( {| b . sense (== | ! = ) lsense |} )}
11: i f ( COND ){ lsense = BITVALUES ; }

}
13: b . localSenses [ thread ] = lsense ;

}

Fig. 3. Complete sketch and for a sense reversing barrier

In order to express these insights in a sketch, the programmer starts by defin-
ing all the different operations that the thread might need to perform after
reading and decrementing the counter. The next method must at some point
do all of the following: a) reset the count, b) update the global sense, c) wait
on the global sense, d) update the local sense. The programmer knows that the
barrier will have to perform all of these operations, but it’s not clear in what or-
der or under what conditions. The sketch in Figure 3 expresses both the insight
described so far, as well as the programmer’s ignorance. All the actions listed
before are listed in the sketch inside a reorder block. The reorder block reflects
the programmer’s ignorance about the correct order for these statements, giving
the synthesizer the freedom to reorder them as necessary. Each statement in the
reorder is guarded by an if statement, giving the synthesizer the freedom to
select under what conditions each statement should execute. On a Core Duo
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L9400 1.86GHz laptop, it takes the synthesizer less than three minutes to solve
the sketch in Figure 3 and model check the solution to prove it correct for the
bounded case where N=3 and T=3.

2 The Core Sketch Language

The Sketch language is divided into two parts: the core Sketch language [5],
and a set of high-level constructs implemented as syntactic sugar on top of the
core. The core Sketch language is a simple imperative language extended with
a single construct: a constant integer/boolean hole denoted by the symbol ??.

From the point of view of the core Sketch language, the role of the synthesizer
is to replace each integer hole with a suitable constant so that the resulting
program will be correct according to the given correctness criteria. For example,
consider the simple program in Figure 4. On the left of the figure, you can see
the original sketch; the specification is simply the assertion in the code, and the
correctness condition is that the assertion should be satisfied for all inputs within
the bound specified by the synthesizer. On the right you can see the resulting
code after the synthesizer has replaced the integer hole with a suitable constant.
The synthesis process is simply a search for suitable integer constants.

i n t bar ( i n t x ){
i n t t = x∗?? ;
assert t == x+x ;
return t ;

}

i n t bar ( i n t x ){
i n t t = x∗2 ;
assert t == x+x ;
return t ;

}

Fig. 4. Simple illustration of the integer hole

The single integer hole is more powerful than it appears at first sight; by com-
posing integer holes with other language constructs, it is possible to represent
many interesting families of expressions. For example, in codes that manipu-
late arrays, it is common for array indexes to be affine functions of the loop
induction variables. If an array access sits inside a loop-nest containing the in-
duction variables i and j, we can represent the set of possible affine functions of
i and j using integer holes as i*?? + j*??+ ??. It is also possible to combine
integer holes with conditionals to express complex algorithmic choices. For ex-
ample, consider the problem of swapping two bit-vectors x and y without using
a temporary register. The insight is that the numbers can be swapped by as-
signing x xor y to x and y repeatedly in a clevery way. The challenge is to find
the correct sequence of assignments. The insight, therefore, involves no integer
constants, but the integer hole can still be used to encode it as illustrated by
Figure 5. After replacing the integer holes with concrete values, the synthesizer
performs a cleanup-pass to eliminate any control flow that may have been intro-
duced solely for the purpose of giving choices to the synthesizer, so the resulting
code looks like the program on the right of figure Figure 5.
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/ / sketch
i n t swap ( r e f i n t x , r e f i n t y ){

i f (??){ x = x ˆ y ; } else{ y = x ˆ y ; }
i f (??){ x = x ˆ y ; } else{ y = x ˆ y ; }
i f (??){ x = x ˆ y ; } else{ y = x ˆ y ; }

}

/ / s o l u t i o n
i n t swap( r e f i n t x , r e f i n t y ){

y = x ˆ y ;
x = x ˆ y ;
y = x ˆ y ;

}

Fig. 5. Sketching a register-free swap using the integer hole

3 Syntactic Extensions

The core Sketch language is like the assembly language of synthesis; it is ex-
pressive enough to describe arbitrarily complex sets of choices, but it is too low
level for practical programming. The Sketch language addresses this problem
by defining a number of syntactic extensions to make it easier to write sketches
such as those in Figures 1 or 3. The most important of these constructs are: a)
the regular expression generators, b) the repeat statement, and c) the reorder
block.

Regular expression generators. These constructs (hereafter Re-generators) allow
the programmer to use a regular grammar to define families of expressions from
which the synthesizer can chose the correct completion for a hole. RE-generators
were used extensively in the sketches shown in Figures 1 or 3.

The Re-generator construct has the form {|e|}, where e is a regular expression.
The regular expression can include choice e1|e2 as well as optional expressions
e?. We purposely excluded Kleene closure because it increased the search space
significantly without a clear programmability benefit.

The current version of the synthesizer implements Re-generators in a fairly
straightforward manner. For Re-generators that are used as r-values, the synthe-
sizer will enumerate all the expressions that can be generated from the regular
expression e and use an integer hole to select which expression to use. So for
example, the VALUES generator in Figure 3 is expanded into a conditional
statement like the one shown below in Figure 6.

For generators that appear in an l-value, the idea is essentially the same;
we enumerate the expressions defined by the generator and we use an integer

/ / {| lsense | b . nthreads | tmpCount | ??|}
/ / i s replaced by rv , where rv i s def ined
/ / by the f o l l o w i n g block of code .
i n t t1 = ?? ;
assert t1 <4;
i n t rv ;
i f ( t1 ==0) rv = lsense ;
else i f ( t1 ==1) rv = b . nthreads ;
else i f ( t1 ==2) rv = tmpCount ;
else rv = ?? ;

Fig. 6. Expanding a Re-generator
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hole to decide which one to assign to. The strategy of fully expanding the set is
inefficient, and in some sketches leads to excessive growth in the resulting inter-
mediate representation; surprisingly, though, this simple strategy is sufficient to
efficiently synthesize complex sketches such as the ones in Figures 1 and 3.

Repeat statement. The repeat statement was used in the sketch in Figure 1
to express the programmer’s ignorance about how many assignments should be
inside the body of the loop. In general, the statement repeat(n) c is equivalent
to writing n different copies of the statement c. The key feature of the repeat,
and what distinguishes it from a regular for loop, is that if the body c contains
any holes, each copy of the body can be resolved to a different statement. For
example, in the case of the repeat in Figure 1, the repeat will be expanded to
n potentially different assignment statements.

The implementation of the repeat block is also relatively simple; the repeat
statement is unrolled and the body replicated in a pre-processing phase. If the
repeat count n is a hole, the repeat block is unrolled into a set of nested if
statements, with the unroll factor determined by a command line flag.

Reorder block. The reorder block gives the synthesizer the freedom to decide the
correct ordering for a set of statements. The most compelling use of reorder is to
provide the synthesizer with a “soup” of statements that must be assembled into
a correct implementation. It is particularly useful in concurrent sketches where
the order of seemingly independent statements can be crucial to the correctness
of an algorithm.

In order to implement the reorder block, we use a representation that is ex-
ponential in the number of statements, but is still surprisingly efficient. The basic
idea is as follows. Suppose that we start with a list of m statements s0; . . . ; sm−1,
and we want to insert a statement sm somewhere in the list. We can encode this
easily in 2*m+1 statements as shown in Figure 7.

i =?? ;
i f ( i =0){ sm ;} s0 ;
i f ( i =1) {sm ;} s1 ;
. . .

i f ( i =m−1){ sm ;} sm−1 ;
i f ( i =m){ sm ; }

Fig. 7. Expanding a reorder

The sketch synthesizer uses this construction to recursively build a represen-
tation of the reorder. To do this, the synthesizer starts with statement s0 and
uses the construction above to add s1 before or after it. Then, it repeats the
process to insert s2 into the resulting sequence; the same process is repeated to
insert each subsequent statement. The resulting representation has 2i copies of
si, and requires on the order of n2 control bits.

The reason why this is efficient is that most reorder blocks in sketches have at
most a handful of expensive statements. The Sketch implementation initially
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sorts the statements so that s0 is the most expensive and sn is the cheapest one,
so the encoding ends up with only one copy of the most expensive statement
and many copies of all the smaller ones.

Together, these high-level constructs allow programmers to express their in-
sight about the structure of an implementation and the building blocks that
should be used to construct it. The constructs allow programmers to reason in
terms of “soups” of statements, and sets of expressions, instead of having to
manually translate their insights into the core Sketch language. At the same
time, by compiling these constructs into the core language, the synthesizer gets
the benefit of a simple uniform representation that is very well adapted to the
available decision procedures.

4 Solving Sketches with Counterexample Guided
Inductive Synthesis

Once the high-level constructs have been compiled down to the core Sketch

language, the synthesizer must find the correct values for all the holes in the
sketch. Specifically, it must find values that will avoid assertion failures under
all possible inputs, or in the case of concurrent sketches, under all possible thread
interleavings.

In order to solve this problem, the Sketch synthesizer relies on Counterex-
ample Guided Inductive Synthesis (CEGIS). The key insight behind CEGIS is
that it is often possible to find a small set of carefully selected inputs such that
any implementation that works correctly for those inputs will work correctly in
general.

The core of the algorithm is a constraint-based inductive synthesis procedure.
From a sketch, the procedure builds a set of constraints Q(x, c) such that Q will
be true if and only if the sketch works correctly on input x when assigning value
c to the holes (in general both x and c are vectors of values). The procedure
also takes in a set E = x0, . . . , xi of concrete inputs (or parameters to the test
harness) and produces a solution that is guaranteed to work correctly for all the
inputs in the set. The inductive synthesis problem is much more tractable than
the general synthesis problem, because the synthesizer doesn’t have to reason
about the behavior of the program under all possible inputs; only under the
inputs provided.

In order for inductive synthesis to produce a correct answer, the system needs
to a) have a mechanism to produce good inputs to drive the inductive synthe-
sizer, and b) be able to decide when a correct solution has been discovered.
CEGIS achieves these two goals by combining the inductive synthesizer with an
automated validation procedure; a model checker in the case of Sketch. The
set of test inputs is seeded with a single random input, and the inductive syn-
thesizer is asked to produce a candidate solution. The candidate is passed to the
validator to decide whether the candidate is correct. If it is, then the algorithm
has converged, and the program is returned. Otherwise, the validator produces a
witness; a counterexample input that shows why the candidate is incorrect. This
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Inductive Synthesizer

buggy

candidate implementation ci

counterexample input xi

succeed

fail

fail

observation set 
E = {x0, x1, …, xi}
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Automated Validation

Your verifier/checker  goes here
Derive candidate implementation 

from concrete inputs.

Q(x, c)c.          x in E.

AE

xi.  !Q(xi, ci)

E

Fig. 8. Counterexample Guided Inductive Synthesis

witness is a perfect input to the inductive synthesizer, because it is guaranteed
to cover an aspect of the implementation that none of the previous inputs were
covering. Thus, by adding this input to the set of observations of the inductive
synthesizer, the synthesis process moves forward, and a new solution is produced
that is closer to the desired solution. The complete algorithm is illustrated in
Figure 8.

In the case of concurrent sketches, the process is very similar; the key dif-
ference is that the validation procedure produces a trace rather than an input.
This poses a challenge to the inductive synthesizer, which must use the coun-
terexample trace to rule out not just the candidate that produced the trace, but
any candidates that share the same problem. The details of how this is done can
be found in [2] and [4], but the key idea is to extract from the counterexample
trace precise information about the ordering of events that lead to the error.
This information about the ordering of events is used to ensure that any candi-
date generated either avoids failure when those events are ordered in the same
way, or rules out that ordering through the use of locking. Overall, the CEGIS

procedure is remarkably effective at quickly producing enough good test inputs
to get the inductive synthesizer to produce a correct solution.

5 Experience

A thorough evaluation of the Sketch synthesis engine for both sequential and
concurrent programs can be found in [2]. Overall, we have been able to suc-
cessfully synthesize the low-level details of algorithms in a variety of domains
including ciphers, scientific computation, linked data-structures, as well as con-
current objects and data-structures. Despite the success of the tool, a number
of important challenges remain in order to make program directed synthesis a
standard tool in every programmer’s toolkit.

Improving programmability. While the sketch language provides a handful of
high-level constructs to help programmers express their insight without having
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to reason about the low-level details, the language is still too low-level for many
domains. For example, for the body of the loop in the sketch from Figure 1,
the programmer had to go through the very mechanical process of describing
the set of memory locations that could be reached from the lists l and nl. We
have found this process to be error prone, as it is easy for programmers to forget
choices which turn out to be necessary to construct the solution; for example,
many programmers might forget to include null in the set LOC. Moreover,
when programmers make mistakes and their sketches cannot be solved, it can be
difficult for them to find the problems, since debugging a partial program can
be more difficult than debugging a concrete one.

A solution to these challenges will have to involve multiple facets, including
higher level mechanisms for expressing insights so programmers make fewer er-
rors, language constructs that allow for more interactive exploration of the space
of solutions, and diagnostic mechanisms that can pinpoint errors in a sketch.

Exploiting Higher Level Insight. Another big challenge is improving the per-
formance of synthesis by harnessing high-level insights, either about a specific
program or about an entire domain. In the case of individual programs, we want
to exploit high-level invariants that the programmer might know, in order to
reduce the search space and make the synthesis more tractable.

In our PLDI 07 paper [3], we showed how synthesis could be made much more
effective for programs in a particular domain by incorporating domain specific
insight into the synthesizer. We believe such domain-specific insight can make
an enormous difference. This will be particularly true in the case of parallelism.
For parallel programs, reasoning about concurrency, and about the effect of all
possible interleavings is extremely expensive. However, large classes of paral-
lel programs are written in a very disciplined manner that prevents threads
from non-deterministically modifying shared memory. Exploiting this discipline
should allow for dramatic performance improvements in the synthesis of many
concurrent programs.

Moving beyond semantic equivalence and safety. In many situations, program-
mers care about many other factors that go beyond functional correctness. Per-
formance, for example, is a central consideration in many domains. Another
closely related property involves statistical properties of an implementation. For
example, a hash table will be correct regardless of the implementation of the
hash function, but we would like the synthesizer to find an implementation that
leads to a good distribution of keys. In some cases, some implementations may
be preferred on purely aesthetic grounds; they are easier to read, or contain
simpler control flow. The challenge is to develop synthesis strategies that can
optimize on these non-functional criteria while still remaining tractable.

6 Conclusions

Sketch is part of a new breed of programmer guided synthesis tools that aim
to make synthesis practical by exploiting the tremendous advances in program
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analysis and decision procedures over the last ten years, and combining them
with the programmer’s high-level insights. Another research effort in this area
is the Paraglide project [7], which applies powerful domain specific algorithms
to achieve programmer guided synthesis of concurrent data structures. Another
notable effort in this direction is the work on proof theoretic synthesis by Srivas-
tava et. al. which aims to use techniques from program verification to synthesize
complex algorithms from sketch-like skeletons [6].

All of these tools attempt to create a synergy between the strengths of the
human programmer and the power of modern analysis tools, with the ultimate
goal of making it easier to design and program systems that are more reliable
and efficient.
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and Its Algorithmic Mitigation
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Abstract. We present a simple algorithmic extension of the classical
call-strings approach to mitigate substantial performance degradation
caused by spurious interprocedural cycles. Spurious interprocedural cy-
cles are, in a realistic setting, key reasons for why approximate call-return
semantics in both context-sensitive and -insensitive static analysis can
make the analysis much slower than expected.

In the traditional call-strings-based context-sensitive static analysis,
because the number of distinguished contexts must be finite, multiple
call-contexts are inevitably joined at the entry of a procedure and the
output at the exit is propagated to multiple return-sites. We found that
these multiple returns frequently create a single large cycle (we call it
“butterfly cycle”) covering almost all parts of the program and such a
spurious cycle makes analyses very slow and inaccurate.

Our simple algorithmic technique (within the fixpoint iteration algo-
rithm) identifies and prunes these spurious interprocedural flows. The
technique’s effectiveness is proven by experiments with a realistic C ana-
lyzer to reduce the analysis time by 7%-96%. Since the technique is algo-
rithmic, it can be easily applicable to existing analyses without changing
the underlying abstract semantics, it is orthogonal to the underlying
abstract semantics’ context-sensitivity, and its correctness is obvious.

1 Introduction

In a global semantic-based static analysis, it is inevitable to follow some spurious
(unrealizable or invalid) return paths. Even when the underlying abstract se-
mantics is context-sensitive, because the number of distinguished contexts must
be finite, multiple call-contexts are joined at the entry of a procedure and the
output at the exit are propagated to multiple return-sites. For example, in a con-
ventional way of avoiding invalid return paths by distinguishing a finite k ≥ 0
call-sites to each procedure, the analysis is doomed to still follow spurious paths
if the input program’s nested call-depth is larger than the k. Increasing the k
to remove more spurious paths quickly hits a limit in practice because of the
increasing analysis cost in memory and time.

In this article we present the following:

– in a realistic setting, these multiple returns often create a single large flow
cycle (we call it “butterfly cycle”) covering almost all parts of the program,
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– such big spurious cycles make the conventional call-strings method that dis-
tinguishes the last k call-sites [14] very slow and inaccurate,

– this performance problem can be relieved by a simple extension of the call-
strings method,

– our extension is an algorithmic technique within the worklist-based fixpoint
iteration routine, without redesigning the underlying abstract semantics, and

– the algorithmic technique works regardless of the underlying abstract seman-
tics’ context-sensitivity. The technique consistently saves the analysis time,
without sacrificing (or with even improving) the analysis precision.

1.1 Problem: Large Performance Degradation By Inevitable,
Spurious Interprocedural Cycles

Static analysis’ inevitable spurious paths make spurious cycles across procedure
boundaries in global analysis. For example, consider the semantic equations in
Fig 1 that (context-insensitively (k > 0)) abstract two consecutive calls to a
procedure. The system of equations says to evaluate equation (4) and (6) for
every return-site after analyzing the called procedure body (equation (3)). Thus,
solving the equations follows a cycle: (2) → (3) → (4) → (5) → (2) → · · · .

Such spurious cycles degrade the analysis performance both in precision and
speed. Spurious cycles exacerbate the analysis imprecision because they model
spurious information flow. Spurious cycles degrade the analysis speed too because
solving cyclic equations repeatedly applies the equations in vain until a fixpoint
is reached.

The performance degradation becomes dramatic when the involved interpro-
cedural spurious cycles cover a large part of the input program. This is indeed
the case in reality. In analyzing real C programs, we observed that the analysis
follows (Section 2) a single large cycle that spans almost all parts of the in-
put program. Such spurious cycles size can also be estimated by just measuring
the strongly connected components (scc) in the “lexical”1 control flow graphs.
Table 1 shows the sizes of the largest scc in some open-source programs.2 In
most programs, such cycles cover most (80-90%) parts of the programs. Hence,
globally analyzing a program is likely to compute a fixpoint of a function that de-
scribes almost all parts of the input program. Even when we do context-sensitive
analysis (k > 0), large spurious cycles are likely to remain (Section 2).

1.2 Solution: An Algorithmic Mitigation without Redesigning
Abstract Semantics

We present a simple algorithmic technique inside a worklist-based fixpoint it-
eration procedure that, without redesigning the abstract semantics part, can
1 One node per lexical entity, ignoring function pointers.
2 We measured the sizes of all possible cycles in the flow graphs. Note that interpro-

cedural cycles happen because of either spurious returns or recursive calls. Because
recursive calls in the test C programs are immediate or spans only a small number
of procedures, large interprocedural cycles are likely to be spurious ones.
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call1 = · · · · · · (1)
entry = call1 � call5 · · · (2)
exit = F̂bodyf

(entry) · · · (3)
return4 = exit · · · (4)
call5 = return4 · · · (5)
return6 = exit · · · (6)

Fig. 1. Spurious cycles because of abstract procedure calls and returns. The right-hand
side is a system of equations and the left-hand side shows the dependences between
the equations. Note a dependence cycle (2) → (3) → (4) → (5) → (2) → · · · .

effectively relieve the performance degradation caused by spurious interprocedu-
ral cycles in both context-sensitive (k > 0) and -insensitive (k = 0) analysis.

While solving flow equations, the algorithmic technique simply forces proce-
dures to return to their corresponding called site, in order not to follow the last
edge (edge (3) → (4) in Fig 1) of the “butterfly” cycles. In order to enforce this,
we control the equation-solving orders so that each called procedure is analyzed
exclusively for its one particular call-site. To be safe, we apply our algorithm to
only non-recursive procedures.

Consider the equation system in Fig 1 again and think of a middle of the
analysis (equation-solving) sequence, · · · → (5) → (2) → (3), which indicates
that the analysis of procedure f is invoked from (5) and is now finished. After
the evaluation of (3), a classical worklist algorithm inserts all the equations,
(4) and (6), that depend on (3). But, if we remember the fact that f has been
invoked from (5) and the other call-site (1) has not invoked the procedure until
the analysis of f finishes, we can know that continuing with (4) is useless, because
the current analysis of f is only related to (5), but not to other calls like (1). So,
we process only (6), pruning the spurious sequence (3) → (4) → · · · .

We integrated the algorithm inside an industrialized abstract-interpretation-
based C static analyzer [5,6] and measured performance gains derived from
avoiding spurious cycles. We have saved 7%-96% of the analysis time for context-
insensitive or -sensitive global analysis for open-source benchmarks.

1.3 Contributions

– We present a simple extension of the classical call-strings approach, which
effectively reduces the inefficiency caused by large, inevitable, spurious in-
terprocedural cycles.

We prove the effectiveness of the technique by experiments with an
industrial-strength C static analyzer [5,6] in globally analyzing medium-scale
open-source programs.
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Table 1. The sizes of the largest strongly-connected components in the “lexical” control
flow graphs of real C programs. In most cases, most procedures and nodes in program
belong to a single cycle.

Program Procedures in the largest cycle Basic-blocks in the largest cycle

spell-1.0 24/31(77%) 751/782(95%)
gzip-1.2.4a 100/135(74%) 5,988/6,271(95%)
sed-4.0.8 230/294(78%) 14,559/14,976(97%)
tar-1.13 205/222(92%) 10,194/10,800(94%)
wget-1.9 346/434(80%) 15,249/16,544(92%)
bison-1.875 410/832(49%) 12,558/18,110(69%)
proftpd-1.3.1 940/1,096(85%) 35,386/41,062(86%)

– The technique is meaningful in two ways. Firstly, the technique aims to
alleviate one major reason (spurious interprocedural cycles) for substantial
inefficiency in global static analysis.

Secondly, it is purely an algorithmic technique inside the worklist-based
fixpoint iteration routine. So, it can be directly applicable without chang-
ing the analysis’ underlying abstract semantics, regardless of whether the
semantics is context-sensitive or not. The technique’s correctness is obvious
enough to avoid the burden of a safety proof that would be needed if we
newly designed the abstract semantics.

– We report one key reason (spurious interprocedural cycles) for why less ac-
curate context-sensitivity actually makes the analyses very slow. Though
it is well-known folklore that less precise analysis does not always have
less cost [10,12], there haven’t been realistic experiments about the explicit
reason.

1.4 Related Work

We compare, on the basis of their applicability to general semantic-based static
analyzers3, our method with other approaches that eliminate invalid paths.

The classical call-strings approach that retains the last k call-sites [14,1,9,10]
is popular in practice but its precision is not enough to mitigate large spurious
cycles. This k-limiting method is widely used in practice [1,9,10] and actually
it is one of very few options available for semantic-based global static analysis
that uses infinite domains and non-distributive flow functions (e.g., [1,6]). The
k-limiting method induces a large spurious cycle because it permits multiple
returns of procedures. Our algorithm is an extension of the k-limiting method
and adds extra precision that relieves the performance problem from spurious
interprocedural cycles.

3 For example, such analyzers include octagon-based analyzers (e.g.,[2]), interval-based
analyzers (e.g.,[5,6]), value set analysis [1], and program analyzer generators (e.g,
[9]), which usually use infinite (height) domains and non-distributive flow functions.
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Another approximate call-strings method that uses full context-sensitivity
for non-recursive procedures and treats recursive call cycles as gotos is practi-
cal for points-to analysis [15,16] but, the method is too costly for more gen-
eral semantic-based analysis. Though these approaches are more precise than
k-limiting method, it is unknown whether the BDD-based method [16] or regular-
reachability [15] are also applicable in practice to general semantic-based ana-
lyzers rather than pointer analysis. Our algorithm can be useful for analyses for
which these approaches hit a limit in practice and k-limiting is required.

Full call-strings approaches [14,7,8] and functional approaches [14] do not suf-
fer from spurious cycles but are limited to restricted classes of data flow analysis
problems. The original full call-strings method [14] prescribes the domain to be
finite and its improved algorithms [7,8] are also limited to bit-vector problems
or finite domains. Khedker et al.’s algorithm [8] supports infinite domains only
for demand-driven analysis. The purely functional approach [14] requires com-
pact representations of flow functions. The iterative (functional) approach [14]
requires the domain to be finite.

Reps et al.’s algorithms [11,13] to avoid unrealizable paths are limited to
analysis problems that can be expressed only in their graph reachability frame-
work. Their algorithm cannot handle prevalent yet non-distributive analyses.
For example, our analyzer that uses the interval domain with non-distributive
flow functions does not fall into either their IFDS [11] or IDE [13] problems.
Meanwhile, our algorithm is independent of the underlying abstract semantic
functions. The regular-reachability [15], which is a restricted version of Reps et
al.’s algorithm [11], also requires the analysis problem to be expressed in graph
reachability problem.

Chambers et al.’s method [4] is similar to ours but entails a relatively large
change to an existing worklist order. Their algorithm analyzes each procedure
intraprocedurally, and at call-sites continues the analysis of the callee. It returns
to analyze the nodes of the caller only after finishing the analysis of the callee.
Our worklist prioritizes the callee only over the call nodes that invoke the callee,
not the entire caller, which is a relatively smaller change than Chambers et al.’s
method. In addition, they assume worst case results for recursive calls, but we
do not degrade the analysis precision for recursive calls.

2 Performance Problems Due to Large Spurious Cycles

If a spurious cycle is created by multiple calls to a procedure f , then all the
procedures that are reachable from f or that reach f via the call-graph belong
to the cycle because of call and return flows. For example, consider a call-chain
· · · f1 → f2 · · · . If f1 calls f2 multiple times, creating a spurious butterfly cycle
f1 �� f2 between them, then fixpoint-solving the cycle involves all the nodes of
procedures that reach f1 or that are reachable from f2. This situation is common
in C programs. For example, in GNU software, the xmalloc procedure, which is
in charge of memory allocation, is called from many other procedures, and hence
generates a butterfly cycle. Then every procedure that reaches xmalloc via the
call-graph is trapped into a fixpoint cycle.
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spell-1.0 (total #procs:31) sed-4.0.8 (total #procs:294)
(2,213 LOC, > 30 repetitions) (26,807 LOC, > 150 repetitions)

Fig. 2. Analysis localities. Because of butterfly cycles, similar patterns are repeated
several times during the analysis and each pattern contains almost all parts of the
programs.

In conventional context-sensitive analysis that distinguishes the last k call-
sites [14], if there are call-chains of length l (> k) in programs, it’s still possible
to have a spurious cycle created during the first l − k calls. This spurious cycle
traps the last k procedures into a fixpoint cycle by the above reason.

One spurious cycle in a real C program can trap as many as 80-90% of basic
blocks of the program into a fixpoint cycle. Fig 2 shows this phenomenon. In the
figures, the x-axis represents the execution time of the analysis and the y-axis
represents the procedure name, which is mapped to unique integers. During the
analysis, we draw the graph by plotting the point (t, f) if the analysis’ worklist
algorithm visits a node of procedure f at the time t. For brevity, the graph for
sed-4.0.8 is shown only up to 100,000 iterations among more than 3,000,000 total
iterations. From the results, we first observe that similar patterns are repeated
and each pattern contains almost all procedures in the program. And we find
that there are much more repetitions in the case of a large program (sed-4.0.8,
26,807 LOC) than a small one (spell-1.0, 2,213 LOC): more than 150 repeated
iterations were required to analyze sed-4.0.8 whereas spell-1.0 needed about 30
repetitions.

3 Our Algorithmic Mitigation Technique

In this section, we describe our algorithmic technique. We first describe the
traditional call-strings-based analysis algorithm (section 3.1). Then we present
our algorithmic extension of the classical algorithm (section 3.2).

We assume that a program is represented by a supergraph [11]. A supergraph
consists of control flow graphs of procedures with interprocedural edges connect-
ing each call-site to its callee. Each node n ∈ Node in the graph has one of the
five types :

entryf | exitf | callg,r
f | rtnc

f | cmdf
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The subscript f of each node represents the procedure name enclosing the node.
entryf and exitf are entry and exit nodes of procedure f . A call-site in a program
is represented by a call node and its corresponding return node. A call node
callg,r

f indicates that it invokes a procedure g and its corresponding return node
is r. We assume that function pointers are resolved (before the analysis). Node
rtnc

f represents a return node in f whose corresponding call node is c. Node cmdf

represents a general command statement. Edges are assembled by a function,
succof, which maps each node to its successors. CallNode is the set of call nodes
in a program.

3.1 Normalk: A Normal Call-Strings-Based Analysis Algorithm

Call-strings are sequences of call nodes. To make them finite, we only con-
sider call-strings of length at most k for some fixed integer k ≥ 0. We write
CallNode≤k let= Δ for the set of call-strings of length ≤ k. We write [c1, c2, · · · , ci]
for a call-string of call sequence c1, c2, · · · , ci. Given a call-string δ and a call
node c, [δ, c] denotes a call-string obtained by appending c to δ. In the case of
context-insensitive analysis (k = 0), we use Δ = {ε}, where the empty call-string
ε means no context-information.

Fig 3.(a) shows the worklist-based fixpoint iteration algorithm that performs
call-strings(Δ)-based context-sensitive (or insensitive, when k = 0) analysis. The
algorithm computes a table T ∈ Node → State which associates each node with
its input state State = Δ → Mem, where Mem denotes abstract memory, which is
a map from program variables to abstract values. That is, call-strings are tagged
to the abstract memories and are used to distinguish the memories propagated
along different interprocedural paths, to a limited extent (the last k call-sites).
The worklist W consists of node and call-string pairs. The algorithm chooses a
work-item (n, δ) ∈ Node × Δ from the worklist and evaluates the node n with
the flow function F̂ . Next work-items to be inserted into the worklist are defined
by the function N ∈ Node × Δ → 2Node×Δ :

N (n, δ) =

⎧⎨⎩
{(r, δ′) | δ = �δ′, callg,r

f �k ∧ δ′ ∈ dom(T (callg,r
f ))} if n = exitg

{(entryg, �δ, n�k))} if n = callg,r
f

{(n′, δ) | n′ ∈ succof(n)} otherwise

where dom(f) denotes the domain of map f and �δ, c�k denotes the call-string
[δ, c] but possibly truncated so as to keep at most the last k call-sites.

The algorithm can follow spurious return paths if the input program’s nested
call-depth is larger than the k. The mapping δ′ to �δ′, callg,r

f �k is not one-to-one
and N possibly returns many work-items at an exit node.

We call the algorithm Normalk(k = 0, 1, 2, . . . ). Normal0 performs context-
insensitive analysis,Normal1 performs context-sensitive analysis that distinguishes
the last 1 call-site, and so on.

3.2 Normalk/RSS: Our Algorithm

Definition 1. When a procedure g is called from a call node callg,r
f under con-

text δ, we say that (callg,r
f , δ) is the call-context for that procedure call. Since
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each call node callg,r
f has a unique return node, we interchangeably write (r, δ)

and (callg,r
f , δ) for the same call-context.

Our return-site-sensitive (RSS) technique is simple. When calling a procedure
at a call-site, the call-context for that call is remembered until the procedure re-
turns. The bookkeeping cost is limited to only one memory entry per procedure.
This is possible by the following strategies:

1. Single return: Whenever the analysis of a procedure g is started from
a call node callg,r

f in f under call-string δ, the algorithm remembers its
call-context (r, δ), consisting of the corresponding return node r and the
call-string δ. And upon finishing analyzing g’s body, after evaluating exitg,
the algorithm inserts only the remembered return node and its call-string
(r, δ) into the worklist. Multiple returns are avoided. For correctness, this
single return should be allowed only when other call nodes that call g are
not analyzed until the analysis of g from (callg,r

f , δ) completes.
2. One call per procedure, exclusively: We implement the single return

policy by using one memory entry per procedure to remember the call-
context. This is possible if we can analyze each called procedure exclusively
for its one particular call-context. If a procedure is being analyzed from a call
node c with a call-string δ, processing all the other calls that call the same
procedure should wait until the analysis of the procedure from (c, δ) is com-
pletely finished. This one-exclusive-call-per-procedure policy is enforced by
not selecting from the worklist other call nodes that (directly or transitively)
call the procedures that are currently being analyzed.

3. Recursion handling: The algorithm gives up the single return policy for re-
cursive procedures. This is because we cannot finish analyzing recursive pro-
cedure body without considering other calls (recursive calls) in it. Recursive
procedures are handled in the same way as the normal worklist algorithm.

The algorithm does not follow spurious return paths regardless of the program’s
nested call-depth. While Normalk starts losing its power when a call chain’s
length is larger than k, Normalk/RSS does not. The following example shows
this difference between Normalk and Normalk/RSS.

Example 1. Consider a program that has the following call-chain (where f1
c1,c2→

f2 denotes that f1 calls f2 at call-sites c1 and c2) and suppose k = 1:

f1
c1,c2→ f2

c3,c4→ f3

– Normal1: The analysis results for f2 are distinguished by [c1] and [c2] hence
no butterfly cycle happens between f1 and f2. Now, when f3 is called from
f2 at c3, we have two call-contexts (c3, [c1]) and (c3, [c2]) but analyzing f3
proceeds with context [c3] (because k = 1). That is, Normalk forgets the
call-context for procedure f3. Thus the result of analyzing f3 must flow back
to all call-contexts with return site c3, i.e., to both the call-contexts (c3, [c1])
and (c3, [c2]).
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– Normal1/RSS: The results for f2 and f3 are distinguished in the same way
as Normal1. But, Normal1/RSS additionally remembers the call-contexts for
every procedure call. If f3 was called from c3 under context [c1], our algo-
rithmic technique forces Normalk to remember the call-context (c3, [c1]) for
that procedure call. And finishing analyzing f3’s body, f3 returns only to
the remembered call-context (c3, [c1]). This is possible by the one-exclusive-
call-per-procedure policy.

We ensure the one-exclusive-call-per-procedure policy by prioritizing a callee
over call-sites that (directly or transitively) invoke the callee. The algorithm
always analyzes the nodes of the callee g first prior to any other call nodes that
invoke g: before selecting a work-item as a next job, we exclude from the worklist
every call node callg,r

f to g if the worklist contains any node of procedure h that
can be reached from g along some call-chain g → · · · → h, including the case of
g = h. After excluding such call nodes, the algorithm chooses a work-item in the
same way as a normal worklist algorithm.

Example 2. Consider a worklist {(callg,r1
f ,δ1),(callh,r2

g , δ2), (nh, δ3), (calli,r4
h , δ4)}

and assume there is a path f → g → h in the call graph. When choosing a work-
item from the worklist, our algorithm first excludes all the call nodes that invoke
procedures now being analyzed: callh,r2

g is excluded because h’s node nh is in the
worklist. Similarly, callg,r1

f is excluded because there is a call-chain g → h in the
call graph and h’s node nh exists. So, the algorithm chooses a work-item from
{(nh, δ3), (calli,r4

h , δ4)}. The excluded work-items (callg,r1
f , δ1) and (callh,r2

g , δ2)
will not be selected unless there are no nodes of h in the worklist.

Fig 3(b) shows our algorithmic technique that is applied to the normal worklist
algorithm of Fig 3(a). To transform Normalk into Normalk/RSS, only shaded
lines are inserted; other parts remain the same. ReturnSite is a map to record
a single return site information (return node and context pair) per procedure.
Lines 15-16 are for remembering a single return when encountering a call-site.
The algorithm checks if the current node is a call-node and its target procedure is
non-recursive (the recursive predicate decides whether the procedure is recursive
or not), and if so, it remembers its single return-site information for the callee.
Lines 17-22 handle procedure returns. If the current node is an exit of a non-
recursive procedure, only the remembered return for that procedure is used as
a next work-item, instead of all possible next (successor, context) pairs (line
23). Prioritizing callee over call nodes is implemented by delaying call nodes to
procedures now being analyzed. To do this, in line 12-13, the algorithm excludes
the call nodes {(callg, , ) ∈ W | (nh, ) ∈ W ∧ reach(g, h) ∧ ¬recursive(g)} that
invoke non-recursive procedures whose nodes are already contained in the current
worklist. reach(g, h) is true if there is a path in the call graph from g to h.

Correctness and Precision. One noticeable thing is that the result of our
algorithm is not a fixpoint of the given flow equation system, but still a sound
approximation of the program semantics. Since the algorithm prunes some com-
putation steps during worklist algorithm (at exit nodes of non-recursive proce-
dures), the result of the algorithm may not be a fixpoint of the original equation
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(01) : δ ∈ Context = Δ (01) : δ ∈ Context = Δ

(02) : w ∈ Work = Node × Δ (02) : w ∈ Work = Node × Δ

(03) : W ∈ Worklist = 2Work (03) : W ∈ Worklist = 2Work

(04) : N ∈ Node × Δ → 2Node×Δ (04) : N ∈ Node × Δ → 2Node×Δ

(05) : State = Δ → Mem (05) : State = Δ → Mem
(06) : T ∈ Table = Node → State (06) : T ∈ Table = Node → State

(07) : F̂ ∈ Node → Mem → Mem (07) : F̂ ∈ Node → Mem → Mem

(08) : ReturnSite ∈ ProcName → Work

(09) : FixpointIterate (W, T ) = (09) : FixpointIterate (W, T ) =

(10) : ReturnSite := ∅
(11) : repeat (11) : repeat

(12) : S := {(callg, , ) ∈ W | (nh, ) ∈ W ∧ reach(g, h) ∧ ¬recursive(g)}

(13) : (n, δ) := choose(W) (13) : (n, δ) := choose( W \ S )

(14) : m := F̂ n (T (n)(δ)) (14) : m := F̂ n (T (n)(δ))

(15) : if n = call
g,r
f ∧ ¬recursive(g) then

(16) : ReturnSite(g) := (r, δ)

(17) : if n = exitg ∧ ¬recursive(g) then

(18) : (r, δr) := ReturnSite(g)

(19) : if m 
� T (r)(δr)

(20) : W := W ∪ {(r, δr)}

(21) : T (r)(δr) := T (r)(δr)  m

(22) : else
(23) : for all (n′, δ′) ∈ N (n, δ) do (23) : for all (n′, δ′) ∈ N (n, δ) do
(24) : if m 
� T (n′)(δ′) (24) : if m 
� T (n′)(δ′)
(25) : W := W ∪ {(n′, δ′)} (25) : W := W ∪ {(n′, δ′)}
(26) : T (n′)(δ′) := T (n′)(δ′)  m (26) : T (n′)(δ′) := T (n′)(δ′)  m

(27) : until W = ∅ (27) : until W = ∅

(a) a normal worklist algorithm Normalk (b) our algorithm Normalk/RSS

Fig. 3. A normal context-sensitive worklist algorithm Normalk (left-hand side) and its
RSS modification Normalk/RSS (right-hand side). These two algorithms are the same
except for shaded regions. For brevity, we omit the usual definition of F̂ , which updates
the worklist in addition to computing the flow equation’s body.

system. However, because the algorithm prunes only spurious returns that defi-
nitely do not happen in the real executions of the program, our algorithm does
not miss any real executions.

Normalk/RSS is always at least as precise as Normalk. Because our technique
prunes some (worklist-level) computations that occur along invalid return paths,
it improves the precision. The actual precision of Normalk/RSS varies depending
on the worklist order, but is no worse than that of Normalk.

Example 3. Consider the program in Fig 1 again, and suppose the current work-
list is {1, 5}. When analyzing the program with Normal0, the fixpoint-solving
follows both spurious return paths, regardless of the worklist order,

1 → 2 → 3 → 6 (1)
5 → 2 → 3 → 4 (2)

because of multiple returns from node 3. When analyzing with Normal0/RSS,
there are two possibilities, depending on the worklist order:

1. When Normal0/RSS selects node 1 first: Then the fixpoint iteration se-
quence may be 1; 2; 3; 4; 5; 2; 3; 6. This sequence involves the spurious path (1)
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(because the second visit to node 2 uses the information from node 1 as well
as from node 5), but not (2). Normal0/RSS is more precise than Normal0.

2. When Normal0/RSS selects node 5 first: Then the fixpoint iteration sequence
may be 5; 2; 3; 6; 1; 2; 3; 4; 5; 2; 3; 6. This computation involves both spurious
paths (1) and (2). With this iteration order, Normal0 and Normal0/RSS have
the same precision.

4 Experiments

We implemented our algorithm inside a realistic C analyzer [5,6]. Experiments
with open-source programs show that Normalk/RSS for any k is very likely faster
than Normalk, and that even Normalk+1/RSS can be faster than Normalk.

4.1 Setting Up

Normalk is our underlying worklist algorithm, on top of which our industrialized
static analyzer [5,6] for C is installed. The analyzer is an interval-domain-based
abstract interpreter. The analyzer performs by default flow-sensitive and call-
string-based context-sensitive global analysis on the supergraph of the input pro-
grams: it computes T = Node → State where State = Δ → Mem. Mem denotes
abstract memory Mem = Addr → Val where Addr denotes abstract locations
that are either program variables or allocation sites, and Val denotes abstract
values including Ẑ (interval domain), 2Addr (addresses), and 2AllocSite×Ẑ×Ẑ (ar-
ray block, consisting of base address, offset, and size [6]).

We measured the net effects of avoiding spurious interprocedural cycles. Since
our algorithmic technique changes the existing worklist order, performance dif-
ferences between Normalk and Normalk/RSS could be attributed not only to
avoiding spurious cycles but also to the changed worklist order. In order to mea-
sure the net effects of avoiding spurious cycles, we applied the same worklist
order to both Normalk and Normalk/RSS. The order (between nodes) that we
used is a reverse topological order between procedures on the call graph: a node
n of a procedure f precedes a node m of a procedure g if f precedes g in the
reverse topological order in the call graph. If f and g are the same procedure,
the order between the nodes are defined by the weak topological order [3] on the
control flow graph of the procedure. Note that this ordering itself contains the
“prioritize callees over call-sites” feature and we don’t explicitly need the delay-
ing call technique (lines 12-13 in Fig 3.(b)) in Normalk/RSS. Hence the worklist
order for Normalk and Normalk/RSS are the same.4

We have analyzed 11 open-source software packages. Table 2 shows our bench-
mark programs as well as their raw analysis results. All experiments were done
on a Linux 2.6 system running on a Pentium4 3.2GHz box with 4 GB of main
memory.
4 In fact, the order described here is the one our analyzer uses by default, which

consistently shows better performance than naive worklist management scheme
(BFS/DFS) or simple “wait-at-join” techniques (e.g., [6]).
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Table 2. Benchmark programs and their raw analysis results. Lines of code (LOC) are
given before preprocessing. The number of nodes in the supergraph(#nodes) is given
after preprocessing. k denotes the size of call-strings used for the analysis. Entries with
∞ means missing data because of our analysis running out of memory.

Program LOC #nodes k-call- #iterations time
strings Normal Normal/RSS Normal Normal/RSS

spell-1.0 2,213 782 0 33,864 5,800 60.98 8.49
1 31,933 10,109 55.02 13.35
2 57,083 15,226 102.28 19.04

barcode-0.96 4,460 2,634 0 22,040 19,556 93.22 84.44
1 33,808 30,311 144.37 134.57
2 40,176 36,058 183.49 169.08

httptunnel-3.3 6,174 2,757 0 442,159 48,292 2020.10 191.53
1 267,291 116,666 1525.26 502.59
2 609,623 251,575 5983.27 1234.75

gzip-1.2.4a 7,327 6,271 0 653,063 88,359 4601.23 621.52
1 991,135 165,892 10281.94 1217.58
2 1,174,632 150,391 18263.58 1116.25

jwhois-3.0.1 9,344 5,147 0 417,529 134,389 4284.21 1273.49
1 272,377 138,077 2445.56 1222.07
2 594,090 180,080 8448.36 1631.07

parser 10,900 9,298 0 3,452,248 230,309 61316.91 3270.40
1 ∞ ∞ ∞ ∞

bc-1.06 13,093 4,924 0 1,964,396 412,549 23515.27 3644.13
1 3,038,986 1,477,120 44859.16 12557.88
2 ∞ ∞ ∞ ∞

less-290 18,449 7,754 0 3,149,284 1,420,432 46274.67 20196.69
1 ∞ ∞ ∞ ∞

twolf 19,700 14,610 0 3,028,814 139,082 33293.96 1395.32
1 ∞ ∞ ∞ ∞

tar-1.13 20,258 10,800 0 4,748,749 700,474 75013.88 9973.40
1 ∞ ∞ ∞ ∞

make-3.76.1 27,304 11,061 0 4,613,382 2,511,582 88221.06 44853.49
1 ∞ ∞ ∞ ∞

4.2 Results

We use two performance measures: (1) #iterations is the total number of itera-
tions during the worklist algorithm. The number directly indicates the amount
of computation; (2) time is the CPU time spent during the analysis.

Fig 4(a) compares the analysis time between Normalk/RSS and Normalk for
k = 0, 1, 2. In this comparison, Normalk/RSS reduces the analysis time of Normalk
by 7%-96%.

– When k = 0 (context-insensitive) : Normal0/RSS has reduced the analysis
time by, on average, about 74% against Normal0. For most programs, the
analysis time has been reduced by more than 50%. There is one exception:
barcode. The analysis time has been reduced by 9%. This is because barcode
has unusual call structures: it does not call a procedure many times, but calls
many different procedures one by one. So, the program contains few butterfly
cycles.
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– When k = 1: Normal1/RSS has reduced the analysis time by, on average,
about 60% against Normal1. Compared to the context-insensitive case, for all
programs, cost reduction ratios have been slightly decreased. This is mainly
because, in our analysis, Normal0 costs more than Normal1 for most programs
(spell, httptunnel, jwhois). For httptunnel, in Table 2, the analysis time
(2020.10 s) for k = 1 is less than the time (1525.26 s) for k = 0. This means
that performance problems by butterfly cycles is much more severe when
k = 0 than that of k = 1, because by increasing context-sensitivity some
spurious paths can be removed.

– When k = 2: Normal2/RSS has reduced the analysis time by, on average, 69%
against Normal2. Compared to the case of k = 1, the cost reduction ratio has
been slightly increased for most programs. In the analysis of Normal2, since
the equation system is much larger than that of Normal1, our conjecture is
that the size of butterfly cycles is likely to get larger. Since larger butterfly
cycles causes more serious problems (Section 2), our RSS algorithm is likely
to greater reduce useless computation.

Fig 4(b) compares the performance of Normalk+1/RSS against Normalk for k =
0, 1. The result shows that, for all programs except barcode, Normalk+1/RSS is
likely faster than Normalk. Since Normalk+1/RSS can be even faster than Normalk,
if memory cost permits, we can consider using Normalk+1/RSS instead of
Normalk.

Table 3 compares the precision between Normal0 and Normal0/RSS. In order
to measure the increased precision, we first joined all the memories associated
with each program point (Node). Then we counted the number of constant in-
tervals (#const, e.g., [1, 1]), finite intervals (#finite, e.g., [1, 5]), intervals with
one infinity (#open, e.g., [−1, +∞) or (−∞, 1]), and intervals with two infinity
(#top, (−∞, +∞)) from interval values (Ẑ) and array blocks (2AllocSite×Ẑ×Ẑ)
contained in the joined memory. The constant interval and top interval indi-
cate the most precise and imprecise values, respectively. The results show that
Normal0/RSS is more precise (spell, barcode, httptunnel, gzip) than Normal0
or the precision is the same (jwhois).

Table 3. Comparison of precision between Normal0 and Normal0/RSS

Program Analysis #const #finite #open #top
spell-1.0 Normal0 345 88 33 143

Normal0/RSS 345 89 35 140
barcode-0.96 Normal0 2136 588 240 527

Normal0/RSS 2136 589 240 526
httptunnel-3.3 Normal0 1337 342 120 481

Normal0/RSS 1345 342 120 473
gzip-1.2.4a Normal0 1995 714 255 1214

Normal0/RSS 1995 716 255 1212
jwhois-3.0.1 Normal0 2740 415 961 1036

Normal0/RSS 2740 415 961 1036
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Fig. 4. Net effects of avoiding spurious cycles

5 Conclusion

We have presented a simple algorithmic technique to alleviate substantial ineffi-
ciency in global static analysis caused by large spurious interprocedural cycles.
Such cycles are identified as a major reason for the folklore problem in static anal-
ysis that less precise analyses sometimes are slower. Although this inefficiency
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might not come to the fore when analyzing small programs, globally analyz-
ing medium or large programs makes it outstanding. The proposed algorithmic
technique reduces the analysis time by 7%-96% for open-source benchmarks.

Though tuning the precision of static analysis can in principle be controlled
solely by redesigning the underlying abstract semantics, our algorithmic tech-
nique is a simple and orthogonal leverage to effectively shift the analysis cost/
precision balance for the better. The technique’s correctness is obvious enough
to avoid the burden of a safety proof that would be needed if we newly designed
the abstract semantics.
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Abstract. We present a new technique for speeding up static analysis
of (shared memory) concurrent programs. We focus on analyses that
compute thread correlations: such analyses infer invariants that capture
correlations between the local states of different threads (as well as the
global state). Such invariants are required for verifying many natural
properties of concurrent programs.

Tracking correlations between different thread states, however, is very
expensive. A significant factor that makes such analysis expensive is the
cost of applying abstract transformers. In this paper, we introduce a tech-
nique that exploits the notion of footprints and memoization to compute
individual abstract transformers more efficiently.

We have implemented this technique in our concurrent shape anal-
ysis framework. We have used this implementation to prove properties
of fine-grained concurrent programs with a shared, mutable, heap in the
presence of an unbounded number of objects and threads. The proper-
ties we verified include memory safety, data structure invariants, partial
correctness, and linearizability. Our empirical evaluation shows that our
new technique reduces the analysis time significantly (e.g., by a factor of
35 in one case).

1 Introduction

This paper is concerned with analysis and verification of (shared memory) con-
current programs. We present a new technique that makes such analyses more
efficient. The technique presented in this paper speeds up the verification signifi-
cantly (e.g., reducing the verification time from 56, 347 seconds to 1, 596 seconds
— a 35 fold speed-up — for one program).

One key abstraction technique for dealing with the state space explosion
problem in analyzing concurrent programs is thread-modularity (see, e.g., [7]),
which works by abstracting away correlations between the local states of dif-
ferent threads. Unfortunately, thread-modular analysis fails when the proof of
a desired property relies on invariants connecting the local states of different
threads, which is the case in several natural examples.
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Thread-Correlation Analysis. Hence, we focus on analysis using abstractions that
track correlations between pairs of (abstract) thread states (e.g., see [11, 5, 2]).
The abstract domain elements, in our analysis, essentially represent invariants
of the form ∀t, e .

∨n

i=1 ϕi[t, e] where t and e are universally quantified thread
variables and ϕi[t, e] are formulas taken from a finite, but usually large, set of
candidates (describing some relation between the states of threads t and e). In
our experience, we found such abstractions to be sufficiently precise for verifying
the programs and properties of interest, but the corresponding analyses were
quite time-consuming.

Abstract Transformers. The idea of using abstractions that correlate states of
different threads is not new. In this paper we address the question of how to
define precise, yet efficient, transformers for such domains, a question that has
not been systematically studied before. This is, however, an important ques-
tion because, as we found, the cost of applying abstract transformers is one of
the main reasons why thread-correlation analyses are expensive. The abstract
transformer corrresponding to a statement must determine how the execution
of the statement by some thread affects the invariant computed by the analysis
so far. The transformer must consider all possible (abstract) states of the exe-
cuting thread, and identify the effect of the statement execution on all possible
(abstract) states of any pair of threads. This introduces a non-linear factor that
makes the transformer computation expensive. One of our key contributions is
a set of techniques for computing the abstract transformer more efficiently.

Implementation and Evaluation. We have implemented the techniques described
in this paper in our framework for concurrent shape analysis. We have used
this implementation to verify properties, such as memory safety, preservation of
data structure invariants, and linearizability [13], of fine-grained concurrent pro-
grams, especially those with dynamically-allocated concurrent data structures.
Such data-structures are important building blocks of concurrent systems and
are becoming part of standard libraries (e.g., JDK 1.6). Automatic verification
of these algorithms is challenging because they often contain fine-grained con-
currency with benign data races, low-level synchronization operations such as
CAS, and destructive pointer-updates which require accurate alias analysis. Fur-
thermore, the data-structure can grow in an unbounded fashion and the number
of threads concurrently updating it can also grow in an unbounded fashion.

Our empirical evaluation shows that our optimizations lead to significant re-
duction in the analysis time.

Main Contributions. Our contribution is not specific to shape analysis and
can be used for other analyses of concurrent programs as well. For this reason,
we describe our techniques in a simple setting, independent of shape analysis.
Specifically, we present our ideas using a simple abstract domain for concurrent
programs. This domain formalizes our notion of thread correlation by abstracting
concrete states, which capture correlations between the states of all threads, into
abstract states that capture only correlations between the states of every pair of
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threads. (Our implementation, however, realizes these ideas in a shape analysis
and our empirical results concern this concurrent shape analysis.)

The main contributions of this paper are:

Sound Transformer. We define a sound abstract post operator (transformer)
for the new abstract domain from the concrete sequential semantics. The
transformer reasons rather precisely about interference between threads.

Transformer Optimizations. We present two refinements to the computation
of the above transformers that lead to significant speedups.

Implementation. We have implemented an analysis based on the above ideas
and used it to automatically verify properties of several concurrent data
structure implementations.

Evaluation. We present an empirical evaluation of our techniques and show
the advantages of the optimizations to the abstract transformer computa-
tion. For example, for a lock-free implementation of a concurrent set using
linked lists [18], our optimizations reduce the analysis time from 56, 347 CPU
seconds to 1, 596 — a 35 fold speed-up. We have also analyzed erroneous mu-
tations of concurrent algorithms and our tool quickly found errors in all of
the incorrect variations.

Outline of the rest of this paper. Sec. 2 presents an overview of our analysis in a
semi-formal way. Sec. 3 formalizes our analysis using the theory of abstract in-
terpretation [6]. Sec. 4 defines optimizations to the transformers. Sec. 5 evaluates
the effectiveness of our optimizations on realistic benchmarks. Sec. 6 concludes
with discussion of related works. Proofs and elaborations are found in [21].

2 Overview

In this section, we explain our approach informally, using an adaptation of a
very simple example originally constructed to show the limitations of concur-
rent separation logic [19]. We use this example to motivate the need for tracking
thread correlations and show the difficulties in computing postconditions effi-
ciently. Fig. 1 shows a concurrent program with producer threads and consumer
threads communicating via a single-object buffer, b, and a global flag empty. For
simplicity, instead of locks or semaphores, we use the await construct, which
atomically executes the then-clause when the await-condition holds.

2.1 The Need for Thread Correlations

In this example, the system consists of an unbounded number of producer and
consumer threads. Each producer allocates a new object, transfers it to a single
consumer via the buffer, and the consumer uses the object and then deallocates
the object. Our goal is to verify that use(c) and dispose(c) operate on ob-
jects that have not been deallocated. (This also verifies that an object is not
deallocated more than once.)

One way to verify properties of concurrent systems is by establishing a global
invariant on the reachable configurations and show that the invariant entails the
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Boolean empty = true;

Object b = null;

produce() {
[1] Object p = new();

[2] await (empty) then {
b = p; empty = false;

}
[3] }

consume() {
Object c;

// Boolean x;

[4] await (!empty) then {
c = b; empty = true;

}
[5] use(c);

// x = f(c);

[6] dispose(c);

// use(x);

[7] }

Fig. 1. A concurrent program implementing a simple protocol between a producer
thread and a consumer thread transferring objects in a single-element buffer. The
commented out lines are only used and explained in Sec. 4.

required properties (e.g., see [1]). In our program, we need to show that the
following property holds:

∀t . pc[t] ∈ {5, 6} ⇒ a(c[t]) , (1)

where t ranges over threads, pc[t] c[t] denote the program counter and value of
the variable c of thread t, and a(c[t]) is true iff c[t] points to an object that has
not yet been disposed. For simplicity, we assume that the set of local variables
is the same for all threads (and is the union of local variables of all threads).

This verification requires the computation of an inductive invariant that im-
plies (1). In particular, the invariant should guarantee that the dispose command
executed by one consumer thread does not dispose an object used by another
consumer thread and that an object that a producer places in the buffer is not
a disposed object. A natural inductive invariant that implies (1) is:

∀t, e .

⎛⎜⎜⎜⎜⎝
pc[t] ∈ {5, 6} ⇒ a(c[t]) ∧ (i)
¬empty ⇒ a(b) ∧ (ii)
pc[t] = 2 ⇒ a(p[t]) ∧ (iii)
t 	= e ∧ pc[t] = 2 ⇒ p[t] 	= c[e] ∧ (iv)
t 	= e ∧ pc[t] ∈ {5, 6} ⇒ c[t] 	= c[e] (v)

⎞⎟⎟⎟⎟⎠ (2)

This invariant ensures that dispose operations executed by threads cannot affect
locations pointed-to by producer threads that are waiting to transfer their value
to the buffer and also cannot affect the values of other consumer threads that
have not yet disposed their values. Here e is a thread that represents the envi-
ronment in which t is executed. Specifically: (i) describes the desired verification
property; (ii) is the buffer invariant, which is required in order to prove that (i)
holds when a consumer copies the value from the buffer into its local pointer
c; (iii) establishes the producer properties needed to establish the buffer invari-
ant. The most interesting parts of this invariant are the correlation invariants
(iv) and (v), describing the potential correlations between local states of two
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arbitrary threads and the content of the (global) heap. These ensure that the in-
variant is inductive, e.g., (v) ensures that (i) is stable: deallocations by different
threads cannot affect it, if it already holds. Notice that the correlation invariants
cannot be inferred by pure thread-modular approaches. Our work goes beyond
pure thread-modular analysis [8] by explicitly tracking these correlations.

2.2 Automatically Inferring Correlation Invariants

In this paper, we define an abstract interpretation algorithm that automati-
cally infers inductive correlation invariants. The main idea is to infer normalized
invariants of the form:

∀t, e .
n∨

i=1

ϕi[t, e] (3)

where t and e are universally quantified thread variables and ϕi[t, e] are for-
mulas taken from a finite, but usually large, set of candidates. We will refer to
each ϕi[t, e] as a ci-disjunct (Correlation-Invariant Disjunct). As in predicate ab-
straction and other powerset abstractions, the set of ci-disjuncts is computed by
successively adding more ci-disjuncts, starting from the singleton set containing
a ci-disjunct describing t and e in their initial states. For efficiency, ϕi[t, e] are
usually asymmetric in the sense that they record rather precise information on
the current thread t and a rather coarse view of other threads, represented by e.

For this program, we can use conjunctions of atomic formulas describing:
(i) that t and e are different, (ii) the program counter of t; (iii) (in)equalities
between local pointers of t and e, and between local pointers of t and global
pointers; (iv) allocations of local pointers of t and global pointers; and (v) the
value of the Boolean empty.

Thus, the invariant (2) can be written as:

∀t, e .

⎛⎜⎜⎜⎜⎝
t 	= e∧
pc[t] = 5∧
c[t] 	= c[e] ∧ c[t] 	= b ∧ c[e] 	= b∧
a(c[t]) ∧ a(c[e]) ∧ a(b)∧
¬empty

⎞⎟⎟⎟⎟⎠∨
⎛⎜⎜⎜⎜⎝

t 	= e∧
pc[t] = 6∧
c[t] 	= c[e] ∧ c[t] 	= b ∧ c[e] 	= b∧
a(c[t]) ∧ a(c[e]) ∧ a(b)∧
¬empty

⎞⎟⎟⎟⎟⎠
∨

· · ·

(4)

where the ci-disjuncts describe cases of a consumer thread t that copied the value
from the buffer, (which has since been refilled), and has either used the value
locally or not. The other disjuncts are not shown.

2.3 Computing Postconditions Efficiently

The iterative procedure successively adds ci-disjuncts describing the reachable
states after applying an atomic action to the formula representing the current
set of reachable states, until a fixed point is reached. We compute the abstract
transformer for an atomic action by identifying its effect on every ci-disjunct
ϕi[t, e]. This is non-trivial since a transition by one thread can affect the global
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state (and the view of the environment of another thread) and, hence, a ci-
disjunct involving other threads.

To compute the effect of a transition on a ci-disjunct ϕi[t, e], we need to ac-
count for the following three possibilities: (i) The executing thread is t; (ii) The
executing thread is e; or (iii) The executing thread is some other thread ex.
The most challenging case is (iii). In this case, the ci-disjunct does not contain
information about the local state of the executing thread ex. Applying an ab-
stract transformer without any information about ex’s local state can lead to
imprecise results. Instead, we exploit the information available in the current
set of ci-disjuncts. Specifically, the executing thread ex must itself satisfy some
ci-disjunct ϕj [ex, t′]. The situation with case (ii) is similar since only limited
information is available about the environment thread in the ci-disjunct and it
is handled similarly.

Thus, our transformer works as follows: we consider every pair of ci-disjuncts
ϕi and ϕj and apply a “mini-transformer” to this pair. The mini-transformer first
checks to see if the two ci-disjuncts are consistent with each other. (E.g., if they
imply conflicting values for the global variable empty, they cannot correspond to
ci-disjuncts from the same concrete state.) If so, it uses the information available
about the executing thread from ϕi to determine how the global state will change
as a result of the transition, and identifies how that alters ci-disjunct ϕj .

In our experiments, the above abstraction was precise enough to verify the
programs analyzed, yet quite slow. One of the key factors for the inefficiency is
the quadratic explosion in the transformer, as the transformer has to consider
all pairs of ci-disjuncts and the number of ci-disjuncts can become very large.

Our key contributions include effective techniques for making the transformer
more efficient by reducing this quadratic factor in common cases, usually with-
out affecting precision. These techniques are analogous to techniques used in
interprocedural analysis.

In the rest of this section, let us consider the application of the mini-transformer
described above to ci-disjuncts ϕj (corresponding to an executing thread ex) and
ϕi (corresponding to two other threads t and e).

The first optimization technique, called summarizing effects, is based on the
following observation. Typically, ϕi can be expressed in the form ϕp

i ∧ϕr
i , where

ϕr
i (the frame) cannot be affected by the execution of ex. We refer to ϕp

i as the
footprint of ϕi. E.g., purely local properties of t or e will usually be in the frame.
If the transition by ex transforms ϕp

i into ϕp′
i , then the transformation of the

complete ci-disjunct is given by ϕp′
i ∧ ϕr

i . Next, we note that distinct disjuncts
ϕi and ϕk may have the same footprint. In this case, it suffices to compute the
transformation of the footprint only once.

E.g., consider the first two ci-disjuncts of (4). These ci-disjuncts have the same
footprint since they differ only in the program counter value of t which cannot
be altered by the execution of ex. Typically, the number of distinct footprints
created by a set of ci-disjuncts is much smaller than the number of ci-disjuncts,
which leads to significant efficiency gains. This optimization is similar to the
interprocedural analysis technique where information at the calling context not
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modified by the call can be transmitted across the procedure call. In section 4,
we show the conditions under which this technique can be used to make the
transformer more efficient without affecting precision.

The summary abstraction optimization applies to ci-disjunct ϕj and exploits
the locality of the transformer. We abstract away information not used by the
transition from ϕj (corresponding to the executing thread), constructing its foot-
print ϕf

j and use it for the mini-transformer. As distinct ci-disjuncts can have
the same footprint, this decreases the number of ci-disjuncts passed to the mini-
transformer.

One point to note here is that information not used or modified by an atomic
action may still be used by the mini-transformer to check for consistency between
the two ci-disjuncts. If such information is omitted from the footprint, we still
get a sound transformer, though there may be a loss in precision. However, we
found that this heuristic can be used to significantly reduce the computation time
while maintaining a precise-enough abstraction. In general, an analysis designer
can choose the information to be omitted from the footprint appropriately to
achieve the desired tradeoff.

3 An Abstract Interpretation for Correlation Invariants

In this section, we formalize our analysis, which tracks correlations between pairs
of threads, in the framework of abstract interpretation [6].

3.1 The Concrete Semantics (C, TR)

A concurrent program is a parallel composition of concurrently executing threads,
where each thread is associated with an identifier from an unbounded set Tid . The
threads communicate through a global store Glob, which is shared by all threads.
In addition, each thread has its own local store, Loc, which includes the thread’s
program counter. A concrete state of the program consists of a global store and
an assignment of a local store to each thread identifier. We denote the set of all
concrete states by Σ = (Tid → Loc)×Glob and the concrete domain by C = 2Σ .
Given a state σ, let σG represent the global store of σ and let σL[t] represent
the local store of thread t in σ.

The relation tr ⊆ (Loc ×Glob)× (Loc ×Glob) describes a step that a thread
can take, given its local store and a global store. We write x � y as shorthand
for (x, y) ∈ tr . Let σL[t → l] denote a state that is identical to σL, except that
the local store of thread t is l. The concrete transition relation is defined as

TR = {((ρ, g), (ρ[t → l′], g′) | t ∈ T id . (ρ[t], g)� (l′, g′), } . (5)

3.2 The Abstract Semantics (CI , TRCI )

We now present an abstraction to deal with an unbounded number of threads. As
we saw in Sec. 2, tracking information about a single thread in the style of thread-
modular analysis [7] can be imprecise. This motivates the following abstract
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domain. We define an abstraction that records correlations between the local
stores of two different threads and a global store. Let CID ≡ Loc × Glob × Loc
denote the set of such correlations. We will refer to an element of CID as a
ci-disjunct. We define the abstract domain CI to be the powerset 2CID .

The abstraction of a single concrete state is given by

βCI (σ) = {(σL[t], σG, σL[e]) | t, e ∈ Tid , t �= e} . (6)

Note that a ci-disjunct (σL[t], σG, σL[e]) represents the state from the perspective
of two threads: t, which we call the primary thread, and e, which we call the
secondary thread. We say that (σL[t], σG, σL[e]) is a ci-disjunct generated by
threads t and e.

The abstraction of a set of states αCI :C → CI and the concretization γCI :
CI → C are:

αCI (X) ≡
⋃

σ∈X

βCI (σ) , γCI (R) ≡ {σ | βCI (σ) ⊆ R} .

Composing With Other Abstractions. Note that when Loc and Glob are finite
sets, CI gives us a finite abstraction. In Section 3.3, we show how to compose the
above abstraction with a subsequent abstraction to create other finite, tractable,
abstract domains. For the sake of exposition, we first show how to define a sound
transformer for the simple domain CI before we consider such an extension.

An Abstract Transformer. We define the abstract transformer TRCI : CI →
CI as follows:

TRCI (R) ≡
⋃
d∈R

trdirect
CI (d) ∪ TRind

CI (R) . (7)

The function trdirect
CI : CID → 2CID captures the effect of a transition by a thread

t on a ci-disjunct whose primary thread is t. Abusing terminology, if threads tp
and ts satisfy φ(tp, ts), where φ ∈ CID , then after a transition by thread tp, the
threads will satisfy trdirect

CI (φ)(tp, ts).

trdirect
CI (
p, g, 
s) ≡ {(
′p, g′, 
s) | (
p, g)� (
′p, g

′)}. (8)

The function TRind
CI captures what we call the indirect effects : i.e., the effect of

a transition by some thread t on ci-disjuncts whose primary thread is not t. As
a first attempt, let us consider the following candidate definition for TRind

CI :

TRind
CI (R) =

⋃
(�1,g, )∈R,(�2,g,�3)∈R

{(
2, g′, 
3) | (
1, g)� (
′1, g
′)} .

Here, the transition (
1, g) � (
′1, g
′) by one thread changes the global state to

g′. As a result, a ci-disjunct (
2, g, 
3) may be transformed to (
2, g′, 
3). While
the above definition is a sound definition, it is not very precise. In fact, this
definition defeats the purpose of tracking thread correlations because it does
not check to see if the ci-disjunct (
2, g, 
3) is “consistent” with the executing
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ci-disjunct. We say that two ci-disjuncts x and y are consistent if there exists
σ ∈ Σ such that {x, y} ⊆ βCI (σ).

We first define some notation. Let CIMap denote Loc × Glob → 2Loc. Define
function map : CI → CIMap by map(R) ≡ λ(
, g).{
e | (
, g, 
e) ∈ R}. Function
map is bijective and CI and CIMap are isomorphic domains. Given R ∈ CI ,
let R(
, g) ≡ map(R)(
, g) and par(R) ≡ {(
, g, R(
, g)) | ∃
e.(
, g, 
e) ∈ R}.
We refer to an element of par(R) as a cluster. A cluster (e.g., (
1, g, {
2, 
3}))
represents a set of ci-disjuncts with the same first and second component (e.g.,
{(
1, g, 
2), (
1, g, 
3)}). par (R) partitions a set of ci-disjuncts R into clusters.

We define TRind
CI as follows:

TRind
CI (R) =

⋃
ce,ct∈par(R)

tr indirect
CI (ce, ct) . (9)

tr indirect
CI ((
1, g1, e1), (
2, g2, e2)) ≡

if (g1 = g2 ∧ 
1 ∈ e2 ∧ 
2 ∈ e1)
then {(
2, g′1, 
3) | (
1, g1)� (
′1, g′1), 
3 ∈ (e1 ∩ e2) ∪ {
′1}}
else {} .

(10)

The first parameter of tr indirect
CI is a cluster representing the executing thread,

and the second is a cluster representing thread(s) on which we compute the in-
terference. We call this the tracked thread. The if-condition is a consistency check
between two clusters. If the condition is false, then the clusters are inconsistent:
i.e., a ci-disjunct from the first cluster and a ci-disjunct from the second cluster
can not arise from the same concrete state. Hence, the transformer produces no
new ci-disjunct.

Theorem 1 (Soundness). The abstract transformer TRCI is sound, i.e., for
all R ∈ CI , TR(γCI (R)) ⊆ γCI (TRCI (R)) .

Note that the transformer is not guaranteed to be the most-precise transformer [6].
In terms of efficiency, we can see that the expensive part of the transformer is
the application of tr indirect

CI , which operates over pairs of elements in par(R),
requiring a quadratic number of queries to tr .

3.3 Composing with Other Abstractions

In this section, we show how we can compose the abstraction CI defined in the
previous section with other abstractions of Loc and/or Glob to create other, more
tractable, abstract domains. This can be used to create finite state abstractions
even if Loc and/or Glob are infinite-state.

Abstract Domain. Let (2Loc, αP , γP ,LocP ) be a Galois Connection we want to
use to abstract the primary thread’s local state. Let (2Glob, αG, γG,GlobG) be a
Galois Connection we want to use to abstract the global state. Let (2Loc, αS , γS ,
LocS ) be a Galois Connection for abstracting the secondary thread’s local state.

Let ACID = LocP × GlobG × LocS . Let ACI = 2ACID, with the Hoare
powerdomain ordering. (Since ACID is already ordered, it is possible for several
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elements of ACI to represent the same concrete set of states, which we allow
as a convenience.) We use ACI as an abstraction of CI , with the abstraction
function αACI : CI → ACI defined by:

αACI (S) = {(αP({
e}), αG({g}), αS({
t})) | (
e, g, 
t) ∈ S}.
We use the first local store (LocP ) as the primary source of information about
locals.The second local store (LocS ) is used primarily to express correlation
invariants (and to check for consistency between different ci-disjuncts). (This
can be seen in the definition of the abstract transformers presented earlier.)
Thus, in practice, the domain LocP is richer and captures more information
than the domain LocS .

Abstracting basic transitions. Recall that � ⊆ (Loc × Glob) × (Loc × Glob)
represents a single step transition by a thread. Let �a ⊆ (LocP × GlobG) ×
(LocP × GlobG) be a sound abstraction of this relation: i.e., abusing notation,
�a should satisfy γ◦�a ⊇� ◦γ. More precisely, we want

{(x, y) | (
e, ga)�a (
′e, g
′
a), x ∈ γP (
′e), y ∈ γG(g′a)} ⊇

{(
′, g′) | 
 ∈ γP (
e), g ∈ γG(ga), (
, g)� (
′, g′)} .

Abstract Transformer. We now present a sound abstract transformer TRACI for
the domain ACI , which is very similar to the transformer for domain CI defined
in the previous section. In particular, equations 7 and 9 defining the transformer
remain the same as before. The function trdirect is the same as before, except
that � is replaced by �a as follows:

trdirect
ACI (
p, g, 
s) ≡ {(
′p, g′, 
s) | (
p, g)�a (
′p, g

′)}. (11)

The definition of function tr indirect , however, is a bit more complex.
We define the abstract transformer in terms of a sound consistency-check

operation for comparing elements across different abstract domains as follows,
where the indices i and j are either P or S. Let ≈i,j ⊆ Loci ×Locj be such that

γi(x) ∩ γj(y) �= {} ⇒ x ≈i,j y.

We define a corresponding relation ∈i,j ⊆ Loci × 2Locj by

x ∈i,j S iff ∃y ∈ S.x ≈i,j y.

We will omit the indices i, j if no confusion is likely. Informally, x ≈ y indicate
that x and y may represent the same concrete (local) state.

tr indirect
ACI ((
1, g1, e1), (
2, g2, e2)) ≡
let g = g1 � g2 in
{(
2, g′, 
s) | 
1 ∈ e2, 
2 ∈ e1, (
1, g)�a (
′1, g′), (
s ∈ e2 ∧ 
s ∈ e1) ∨ (
s = 
′1)}

(12)
Note that the above definition closely corresponds to equation 10, except that
∈ is replaced by a corresponding sound approximation ∈.

Theorem 2. The abstract transformer TRACI is sound.
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4 Efficiently Computing Indirect Effects

As mentioned earlier, the expensive part of computing transformers is the com-
putation of indirect effects. We now present a couple of techniques for making
this computation more efficient. (The techniques we present are inspired by well-
known optimization techniques used in inter-procedural analysis.)

4.1 Abstracting the Executing Cluster

The computation of indirect effects, tr indirect (ce, ct), determines how a single
transition by a thread e (described by a cluster ce) transforms another cluster
ct (describing the state of another thread t). However, not all of the information
in the clusters ce and ct is directly used in the computation of indirect effects.
This lets us abstract away some of the information, say, from ce to construct
c′e and compute tr indirect (c′e, ct) to determine the indirect effects. We refer to c′e
as the footprint of ce. This helps speed up the computation because different
clusters c1, · · · , ck can have the same footprint cf : in such a case, it is sufficient
to compute the indirect effect due to the single footprint cf , instead of the k
different clusters. We call this technique summary abstraction. The notion of a
footprint can be applied to ci-disjuncts (as in the example below) or, equivalently,
to clusters (as in our formalism).

Example 1. We first illustrate the value of this technique using an example from
the single buffer algorithm in Fig. 1 with the commented lines added. In Fig. 2
every box represents a ci-disjunct. We consider states with 3 threads C1, C2
and C3. The boxes under the column labelled Ci, Cj represents ci-disjuncts
with primary thread Ci and secondary thread Cj. However, not all ci-disjuncts
are shown. The abstraction includes the program counter of the primary thread
(shown in the lower left corner) but not of the secondary thread. ci represents
the value of c in thread Ci: it points to nothing if it is null (the initial value),
and a hollow circle if it points to an allocated object, and a filled circle if it
points to an object that has been deallocated. ci and cj point to different circles
to indicate that they are not aliased. The value of x of thread C1 is shown as
x1 (true) or !x1 (false).

We now consider the transition due to the execution of the statement
dispose(c) by C1. The tracked thread is C2. Fig. 2(a) depicts some of the
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Fig. 2. Abstract states for summary abstraction
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input ci-disjuncts. The ci-disjuncts in the leftmost column differ only in the
value of x1. Fig. 2(b) represents the ci-disjuncts from Fig. 2(a) after the ap-
plication of summary abstraction, which abstracts away x1 (since the executed
statement does not use x). As a result, the two ci-disjuncts of the first column
are now represented by a single footprint. Fig. 2(c) depicts the application of the
transformer to the state obtained by combining two ci-disjuncts (the executing
ci-disjunct C1, C2 and the tracked ci-disjunct C2, C3). Note that the left pro-
gram counter is that of C1, and the right one is that of C2. Finally, Fig. 2(d)
depicts the resulting ci-disjuncts where C2 is the primary thread. ��

We now present a modified version of the transformer TRind
CI that incorporates

this optimization. Let Cluster denote the set of all clusters. Our modified def-
inition is parameterized by a function fpE : Cluster → Cluster that abstracts
away some information from the executing cluster ce to construct its “footprint”
c′e. However, the only property required of fpE for soundness is that fpE (x) � x
(for all x), where the ordering � is the ordering on the domain ACI (treating
a cluster as a set of ci-disjuncts). Given a set S of clusters, let fpE (S) denote
{fpE (c) | c ∈ S}. Given such a function, we define:

TRind
E (R) = ∪e∈fpE (par(R)) ∪t∈par(R) tr indirect

ACI (e, t).

Theorem 3. If for all x, fpE (x) � x, then TRind
E is a sound approximation of

TRind
CI : TRind

E (R) � TRind
CI (R).

Note that analysis designers can define fpE so that the above technique is an op-
timization (with no loss in precision, i.e., tr indirect

E (e, t) = tr indirect (e, t)), or they
can define a more aggressive absraction function that leads to greater speedups
with a potential loss in precision. Thus, the parameter fpE acts as a precision-
efficiency tradeoff switch.

In our implementation, we used a definition of fpE such that fpE (ce) is the
part of ce that is read or written by the executed statement (transition).

4.2 Exploiting Frames for the Tracked Cluster

The technique described above for the executing cluster can be used for the
tracked cluster as well, but with some extensions. The modified technique in-
volves decomposing the tracked cluster ct into two parts: the part cfpt that is
directly used to determine the indirect effect, and the part cfrt that is neither
used nor modifed by the indirect effect. We refer to cfpt as the footprint and to
cfrt as the frame. Unlike in the earlier case, we require the frame now because
the goal of the indirect effect is to determine the updated value of the tracked
cluster. We call this technique summarizing effects.

Example 2. We demonstrate the summarizing effects technique on the algorithm
in Fig. 1. A set of ci-disjuncts are depicted in Fig. 3(a). The notation used is the
same as that in Fig. 2. Consider the execution of dispose(c) by C1. C2 is the
tracked thread. Note that the ci-disjuncts in the third column of Fig. 3(a) differ
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Fig. 3. Abstract states for summarizing effects

only by C2’s program counter. This is also true for the ci-disjuncts in the fourth
column.We define the frame of a ci-disjunct to consist of its program counter
and the footprint to consist of everything else. Fig. 3(b) shows ci-disjuncts after
we replaced the tracked ci-disjunctsby their footprints. Fig. 3(c) shows the appli-
cation of the transformer on the information gathered from all the ci-disjuncts
considered. Fig. 3(d) depicts the states after they are projected back to the CID
domain and before the frame is restored. Finally, we use the frame from Fig. 3(a)
on Fig. 3(d) and get the abstract state in Fig. 3(e). ��
We now present a modified form of our earlier transformer, parameterized by
a couple of functions. Given functions frameT : Cluster → Cluster and fpT :
Cluster → Cluster we define:

TRind
T (R) = let C = par (R) in

let TC = {(fpT (c), frameT (c)) | c ∈ C} in⋃
e∈C

⋃
(p,r)∈TC(r � tr indirect

ACI (e, p)).

Note that the above technique is similar in spirit to the inter-procedural analysis
technique of abstracting away information about the caller that is not visible to
the callee when the callee is analyzed and restoring this information at the return
site (see e.g., [14]). Furthermore, to achieve an efficiency gain with this definition,
we need to save and reuse the value of tr indirect

ACI (e, p) when different clusters
have the same footprint p. This is analogous to the technique of memoization
in interprocedural analysis. In our context, we can capture this by rewriting the
last line of the above definition as follows:⋃

p∈dom(TC)

(∪e∈C tr indirect
ACI (e, p)) ⊗ {r | (p, r) ∈ TC}

where dom(TC) = {p | (p, r) ∈ TC} and S1 ⊗ S2 = {x � y | x ∈ S1, y ∈ S2}..
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Theorem 4. Let frameT and fpT satisfy (for all x, y) (a) fpT (x) � x, (b)
frameT (x) � x, and (c) frameT (x) � tr indirect(y, x). Then, TRind

T is a sound
approximation of TRind

CI : TRind
T (R) � TRind

CI (R).

In our implementation, the local store of the tracked thread is abstracted into
the frame and omitted from the footprint. (For heap-manipulating programs,
any regions of the heap that are private to the tracked thread can be handled
similarly.)

5 Evaluation

We have implemented our ideas in a framework for concurrent shape analysis.
Our implementation may be seen as an instantiation of the framework in Sec. 3.3,
obtained by composing the thread correlation abstraction (in Sec. 3.2) with
TVLA [16], an abstraction for shape analysis, and its extension HeDec [17]. We
use a flow-sensitive and context-sensitive shape analysis. Context sensitivity is
maintained by using call-strings.

We have used our implementation to verify properties such as memory safety,
data structure invariants, and linearizability for several highly concurrent state-
of-the-art practical algorithms.

Our evaluation indeed confirms the need for extra precision in tracking thread
correlations, without which the analysis fails to verify the specified properties.
Our evaluation also confirms the value of the optimizations described in this
paper. Tab. 1 summarizes the verified data structures and the speedups gained
from the use of summarizing effects and summarizing abstraction techniques.
Our benchmarks are all concurrent sets implemented by sorted linked lists. More
details can be found in an accompanying technical report [21].

We analyzed variants of these programs with intentionally added bugs (e.g.,
missing synchronization, changing the synchronization order). Our analysis found
all these bugs and reported a problem (as expected, since our analysis is sound).

Note that the speedup is particularly high for the first two programs (namely
[18] and its optimized variant). These are also the examples where the analysis
took most time. We believe this confirms the non-linear speedups achieved by

Table 1. Experiments performed on a machine with a 2.4Ghz Intel Q6600 32 bit
processor and 4Gb memory running Linux with JDK 1.6

Time (seconds) Speedup
Algorithm Standard Summar. Abs. Both Summar. Abs. Both
Concurrent Set [18] 56,347 19,233 2,402 1,596 2.93 23.46 35.30
Optimized Concurrent Set 46,499 18,981 2,061 1,478 2.45 22.57 31.45
Lazy List Set [10] 963 679 460 390 1.42 2.09 2.47
CAS-based set [23] 13,182 8,710 4,223 2,975 1.51 3.12 4.43
DCAS-based set [23] 861 477 446 287 1.80 1.93 3.00
Hand over Hand Set [12] 686 577 444 398 1.19 1.54 1.73
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the techniques: we optimize a quadratic algorithm, thus we expect to gain more
as the examples become bigger. These algorithms were expensive to analyze
since they were interprocedural, and used a large number of pointer variables
and Boolean fields. Summarizing effects significantly reduced the blow-up due
to context sensitivity and summarizing abstraction was able to reduce blow-ups
due to local Boolean fields.

6 Related Work

In this paper we have presented techniques for speeding up analysis (abstract in-
terpretation) of concurrent programs. One of the recent works in this area is [7],
which presents the idea of thread-modular verification for model checking sys-
tems with finitely-many threads. However, in many natural examples tracking
correlations between different thread states is necessary, and our work focuses
on abstractions that track such correlations. The work on Environment Abstrac-
tion [5] presents a process-centric abstraction framework that permits capturing
thread-correlations. Our abstract domain is similar in spirit. The novelty of our
work, however, is in the definition of the transformers and its optimizations, and
its application to concurrent shape analysis.

Resource invariants [19] enable the use of thread-modular analysis to verify
concurrent programs without tracking thread correlations. One of the challenges
in automating such verification is inferring resource invariants. [8] and [3]
present techniques for inferring resource invariants. These techniques apply to
programs with coarse-grained concurrency. Our implementation, however, han-
dles fine-grained concurrency, including non-blocking or lock-free algorithms. [4],
and more recently [22], present semi-automated algorithms for verifying pro-
grams with fine-grained concurrency, using a combination of separation-logic,
shape abstractions, and rely-guarantee reasoning. While powerful, this approach
requires programmers to provide annotations describing the abstract effects of
the atomic statements of a thread.

The abstract states in our analysis represent quantified invariants. Quantified
invariants have been previously used in Indexed Predicate Abstraction [15] and
in Environment Abstraction [5]. A similar quantified invariants approach has also
been used in the analysis of heap properties [20] and properties of collections [9]
in sequential programs.

The work described in this paper is a continuation of [2]. The new contribu-
tions of this paper are: we introduce a new, simple, abstract domain for captur-
ing correlations between pairs of threads and systematically study the question
of defining a precise, yet efficient, transformer for this domain, and present new
techniques for computing transformers efficiently for this domain; we also present
an empirical evaluation of our approach that shows that our techniques lead to
a dramatic reduction in verification time (compared to our earlier work) while
still being able to prove the same properties.
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Abstract. Context-sensitive points-to analysis is critical for several pro-
gram optimizations. However, as the number of contexts grows exponen-
tially, storage requirements for the analysis increase tremendously for
large programs, making the analysis non-scalable. We propose a scal-
able flow-insensitive context-sensitive inclusion-based points-to analysis
that uses a specially designed multi-dimensional bloom filter to store
the points-to information. Two key observations motivate our proposal:
(i) points-to information (between pointer-object and between pointer-
pointer) is sparse, and (ii) moving from an exact to an approximate
representation of points-to information only leads to reduced precision
without affecting correctness of the (may-points-to) analysis. By using
an approximate representation a multi-dimensional bloom filter can sig-
nificantly reduce the memory requirements with a probabilistic bound
on loss in precision. Experimental evaluation on SPEC 2000 benchmarks
and two large open source programs reveals that with an average storage
requirement of 4MB, our approach achieves almost the same precision
(98.6%) as the exact implementation. By increasing the average mem-
ory to 27MB, it achieves precision upto 99.7% for these benchmarks.
Using Mod/Ref analysis as the client, we find that the client analysis
is not affected that often even when there is some loss of precision in
the points-to representation. We find that the NoModRef percentage is
within 2% of the exact analysis while requiring 4MB (maximum 15MB)
memory and less than 4 minutes on average for the points-to analysis.
Another major advantage of our technique is that it allows to trade off
precision for memory usage of the analysis.

1 Introduction

Pointer analysis enables many compiler optimization opportunities and remains
as one of the most important compiler analyses. For client analyses, both preci-
sion and speed of the underlying pointer analysis play a vital role. Several context-
insensitive algorithms have been shown to scale well for large programs [1][2][3][4].
However, these algorithms are significantly less precise for real world programs
compared to their context-sensitive counterparts[5][6][7][8]. Unfortunately,
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context-sensitive pointer analysis improves precision at the cost of high — often
unacceptable — storage requirement and analysis time. These large overheads
are an artifact of the large number of contexts that a program might have. For
example, the SPEC2000 benchmark eon has 19K pointers if we do not consider
context information but the number increases to 417K pointers if we consider all
context-wise pointers. Scaling a context sensitive points-to analysis is therefore
a challenging task. Recent research (see Related Work in Section 5) has focused
on the scalability aspect of context-sensitive points-to analysis and achieves mod-
erate success in that direction[9][4]. However, the memory requirements are still
considerably large. For instance, in [9], most of the larger benchmarks require over
100 MB for points-to analysis. Hence, scalability still remains an issue. Also, none
of the current analyses provide a handle to the user to control the memory usage
of a points-to analysis. Such a feature will be useful when analyzing a program in
a memory constrained environment.

The objective of a context-sensitive points-to analysis is to construct, for each
pointer and context, a set containing all the memory locations (pointees) that the
pointer can point to in that context. This paper proposes a new way of representing
points-to information using a special kind of bloom filter[10] that we call a multi-
dimensional bloom filter.

A bloom filter is a compact, and approximate, representation (typically in the
form of bit vectors) of a set of elements which trades off some precision for signifi-
cant savings in memory. It is a lossy representation that can incur false positives,
i.e., an element not in the set may be answered to be in the set. However, it does
not have false negatives, i.e., no element in the set would be answered as not in
the set. To maintain this property, the operations on a bloom filter are restricted
so that items can only be added to the set but can never be deleted1. Our motiva-
tion for using bloom filters for context-sensitive flow-insensitive points to analysis
stems from the following three key observations.

– Conservative static analysis: As with any other compiler analysis, static
points-to analysis tends to be conservative as correctness is an absolute re-
quirement. Thus, in case of static may-points-to analysis, a pointer not point-
ing to a variable at run time can be considered otherwise, but not vice-versa.
As a bloom filter does not have false negatives, a representation that uses
bloom filters is safe. A bloom filter can only (falsely) answer that a pointer
points to a few extra pointees. This only makes the analysis less precise and
does not pose any threat to correctness. Further, as a bloom filter is designed
to efficiently trade off precision for space it is an attractive representation to
enable scalability of points-to analysis.

– Sparse points-to information: The number of pointees that each context-
wise pointer (pointer under a given context) actually points to is many orders
of magnitude less than both the number of context-wise pointers and the total
number of potential pointees. Hence, though the points-to set can potentially
be very large, in practice, it is typically small and sparse. A bloom filter is

1 Some modified bloom filter structures[11] have been proposed that can support dele-
tion but they do so at the expense of introducing false negatives.
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ideally suited to represent data of this kind. When the set is sparse, a bloom
filter can significantly reduce the memory requirement with a probabilistically
low bound on loss in precision.

– Monotonic data flow analysis: As long as the underlying analysis uses a
monotonic iterative data flow analysis, the size of the points-to set can only
increase monotonically. This makes a bloom filter a suitable choice as mono-
tonicity guarantees that there is no need to support deletions.

The above observations make a bloom filter a promising candidate for represent-
ing points-to information. However, using the bloom filter as originally proposed
in [10] is not efficient for a context sensitive analysis. We therefore extend the ba-
sic bloom filter to a multi-dimensional bloom filter (multibloom) to enable efficient
storage and manipulation of context aware points-to information. The added di-
mensions correspond to pointers, calling contexts, and hash functions. The bloom
filter is extended along the first two dimensions (pointers and calling contexts) to
support all the common pointer manipulation operations (p = q, p = &q, p = ∗q
and ∗p = q) and the query operation DoAlias(p, q) efficiently. The third dimen-
sion (hash functions) is essential to control loss in precision. We theoretically show
and empirically observe that larger the number of hash functions, lower is the loss
in precision. In effect, multibloom significantly reduces the memory requirement
with a very low probabilistically bound loss in precision. The compact represen-
tation of points-to information allows the context sensitive analysis to scale well
with the program size.

The major contributions of this paper are:

– We propose a multi-dimensional bloom filter (multibloom) that can compactly
represent the points-to information with almost no loss in precision.

– Using extended bloom filter operations, we develop a context-sensitive flow-
insensitive points-to analysis for C programs in the LLVM compilation
infrastructure.

– We show that by using multibloom, a user can control the total memory re-
quirement of a compiler analysis, unlike in most other analyses.

– We demonstrate the effectiveness of multibloom through experimental evalu-
ation on 16 SPEC 2000 benchmarks and 2 real world applications. With less
than 4MB memory on average (maximum 15MB), multibloom achieves more
than 98% precision, taking less than 4 minutes per benchmark on average.

– We also evaluate precision of a client Mod/Ref analysis. We find that using
multibloom, the NoModRef percentage is within 1.3% of the exact analysis
while requiring 4MB memory and 4 minutes on average for the points-to
analysis.

2 Background

Generalpurpose languages likeCposemany challenges to the compiler community.
Use of pointers hinders many compiler optimizations. Pointers with multiple indi-
rections,pointers to functions, etc. only add to these challenges. For analyzing such
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void main() {
  S1: p1 = f(&x);
        p3 = p1;
  S2: p2 = f(&y);
}

int *f(int *a) {

  S3: u = g(&x);
  S4: v = g(&y);
         return a;
}

int *g(int *b) {
       return b;
}

       int *u, *v;

g

f

main

ggg

f

S1 S2

S3 S4 S3 S4

Fig. 1. Example program and its invocation graph

complicated programs, however, it is sufficient to assume that all pointer state-
ments in the program are represented using one of the four basic forms: address-of
assignment (p = &q), copy assignment (p = q), load assignment (p = ∗q) and
store assignment (∗p = q)[12] (we describe how these statements are handled by
our analysis in Section 3). Our analysis handles all aspects of C (including recur-
sion), except variable number of arguments.

2.1 Context-Sensitive Points-to Analysis

A context-sensitive points-to analysis distinguishes between various calling con-
texts of a program and thus, is able to more accurately determine the points-to
information compared to the context-insensitive version [5]. This precision, how-
ever, comes at a price: storing the number of contexts, which is huge in a large
C program. Consider the example program and its invocation graph shown in
Figure 1. The invocation graph shows that for different contexts, function f has 2
instances and function g has 4 instances. The number of distinct paths from main
to the leaf nodes in the graph is equal to the number of different contexts the pro-
gram has. In general, the number of contexts in a program can be exponential in
terms of the number of functions. For instance, the number of methods in the open
source program pmd is 1971, but it has 1023 context-sensitive paths[9]. Therefore,
for a context-sensitive points-to analysis, the number of points-to tuples can be
exponential (in the number of functions in the program). The exponential blow
up in the number of contexts, typically results in an exponential blow up in the
storage requirement for exact representation of context-wise points-to tuples.

Reducing the storage requirements of a context-sensitive points-to analysis has
attracted much research in pointer analysis. Several novel approaches have been
proposed for scalable pointer analyses (see Section 5 for related work). Despite
these advances, absolute values of memory and time required are substantially
high. For instance, in [9], all the benchmarks having more than 10K methods
(columba, gantt, jxplorer, jedit, gruntspud) require over 100MB of memory. For
the benchmarks we evaluate, we find that the number of pointers increases by 1
or 2 orders of magnitude if we track them in a context-wise manner. So it is pos-
sible that the memory and time requirements of a context-sensitive analysis will
be a few orders of magnitude higher than a context insensitive analysis.

Our goal, in this paper, is to reduce this storage and execution time requirement
of a context-sensitive points-to analysis. This is achieved by using a variant of
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bloom filter, which sacrifices a small amount of precision. As we shall see in the
next subsection, once the user fixes the size of a bloom filter, he/she can estimate
a probabilistic bound on the loss in precision as a function of the average number
of pointees of a pointer (in a given context).

2.2 Bloom Filter

A bloom filter is a probabilistic data structure used to store a set of elements and
test the membership of a given element[10]. In its simplest form, a bloom filter is
an array of N bits. An element e belonging to the set is represented by setting the
kth bit to 1, where h(e) = k and h is the hash function mapping element e to kth

bit. For instance, if the hash function is h1(e) = (3∗e+5)%N , and if N = 10, then
for elements e = 13 and 100, the bits 4 and 5 are set. Membership of an element
e is tested by using the same hash function. Note that element 3 also hashes to
the same location as 13. This introduces false positives, as the membership query
would return true for element 3 even if it is not inserted. Note, however, that there
is no possibility of false negatives, since we never reset any bit.

The false positive rate can be reduced drastically by using multiple hash func-
tions. Thus, if we use two hash functions for the above example, with h2(e) =
(�e/2�+ 9)%N , then the elements e = 13, 100 get hashed to bits 5, 9. Note that
a membership query to 3 would return false as location 0 (corresponding to h2(3))
is 0, even though location 4 (corresponding to h1(3)) is set. Thus, using multiple
hash functions the false positives can be reduced.

The false positive rate P for a bloom filter of size N bits after n elements are
added to the filter with d hash functions is given by Equation 1 (from [10]).

P =
(1/2)d

(1 − nd
N

)
(1)

This is under the assumption that the individual hash functions are random and
different hash functions are independent. Unlike traditional data structures used
in points-to analysis[5][8], time to insert elements in a bloom filter and to check
for their membership is independent of the number of elements in the filter.

3 Points-to Analysis Using Bloom Filters

A points-to tuple 〈p, c, x〉 represents a pointer p pointing to variable x in calling
context c. A context is defined by a sequence of functions and their call-sites. A
naive implementation stores context-sensitive points-to tuples in a bloom filter by
hashing the tuple 〈p, c, x〉 and setting that bit in the bloom filter. This simple oper-
ation takes care of statements only of the form p = &x. Other pointer statements,
like p = q, p = ∗q, and ∗p = q require additional care. For example, for handling
p = q type of statements, the points-to set of q has to be copied to p. While bloom
filter is very effective for existential queries, it is inefficient for universal queries
like “what is the points-to set of pointer p under context c?”.
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One way to solve this problem is to keep track of the set of all pointees (objects).
This way, the queryFindPointsTo(p, c) to find the points-to set for a pointer p un-
der context c is answered by checking the bits that are set for each of the pointees.
Although this is possible in theory, it requires storing all possible pointees, making
it storage inefficient. Further, going through all of them every time to process a
p = q operation makes this strategy time inefficient. Further complications arise
if we want to support a context-sensitive DoAlias query. Therefore, we propose an
alternative design that has more dimensions than a conventional bloom filter in
order to support the pointer operations.

3.1 Multi-dimensional Bloom Filter

Our proposed multi-dimensional bloom filter (multibloom) is a generalization of
the basic bloom filter introduced in Section 2.2. It has 4 dimensions, one each for
pointers, contexts, hash functions and a bit vector along the fourth dimension. It
is represented as mb[P ][C][D][B]. The configuration of a multibloom is specified
by a 7-tuple 〈P,C,D,B,Mp,Mc, H〉where P is the number of entries for pointers,
C is the number of entries for contexts, D is the number of hash functions, B is the
bit-vector size for each hash function, Mp is the function mapping pointers, Mc is
the function mapping contexts and H is the family of hash functions. The first 4
entries (P,C,D,B) denote the number of unique values that can be taken along
each dimension. For example C = 16 would mean that the multibloom has space
for storing the pointee set for 16 contexts in which a pointer is accessed. We will
have to map every context of a given pointer to one among 16 entries. The total size
of the structure is Size = P × C× D× B. Functions Mp and Mc map the pointer
p and context c to integers Pidx and Cidx in the range [0, P − 1] and [0, C − 1]
respectively. A family of hash functions H=(h1, h2, · · · , hD) map the pointee x to
D integersHidx1, Hidx2, · · · , HidxD respectively. These play the same role as the
hash functions in Section 2.2.

Given a points-to tuple 〈p, c, x〉, it is entered into the multibloom as follows.
Pidx, Cidx and (Hidx1, Hidx2, · · · , HidxD) are obtained using Mp, Mc and H
respectively. The tuple is added to multibloom by setting the following D bits:

mb [Pidx] [Cidx] [i] [Hidxi] = 1, ∀i ∈ [1, D]

Extending BloomFilter Operations for p = q Statement. While processing
p = q type of statement under context c, all we need to do is to find the B × D
source bits from the multibloom that correspond to pointer q under the context
c and bitwise-OR it with the B × D destination bits corresponding to pointer p
under context c. This logically copies the pointees of q on to p without having to
universally quantify all the pointees that q points to. The pseudo-code is given in
Algorithm 1.

Example. Consider the program fragment given in the first column of Figure 2.
Consider a multibloom with configuration

〈P,C,D,B,Mp,Mc, H〉 = 〈3, 1, 2, 8, I, C0, (h1, h2)〉
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Algorithm 1. Handling statement p = q under context c in multibloom, with D
hash functions and a B bit vector

Pidxsrc = Mp [q], Cidxsrc = Mc [c]
Pidxdst = Mp [p], Cidxdst = Mc [c]
for i = 1 to D do

for j = 1 to B do
mb [Pidxdst] [Cidxdst] [i] [j] = mb [Pidxdst] [Cidxdst] [i] [j]

∨ mb [Pidxsrc] [Cidxsrc] [i] [j]
end for

end for

p3 = p1 1
1

1
1

p1 = &x p1 h1
h2

1
1

p2 = &y p2 h1
h2

1
1

p3 = p2
1
1

p3
h1

h2

No change.

No change.

No change.

1 1
1 1

p3 h1

h2

h1

h2
p2

iteration 1 iteration 2

p2 = p3 p2

p3

h1

h1

h2

h2

statement

Fig. 2. Example program to illustrate points-to analysis using bloom filters. First col-
umn shows the program statements. Later columns show the state of bloom filters for
different pointers after successive iterations over constraints until a fix-point is reached.

The map Mp is an identity function I that returns a different value for p1, p2 and
p3. The two hash functions h1 and h2 are defined as h1(x) = 0, h2(x) = 5, h1(y) =
3 and h2(y) = 3. C0 maps every context to entry 0, since C = 1. As there is only
one entry for context and each statement modifies one pointer, we illustrate the
multibloom as 3 bloom filters. For clarity, we depict the multibloom as multiple 2-
dimensional arrays in Figure 2. Initially, all the bits in the buckets of each pointer
are set to 0. The state of bloom filters after every iteration (the analysis is flow-
insensitive) for the example code is shown in Figure 2.

Extending Bloom Filter Operations for ∗p = q and p = ∗q. There are two
ways to handle statements of the form ∗p = q and p = ∗q. One way is to extend
the above strategy by adding more dimensions to the multibloom. This is exten-
sible to multiple levels of indirection. This strategy would add more dimensions
to our 4-dimensional bloom filter, one for each pointer dereference. Clearly, this
adds to storage and analysis time requirements. The second way is to conserva-
tively assume that a pointer to a pointer points to the universal set of pointees
and process the statement conservatively. The number of pointers to pointers is
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much less in programs compared to single-level pointers. Therefore, depending on
the application, one may be willing to lose some precision by this conservative
estimate. To obtain a good balance of storage requirement, analysis time and pre-
cision, we employ a combination of the above two techniques. We extend multi-
bloom for two-level pointers (**p) and use the conservative strategy (universal
set of pointees) for higher-level pointers (***p, ****p and so on). The conservative
strategy results in little precision loss considering that less than 1% of all dynamic
pointer statements contain more than two levels of pointer indirections (obtained
empirically).

Extending multibloom for two-level pointers makes it look like
mb[P ][S][C][D][B] where S is the number of entries for pointers that are pointees
of a two-level pointer. For single-level pointers, S is 1. For two-level pointers S is
configurable. For higher-level pointers S is 1 and an additional bit is set to indicate
that the pointer points to the universal set of pointees.

To handle load statement p = ∗q where p is a single-level pointer and q is a
two-level pointer, all the cubes mb[Q][i] (i.e., C × D × B bits) corresponding to
pointer q, ∀i = 1..S are bitwise-ORed to get a resultant cube. Note that S = 1
for the result, i.e., the result is for a single-level pointer. This cube is then bitwise-
ORed with that of p, i.e., withmb[P ][1]. This makes p point to the pointees pointed
to by all pointers pointed to by q.

To handle store statement ∗q = p where p is a single-level pointer and q is a
two-level pointer, the cube mb[P ][1] of p is bitwise-ORed with each cube mb[Q][i]
of q, ∀i = 1..S. It makes each pointer pointed to by q point to the pointees pointed
to by p.

Handling context-sensitive load/store statements requires a modification to
address-of assignment p = &q. If p is a two-level pointer, then to process the
address-of statement in context c, D × B bits of q are bitwise-ORed with D × B
bits of p in the appropriate hash entry for q (see example below).

For mapping a pointer onto the range 1..S, we need a mapping function Ms.
The multibloom configuration is thus extended to include S and Ms.

Example. Consider the program fragment given in the first column of Figure 3.
Consider a multibloom with configuration

〈P, S,C,D,B,Mp,Ms,Mc, H〉 = 〈5, 2, 1, 1, 8, I, hs,−, (h)〉
The map Mp is an identity function I that returns a different value for p1 through
p5 The hash function h is defined as h(x) = 1 and h(y) = 4. The mapping func-
tion hs is defined as hs(p1) = 1 and hs(p2) = 2. Initially, all bits in the buck-
ets for each pointer are set to 0. The state of bloom filters after each statement
is processed is shown in the second column of Figure 3. Third column describes
the multibloom operation. Note that the above strategy of using an additional
dimension for two-level pointers can be extended to include more dimensions to
accommodate higher-level pointers.

Storage Requirement of Multibloom. A quick analysis explains why multi-
bloom is space efficient. Consider the SPEC 2000 benchmark parser which has
about 10K pointers and an average of 3 pointees per context-wise pointer, on an
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p1 = &x
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comments.

set bit 1 corresponding to x.
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bitwise−OR p2’s bucket.

bitwise−OR with p5’s bucket.
bitwise−OR p3’s buckets,

bitwise−OR corresponding 
buckets of p3 and p4.

Fig. 3. Example program to illustrate handling load/store statements. First column
shows the program statements. Second column shows the bloom filter state after each
statement is processed. Third column describes the multibloom operation.

average about 16 contexts per pointer, and around 20% two- or higher-level run-
time pointer-statements. Consider a multibloom with P = 10K, S = 5, C =
8, D = 8 and B = 50. The total memory requirement for the multibloom is
10K × (0.2 × 5 + 0.8 × 1) × 8 × 8 × 50 bits = 4.32MB. This is much less than
what a typical analysis would require, which is at least a few tens of megabytes
for a program having 10K pointers.

To measure the false positive rate we will now try to map the values back from
a 4-dimensional multibloom to a 2-dimensional bloom filter so that we can apply
Equation 1. As there are 16 contexts on an average per pointer andC = 8, on aver-
age 2 contexts would map to a given context bin. Therefore the number of entries
per bloom filter would be twice the average number of pointees per context-wise
pointer. Now assuming the representation across pointers is more or less uniform,
we can use the equation with N = B × D = 400, d = D = 8, n = 3 × 2 = 6
(average number of contexts per bin multiplied by average number of pointees per
context-wise pointer). This gives a false positive rate of 0.5% per Equation 1. In
practice we find that the loss in precision is not perceivable at all. The NoAlias
percentage, a metric used in [13] (explained in Section 4), in this case for the ap-
proximate representation is exactly the same as that for an exact representation
which takes significantly higher amounts of memory.

3.2 Querying the Multibloom

The ultimate goal of alias analysis is to answer whether two pointers p and q alias
with each other either in a specific calling context or in a context-insensitive man-
ner. We describe below how multibloom can be used to answer these queries.

Context-Sensitive Query. A context-sensitive query is of type
DoAlias(q1, q2, c). To answer this query we need to first extract the B×D bit sets
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Algorithm 2. Handling context-sensitive DoAlias(q1, q2, c)
Pidxq1 = Mp [q1], Cidxq1 = Mc [c]
Pidxq2 = Mp [q2], Cidxq2 = Mc [c]
for i = 1 to D do

hasPointee = false
for j = 1 to B do

if mb [Pidxq1] [Cidxq1] [i] [j] == mb [Pidxq2] [Cidxq2] [i] [j] == 1 then
hasPointee = true
break

end if
end for
if hasPointee == false then

return NoAlias
end if

end for
return MayAlias

Algorithm 3. Handling context-insensitive DoAlias(q1, q2)
for c = 1 to C do

if DoAlias(q1, q2, c) == MayAlias then
return MayAlias

end if
end for
return NoAlias

that belong to q1 and q2 under the context c. For each hash function the algorithm
needs to determine if the corresponding bit vectors have at least one common bit
with the value 1. If no such bit exists for any one hash function, then q1 and q2
do not alias. The pseudo-code is given in Algorithm 2. Note that this procedure is
for single level pointers. In case q1 and q2 are higher-level pointers, the outermost
for-loop of the procedure needs to be run for each value of s where s ∈ [1..S].

Context-Insensitive Query. A context-insensitive query will be of type
DoAlias(q1, q2). The query is answered by iterating over all possible values of the
context c and calling the context-sensitive version of DoAlias: DoAlias(q1, q2, c).
Only if under no context do q1 and q2 alias, it concludes that there is no alias. The
pseudo-code is shown in Algorithm 3.

4 Experimental Evaluation

4.1 Implementation Details and Experimental Setup

All our implementation is done in the LLVM compiler infrastructure[13] and the
analysis is run as a post linking phase. We implement two points-to analyses, one
which has an exact representation (without false positives) of the points-to set
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and the other uses our proposed multiblooom representation. For an exact repre-
sentation we store pointees per context for a pointer using STL vectors[14]. Both
versions are implemented by extending Andersen’s algorithm [15] for context-
sensitivity. They are flow-insensitive and field-insensitive implementations that
use an invocation graph based approach. Each aggregate (like arrays and struc-
tures) is represented using a single memory location. Neither version implements
optimizations like offline variable substitution[16].

Table 1. Benchmark characteristics

Bench KLOC Total Pointer No. of
-mark Inst Inst Fns
gcc 222.185 328425 119384 1829
perlbmk 81.442 143848 52924 1067
vortex 67.216 75458 16114 963
eon 17.679 126866 43617 1723
httpd 125.877 220552 104962 2339
sendmail 113.264 171413 57424 1005
parser 11.394 35814 11872 356
gap 71.367 118715 39484 877
vpr 17.731 25851 6575 228
crafty 20.657 28743 3467 136
mesa 59.255 96919 26076 1040
ammp 13.486 26199 6516 211
twolf 20.461 49507 15820 215
gzip 8.618 8434 991 90
bzip2 4.650 4832 759 90
mcf 2.414 2969 1080 42
equake 1.515 3029 985 40
art 1.272 1977 386 43

Table 2. Sensitivity to parameter S

Bench Memory (KB) Precision
-mark S=1 S=5 S=1 S=5
gcc 220973 302117.00 84.2 85.3
perlbmk 99346.9 143662.00 89.3 90.6
vortex 44756.4 62471.00 91 91.5
eon 108936 131552.00 96.3 96.8
httpd 221633 233586.00 92.8 93.2
sendmail 122310 127776.00 90.2 90.4
parser 23511.4 43093.10 97 98
gap 74914.8 84551.70 96.7 97.4
vpr 15066.4 23676.60 93.6 94.2
crafty 10223.9 10891.20 96.9 97.6
mesa 50389.7 55066.90 99.2 99.4
ammp 12735.8 15282.90 99.1 99.2
twolf 29037.2 33663.10 99.1 99.3
gzip 2807 3005.9 90.6 90.9
bzip2 2128.51 2333.82 87.7 88
mcf 2122.09 3758.17 94.5 94.5
equake 2245.6 3971.50 97.6 97.7
art 1090.72 1693.82 88.6 88.6

We evaluate performance over 16 C/C++ SPEC 2000 benchmarks and two
large open source programs: httpd and sendmail. Their characteristics are given in
Table 1. KLOC is the number of Kilo lines of code, Total Inst is the total number of
static LLVM instructions, Pointer Inst is the number of static pointer-type LLVM
instructions and No. of Fns is the number of functions in the benchmark. The
LLVM intermediate representations of SPEC 2000 benchmarks and open source
programs were run using opt tool of LLVM on an Intel Xeon machine with 2GHz
clock, 4MB L2 cache and 3GB RAM. To quantify the loss in precision with a
multibloom implementation, we use the NoAlias percentage metric used in LLVM.
It is calculated by making a set of alias queries for all pairs of pointer variables
within each function in a program and counting the number of queries that re-
turn NoAlias. Larger the NoAlias percentage, more precise is the analysis (upper
bounded by the precision of the exact analysis).

We evaluate the performance of a multibloom for many different configurations
and compare it with the exact implementation. In all evaluated configurations we
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Table 3. Precision (NoAlias %) vs Memory (in KB). OOM means Out Of Memory.

Precision (NoAlias %) Memory (KB)
Bench multibloom multibloom
-mark exact 4-4-10 8-8-10 8-12-50 8-16-100 exact 4-4-10 8-8-10 8-12-50 8-16-100

tiny small medium large tiny small medium large
gcc OOM 71.8 79.6 83.4 85.3 OOM 3956 15445 113577 302117
perlbmk OOM 75.3 85.0 89.3 90.6 OOM 1881 7345 54008 143662
vortex OOM 85.7 90.1 91.2 91.5 OOM 818 3194 23486 62471
eon 96.8 81.5 88.9 94.3 96.8 385284 3059 11942 87814 233586
httpd 93.2 90.1 92.1 92.9 93.2 225513 1673 6533 48036 127776
sendmail 90.4 85.6 88.2 90.3 90.4 197383 1723 6726 49455 131552
parser 98.0 65.8 97.3 97.9 98.0 121588 565 2204 16201 43094
gap 97.5 88.2 93.5 96.7 97.4 97863 1107 4323 31786 84552
vpr 94.2 85.9 93.9 94.1 94.2 50210 310 1211 8901 23677
crafty 97.6 97.1 97.6 97.6 97.6 15986 143 557 4095 10892
mesa 99.4 89.6 96.6 99.1 99.4 8261 721 2816 20702 55067
ammp 99.2 98.4 99.0 99.2 99.2 5844 201 782 5746 15283
twolf 99.3 96.7 99.1 99.3 99.3 1594 441 1721 12656 33664
gzip 90.9 88.8 90.5 90.8 90.9 1447 42 164 1205 3205
bzip2 88.0 84.8 88.0 88.0 88.0 519 31 120 878 2334
mcf 94.5 91.3 94.3 94.5 94.5 220 50 193 1413 3759
equake 97.7 96.9 97.7 97.7 97.7 161 52 204 1494 3972
art 88.6 86.6 88.4 88.6 88.6 42 23 87 637 1694

allow the first dimension (P ) to be equal to the number of unique pointers. We
empirically found that the number of entries S for pointers pointed to by two-level
pointers gives a good trade off between memory and precision for S = 5. The hash
familyH , the context mapperMc and the pointer-location mapperMs are derived
from the in-built pseudo random number generator. Many different combinations
were tried for the other three dimensions: C = (4, 8, 16), B = (10, 20, 50, 100)
and D = (4, 8, 12, 16). From now on, when we report the results, we refer to the
multibloom configuration by the tuple (C −D−B). Below we report the results
for select configurations that showed interesting behavior.

4.2 Tradeoff between Precision, Memory and Analysis Time

In Tables 3-4 we report the precision, time and memory requirements for various
benchmarks. We compare 4 different multibloom configurations namely tiny t (4-
4-10), small s (8-8-10),mediumm (8-12-50) and large l (8-16-100)with exact which
does not have any false positives.

Three out of the 18 benchmarks run out of memory when we run an exact analy-
sis, highlighting the need for a scalable context-sensitive points-to analysis. All the
multibloom configurations ran to completion successfully for these three bench-
marks. The tiny configuration indicates significant reduction in both memory and
analysis time. The memory requirement is three orders less, while the access time
is reduced to about one-fourth for all benchmarks which take at least 20 seconds.
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Table 4. Precision (NoAlias %) vs Time (in sec). OOM means Out Of Memory. t is tiny,
s is small, m is medium and l is large configuration.

Precision (NoAlias %) Time (s)
Bench multibloom multibloom
-mark exact t s m l exact t s m l
gcc OOM 71.8 79.6 83.4 85.3 OOM. 791.705 3250.627 10237.702 27291.303
perlbmk OOM 75.3 85.0 89.3 90.6 OOM. 76.277 235.207 2632.044 5429.385
vortex OOM 85.7 90.1 91.2 91.5 OOM. 95.934 296.995 1998.501 4950.321
eon 96.8 81.5 88.9 94.3 96.8 231.166 39.138 118.947 1241.602 2639.796
httpd 93.2 90.1 92.1 92.9 93.2 17.445 7.180 15.277 52.793 127.503
sendmail 90.4 85.6 88.2 90.3 90.4 5.956 3.772 6.272 25.346 65.889
parser 98.0 65.8 97.3 97.9 98.0 55.359 9.469 31.166 145.777 353.382
gap 97.5 88.2 93.5 96.7 97.4 144.181 5.444 17.469 152.102 419.392
vpr 94.2 85.9 93.9 94.1 94.2 29.702 5.104 18.085 88.826 211.065
crafty 97.6 97.1 97.6 97.6 97.6 20.469 2.636 9.069 46.899 109.115
mesa 99.4 89.6 96.6 99.1 99.4 1.472 1.384 2.632 10.041 23.721
ammp 99.2 98.4 99.0 99.2 99.2 1.120 1.008 2.592 15.185 38.018
twolf 99.3 96.7 99.1 99.3 99.3 0.596 0.656 1.152 5.132 12.433
gzip 90.9 88.8 90.5 90.8 90.9 0.348 0.192 0.372 1.808 4.372
bzip2 88.0 84.8 88.0 88.0 88.0 0.148 0.144 0.284 1.348 3.288
mcf 94.5 91.3 94.3 94.5 94.5 0.112 0.332 0.820 5.036 12.677
equake 97.7 96.9 97.7 97.7 97.7 0.224 0.104 0.236 1.104 2.652
art 88.6 86.6 88.4 88.6 88.6 0.168 0.164 0.408 2.404 6.132

The precision (in terms of NoAlias percentage) is within 7% for tiny of an exact
analysis on average. At the other end, medium and large configurations achieve
full precision for all the benchmarks with significant savings in memory require-
ment for those requiring at least 15MB memory. However, this comes at a price
in terms of analysis time. Thus medium and large are good configuration to use
if precision is an absolute requirement. Even for the larger benchmarks they will
lead to termination as they still provide a compact storage.

The small configuration proves to be an excellent trade off point. It achieves
a good precision (within 1.5%) on average and achieves more than 10-fold mem-
ory reduction for benchmarks requiring more than 10MB memory for an exact
analysis. It takes around the same amount of time on benchmarks that terminate
with exact analysis. It should be noted that for smaller benchmarks (mesa, ammp,
twolf, gzip, bzip2, mcf, equake and art) the configuration small requires more time
than exact configuration. However, for larger benchmarks we see significant im-
provements in analysis time using bloom filter. One unique advantage of using
multibloom is the user-control over various parameters to trade off precision for
memory or vice versa. To reduce memory requirement for medium and large, we
experimented with smaller values of S. The results for S = 1 versus S = 5 are given
in Table 2 (memory in KB and precision as NoAlias percentage). We observe that
with at most 1% reduction in average precision, we can obtain around 18% reduc-
tion in average memory requirement. In summary, a multibloom representation
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Fig. 4. Mod/Ref client analysis

guarantees a compact storage representation for context-sensitive points-to anal-
ysis and allows the user to pick the configuration depending on whether analysis
time or accuracy is more desirable.

4.3 Mod/Ref Analysis as a Client to Points-to Analysis

Next we analyze how the loss in precision in the points-to analysis due to false pos-
itives affect the client analyses. We use the Mod/Ref analysis as the client of our
multibloom based points-to analysis. For a query GetModRef(callsite, pointer),
the Mod/Ref analysis checks whether callsite reads or modifies the memory
pointed to by pointer. It has four outcomes: (i) NoModRef: call-site does not read
from or write to memory pointed to by pointer, (ii) Ref: call-site reads from the
memory pointed to by pointer, (iii) Mod: call-site writes to (and does not read
from) the memory pointed to by pointer, and (iv) ModRef: call-site reads from
and writes to the memory pointed to by pointer. ModRef is most conservative
and should be returned when it is not possible to establish otherwise for a safe
analysis. The more precise an approximate points-to analysis the more often will
it answer NoModRef (upper bounded by an exact analysis). Figure 4 shows per-
centage of queries answered NoModRef by the analysis. From the figure, it can be
seen that the NoModRef percentage with multibloom is 96.9% of the exact anal-
ysis even with a tiny configuration. For small configuration, it improves further
to 98.7%. This shows that a client analysis is hardly affected due to loss in preci-
sion by using an approximate representation, while still enjoying the benefits of
reduced memory and time requirements.

An important aspect of using multibloom is the provision of selecting a config-
uration on need basis. For more precise analysis, one can trade off memory and
speed requirements by choosing larger values for C, D and B. For scalable analy-
ses, one can reduce these values trading off some precision.

5 Related Work

Many scalable pointer analysis algorithms are context- and flow-insensitive [1].
As scalability became an important factor with increasing code size, interesting
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mechanisms were introduced to approximate the precision of a full blown context-
sensitive and flow-sensitive analysis. [17] proposed one level flow to improve
precision of context-insensitive, flow-insensitive analyses, still maintaining the
scalability. Later, several inclusion-based scalable analyses were proposed [2][3][4],
based on some novel data structures for points-to analysis like BDD. Similar to
ours, several context-sensitive butflow-insensitive analyses have been recently pro-
posed. Since inclusion-based analyses are costly, several unification-based algo-
rithms were introduced, trading off precision for speed [1], [18]. Several context-
sensitive algorithms proposed earlier [5][6][7][8] are flow-sensitive. Flow-sensitivity
adds to precision but typically makes the analysis non-scalable. The idea of boot-
strapping [19] enables context- and flow-sensitive algorithms to scale.

Various enhancements have alsobeen made to the original Andersen’s inclusion-
based algorithm: online cycle elimination[20] to breakdependence cycles on the fly,
offline variable substitution[16] to reduce the number of pointers tracked during
the analysis, location equivalence[21] and semi-sparse flow-sensitivity[22]. These
enhancements are orthogonal to the usage of bloom filters. One can implement a
points-to analysis with, for instance, online cycle elimination with points-to tuples
stored in bloom filters and enjoy combined benefits.

Several novel data structures have been used in the last decade to scale points-
to analysis, like ROBDD[2][23][9], ZBDD[24]. These data structures store exact
representation of the points-to information and have no false positives. In contrast,
bloom filters are useful for storing information in an approximate way. Also, our
multibloom filter approach provides the user to control the memory requirement
with a probabilistic lower bound on the loss in precision. Optimistic results for
pointer analysis hint that bloom filters would be very useful for other compiler
analyses as well.

6 Conclusions

In this paper we propose the use of multi-dimensional bloom filter for storing
points-to information. The proposed representation, though, may introduce false
positives, significantly reduces the memory requirement and provides a probabilis-
tic lower bound on loss of precision. As our multibloom representation introduces
only false positives, but no false negatives, it ensures safety for (may-)points-to
analysis. We demonstrate the effectiveness of multibloom on 16 SPEC 2000 bench-
marks and 2 real world applications. With average 4MB memory, multibloom
achieves almost the same (98.6%) precision as the exact analysis taking about av-
erage 4 minutes per benchmark. Using Mod/Ref analysis as the client, we find
that the client analysis is not affected that often even with some loss of precision
in points-to representation. Our approach, for the first time, provides user a con-
trol on the memory requirement, yet giving a probabilistic lower bound on the
loss in precision. As a future work, it would be interesting to see the effect of ap-
proximation introduced using bloom filters with the approximations introduced
in control-flow analyses such as kCFA or in unification of contexts.
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Abstract. We propose a method for easily developing efficient programs
for finding optimal sequences, such as the maximum weighted sequence
of a set of feasible ones. We formalize a way to derive efficient algorithms
from naive enumerate-and-choose-style ones by shortcut fusion, which is
a program transformation for eliminating intermediate data structures
passed between functions. In addition, we propose a set of transforma-
tions for exploiting our shortcut fusion law. As an implementation of our
method, we introduce a library for finding optimal sequences. The library
consists of proposed transformations, together with functions useful for
describing desirable sequences, so that naive enumerate-and-choose-style
programs will be automatically improved.

1 Introduction

Suppose that we are preparing an emergency knapsack, in which we would like
to put as many useful items as possible. How can we find the best way to do
this? In fact, this is the 0-1 knapsack problem [1], a problem for finding the
most valuable collection of items among those whose total weight is less than a
limit. The following recurrence equation specifies this problem, where w yields
the weight of each item and ≥value compares collections by the total values of
the items.

knap([ ], u) = []
knap(a : x, u) = if w(a) ≤ u ∧ (a : knap(x, u − w(a))) ≥value knap(x, u)

then a : knap(x, u− w(a)) else knap(x, u)

Given items x and a limit u, knap(x, u) returns the best collection of items, and
memoization of knap brings a well-known dynamic programming algorithm.

We often attempt at efficiently finding the best solution as the case above.
However, it is difficult to develop efficient algorithms, because their correctness
highly depends on details of problems. For example, if we consider a variant of
the 0-1 knapsack problem in which we regard flashlights as more valuable when
there are also spare batteries in the knapsack, the recurrence equation above
is no longer correct. When we want to exclude collections containing too many
items, we cannot naively reuse the recurrence equation, either.

In this paper, we propose a method for easily developing efficient programs
for finding optimal sequences. We consider naive programs in an enumerate-and-
choose manner, such as the following.

knapsack (x, u) = max≥value
(lessWeightedu(subsequences(x)))

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 63–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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This program describes the optimal sequence by three parts: subsequences, which
enumerates all subsequences (subsets) of the items; lessWeightedu, which fil-
ters out sequences that are heavier than the limit; and maximum≥value

, which
chooses the most valuable sequence. From such a naive and inefficient program,
our method derives an efficient one that enumerates only a small number of se-
quences. As a result, we are able to develop efficient programs in the same way,
even for variants of the problem such as the ones mentioned above.

In Sect. 3, we formalize a method for deriving efficient algorithms by short-
cut fusion [2,3]. Given a pair of functions, a producer and a consumer of an
intermediate result, shortcut fusion collapses the producer-consumer pair into a
function by eliminating the intermediate result. We propose a shortcut fusion
law that derives efficient algorithms by fusing a maximization operation with
an enumeration of feasible solutions. In addition, we introduce program trans-
formations for exploiting our shortcut fusion law. From natural descriptions of
optimal sequences, the transformations derive programs for which our shortcut
fusion law is applicable.

In Sect. 4, we introduce a Haskell library for enumerating optimal sequences.
The library consists of proposed transformations, together with functions use-
ful for describing desirable sequences, so that naive enumerate-and-choose-style
programs will be automatically improved. Therefore, users are able to develop
efficient programs with little algorithmic insight. The transformation is imple-
mented using RULES pragma [4], which is an extension of the Glasgow Haskell
Compiler1. The library is available from the author’s website2.

We discuss related works and give a conclusion in Sect. 5. Because of space
limitations, we omit some of the materials, including proofs and examples, which
are available in the technical report [5].

2 Preliminary

2.1 Basic Notions

We basically borrow notations from Haskell [6]. We use lambda notation, and for
example, the identity function id is defined as id def= (λx. x). A function f taking
a value of type A and resulting in a value of type B is written by f ::A→B, for
example, id :: ∀a. a→ a. We omit parentheses for function applications, which
precede operator applications; thus, a+ f x is equivalent to a+ f(x). Operators
might be sectioned, i.e., we write (+) 1 4 or (+4) 1 instead of 1 + 4. (◦) is the
function composition operator and its definition is (f ◦ g) x def= f (g x). We only
consider terminating functions and no undefined value is taken into account.

We consider sequences (lists) constructed from two constructors: the empty
sequence [ ] and the left-extension operator (:). We also consider uniform sets
constructed from the empty set ∅, the singleton operator {·}, and the union
operator (∪). We assume that equality checking is available on set elements. We
use the standard functions shown in Fig. 1.
1 The Glasgow Haskell Compiler: available from http://www.haskell.org/ghc/
2 http://www.ipl.t.u-tokyo.ac.jp/~morihata/DPSH.tar.gz
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fst (a, b) def= a

mapSet f x def= {f a | a ∈ x}
mapList f [ ] def= []
mapList f (a : x) def= f a : mapList f x

snd (a, b) def= b

filterSet p x def= {a | a ∈ x ∧ p a}
foldr f e [ ] def= e

foldr f e (a : x) def= f a (foldr f e x)

Fig. 1. Definitions of Standard Functions

A binary relation ! is called preorder if it satisfies reflexivity ∀a. a ! a and
transitivity ∀a b c. (a ! b ∧ b ! c) ⇒ a ! c. A preorder ! is said to be total if
∀a b. a ! b∨ b ! a holds. A preorder ∼ is called equivalence relation if it satisfies
symmetry a ∼ b ⇒ b ∼ a. Given a preorder !, we associate a dictionary order
(also called lexicographic order) !∗ in the way that [ ] !∗ y holds for any y and
(a : x) !∗ (b : y) def⇐⇒ a ! b ∧ x !∗ y. Given a preorder ! and a function f ,
!f denotes another preorder defined by a !f b def⇐⇒ f(a) ! f(b). An intersection
of two preorders ! and $ is defined by a (! ∩$) b def⇐⇒ a ! b ∧ a $ b. A
lexicographic composition of two preorders ! and $, denoted by ! ;$, is defined
by a(! ;$)b def⇐⇒ a $ b∧(¬(b $ a)∨a ! b). Intuitively, ! ;$ compares operands
by $ first, and by ! afterwards if they are equivalent on $.

2.2 Shortcut Fusion

In functional programming, we frequently use intermediate structures for gluing
functions. Use of intermediate structures improves modularity and clarity of
programs but reduces efficiency because their production and consumption is
costly. Shortcut fusion [2,3] (also called shortcut deforestation) is a program
transformation for eliminating intermediate structures.

Theorem 1 (shortcut fusion [2]). Let build g def= g (:) [ ]; then the following
equation holds, if the function g has the type g :: ∀β. (a→ β → β) → β → β.

foldr f e (build g) = g f e �

The key to shortcut fusion is the composition of a well-structured producer and
a well-structured consumer. Well-structured producers are specified by foldr ,
which replaces sequence constructors by its parameters. Well-structured con-
sumers, so-called build forms, are build with functions of a certain polymorphic
type. build captures all the constructors on intermediate sequences, as guaran-
teed from the type requirement, and thus, we can eliminate the intermediate
sequence by supplying the function g with the parameters of foldr . The strength
of shortcut fusion is its suitability for mechanization. Fusion is accomplished by
just canceling foldr and build out once programs are specified by well-structured
producers and consumers. It is worth noting that shortcut fusion was generalized
to the acid rain theorem [7], which eliminates not only intermediate sequences
but also intermediate trees.

As an example, consider the program to compute the square-sum, namely
sum (mapList sq x) where sq a def= a2, and let us eliminate the intermediate
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sequence produced by mapList using shortcut fusion. An apparent way to derive
a build form is to extract all constructors appearing in the result of the pro-
ducer. Extracting (:) and [ ] in the right-hand-side expressions of the definition
of mapList , we obtain the following.

map′
List f [ ] c n def= n

map′
List f (a : x) c n def= c (f a) (map′

List f x c n)

Then, mapList sq x = build (map′
List sq x) holds and map′

List sq x has the type
∀β. (Int→β→β)→β→β. Moreover, sum is equivalent to foldr (+) 0. Therefore,
from Theorem 1,

sum (mapList sq x) = map′
List sq x (+) 0

holds, and we obtain the following equations after inlining (+) and 0.

sum (mapList sq [ ]) = 0
sum (mapList sq (a : x)) = sq a + sum (mapList sq x)

We can see that no intermediate sequences are left.

3 Deriving Efficient Algorithms by Shortcut Fusion

Our aim is to solve problems to find the optimal sequence. We use maximals
to specify optimality. Given a preorder !, maximals� extracts all the maximals,
namely elements that are not strictly smaller than others.

maximals� X def= {a | a ∈ X ∧ ∀b ∈ X. a ! b ⇒ b ! a}

Monotonicity is an important property for efficiently enumerating maximals.

Definition 1 (complete monotonicity). Sequence extension is said to be
completely monotonic on a preorder ! if both x ! y ⇒ (a : x) ! (a : y) and
x!

/
y ⇒ (a : x) !

/
(a : y) hold, where v !

/
w def⇐⇒ v ! w ∧ ¬(w ! v). �

Intuitively, complete monotonicity means that sequence extension preserves the
order. Then, maximals of longer sequences can be obtained by extending the
maximals of shorter ones.

3.1 A Short Cut to Optimal Sequences

Let us consider finding the optimal subsequence of a given sequence. It is natural
to describe the optimal subsequence as maximal� ◦ subsequences, where ! spec-
ifies the criterion of optimality and subsequences enumerates all subsequences.

subsequences [ ] def= {[ ]}
subsequences (a : x) def= let r = subsequences x in r ∪ mapSet (a:) r



A Short Cut to Optimal Sequences 67

We would like to derive an efficient program from this description. Notice that
subsequences generates intermediate results, namely candidates of optimal se-
quences, that will be consumed by maximal�. Our objective is to eliminate this
enumerated candidates by shortcut fusion.

First, let us prepare a build form of subsequences. Since the intermediate
results consist of (∪), {·}, ∅, (:), and [ ], we attempt to extract them. However, it is
impossible because mapSet performs iterations over a set made by subsequences,
and the extraction obstructs these iterations. Freezing technique [8,9] is effective
for this case. We freeze the functions that obstruct the extraction of constructors,
namely mapSet (a:) in this case, and regard them as constructors. Then, we
successfully obtain the following build form.

subsequences x = subsequences ′ x (∪) {·} ∅ (λa.mapSet (a:)) (:) [ ]
where

subsequences ′ [ ] j s e m c n = s n
subsequences ′ (a : x) j s e m c n = let r = subsequences ′ x j s e m c n

in j r (m a r)

In fact, freezing (λa.mapSet (a:)) is commonly effective for finding optimal se-
quences; therefore, we name it extend and freeze it for all cases.

extend a x def= mapSet (a:) x

The reason freezing extend is appropriate can be explained from the isomorphism
between set-generating functions and nondeterministic computations. From the
viewpoint of nondeterministic computation, extend is simply the sequence ex-
tension operation, and it is rather natural to recognize extend as a constructor.

Now, let gen be the function that supplies constructors, together with extend ,
to a function of a certain polymorphic type.

gen :: ∀a.
(
∀β γ.

(γ → γ → γ) → (β → γ) → γ →
(a→ γ → γ) → (a→ β → β) → β → γ

)
→{[a]}

gen g def= g (∪) {·} ∅ extend (:) [ ]

Then, we can derive an efficient algorithm in a shortcut manner.
Theorem 2 (a short cut to optimal sequence). For a function g of the
appropriate type,

maximals� (gen g)
= g (λx y.maximals� (x ∪ y)) {·} ∅ (λa.maximals� ◦ extend a) (:) [ ]

holds, provided that sequence extension is completely monotonic on !. �

Theorem 2 states that if a problem is specified by a composition of a function
of a build form and a maximization operation satisfying complete monotonicity,
we can derive an efficient program in a shortcut manner. The derived program
is efficient in the sense that it uses maximization operations (namely maximals)
instead of joining operations (namely ∪), and thus, it enumerates only the maxi-
mals, instead of all the candidates, during the computation. It is worth remarking
that several methods [10,11,12] have been proposed for deriving build forms and
they are also useful for our case.
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3.2 Deriving Shortcutable Programs

We have introduced our shortcut fusion law, namely Theorem 2. It is worth
stressing that the law requires complete monotonicity. However, it is generally
difficult to confirm complete monotonicity; moreover, a problem description sel-
dom forms a composition of a producer and a maximization operation.

Recall the 0-1 knapsack problem. The following is an enumerate-and-choose-
style description of the problem, where u is the limit of weight, and val and w
respectively specify the value and the weight of each item.

knapsack x u val w = maximals� (filterSet lessu (subsequences x))
where a ! b def⇐⇒ sum (mapList val a) ≤ sum (mapList val b)

lessu x def= weight x ≤ u

weight x def= sum (mapList w x)

We previously derived a build form of subsequence and sequence extension is
completely monotonic on !. However, we cannot apply Theorem 2 to knapsack
because filterSet blocks the connection of maximals� to subsequences. It is pos-
sible to fuse maximals� and filterSet , as maximals� ◦ filterSet lessu = maximals�
where a $ b def⇐⇒ (¬lessu a∧ lessu b)∨ (lessu a = lessu b∧ a ! b); however, such
a naive transformation would ruin monotonicity, and in fact, sequence extension
is not completely monotonic on $.

To resolve this difficulty and exploit Theorem 2, we propose a set of laws. Each
law identifies or prepares an order on which sequence extension is completely
monotonic and pushes a maximization on the order toward producers. Then, we
finally obtain a program to which Theorem 2 is applicable.

First, we show two trivial cases where complete monotonicity holds.

Lemma 1. Sequence extension is completely monotonic on the order ≤sum . �

Lemma 2. Sequence extension is completely monotonic on !∗ for any total
preorder !. �

The next lemma is useful when the objective value of a sequence is computed
from the value of each of its component.

Lemma 3. For any function f , sequence extension is completely monotonic on
a preorder !mapList f if so is on !. �

The value of each component may depend on its context. To capture such cases,
we use a function mapAccumR, which behaves like a combination of mapList and
foldr .

mapAccumR f e [ ] def= (e, [ ])
mapAccumR f e (a : x) def= let (s, y) = mapAccumR f e x

(s′, b) = f s a
in (s′, b : y)

We can extract a maximization that satisfies complete monotonicity and push
it toward producers when component values can be specified by mapAccumR.
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Lemma 4. Given a preorder $ def= !snd◦mapAccumR f e,

maximals� = maximals� ◦ maximals�∩=foldr f′ e

holds, where f ′ a s def= fst (f s a); moreover, sequence extension is completely
monotonic on $ ∩ =foldr f ′ e if so is on !. �

Note that the order $ ∩ =foldr f ′ e compares sequences by $ only if they yield
the same value by foldr f ′ e. In other words, sequences are classified by their
foldr f ′ e values and compared inside each class. The underlying idea is to specify
a safe classification in which complete monotonicity holds in each class. It is
worth remarking that the classification by foldr f ′ e determines the efficiency of
programs that will be derived. The coarser classification yields enumeration of
less number of sequences.

Next, let us consider filtering operations.

Lemma 5. Given a predicate p = q ◦ foldr f e,

maximals� ◦ filterSet p = maximals� ◦ filterSet p ◦ maximals�∩=foldr f e

holds, and sequence extension is completely monotonic on ! ∩ =foldr f e if so is
on !. �

Lemma 5 works similar to Lemma 4. It enables us to push a maximization
operation satisfying monotonicity toward producers.

We can derive more efficient programs for certain kinds of filtering operations,
such as suffix-closed [13] cases.

Definition 2 (suffix-closed). A predicate p is said to be suffix-closed if p(a : x)
implies p x. �

A typical example of suffix-closed predicates is a predicate that checks whether a
sequence is shorter than a limit. Such requirements frequently occur in practice,
and the following lemma provides an effective way to deal with them.

Lemma 6. For a suffix-closed predicate p = q ◦ foldr f e,

filterSet p = filterSet p ◦ maximals<·
where x <· y def= (p x ∧ p y ∧ x =foldr f e y) ∨ (¬(p x) ∧ p y) ∨

(¬(p x) ∧ ¬(p y) ∧ (y = [] ∨ (y = b : w ∧ x = a : u ∧ u <· w)))

holds, and sequence extension is completely monotonic on <·. �

If p is suffix-closed, all suffixes of a p-satisfying sequence satisfy p; therefore, it
is unnecessary to consider extensions of sequences violating p for enumerating
p-satisfying ones. maximals<· discard p-violators if there is a sequence satisfying
p, and moreover, sequence extension is completely monotonic on <·.

Finally, consider the case where given two criteria of better sequences, we
want to find the best in one criterion among those that are the best in the other.
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Lemma 7. The following equation holds.

maximals� ◦ maximals� = maximals� ◦ maximals� ;�

Moreover, sequence extension is completely monotonic on the order $ ;! if so
is on both $ and !. �

Lemma 7 passes maximization on $ toward producers by introducing a lexico-
graphic composition.

3.3 Solving 0-1 Knapsack Problem

Let us solve the 0-1 knapsack problem. Recall that filterSet lessu separates
maximals� from the producer subsequences. Lemma 5 is effective for this case.
Since lessu = (λw.w ≤ u) ◦ weight and weight can be specified by foldr , we can
push maximals�∩=weight

to subsequences; moreover, sequence extension is com-
pletely monotonic on ! ∩ =weight . Then, we can apply Theorem 2. The deriva-
tion is summarized as follows.

knapsack x u val w
= { definition }

maximals� (filterSet lessu (subsequences x))
= { weight = foldr (λa r. w a + r) 0, and Lemma 5 }

maximals� (filterSet lessu (maximals�∩=weight
(subsequences x)))

= { subsequences x = gen (subsequences ′ x), and let !′ def= ! ∩ =weight }
maximals� (filterSet lessu (maximals�′ (gen (subsequences ′ x))))

= { Theorem 2 (Lemmas 1, 3, and 5 prove complete monotonicity of �′) }
maximals� (filterSet lessu (aux x))

where aux [ ] def= {[ ]}
aux (a : x) def= let r = aux x

in maximals�′ (r ∪ maximals�′ (extend a r))

The derived program is efficient in the sense that a collection of items is to be
retained only if it is the most valuable one among those of the same weight.

When the weight of each item is positive, lessu is suffix-closed and hence
Lemma 6 brings a more efficient program as follows.

knapsack x u val w
= maximals� (filterSet lessu (subsequences x))
= { Lemma 6, where let <· be the order defined in the lemma }

maximals� (maximals<· (subsequences x))
= { Lemma 7 }

maximals� (maximals� ;<· (subsequences x))
= { subsequences x = gen (subsequences ′ x), and Theorem 2 }

maximals� (aux x)
where aux [ ] def= {[ ]}

aux (a : x) def= let r = aux x
in maximals� ;<· (r ∪ maximals� ;<· (extend a r))
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Lemmas 1, 3, 6, and 7 proves complete monotonicity of ! ;<·. maximals� ;<· ex-
tracts the maximum-valued ones among those of the same weight after discard-
ing ones heavier than u. Therefore, with appropriate memoization, the derived
program runs in O(u · n) time for a sequence of length n.

3.4 Memoization Issues

Memoization is one of the most important issue for efficient implementation of
derived programs.

We can achieve memoization of maximal-enumeration steps, for example, aux
in the derived program above, by preparing producers in a memoized manner.
If the producer does not perform plural times of recursive calls for the same ar-
gument, maximal-enumeration steps will be done in a memoized manner because
derived programs follow the recursion schema of the producer. It is sometimes non-
trivial to prepare producers in a memoized manner. Since sequence-enumerations
commonly follow certain patterns, it is effective to prepare finely-memoized pro-
ducers for these patterns beforehand.

It is also required to memoize auxiliary functions, for example, weight and
sum ◦mapList val invoked from !. Memoization of such functions can be usually
achieved by retaining computed results for each candidate. For example, we can
achieve memoization for weight by remembering weight -values for each candi-
date. We will introduce a variant of Theorem 2 that performs such memoization
later in Sect. 4.2.

Another way to achieve memoization is to use existing methods, such as
[14,15,16,17,18]. A main effect of our method is to derive recurrence equations
from generate-and-choose-style descriptions, and in fact, the derived program
above corresponds to the recurrence equation shown in the introduction. There-
fore, our method can cooperate with existing methods that derive efficient pro-
grams from recurrence equations.

4 A Library for Finding Optimal Sequences

Based on our developed method, we implemented a Haskell library for finding
optimal sequences. The library consists of functions that are useful for describing
desirable sequences; moreover, the library consists of rewrite rules that automat-
ically derive efficient programs.

4.1 Functions for Enumerating Desirable Sequences

Figure 2 shows definitions of some representative functions of our library.
First, the library contains the function gen, which is the key to our shortcut

fusion law. We also implemented build forms of several sequence-enumeration
patterns, for example, segs, subsequences, interleave, etc.

For filtering out infeasible sequences, we prepare two functions, constraint and
always. constraint p f e leaves sequences that satisfy p ◦ foldr f e. always p f e
requires each sequence to satisfy p ◦ foldr f e for all its suffixes.
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gen g def= g (∪) {·} ∅ extend (:) [ ]

inits [ ] def= {[ ]}
inits (a : x) def= {[ ]} ∪ extend a (inits x)

tails [ ] def= {[ ]}
tails (a : x) def= {a : x} ∪ tails x

segs [ ] def= {[ ]}
segs (a : x) def= inits (a : x) ∪ segs x

subsequences [ ] def= {[ ]}
subsequences (a : x) def= let r = subsequences x in r ∪ extend a r

markingBy fs [ ] def= {[ ]}
markingBy fs (a : x) def= let r = markingBy fs x in

⋃
f∈fs extend (f a) r

interleave [ ] y def= {y}
interleave x [ ] def= {x}
interleave (a : x) (b : y) def= extend a (interleave x (b : y)) ∪ extend b (interleave (a : x) y)

constraint p f e def= filterSet (p ◦ foldr f e)

always p f e def= filterSet (λx.
∧

y∈tails x p (foldr f e y))

maxBySum def= maximals≤sum

maxByMapSum f def= maximals≤sum◦mapList f

maxByAccumSum f e def= maximals≤sum◦snd◦mapAccumR f e

maxByLexico def= maximals≤∗

Fig. 2. Definitions of Some Library Functions

We prepare some maximal-extracting functions. maxBySum extracts the se-
quences of the maximum total sum; maxByMapSum and maxByAccumSum take
auxiliary functions to specify the objective value of each sequence component;
maxByLexico extracts the maximum on the dictionary order. Since no different
sequences are equivalent or incomparable on the dictionary order, maxByLexico
is useful, particularly when one of the optimal sequences is sufficient.

4.2 Rewrite Rules

The library functions are designed so that efficient programs will be derived from
our laws, namely Theorem 2 with Lemmas 1–7. The derivation is mechanized
using RULES pragma [4], which enables us to specify rewrite rules that will be
repeatedly applied to programs at compile time.

We introduce another function maxIR that provides an intermediate represen-
tation of the derivation.

maxIR f e (!) k def= k ◦ maximals�foldr f e
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The function maxIR f e (!) k computes maximals on !foldr f e; in addition, it
takes a finalizing computation k that will be applied after the maximization. We
impose two properties on maxIR f e (!) k for guaranteeing the correctness of
our rewrite rules. Sequence extension must be completely monotonic on !foldr f e,
and maximals� ◦ k ◦ maximals�foldr f e

= maximals� ◦ k ◦ maximals� ;�foldr f e
must

hold for any $. It is worth noting that our rewrite rules maintain the properties
as confirmed in the technical report [5].

The strategy is to assemble a maxIR from the composition of library functions.
First, maxBySum can be rewritten into maxIR by the following rewrite rule.

maxBySum � maxIR (+) 0 (≤) id

The translation is straightforward, and sequences are compared by its summation
≤foldr (+) 0. Since no finalizing computation is necessary, the fourth parameter is
the identity function id . The derived maxIR certainly satisfies the properties, as
confirmed from Lemmas 1 and 7. The rewrite rule for maxByMapSum is similar.

maxByMapSum f � maxIR (λa r. f a + r) 0 (≤) id

We translate maxByAccumSum to maxIR as follows, where maxByAccumSum′ is
an alias of maxByAccumSum for avoiding infinite rewriting.

maxByAccumSum f e � maxIR (λa (s, r). let (t, b) = f s a in (t, b + r)) (e, 0)
(≤snd ∩ =fst ) (maxByAccumSum′ f e)

This rule is an implementation of Lemma 4. Let f ′ a s def= fst (f s a) and
$ def= ≤sum◦snd◦mapAccumR f e. The maxIR computes pairs that consist of values
of foldr f ′ e and sum◦snd◦mapAccumR f e; thus, the right-hand-side expression
of the rule exactly corresponds to maxByAccumSum′ f e ◦ maximals�∩=foldr f′ e

.
As required, $ ∩ =foldr f ′ e satisfies complete monotonicity from Lemma 4.

The rule for maxByLexico is the following, where Lemma 2 assures complete
monotonicity.

maxByLexico � maxIR (:) [ ] (≤∗) id

Since always can be regarded as a filtering operation using a suffix-closed predi-
cate, it can be rewritten to maxIR based on Lemma 6 as follows.

always p f e �

maxIR (λa (v, r). (f a v, p (f a v) ∧ r)) (e, p e) (=fst ;≤snd ) (always′ p f e)

Note that True is larger than False and always′ is an alias of always.
We have introduced rules to translate library functions into maxIR, except for

constraint and producers. Next, let us consider their compositions.
It is easy to provide a rule for the composition of two constraints.

constraint p1 f1 e1 ◦ constraint p2 f2 e2 �

constraint (λ(r1, r2). p1 r1 ∧ p2 r2) (λa (r1, r2). (f1 a r1, f2 a r2)) (e1, e2)
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The following is an implementation of Lemma 5 and deals with the composition
of maxIR and constraint.

maxIR f e (!) k ◦ constraint p g z �

maxIR (λa (r, s). (f a r, g a s)) (e, z) (!fst ∩ =snd )
(k ◦ maximals�foldr f e

◦ constraint p g z)

The left-hand side corresponds to k◦maximals�foldr f e
◦filterSet (p◦foldr g z), and

the right-hand side pushes maximization on !foldr f e ∩ =foldr g z to producers.
This rule maintains the properties of maxIR, as confirmed by Lemmas 5 and 7.

The composition of two maxIRs can be fused as follows.

maxIR f1 e1 (!) k1 ◦ maxIR f2 e2 ($) k2 �

maxIR (λa (r1, r2). (f1 a r1, f2 a r2)) (e1, e2) (!fst ;$snd )
(k1 ◦ maximals�foldr f e

◦ k2)

The correctness of this rule can be confirmed by Lemma 7 and the properties of
maxIR. Again, this rewrite rule maintains the properties of maxIR.

So far, we have introduced rules to put functions together and assemble a
maxIR. Then, our shortcut fusion law will derive an efficient program.

maxIR f e (!) k (gen g) � k (mapSet fst (g m {·} ∅ η f ′ ([ ], e)))
where f ′ a (x, r) = (a : x, f a r)

m x y = maximals�snd
(x ∪ y)

η a = maximals�snd
◦ mapSet (f ′ a)

This is a variant of Theorem 2 and performs memoization of auxiliary functions,
which has been encoded into the parameters f and e by preceding rewrite rules.
It is worth stressing that complete monotonicity is assured from the properties
of maxIR, and in fact, we have designed the rewrite rules so that they maintain
complete monotonicity.

4.3 Experiments

To confirm the effectiveness of our library, we did some experiments. We report
the results concerning the 0-1 knapsack problem.

It is easy to describe the 0-1 knapsack problem using our library.

knapsack x u val w =
maxByMapSum val (always (≤ u) (λi r.w i + r) 0 (subsequences x))

This is straightforward coding of the problem description in Sect. 3.2. We assume
the weight of each item to be positive.

It is also easy to specify its variants. As examples, let us solve the two variants
of the 0-1 knapsack problem discussed in the introduction.

First, assume that a flashlight is twice as valuable when the knapsack contains
a battery. This problem can be described using maxByAccumSum as follows,
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Table 1. Computational Times of Programs for the 0-1 Knapsack Problem and the
Variants (unit: second)

number of items 100 500 1000 2000 3000 5000 10000
handwritten 0.04 0.22 0.45 0.88 1.32 2.19 4.37
knapsack 0.03 0.15 0.28 0.54 0.80 1.32 2.61
knapsack ′ 0.09 0.46 0.88 1.68 2.48 4.20 8.46
knapsack ′′ 0.09 0.50 1.00 1.99 2.98 4.93 10.11

where battery and flashlight respectively check for batteries and flashlights.

knapsack ′ x u val w =
maxByAccumSum f False (always (≤ u) (λi r.w i + r) 0 (subsequences x))

where f b i def= (b ∨ battery i, if b ∧ flashlight i then 2 × val i else val i)

The function f computes the value of each item by remembering the presence of a
battery. It is assumed that batteries appear earlier than flashlights for simplicity.

It is sufficient to add one more always when the knapsack cannot contain more
than, for example, ten items.

knapsack ′′ x u val w =
maxByMapSum val (always (≤ u) (λi r.w i + r) 0

(always (≤ 10) (λi s. 1 + s) 0 (subsequences x)))

We measured the computational times of these three programs. In addition, we
prepared a handwritten textbook-program for the 0-1 knapsack problem for com-
parison. The environment of the experiments consists of Intel Quad-Core Xeon
3.0-GHz CPUs, 8-GB memory, Mac OS X, and the Glasgow Haskell Compiler
6.10.4. Note that all the programs use one core only. The computational times
are averages of 100 executions, and exclude times for I/O. The value and weight
of each item are integers generated uniformly and respectively range from −1000
to 10000 and from 10 to 50, u was 1000, and battery and flashlight are defined
in an ad-hoc manner.

Table 1 lists the results. Although we have developed knapsack without con-
sidering its efficiency, it runs in time proportional to the list lengths; moreover, it
is even faster than the handwritten code by virtue of the careful implementation
of the library. It is worth noting that knapsack hardly runs in the absence of our
rewrite rules; it generates too many subsequences, e.g., 2100 subsequences for
a list of 100 elements. The variants, knapsack ′ and knapsack ′′, are slower than
knapsack , yet they run in time proportional to the list lengths.

5 Discussion

We have proposed a method and implementation for easily finding optimal se-
quences. We formalized a shortcut-fusion-based method to derive efficient pro-
grams and introduced several laws for exploiting our shortcut fusion law. Based
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on our developed method, we introduced a Haskell library for enumerating op-
timal sequences. We implemented our transformations using RULES pragma to
automatically improve programs on our library. Our experiments showed that
programs on our library are easy to write and reasonably fast by virtue of em-
bedded rewrite rules. It is worth remarking that our library naturally cooperates
with other Haskell programs. We can write a part of a large system using our
library, or use Haskell functions as parameters of our library functions.

The point of our method is to specify a classification such that complete
monotonicity holds in each class; then, our shortcut fusion law derives a re-
currence equation between the optimal solutions of subproblems. This contrasts
with most of the current studies on systematically developing dynamic program-
ming algorithms [14,15,16,17,18,19,20], where users are required to specify re-
currence equations or some similar structures. As discussed in the introduction,
developing an appropriate recurrence equation is not easy and takes algorithmic
practice. For example, Gergerich et al. [19] proposed a domain-specific language
for processing sequences, together with an efficient dynamic-programming-based
evaluation procedure. In their framework, we can specify optimal sequences using
tree grammars, which provide an abstraction of recurrence equations. Neverthe-
less, because the set of feasible solutions should be specified by a tree grammar,
we should develop another tree grammar if we want to impose additional re-
quirements. Our method provides a more modular way for developing dynamic
programming algorithms.

We formalized derivation of efficient algorithms by shortcut fusion. Fusion-
based program developments have been studied, and among others, Bird and
de Moor did an intensive study on this topic [21,22,23,24], and yet their study
has not been mechanized. Studies on maximum marking problems [25,26,27,28]
reported that a class of problems is mechanically solvable once problems are
described in specific forms. We aim at developing mechanizable and generic
method by combining these studies with shortcut fusion. Our results correspond
to a generalization of studies on maximum marking problems for problems to find
optimal sequences. They discussed problems concerning more generic structures
rather than sequences. Our results can be extended to problems to find optimal
(possibly non-sequence) structures using the acid rain theorem [7].

A system for optimal path querying [29] was previously proposed. This work
shares a central idea with the previous one, that is, deriving monotonicity con-
dition from problem descriptions. A main difference is that this work is general-
purpose, while the previous one proposes a domain-specific system. However,
this work cannot deal with path problems when there are infinitely many paths.

Optimal segment problems have been intensively studied. Zantema [13] did an
extensive study on longest segment problems and Mu [30] discussed maximum-
sum and maximum-average segment problems. Our method cannot be used to
derive the algorithms they introduced. Their algorithms use problem-specific
knowledge, such as properties of segment problems, while our method works with
little concern about such knowledge. Recently, Puchinger and Stuckey [31] pro-
posed a method that automatically derives efficient branch-and-bound procedures
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from dynamic programming algorithms. Their method may be effective for intro-
ducing problem-specific knowledge to programs derived using our method.
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Abstract. Although today’s graphics processing units (GPUs) have
high performance and general-purpose computing on GPUs (GPGPU)
is actively studied, developing GPGPU applications remains difficult for
two reasons. First, both parallelization and optimization of GPGPU ap-
plications is necessary to achieve high performance. Second, the suitabil-
ity of the target application for GPGPU must be determined, because
whether an application performs well with GPGPU heavily depends on
its inherent properties, which are not obvious from the source code. To
overcome these difficulties, we developed a skeletal parallel programming
framework for rapid GPGPU application developments. It enables pro-
grammers to easily write GPGPU applications and rapidly test them
because it generates programs for both GPUs and CPUs from the same
source code. It also provides an optimization mechanism based on fusion
transformation. Its effectiveness was confirmed experimentally.

1 Introduction

It is more difficult to develop efficient parallel programs, because they are more
complex than sequential ones due to interactions between processes. One ap-
proach to making parallel programming easier is skeletal parallel programming
[1], in which parallel programs are built using skeletons, i.e., frequently used par-
allel computation patterns. Skeletons provide high-level abstraction and enable
programmers to write parallel programs in a sequential manner.

Skeletal parallel programming has been studied from both theoretical and
practical aspects. In the theoretical area, optimization based on fusion [2,3,4]
has been studied [5,6,7]. In the practical area, skeleton libraries for distributed
memory systems such as PC clusters have been developed [8,9,10,11]. However,
not many practical applications rely on skeletal parallelism, which is a serious
problem for skeletal parallel programming. To expand the area of its application,
we applied skeletal parallelism to the programming for graphics processing units
(GPUs).

The arithmetic performance and memory bandwidth of today’s GPUs is ten
times higher than that of today’s CPUs, and the performance of GPUs is improv-
ing more rapidly than that of CPUs. This is why general-purpose computing on
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GPUs (GPGPU) [12,13] is being actively studied in the field of high-performance
computing and why many GPGPU applications have been developed.

Development of a GPGPU application is difficult and troublesome for two
reasons. First, only parallel programs that are well optimized for GPU architec-
tures can fully utilize the performance of GPUs. The performance of a GPGPU
program that does not sufficiently exploit a GPU’s capabilities is often worse
than that of a simple sequential one running on a CPU. Second, programmers
need to determine whether the target application is suitable for GPGPU. For
example, an application may not be able to achieve the good performance due
to data transfer from main memory to video memory and GPU start-up time.

As an approach to these difficulties of GPGPU programming, we propose
applying high-level abstraction of skeletons to hide the use of GPUs. We have
developed a skeletal parallel programming framework with a fusion optimizer
that enables programmers to easily write GPGPU applications and test them
rapidly. The proposed framework is designed so as to be embedded in the C
language, i.e., programmers can use the framework without any language exten-
sions to C. In addition, programmers can write efficient parallel programs for
both GPUs and CPUs as the same source code. Thus, the suitability for GPGPU
can be tested rapidly. Our main contributions can be summarized as follows.

– We show that skeletal parallel programming can be applied to a practical
framework for rapid GPGPU application development. We also illustrate
its effectiveness through specific examples. The proposed framework is a
practical application of skeletal parallel programming.

– We present that the proposed framework enables programmers to rapidly
check the suitability of target applications for GPGPU. From the same source
code, the framework generates three kinds of programs, namely a GPGPU
program, a portable C++ parallel program with OpenMP, and a portable
sequential C program.

– We present an implementation of the optimizer based on fusion transfor-
mation of skeletons and show its effectiveness for GPGPU applications. In
the best case, an optimized GPGPU program ran 2.44 times faster than the
non-optimized version.

2 Preliminaries

2.1 BMF and Skeletal Parallelism

In this paper, we regard data parallel primitives in the Bird-Meertens Formalism
(BMF) [14] as skeletons for BMF-based skeletal parallel programming [15,16].
Throughout this paper, we use the notation of Haskell for describing the speci-
fications of skeletons and other primitive operations.

Three important skeletons in BMF are map, reduce and zipwith.

map f [x1, x2, . . . , xn] = [f x1, f x2, . . . , f xn]
reduce (⊕) [x1, x2, . . . , xn] = x1 ⊕ x2 ⊕ · · · ⊕ xn

zipwith f [x1, x2, . . . , xn] [y1, y2, . . . , yn] = [f x1 y1, f x2 y2, . . . , f xn yn],
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Fig. 1. CUDA hardware model

where ⊕ is an associative operator. We suppose that map, reduce, and zipwith
are not given either empty or infinite lists.

We can transform a program into an efficient one by merging successive skele-
tons into a single one, e.g., map f (map g as) = map (f ◦ g) as. Such program
transformation is called fusion, which is well-known in functional programming.

2.2 CUDA

CUDA is a general-purpose parallel computing architecture for GPUs. We briefly
describe CUDA’s features. Refer to the programming guide [17] for more details.

CUDA’s hardware model is a distributed memory system that consists of
host and device memory. These two kinds of memory are physically separated,
as illustrated in Fig. 1. Host memory corresponds to main memory, while device
memory corresponds to video memory. A GPU has several streaming processors
(SMs), each of which consists of several scalar processor (SP) cores. Each SM
supports multithreading.

Programmers use “C for CUDA”1, an extended C language, to write GPGPU
programs. Strictly speaking, CUDA is a subset of C++ with language extensions
for using the device. These extensions include three additional function type
qualifiers: __global__, __device__, and __host__. The __global__ qualifier
declares a function that is called from the host and executed in the device, the
__device__ qualifier declares one that is called from the device and executed
in the device, and the __host__ qualifier declares one that is called from the
host and executed in the host. A function without one of these qualifiers is
regarded to be qualified by __host__. A function qualified by both __device__
and __host__ is compiled for both the device and the host. __global__ and
__device__ functions have several restrictions; e.g., they do not support the
recursive call, the return type of each __global__ function must be void, and
a function pointer to a __device__ function cannot be taken.

1 In the rest of this paper, “C for CUDA” is simply called CUDA.
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1 #include <skeleton.h>
2
3 double sqr(int x) { return (double) x*x; }
4 double add(double x, double y) { return x+y; }
5
6 double sqr_sum(int *buf , int n)
7 {
8 int *as[PTR_UNIT ]; // declare wrapped array pointer
9 double *tmp[PTR_UNIT ]; // declare wrapped array pointer

10 double res;
11
12 skel_new (as); // initialize as
13 skel_new (tmp); // initialize tmp
14 skel_wrap (as, buf , n); // wrap array pointed to by buf
15
16 map(sqr , as, tmp); // square each element of as
17 reduce(add , tmp , &res); // sum up all elements of tmp
18
19 skel_del (as); // dispose of wrapped array
20 skel_del (tmp); // dispose of wrapped array
21
22 return res;
23 }

Fig. 2. Program that computes square sum of integer list using framework

Because CUDA had made GPGPU easier than before, CUDA became most
popular in GPGPU programming. Nevertheless, GPGPU programming with
CUDA remains difficult. For instance, when a matrix multiplication program
that is simply and sequentially coded for a CPU is ported to CUDA for a GPU
without much modification, the ported program is 200–2000 times slower than
the original one as shown in an experiment2. This suggests that GPGPU pro-
gramming with CUDA needs very hardware-conscious programming.

3 Overview of Proposed Framework

We briefly describe how to write a program using the proposed framework.
Figure 2 shows an example program that computes a square sum of a list that
is represented by an array using the framework.

First, the header file is included (line 1) to enable use of the framework APIs.
Wrapped array pointers, which will be described in Sect. 4.1, are declared (lines
8–9) and initialized by skel_new (lines 12–13). Then, an array is wrapped by
skel_wrap (line 14), whose third parameter is the number of wrapped elements
in the array. Then, the skeletons operate on the lists (lines 16–17), where the
last parameter given to each skeleton is the destination for storing the result.

2 Refer to Sect. 7 for details on the experimental environment.
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Fig. 3. Outline of proposed framework

Finally, skel_del disposes of the wrapped array that is no longer necessary (lines
19–20). With this framework, programmers can easily write GPGPU programs
without any consideration of either hardware or parallelization.

The framework transforms a given program in which APIs of the framework
are used. As shown in Fig. 3, it has three main components:

– a source-to-source compiler with a fusion optimizer for parallel programs,
– runtime libraries, and
– a macro-only API implementation for sequential programs.

The source-to-source compiler, which is the core of the framework, generates
C code with skeletons into CUDA code for GPUs or C++ code with OpenMP
for CPUs. Compiler driver scripts run a CUDA compiler or a C++ compiler
with appropriate compile-time constants, and the generated code is compiled
into executable code. The runtime libraries are used by the generated code. The
macro-only API implementation is used for debugging and porting.

4 Design

4.1 Principles

C for Base Language. The framework was designed on the basis of the C
language. Each API of the framework can be seen as a macro from the viewpoint
of C programming, even though each API call and other parts of a program
are transformed by our compiler for GPGPU. The framework also provides the
macro-only implementation of each API to help users debug programs as on-
CPU sequential C programs. Skeletons require no language extension to C. This
is one of the great merits of our framework and skeletal parallel programming.

There are three reasons for selecting C as the base language. The first is
CUDA’s affinity for C: it is easy to translate C into CUDA because CUDA
is an extended C language. The second and third reasons are the popularity
and performance of C. In fact, many skeleton libraries [8,9,10,11,18] have been
implemented in C/C++ for these two reasons.
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Transparency. The framework is designed to have transparency, i.e., to hide
the use of the GPU and distributed memory. This enables the framework to gen-
erate three kinds of programs: GPGPU programs, on-CPU parallel programs,
and on-CPU sequential programs. Thus, transparency leads to portability. The
transparency and portability of the framework owe much to the high-level ab-
straction of skeletons, an important advantage of skeletal parallel programming.

Pointer Contracts. The proposed framework imposes three contracts, i.e.,
promises that should be kept.

– A list passed to skeletons should be a wrapped array.
– Wrapped arrays should be accessed via only APIs of the framework.
– Every wrapped array pointer should have no alias.

If a skeleton received pointers into which the result of a computation was stored,
memory copying between device and host would occur every time that skeleton
was called. This would seriously degrade performance. This problem is caused
by pointers that can freely access memory. To solve this problem, we introduce
wrapped arrays to which access is restricted and wrapped array pointers that
point to the head of a wrapped array, in contrast to the raw pointers and raw
arrays natively supported in C.

Neither dereferencing nor pointer arithmetic against wrapped array pointers
are permitted. They are only permitted to be passed to APIs. In addition, when
part of a raw array is wrapped, the programmer must ensure that the area is
not referred to by other pointers.

Because aliases make fusion optimization difficult, the framework forbids op-
erations that may produce aliases of wrapped array pointers, e.g., assignment,
indirect reference, passing to functions, and returning from functions.

4.2 APIs

The framework provides simple and natural APIs for C programmers. Table 1
shows the APIs with brief descriptions. Each skeleton is a procedure (a function
with no return value) whose last parameter is the destination into which the
result will be stored. The mapls and maprs APIs are introduced because C does
not support partial application. The generate API is introduced because of its
efficient construction of lists and synergy with fusion.

The APIs do not depend on list element types and have as polymorphic be-
haviors as macros.

Functions passed to skeletons are defined in C without special function type
qualifiers even though skeletons are executed on GPUs. This enables program-
mers to transparently reuse functions.

No operations that change the length of a list are provided. Thus, the length
of the resulting list of a skeleton call is automatically determined once the list
length is set by skel wrap or generate. Programmers need not be concerned
about the list length because the framework appropriately propagates the length
in the implementation of skeletons.
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Table 1. API list (function identifier, wrapped array pointer, raw pointer, wrapped
array, and raw array are abbreviated as FI, WAP, RP, WA, and RA, respectively)

API Brief description

map(FI f, WAP as, WAP bs) map
reduce(FI op, WAP as, RP a) reduce
zipwith(FI f, WAP as, WAP bs, WAP cs) zipwith
mapls(FI f, RP∪WAP a, WAP bs, WAP cs) map (λx.f a x) bs
maprs(FI f, RP∪WAP a, WAP bs, WAP cs) map (λx.f x a) bs
generate(FI f, int n, WAP as) map f [0, . . . , n − 1]
skel new(WAP as) initializing WAP
skel del(WAP as) disposing of WA
skel wrap(WAP dst, RP src, int n) wrapping RA
skel unwrap(WAP as) unwrapping WA
skel dup contents(RP dst, WAP src) copying WA to RA
skel get element(RP dst, WAP src, int i) getter for WA
skel set element(WAP dst, int i, RP src) setter for WA

The APIs do not include memory allocation operations. Instead, runtime li-
braries automatically allocate memory when a skeleton first accesses a wrapped
array pointer. Hence, skel_del does nothing unless memory has been allocated.

For implementation reasons, the APIs have the following restrictions.

– A list element type must not include the pointer type.
– Each API call must be an expression statement.
– A function argument passed to a skeleton must be the function identifier.
– Functions passed to skeletons have the same restrictions as __device__ func-

tions in CUDA.
– Binary operators passed to reduce must be associative and commutative.

The first restriction comes from the fact that the framework does not support
serialization. The second restriction is needed for the macro-only API implemen-
tation. For instance, a skeleton call in an expression causes a syntax error if the
skeleton is implemented as a macro of a for loop. The third restriction helps both
CUDA and C++ compilers to inline functions passed to skeletons. A function
passed to a skeleton can be inlined only if it can be statically determined. The
fourth restriction is needed because functions passed to skeletons are executed
on GPUs. The last restriction is necessary to achieve efficient implementations
of skeletons on GPUs. If commutative and associative operators are given, the
reduction algorithm can be optimized for GPUs by using the Harris algorithm
[19]. This restriction is not particularly severe because frequently used operators
have commutativity.

5 Fusion Transformation

Two functions, which are not explicitly used by programmers, are used for in-
termediate representation of skeletons. They are introduced to implement the
fusion transformation in a uniform way.
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zipwithk returns a list zipping corresponding elements of given lists with a func-
tion f . reducek returns a value of folding with ⊕ the result of zipping correspond-
ing elements of given lists with f . The following three equations hold.

map = zipwith1 zipwith = zipwith2 reduce (⊕) = reduce1 (⊕) id,

where id is the identity function.
The fusion rules for map, reduce, and zipwith are as follows.

map f (zipwithk g as1 · · · ask) −→ zipwithk (f ◦ g) as1 · · · ask

reduce (⊕) (zipwithk f as1 · · · ask) −→ reducek (⊕) f as1 · · · ask

zipwith f (zipwithi g as1 · · · asi) (zipwithj h bs1 · · · bsj)

−→ zipwithi+j φ as1 · · · asi bs1 · · · bsj

where φ x1 · · · xi y1 · · · yj = f (g x1 · · · xi) (h y1 · · · yj)

Using these rules and the definitions of skeletons, we can express skeleton fusion
results in terms of only zipwithk and reducek. Therefore, implementations of
zipwithk and reducek should suffice for the framework.

From the perspective of efficiency, we implemented zipwithk and reducek in
imperative algorithms using loops for arrays.

stepk i f [x1
1, . . . , x

1
n] · · · [xk

1 , . . . , x
k
n] = f x1

i · · · xk
i

stepk i as1 · · · ask (i = 1, . . . , n) is used at each iteration step that computes the
i-th element of the result of zipwithk as1 · · · ask. Therefore, parallelization of
zipwithk can be implemented with loop splitting, and parallelization of reducek

can be implemented with loop splitting and tree reduction.
The second parameter function of stepk, f , is composed of the functions passed

to skeletons. Hence, the function can be constructed in a bottom-up manner from
a tree structure of skeleton calls (a skeleton tree). Construction of [0, . . . , n− 1]
in generate can be avoided by using the value of the first parameter of stepk.
Thus, if skeleton trees have been constructed, fusion is straightforward.

6 Implementation

6.1 Compiler

The source-to-source compiler was implemented using the COINS3 compiler in-
frastructure. The cfront component of COINS translates C source code into
high-level intermediate representation (HIR), which is a kind of abstract syn-
tax tree, and the hir2c component translates HIR into C source code. Program
transformation for skeletons was mainly implemented at the HIR level.

There are four steps in the compilation process.
3 http://coins-project.is.titech.ac.jp/international/

http://coins-project.is.titech.ac.jp/international/
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1. The C source code with skeletons is translated into HIR by cfront.
2. The fusion optimizer constructs skeleton trees from the HIR and then per-

forms HIR-to-HIR transformation.
3. The transformed HIR is translated into C code by hir2c. Then, __device__,

__host__, and inline are appended to the prototype declarations of all
functions passed to skeletons for CUDA code generation. For C++ code,
inline are appended.

4. Code is generated from each skeleton tree and merged into the code generated
in Step 3. Then, runtime libraries are included.

In the generated CUDA code, implementation of specific skeletons consists of
two function templates, i.e., an entry function template and a __global__ func-
tion template. First, the entry function template is called from a point of a
skeleton call. In the entry function template, array length check, memory al-
location, memory copy, and some preparations for CUDA are performed. In
addition, depending on the array length, the execution of the skeleton body is
switched to either GPUs or CPUs. Second, if the body is determined to be exe-
cuted on GPUs, the __global__ function template for the skeleton body, which
includes parallel loops with some optimization techniques on CUDA, is called.
The generated C++ code with OpenMP is similar, except that it does not use
a __global__ function template. These function templates are strongly typed.
If compilation by our compiler and compilation of the generated code succeed,
the use of skeletons is type-safe. Such generative approach reduces overhead and
overcomes restrictions of __device__ functions.

6.2 Fusion Optimizer

The fusion optimizer

1. finds safely fusible skeleton calls, whose fusion preserves the semantics of the
program,

2. constructs a skeleton tree from each sequence of those calls, and
3. rewrites the HIR by using the result of the fusion.

Steps 1 and 2 are done by fusion analyzer, which is part of the fusion optimizer.
The algorithm of the fusion optimizer is based on a greedy fusion strategy,

which fuses as many skeleton calls as possible regardless of recomputation. In
fact, recomputation is not bad or sometimes good even though it seems to waste
resources. In particular, recomputation is good for GPUs because arithmetic
operations are much faster than memory accesses on GPUs. For instance, a re-
computation of generate often performs better than a store/load of the results
because it avoids construction of lists and memory accesses. Moreover, reducing
skeleton calls is good for GPUs because GPUs take more time to start up. There-
fore, we decided to recompute skeletons rather than to store/load the results in
the fusion optimization process.

In addition to the above properties of GPUs, the greedy fusion strategy is used
because light-weight functions rather than heavy-weight ones are often passed to
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1 {
2 map(f, as, bs);
3 map(g, bs, ds);
4 zipwith(op, cs, ds , es);
5 map(h, bs, bs);
6 reduce(oq, es, &r);
7 skel_del (es);
8 }

(a) Before fusion

{

ds = zipwith1 (g ◦ f) as

bs = zipwith1 (h ◦ f) as
r = reduce2 oq op cs ds
skel_del(es);

}

(b) After fusion (psuedo)

Fig. 4. Example of fusion optimization

skeletons and a skeleton call given a heavy-weight function is rarely fused with
many other skeleton calls.

A target of the fusion analyzer is a basic block, which is a series of statements
that does not include jumps or labels but can include function calls. The fusion
optimizer performs a local optimization. Hence, the analysis is performed within
each basic block.

In a basic block, the fusion analyzer (1) finds a skeleton call, s, (2) constructs
Us, where Us is a set of all successive skeleton calls that use the result of s, and
(3) checks whether the result of s is not used except for members of Us. Then,
(4) if the validation in (3) succeeds, a set of skeleton calls that are safely fusible
with s is Us; otherwise ∅. Finally, (5) s is fused4 with every member of Us. The
fusion process proceeds to the next skeleton call of s.

Figure 4 shows an example of fusion optimization. When map (line 2) is s,
Us = {map (line 3), map (line 5)}. Because the result of map (line 2) is overwritten
in line 5, i.e., that is not used any more, map (line 2) is fused with both map
(line 3) and map (line 5). In this case, mapping f to as is computed twice on
the basis of the greedy fusion strategy. Similarly, when map (line 3) is s, Us =
{zipwith (line 4)}. However, map (line 3) cannot be fused with zipwith (line 4)
because the result of map (line 3), i.e., ds, is not deleted.

6.3 API Implementation

The wrapped array pointer was implemented by using a fixed-length array of
pointers, each of which is of a pointer type to the list element type. The pointer
array consists of a pointer to host memory, a pointer to device memory, and the
length of the list in the case of CUDA code. The wrapped array pointer type
behaves like a struct type that has parametric polymorphism. Although this
solution seems to be ad hoc, both language extension to C and the use of void
pointers were avoided.

A device pointer is extracted from each wrapped array pointer passed to
skeletons within the implementation of each skeleton. Then, the array in the

4 More precisely, the fusion analyzer only constructs skeleton trees.
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device is directly accessed in the execution of the skeleton body. Therefore, the
overhead of wrapped array pointers is small.

The polymorphism of the APIs was implemented with the void pointer type
for the compiler. First, the prototype declarations of the APIs were defined using
the void pointer type in the header file. Then, the API calls are rewritten to calls
of function templates that implement the APIs by the compiler. After that, the
void pointer type of the APIs is not used. These function templates have strongly
typed polymorphism.

7 Experimental Results

It is difficult to determine the properties of a GPGPU application simply by
analyzing the algorithms or reading the source code. Thus, it is of great use to
generate programs for GPUs and CPUs from the same source code to compare
their performance. To demonstrate the effectiveness of the proposed framework
from this viewpoint, we tested four applications5.

N-Body (NB): This is an N-body simulation using the Euler method in two-
dimensional space. Two lists (positions and velocities of bodies) are updated
every step. An element in each list is a pair of double numbers. Its time
complexity is O(tn2), where n is the number of bodies and t is the number
of steps.

Numerical Integration (NI): This computes
∫ b

a
x log x cos xdx in 2n divi-

sions (x is double) by using Simpson’s rule. Its time complexity is O(n).
Matrix Multiplication (MM): This computes AB, where A is an m×n ma-

trix and B is an n × m matrix whose elements are double. A and B are
represented as row and column vectors respectively. AB is computed with
inner products of row and column vectors. Its time complexity is O(m2n).

Correlation Coefficient (CC): This computes the Pearson product-moment
correlation coefficient from two sequences of samples whose lengths are n.
Each sequence is represented as a list of double. Its time complexity is O(n).

The experiments were performed on a PC with an Intel Core 2 Duo E8500 CPU
(3.16 GHz, L2 cache 6 MB) and a NVIDIA GeForce GTX 280 GPU (via PCI-
Express 2.0). The main memory was DDR2-800 4 GB. The video memory of the
GPU was 1 GB. The operating system was Ubuntu 7.10 (32-bit). We used CUDA
SDK 2.0 (driver version 177.67) and GNU C++ 4.2.1 (including OpenMP) for
compiling on-CPU programs. Each binary was created in -O3 optimization level.

For each application, we used four programs.

skel-GPU-gen: An on-GPU skeleton program whose input data is generated
on the GPU with generate.

skel-GPU-trans: An on-GPU skeleton program whose input data is generated
sequentially on the CPU and transferred to device memory.

skel-CPU-par: An on-CPU skeleton program with OpenMP. It can be gener-
ated from the same source code used for skel-GPU-gen by our framework.

5 Refer to Table 2 for the number of skeleton calls used in each application.
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(b) NI, a = 1, b = 1000
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(c) MM, m = 128
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Fig. 5. Execution time of four applications against input data size for skel-GPU-gen,
skel-GPU-trans, skel-CPU-par, and hand-CPU-seq

hand-CPU-seq: A simple hand-coded sequential program in C++ that per-
forms the same computation as skel-CPU-par after fusion optimization in a
sequential manner on the CPU without using our framework.

Fusion optimization was applied to all skeleton programs. Because the macro-
only API implementation does not support fusion optimization, we did not use
the sequential on-CPU program of each skeleton program generated by the pro-
posed framework. Instead, we used hand-CPU-seq in the experiments.

As shown in Fig. 5, NB and NI had the same tendency: skel-GPU-gen and
skel-GPU-trans showed almost the same results and were always better than
skel-CPU-par and hand-CPU-seq. From these results, we can see that NB and
NI are suitable for GPGPU. For MM, skel-GPU-gen and skel-GPU-trans were
better than skel-CPU-par and hand-CPU-seq when the amount of input data
was large. This means that the suitability of MM for GPGPU depends on the
amount of input data. For CC, skel-GPU-trans was always worse than skel-CPU-
par: CC is not suitable for GPGPU due to the transfer of input data.

For all applications, skel-GPU-gen had the best performance except for MM
on small input data. This shows that the framework is able to exploit the po-
tential of the GPU. Depending on the application and amount of input data,
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Table 2. Effects of fusion optimization on skel-GPU-gen. Number of skeleton calls was
statically counted in source code, not counted at runtime

Application NB NI MM CC

Number of skeleton calls (before/after) 5/4 10/2 4/3 12/7
Maximum speed up (times) 1.00 1.48 1.71 2.44

Table 3. Overhead of skel-GPU-gen compared to hand-GPU-gen on large input data

Application NB NI MM CC

skel-GPU-gen (%) 27.3 s (100.00) 3.84 s (100.25) 994 ms (108.86) 25.3 ms (116.93)
hand-GPU-gen (%) 27.3 s (100.00) 3.83 s (100.00) 913 ms (100.00) 21.7 ms (100.00)

skel-GPU-trans may be slower than skel-CPU-par. This is due to the inher-
ent properties of the application. It is quite difficult to determine the inherent
properties of an application without running the programs. An important and
distinguishing point of the proposed framework is that programmers can easily
identify such properties by generating programs for both GPUs and CPUs from
the same source code and comparing their performance.

Table 2 shows the effects of fusion optimization on skel-GPU-gen under the
same condition as the benchmarks in Fig. 5. For each application, the maximum
speed up was achieved at largest input data and the minimum was caused at
nearly least input data. Overall, the fusion optimization had good effects on the
performance in GPGPU.

Table 3 shows the overhead of skel-GPU-gen compared to hand-GPU-gen: a
hand-coded parallel program in CUDA whose input data was generated on the
GPU. The hand-GPU-gen programs of NB, NI, and CC were optimized so as to
reuse functions passed to skeletons.Thehand-GPU-genprogramofMMwasmainly
implemented using the DGEMM subroutine of the CUBLAS library, which is an
implementation of basic linear algebra subprograms on CUDA. The overhead was
examined when the amount of input data was larger than or equal to the maximum
in the benchmarks in Fig. 5. For NB and NI, which are suitable for GPGPU, there
was very little overhead. For MM, although CUBLAS is a well optimized library,
therewas a littleoverhead. ForCC,becausehand-GPU-genavoided recomputation
efficiently and elaborately, there was the largest overhead of the four applications.

8 Related Work and Discussion

8.1 Skeletal Parallel Programming

Many skeletal parallel programming environments provide skeletons as libraries.
Muesli [8], eSkel [9], Quaff [10], and SkeTo [11] are libraries implemented in
C/C++ with MPI for distributed memory systems such as PC clusters. BlockLib
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[18] is a library implemented in C equipped with C preprocessor macros for the
Cell Broadband Engine processor. Our framework differs from these approaches
in that the target is GPGPU.

Some implementations have optimization mechanisms for skeleton calls. The
FAN skeleton framework [20] supports automatic rule-based program transfor-
mation; however, the transformation is ad hoc and requires many rules. Grelck
and Scholz [21] presented three optimizers that merge with-loops, which are
used for array skeletons, in a SaC [22] compiler. Their optimizer was focused
on multi-dimensional different-bounds arrays. SkeTo supports an optimizer [23]
that partially implements Hu et al.’s fusion [5,6] for BMF-based list skeletons.
The SkeTo optimizer does not support zipwith fusion at all, which ours supports.

8.2 GPGPU Programming

Stream programming [24] has been proposed for efficiently exploiting stream
processors. Brook for GPUs [25] supports stream programming for GPUs.

MapReduce [26,27] is a programming model that efficiently exploits large-
scale PC clusters in the back-end of search engines. MapReduce systems for
GPUs have been developed; Mars [28] is optimized for CUDA, and Merge [29]
dispatches tasks to both GPUs and CPUs.

Stream programming is similar to BMF-based skeletal programming from the
viewpoint that both compose operations of a specific data structure. However, in
stream programming, the data structure is restricted to streams, while BMF can
be extended to various data structures. MapReduce resembles BMF-based skele-
tal programming because both use higher-order functions. However, MapReduce
does not treat the composition of higher-order functions. Therefore, BMF-based
skeletal parallel programming, like our framework, has higher abstraction and
wider generality than stream programming and MapReduce.

Lee et al. [30] proposed an embedded language and its online compiler for
using GPUs in Haskell. Although they employed the idea of skeletons, their
main challenge is to use GPUs with monads in Haskell. Their approach differs
from ours in two respects: it had significant overhead and it did not support
fusion optimization. Lee et al. [31] developed OpenMP optimized for CUDA,
which is directive-based approach compared to our skeletal approach.

9 Conclusion

We have developed a skeletal parallel programming framework for GPGPU pro-
gramming that has a fusion optimizer. The framework enables rapid GPGPU
application development.

There are two directions for future work. One is to add other skeletons to
enrich applications. More applications can be described using our framework
if scan and shift are introduced. Thus, we will demonstrate expressiveness of
skeletons. The other is to improve the fusion analyzer. In the current implemen-
tation, the fusion optimization is a local optimization. The fusion optimizer can
perform a more powerful global optimization if the fusion analyzer gathers data
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flow among basic blocks. In addition, we want to enhance the fusion analyzer to
check some part of contracts and restrictions of APIs at compile time.
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Euro-Par 2007. LNCS, vol. 4641, pp. 705–714. Springer, Heidelberg (2007)

8. Kuchen, H.: A Skeleton Library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par
2002. LNCS, vol. 2400, pp. 85–124. Springer, Heidelberg (2002)

9. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible Skeletal Programming with
eSkel. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp.
761–770. Springer, Heidelberg (2005)
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12. Luebke, D., Harris, M., Krüger, J., Purcell, T., Govindaraju, N., Buck, I., Woolley,
C., Lefohn, A.: GPGPU: General-Purpose Computation on Graphics Hardware.
In: ACM SIGGRAPH 2004 Course Notes (2004)

13. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
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Abstract. Restricting destructive update to values of a distinguished
reference type prevents functions from being polymorphic in the muta-
bility of their arguments. This restriction makes it easier to reason about
program behaviour during transformation, but the lack of polymorphism
reduces the expressiveness of the language. We present a System-F style
core language that uses dependently kinded proof witnesses to encode
information about the mutability of values and the purity of computa-
tions. We support mixed strict and lazy evaluation, and use our type
system to ensure that only computations without visible side effects are
suspended.

1 Introduction

Suppose we are writing a library that provides a useful data structure such as
linked lists. A Haskell-style definition for the list type would be:

data List a = Nil | Cons a (List a)

The core language of compilers such as GHC is based around System-F [15]. Here
is the translation of the standard map function to this representation, complete
with type abstractions and applications:

map :: ∀a b. (a → b) → List a → List b
map = Λa. Λb. λ(f : a → b). λ(list : List a).

case list of
Nil → Nil b
Cons x xs→ Cons b (f x) (map a b f xs)

Say we went on to define some other useful list functions, and then decided
that we need one to destructively insert a new element into the middle of a list.
In Haskell, side effects are carefully controlled and we would need to introduce
a monad such as ST or IO [8] to encapsulate the effects due to the update.
Destructive update is also limited to distinguished types such as STRef and
IORef . We cannot use our previous list type, so will instead change it to use an
IORef .

data List a = Nil | Cons a (IORef (List a))

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 95–110, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Unfortunately, as we have changed the structure of our original data type, we
can no longer use the previous definition of map, or any other functions we de-
fined earlier. We must go back and refactor each of these function definitions to
use the new type. We must insert calls to readIORef and use monadic sequencing
combinators instead of vanilla let and where-expressions. However, doing so in-
troduces explicit data dependencies into the core program. This in turn reduces
the compiler’s ability to perform optimisations such as deforestation and the
full laziness transform [6], which require functions to be written in the “pure”,
non-monadic style. It appears that we need two versions of our list structure
and its associated functions, an immutable version that can be optimised, and
a mutable one that can be updated.

Variations of this problem are also present in ML and O’Caml. In ML, mu-
tability is restricted to ref and array types [11]. In O’Caml, record types can
have mutable fields, but variant types cannot [9]. Similarly to Haskell, in these
languages we are forced to insert explicit reference types into the definitions
of mutable data structures, which makes them incompatible with the standard
immutable ones. This paper shows how to avoid this problem:

– We present a System-F style core language that uses region and effect typing
to guide program optimisation. Optimisations that depend on purity can be
performed on the the pure fragments of the program.

– We use region variables and dependently kinded witnesses to encode mu-
tability polymorphism. This allows arbitrary data structures to be mutable
without changing the structure of their value types.

– We use call-by-value evaluation as default, but support lazy evaluation via a
primitive suspend operator. We use witnesses of purity to ensure that only
pure function applications can be suspended.

Our goals are similar to those of Benton and Kennedy [3], but as in [15] we use
a System-F based core language instead of a monadic one. Type inference and
translation from source to core is discussed in [10].

2 Regions, Effects and Mutability Constraints

In Haskell and ML, references and arrays are distinguished values, and are the
only ones capable of being destructively updated. This means that the structure
of mutable data is necessarily different from the structure of constant data, which
makes it difficult to write polymorphic functions that act on both. For example,
if we use IORef Int as the type of a mutable integer and Int as the type of
a constant integer, then we would need readIORef to access the first, but not
the second. On the other hand, if we were to treat all data as mutable, then
every function would exhibit a side effect. This would prevent us from using
code-motion style optimisations that depend on purity.

Instead, we give integers the type Int r, where r is a region variable, and
constrain r to be mutable or constant as needed. Our use of region variables is
similar to that by Talpin and Jouvelot [16], where the variable r is a name for



Witnessing Purity, Constancy and Mutability 97

a set of locations in the store where a run-time object may lie. We do not use
regions for controlling allocation as per [17], due to the difficulty of statically
determining when objects referenced by suspended computations can be safely
deallocated. We define region variables to have kind %, and use this symbol
because pictorially it is two circles separated by a line, a mnemonic for “this,
or that”. The kind of value types is *, so the Int type constructor has kind
Int :: % → ∗. The type of a literal integer such as ‘5’ is:

5 :: ∀(r : %). Int r

In our System-F style language, type application corresponds to instantiation,
and ‘5’ is the name of a function that allocates a new integer object into a given
region. Note that unlike [16] we do not use allocation effects. This prevents us
from optimising away some forms of duplicated computation, such as described
in §7 of [4], but also simplifies our type system. For the rest of this paper we will
elide explicit kind annotations on binders when they are clear from context.

2.1 Updating Integers

To update an integer we use the updateInt function which has type:

updateInt :: ∀r1 r2.Mutable r1 ⇒ Int r1 → Int r2
Read r2 ∨ Write r1−→ ()

This function reads the value of its second integer argument, and uses this to
overwrite the value of the first. As in [16] we annotate function types with their
latent effects. We organise effects as a lattice and collect atomic effects with the
∨ operator. We use ⊥ as the effect of a pure function, and unannotated function
arrows are taken to have this effect. We also use a set-like subtraction operator
where the effect σ \ σ′ contains the atomic effects that appear in σ but not σ′.
We use ! as the kind of effects, so Read has kind Read :: % → !. The symbol ! is
a mnemonic for “something’s happening!”.

Returning to the type of updateInt , Mutable r1 is a region constraint that
ensures that only mutable integers may be updated. When we call this function
we must pass a witness to the fact that this constraint is satisfied, a point we
will discuss further in §3.

When the number of atomic effects becomes large, using the above syntax for
effects becomes cumbersome. Due to this we sometimes write effect terms after
the body of the type instead:

updateInt :: ∀r1 r2.Mutable r1 ⇒ Int r1 → Int r2
e1−→ ()

� e1 = Read r2 ∨ Write r1

The symbol � is pronounced “with”. Note that the effect variable e1 is not
quantified. It has been introduced for convenience only and is not a parameter
of the type.

2.2 Updating Algebraic Data

Along with primitive types such as Int , the definition of an algebraic data type
can also contain region variables. For example, we define our lists as follows:
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data List r a = Nil | Cons a (List r a)

This definition is similar to the one from §1 except that we have also applied
the List constructor to a region variable. This variable identifies the region that
contains the list cells, and can be constrained to be constant or mutable as
needed. The definition also introduces data constructors that have the following
types:

Nil :: ∀r a. List r a
Cons :: ∀r a. a → List r a → List r a

In the type of Nil , the fact that r is quantified indicates that this constructor
allocates a new Nil object. Freshly allocated objects do not alias with existing
objects, so they can be taken to be in any region. On the other hand, in the type
of Cons , the type of the second argument and return value share the same region
variable r, which means the new cons-cell is allocated into the same region as
the existing cells. For example, evaluation of the following expression produces
the store objects shown below.

list :: List r5 (Int r6)
list = Cons r5 (Int r6) (2 r6) (Cons r5 (Int r6) (3 r6) (Nil r5))

As the list cells and integer elements are in different regions, we can give
them differing mutabilities. If the type of list was constrained as follows, then
we would be free to update the integer elements, but not the spine.

list :: Const r5 ⇒ Mutable r6 ⇒ List r5 (Int r6)

The definition of an algebraic type also introduces a set of update operators,
one for each updatable component of the corresponding value. For our list type,
as we could usefully update the head and tail pointers in a cons-cell, we get the
following operators:

updateCons,0 :: ∀r a. Mutable r ⇒ List r a → a
Write r−→ ()

updateCons,1 :: ∀r a. Mutable r ⇒ List r a → List r a
Write r−→ ()

These operators both take a list and a new value. If the list contains an outer
cons-cell, then the appropriate pointer in that cell is updated to point to the
new value. If the list is not a cons, then a run-time error is raised.
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3 Witnesses and Witness Construction

The novel aspect of our core language is that it uses dependently kinded wit-
nesses to manage information about purity, constancy and mutability. A witness
is a special type that can occur in the term being evaluated, and its occurrence
guarantees a particular property of the program. The System-Fc [15] language
uses a similar mechanism to manage information about non-syntactic type equal-
ity. Dependent kinds were introduced by the Edinburgh Logical Framework (LF)
[1] which uses them to encode logical rules.

Note that although our formal operational semantics manipulates witnesses
during reduction, in practice they are only used to reason about the program
during compilation, and are not needed at runtime. Our compiler erases witnesses
before code generation, along with all other type information.

3.1 Region Handles

We write witnesses with an underline, and the first we discuss are the region
allocation witnesses ρn. These are also called region handles and are introduced
into the program with the letregion r in t expression. Reduction of this ex-
pression allocates a fresh handle ρ and substitutes it for all occurrences of the
variable r in t. To avoid problems with variable capture we require all bound
variables r in the initial program to be distinct. Although region handles are
not needed at runtime, we can imagine them to be operational descriptions of
physical regions of the store, perhaps incorporating a base address and a range.
For example, the following program adds two to its argument, while storing an
intermediate value in a region named r3.

addTwo :: ∀r1 r2. Int r1
Read r1−→ Int r2

addTwo = Λr1 r2. λ(x : Int r1).
letregion r3 in succ r3 r2 (succ r1 r3 x)

This program makes use of the primitive succ function that reads its integer
argument and produces a new value into a given region:

succ :: ∀r1 r2. Int r1
Read r1−→ Int r2

Note the phase distinction between region variables rn and region handles ρn.
Region handles are bound by region variables. As no regions exist in the store
before execution, region handles may not occur in the initial program. Also,
although the outer call to succ reads a value in r3, this effect is not observable
by calling functions, so is masked and not included in the type signature of
addTwo. This is similar to the system of [17].

3.2 Witnesses of Constancy and Mutability

The constancy or mutability of values in a particular region is represented by the
witnesses const ρ and mutable ρ. Once again, these witnesses may not occur in
the initial program. Instead, they are created with the MkConst and MkMutable
witness type constructors which have the following kinds:
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MkConst :: Π(r : %). Const r
MkMutable :: Π(r : %). Mutable r

Both constructors take a region handle and produce the appropriate witness. To
ensure that both const ρn and mutable ρn for the same ρn cannot be created
by a given program, we require the mutability of a region to be set at the
point it is introduced. We introduce new regions with letregion, so extend this
construct with an optional witness binding that specifies the desired mutability.
If a function accesses values in a given region, and does not possess either a
witness of constancy or mutability for that region, then it cannot assume either.
For example, the following function computes the length of a list by destructively
incrementing a local accumulator, then copying out the final value.

length :: ∀a r1 r2. List r1 a
Read r1−→ Int r2

length = Λa r1 r2. λ(list : List r1 a).
letregion r3 with {w = MkMutable r3} in
let (acc : Int r3) = 0 r3

(length ′ : ...)
= λ(xx : List r1 a).

case xx of
Nil → copyInt r3 r2 acc
Cons xs → let ( : ()) = incInt r3 w acc

in length ′ xs
in length ′ list

where

copyInt :: ∀r1 r2. Int r1
Read r1−→ Int r2

incInt :: ∀r1.Mutable r1 ⇒ Int r1
Read r1∨Write r1−→ ()

The set after the with keyword binds an optional witness type variable. If the
region variable bound by the letregion is r, then the right of the witness binding
must be either MkConst r or MkMutable r. The type constructors MkConst and
MkMutable may not occur elsewhere in the program. The length function above
makes use of incInt which requires its integer argument to be in a mutable
region, and we satisfy this constraint by passing it our witness to the fact.

3.3 Laziness and Witnesses of Purity

Although we use call-by-value evaluation as the default, we can suspend the
evaluation of an arbitrary function application with the suspend operator:

suspend :: ∀a b e. Pure e ⇒ (a e→ b) → a → b

suspend takes a parameter function of type a
e→ b, its argument of type a, and

defers the application by building a thunk at runtime. When the value of the
thunk is demanded, the contained function will be applied to its argument, yield-
ing a result of type b. As per [7], values are demanded when they are used as
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the function in an application, or are inspected by a case-expression or primi-
tive operator such as update. The constraint Pure e indicates that we must also
provide a witness that the application to be suspended is observably pure. Wit-
nesses of purity are written pure σ where σ is some effect. They can be created
with the MkPurify witness type constructor. For example, the following function
computes the successor of its argument, but only when the result is demanded:

succL :: ∀r1 r2. Const r1 ⇒ Int r1
Read r1−→ Int r2

succL = Λr1 r2 (w : Const r1). λ(x : Int r1).
suspend (Int r1) (Int r2) (Read r1) (MkPurify r1 w)

(succ r1 r2) x

MkPurify takes a witness that a particular region is constant, and produces a
witness proving that a read from that region is pure. It has the following kind:

MkPurify :: Π(r : %). Const r → Pure (Read r)

Reads of constant regions are pure because it does not matter when the read
takes place, the same value will be returned each time. Note that in our system
there are several ways of writing the effect of a pure function. As mentioned in
§2.1 the effect term ⊥ is manifestly pure. However, we can also treat any other
effect as pure if we can produce a witness of the appropriate kind. For example,
Read r5 is pure if we can produce a witness of kind Pure (Read r5).

3.4 Witness Joining and Explicit Effect Masking

Purity constraints extend naturally to higher order functions. Here is the defini-
tion of a lazy map function, mapL, which constructs the first list element when
called, but only constructs subsequent elements when they are demanded:

mapL :: ∀a b r1 r2 e.

Const r1 ⇒ Pure e ⇒ (a e→ b) → List r1 a → List r2 b

mapL
= Λa b r1 r2 e (w1 : Const r1) (w2 : Pure e).

λ(f : a e→ b) (list : List r1 a).
mask (MkPureJoin (Read r1) e (MkPurify r1 w1) w2) in
case list of

Nil → Nil r2
Cons x xs → Cons r2 b (f x)

(suspend (List r1 a) (List r2 b) ⊥ MkPure
(mapL a b r1 r2 e w1 w2 f) xs)

The inner case-expression in this function has the effect Read r1 ∨ e. The first
part is due to inspecting the list constructors, and the second is due to the
application of the argument function f to the list element x. However, as the
recursive call to mapL is suspended, mapL itself must be pure. One way to
satisfy this constraint would be to pass a witness showing that Read r1 ∨ e is
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pure directly to suspend . This works, but leaves mapL with a type that contains
this (provably pure) effect term. Instead, we have chosen to explicitly mask this
effect in the body of mapL. This gives mapL a manifestly pure type, and allows
us to pass a trivial witness to suspend to show that the recursive call is pure.

The masking is achieved with the mask δ in t expression, which contains a
witness of purity δ and a body t. The type and value of this expression is the
same as for t, but its effect is the effect of t minus the terms which δ proves are
pure. In our mapL example we prove that Read r1 ∨ e is pure by combining two
other witnesses, w1 which proves that the list cells are in a constant region, and
w2 which proves that the argument function itself is pure. They are combined
with the MkPureJoin witness type constructor which has the following kind:

MkPureJoin :: Π(e1 : !). Π(e2 : !). Pure e1 → Pure e2 → Pure (e1 ∨ e2)

The masking expression in our example also uses MkPure, which introduces a
witness that the effect ⊥ is pure. Note that our type for mapL now contains
exactly the constraints that are implicit in a lazy language such as Haskell.
In Haskell, all algebraic data is constant, and all functions are pure. In our
language, we can suspend function applications as desired, but doing so requires
the functions and data involved to satisfy the usual constraints of lazy evaluation.

4 Language

We are now in a position to formally define our core language and its typing
rules. The structure of the language is given in Fig. 1. Most has been described
previously, so we only discuss the aspects not covered so far. Firstly, we use ♦ as
the result kind of witness kind constructors, so a constructor such as Mutable has
kind Mutable :: % → ♦. This says that a witness of kind Mutable r guarantees
a property of a region, where ♦ refers to the guarantee.

We use use τi as binders for value types, σi as binders for effect types, and
δi as binders for type expressions that construct witness types. Δi refers to
constructed witnesses of the form ρ, const ρ, mutable ρ or pure σ. ϕi can refer
to any type expression.

The values in our term language are identified with v. Weak values, v◦, consist
of the values as well as suspended function applications suspend ϕ v◦1 v◦2 . A
suspension is only forced when its (strong) value is demanded by using it as
the function in an application, the discriminant of a case expression, or as an
argument to a primitive operator such as update. Store locations li are discussed
in §4.2. The other aspects of our term language are standard. Recursion can be
introduced via fix in the usual way, but we omit it to save space. To simplify the
presentation we require the alternatives in a case-expression to be exhaustive.

4.1 Typing Rules

In Fig. 2 the judgement form Γ 'K κ :: κ′ reads: with type environment Γ , kind κ
has kind κ′. We could have added a super-kind stratum containing ♦, but inspired
by [12] we cap the hierarchy in this way to reduce the volume of typing rules.
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Symbol Classes
a, r, e, w → (type variable) T → (type constructor)
x → (value variable) K → (data constructor)

Kinds
κ ::= κ ϕ | Π(a : κ1). κ2 (kinds)

| ∗ | % | ! | ♦ (base kinds)
| Const | Mutable | Pure (kind constrs)

Types
ϕ, τ , σ, δ, Δ

::= a | ∀(a : κ). τ | ϕ1 ϕ2 | (→) | () | T (types)
| σ1 ∨ σ2 | ⊥ | Read | Write (effects)
| MkConst | MkMutable | MkPure | MkPurify | MkPureJoin (witness constrs)
| ρ | const ρ | mutable ρ | pure σ (witnesses)

Terms

t ::= v | t ϕ | t1 t2 | letregion r with {w = δ} in t | K ϕ t

| case t of K x : τ → t′ | updateK,i ϕ t1 t2 | suspend ϕ t1 t2
| mask δ in t

v◦, u◦ ::= v | suspend ϕ v◦
1 v◦

2 (weak values)
v, u ::= x | l | () | Λ(a : κ). t | λ(x : τ ). t (values)

Derived Forms

κ1 → κ2
def= Π( : κ1). κ2 let (x : τ ) = t1 in t2

def= (λ(x : τ ). t2) t1

κ ⇒ τ
def= ∀( : κ). τ letregion r in t

def= letregion r with ∅ in t

Store Typing Type Environment
Σ ::= l : τ | ρ | const ρ | mutable ρ Γ ::= a : κ | x : τ

Fig. 1. Core Language

Γ �K κ :: κ′

κ ∈ {∗, %, !, ♦}
Γ �K κ :: κ

(KsRefl)
Γ �K κ1 :: κ11 → κ12 Γ �K ϕ :: κ11

Γ �K κ1 ϕ :: κ12

(KsApp)

Γ �K Const :: % → ♦ Γ �K Mutable :: % → ♦ Γ �K Pure :: ! → ♦

Fig. 2. Kinds of Kinds
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Γ | Σ �T ϕ :: κ

Γ, a : κ | Σ �T a :: κ (KiVar)

Γ | Σ, ρ �T ρ :: % (KiHandle) Γ | Σ �T ⊥ :: ! (KiBot)

Γ �K κ1 :: κ′
1

a /∈ fv(Γ )

Γ, a : κ1 | Σ �T τ :: κ2

Γ | Σ �T ∀(a : κ1). τ :: κ2

(KiAll)

Γ | Σ �T σ1 :: !

Γ | Σ �T σ2 :: !

Γ | Σ �T σ1 ∨ σ2 :: !
(KiJoin)

Γ | Σ �T ϕ1 :: Π(a : κ1). κ2 Γ | Σ �T ϕ2 :: κ1

Γ | Σ �T ϕ1 ϕ2 :: κ2[ϕ2/a]
(KiApp)

Γ | Σ, const ρ �T const ρ :: Const ρ (KiConst)

Γ | Σ, mutable ρ �T mutable ρ :: Mutable ρ (KiMutable)

Γ | Σ �T pure ⊥ :: Pure ⊥ (KiPure)

Γ | Σ, const ρ �T pure (Read ρ) :: Pure (Read ρ) (KiPurify)

Γ | Σ �T pure σ1 :: Pure σ1

Γ | Σ �T pure σ2 :: Pure σ2

Γ | Σ �T pure (σ1 ∨ σ2) :: Pure (σ1 ∨ σ2)
(KiPureJoin)

Γ | Σ �T (→) :: ∗ → ∗ → ! → ∗ Γ | Σ �T () :: ∗
Γ | Σ �T Bool :: % → ∗ Γ | Σ �T Read :: % → !
Γ | Σ �T MkConst :: Π(r : %). Const r Γ | Σ �T Write :: % → !
Γ | Σ �T MkMutable :: Π(r : %). Mutable r Γ | Σ �T MkPure :: Pure ⊥
Γ | Σ �T MkPurify :: Π(r : %). Const r → Pure (Read r)
Γ | Σ �T MkPureJoin :: Π(e1 : !). Π(e2 : !). Pure e1 → Pure e2 → Pure (e1 ∨ e2)

Fig. 3. Kinds of Types

In Fig. 3 the judgement form Γ |Σ 'T ϕ :: κ reads: with type environment
Γ and store typing Σ, type ϕ has kind κ. We discuss store typings in §4.3.

In Fig. 4 the judgement form Γ |Σ ' t :: τ ; σ reads: with type environment Γ
and store typing Σ, term t has type τ and effect σ. In TyLetRegion the premise
“δi well formed” refers to the requirement discussed in §3.2 that the witness
introduced by a letregion must concern the bound variable r. In TyUpdate
and TyAlt, the meta-function ctorTypes(T ) returns a set containing the types
of the data constructors associated with type constructor T .

4.2 Dynamic Semantics

During evaluation, all updatable data is held in the store (also known as the
heap), which is defined in Fig. 5. The store contains bindings that map abstract
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Γ | Σ � t :: τ ; σ

Γ, x : τ | Σ � x :: τ ; ⊥ (TyVar)

Γ, K : τ | Σ � K :: τ ; ⊥ (TyCtor)

Γ | Σ, l : τ � l :: τ ; ⊥ (TyLoc)

Γ | Σ � () :: () ; ⊥ (TyUnit)

Γ, a : κ | Σ � t2 :: τ2 ; σ2

Γ | Σ � Λ(a : κ). t2 :: ∀(a : κ). τ2 ; σ2

(TyAbsT)

Γ | Σ � t1 :: ∀(a : κ11). ϕ12 ; σ1 Γ | Σ �T ϕ2 :: κ11

Γ | Σ � t1 ϕ2 :: ϕ12[ϕ2/a] ; σ1[ϕ2/a]
(TyAppT)

Γ, x : τ1 | Σ � t :: τ2 ; σ

Γ | Σ � λ(x : τ1). t :: τ1
σ→ τ2 ; ⊥

(TyAbs)

Γ | Σ � t2 :: τ11 ; σ2 Γ | Σ � t1 :: τ11
σ→ τ12 ; σ1

Γ | Σ � t1 t2 :: τ12 ; σ1 ∨ σ2 ∨ σ
(TyApp)

δi well formed r /∈ fv(τ ) Γ �K κi :: ♦
Γ, r : %, wi : κi | Σ � t :: τ ; σ Γ | Σ �T δi :: κi

Γ | Σ � letregion r with {wi = δi} in t :: τ ; σ \ (Read r ∨ Write r)
(TyLetRegion)

Γ | Σ � t :: T ϕ ϕ′ ; σ Γ | Σ � pi → ti :: T ϕ ϕ′ → τ ; σ′
i

n

Γ | Σ � case t of p → t :: τ ; σ ∨ Read ϕ ∨ σ′
0 ∨ σ′

1... ∨ σ′
n

(TyCase)

Γ | Σ �T δ :: Mutable ϕ Γ | Σ � t′ :: τi[ϕ/r][ϕ′/a] ; σ′

Γ | Σ � t :: T ϕ ϕ′ ; σ K :: ∀(r : %)(a : κ).τ → T r a ∈ ctorTypes(T )

Γ | Σ � updateK,i ϕ ϕ′ δ t t′ :: () ; σ ∨ σ′ ∨ Write ϕ

(TyUpdate)

Γ | Σ �T δ :: Pure σ Γ | Σ � t1 :: τ11
σ→ τ12 ; σ1 Γ | Σ � t2 :: τ11 ; σ2

Γ | Σ � suspend τ11 τ12 σ δ t1 t2 :: τ12 ; σ1 ∨ σ2

(TySuspend)

Γ | Σ � t :: τ ; σ Γ | Σ �T δ :: Pure σ′

Γ | Σ � mask δ in t :: τ ; σ \ σ′ (TyMaskPure)

Γ | Σ � p → t :: τ → τ ′ ; σ

θ = [ϕ/r ϕ′/a]

K :: ∀(r : %)(a : κ).τ → T r a ∈ ctorTypes(T ) Γ, x : θ(τ ) | Σ � t :: τ ′ ; σ

Γ | Σ � K x → t :: T ϕ ϕ′ → τ ′ ; σ

(TyAlt)

Fig. 4. Types of Terms
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l → (store location)
ρ → (region handle)
o ::= ρ | const ρ | mutable ρ (property)
π ::= l | () | Λ(a : κ).t | λ(x : τ ).t | suspend ϕ π π′ (store value)
μ ::= CK π (store object)
H : { l

ρ�→ μ } + { o } (store)

Fig. 5. Stores and Store Objects

store locations to store objects. Each store object consists of a constructor tag
CK and a list of store values π, where each value can be a location, unit value,
abstraction or suspension. Each binding is annotated with a region handle ρ that
specifies the region that the binding belongs to. Note that store objects can be
usefully updated, but store values can not.

The store also contains properties that specify how bindings in the various
regions may be used. The properties are ρ, (const ρ) and (mutable ρ). The
last two indicate whether a binding in that region may be treated as constant,
or updated. When used as a property, a region handle ρ indicates that the
corresponding region has been created and is ready to have bindings allocated
into it. Note that the region handles of store bindings and properties are not
underlined because those occurrences are not used as types.

In Fig. 6 the judgement form H ; δ � δ′ reads: with store H, witness δ pro-
duces witness δ′. Operationally, properties can be imagined as protection flags on
regions of the store — much like the read, write and execute bits in a hardware
page table. The witness constructors MkConst and MkMutable test for these
properties, producing a type-level artefact showing that the property was set. If
we try to evaluate either constructor when the desired property is not set, then
the evaluation becomes stuck.

In Fig. 7 the judgement form H ; t −→ H ′; t′ reads: in heap H term t reduces
to a new heap H ′ and term t′. In EvLetRegion the propOf meta-function maps
a witness to its associated store property. Also, note that the premise of EvLe-
tRegion is always true, and produces the required witnesses and properties from
the given witness constructions δi.

4.3 Soundness

In the typing rules we use a store typing Σ that models the state of the heap as
the program evaluates. The store typing contains the type of each store location,
along with witnesses to the current set of store properties. We say the store
typing models the store, and write Σ |= H , when all members of the store typing
correspond to members of the store. Conversely, we say the store is well typed,
and write Σ ' H when it contains all the bindings and properties predicted by
the store typing. Both the store and store typing grow as the program evaluates,
and neither bindings, properties or witnesses are removed once added.

Store bindings can be modified by the update operator, but the typing rules
for update ensure that bindings retain the types predicted by the store typing.
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H ; δ � δ′

H ; Ew[δ]� Ew[δ′]
Ew ::= [ ] | MkPurify ρ Ew

| MkPureJoin σ1 σ2 Ew Ew

H [ const ρ ] ;MkConst ρ� const ρ (EwConst)

H [ mutable ρ ] ;MkMutable ρ� mutable ρ (EwMutable)

H ; MkPure � pure ⊥ (EwPure)

H ; MkPurify ρ const ρ� pure (Read ρ) (EwPurify)

H ; MkPureJoin σ1 σ2 pure σ1 pure σ2 � pure (σ1 ∨ σ2) (EwPureJoin)

Fig. 6. Witness Construction

e −→ e′

Ev[e] −→ Ev[e′]

Ev ::= [ ] | Ev ϕ | Ev t2 | v Ev | case Ev of alt

| K ϕ Ev t1 ... | K ϕ v0 Ev ... | ...

| updateK,i ϕ Ev t2 | updateK,i ϕ l Ev

| suspend ϕ Ev t2 | suspend ϕ v Ev

H ; (Λ(a :: κ). t) ϕ −→ H ; t[ϕ/a] (EvTAppAbs)

H ; (λ(x :: τ ). t) v◦ −→ H ; t[v◦/x] (EvAppAbs)

H, propOf(Δi) ; δi[ρ/r]� Δi ρ fresh

H ; letregion r with {wi = δi} in t −→ H, ρ, propOf(Δi) ; t[Δi/wi][ρ/r]
(EvLetRegion)

H [ρ] ; K ρ ϕ v◦ −→ H, l
ρ�→ CK v◦ ; l l fresh (EvAlloc)

H [l
ρ�→ CK v◦] ; case l of ...K x → t... −→ H ; t[v◦/x] (EvCase)

H ; δ � δ′

H ; update ϕ δ t t′ −→ H ; update ϕ δ′ t t′
(EvUpdateW)

H [ mutable ρ ], l
ρ�→ CK v◦n ; updateK,i ϕ mutable ρ l u◦ (EvUpdate)

−→ H, l
ρ�→ CK v0..u

◦
i ..vn ; ()

H [ mutable ρ ], l
ρ�→ CK v◦ ; updateK′,i ϕ mutable ρ l u◦ (EvFail)

−→ H ; fail K 	= K′

H ; δ � δ′

H ; suspend ϕ δ t t′ −→ H ; suspend ϕ δ′ t t′
(EvSuspendW)

H ; suspend τ τ ′ σ pure σ (λ(x : τ ). t) v◦ −→ H ; t[v◦/x] (EvSuspend)

H ; mask δ in t −→ H ; t (EvMask)

Fig. 7. Term Evaluation
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The rule TyLoc of Fig. 4 and KiHandle, KiConst, KiMutable and KiPurify of
Fig. 3 ensure that if a location or witness occurs in the term, then it also occurs
in the store typing. Provided the store typing models the store, this also means
that the corresponding binding or property is present in the store. From the
evaluation rules in Fig. 7, the only term that adds properties to the store is
letregion, and when it does, it also introduces the corresponding witnesses into
the expression. The well-formedness restriction on letregion guarantees that a
witnesses of mutability and constancy for the same region cannot be created.
This ensures that if we have, say, the witness const ρ in the term, then there
is not a (mutable ρ) property in the store. This means that bindings in those
regions can never be updated, and it is safe to suspend function applications
that read them.

Our progress and preservation theorems are stated below. We do not prove
these here, but [10] contains a proof for a similar system. The system in this
paper supports full algebraic data types, whereas the one in [10] is limited to
booleans. Also, here we include a r /∈ fv(τ) premise in the TyLetRegion rule,
which makes the presentation easier. See [10] for a discussion of this point.

Progress. If ∅ | Σ ' t :: τ ; σ and Σ |= H and Σ ' H and nofab(t) then
either t ∈ Value or for some H ′, t′ we have (H ; t −→ H ′; t′ and nofab(t′) or
H ; t −→ H ′; fail ).

Preservation. If Γ | Σ ' t :: τ ; σ and H ; t −→ H ′; t′ then for some Σ′, σ′

we have Γ | Σ′ ' t′ :: τ ; σ′ and Σ′ ⊇ Σ and Σ′ |= H ′ and Σ′ ' H ′ and
Γ |Σ ' σ′ ( σ.

In the Progress Theorem, “nofab” is short for “no fabricated region witnesses”,
and refers to the syntactic constraint that MkConst and MkMutable may only
appear in the witness binding of a letregion and not elsewhere in the program.
We could perhaps recast these two constructors as separate syntactic forms of
letregion, and remove the need for nofab, but we have chosen not to do this
because we prefer the simpler syntax.

In the Preservation Theorem, note that the latent effect of the term reduces
as the program progresses. The ( relationship on effects is defined in the obvious
way, apart from the following extra rule:

Γ |Σ 'T δ :: Pure σ

Γ |Σ ' σ ( ⊥ (SubPurify)

This says that if we can construct a witness that a particular effect is pure, then
we can treat it as such. This allows us to erase read effects on constant regions
during the proof of Preservation. It is needed to show that forcing a suspension
does not have a visible effect, and that we can disregard explicitly masked effect
terms when entering into the body of a mask-expression.

5 Related Work

The inspiration for our work has been to build on the monadic intermediate
languages of [18], [3] and [13]. Note that for our purposes, the difference between
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using effect and monadic typing is largely syntactic. We prefer effect typing be-
cause it mirrors our operational intuition more closely, but [19] gives a translation
between the two. Our system extends the previous languages with region, effect
and mutability polymorphism, which improves the scope of optimisations that
can be performed. In [4] and [2], Benton et al present similar monadic languages
that include region and effect polymorphism, but do not consider mutability
polymorphism or lazy evaluation.

The Capability Calculus [5] provides region based memory management,
whereby a capability is associated with each region, and an expression can only
access a region when it holds its capability. When the region is deallocated, its
associated capability is revoked, ensuring soundness. The capabilities of [5] have
similarities to the witnesses of our system, but theirs are not reified in the term
being evaluated, and we do not allow ours to be revoked.

The BitC [14] language permits any location, whether on the stack, heap
or within data structures to be mutated. Its operational semantics includes an
explicit stack as well as a heap, and function arguments are implicitly copied
onto the stack during application. BitC includes mutability annotations, but
does not use region or effect typing.

6 Conclusion and Future Work

We have presented a System-F style intermediate language that supports mu-
tability polymorphism as well as lazy evaluation, and uses dependently kinded
witnesses to track the purity of effects and the mutability and constancy of re-
gions. One of the current limitations of our system is that the results of all case
alternatives must have the same type. This prevents us from choosing between,
say, a mutable and a constant integer. In future work we plan to provide a new
region constraint Blocked that represents the fact that an object could be in
either a mutable or constant region. We would permit such objects to be read,
but not updated, and computations that read them could not be suspended.
Doing so would likely require introducing a notion of subtyping into the system,
so the types of all alternatives could be coerced to a single upper bound.

The system presented in this paper has been implemented in the proto-
type Disciplined Disciple Compiler (DDC) which can be obtained from the
haskell.org website.
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Abstract. Bounded existential types are a powerful language feature
for modeling partial data abstraction and information hiding. However,
existentials do not mingle well with subtyping as found in current object-
oriented languages: the subtyping relation is already undecidable for very
restrictive settings.

This paper considers two subtyping relations defined by extracting the
features specific to existentials from current language proposals (JavaGI,
WildFJ, and Scala) and shows that both subtyping relations are unde-
cidable. One of the two subtyping relations remains undecidable even if
bounded existential types are removed.

With the goal of regaining decidable type checking for the JavaGI lan-
guage, the paper also discusses various restrictions including the elim-
ination of bounded existentials from the language as well as possible
amendments to regain some of their features.

1 Introduction

Cardelli and Wegner [5] introduced bounded existential types to obtain a fine-
grained modeling instrument for structured and partial data abstraction and
information hiding, thus generalizing the concept of an abstract data type mod-
eled with a plain existential type [12]. Language designers and type theorists rely
on bounded existentials in diverse areas such as object-oriented languages [1],
module systems [19], and functional languages [10].

In the realm of object-oriented languages, bounded existential types have
found uses for modeling object-oriented languages in general [2], as well as for
modeling specific features such as Java wildcards [3,20,21]. Only a few languages
(e.g., Scala [13]) make bounded existential types in full generality available to the
programmer. Also, the initial design of JavaGI [23] includes bounded existential
types and provides interface types (i.e., the ability to form types from interface
names) as a special case supported by syntactic sugar. Building directly on
bounded existential types has several advantages compared to interface types:
they properly generalize interface types, they encompass Java wildcards, and
they have meaningful uses with interfaces abstracting over families of types.
Thus, despite the complexity that they introduce in a type system, bounded
existential types initially appear like a worthwhile feature.
� A preliminary version of this work was presented at FTfJP 2008 [24].

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 111–127, 2009.
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Unfortunately, it turns out that subtyping —and hence type checking— for
JavaGI is undecidable in the presence of general bounded existential types. Fur-
thermore, subtyping for bounded existential types as used to encode Java wild-
cards is also undecidable. This article proves both of these undecidability results.
Moreover, it also shows that replacing JavaGI’s existentials with plain interface
types does not regain decidability of subtyping.

1.1 Contributions and Overview

After refreshing some background on the JavaGI language in Sec. 2, Sec. 3 defines
the calculus EXimpl that models the essential aspects of subtyping and bounded
existential types in JavaGI. Subtyping in EXimpl is shown to be undecidable by
reduction from Post’s Correspondence Problem [18]. Further, the section defines
the calculus ITimpl by replacing existential types in EXimpl with plain interface
types. Subtyping in ITimpl is also undecidable but various restrictions exist that
ensure decidability.

Sec. 4 considers the calculus EXuplo supporting existentials with lower and
upper bounds. Subtyping in EXuplo is also undecidable, as shown by reduction
from subtyping in FD

≤ , a restricted form of the polymorphic λ-calculus extended
with subtyping [14]. The results in this section are relevant to Scala [13], formal
systems for modeling Java wildcards [20,4, 3], and JavaGI’s full type system.

Sec. 5 explores alternative design options for JavaGI that avoid bounded ex-
istential types but keep the remaining features. Finally, Sec. 6 reviews related
work and Sec. 7 concludes. Detailed proofs may be found in an accompanying
technical report [26].

2 Background

JavaGI [23, 25] is a conservative extension of Java 1.5. It generalizes Java’s in-
terface concept to incorporate the essential features of Haskell type classes [8,
22]. The generalization allows for retroactive and type-conditional interface im-
plementations, binary methods, static methods in interfaces, default implementa-
tions for interface methods, and multi-headed interfaces (interfaces over families
of types). Furthermore, JavaGI’s initial design generalizes Java-like interface types
to bounded existential types. This section only discusses the features relevant to
this paper, namely retroactive interface implementations and existential types.

2.1 Retroactive Interface Implementations

Retroactive interface implementations allow programmers to implement an in-
terface for some class without changing the source code of the class. For example,
Java rejects the use of a ���-loop to iterate over the characters of a string because
the class String does not implement the interface Iterable:1

1 Java’s enhanced ���-loop allows to iterate over arrays and all types implementing the
Iterable<X> interface, which contains a single method Iterator<X> iterator().
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�������	
�
��	 Iterable<Character> [String] {

����� Iterator<Character> iterator() {

��
��	 	�� Iterator<Character>() {

�����
� int index = 0;

����� boolean hasNext() { ��
��	 index < length(); }

����� Character next() { ��
��	 charAt(index++); }

};

}

}

Fig. 1. Retroactive implementation of the Iterable interface

��� (Character c : ”21 is only half the truth”) { ... } // illegal in Java

As a class definition in Java must specify all interfaces that the class implements
and the definition of java.lang.String is fixed, there is no hope of getting this
code to work. A JavaGI programmer can overcome this restriction by adding
implementations for interfaces to an existing class at any time, retroactively,
without modifying the source code of the class.

For example, the implementation definition shown in Fig. 1 specifies that
the implementing type String, enclosed in square brackets [ ], implements the
interface Iterable<Character>.2 The definition of the iterator method can use
the methods length and charAt because they are part of String’s public interface.

2.2 Bounded Existential Types

Java uses the name of an interface as an interface type to denote the set of all
types implementing the interface. Instead of interface types, the initial design
of JavaGI features bounded existential types [5] and provides syntactic sugar for
recovering interface types. For example, the interface type List<String> abbre-
viates the existential type ∃ X ����� X �������	
� List<String> . X. The im-
plementation constraint “X �������	
� List<String>” restricts instantiations of
the type variable X to types that implement the interface List<String>. Thus,
the existential type denotes the set of all types implementing List<String>, ex-
actly like the synonymous interface type. (The occurrence of “List<String>” in
the implementation constraint does not abbreviate an existential type.)

Existentials are more general than interface types. For instance, the existential
∃ X ����� X �������	
� List<String>, X �������	
� Set<String> . X denotes
the set of all types that implement both List<String> and Set<String>. Java
supports such intersections of interface types only for specifying bounds of type
variables. Existentials also encompass Java wildcards [21,20,4, 3]. For instance,
the existential type ∃ X ����� X ��
�	�� Number . List<X> corresponds to the
wildcard type List<? ��
�	�� Number>.3

2 The implementation ignores the remove method of the Iterator interface.
3 Because List is an interface, ∃ X ����� X ��
�	�� Number . List<X> stands for
∃ X,L ����� X ��
�	�� Number, L �������	
� List<X> . L.
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The initial design of JavaGI allows implementation definitions for existentials.
For example, given an interface I, a programmer may write an implementation
definition to specify that all types implementing List<X> also implement I.

�������	
�
��	<X> I [List<X>] { /∗ implement methods of I ∗/ }

Such a definition is feasible only if all methods of I can be implemented using
only methods of the List interface. The example also demonstrates that JavaGI
supports generic implementation definitions, which are parameterized by type
variables.

3 Subtyping Existential Types with Implementation
Constraints

This section introduces EXimpl, a subtyping calculus with existentials (EX ) and
implementation constraints (impl). The calculus is a subset of Core-JavaGI [23].
It does not model all aspects of JavaGI’s initial design, but contains only those
features that make subtyping undecidable. In particular, the syntax of existen-
tials is restricted such that all existentials are encodings of interface types. Con-
sequently, undecidability of subtyping also holds for ITimpl, a variant of EXimpl

where interface types (IT ) replace existentials.

3.1 Definition of EXimpl

Fig. 2 defines the syntax along with the entailment and subtyping relations of
EXimpl. An implementation constraint P has the form X implementsI<T> and
constrains the type variable X to types that implement the interface I<T>. An
interface without type parameters is written I instead of I< • >.4

A type T is either a type variable X or a bounded existential type of the
form ∃X whereX implementsI<T> . X . For simplicity, there are no class types,
existentials have a single quantified type variable X , they have exactly one con-
straint X implementsI<T>, and the body of an existential must be the quanti-
fied type variable. Existentials are considered equal up to renaming of bound type
variables.

A definition def in EXimpl is either an interface or an implementation defini-
tion. Interface and implementation definitions do not have method signatures or
bodies, because methods do not matter for the entailment and subtyping rela-
tions of EXimpl. Moreover, EXimpl does not support interface inheritance. An im-
plementation definition implementation<X> I<T> [J<U>] implicitly assumes
that X = ftv(J<U>).5

The entailment relation Θ;Δ � T implementsI<T> expresses that type T
implements interface I<T>. It relies on a program environment Θ, which is a
finite set of definitions def , and a type environment Δ, which is a finite set of
4 The notation ξ abbreviates a sequence ξ1, . . . , ξn of syntactic entities with • standing

for the empty sequence. Sometimes, the sequence ξ stands for the set {ξ}.
5 The notation ftv(ξ) denotes the set of type variables free in ξ.
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Syntax

P, Q, R ::= X implements I<T>
T, U, V, W ::= X | ∃X whereP . X

def ::= interface I<X> | implementation<X> I<T> [I<T>]

X, Y, Z ∈ TyvarName I, J ∈ IfaceName

Θ; Δ � T implements I<T>

e1-impl

implementation<X> I<T> [U] ∈ Θ

Θ; Δ � [V/X ]
(
U implements I<T>

)
e1-local

P ∈ Δ

Θ; Δ � P

Θ; Δ � T ≤ T

s1-refl

Θ; Δ � T ≤ T

s1-trans

Θ; Δ � T ≤ U Θ; Δ � U ≤ V

Θ; Δ � T ≤ V

s1-open

Θ; Δ, P � X ≤ T X /∈ ftv(Θ, Δ, T )
Θ; Δ � (∃X whereP . X) ≤ T

s1-abstract

Θ; Δ � [T/X]P
Θ; Δ � T ≤ (∃X whereP . X)

Fig. 2. Syntax, entailment, and subtyping for EXimpl

constraints P , where Δ,P abbreviates Δ∪{P}. A type implements an interface
either because it corresponds to an instance of a suitable implementation def-
inition (rule e1-impl) or because the type environment contains the constraint
(rule e1-local).6

The subtyping relation Θ;Δ ' T ≤ U states that T is a subtype of U . It is re-
flexive and transitive as usual. Rule s1-open opens an existential on the left-hand
side of the subtyping relation by moving its constraint into the type environment.
The premise X /∈ ftv(Θ,Δ, T ) ensures that the existentially quantified type vari-
able is sufficiently fresh and does not escape from its scope. Rule s1-abstract

deals with existentials on the right-hand side of the subtyping relation. It states
that T is a subtype of some existential if the constraint of the existential holds
after substituting T for the existentially quantified type variable.

As part of a type soundness proof for Core-JavaGI, we verified that the sub-
typing relation of EXimpl supports the usual principle of subsumption: we can
always promote the type of an expression to some supertype without causing
runtime errors.

3.2 Undecidability of Subtyping in EXimpl

The undecidability of subtyping in EXimpl follows by reduction from Post’s Cor-
respondence Problem (PCP). It is well known that PCP is undecidable [7, 18].

6 The notation [T/X] stands for the capture-avoiding substitution replacing each Xi

with Ti.



116 S. Wehr and P. Thiemann

Definition 1 (PCP). Let {(u1, v1) . . . , (un, vn)} be a set of pairs of non-empty
words over some finite alphabet Σ with at least two elements. A solution of PCP
is a sequence of indices i1 . . . ir such that ui1 . . . uir = vi1 . . . vir . The decision
problem asks whether such a solution exists.

Theorem 2. Subtyping in EXimpl is undecidable.

Proof. Let P = {(u1, v1), . . . , (un, vn)} be a particular instance of PCP over the
alphabet Σ. We can encode P as an equivalent subtyping problem in EXimpl as
follows. First, words over Σ must be represented as types in EXimpl.

�	
������ E // empty word ε
�	
������ L<X> // letter, for every L ∈ Σ

Words u ∈ Σ∗ are formed with these interfaces through nested existentials. For
example, the word AB is represented by

∃X whereX implementsA<∃Y whereY implementsB<
∃Z whereZ implementsE . Z> . Y > . X

The abbreviation I<T> stands for the type ∃X whereX implementsI<T> . X .
Using this notation, the word AB is represented by A<B<E>>.

Formally, we define the representation of a word u as �u� := u # E, where
u # T is the concatenation of a word u with a type T :

ε # T := T Lu # T := L<u # T>

Two interfaces are required to model the search for a solution of PCP:

�	
������ S<X,Y> // search state
�	
������ G // search goal

The type S<�u�, �v�> represents a particular search state where we have already
accumulated indices i1, . . . , ik such that u = ui1 . . . uik

and v = vi1 . . . vik
. To

model valid transitions between search states, we define implementations of S

for all i ∈ {1, . . . , n} as follows:

�������	
�
��	<X,Y> S<ui#X, vi#Y> [S<X,Y>] (1)

The type G represents the goal of a search, as expressed by the following imple-
mentation:

�������	
�
��	<X> G [S<X,X>] (2)

To get the search running we ask whether there exists some i ∈ {1, . . . , n} such
that ΘP ; ∅ ' S<�ui�, �vi�> ≤ G is derivable. The program ΘP consists of the
interfaces and implementations just defined. In the extended version [26], we
prove a lemma showing that P has a solution if, and only if, there exists some
i ∈ {1, . . . , n} such that ΘP ; ∅ ' S<�ui�, �vi�> ≤ G is derivable. ��
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Syntax

ϕ ::= ∀X. I<T> ≤ I<T>

T, U, V, W ::= X | I<T>

X, Y, Z ∈ TyvarName I, J ∈ IfaceName

Φ � T ≤ T

s2-refl

Φ � T ≤ T

s2-trans

Φ � T ≤ U Φ � U ≤ V

Φ � T ≤ V

s2-impl

(∀X. T ≤ U) ∈ Φ

Φ � [V/X]T ≤ [V/X ]U

Fig. 3. Syntax and subtyping for ITimpl

Example. Suppose the PCP instance P = {(u1, v1), (u2, v2)} with u1 = A, u2 =
ABA, v1 = AA, and v2 = B is given. The instance has the solution 1, 2, 1 because
u1u2u1 = v1v2v1 = AABAA. The program ΘP for the EXimpl encoding of this
problem looks like this:

�	
������ E �	
������ A<X> �	
������ B<X>

�	
������ S<X,Y> �	
������ G

�������	
�
��	<X,Y> S<A<X>, A<A<Y>>> [S<X,Y>] // (1)
�������	
�
��	<X,Y> S<A<B<A<X>>>, B<Y>> [S<X,Y>] // (2)
�������	
�
��	<X> G [S<X,X>] // (3)

We then need to ask whether there exists some i ∈ {1, 2} such that ΘP ; ∅ '
S<�ui�, �vi�> ≤ G is derivable. Verifying that such a derivation exists for i = 1 is
left as an exercise to the reader.

3.3 Undecidability without Existential Types

The proof of undecidability of subtyping in EXimpl reveals that subtyping re-
mains undecidable even if plain interface types replace existentials. To make this
claim concrete, Fig. 3 defines the calculus ITimpl, which essentially is a version of
EXimpl with plain interface types instead of existentials. The simplify the syntax,
ITimpl drops interface definitions altogether and uses subtyping schemes instead
of implementation definitions: a subtyping scheme ϕ = ∀X. J<T> ≤ I<U> cor-
responds to an implementation definition implementation<X> I<U> [J<T>].
Such a subtyping scheme implicitly assumes that X = ftv(J<T>). ITimpl also
replaces constraint entailment and the rules s1-open and s1-abstract with a
single rule s2-impl. The symbol Φ ranges over finite sets of subtyping schemes ϕ.

Theorem 3. Subtyping in ITimpl is undecidable.

Proof. Similar to the proof of Theorem 2.

The rest of this section investigates decidable fragments of ITimpl. It starts with
the observation that the undecidability proofs of subtyping in EXimpl and ITimpl

rely on two main ingredients:
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Cyclic interface subtyping. Implementation definitions in EXimpl (or subtyp-
ing schemes in ITimpl) allow the introduction of cycles in the subtyping graph
of interfaces. Consider one of the implementations defined by Equation (1)
on page 116: it states that S<ui # X, vi # Y> is a supertype of S<X, Y>. In the
reduction from PCP, such cycles are used to encode the individual steps in
the search for a solution.

Multiple instantiation subtyping. Implementation definitions in EXimpl (or
subtyping schemes in ITimpl) allow to introduce two different instantiations
of the same interface as supertypes of some other interface. Consider again
the implementations defined by Equation (1): for ui �= uj or vi �= vj the
implementations state that S<ui # X, vi # Y> �= S<uj # X, vj # Y> are both
supertypes of S<X, Y>. In the reduction from PCP, multiple instantiation
subtyping encodes the choice between different pairs (ui, vi) and (uj , vj).

An obvious way to obtain decidable subtyping for ITimpl is to restrict the set of
subtyping schemes Φ such that, for all types T , only a finite set of T -supertypes
is derivable from Φ.

Definition 4. The set of T -supertypes derivable from Φ, written ST,Φ, is defined
as the smallest set closed under the following rules:

T ∈ ST,Φ

(∀X.V ≤ U) ∈ Φ [W/X ]V ∈ ST,Φ

[W/X ]U ∈ ST,Φ

Restriction 1. The set ST,Φ must be finite for all types T .

Theorem 5. Under Restriction 1, subtyping in ITimpl is decidable.

Proof. See the extended version [26]. ��

Here is a restriction that eliminates cyclic interface subtyping.

Definition 6. A finite set of subtyping schemes Φ is contractive if, and only if,
there exists no sequence ϕ1, . . . , ϕn ∈ Φ such that ϕi = ∀Xi. Ii<Ti> ≤ Ji<Ui> for
all i = 1, . . . , n and Ji = Ii+1 for all i = 1, . . . , n− 1 and Jn = I1.

Restriction 2. The set Φ must be contractive.

Lemma 7. Restriction 2 implies Restriction 1.

Proof. See the extended version [26]. ��

Remark. Restriction 1 does not imply Restriction 2. Consider the set Φ = {∀ •
. I ≤ I}, which obviously meets Restriction 1 but is not contractive.

The next restriction is strictly stronger than Restriction 2.

Restriction 3. For all ϕ1, ϕ2 ∈ Φ is must hold that ϕ1 = ∀X. I1<T> ≤ J1<U>
and ϕ2 = ∀Y . I2<V > ≤ J2<W> imply J1 �= I2.
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The last restriction considered eliminates multiple instantiation subtyping.

Restriction 4. If Φ ' I<T> ≤ J<U> and Φ ' I<T> ≤ J<V > then it must hold
that U = V .

Lemma 8. Restriction 4 implies Restriction 1.

Proof. See the extended version [26]. ��

Remark. Neither Restriction 1 nor Restriction 2 implies Restriction 4 as demon-
strated by Φ = {∀ • . I ≤ J<A>, ∀ • . I ≤ J<B>}. Moreover, Restriction 4 does
not imply Restriction 2 as demonstrated by Φ′ = {∀ • . I ≤ J, ∀ • . J ≤ I}.

4 Subtyping Existential Types with Upper and Lower
Bounds

This section considers the calculus EXuplo, which is similar in spirit to EXimpl,
but supports upper and lower bounds (uplo) for type variables but no implemen-
tation constraints. Other researchers [20,4,3] use formal systems very similar to
EXuplo for modeling Java wildcards [21]. It is not the intention of EXuplo to provide
another formalization of wildcards, but rather to expose the essential ingredients
that make subtyping undecidable in a calculus as simple as possible. Scala [13]
as well as the initial design of the full JavaGI language employ existential types
with upper and lower bounds as a replacement for Java wildcards.

4.1 Definition of EXuplo

Fig. 4 defines the syntax and the entailment and subtyping relations of EXuplo.
A class type N is either Object or an instantiated generic class C<X>, where
the type arguments must be type variables. A type T is a type variable, a class
type, or an existential. Unlike in EXimpl, existentials in EXuplo may quantify
over several type variables, they support multiple constraints, and the body
of an existential must be a class type. A constraint P places either an upper
bound (X extendsT ) or a lower bound (X superT ) on a type variable X . Type
environments Δ are finite set of constraints P with Δ,P standing for Δ ∪ {P}.

Class definitions and inheritance are omitted from EXuplo. The only assump-
tion is that every class name C comes with a fixed arity that is respected when
applying C to type arguments. There are some further (implicit) restrictions:

(1) If T = ∃X whereP .N , then X �= • and X ⊆ ftv(N). That is, an existen-
tial must abstract over at least one type variable and all its bounded type
variables must appear in the body type N .

(2) If T = ∃X whereP .N and P ∈ P , then P = Y extendsT or P = Y superT
with Y ∈ X. That is, only bound variables may be constrained.

(3) A type variable must not have both upper and lower bounds.7

7 Modeling Java wildcards requires upper and lower bounds for the same type variable
in certain situations.



120 S. Wehr and P. Thiemann

Syntax

N, M ::= C<X> | Object
T, U, V, W ::= X | N | ∃X whereP . N

P, Q, R ::= X extends T | X super T

X, Y, Z ∈ TyvarName C, D ∈ ClassName

Δ � T extends T Δ � T super T

e3-extends

Δ � T ≤ U

Δ � T extendsU

e3-super

Δ � U ≤ T

Δ � T superU

Δ � T ≤ T

s3-refl

Δ � T ≤ T

s3-trans

Δ � T ≤ U Δ � U ≤ V

Δ � T ≤ V

s3-object

Δ � T ≤ Object

s3-extends

X extends T ∈ Δ

Δ � X ≤ T

s3-super

X super T ∈ Δ

Δ � T ≤ X

s3-open

Δ, P � N ≤ T

X ∩ ftv(Δ, T ) = ∅
Δ � ∃X whereP . N ≤ T

s3-abstract

T = [U/X ]N
(∀i) Δ � [U/X ]Pi

Δ � T ≤ ∃X whereP . N

Fig. 4. Syntax, entailment, and subtyping for EXuplo

These three restrictions simplify the formulation of a variant of EXuplo’s sub-
typing relation without an explicit rule for transitivity (see the extended ver-
sion [26]).

Constraint entailment (Δ � T extendsU and Δ � U superT ) uses subtyping
(Δ ' T ≤ U) to check that the constraint given holds. The subtyping rules for
EXuplo are similar to those for EXimpl, except that Object is now a supertype
of every type and that rules s3-extends and s3-super use assumptions from
Δ. Moreover, rule s3-abstract possibly needs to “guess” some of the types U
because, unlike in EXimpl, existentials in EXuplo may quantify over more than one
type variable.

4.2 Undecidability of Subtyping in EXuplo

To get a feeling how subtyping derivations in EXuplo may lead to infinite regress,
consider the goal {X extends¬U} ' X ≤ ¬C<X>, where U is defined as
∃X whereX extends¬C<X> . C<X> and the notation ¬T is an abbreviation
for ∃X whereX superT .D<X> such that X is fresh. Searching for a derivation
of this goal quickly leads to a subgoal of the form {X extends¬U,Z superU} '
X ≤ ¬C<X>, where Z is a fresh type variable introduced by rule s3-open. The
details are left as an exercise to the reader.

The undecidability proof of subtyping in EXuplo is by reduction from FD
≤ [14],

a restricted version of F≤ [5]. Pierce defines FD
≤ for his undecidability proof of F≤

subtyping [14]. Fig. 5 recapitulates FD
≤ ’s syntax and subtyping relation. Let n be
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Syntax

τ+ ::= Top | ∀α0≤τ−
0 . . . αn≤τ−

n .¬ τ−

τ− ::= α | ∀α0 . . . αn .¬ τ+

Γ− ::= ∅ | Γ−, α≤τ−

Γ− � σ− ≤ τ+

d-top

Γ � τ ≤ Top

d-var

τ 	= Top
Γ � Γ (α) ≤ τ

Γ � α ≤ τ

d-all-neg

Γ, α0≤φ0 . . . αn≤φn � τ ≤ σ

Γ � ∀α0 . . . αn .¬σ ≤ ∀α0≤φ0 . . . αn≤φn .¬ τ

Fig. 5. Syntax and subtyping for F D
≤

a fixed natural number. A type τ is either an n-positive type, τ+, or an n-negative
type, τ−, where n stands for the number of type variables (minus one) bound
at the top-level of the type. An n-negative type environment Γ− associates type
variables α with upper bounds τ−. The polarity (+ or −) characterizes at which
positions of a subtyping judgment a type or type environment may appear. For
readability, the polarity is often omitted and n is left implicit.

An n-ary subtyping judgment in FD
≤ has the form Γ− ' σ− ≤ τ+, where Γ−

is an n-negative type environment, σ− is an n-negative type, and τ+ is an n-
positive type. Only n-negative types appear to the left and only n-positive types
appear to the right of the ≤ symbol. The subtyping rule d-all-neg compares
two quantified types σ = ∀α0 . . . αn .¬σ′ and τ = ∀α0≤τ0 . . . αn≤αn .¬ τ ′ by
swapping the left- and right-hand sides of the subtyping judgment and checking
τ ′ ≤ σ′ under the extended environment Γ, α0≤τ0 . . . αn≤τn. The rule is correct
with respect to F≤ because we may interpret every FD

≤ type as an F≤ type:

∀α0 . . . αn .¬σ′ ≡ ∀α0≤Top . . .∀αn≤Top.∀β≤σ′ . β (β fresh)
∀α0≤τ0 . . . αn≤αn .¬ τ ′ ≡ ∀α0≤τ0 . . . ∀αn≤τn.∀β≤τ ′ . β (β fresh)

Using these abbreviations, every FD
≤ subtyping judgment can be read as an

F≤ subtyping judgment. The subtyping relations in FD
≤ and F≤ coincide for

judgments in their common domain [14].
It is sufficient to consider only closed judgments. A type τ is closed under Γ

if ftv(τ) ⊆ dom(Γ ) (where dom(α1≤τ1, . . . , αn≤τn) = {α1, . . . , αn}) and, if τ =
∀α0≤τ0 . . . αn≤τn .¬σ, then no αi appears free in any τj . A type environment
Γ is closed if Γ = ∅ or Γ = Γ ′, α≤τ with Γ ′ closed and τ closed under Γ ′. A
judgment Γ ' τ ≤ σ is closed if Γ is closed and τ, σ are closed under Γ .

These notions are sufficient to state the central theorem of this section and
sketch its proof.

Theorem 9. Subtyping in EXuplo is undecidable.

Proof. The proof is by reduction from FD
≤ . Fig. 6 defines a translation from

FD
≤ types, type environments, and subtyping judgments to their correspond-

ing EXuplo forms. The translation of an n-ary subtyping judgment assumes the
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�Top�+ = Object

�∀α0≤τ−
0 . . . αn≤τ−

n .¬ τ−�+ = ¬∃Y, Xαi whereXα0 extends �τ0�
− . . .

Xαn extends �τn�−, Y extends �τ�−

. Cn+2
<Y, Xαi>

�α�− = Xα

�∀α0 . . . αn .¬ τ+�− = ¬∃Y, Xαi where Y extends �τ�+ . Cn+2
<Y, Xαi>

�∅�− = ∅
�Γ, α≤τ−�− = �Γ �−, Xα

extends �τ�−

�Γ− � τ− ≤ σ+� = �Γ �− � �τ�− ≤ �σ�+

Fig. 6. Reduction from F D
≤ to EXuplo

existence of two EXuplo classes: Cn+2 accepts n + 2 type arguments, and D1

takes one type argument. The superscripts in �·�+ and �·�− indicate whether the
translation acts on positive or negative entities.

As before, a negated type, written ¬T , is an abbreviation for an existential
with a single super constraint: ¬T ≡ ∃X whereX superT .D1<X>, where X
is fresh. The super constraint simulates the behavior of the FD

≤ subtyping rule
d-all-neg, which swaps the left- and right-hand sides of subtyping judgments.

An n-positive type ∀α0≤τ−0 . . . αn≤τ−n .¬ τ− is translated into a negated ex-
istential. The existentially quantified type variables Xα0 , . . . , Xαn correspond to
the universally quantified type variables α0, . . . , αn. The bound �τ�− of the fresh
type variable Y represents the body ¬ τ− of the original type. We cannot use
�τ�− directly as the body because existentials in EXuplo have only class types
as their bodies. The translation for n-negative types is similar to the one for
n-positive types. It is easy to see that the EXuplo types in the image of the trans-
lation meet the restrictions defined in Sec. 4.1. Type environments and subtyping
judgments are translated in the obvious way.

We now need to verify that Γ ' τ ≤ σ is derivable in FD
≤ if and only if �Γ ' τ ≤

σ� is derivable in EXuplo. The “⇒” direction is an easy induction on the derivation
of Γ ' τ ≤ σ. The “⇐” direction requires more work because the transitivity
rule s3-trans (Fig. 4) involves an intermediate type which is not necessarily in
the image of the translation. Hence, a direct proof by induction on the derivation
of �Γ ' τ ≤ σ� fails. To solve this problem, we give an equivalent definition of
the EXuplo subtyping relation that does not include an explicit transitivity rule.
See the extended version [26] for details and the full proof. ��

5 Lessons Learned

What are the consequences of this investigation for the design of JavaGI? While
bounded existential types are powerful and unify several diverse concepts, they
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complicate the metatheory of JavaGI’s initial design considerably. Also, subtyp-
ing with existential types is undecidable in the general case, as demonstrated in
the two preceding sections.

There are three alternatives for dealing with this problem: (1) Accept that the
subtyping relation is undecidable. (2) Restrict existentials such that subtyping
becomes decidable. (3) Remove existentials from JavaGI altogether.

The first alternative (opted for by the Scala compiler) is pragmatic and readily
implementable by imposing a resource limit on the subtype checker to avoid
divergence. Consequently, the subtyping algorithm would become incomplete
with respect to its specification.

The second alternative turns out not to be viable. It is feasible to come up
with a set of restrictions that keep the subtyping relation defined in Sec. 3
decidable. (Sec. 3.3 investigated such restrictions for plain interface types.) For
the subtyping relation defined in Sec. 4, however, we were not able to identify
sensible restrictions without giving up either lower or upper bounds (which are
essential for encoding Java wildcards). Moreover, restricting existential types so
that subtyping becomes decidable would make an already complex type system
even more complicated. In addition, such restrictions tend to be difficult to
communicate to users of the language.

The third alternative comes with the realization that existentials may not be
worth the trouble. JavaGI’s main contribution is its very general and powerful
interface concept (which this paper does not explore, but see [23, 25]). While
existential types are related to this concept, they are not at the heart of it. In
fact, we conducted several real-world case studies using our implementation of
JavaGI without a need for full-blown existential types arising [25].

Under these circumstances, it appears that the price of having bounded exis-
tential types at the core of JavaGI is too high. Hence, the current, revised version
of JavaGI elides bounded existential types because of their poor power/cost ratio
but retains all other features of the previous design. Thus, it gives up some of
the power in favor of simplicity.

Several already existing features make up for the lack of existentials. More
specifically, the revised design copes with most uses of existentials from Sec. 1:
parametric polymorphism in combination with multiple subtyping constraints
(as already present in Java) allows to emulate the composition of interface types
in most situations; direct support for wildcards avoids their encoding through
existential types;8 JavaGI’s �������	
� constraints in combination with para-
metric polymorphism allow the specification of meaningful types for interfaces
over families of types.

8 It is an open question whether subtyping for Java wildcards is decidable (see
Sec. 6 for details). Of course, the inclusion of wildcards in JavaGI is a concession
to ensure backwards compatibility with Java 1.5. An embedding of JavaGI’s gener-
alized interface concept in other languages such as C# could easily drop support for
wildcards. Thus, the decidability question for wildcards is not intrinsic to decidability
of subtyping in JavaGI.
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Even the revised design has to accept compromises to avoid undecidability.
Sec. 3.3 reveals that subtyping remains undecidable even if plain interface types
replace existentials. The real culprit for undecidability is the ability to provide
implementation definitions with interface types acting as implementing types.

Disallowing such implementation definitions completely is a rather severe re-
striction because it prevents useful implementation definitions such as the one
given for List<X> in Sec. 2.2. Instead, the revised design allows interfaces as im-
plementing types but it imposes the equivalent of Restriction 3 from Sec. 3.3: if
an interface is used as an implementing type then no retroactive implementation
can be provided for this interface.9

Sometimes, even this restriction is too strict. For example, the use of List<X>
as an implementing type in Sec. 2.2 prevents retroactive implementations of
the List interface. Abstract implementation definitions are a potential cure.
They look similar to non-abstract implementation definitions but do not con-
tribute to constraint entailment and subtyping, so the restriction just explained
does not apply. The details of abstract implementation definitions are explained
elsewhere [25].

6 Related Work

Kennedy and Pierce [9] investigate undecidability of subtyping under multiple
instantiation inheritance and declaration-site variance. They prove that the gen-
eral case is undecidable and present three decidable fragments. The proof in
Sec. 3 is similar to theirs, although undecidability has different causes: Kennedy
and Pierce’s system is undecidable because of contravariant generic types, expan-
sive class tables, and multiple instantiation inheritance, whereas undecidability
of our system is due to implementation definitions for existentials (or interface
types), which cause cyclic interface and multiple instantiation subtyping.

Pierce [14] proves undecidability of subtyping in F≤ by a chain of reductions
from the halting problem for two-counter Turing machines. An intermediate link
in this chain is the subtyping relation of FD

≤ , which is also undecidable. Our proof
in Sec. 4 works by reduction from FD

≤ and is inspired by a reduction given by
Ghelli and Pierce [6], who study bounded existential types in the context of F≤
and show undecidability of subtyping. Crucial to the undecidability proof of FD

≤
is rule d-all-neg: it extends the typing context and essentially swaps the sides
of a subtyping judgment. In EXuplo, rule s3-open and rule s3-abstract together
with lower bounds on type variables play a similar role.

Torgersen and coworkers [20] present WildFJ as a model for Java wildcards
using existential types. The authors do not prove WildFJ sound. Cameron and
coworkers [4] define a similar calculus ∃J and prove soundness. However, ∃J is not
a full model for Java wildcards because it does not support lower bounds for type
variables. The same authors present with TameFJ [3] a sound calculus supporting
9 Restriction 2 is more flexible then Restriction 3 but the latter simplifies the detection

of ambiguities arising through conflicting implementation definitions and it allows
for an efficient implementation of dynamic method lookup.
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all essential features of Java wildcards. WildFJ’s and TameFJ’s subtyping rules
are similar to the ones of EXuplo defined in Sec. 4, so the conjecture is that
subtyping in WildFJ and TameFJ is also undecidable. The rule XS-Env of
TameFJ is roughly equivalent to the rules s3-open and s3-abstract of EXuplo.

Decidability of subtyping for Java wildcards is still an open question [11].
One step in the right direction might be the work of Plümicke, who solves the
problem of finding a substitution s such that sT ≤ sU for Java types T, U with
wildcards [17, 16]. Our undecidability result for EXuplo does not imply undecid-
ability for Java subtyping with wildcards. The proof of this claim would require
a translation from subtyping derivations in EXuplo to subtyping derivations in
Java with wildcards, which is not addressed in this paper. In general, existentials
in EXuplo are strictly more powerful than Java wildcards. For example, the ex-
istential ∃X.C<X,X> cannot be encoded as the wildcard type C<?, ?> because
the two occurrences of ? denote two distinct types.

The programming language Scala [13] supports existential types in its latest
release to provide better interoperability with Java libraries using wildcards and
to address the avoidance problem [15, Chapter 8]. The subtyping rules for ex-
istentials (Sec. 3.2.10 and Sec. 3.5.2 of the specification [13]) are very similar to
the ones for EXuplo. This raises the question whether Scala’s subtyping relation
with existentials is decidable.

A recent article [25] reports on practical experience with the revised design
of JavaGI. It discusses several case studies and describes the implementation
of a compiler and a runtime system for JavaGI, which employs the restrictions
discussed in Sec. 5.

7 Conclusion

The paper investigated decidability of subtyping with bounded existential types
in the context of JavaGI, Java wildcards, and Scala. It defined two calculi EXimpl

and EXuplo featuring bounded existential types in two variations and proved
undecidability of subtyping for both calculi. Subtyping is also undecidable for
ITimpl, a simplified version of EXimpl without existentials. The paper also sug-
gested a revised version of JavaGI that avoids fully general existentials with-
out giving up much expressivity. The revised version of JavaGI is available at
http://www.informatik.uni-freiburg.de/~wehr/javagi/.
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Fractional Ownerships
for Safe Memory Deallocation

Kohei Suenaga and Naoki Kobayashi

Tohoku University�

Abstract. We propose a type system for a programming language with
memory allocation/deallocation primitives, which prevents memory-
related errors such as double-frees and memory leaks. The main idea
is to augment pointer types with fractional ownerships, which express
both capabilities and obligations to access or deallocate memory cells.
By assigning an ownership to each pointer type constructor (rather than
to a variable), our type system can properly reason about list/tree-
manipulating programs. Furthermore, thanks to the use of fractions as
ownerships, the type system admits a polynomial-time type inference al-
gorithm, which serves as an algorithm for automatic verification of lack
of memory-related errors. A prototype verifier has been implemented and
tested for C programs.

1 Introduction

In programming languages with manual memory management (like C and C++),
a misuse of memory allocation/deallocation primitives often causes serious, hard-
to-find bugs. We propose a new type-based method for static verification of lack
of such memory-related errors. More precisely, we construct a type system that
guarantees that well-typed programs do not suffer from memory leaks (forgetting
to deallocate memory cells), double frees (deallocating memory cells more than
once), and illegal read/write accesses to deallocated memory. We then construct
a polynomial-time type inference algorithm, so that programs can be verified
without any type annotations.

The key idea of our type system is to assign fractional ownerships to pointer
types. An ownership ranges over the set of rational numbers in [0, 1], and ex-
presses both a capability (or permission) to access a pointer, and an obligation
to deallocate the memory referred to by the pointer. As in Boyland’s fractional
permissions [1], a non-zero ownership expresses a permission to dereference the
pointer, and an ownership of 1 expresses a permission to update the memory
cell referenced by the pointer. In addition, a non-zero ownership expresses an
obligation to eventually deallocate (the cell referenced by) the pointer, and an
ownership of 1 also expresses a permission to deallocate the pointer. (Therefore,
if one has a non-zero ownership less than 1, one has to eventually combine it
with other ownerships to obtain an ownership of 1, to fulfill the obligation to
deallocate the pointer).
� Suenaga’s Current Affiliation: IBM Research.
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Ownerships are also used in Heine and Lam’s static analysis for detecting
memory leaks [2], although their ownerships range over integer values {0, 1}.
The most important deviation from their system is that our type system assigns
an ownership to each pointer type constructor, rather than to a variable. For
example, int ref1 ref1 is the type of a pointer to a pointer to an integer, such
that both the pointers can be read/written, and must be deallocated through
the pointer. int ref0 ref1 is the type of a pointer to an pointer to an integer,
such that only the first pointer can be read/written, and must be deallocated.
The type μα.(α ref1) (where μα.τ is a recursive type) describes a pointer to a
list structure shown in Figure 1, where the pointer holds the ownerships of all
the pointers reachable from it. This allows us to properly reason about list- and
tree-manipulating programs, unlike Heine and Lam’s analysis.

For example, consider the following program, written in an ML-like language
(but with memory deallocation primitive free).

fun freeall(x) = freeall : μα.(α ref1) → μα.(α ref0)
if null(x) x : μα.(α ref1)
then skip x : μα.(α ref0)
else let y = *x in x : μα.(α ref1)

(freeall(y); x : (μα.(α ref0)) ref1, y : μα.(α ref1)
free(x) x : (μα.(α ref0)) ref1, y : μα.(α ref0)

) x : μα.(α ref0), y : μα.(α ref0)

The function freeall takes as an argument a pointer x to a list structure, and
deallocates all the pointers reachable from x. The righthand side shows the type
of function freeall, as well as the types assigned to x and y before execution of
each line. (Our type system is flow-sensitive, so that different types are assigned
at different program points.) In the type of freeall on the first line, μα.(α ref1)
and μα.(α ref0) are the types of x before and after the call of the function. The
type μα.(α ref0) means that x holds no ownerships when the function returns
(which implies that all the pointers reachable from x will be deallocated inside
the function).

The type assignment at the beginning of the function indicates that all the
memory cells reachable from x should be deallocated through variable x. In the
then-branch, x is a null pointer, so that all the ownerships are cleared to 0. In
the else-branch, let y = ∗x in · · · transfers a part of the ownerships held by x
to y; after that, x has type (μα.(α ref0)) ref1, indicating that x holds only the
ownership of the pointer stored in x. The other ownerships (of the pointers that
are reachable from x) are now held by y. After the recursive call to freeall, all
the ownerships held by y become empty. Finally, after free(x), the ownership
of x also becomes empty.

The type system with fractional ownerships prevents: (i) memory leaks by
maintaining the invariant that the total ownership for each memory cell is 1
until the cell is deallocated and by ensuring the ownerships held by a variable
are empty at the end of the scope of the variable, (ii) double frees by ensuring
that the ownership for a cell is consumed when the cell is deallocated, and
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Fig. 1. List-like structure

(iii) illegal access to deallocated cells by requiring that a non-zero ownership is
required for read/write operations.

Thanks to the use of fractional ownerships, the type inference problem can be
reduced to a linear programming problem over rational numbers, which can be
solved in polynomial time. If ownerships were integer-valued, the type inference
problem would be reduced to an integer linear programming problem, which
is NP-hard.1 Furthermore, fractional ownerships make the type system more
expressive: see Example 3 in Section 3.

Based on the type system sketched above, we have implemented a verifier for
C programs, and tested it for programs manipulating lists, trees, doubly-linked
lists, etc.

The rest of this paper is structured as follows. Section 2 introduces a sim-
ple imperative language that has only pointers as values. Section 3 presents
our type system with fractional ownerships, proves its soundness, and discusses
type inference issues. Section 4 discusses extensions to deal with data structures.
Section 5 reports a prototype implementation of our type-based verification al-
gorithm. Section 6 discusses related work, including Ueda’s work [3] on fractional
capabilities for GHC, to which our type system seems closely related, despite the
differences of the target languages. Section 7 concludes the paper.

2 Language

This section introduces a simple imperative language with primitives for memory
allocation/deallocation. For the sake of simplicity, the only values are (possibly
null) pointers. See Section 4 for extensions of the language and the type system
to deal with other language constructs.

The syntax of the language is given as follows.

Definition 1 (commands, programs)

s (commands) ::= skip | ∗x ← y | s1; s2 | free(x) | let x = malloc() in s
| let x = null in s | let x = y in s | let x = ∗y in s
| ifnull(x) then s1 else s2 | f(x1, . . . , xn)
| assert(x = y) | assert(x = ∗y)

d (definitions) ::= f(x1, . . . , xn) = s

A program is a pair (D, s), where D is a set of definitions.

1 With the recent advance of SAT solvers, it may still be the case that the integer
linear programming problem generated by the type inference can be solved efficiently
in practice; that may be left as a subject for further investigation.
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The command skip does nothing. ∗x ← y updates the target of x (i.e., the
contents of the memory cell pointed to by x) with the value of y. The command
s1; s2 is a sequential execution of s1 and s2. The command free(x) deallocates
(the cell referenced by) the pointer x. The command let x = e in s evaluates
e, binds x to the value of e, and executes s. The expression malloc() allocates
a memory cell and returns a pointer to it. The expression null denotes a null
pointer. ∗y dereferences the pointer y. The command ifnull(x) then s1 else s2
executes s1 if x is null, and executes s2 otherwise. The command f(x1, . . . , xn)
calls function f . We require that x1, . . . , xn are mutually distinct variables. (This
does not lose generality, as we can replace f(x, x) with let y = x in f(x, y).)
There is no return value of a function call; values can be returned only by
reference passing. The commands assert(x = y) and assert(x = ∗y) do nothing
if the equality holds, and aborts the program otherwise. These are introduced
to simplify the type system and the proof of its soundness in Section 3. Usually,
assert commands can be automatically inserted during the transformation from
a surface language (like C) into our language; for example, assert(x = y) is
automatically inserted at the end of a let-expression let x = y in · · ·. Separate
pointer analyses may also be used to insert assertions; in general, insertion of
more assertions makes our analysis more precise.

Remark 1. Notice that unlike in C (and like in functional languages), variables
are immutable; they are initialized in let-expressions, and are never re-assigned
afterwards. The declaration int x = 1; ... in C is expressed as:

let &x = malloc() in (∗&x ← 1; · · · ; free(&x))

in our language. Here, &x is treated as a variable name.

Operational Semantics. We assume that there is a countable set H of heap
addresses. A run-time state is represented by a triple 〈H,R, s〉, where H is a
mapping from a finite subset of H to H ∪ {null}, R is a mapping from a finite
set of variables to H ∪ {null}. Intuitively, H models the heap memory, and
R models local variables stored in stacks or registers. The set of evaluation
contexts is defined by E ::= [ ] | E; s. We write E[s] for the command obtained
by replacing [ ] in E with s.

Figure 2 shows the transition rules for run-time states. In the figure, f{x → v}
denotes the function f ′ such that dom(f) = dom(f ′) ∪ {x}, f ′(x) = v, and
f ′(y) = f(y) for every y ∈ dom(f) \ {x}. [x′/x]s denotes the command obtained
by replacing x in s with x′. x̃ abbreviates a sequence x1, . . . , xn. In the rules
for let-expressions, we require that x′ �∈ dom(R). In the rule for malloc, the
contents v of the allocated cell can be any value in H ∪ {null}. There are three
kinds of run-time errors: NullEx for accessing null pointers, Error for illegal
read/write/free operations on deallocated pointers, and AssertFail for assertion
failures. The type system in this paper will prevent only the errors expressed by
Error. In the rules for assertions on the last line, the relation H,R |= P is defined
by: H,R |= x = y iff R(x) = R(y), and H,R |= x = ∗y iff R(x) = H(R(y)).
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〈H,R, E[skip; s]〉 −→D 〈H, R,E[s]〉
R(x) ∈ dom(H)

〈H, R,E[∗x ← y]〉 −→D 〈H{R(x) �→ R(y)},R, E[skip]〉
R(x) ∈ dom(H) ∪ {null}

〈H, R,E[free(x)]〉 −→D 〈H \ {R(x)}, R, E[skip]〉
x′ 	∈ dom(R)

〈H,R, E[let x = null in s]〉 −→D 〈H, R{x′ �→ null}, E[[x′/x]s]〉

〈H,R, E[let x = y in s]〉 −→D 〈H,R{x′ �→ R(y)}, E[[x′/x]s]〉

〈H,R, E[let x = ∗y in s]〉 −→D 〈H,R{x′ �→ H(R(y))}, E[[x′/x]s]〉
h 	∈ dom(H)

〈H, R,E[let x = malloc() in s]〉 −→D 〈H{h �→ v}, R{x′ �→ h}, E[[x′/x]s]〉

〈H, R{x �→ null}, E[ifnull(x) then s1 else s2]〉 −→D 〈H,R{x �→ null}, E[s1]〉
R(x) 	= null

〈H,R, E[ifnull(x) then s1 else s2]〉 −→D 〈H,R, E[s2]〉
R(x) = null

〈H,R, E[∗x ← y]〉 −→D NullEx

R(y) = null

〈H,R, E[let x = ∗y in s]〉 −→D NullEx

R(x) 	∈ dom(H) ∪ {null}
〈H,R, E[∗x ← y]〉 −→D Error

R(y) 	∈ dom(H) ∪ {null}
〈H,R, E[let x = ∗y in s]〉 −→D Error

R(x) 	∈ dom(H) ∪ {null}
〈H,R, E[free(x)]〉 −→D Error

f(ỹ) = s ∈ D

〈H, R,E[f(x̃)]〉 −→D 〈H,R, E[[x̃/ỹ]s]〉
H,R |= P

〈H,R, E[assert(P )]〉 −→D 〈H,R,E[skip]〉
H,R 	|= P

〈H,R, E[assert(P )]〉 −→D AssertFail

Fig. 2. Transition Rules

Note that the function call f(x1, . . . , xn) is just replaced by the function’s
body. Thus, preprocessing is required to handle functions in C: A function call
x = f(y) in C is simulated by f(y,&x) in our language (where &x is a variable
name), and a C function definition f(y) {s; return v;} is simulated by:

f(y, r) = let &y = malloc() in (∗&y ← y; s; ∗r ← v; free(&y)).

Here, the malloc and free commands above correspond to the allocation and
deallocation of a stack frame.

3 Type System

This section introduces a type system that prevents memory leaks, double frees,
and illegal read/write operations.
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3.1 Types

The syntax of types is given by:

τ (value types) ::= α | τ reff | μα.τ
σ (function types) ::= (τ1, . . . , τn) → (τ ′1, . . . , τ

′
n)

We often write * for μα.α, which describes pointers carrying no ownerships. The
metavariable f ranges over rational numbers in [0, 1]. It is called an ownership,
and represents both a capability and an obligation to read/write/free a pointer.

α is a type variable, which gets bound by the recursive type constructor μα.
The type τ reff describes a pointer whose ownership is f , and also expresses
the constraint that the value obtained by dereferencing the pointer should be
used according to τ . For example, if x has type * ref1 ref1, not only the pointer
x but also the pointer stored in the target of the pointer x must be eventually
deallocated through x.

Type (τ1, . . . , τn) → (τ ′1, . . . , τ
′
n) describes a function that takes n arguments.

The types τ1, . . . , τn, τ
′
1, . . . , τ

′
n describehow ownerships on arguments are changed

by the function: the type of the i-th argument is τi at the beginning of the function,
and it is τ ′i at the end of the function.

The semantics of (value) types is defined as a mapping from the set {0}∗ (the
set of finite sequences of the symbol 0) to the set of rational numbers. Intuitively,
the type [[ τ ]](ε) of a pointer represents the ownership for the memory cell directly
pointed to by the pointer, and [[ τ ]](0k) represents the ownership for the memory
cell reached by k hops of pointer traversals. (If the language is extended with
structures with n elements as discussed in Section 4, [[ τ ]] should be extended to
a mapping from {0, . . . , ,n− 1}∗ to the set of rational numbers.)

Definition 2 The mapping [[ · ]] from the set of closed types to {0}∗ → [0, 1] is
the least function that satisfies the following conditions.

[[ τ reff ]](ε) = f [[ τ reff ]](0w) = [[ τ ]](w) [[μα.τ ]] = [[[μα.τ/α]τ ]]

(Here, the order between functions from S to T is defined by: f ≤S→T g if and
only if ∀x ∈ S.f(x) ≤T g(x).) We write τ ≈ τ ′, if [[ τ ]] = [[ τ ′ ]].

Note that *(= μα.α) ≈ μα.(α ref0), and μα.τ ≈ [μα.τ/α]τ .
We write empty(τ) if all the ownerships in τ are 0. We say that a type τ

is well-formed if [[ τ ]](w) ≥ c × [[ τ ]](w0) for every w ∈ {0}∗. Here, we let c be
the constant 1/2, but the type system given below remains sound as long as c
is a positive (rational) number. In the rest of this paper, we consider only types
that satisfy the well-formedness condition. See Remark 2 for the reason why the
well-formedness is required.

3.2 Typing

A type judgment is of the form Θ;Γ ' s ⇒ Γ ′, where Θ is a finite mapping
from (function) variables to function types, Γ and Γ ′ are finite mappings from
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variables to value types. Γ describes the ownerships held by each variable before
the execution of s, while Γ ′ describes the ownerships after the execution of s.
For example, we have Θ;x :* ref1 ' free(x) ⇒ x :* ref0. Note that a variable’s
type describes how the variable should be used, and not necessarily the status of
the value stored in the variable. For example, x :* ref0 does not mean that the
memory cell pointed to by x has been deallocated; it only means that deallocating
the cell through x (i.e., executing free(x)) is disallowed. There may be another
variable y of type τ ref1 that holds the same pointer as x.

Typing rules are shown in Figure 3. τ ≈ τ1 + τ2 and τ1 + τ2 ≈ τ ′1 + τ ′2 mean
[[ τ ]] = [[ τ1 ]] + [[ τ2 ]] and [[ τ1 ]] + [[ τ2 ]] = [[ τ ′1 ]] + [[ τ ′2 ]] respectively. In the rule for
assignment ∗x ← y, we require that the ownership of x is 1 (see Remark 2). The
ownerships of τ ′ must be empty, since the value stored in ∗x is thrown away by
the assignment. The ownerships of y (described by τ) is divided into τ1, which
will be transferred to x, and τ2, which remains in y.

In the rule for free, the ownership of x is changed from 1 to 0. τ must be empty,
since x can no longer be dereferenced. In the rule for malloc, the ownership of
x is 1 at the beginning of s, indicating that x must be deallocated. At the end
of s, we require that the ownership of x is 0, since x goes out of the scope. Note
that this requirement does not prevent the allocated memory cell from escaping
the scope of the let-expression: For example, let x = malloc() in ∗y ← x allows
the new cell to escape through variable y. The ownership of x is empty at the
end of the let-expression, since the ownership has been transferred to y.

In the rule for dereferencing (let x = ∗y in · · ·), the ownership of y must be
non-zero. The ownerships stored in the target of the pointer y, described by τ ,
are divided into τ1 and τ2. At the end of the let-expression, the ownerships held
by x must be empty (which is ensured by empty(τ ′1)), since x goes out of scope.

In the rule for null, there is no constraint on the type of x, since x is a null
pointer. In the rule for conditionals, any type may be assigned to x in the then-
branch. Thanks to this, ifnull(x) then skip else free(x) is typed as follows.

Θ;x : * ref0 ' skip ⇒ x : * ref0 Θ;x : * ref1 ' free(x) ⇒ x : * ref0

Θ;x : * ref1 ' ifnull(x) then skip else free(x) ⇒ x : * ref0

The rules for assertions allow us to shuffle the ownerships held by the same
pointers.

Remark 2. The well-formedness condition approximates the condition: ∀w ∈
{0}∗.([[ τ ]](w) = 0 ⇒ [[ τ ]](w0) = 0). Types that violate the condition (like
(* ref1) ref0) make the type system unsound. For example, consider the fol-
lowing command s (here, some let-expressions are inlined):

let y = x in (∗y ← null; assert(x = y); free(∗x); free(x)).

If we ignore the well-formedness condition, we can derive Θ;x : (* ref1) ref1 '
s ⇒ x : (* ref0) ref0 from Θ;x : (* ref1) ref0, y : (* ref0) ref1 ' s′ ⇒
x:(* ref0) ref0, y:(* ref0) ref0 where s′ is the body of s. However, the judgment
is semantically wrong: the memory cell referenced by ∗x is not deallocated by s
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Θ; Γ � skip ⇒ Γ
Θ; Γ � s1 ⇒ Γ ′′ Γ ′′ � s2 ⇒ Γ ′

Θ; Γ � s1; s2 ⇒ Γ ′

τ ≈ τ1 + τ2 empty(τ ′)
Θ; Γ, x : τ ′ ref1, y : τ � ∗x ← y ⇒ Γ, x : τ1 ref1, y : τ2

empty(τ )
Θ; Γ, x : τ ref1 � free(x) ⇒ Γ, x : τ ref0

Θ; Γ, x : τ ref1 � s ⇒ Γ ′, x : τ ′ ref0

empty(τ ) empty(τ ′)

Θ; Γ � let x = malloc() in s ⇒ Γ ′

Θ; Γ, x : τ1, y : τ2 � s ⇒ Γ ′, x : τ ′
1

τ ≈ τ1 + τ2 empty(τ ′
1)

Θ; Γ, y : τ � let x = y in s ⇒ Γ ′

Θ; Γ, x : τ1, y : τ2 reff � s ⇒ Γ ′, x : τ ′
1

f > 0 τ ≈ τ1 + τ2 empty(τ ′
1)

Θ; Γ, y : τ reff � let x = ∗y in s ⇒ Γ ′

Θ; Γ, x : τ � s ⇒ Γ ′, x : τ ′

Θ; Γ � let x = null in s ⇒ Γ ′
Θ; Γ, x : τ ′ � s1 ⇒ Γ ′ Θ; Γ, x : τ � s2 ⇒ Γ ′

Θ; Γ, x : τ � ifnull(x) then s1 else s2 ⇒ Γ ′

τ1 + τ2 ≈ τ ′
1 + τ ′

2

Θ; Γ, x : τ1, y : τ2 � assert(x = y) ⇒ Γ, x : τ ′
1, y : τ ′

2

τ1 + τ2 ≈ τ ′
1 + τ ′

2

Θ; Γ, x : τ1, y : τ2 reff � assert(x = ∗y) ⇒ Γ, x : τ ′
1, y : τ ′

2 reff

Θ(f) = (τ̃ ) → (τ̃ ′)
Θ; Γ, x̃ : τ̃ � f(x̃) ⇒ Γ, x̃ : τ̃ ′

Γ ≈ Γ1 Γ ′ ≈ Γ ′
1 Θ; Γ1 � s ⇒ Γ ′

1

Θ; Γ � s ⇒ Γ ′

Θ; x̃ : τ̃ � s : x̃ : τ̃ ′ Θ(f) = τ̃ → τ̃ ′

(for each f(x̃) = s ∈ D)
dom(Θ) = dom(D)

� D : Θ

� D : Θ Θ; ∅ � s ⇒ ∅
� (D, s)

Fig. 3. Typing Rules

x
y

�
� � x

y
�
�

�
��

Fig. 4. Snapshots of the heap during the execution of the program in Remark 2. The
lefthand side and the righthand side show the states before and after executing ∗y ←
null respectively. The rightmost cell will be leaked.

(see Figure 4). The well-formedness condition ensures that if a variable (say, x)
has an ownership of a pointer (say, p) reachable from x, then the variable must
hold a fraction of ownerships for all the pointers between x and p, so that the
pointers cannot be updated through aliases.
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Example 1. Recall the example in Section 1.
The part let y = ∗x in (freeall(y); free(x)) is typed as follows.

Θ; x : τ, y : μα.(α ref1) � freeall(y) ⇒ x : τ, y : � Θ; x : τ, y : � � free(x) ⇒ Θ0

Θ; x : (μα.(α ref0)) ref1, y : μα.(α ref1) � (freeall(y); free(x)) ⇒ Θ0

Θ; x : μα.(α ref1) � let y = ∗x in (freeall(y); free(x)) ⇒ x : �

Here, τ = (μα.(α ref0)) ref1, Θ = freeall : (μα.(α ref1)) → (*), and Θ0 =
x : *, y : *.

Example 2. The following function destructively appends two lists p and q, and
stores the result in ∗r.

app(p, q, r) = ifnull(p) then ∗r ← q
else (∗r ← p; (let x = ∗p in app(x, q, p));assert(p = ∗r))

app has type (τ1, τ1,* ref1) → (*,*, τ1), where τ1 = μα.(α ref1). The else-part
is typed as follows.

Θ; Γ1 � ∗r ← p ⇒ Γ1

Θ; Γ1 � s ⇒ Γ2 Θ; Γ2 � assert(p = ∗r) ⇒ p : �, q : �, r : τ1

Θ; Γ1 � s;assert(p = ∗r) ⇒ p : �, q : �, r : τ1

Θ; Γ1 � ∗r ← p; s;assert(p = ∗r) ⇒ p : �, q : �, r : τ1

Here, s = let x = ∗p in app(x, q, p), and Θ,Γ1, Γ2 are given by:
Θ = app : (τ1, τ1,* ref1) → (*,*, τ1)
Γ1 = p : τ1, q : τ1, r : * ref1 Γ2 = p : τ1, q : *, r : * ref1

Example 3. Consider the following functions f and g:

f(x) = let y = x in g(x, y);assert(x = y)
g(x, y) = let z = ∗x in let w = ∗y in skip

Then, f and g can be given types * ref1 → * ref1 and (* ref0.5,* ref0.5) →
(* ref0.5,* ref0.5). Without fractional types, f is not typable because the
ownership of x cannot be split into the first and second arguments of g. Although
the situation above is not likely to occur so often in actual sequential programs,
we expect that fractional ownerships will play a more fundamental role in a
multi-threaded setting, where ownerships for shared variables need to be split
for multi-threads.

3.3 Type Soundness

The soundness of our type system is stated as follows.

Theorem 1. If ' (D, s), then the following conditions hold.

1. 〈∅, ∅, s〉 �−→∗
D Error.

2. If 〈∅, ∅, s〉 −→∗
D 〈H,R, skip〉, then H = ∅.

The first condition means that there is no illegal read/write/free access to deal-
located memory. The second condition means that well-typed programs do not
leak memory. See the longer version [4] for the proof.
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3.4 Type Inference

By Theorem 1, verification of lack of memory-related errors is reduced to type
inference. For the purpose of automated type inference, we restrict the syntax of
types to those of the form (μα.α reff1) ref f2 . This restriction makes the type
system slightly less expressive, by precluding types like μα.(α ref0.5 ref0.7). The
restriction, however, does not seem so restrictive for realistic programs: in fact,
all the correct programs we have checked so far (including those given in this
paper) are typable in the restricted type system.

Given a program written in our language, type inference proceeds as follows.

1. For each n-ary function f , prepare a type template

((μα.α refηf,1,1 ) refηf,1,2 , . . . , (μα.α refηf,n,1) refηf,n,2)
→ ((μα.α refη′

f,1,1
) refη′

f,1,2
, . . . , (μα.α refη′

f,n,1
) refη′

f,n,2
),

where ηf,i,j and η′f,i,j are variables to denote unknown ownerships. Also,
for each program point p and for each variable x live at p, prepare a type
template (μα.α refηp,x,1) refηp,x,2 .

2. Generate linear inequalities on ownership variables based on the typing rules
and the well-formedness condition.

3. Solve the linear inequalities. If the inequalities have a solution, the program
is well-typed.

The number of ownership variables and linear inequalities is quadratic in the
size of the input program. Since linear inequalities (over rational numbers) can
be solved in time polynomial in the size of the inequalities, the whole algorithm
runs in time polynomial in the size of the input program.

4 Extensions and Limitations

We have so far considered a very simple language which has only pointers as
values. This section discusses extensions of the type system for other language
features (mainly of the C language).

It is straightforward to extend the type system to handle primitive types
such as integers and floating points. For structures with n elements (for the
sake of simplicity, assume that each element has the same size as a pointer),
we can introduce a type of the form (τ0 × · · · × τn−1) refw0,...,wn−1,f as the
type of a pointer to a structure. Here, τi is the type of the i-th element of
the structure, f denotes the obligation to deallocate the structure, and wi is
a capability to read/write the i-th element; thus, an ownership has been split
into a free obligation and read/write capabilities. Then the rules for pointer
dereference and pointer arithmetics are given by:

Θ;Γ, x : τ0,x, y : (τ0,y × τ1 × · · · × τn−1) refw0,...,wn−1,f ' s ⇒ Γ ′, x : τ ′

w0 > 0 τ0 ≈ τ0,x + τ0,y empty(τ ′)
Θ;Γ, y : (τ0 × τ1 × · · · × τn−1) refw0,...,wn−1,f ' let x = ∗y in s ⇒ Γ ′
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fun delnext(p) =
p : τP × τN ref1,1,1

let nextp = p+1 in

p : τP ×� ref1,0,1, nextp : τN ×� ref1,0,0

let next = *nextp in

p : τP ×� ref1,0,1, nextp : �×� ref1,0,0, next : τN

let nnp = next+1 in

p : τP ×� ref1,0,1, nextp : �×� ref1,0,0,
next : �×� ref1,0,1, nnp : τN ×� ref1,0,0

let nn = *nnp in

p : τP ×� ref1,0,1, nextp : �×� ref1,0,0,
next : �×� ref1,0,1, nnp : �×� ref1,0,0, nn : τN

*nn <- p;

p : τP ×� ref1,0,1, nextp : �×� ref1,0,0,
next : �×� ref1,0,1, nnp : �×� ref1,0,0, nn : τN

*nextp <- nn

p : τP ×� ref1,0,1, nextp : τN ×� ref1,0,0,
next : �×� ref1,0,1, nnp : �×� ref1,0,0, nn : �

assert(nnp=next+1);

p : τP ×� ref1,0,1, nextp : τN ×� ref1,0,0,
next : �×� ref1,1,1, nnp : �×� ref0,0,0, nn : �

free(next)

p : τP ×� ref1,0,1, nextp : τN ×� ref1,0,0,
next : �×� ref0,0,0, nnp : �×� ref0,0,0, nn : �

assert(nextp=p+1);

p : τP × τN ref1,1,1, nextp : �×� ref0,0,0,
next : �×� ref0,0,0, nnp : �×� ref0,0,0, nn : �

Fig. 5. A function manipulating a doubly-linked list and its typing

Θ;Γ, x : (τi,x × · · · × τn−1,x,*, . . . ,*) refwi,x,...,wn−1,x,0,...,0,0,
y : (τ0,y × · · · × τn−1,y) refw0,y ,...,wn−1,y,f ' s ⇒ Γ ′, x : τx

∀j ∈ {0, . . . , i− 1}.(τj,y ≈ τj ∧ wj = wj,y)
∀j ∈ {i, . . . , n− 1}.(τj ≈ τj,y + τj,x ∧ wj = wj,x + wj,y) empty(τx)
Θ;Γ, y : (τ0 × · · · × τn−1) refw0,...,wn−1,f ' let x = y + i in s ⇒ Γ ′

For example, consider the function delnext in Figure 5. It takes a doubly-
linked list as shown in Figure 6, and deletes the next element of p. The func-
tion is given the type (τP × τN ) ref1,1,1 → (τP × τN ) ref1,1,1, where τP =
μα.((α ×*) ref1,1,1) and τN =μα.((* × α) ref1,1,1). The type (τP ×τN ) ref1,1,1
means that the first element of p holds the capabilities and obligations on the
cells reachable through the backward pointers, and the second element holds
those on the cells reachable through the forward pointers.

An array of primitive values can be treated as one big reference cell, assuming
that array boundary errors are prevented by other methods (such as dynamic
checks or static analyses). At this moment, however, we do not know how to
deal with arrays of pointers.
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...

p

�
�

next nn

�
�

�
�

�
� ...

Fig. 6. A doubly-linked list given as an input of delnext. The cell next is removed
and deallocated.

A dereference of a function pointer in C can be replacedwith anon-deterministic
choice of the functions it may point to, by using a standard flow analysis. It is not
clear, however, how to deal with higher-order functions in functional languages,
especially those stored in reference cells.

Cast operations can be handled in a conservative manner. For example, a
pointer to a structure of type (τ0 × · · · × τn−1) refw0,...,wn−1,f can be casted to
a pointer of type (τ0 × · · · × τm−1) refw0,...,wm−1,f ′ (if m ≤ n). An integer can
be casted to a pointer with 0 ownership (but it is useless).

Besides arrays of pointers and higher-order functions, one of the major limi-
tations of our type system is that it cannot deal with cyclic structures well. The
only type that can be assigned to cyclic lists of arbitrary length is *: Notice
that if we assign μα.(α reff ) to the cycle, then an ownership f can be extracted
for each path (e.g., ε, 00, 0000, . . . for the cell on the lefthand side). We have
to maintain the invariant that f + f + f + · · · ≤ 1, so that f must be 0. Thus,
although a cyclic list can be constructed, it is useless as there is no ownership.
Note, however, that this limitation does not apply to the case of doubly-linked
lists, since cycles in doubly-linked lists are formed by two kinds of pointers; for-
ward and backward pointers (recall the example in Figure 5). In order to handle
cyclic lists, we need to extend pointer types to τ refP

f , which means that the
pointer is an element of the set P or has an ownership f . The pointer type τ ref f

is then just a special case of τ ref{NULL}f .

5 Preliminary Experiments

We have implemented a prototype verifier for C programs, and tested it for sev-
eral programs. The implementation, written in Objective Caml, is available at
http://www.kb.ecei.tohoku.ac.jp/~suenaga/mallocfree/. As a linear pro-
gramming solver, we used GLPK 4.15 wrapped by ocaml-glpk 0.1.5. The imple-
mentation is based on the type system described in Section 3, with the extension
for structures discussed in Section 4.

The limitations of the current implementation are: (i) Unsound treatment of
arrays of pointers (recall the discussion in Section 4): An array of pointers is
handled as an array of size 1; (ii) Poor error reporting: when a program is ill-
typed, the current system does produce some diagnostic information to indicate
a possible location of a bug, but it is probably incomprehensible for end-users;
(iii) Lack of support of several C statements: for example, a function call of
the form f(&x->f) has to be manually rewritten to a sequence of statements

http://www.kb.ecei.tohoku.ac.jp/~suenaga/mallocfree/
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benchmark LOC Time (total) Time (LP) NASSERT SIZE LP NVAR
ll-app 62 0.09 0.002 2 196 403
ll-reverse 67 0.10 0.002 2 217 430
ll-search 70 0.09 0.002 1 192 398
ll-merge 69 0.10 0.003 3 227 460
dl-insert 80 0.14 0.011 9 806 954
dl-delete 87 0.15 0.014 8 919 1134
bt-insert 64 0.09 0.003 0 188 479
authfd.c 6463 0.44 0.07 16 739 5408
cdrom.c 13429 26.49 19.85 14 35197 47185

Fig. 7. Benchmark result. The meaning of each column is as follows. LOC: the number
of lines of code. Time (total): total execution time (sec). Time (LP): execution time for
solving linear inequalities (sec). NASSERT: the number of manually-inserted assertions.
SIZE LP: the number of linear inequality constraints (after preprocessing of trivial
constraints). NVAR: the number of variables contained in generated linear inequalities.

p = &x->f; f(p); assert(&x->f, p); and (iv) Need for manual insertion of
assertions (assert(x = y) and assert(x = ∗y) in Section 2).

Figure 7 shows the result of the experiments. We used a machine with an
Intel(R) Xeon(R) 3.00Hz CPU, 4MB cache and 8GB memory. The programs
used for the experiments are described as follows:

– ll-app, ll-reverse and ll-search create lists, perform specific operations on
the lists (append for ll-app, reverse for ll-reverse, and list search for ll-search),
and deallocate the lists.

– dl-insert and dl-remove create doubly-linked lists, insert or delete a cell,
and deallocate the doubly-linked lists.

– bt-insert constructs a binary tree, performs an insertion, and then deallo-
cates the tree.

– authfd.c is a preprocessed file taken from openssh-5.2p1. (A large part
of the preprocessed file consists of type declarations; the rest of the code consists
of about 600 lines.)

– cdrom.c is a fragment2 of Linux device driver /drivers/cdrom/cdrom.c.
All the programs have been verified correctly. It is worth noting that the pro-
grams manipulating doubly-linked lists could be verified. The benchmark results
show that our analysis is reasonably fast, even for cdrom.c, which consists of
13K LOC.

Note that only 14 assertions were required for cdrom.c. (Thus, although the
microbenchmarks used in this experiment are quite small, they are actually tricky
programs.) All of those assertions were of the form assert(p=NULL), except the
following assertion, which asserts that prev points to the previous element of
cdi in a singly-linked list.

2 For the rest of the driver code, we have not yet checked whether it is typable by
appropriate insertion of assertion commands.
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while (cid && cdi != unreg){
assert(cdi, prev->next); prev = cdi; cdi = prev->next;}

This suggests that most of the assertions manually inserted in the experiments
above can be automatically inferred by a rather straightforward intra procedural
analysis like the one mentioned in Section 2 (except those for doubly-linked lists,
which require knowledge of the data structure invariant).

6 Related Work

There are a lot of studies and tools to detect or prevent memory-related errors.
They are classified into static and dynamic analyses. Here we focus on static
analysis techniques.

We have already discussed Heine and Lam’s work [2] in Section 1. They use
polymorphism on ownerships to make the analysis context-sensitive, which would
be applicable to our type system. Dor, Rodeh, and Sagiv [5] use shape analysis
techniques to verify lack of memory-related errors in list-manipulating programs.
Unlike ours, their analysis can also detect null-pointer dereferences. Advantages
of our type system over their analysis are the simplicity and efficiency. It is
not clear whether their analysis can be easily extended to handle procedure
calls and data structures (e.g., trees and doubly-linked lists) other than singly-
linked lists in an efficient manner. Orlovich and Rugina [6] proposed a backward
dataflow analysis to detect memory leaks. Their analysis does not detect double-
frees and illegal accesses to deallocated memory. Xie and Aiken [7] use a SAT
solver to detect memory leaks. Their analysis is unsound for loops and recursion.
Boyapati et al. [8] uses ownership types for safe memory management for real-
time Java, but their target is region-based memory management, and assume
explicit type annotations. Swamy et al. [9] also developed a language with safe
manual memory management. Unlike C, their language requires programmers
to provide various annotations (such as whether a pointer is aliased or not).

Yang et al. [10,11] applied separation logic to automated verification of pointer
safety in systems code. The efficiency of their verification method [10] seems
comparable to ours. However, they do not deal with doubly linked lists ([10],
Section 2).3 Like our technique, their tool cannot handle arrays of pointers.

Other potential advantages of our type-based approach are: (i) By allowing
programmers to declare ownership types, they may serve as good specifications
of functions or modules, and also enhance modular verification, (ii) Our approach
can probably be extended to deal with multi-threaded programs, along the line
of previous work using fractional capabilities [1,12,13], and (iii) There is a clear
proof of soundness of the analysis, based on a standard technique for proving
type soundness (see the longer version [4]). A main limitation of our approach
is that our type system cannot properly handle cycles (recall the discussion
in Section 4) and value-dependent (or, path-sensitive) behaviors. In practice,
therefore, a combination of our technique with other techniques would be useful.
3 Berdine et al. [11] can handle doubly linked lists, but the verification tool is much

slower according to their experimental results.
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Technically, our type system is based on the notion of ownerships and frac-
tional permissions/capabilities. Although there are many pieces of previous work
that use ownerships and fractional capabilities, our work is original in the way
they are integrated into a type system (in particular, pointer types that can rep-
resent an ownership of each memory cell reachable from a pointer, and typing
rules that allow automated inference of such pointer types). The idea of frac-
tional capabilities can be traced back to Ueda’s work [3] on GHC (a concurrent
logic programming language). He extended input/output modes to capabilities
ranging over [−1, 1], and used them to guarantee that there is no leakage of
memory cells for storing constructors. Our type system actually seems closer to
his system than to other later fractional capability systems [1,12,13]. In particu-
lar, his system assigns a capability (or, an ownership in our terminology) to each
node reachable from a variable (just as our type system assigns an ownership to
each pointer reachable from a variable), and the unification constraint X = Y
between variables plays a role similar to our assert commands. Nevertheless,
the details are different: our ownerships range over [0, 1] while theirs range over
[−1, 1], and both the well-formedness conditions on types, and the constraints
imposed by the type systems are different. This seems to come from the dif-
ferences in the language primitives: sequential vs concurrent compositions, and
pointers vs unification variables. Note that, for example, updating a pointer does
not consume any capability, while writing to a unification variable consumes a
write capability.

Boyland [1] used fractional permissions (for read/write operations) to prevent
race conditions in multi-threaded programs. Terauchi [12,13] later found another
advantage of using fractions: inference of fractional permissions (or capabilities)
can be reduced to a linear programming problem (rather than integer linear
programming), which can be solved in polynomial time. The type system of this
paper mainly exploits the latter advantage. In their work [1,12,13], a fractional
capability is assigned to an abstract location (often called a region), while our
type system assigns a fractional ownership to each access path from a variable.
More specifically, in their work [1,12,13], a pointer type is represented as τ refρi

with a separate map {ρ1 → f1, . . . , ρn → fn} from abstract locations to frac-
tions, whereas our pointer type τ reff may be regarded as a kind of existential
type ∃ρ :: {ρ → f}.τ refρ. The former approach is not suitable for the purpose of
our analysis: for example, without existential types, all the elements in a list are
abstracted to the same location, so that a separate ownership cannot be assigned
to each element of the list. Our pointer types (e.g. of the form μα.α ref0.5 ref1)
seem to have some similarity with the notion of fractional permissions with nest-
ing [14], as both can express ownerships for nested data structures. Boyland [14]
gives the semantics of fractional permissions with nesting, but does not discuss
their application to program analysis.

7 Conclusion

We have proposed a new type system that guarantees lack of memory-related
errors. The type system is based on the notion of fractional ownerships, and is
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equipped with a polynomial-time type inference algorithm. The type system is
quite simple (especially compared with previous techniques for analyzing similar
properties), yet it can be used to verify tricky pointer-manipulating programs. It
is left for future work to carry out more experiments to evaluate the effectiveness
of the type system, and to construct a practical memory-leak verification tool
for C programs.
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Abstract. Ownership types support information hiding by providing
object-based encapsulation. However the static restrictions they impose
on object accessibility can limit the expressiveness of ownership types. In
order to deal with real applications, it is sometimes necessary to admit
mechanisms for dynamically exposing otherwise encapsulated informa-
tion. The need for policies and mechanisms to control such information
flow, known as downgrading or declassification, has been well covered in
the security literature.

This paper proposes a flexible ownership type system for object-
level access control. It still maintains privacy of owned data, but allows
information to be dynamically exposed where appropriate through an
explicit declassification operation. The key innovation is an owners-as-
downgraders policy, implemented via a simple language construct, which
allows an object to be made more widely accessible by downgrading its
ownership to its owner’s owner.

1 Introduction

Traditional class-level private declarations in Java-like programming languages
are inadequate for hiding object instances or restricting access to them. For in-
stance, the underlying object in a private field can be accidentally exposed by
assignments, calls or method returns. Ownership types [26,11,10] are a widely
accepted technique for providing object-based encapsulation by partitioning
all objects into a structure called the ownership tree. In such type systems,
the owners-as-dominators property guarantees that an object is only accessible
within the encapsulation provided by its owner. This prevents unwanted repre-
sentation exposure and protects against deliberate attacks.

This form of strong encapsulation is too inflexible in practice; for example,
it impedes the use of common coding idioms and design patterns such as it-
erators and observers. A number of proposals have been made for improving
the expressiveness of ownership types (as reviewed in Section 5). They explore
ways to increase object accessibility by exposing otherwise encapsulated objects.
While these approaches vary in their detail, they all require object exposure to
be statically determined, being fixed at the time of object creation. Hence object
accessibility is fixed for the lifetime of the object.
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However, to deal with real applications, it is sometimes necessary to admit
mechanisms for dynamically exposing otherwise encapsulated information. A
long-standing problem in information security is how to specify and enforce ex-
pressive security policies that hide information while also permitting information
release (called downgrading or declassification) where appropriate [7].

In this paper, we present a new ownership type system for object-level ac-
cess control. While it still protects object instances like other ownership type
systems do, it can allow programmers to intentionally expose encapsulated ob-
jects at runtime through an explicit declassification operation. Compared to
other ownership type systems where an object’s accessibility is statically and
solely determined by its creator, our type system allows object accessibility to
be changed dynamically by its dynamic owner. Compared to other downgrad-
ing policies in information security (where downgrading is controlled based on
code authority [25] or conditions [7] or actions [19]), our type system enforces a
downgrading policy based on object ownership, called owners-as-downgraders.
The owners-as-downgraders property highlights what is a natural role for an
owner—access to an object must be sufficiently authorized by its owners. With
the ability to encapsulate objects as well as to expose them, we provide a more
flexible and expressive ownership type system for object access control, which
allows programmers to express design intent more precisely.

The paper is organized as follows: Section 2 gives a brief introduction to
ownership types. Section 3 provides an informal overview of our proposed model.
An example is presented with a detailed description to illustrate the use of
our type system. Section 4 presents a core object-oriented language to allow
us to formalize the static semantics, dynamic semantics and some important
properties. Section 5 discusses related work, and Section 6 briefly concludes the
paper.

2 Object Encapsulation with Static Ownership

We first give a brief overview of the classic approach to static ownership and
before introducing our concept of dynamic ownership in Section 3.

Earlier object encapsulation systems, such as Islands [16] and Balloons [3],
use full encapsulation techniques to forbid both incoming and outgoing refer-
ences to an object’s internal representation. Ownership types [11,10,8] provide
a more flexible mechanism than previous systems; instead of full encapsulation,
they allow outgoing references while still restricting incoming ones. The work
on ownership types emanated from some general principles for Flexible Alias
Protection [26] and the use of dominator trees in structuring object graphs [28].

In ownership type systems, each object has one fixed owning object, called
the owner or static owner, bound statically at object creation. Often, the term
context is used in the ownership types literature [11,9] to refer to ownership
parameters in types. In the following example, the first context parameter o of
class Author is the owner of an author object. Other context parameters such as
p are optional; they are used to type references outside the current encapsulation.
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Types are formed by binding actual context parameters to the formal parameters
of a class. In the following example, the owner of book can be declared to be the
current object/context this.

class Author<o,p> {
Book<this> book;

Date<p> deadline;

}
// client code

Author<owner,world> author = new Author<owner,world>();
... = author.book; // error

Ownership partitions all objects in the heap into an ownership tree, rooted at
the special context world. Ownership types support information hiding by pro-
viding statically enforceable object encapsulation based on the ownership tree.
The key technical mechanism used here is the hiding of object identity; owner-
ship type systems ensure that the identity of an object can only be propagated
(via class parameters) to its owned objects. In order to declare a type for a ref-
erence, one must be able to identify the owner that encapsulates the object, so
that objects outside an encapsulation boundary can never identify the owner of
encapsulated objects. The world context is globally nameable, so that objects
owned by world are accessible from anywhere in the program.

For example, in the Author class, the author may want to hide his book
from unauthorized access. In Java, this can be done by declaring the book field
to be private. However such a class-level private declaration does not prevent
the underlying object instance from being referenced from outside, because a
reference to the object may easily be leaked by assignments to fields of other
objects, bindings to calls, or method returns. In ownership types, the owner of
book can be declared to be the current context this, which is different from
object to object. It is impossible to name this to give the correct type of an
author’s book from outside. Thus, any attempted access (reference) to the book
from client code via the expression author.book is a type error.

Ownership types can be considered as an access control system where owners
are security levels for object instances. The world context is the lowest security
level, so that accesses to objects owned by world are not restricted. However,
unlike pre-defined security levels in conventional security systems, owners are
also normal objects (except world) which may be owned by other objects. The
following owners-as-dominators property guarantees that any access from out-
side to an object’s internal representation must be made via the object’s owner.

Property 1 (Static Encapsulation)
If object A accesses object B then A ! owner(B).

This property states that an object can only be accessed from within its static
owner. The function owner(B) denotes the static owner of B. The symbol !, of-
ten called inside (or dominated by), denotes the reflexive and transitive closure
of the ownership relation. This property implies that both accessibility for an
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object (the set of objects that can reference it) and its reference capability (the
set of objects it can reference) is determined by the object’s position in the own-
ership tree. This, in turn is defined by the object’s static owner, which remains
fixed for its lifetime. This fixed ownership has limited utility in applications that
require a more flexible access control policy, such as when information needs to
be released at runtime.

3 Object Exposure with Dynamic Ownership

In this section, we give an informal introduction to our type system. We first
introduce our concept of dynamic ownership in Section 3.1, and then explain
how to safely expose objects using dynamic ownership in Section 3.2. Finally,
we illustrate our type system with an example, showing that it is more flexible
and expressive than static ownership types.

3.1 Dynamic Encapsulation

In order to support a more flexible and dynamic access policy, we introduce
a concept of dynamic ownership which separates an object’s dynamic owner
from its static owner. This separation enables the object’s dynamic owner to
be changed (downgraded) at runtime while its static owner remains fixed after
creation. Like previous ownership types, the static owner of an object defines
its fixed position in the ownership tree, hence determines the capability of the
object. Unlike previous ownership types, object accessibility is determined by its
dynamic owner rather than static owner. Thus the accessibility of an object may
be changed at runtime by downgrading its dynamic ownership. Here is a simple
illustration.

class Author<o> {
[this]Book<o> book = new Book<o>();

}

Each type in our system is a (classic) ownership type prefixed with a dynamic
owner. The dynamic owner of the variable book is the current context [this].
The dynamic owner of a new object is not explicitly specified, because the initial
dynamic owner is always the same as its static owner; in this example the implicit
dynamic owner for the new book is o, the static owner of the new book (and of
the current author).

The assignment on variable book being OK implies [o]Book<o> is a subtype
of [this]Book<o>. This subtyping is safe because it never exposes objects; the
set of objects that can access this is a subset of the objects that can access
o. In this example, the new object becomes less accessible when it is assigned
to the variable book (our type system requires this to be inside o). This is
typical of access control mechanisms in security applications where it is safe to
increase the security level by restricting the number of subjects that may access
an object. We used a similar mechanism in previous work [20] on the variance
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of object access modifiers. In this paper, we focus on how to expose objects
using dynamic ownership. We now state the encapsulation property for our new
system with dynamic ownership.

Property 2 (Dynamic Encapsulation)
If object A accesses object B then A ! downer(B).

The function downer(B) denotes the dynamic owner of B. This property is more
general than static encapsulation, because the dynamic ownership of an object
can be changed at runtime by controlled downgrading, which will be discussed
in the next section.

3.2 Dynamic Exposure

An object may be exposed by downgrading its dynamic ownership, i.e. promoting
its dynamic owner up the ownership tree so the object becomes more accessible.
Like most information security systems [7], in our system downgrading only
occurs via an explicit expose operation in order to avoid accidental leaking of
sensitive information. Below is a simple example of the expose operation.

class Author<o> {
[this]Book<this> bookInWriting;

[o]Book<*> release() {
...

return expose bookInWriting;

}
}

The reference in the field bookInWriting is encapsulated within the current
object as suggested by its dynamic owner ([this]). Classic ownership type sys-
tems would never allow such a reference to be leaked outside. However, in our
type system, we allow programmers to release this reference via the explicit ex-
pose operation (for example, the author may wish to release the book after he
has finished writing it). In the above code, expose bookInWriting downgrades
the dynamic ownership of the book reference by promoting its dynamic owner
from this to o (we know o owns this). This enables the reference to be accessed
by the owner of the current object or other objects within it.

The * symbol (similar to Java’s ? wildcard for generics) can be thought of as
an abstract owner; they have become common in ownership-based type systems
[21,20,6]. Abstract owners are useful when the actual owners are unknown to the
current context. Only context arguments (including the static owner) of a type
may be abstract; dynamic owners can never be abstract as they determine if the
object is accessible in the current context. In the example, the return type of the
method release is [o]Book<*>, which implies that the receiver of the method
call only needs to know o in order to access the released book (without having
to know its static owner).

The following property states the effect of object exposure. An expose op-
eration allows the exposed object to be accessed from within the downgrader’s
owner.
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Property 3 (Object Exposure)
If object A has exposed object B, then owner(A) ! downer(B).

Not surprisingly, our type system requires that the dynamic owner of the exposed
object to be known to the downgrader (which is always the current object). This
means that the object to be exposed is dynamically owned by the downgrader or
the downgrader’s owners. The static owner of an exposed object is not restricted
by the type system; typically it can be abstracted by ∗. Note that, since the
capability of an object is determined by its static ownership, its capability won’t
be affected by any downgrading. Moreover, an expose operation may promote
an object’s dynamic ownership by at most one level up the ownership tree. For
an object to be exposed through more than one level, it must go through a
sequence of expose operations, authorized by a sequence of downgraders up an
ownership branch. That B is a downgrader of A means either B has exposed A
via an explicit expose operation, or B has the authority to expose A (i.e. it is
the current dynamic owner of A). The owners-as-downgraders property states
our authorization policy on object exposure.

Property 4 (Owners-as-Downgraders)
For two objects A and B, if owner(A) ! B ! downer(A), then B must be a
downgrader of A.

Since owner(A) and downer(A) are identical when A is created, we know A
has been exposed if downer(A) is outside owner(A). That is, the object has
become more accessible than was allowed by its creator. If A is exposed, then all
A’s transitive owners up to downer(A) (exclusively) must have authorized the
exposure via explicit expose operations.

Our type system strictly subsumes classic ownership types; the owners-as-
dominators property is the same owners-as-downgraders without downgrading.
In other words, ownership programs are special cases of our programs where
no expose operation is used; in that case, the dynamic owner of every object is
fixed, remaining identical to its static owner.

3.3 A Publisher Example

In this section, we sketch a scenario for book publishing which involves multiple
steps of exposure of an object. The sample code, given in Figure 1, is kept simple,
to highlight the idea of ownership downgrading. Figure 2 illustrates the steps of
exposure and the change of object accessibility in the system after each exposure.

In this example, there are two top-level objects, a publisher and a reader.
The reader reads books published by the publisher. Inside the publisher, there
are an author and an editor, whose jobs are, respectively, writing and reviewing
books for the publisher. A book object is owned by the author. Their ownership
relation is fixed as suggested by their static owners. But the accessibility of the
book changes at runtime due to the use of object exposure.

In the code, we use some defaults for declaring types. Context arguments
of a type may be omitted if they are all abstract; for instance, [p]Book is a
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class Publisher<o> {
Author<this> author;

Editor<this> editor;

[this]Book book;

[o]Book release() {
book = author.release();

editor.edit(book);

...

if (finishedEditing(book))

return expose book;

}
}

class Author<p> {
Book<this> book;

[p]Book release() {
...

if (finishedWriting(book))

return expose book;

}
}
// a reader client

Publisher<world> publisher;

[world]Book book; book =

publisher.release();

read(book);

Fig. 1. A Publisher Example
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Fig. 2. Step by Step Exposure

shorthand for [p]Book<*>. Also, the dynamic owner of a type may be omitted
if it is the same as the static owner (which must not be abstract); for instance,
Author<this> is a shorthand for [this]Author<this>.

In the class Author the book is owned by the author, initially it cannot be
accessed from outside the author. In Figure 2(a), the book object is encapsulated
inside the author’s context, so that accesses on it from the editor or the reader
are prevented by the type system (as shown by crossed arrow lines in the figure).
However, the author may release the book to the publisher (its owner) after he
finishes writing it. An expose operation is used in the release() method to
expose the book to the publisher. The book becomes dynamically owned by the
publisher as suggested by the dynamic owner of the return type [p]Book.

After the first exposure, the book object is accessible within the publisher: it
can be accessed by the editor but not the reader, as shown in Figure 2(b). The
editor can now do some editing on the book. The second exposure is defined in
the Publisher class. The publisher will release the book after the editor finishes
editing it. Another expose operation is used by the publisher to expose the book;
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the book becomes dynamically owned by the world. After the second exposure,
the book object is accessible by any object in the program so that the reader
can start reading the book now, as shown in Figure 2(c).

In our type system, it is necessary to expose the book twice in order to release
the book to the reader. Our owners-as-downgraders policy ensures that such
exposure must be authorized (via the explicit expose operations) by both the
author and the publisher. The crossed thick line in Figure 2(c) indicates that it
is not possible to directly expose the book to the reader in a single step.

The ability to encapsulate objects and expose them allows our programs to
express useful aspects of designer intent. The publisher example shows that we
can use object exposure to enforce a logical sequence of actions in a certain order.
This is like an assured pipeline in information flow security. When the author is
writing the book, he does not want any interference from outside, so the book
object is kept private by the author until writing is finished. After the book is
released to the publisher, the editor may edit the book in collaboration with the
author. The book remains private to the publisher until editing is finished. The
reader may not read the book, until the publisher publishes it. In practice, as
the book is exposed, the type of the reference should be restricted to a more
limited interface, e.g. to prevent readers editing the book.

4 The Formal System

In this section, we present a core object-oriented language which allows us to
formalize the type system, semantics and the main results of the type system.
We show that our owners-as-downgraders property can be checked syntactically
by a type system. The abstract syntax and typing rules follow the conventions
used in our previous papers [20,22], which extend Featherweight Java [17] with
field assignment and ownership information.

Table 1 gives the abstract syntax of the source language, with the extensions
used by the type system having grey background as they are not available to
programmers. The extensions include the syntax for type environments and ex-
istential contexts. Type environments Γ record the assumed ownership ordering
between context parameters, and the types of variables. Existential contexts are
used by the type system to name contexts which are hidden from the current en-
vironment. The expression e may be a concrete context only if e is this, otherwise
e is an existential context (hence not a well-formed context by the rules in Table
4). The special existential context ? represents a concrete unknown context: an
anonymous Skolemisation; it is only used in type instantiation in class member
lookup (see [L-DEF] in Table 7) to prevent unsound binding. Types with exis-
tential context ? have restricted bindability (see [T-SUB] in Table 3), because ?
is not a well-formed context in the current environment (see [A-ID]). Conven-
tional existential types use some form of pack/unpack or close/open pairing to
distinguish between typing contexts where the existential type is visible or not.
Our use of the context abstraction ∗ in the language syntax and the existential
context ? in the type system is somewhat akin to the use of pack/unpack mecha-
nisms for existential types, but simpler. In particular, we avoid introducing new



152 Y. Lu, J. Potter, and J. Xue

Table 1. Abstract Syntax for Source Language and Type System

T ::= [D]O variable types
O ::= C〈K〉 object types
K, D ::= X | this | world | ∗ | ? | e contexts
P ::= L e programs
L ::= class C〈X〉�O {T f; M} classes
M ::= T m(T x) {e} methods
e ::= x | new O | e.f | e.f = e | e.m(e) | expose e expressions
Γ ::= • | Γ , X ! X | Γ , x : T environments

Table 2. Judgements in Type System

Judgement Meaning
Γ ' O O is a well-formed object type
' O < O ′ O is a subtype of O ′

Γ ' T T is a well-formed variable type
Γ ' T <: T ′ an expression of type T is bindable to a variable of type T ′

Γ ' K $ K ′ K can be abstracted by K ′

Γ ' K K is a well-formed context
Γ ' K ! K ′ K is inside K ′

' P P is a well-formed program
' L L is a well-formed class
Γ ' M M is a well-formed method
Γ 'K e : T expression e is of type T

H; e ⇓K H ′; e ′ e is reduced to e ′ in context K, and heap H is updated to be H ′

names for contexts into environments by keeping them anonymous. The details
of existential contexts can be found in [20]; we do not discuss them in full detail
in this paper.

4.1 Static Semantics

The judgements used in the type system are give in Table 2, together with their
meanings. Table 3 provides rules for type well-formedness, subtyping rules for ob-
ject (value) types and variable types, as well as the rules for context abstraction.
Directly borrowed from [20], we use a separate judgement for bindability to han-
dle types with existential contexts, which only occur after field or method lookup
by the type system (see Table 7). The well-formedness [TYPE] rule is somewhat
unconventional; it allows the introduction of context abstraction ∗ into types,
via the bindability requirement. Well-formed object types, [OBJECT], only use
concrete contexts; by requiring the owner context of an object type to be inside
any other context parameters, we ensure that any type accessed from within
has an owner that contains the current object, as required for the encapsulation
property. [A-ID] ensures that the existential contexts abstract nothing, because
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Table 3. Types, Subtype, Binding and Abstraction Rules

[OBJECT]

|K| = arity(C) Γ ' K

K = K, ... Γ ' K ! K

Γ ' C〈K〉

[O-SUB]
class C〈X〉�O ...
' C〈K〉 < O[K/X]

[O-RFL] ' O < O

[O-TRA]
' O < O ′′ ' O ′′ < O ′

' O < O ′

[TYPE]

Γ ' D Γ ' O ′

Γ ' [D]O ′ <: [D]O

Γ ' [D]O

[T-SUB]
Γ ' K $ K ′ Γ ' D ′ ! D

Γ ' [D]C〈K〉 <: [D ′]C〈K ′〉

[T-TRA]

' O < O ′′

Γ ' [D]O ′′ <: [D ′]O ′

Γ ' [D]O <: [D ′]O ′

[ABSTRACT]
Γ ' K $ ∗

[A-ID]
Γ ' K

Γ ' K $ K

Table 4. Context and Inside Rules

[CONTEXT]
K ∈ Γ

Γ ' K

[WORLD]
Γ ' world

[C-OWN]
Γ ' K ! ownerΓ (K)

[C-ENV]
K ! K ′ ∈ Γ

Γ ' K ! K ′

[C-WLD]
Γ ' K ! world

[C-TRA]
Γ ' K ! K ′′ Γ ' K ′′ ! K ′

Γ ' K ! K ′

[C-RFL]
Γ ' K

Γ ' K ! K

they are not valid contexts by [CONTEXT] in Table 4. Combined with [T-SUB]
this ensures that bindability is not reflexive, because existential types can only
occur on the right-hand side of the binding relation. The use of bindability in
typing field assignment and method argument binding (see [E-ASS], [E-CAL] in
Table 6) prevents existential contexts from being associated with the target of
a binding. Substitutions used in this type system are postfixed in order to be
distinct from the prefixed dynamic owners. For instance, O[K/X] substitutes K

for X in O.
Table 4 defines well-formed contexts and context ordering for concrete con-

texts. Direct ownership is captured in [C-OWN] by looking up the static owner
from the type of the context via [L-OWN]. The only direct ownership relation
available in static semantics is for the this context; it is owned by the first con-
text parameter of its type (see [CLASS]). this is the only context that is given a
static type; at runtime, this is bound to the location of the target object.

The rules for well-formed program definitions and declarations are in Table
5. In the [CLASS] rule, each class defines its own environment formed from its
formal contexts and the type of this and super objects. The owner parameter
(the first context parameter X) has to be inside all other context parameters,
just like the classic ownership types [11,9]. The only direct ownership relation
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Table 5. Program, Class and Method Rules

[PROGRAM]
' L • ' e : T

' L e

[CLASS]

X = X, ... Γ = X ! X, this : [X]C〈X〉, super : [X]O Γ ' [X]O, T
Γ ' M ownerΓ (this) = ownerΓ (super) f ∩ dom(fldsΓ (super)) = •

class C〈X〉�O {T f; M}

[METHOD]

Γ , x : T 'this e : T ′′ Γ ' T , T Γ ' T ′′ <: T

mth(Γ(super), this, m) = T ′ T ′ =⇒ Γ ' T <: T ′ Γ ' T ′ <: T

Γ ' T m(T x)

known to the class, that is this ! X, is not included in the class environment;
instead, we capture it in the [C-OWN] rule to make it generally derivable. A bullet
symbol is used to denote something null or empty. For instance, in • ' e : T in
[PROGRAM], the environment of the expression does not exist. For simplicity, we
often simply omit the bullets.

Table 6 defines expression types. Each expression judgement is attached with
a context ('K), which is the current context where the expression is evaluated
(the target object of the current call). In the static semantics, it is bound to
the this context in class methods (see [METHOD]); in the dynamic semantics, it is
bound to the location of the current object. It is omitted in [PROGRAM], because
the main method does not have a target object; because world context is never
used as a target object. The most interesting typing rule is [E-XPO], where an
object may be exposed. Since a dynamic owner is only authorized to expose
an object it directly owns, this rule insists an object can only be exposed, by
promoting its dynamic owner one level up in the ownership tree, if its dynamic
owner is the current context. Otherwise, there is no exposure.

Table 7 defines auxiliary definitions to be used by the type system. We put
substitutions and lookups in the auxiliary definitions to keep the type rules
simple. When accessing the fields or methods via an expression e, we determine
their types, given the type of e. These in turn use [L-DEF] to find a correct
substitution for parameters of T ’s class, where ∗ is replaced by ?. This is similar
to the usual unpack/open for conventional existential types. The major difference
is that we do not introduce fresh context variables into the current environment.
Instead, we keep the existential context anonymous by using a special symbol ?.
This technique eliminates the need for the pack/close operation, since anonymous
contexts do not have to be bound to an environment, they naturally become
global (see [20] for more details).

4.2 Dynamic Semantics and Properties

The extended syntax and features used by the dynamic semantics are given
in Table 8. Ownership information, including both static and dynamic owners,
is only needed in static type checking so that they may be erased after type
checking. The expose operations may be erased too, because they only affect
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Table 6. Expression Rules

[E-VAR]
Γ 'K x : Γ(x)

[E-SEL]
fldsK

Γ (e)(f) = T Γ ' T

Γ 'K e.f : T

[E-NEW]
Γ ' O O = C〈D, ...〉

Γ 'K new O : [D]O

[E-ASS]
Γ 'K e.f : T Γ 'K e ′ : T ′ Γ ' T ′ <: T

Γ 'K e.f = e ′ : T

[E-CAL]
mthK

Γ (e, m) = T T ... Γ 'K e : T ′ Γ ' T ′ <: T Γ ' T

Γ 'K e.m(e) : T

[E-XPO]

Γ 'K e : [D]O D = K =⇒ D ′ = ownerΓ (D)

D �= K =⇒ D ′ = D

Γ 'K expose e : [D ′]O

Table 7. Auxiliary Definitions for Lookup

[L-OWN]
Γ 'K e : [D]C〈K ′, ..〉
ownerK

Γ (e) = K ′

[L-DYN]
Γ 'K e : [D]O

downerK
Γ (e) = D

[L-DEF]

L = class C〈X〉... K ′ = K[?/∗]
L ′ = L[K ′/X, K/this]

def(C〈K〉, K) = L ′

[L-FLD]
Γ 'K e : [D]O

fldsK
Γ (e) = flds(O, e)

[L-FLD ′]
def(O, K) = ... �O ′ {T f; ...}
flds(O, K) = f T , flds(O ′, K)

[L-MTH]
Γ 'K e : [D]O

mthK
Γ (e, m) = mth(O, e, m)

[L-MTH ′]
def(O, K) = ... T m(T x) {e} ...

mth(O, K,m) = T T x e

[L-MTH ′′]

def(O, K) = ... �O ′ {... ;M}

m /∈ M

mth(O, K, m) = mth(O ′,K, m)

dynamic owners; expose e becomes just e after erasure. However, in order to
formalize the key properties of the type system, we need to establish a connection
between the static and dynamic semantics by including ownership and exposures
in the dynamic semantics.

Locations are annotated with the type of the object they refer to, as well as a
list of dynamic owners which records the history of exposures of this object. The
dynamic owners of a location may be extended over time through exposures. The
list is used to prove Theorem 4. The last element in the dynamic owners list of
a location is the current dynamic owner of the object, i.e., the downgrader who
currently has the authority to expose the object. The advantage of not storing
the type information in the heap is that we can look up type information directly
from the location itself without referring to the heap (see [E-LOC]). All locations
are annotated with their owners and type; but we may omit them wherever that
information is not used.

Expressions are extended with locations, which indirectly extends contexts
with locations. A heap is a mapping from locations to objects; an object maps
its fields to locations. A few auxiliary definitions are included in Table 9 to help
formalize the properties. We have used some shorthand for simplicity. Γ ' e <: T
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Table 8. Extended Syntax with Dynamic Features

l, lD
O locations

e ::= ... | l expressions
o ::= f → l objects
H ::= l → o heaps

Table 9. Auxiliary Definitions for Dynamic Semantics

[E-LOC]
Γ 'K l

D,D
O : [D]O

[L-XPO]
downgraders(lD

O) = D [HEAP]

∀l ∈ dom(H) ·
H(l) = f → l flds(l) = f T

' l : T ′ ' T ′ <: T

' H

means Γ 'K e : T ′ and Γ ' T ′ <: T . We may omit • in judgements and lookup
functions; for example, 'K e : T means • 'K e : T . We may also omit the current
context K where it is not used.

The dynamic semantics are defined in a big step fashion in Table 10. The
context K in ⇓K refers to the target object of the current call; the main method
does not have a target object. At the time of method invocation in [R-CAL],
the target object of the body of the invoked method is l. The variable this
is not substituted in e′[l/x]. Instead, this is replaced by l in the substitution
provided by the lookup function mth(l, m). In [R-XPO], if the current object
K is the same as the last dynamic owner of l (i.e, K is the current authorizing
downgrader for l), then the exposure is authorized and the dynamic owner of
l is promoted to owner(D). The exposure is completed by an appending of
owner(D) to the end of the dynamic owner list that is attached to the location
of the object. Otherwise, the exposure has insufficient authorization; the object
l and its dynamic owner list remains unchanged.

The operational semantics for field operations are obvious. In [R-NEW], to
create an object, we adopt the default field initialization scheme from MOJO
[6]. We first create a new object at a fresh address in the heap; then we initialize
the fields with default object creation. Object creation is a recursive process
in an atomic step. MOJO’s default field initialization simplifies the formalism
because it avoid nulls; otherwise we would need to allow for null errors. In this
paper, we focus on the correctness of object exposure, rather than concerning
ourselves with a more complex, but realistic model for object initialization.

Finally, we formalize some of the key properties of the type system, includ-
ing a standard type preservation result in Theorem 1. Theorems 2-4 directly
correspond to the properties introduced informally in Section 3.

Theorem 1 (Preservation). Given ' H and 'K e : T , If H; e ⇓K H ′; l then
' H ′ and ' l <: T .

Theorem 2 (Encapsulation)
Given ' H and 'K e : T , if H; e ⇓K H ′; l then ' K ! downer(l).
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Table 10. A Big Step Semantics

[R-SEL]
H; e ⇓K H ′; l

H; e.f ⇓K H ′; H ′(l)(f)

[R-NEW]

l /∈ dom(H) H1 = H, lD
O → • f T = flds(l)

∀i ∈ 1..|f| · Hi; new Ti ⇓K Hi+1; li

O = C〈D, ...〉 H ′ = H|f|+1[l
D
O → f → l]

H;new O ⇓K H ′; l

[R-ASS]
H; e ⇓K H ′; l H ′; e ′ ⇓l H ′′; l ′

H; e.f = e ′ ⇓K H ′′[l → H ′′(l)[f → l ′]]; l ′

[R-CAL]

H; e ⇓K H1; l mth(l, m) = ...x e ′

∀i ∈ 1..|x| · Hi; ei ⇓K Hi+1; li

H|x|+1; e ′[l/x] ⇓l H ′; l ′

H; e.m(e) ⇓K H ′; l ′

[R-XPO]

H; e ⇓K H ′; l 'K l : [D]O D �= K =⇒ H ′′ = H ′

D = K =⇒ H ′′ = H ′[l
downgraders(l),owner(D)
O /l]

H; expose e ⇓K H ′′; l

Theorem 3 (Exposure)
Given ' H and 'K expose e : T , if H; expose e ⇓K H ′; l, then ' owner(K) !
downer(l).

Theorem 4 (Owners-as-downgraders)
Given ' H and l, l′ ∈ H, if ' owner(l) ! l′ ! downer(l) then l′ ∈
downgraders(l).

5 Discussion and Related Work

In this paper, we have focused on techniques for exposing objects safely at run-
time in a statically typed language. Any object may become accessible to any
other object, given sufficient downgrading. Our type system ensures that owners
must explicitly authorize downgrading; this highlights the role of the owner –
only the owner can authorize the objects it owns to be accessed from outside.
Like security types with downgrading [30,25,7,19], our type system does not
track downgrading information. In other words, we cannot tell, from the types,
whether an object has-been-exposed or may-be-exposed. However, in many ap-
plications where stronger static assumptions are needed (for instance, program
verification and reasoning about object invariants), we may still want to retain
fixed object ownership so that certain objects can never be exposed. A simple
extension to our system would allow us to model (ownership-traditional) never-
to-be-exposed objects in addition to may-be-exposed objects, but that is not
a concern of this paper. Never-to-be-exposed objects are just a special case of
may-be-exposed objects where downgrading is not allowed.
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Our formalization is built upon classic tree-based ownership types [11,10,9]
for simplicity. Modern extensions to ownership types have been studying richer
structures than per-context ownership trees. For instance, Ownership Domains
[1] allow programmers to further partition contexts into domains for finer-grained
access control, and MOJO [6] replaces ownership tree with multiple ownership
for more precise reasoning about effects. We believe that the object exposure
technique introduced in this paper could be applied in those systems too.

Syntactic overhead for our types is that of ownership types plus an extra
dynamic owner for each type. As we have seen in our earlier example, with
carefully selected defaults type annotations can be reduced. Moreover, the ideas
of Generic Ownership [27] can also be employed here to reduce the burden of
type annotations in the presence of class type parameters. As for other ownership
type systems, ours allows separate compilation. It is statically checkable and does
not require any runtime support.

There have been a variety of ownership type systems seeking to improve
the expressiveness of the classic ownership types by relaxing the owners-as-
dominators property. JOE [9] allows internal contexts to be exposed through
read-only local variables. Ownership Domains [1] uses final fields to expose in-
ternal contexts. Lexical scoping has been used to give inner class instances special
access privileges to their outer objects [8,5]. Both SOT [10] and [20] offer sep-
aration of accessibility and capability of an object. Such separation allows the
creator of an object to decide its accessibility independently from its position
in the ownership tree, and also implies object access need not be authorized
by its owner. All these techniques increase nameability of internal contexts, but
object accessibility remains statically determined, being fixed at creation for the
object’s lifetime. None of these approaches can dynamically expose an encapsu-
lated object at runtime as in this paper.

We have focused on object instance access control with object ownership.
Beside access control, the idea of object ownership has been proved to be useful
in other applications. OOFX [14], JOE [9] and MOJO [6] combine effects and
some forms of ownership. These systems focus on reasoning about read and
write effects in order to syntactically control interference in the program. Boogie
[18], Universes [13], Effective Ownership [21] and Oval [22] use the ownership
structure to confine object dependency in order to support localized reasoning
about object invariants. These systems typically do not hide information as they
do not restrict read access or reference; object invariants can only be violated
by mutations. They enforce an owners-as-modifiers property.

Ownership transfer has been supported in a number of systems which permits
the owner of an object to be changed when necessary. However, they either cannot
be enforced statically, or have to enforce some form of uniqueness of reference.
Islands [16] uses strict unique references with destructive reads to permit transfer.
External uniqueness [12] is a flexible form of uniqueness for ownership types which
permits internal sharing without compromising uniqueness of external reference;
it supports ownership transfer by combining external uniqueness with destructive
reads and borrowing. AliasJava [2] supports ownership transfer using destructive
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field reads and lent variables. Beside these type systems, UUT [24] combines a
type system and static analysis to enforce temporary uniqueness for ownership
transfer. Program logics, such as Boogie [4,18,23], can allow dynamic ownership,
but require program verification to check ownership properties.

Our owners-as-downgraders property essentially enforces a downgrading pol-
icy based on object ownership. Unlike most security types for secure information
flow [7,19], our type system does not consider covert channels [30], hence we do
not enforce a conventional noninterference property (we could have done so, but
it is not a concern of this paper). Our downgrading policy may be considered as
a special case of intransitive noninterference [15,29], where special downgrading
paths exist in a security lattice. With our owners-as-downgraders property, such
downgrading paths are upward branches in the ownership tree.

6 Conclusion

In this paper, we have proposed an expressive ownership type system, which
encapsulates object privacy while also permitting information release where ap-
propriate. In this new system, objects may expose their owned information via an
explicit operation. We have shown an example where object encapsulation and
exposure capture useful aspects of designer intent. With the ability to change
object accessibility at runtime, we have provided a more dynamic and expressive
model for object access control in ownership types.
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Abstract. Separation Algebras serve as models of Separation Logics;
Share Accounting allows reasoning about concurrent-read/exclusive-
write resources in Separation Logic. In designing a Concurrent Separa-
tion Logic and in mechanizing proofs of its soundness, we found previous
axiomatizations of separation algebras and previous systems of share ac-
counting to be useful but imperfect. We adjust the axioms of separation
algebras; we demonstrate an operator calculus for constructing new sep-
aration algebras; we present a more powerful system of share accounting
with a new, simple model; and we provide a reusable Coq development.

1 Introduction

Separation logic is an elegant solution to the pointer aliasing problem of Hoare
logic. We have been using separation logic to examine the metatheory of C minor
enhanced with primitives for shared-memory concurrency [6,5]. Along the way,
we developed a generic library of constructions and proof techniques for separa-
tion logic. Here we explain two related parts of our toolkit: separation algebras
and share models. Contribution 0: Our proofs are machine checked in Coq.1

Calcagno, O’Hearn and Yang [4] present a semantics of separation logic based
on structures they call “separation algebras.” Although Calcagno’s definition
is adequate for their purposes, we found it too limiting in some ways and too
permissive in others. Contribution 1: We make several alterations to the defini-
tion of separation algebras to produce a class of objects that have more pleasing
mathematical properties and that are better suited to the task of generating
useful separation logics.

Different separation logics often require different separation algebra models,
but verifying that a complex object is a separation algebra can be both tedious
and surprisingly difficult. Contribution 2: We demonstrate an operator calcu-
lus for rapidly constructing a wide variety of new separation algebras.

We also revisit share accounting, which is used to reason about read-sharing
concurrent protocols. Share accounting allows a process to “own” some share of
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a memory location: the full share gives read/write/deallocate permissions, while
a partial share gives only the read permission. Contribution 3: We present a
new share model that is superior to those by Bornat et al. [1] and Parkinson [8].

2 Separation Algebras

Calcagno, O’Hearn, and Yang [4] introduced the notion of a separation algebra,
which they defined as “a cancellative, partial commutive monoid.” That is, a
separation algebra (SA) is a tuple 〈A,⊕, u〉 where A is a set, ⊕ is a partial
binary operation on A and u is an element of A satisfying the following axioms:

x⊕ y = y ⊕ x (1)
x⊕ (y ⊕ z) = (x⊕ y) ⊕ z (2)
u⊕ x = x (3)
x1 ⊕ y = x2 ⊕ y → x1 = x2 (4)

The primary interest of a separation algebra is that it can be used to build a
separation logic [11]. However, for most of this paper, we are going to consider
separation algebras as first-class objects and investigate their properties.

We wish to construct our models in Coq. Dealing with partial functions in
Coq can be tricky, since the function space of Coq’s metatheory contains only
computable total functions.2 We would like to be able to construct models whose
combining operation is not computable. Therefore, we adopt a convention from
philosophical logic, where it is common to give the semantics of substructural
connectives in terms of 3-place relations rather than binary functions [10].

We recast the separation algebra ideas of Calcagno et al. in this relational
setting by considering the join relation J(x, y, z), usually written suggestively
as x ⊕ y = z. The partiality of the ⊕ operation follows from the fact that for a
given x and y we are not guaranteed that there is some z such that x ⊕ y = z.
Reinterpreted in this setting, we say that 〈A, J〉, (where A is a carrier set and
J is a three-place relation on A) is a separation algebra provided that:

x⊕ y = z1 → x⊕ y = z2 → z1 = z2 (5)
x1 ⊕ y = z → x2 ⊕ y = z → x1 = x2 (6)
x⊕ y = z → y ⊕ x = z (7)
x⊕ y = a → a⊕ z = b → ∃c. y ⊕ z = c ∧ x⊕ c = b (8)
∃u. ∀x. u⊕ x = x (9)

That is, ⊕ is a functional relation (5), it is cancellative (6), commutative (7),
associative (8), and has a unit u (9).

We are justified in calling this object “the” unit because the cancellation
axiom guarantees that it must be unique. In addition, the unit is exactly the
unique element u satisfying u⊕ u = u, again by the cancellation axiom.
2 Uncomputable functions can be built if one assumes the axiom of description.
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3 The Algebra of Separation Algebras

A new separation algebra can be built by applying operators to preexisting SAs.

Definition 1 (SA product operator). Let 〈A, JA〉 and 〈B, JB〉 be SAs. Then
the product SA is 〈A×B, J〉, where J is defined componentwise:

J((xa, xb), (ya, yb), (za, zb)) ≡ JA(xa, ya, za) ∧ JB(xb, yb, zb) (10)

Definition 2 (SA function operator). Let A be a set and let 〈B, JB〉 be a
SA. Then the function SA is 〈A → B, J〉, where J is defined pointwise:

J(f, g, h) ≡ ∀a ∈ A. JB(f(a), g(a), h(a)) (11)

The SA product and the SA function operators are isomorphic to special cases
of the general indexed product (i.e., dependent function space) operator.

Definition 3 (SA indexed product operator). Let I be a set, called the
index set, and let P be a mapping from I to separation algebras. Then the indexed
product SA is 〈Πx : I. P (x), J〉 where J is defined pointwise:

J(f, g, h) ≡ ∀i ∈ I. JP (i)(f(i), g(i), h(i)) (12)

What about the disjoint union operator? Can it be constructed? Unfortunately,
it cannot. Suppose we have two SAs 〈A, JA〉, 〈B, JB〉. We would like to define
〈A + B, J〉 such that J is the smallest relation satisfying:

JA(x, y, z) → J(inl x, inl y, inl z) for all x, y, z ∈ A (13)
JB(x, y, z) → J(inr x, inr y, inr z) for all x, y, z ∈ B (14)

Here A + B is the disjoint union of A and B with inl and inr as the left and
right injections. This structure cannot be a separation algebra under the original
axioms: if uA and uB are the units of A and B, then both inl uA and inr uB

satisfy u⊕u = u. We noted the unit u is the unique element satisfying this equa-
tion, so inl uA = u = inr uB. However, this is a contradiction as the injection
functions for disjoint union always produce unequal elements. The generalization
of disjoint union to the indexed sum fails for the same reason.

One option for dealing with this problem is to use the “almost” disjoint sum,
which is the disjoint sum of the nonunit elements together with a single unit.
This solution is adequate, but not entirely satisfactory; it combines two dis-
tinct operations (the disjoint sum and the combining of units) which are better
understood separately. In other words, the construction is not compositional.

There is good news, however: we can slightly relax the SA axioms to allow
the desired construction. Recall the SA axiom for the existence of a unit:

∃u. ∀x. u⊕ x = x (9)

If we simply swap the order of the quantifiers in this axiom, we get a weaker
statement which says that every element of the SA has an associated unit:

∀x. ∃ux. ux ⊕ x = x (15)
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To distinguish these species of separation algebras, we call SAs defined by axioms
5, 6, 7, 8, and 9 Single-unit Separation Algebras (SSA), we call SAs defined by
axioms 5, 6, 7, 8, and 15 Multi-unit Separation Algebras (MSA). Note that axiom
9 implies axiom 15, and thus the SSAs are a strict subset of the MSAs.

Although the relaxation to multiple units is common in the tradition of rel-
evant logic [10], it is significant here because it enables a number of additional
operators, including näıve indexed sums and the discrete separation algebra.

Definition 4 (MSA indexed sum operator). Let I be a set, called the index
set. Let S be a mapping from I to separation algebras. Then the indexed sum
MSA is 〈Σi : I. S(i), J〉 such that J is the least relation satisfying:

JS(i)(x, y, z) → J(inj i(x), inj i(y), inj i(z)) for all i ∈ I;x, y, z ∈ S(i) (16)

Here inj i is the injection function associated with i. As with products, if |I| = 2,
the indexed sum is isomorphic to the disjoint union operator.

Definition 5 (discrete MSA). Let A be a set. Then the discrete MSA is 〈A, J〉
where J is defined as the smallest relation satisfying:

J(x, x, x) for all x ∈ A (17)

The discrete MSA has a join relation that holds only when all three arguments
are equal: every element of the discrete MSA is a unit. The discrete MSA is
useful for constructing MSAs over tuples where only some of the components
have interesting joins; the other components can be turned into discrete MSAs.
Note the compositionality of this construction using the discrete and product
operators together. With SSAs, one would instead have to “manually” construct
an appropriate tupling operator because the discrete SA is not available.

Sometimes we wish to coerce an MSA into an SSA; the lifting operator removes
all the units from an MSA and replaces them with a new unique unit.3

Definition 6 (MSA lifting operator). Let 〈A, JA〉 be a multi-unit separation
algebra. Define A+ to be the subset of A containing all the nonunit elements,
A+ = {x ∈ A|¬(x⊕ x = x)}. Let ⊥ be a distinguished element such that ⊥ /∈ A.
Then the lifting SA is 〈A+ ∪ {⊥}, J〉 where J is the least relation satisfying:

J(⊥, x, x) for all x ∈ A+ ∪ {⊥} (18)
J(x,⊥, x) for all x ∈ A+ ∪ {⊥} (19)

JA(x, y, z) → J(x, y, z) for all x, y, z ∈ A+ (20)

Note that the “almost” disjoint union described above can be constructed using
the lifting operator applied to the näıve disjoint sum operator on MSAs. Again
compositionality is increased by working with MSAs.

The above operators can construct many kinds of separation algebras. The
associated Coq development includes a number of additional operators (e.g.,
lists, subsets, bijections, etc.) that we have also found useful.
3 Considered as a functor from MSA to SSA, the lifting operator is left adjoint to

the inclusion functor from SSA to MSA.
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Table 1. A model of HBI given a SA

Assume we have a MSA 〈A,J〉. The following is a model of
HBI (a Hilbert-style axiomatization of the logic of bunched
implications). Prop is the type of Coq propositions, and the
right-hand sides are stated in Coq’s metalogic.

formula ≡ A → Prop

a |= p ≡ p(a)
p � q ≡ ∀a. a |= p → a |= q

� ≡ λa. True
⊥ ≡ λa. False
p ∧ q ≡ λa. a |= p ∧ a |= q
p ∨ q ≡ λa. a |= p ∨ a |= q
p → q ≡ λa. a |= p → a |= q
emp ≡ λa. a ⊕ a = a
p ∗ q ≡ λa. ∃a1.∃a2. a1 ⊕ a2 = a ∧ a1 |= p ∧ a2 |= q
p −−∗ q ≡ λa. ∀a1.∀a′. a1 ⊕ a = a′ → a1 |= p → a′ |= q

4 Inducing a Separation Logic

The purpose of a separation algebra is to generate a separation logic, that is, a
Hoare-style program logic where the assertion language is the logic of bunched
implications (BI). Calcagno et al. demonstrated that their interpretation leads
to a Boolean BI algebra, a model of BI. Here we demonstrate that we are still
generating models for the desired class of logics despite relaxing the unit axiom.

We too will interpret formulae of separation logic as predicates on the ele-
ments of a separation algebra (equivalently, members of the powerset). In Coq
we simply define the formulae as A -> Prop, where A is the type of elements in
the MSA, and Prop is the type of propositions in Coq’s metatheory.

We have chosen to directly link our models to the proof theory of BI by
showing4 a soundness proof with respect to the system HBI, a Hilbert-style ax-
iomatic system for the (propositional) logic of bunched implications [9, Table 2].
The definitions which give rise to HBI are summarized in table 1; they are quite
standard, except for the definition of the empty proposition emp.

Ordinarily, one defines emp as the predicate which accepts only the unit of
the SSA. However, by relaxing the unit axiom we allow multiple units, each of
which must be characterized. Recall that an MSA is a set of equivalence classes
distinguished by unique units, each of which satisfies the equation u ⊕ u = u.
In fact, only units satisfy that equation, so we define emp as the predicate that
accepts any element x provided that x ⊕ x = x. This subsumes the ordinary
definition in the event that the unit is unique. More importantly, however, from
this definition we can prove that emp is the unit for separating conjunction.

4 The accompanying Coq development contains the full set of definitions and proofs.
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Thus we see that relaxing the unit axiom does not take us outside the class
of models of the logic of bunched implications.

5 Useful Restrictions of SAs

Positivity. Calcagno et al.’s definition of separation algebras [4] permits very
strange logics that do not correspond well to the common view that the formulae
in separation logic describe resources.

Consider the structure 〈{0, 1, 2},+3〉, of the integers with addition modulo
3. This structure satisfies the separation algebra axioms given in the previous
section and the integer 0 is the unique unit. The problem is that the following
holds: 1 +3 2 = 0. The resource 1 combines with the resource 2 to give the
“empty” resource 0. Stated another way, we can split the empty resource 0 to
get two nonempty resources 1 and 2. By analogy to physics, 1 and 2 act as a
resource/antiresource pair that annihilate each other when combined.

This is not at all how one expects resources to behave. If one has, for example,
an empty pile of bricks and splits it into two piles, one expects to have two empty
piles. One does not expect to get one pile of bricks and another pile of antibricks.

The existence of antiresources is particularly troublesome because it interacts
badly with the frame rule, a ubiquitous feature of separation logic. A program
with no resources can write to memory! Proof: it splits the empty permission,
obtaining a write and an anti-write permission. Using the frame rule, it “frames
out” the antipermission, giving it the permission to perform a write.

Calcagno et al. resolve this problem by requiring that all actions be “local.”
The locality condition captures the requirement that actions must be compatible
with the frame rule; as a side-effect, the locality condition ensures that any
“negative” resources that may exist cannot be used for any interesting purpose.
The ultimate consequence is that proving the required locality properties is more
difficult (if not impossible) in SAs with negative resources.

We prefer to directly rule out this troublesome class of separation algebras by
disallowing negative resources. We require that SAs be positive by adding the
following positivity axiom:

a⊕ b = c → c⊕ c = c → a⊕ a = a (21)

That is, whenever two elements join to create a unit element, these joined ele-
ments must themselves be units (and hence the same element). This axiom rules
out separation algebras such as the addition-modulo-3 example above. Further-
more, this axiom is preserved by the all the SA operators we examined above,
which means we have not lost the ground we gained by relaxing the unit axiom.

One of most compelling reasons for including (21) in the axiom base is that
all the nontoy SAs known to the authors (that is, those which can be used to
reason about some computational system), including all five examples listed by
Calcagno et al. [4], satisfy this axiom.5

5 Brotherson and Calcagno [3] investigate Classical BI, whose models have negative,
or dual, elements. However, the combination of an element with its dual gives the
distinguished element ∞, which is not necessarily the unit, so (21) may still hold.
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The positivity axiom also allows us to make a connection to order theory. We
define an ordering relation on the elements of a separation algebra:

a ! b ≡ ∃x. a⊕ x = b (22)

This relation is reflexive and transitive, which makes it a preorder. The pre-
order ! is antisymmetric, and thus a partial order, if and only if axiom (21)
holds.

Disjointness. The disjointness property is that no nonempty share joins with
itself. If a separation logic over program heaps lacks disjointness then unusual
things can happen when defining predicates about inductive data in a program
heap. For example, without disjointness, the “obvious” definition of a formula
to describe binary trees in fact describes directed acyclic graphs [1].

Disjointness is easy to axiomatize:

a⊕ a = b → a = b (23)

The disjointness axiom requires that any SA element that joins with itself be a
unit. Equivalently, it says that any nonunit element cannot join with itself (is
disjoint). This axiom captures the same idea as Parkinson’s “disjoint” axiom [8]:


 →s v ∗ 
 →s v ↔ false (24)

The primary difference is that our axiom is on separation algebras, whereas
Parkinson’s axiom is on separation logic.

As with the positivity axiom, the disjointness axiom is preserved by the SA
operators presented in the previous section. It also implies positivity. The con-
verse does not hold: disjointness is strictly stronger than positivity.

To see why disjointness (23) implies positivity (21), consider the following
proof sketch. Assume a ⊕ b = c and c ⊕ c = c for some a, b, and c; we wish to
show a⊕ a = a. Then the following hold (modulo some abuse of notation):

c⊕ c = c assumed
(a⊕ b) ⊕ (a⊕ b) = a⊕ b subst. a⊕ b = c
(a⊕ a) ⊕ (b ⊕ b) = a⊕ b comm. and assoc.
(a⊕ a) ⊕ b = a⊕ b disjointness
a⊕ a = a cancellation

The converse fails: consider the structure 〈N,+〉 of natural numbers with ad-
dition. This fulfills the SA axioms, including positivity. However, every natural
number i > 0 falsifies the disjointness axiom.

Two alternative ways of formulating the disjointness property are inspired by
order theory and provide additional insight. First, if a ⊕ b = c, then any lower
bound of a and b is a unit:

a⊕ b = c → d ! a → d ! b → d⊕ d = d (25)

Second, a⊕ b is minimal in the following sense:
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a⊕ b = c → a ! d → b ! d → d ! c → c = d (26)

This implies that if a and b join and have a least upper bound, then it is a⊕ b.

Cross-split. The alternative formulations of disjointness bring up an interesting
point about separation algebras: even for two elements in the same equivalence
class, there is no guarantee that either least upper bounds or greatest lower
bounds exist. The lack of greatest lower bounds (i.e., intersections), in particu-
lar, proved to be troublesome in Hobor et al.’s proof of soundness of a concurrent
separation logic for Concurrent C minor [6,5], when they needed to track permis-
sions being transferred between threads. At the time they were using a modified
version of Parkinson’s share model (discussed below) in which intersections did
not always exist. This failure resulted in an unpleasant workaround and spurred
development of the alternate model discussed in section 7.

The particular property required was as follows: suppose a single resource can
be split in two different ways; then one should be able to divide the original
resource into four pieces that respect the original splittings.

a⊕ b = z ∧ c⊕ d = z →
∃ ac, ad, bc, bd.

a b ac
ad bd

bcc
dac⊕ ad = a ∧ bc⊕ bd = b ∧

ac⊕ bc = c ∧ ad⊕ bd = d

(27)

That is, if an element can be split in two different ways, then there should be four
subelements that partition the original element and respect the splittings. We
call this property the cross-split axiom and, as with positivity and disjointness,
this property is preserved by the separation algebra operators.6

Splittability. Another frequently desirable property of SAs is infinite splittability,
which is a useful property for reasoning about the kinds of resource sharing that
occur in divide-and-conquer style computations. Splittability means that we can
take any element of the SA and split it into two pieces that recombine into the
original. To avoid degenerate splittings, both the split pieces must be nonempty
if the original was nonempty. Thus, a SA is infinitely splittable if there exists a
function split that calculates such a splitting.

split x = (x1, x2) → x1 ⊕ x2 = x (28)

split x = (x1, x2) → x1 ⊕ x1 = x1 → x⊕ x = x (29)

split x = (x1, x2) → x2 ⊕ x2 = x2 → x⊕ x = x (30)

There are reasonable separation logics that have models where disjointness,
cross-split, and/or infinite splittability are false. We present these axioms be-
cause we (and others such as Parkinson) found them useful in separation logic

6 To pull an intersection property through the lifting operator, one needs to apply lifts
only where there is a computable test for units, or use the axiom of description.
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proofs and metaproofs, and because any separation algebra built with our op-
erator calculus can inherit them for free if desired. In contrast, every nontoy
separation algebra used for reasoning about computational systems and known
to the authors satisfies the positivity axiom (21). In our own work we find that
adding the disjointness axiom (which implies positivity) to the SA axiom base
to be quite convenient and suggest that “disjoint” MSAs, defined by axioms 5,
6, 7, 8, 15 and 23, are very natural structures for reasoning in this domain.

6 Shares

An important application of separation algebras is to model Hoare logics of pro-
gramming languages with mutable memory. We generate an appropriate separa-
tion logic by choosing the correct semantic model, that is, the correct separation
algebra. A natural choice is to simply take the program heaps as the elements
of the separation algebra together with some appropriate join relation.

In most of the early work in this direction, heaps were modeled as partial
functions from addresses to values. In those models, two heaps join iff their
domains are disjoint, the result being the union of the two heaps. However, this
simple model is too restrictive, especially when one considers concurrency. It
rules out useful and interesting protocols where two or more threads agree to
share read permission to an area of memory.

There are a number of different ways to do the necessary permission account-
ing. Bornat et al. [1] present two different methods; one based on fractional per-
missions, and another based on token counting. Parkinson, in chapter 5 of his
thesis [8], presents a more sophisticated system capable of handling both meth-
ods. However, this model has some drawbacks, which we shall address below.

Fractional permissions are used to handle the accounting situations that arise
from concurrent divide-and-conquer algorithms. In such algorithms, a worker
thread has read-only permission to the dataset and it needs to divide this per-
mission among various child threads. When a child thread finishes, it returns its
permission to its parent. Child threads, in turn, may need to split their permis-
sions among their own children and so on. In order to handle any possible pattern
of divide-and-conquer, splitting must be possible to an unbounded depth.

The token-counting method is intended to handle the accounting problem that
arises from reader-writer locks. When a reader acquires a lock, it receives a “share
token,” which it will later return when it unlocks. The lock tracks the number of
active readers with an integer counter that is incremented when a reader locks
and decremented when a reader unlocks. When the reader count is positive there
are outstanding read tokens; when it is zero there are no outstanding readers
and a writer may acquire the lock.

Here we will show how each of the above accounting systems arises from the
choice of a “share model,” and we present our own share model which can handle
both accounting methods and avoids a pitfall found in Parkinson’s model.

Suppose we have a separation algebra 〈S, JS〉 of shares. If L and V are sets
of addresses and values, respectively, we can define a SA over heaps as follows:
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H ≡ L → (S × V=)⊥ (31)

This equation is quite concise but conceals some subtle points. The operators
in this equation are the operators on SAs defined in § 3. We let V= be the
“discrete” MSA over values (i.e., values V with the trivial join relation) and
S×V= is the MSA over pairs of shares and values.Next we construct the “lifted”
SSA (S × V=)⊥, which removes the unit values and adds a new, distinguished
unit ⊥. This requires values to be paired only with nonunit shares. Finally,
L → (S×V=)⊥ builds the function space SSA. Thus, heaps are partial functions
from locations to pairs of nonunit shares and values.7

Now we can define the points-to operator of separation logic as:


 →s v ≡ λh. h(
) = (s, v) ∧ (∀
′.
 �= 
′ → h(
′) = ⊥) (32)

Here, 
 ∈ L is an address, v ∈ V is a value, and s ∈ S+ is a nonunit share.
In English, 
 →s v means “the memory location at address 
 contains v, I have
share s at this location, and I have no permission at any other locations.” Now
the exact behavior of the points-to operator depends only on the share model S.

An important property of this definition is that the separation algebra on
shares lifts in a straightforward way through the separation logic:

s1 ⊕ s2 = s ↔ (
 →s v ↔ 
 →s1 v ∗ 
 →s2 v) (33)

Thus we can use properties of our share model in the separation logic.
We can produce a separation logic very similar to the ones studied by Reynolds

[11] and by Ishtiaq and O’Hearn [7] by choosing S to be the SA over Booleans
with the smallest join relation such that “false” is the unique unit.

Definition 7 (Boolean shares). The Boolean share model is 〈{◦, •}, J〉 where
J is the least relation satisfying J(◦, x, x) and J(x, ◦, x) for all x ∈ {◦, •}.
Here ◦ and • stand for “false” and “true”, respectively. This share model is
unsophisticated: one either has unrestricted permission or no permission at all.
Note that the lifting operator removes ◦, leaving • as the only legal annotation.
This justifies omitting the annotation, resulting in the more familiar 
 → v.

Boyland proposed a model which takes shares as fractions in the interval [0, 1]
as shares [2]. Although Boyland works in the reals, the rationals suffice.

Definition 8 (Fractional shares). The fractional share model is 〈[0, 1]∩Q,+〉
where + is the restriction of addition to a partial operation on [0, 1].

The main advantage of the fractional share model is that it is infinitely splittable.
The splitting function is simple: to split a share s, let s1 = s2 = s/2. The
fractional share model satisfies the positivity axiom but not the disjointness
axiom, which leads to the problems noticed by Bornat et al. [1, §13.1].

Bornat et al. also examined the token factory model, where a central authority
starts with total ownership and then lends out permission tokens. The authority
7 Our heaps are quite similar those defined by Bornat et al. [1, §10.1]. Their “partial

commutative semigroup” of shares arises here from the nonunit elements of a SA.
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counts the outstanding tokens; when the count is zero, all have returned. A slight
modification of Bornat’s construction yields a suitable model:

Definition 9 (Counting shares). The counting share model is 〈Z ∪ {⊥}, J〉
where J is defined as the least relation satisfying:

J(⊥, x, x) for all x ∈ Z ∪ {⊥} (34)
J(x,⊥, x) for all x ∈ Z ∪ {⊥} (35)
(x < 0 ∨ y < 0) ∧ ((x + y ≥ 0) ∨ (x < 0 ∧ y < 0)) → J(x, y, x + y)

for all x, y ∈ Z
(36)

This definition sets up the nonnegative integers as token factories and negative
integers as tokens. To absorb a token back into a factory, the integers are simply
added. The token factory has collected all its tokens when its share is zero. Like
the fractional model, the counting model satisfies positivity but not disjointness.

This share model validates the following logical axioms:


 →n v ↔ (
 →n+m v ∗ 
 →−m v) for n ≥ 0 and m > 0 (37)

 →−(n+m) v ↔ (
 →−n v ∗ 
 →−m v) for n,m > 0 (38)
(
 →0 v ∗ 
 →n v) ↔ false (39)

Equation (37) says that a token factory with n tokens outstanding can be split
into a token (of size m) and a new factory, which has n+m tokens outstanding.
Furthermore the operation is reversable: a token and its factory can be recom-
bined to get a factory with fewer outstanding tokens. Equation (38) says that
the tokens themselves may be split and merged. Finally, equation (39) says that
it is impossible to have both a full token factory (with no outstanding tokens)
and any other share of the same location (whether a factory or a token).

If one only utilizes tokens of size one, then equations (37)–(39) describe the
sorts of share manipulations required for a standard reader-writer lock. Other
token sizes allow more subtle locking protocols where, for example, one thread
may acquire the read tokens of several others and release them all at once.

In his thesis, Parkinson defines a more sophisticated share model that can
support both the splitting and the token counting use cases.

Definition 10 (Parkinson’s named shares). Parkinson’s named share model
is given by 〈P(N),-〉, where P(N) is the set of subsets of the natural numbers
and - is disjoint union.8

This model satisfies the disjointness axiom, and thus positivity. It also satisfies
the cross-split axiom: the required subshares are calculated by set intersection.

In order to support the token-counting use case, Parkinson considers the finite
and cofinite subsets of N. These sets can be related to the counting model given
above by considering the cardinality of the set (or set complement, for cofinite
sets). We will see the details of this embedding later.

8 That is, the union of disjoint sets rather than discriminated union.
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Unfortunately, this share model is not infinitely splittable, since there is no
way to split a singleton set into two nonempty subsets. Therefore we cannot
define a total function which calculates the splitting of a share in this model,
and this makes it difficult to support the parallel divide-and-conquer use case.

We can fix this problem by restricting the model to include only the infinite
subsets of N (and the empty set). We can split an infinite set s by enumerating
its elements and generating s1 from those in even positions and s2 from the those
in odd positions. Then s1 and s2 are infinite, disjoint, and partition s.

Unfortunately, restricting to infinite subsets means that we cannot use finite
and cofinite sets to model token counting. This problem can be solved, at the
cost of some complication, with an embedding into the infinite sets [8].

The problem with that solution is that the infinite subsets of N are also not
closed under set intersection, which means the share model no longer satisfies
the cross split axiom. To see why this axiom fails, consider splitting N into the
primes/nonprimes and the even/odd numbers. All four sets are infinite, but the
set {2} of even primes is finite and thus not in the share model.

Hobor suggested further restricting the model by reasoning about equivalence
classes of subsets of N, where two subsets are equivalent when their symmetric
difference is finite; but developing this model in Coq was difficult [5].

We will present a new model with all the right properties: disjointness axiom,
cross-split axiom, infinitely splittable, supports token counting, and is straight-
forward to represent in a theorem prover. As a bonus, we also achieve a decidable
test for share equality.

7 Binary Tree Share Model

Before giving the explicit construction of our share model, we shall take a short
detour to show how we can induce a separation algebra from a lattice.

Definition 11 (Lattice SA). Let 〈A,(,�,�, 0, 1〉 be a bounded distributive
lattice. Then, 〈A, J〉 is a separation algebra where J is defined as:

J(x, y, z) ≡ x � y = z ∧ x � y = 0 (40)

Disjointness follows from the right conjunct of the join relation; cross split follows
from the existence of greatest lower bounds. It also has a unique unit, 0.

It is interesting to note that all of the share models we have examined thus
far that satisfy the disjointness axiom are instances of this general construc-
tion.9 The Boolean share model is just the lattice SA derived from the canonical
2-element Boolean algebra, and Parkinson’s model (without the restriction to
infinite subsets) is the separation algebra derived from the powerset Boolean
algebra. Restricting Parkinson’s model to infinite sets as described above buys
the ability to do infinite splitting at the price of destroying part of the structure
of the lattice. Below we show that paying this price is unnecessary.

9 This is not necessarily so. There exist disjoint SAs which are not distributive lattices.
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If the structure is additionally a Boolean algebra, then we can make the
following pleasant connection:

x ! y ↔ x ( y (41)

That is, the lattice order coincides with the SA order. The forward direction
holds for any bounded distributive lattice. The backward direction relies on
the complement operator to construct the witness (¬x � y) for the existential
quantifier in the definition of !. Any bounded distributive lattice satisfying (41)
is a Boolean algebra; the witness of ! gives the complement for x when y = 1.

Trees. Now we can restate our goal; we wish to construct a bounded distributive
lattice which supports splitting and token counting. This means we must support
a splitting function and we must be able to embed the finite and cofinite subsets
of the naturals. We can build a model of shares supporting all these operations by
starting with a very simple data structure: the humble binary tree. We consider
binary trees with Boolean-valued leaves and unlabeled internal nodes.

τ ::= ◦ | • | τ τ (42)

We use an empty circle ◦ to represent a “false” leaf and the filled circle • to
represent a “true” leaf. Thus • is a tree with a single leaf, ◦ • is a tree with one
internal node and two leaves, etc.

We define the ordering on trees as the least relation ( satisfying:

◦ ( ◦ (43)
◦ ( • (44)
• ( • (45)
◦ ∼= ◦ ◦ (46)

• ∼= • • (47)

x1 ( x2 → y1 ( y2 → x1 y1 ( x2 y2 (48)

Here, x ∼= y is defined as x ( y ∧ y ( x. The intuitive meaning is that x ( y
holds iff x has a ◦ in at least every position y does once we expand leaf nodes
using the congruence rules until the trees are the same shape. The congruence
rules allow us to “fold up” any subtree which has the same label on all its leaves.

This relation is reflexive and transitive; however it is not antisymmetric be-
cause of the structural congruence rules. We can get around this by working
only with the “canonical” trees. A tree is canonical if it is the tree with the
fewest nodes in the equivalence class generated by ∼=. Canonical trees always
exist and are unique, and the ordering relation is antisymmetric on the domain
of canonical trees. Therefore we can build a partial order using the canonical
Boolean-labeled binary trees with the above ordering relation.

The details of canonicalization are straightforward but tedious, so we will
work informally up to congruence. In the formal Coq development, however,
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we give a full account of canonicalization and show all the required properties.
The short story is that we normalize trees after every operation by finding and
reducing all the subtrees which can be reduced by one of the congruence rules.

Our next task is to implement the lattice operations. The trees ◦ and • are
the least and greatest element of the partial order, respectively. The least up-
per bound of two trees is calculated as the pointwise disjunction of Booleans
(expanding the trees as necessary to make them the same shape). For exam-
ple, • • ◦ � • ◦ ◦ ∼= • • • ◦ � • ◦ ◦ ◦

∼= • • • ◦
∼= • • ◦ . Likewise, the

greatest lower bound is found by pointwise conjunction, so that • • ◦ � • ◦ ◦
∼= • • • ◦ � • ◦ ◦ ◦

∼= • ◦ ◦ ◦
∼= • ◦ ◦ . Finally, this structure is a Boolean

algebra as well as a distributive lattice, and the complement operation is point-
wise Boolean complement: ¬ • • ◦ ∼= ◦ ◦ • . The Boolean algebra axioms can be
verified by simple inductive arguments over the structure of the trees.

We can also define a decidable test for equality by simply checking structural
equality of trees. Trees form a lattice, and thus a decision procedure for equal-
ity also yields a test for the lattice order. In contrast, Parkinson’s model over
arbitrary subsets of N lacks both decidable equality and decidable ordering.

In addition to the lattice operations, we require an operation to split trees.
Given some tree s, we wish to find two trees s1 and s2 such that s1 � s2 ∼= s and
s1�s2 ∼= ◦ and both s1 � ◦ and s2 � ◦ provided that s � ◦. We can calculate s1
and s2 by recursively replacing each • leaf in s with • ◦ and ◦ • respectively.

We can usefully generalize this procedure by defining the “relativization”
operator x �� y, which replaces every • leaf in x with the tree y. This operator
is associative with identity •. It distributes over � and � on the left, and is
injective for non-◦ arguments.

x �� • = x = • �� x (49)
x �� ◦ = ◦ = ◦ �� x (50)
x �� (y �� z) = (x �� y) �� z (51)
x �� (y � z) = (x �� y) � (x �� z) (52)
x �� (y � z) = (x �� y) � (x �� z) (53)
x �� y1 = x �� y2 → x = ◦ ∨ y1 = y2 (54)
x1 �� y = x2 �� y → x1 = x2 ∨ y = ◦ (55)

Given this operator, we can more succinctly define the split of x as returning
the pair containing x �� • ◦ and x �� ◦ •. The required splitting properties follow
easily from this definition and the above properties of ��.

If this were the only use of the relativization, however, it would hardly be
worthwhile to define it. Instead, the main purpose of this operator is to allow us
to glue together arbitrary methods for partitioning permissions. In particular, we
can split or perform token counting on any nonempty permission we obtain, no
matter how it was originally generated. In addition, we only have to concentrate
on how to perform accounting of the full permission • because we can let the ��
operator handle relativizing to some other permission of interest.
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Following Parkinson, we will consider finite and cofinite sets of the natural
numbers to support token counting. This structure has several nice properties.
First, it is closed under set intersection, set union and set complement and it
contains N and ∅; in other words, it forms a sub-Boolean algebra of the power-
set Boolean algebra over N. Furthermore the cardinalities of these sets can be
mapped to the integers in following way:

[[p]]Z =
{
−|p| when p is finite and nonempty
|N\p| when p is cofinite (56)

The cardinalities of disjoint (co)finite sets combine in exactly the way defined
by the counting share model (equation 36).

We can embed the (co)finite subsets of N into our binary tree model by encod-
ing the sets as right-biased trees10 (trees where the left subtree of each internal
node is always a leaf). Such trees form a list of Booleans together with one extra
Boolean, the rightmost leaf in the tree. Then the ith Boolean in the list encodes
whether the natural number i is in the set. The final terminating Boolean stands
for all the remaining naturals. If it is ◦, the set is finite and does not contain the
remaining naturals, and if it is • the set is infinite and contains all the remaining
naturals. This interpretation is consistent with the congruence rules that allow
you to unfold the rightmost terminating Boolean into a arbitrarily long list of
the same Boolean value.

For example, the finite set {0, 2} is encoded in tree form as • ◦ • ◦. The coset

N\{0, 2} is encoded as ◦ • ◦ •. And, of course, • ◦ • ◦ ⊕ ◦ • ◦ • = •.

This encoding is in fact a Boolean algebra homomorphism; GLBs, LUBs, com-
plements and the top and bottom elements are preserved. This homomorphism
allows us to transport the token counting results on (co)finite sets to binary
trees. We write [[p]]τ = s when s is the tree encoding the (co)finite set p.

Now we can define a more sophisticated points-to operator which allows us to
incorporate token counting along with permission splitting.


 →s,n v ≡ λh. ∃p. h(
) = (s �� [[p]]τ , v)∧ [[p]]Z = n∧∀
′.
 �= 
′ → h(
′) = ⊥ (57)

Then 
 →s,n v means that 
 contains value v and we have a portion of the
permission s indexed by n. If n is zero, we have all of s. If n is positive, we have
a token factory over s with n tokens missing, and if n is negative, we have a
token of s (of size −n).

This points-to operator satisfies the following logical axioms:

(
 →s,0 v ∗ 
 →s,n v) ↔ false (58)
s1 ⊕ s2 = s → ((
 →s1,0 v ∗ 
 →s2,0 v) ↔ 
 →s,0 v) (59)
n1 ⊕ n2 = n → ((
 →s,n1 v ∗ 
 →s,n2 v) ↔ 
 →s,n v) (60)

 →s,n v → ∃!s′. 
 →s,n v ↔ 
 →s′,0 v (61)

10 We could just as well have used left-biased trees.
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Equation (58) generalizes both the disjointness axiom from Parkinson (24) and
the disjointness axiom for token factories (39). Likewise, equation (59) general-
izes the share axiom (33). Essentially, if we fix n = 0 we get back the simpler
definition of the points-to operator from above as a special case. In equation
(60), n1 ⊕ n2 = n refers to the token counting join relation on integers defined
in equation 36, and this axiom generalizes the token factory axioms (37) and
(38). Both of those axioms follow as a special case when we fix s = *. Finally,
equation (61) allows one to project a tokenized share into a nontokenized share
(one where n = 0). This might be useful if one needs to perform share splitting
on a share which was derived from a token factory, for example.

This collection of axioms allow fluid reasoning about both the token-counting
and splitting use cases, which enables a unified way to do flexible and precise
permission accounting.

8 Conclusion

We have presented a new formulation of multi-unit separation algebras which we
find easier to use than the original definition by Calcagno et al. [4]. The original
definition is both too restrictive (it rules out desirable constructions, including
the näıve disjoint sum and the discrete SA) and too permissive (it allows badly-
behaved “exotic” SAs). We examined a variety of operators over separation
algebras that allow us to easily construct complicated separation algebras from
simpler ones, and have shown an example of their utility.

We have also constructed a new solution to the share accounting problem.
Our share model based on Boolean-labeled binary trees fully supports both the
splitting and token counting use cases for read sharing, and yet still validates the
cross split axiom; it also enjoys a decidable equality test. No previously published
system for share accounting has all these properties. Parkinson’s model [8] comes
closest, but suffers from the inability to find splittings for some shares and lacks
decidable equality.

We have implemented the constructions discussed in this paper and proved
their relevant properties using the proof assistant Coq.3
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Abstract. Separation Logic (SL) provides a simple but powerful technique for
reasoning about imperative programs that use shared data structures. Unfortu-
nately, SL supports only “strong updates”, in which mutation to a heap location
is safe only if a unique reference is owned. This limits the applicability of SL
when reasoning about the interaction between many high-level languages (e.g.,
ML, Java, C#) and low-level ones since these high-level languages do not support
strong updates. Instead, they adopt the discipline of “weak updates”, in which
there is a global “heap type” to enforce the invariant of type-preserving heap up-
dates. We present SLw, a logic that extends SL with reference types and elegantly
reasons about the interaction between strong and weak updates. We also describe
a semantic framework for reference types; this framework is used to prove the
soundness of SLw.

1 Introduction

Reasoning about mutable, aliased heap data structures is essential for proving properties
or checking safety of imperative programs. Two distinct approaches perform such kind
of reasoning: Separation Logic, and a type-based approach employed by many high-
level programming languages.

Extending Hoare Logic, the seminal work of Separation Logic (SL [10, 13]) is a
powerful framework for proving properties of low-level imperative programs. Through
its separating conjunction operator and frame rule, SL supports local reasoning about
heap updates, storage allocation, and explicit storage deallocation.

SL supports “strong updates”: as long as a unique reference to a heap cell is owned,
the heap-update rule of SL allows the cell to be updated with any value:

{(e → −)∗p}[e] := e′{(e → e′)∗p} (1)

In the above heap-update rule, there is no restriction on the new value e′. Hereafter, we
refer to heaps with strong updates as strong heaps. Heap cells in strong heaps can hold
values of different types at different times of program execution.

Most high-level programming languages (e.g., Java, C#, and ML), however, support
only “weak updates”. In this paradigm, programs can perform only type-preserving
heap updates. There is a global “heap type” that tells the type of every allocated heap
location. The contents at a location have to obey the prescribed type of the location in

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 178–193, 2009.
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the heap type, at any time. Managing heaps with weak updates is a simple and type-
safe mechanism for programmers to access memory. As an example, suppose an ML
variable has type “τ ref” (i.e., it is a reference to a value of type τ). Then any update
through this reference with a new value of type τ is type safe and does not affect other
types, even in the presence of aliases and complicated points-to relations. Hereafter, we
refer to heaps with weak updates as weak heaps.

This paper is concerned with the interaction between strong and weak updates.
Strong-update techniques are more precise and powerful, allowing destructive mem-
ory updates and explicit deallocation. But aliases and uniqueness have to be explic-
itly tracked. Weak-update techniques allow type-safe management of memory without
tracking aliases, but types of memory cells can never change. A framework that mixes
strong and weak updates enables a trade-off between precision and scalability.

Such a framework is also useful for reasoning about multilingual programs. Most
real-world programs are developed in multiple programming languages. Almost all
high-level languages provide foreign function interfaces for interfacing with low-level
C code (for example, the OCaml/C FFI, and the Java Native Interface). Real-world
programs consist of a mixture of code in both high-level and low-level languages. A
runtime state for such a program conceptually contains a union of a weak heap and a
strong heap. The weak heap is managed by a high-level language (e.g., Java), accepts
type-preserving heap updates, and is garbage-collected. The strong heap is managed
by a low-level language, accepts strong updates, and its heap cells are manually recol-
lected. To check the safety and correctness of multilingual programs, it is of practical
value to have one framework that accommodates both strong and weak updates.

Since Separation Logic (SL) supports strong heaps, one natural thought to mix strong
and weak updates is to extend SL with types so that assertions can also describe weak
heaps. That is, in addition to regular SL assertions, we add {e → τ}, which specifies
a heap with a single cell and the cell holds a value of type τ. This scheme, however,
would encounter two challenges.

First, allowing general reference types in {e → τ} would make SL unsound. An
example demonstrating this point is as follows:

{{x → 4} ∗ {y → even ref}} [x] := 3 {{x → 3} ∗ {y → even ref}} (2)

The example is an instantiation of the heap-update rule in (1) and uses the additional
assertion {e → τ}. The precondition states that y points to a heap cell whose contents
are of type “even ref” (i.e., a reference to an even integer). Therefore, the precondition
is met on a heap where y points to x. However, the postcondition will not hold on the
new heap after the update because x will point to an odd number. Therefore, the above
rule is sound only if y does not point to x.

The second challenge of adding types to SL is how to prove its soundness with
mixed SL assertions and types. Type systems are usually proved sound following a
syntactic approach [19], where types are treated as syntax. Following the tradition of
Hoare Logic, SL’s soundness is proved through a denotational model, and SL assertions
are interpreted semantically. There is a need to resolve the conflict between syntactic
and semantic soundness proofs.

In this paper, we propose a hybrid logic, SLw, which mixes SL and a type system.
Although the logic is described in a minimal language and type system, it makes a solid
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(Command) c ::= · · · | x := [e] | [x] := e | x := alloc(e) | free(e)
(Expression) e ::= x | v | op(e1, . . . ,en)

(Value) v ::= n | 


Fig. 1. Language syntax

step toward a framework that reasons about the interaction between high-level and low-
level languages. The most significant technical aspects of the logic are as follows:

– SLw extends SL with a simple type system. It employs SL for reasoning about
strong updates, and employs the type system for weak updates. Most interestingly,
SLw mixes SL assertions and types, and accommodates cross-boundary pointers
(from weak to strong heaps and vice versa). This is achieved by statically maintain-
ing the distinction between pointers to weak heaps and pointers to strong heaps.
SLw is presented in Section 2.

– To resolve the conflict between syntactic types and semantic assertions, we pro-
pose a semantic model of types. Our model of reference types follows a fixed-point
approach and allows us to define a denotational model of SLw and prove its sound-
ness. The model of SLw is presented in Section 3.

2 SLw: Separation Logic with Weak Updates

We next describe SLw, an extension of SL that incorporates reasoning over weak heaps.
In Section 2.1, we describe a minimal language that enables us to develop SLw. Rules
of SLw are presented in Section 2.2 and examples of using the logic in Section 2.3.

We first describe some common notations. For a map f , we write f [x�y] for a new
map that agrees with f except it maps x to y. For two finite maps f1 and f2, f1- f2 is the
union of f1 and f2 when their domains are disjoint, and undefined otherwise. We write
f \X for a new map after removing elements in X from the domain of f . We write�x for
a sequence of xs and ε for an empty sequence.

2.1 Language Syntax and Semantics

Figure 1 presents the syntax of the programming language in which we will develop
SLw. The language is the imperative language used by Hoare [6], augmented with a
set of commands for manipulating heap data structures. It is similar to the one used
in Reynolds’ presentation of SL [13]. Informally, the command “x := [e]” loads the
contents at location e into variable x; “[x] := e” updates the location at x with the value
e; “x := alloc(e)” allocates a new location, initializes it with e, and assigns the new
location to x; “free(e)” deallocates the location e.

In the syntax, we use n for integers, x for variables, 
 for heap locations, and op for
arithmetic operators. We assume there is an infinite number of variables and locations.

Figure 2 presents a formal operational semantics of the language. A state consists of
a map r from variables to values, a heap h, and a sequence of commands. Commands
bring one state to another state and their semantics is formally defined by a step relation
−→ . We write −→∗ for the reflexive and transitive closure of −→ .
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(State) s ::= (r,h,�c)
(Locals) r ::= Var → Value
(Heap) h ::= {
1 → v1, . . . , 
n → vn}

(r,h,c · �c1) −→ (r2,h2, �c2)
if c = then (r2,h2, �c2) =
· · · · · ·
x := [e] (r[x�h(
)],h, �c1) when r(e) = 
 and 
 ∈ dom(h)
[x] := e (r,h[
�r(e)], �c1) when r(x) = 
 and 
 ∈ dom(h)
x := alloc(e) (r[x�
],h-{
 → r(e)}, �c1) when 
 �∈ dom(h)
free(e) (r,h\{
}, �c1) when r(e) = 
 and 
 ∈ dom(h)

where r(e) =

⎧⎨⎩
r(x) when e = x
v when e = v
op(r(e1), . . . ,r(en)) when e = op(e1, . . . ,en)

Fig. 2. Operational semantics

A state may have no next state, i.e., “getting stuck”. For example, a state whose next
instruction to execute is [x] := e gets stuck when x does not represent a location or the
location is not in the domain of the state’s heap. A state is a terminal state when the
sequence of commands is empty.

Definition 1. (Stuck and terminal states)

stuck(s) � ¬(∃s′. s −→ s′)
terminal(r,h,�c) � �c = ε

Below we define the usual notions of safety and termination:

Definition 2. (Safety and termination)

safe(s) � ∀s′.
(
(s −→∗ s′) ∧ ¬terminal(s′)

)
⇒∃s′′. s′ −→ s′′

terminate(s) � ∀s′. s −→∗ s′ ⇒ ∃s′′. s′ −→∗ s′′ ∧ terminal(s′′)

2.2 The Logic SLw

Figure 3 presents assertions and types used in SLw. Assertions in SLw include all
formulas in predicate calculus (not shown in the figure), and all SL formulas. The only
additional assertion form in SLw is {e : τ}, which denotes that e has type τ.

SLw is equipped with a simple type system that classifies integers and locations.
Although the type system does not include many types in high-level languages, by
including reference types it is already sufficient to show interesting interactions between
strong and weak heaps. Reference types are the most common types when high-level
languages interoperate with low-level languages because in this setting most data are
passed by references.
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(Assertion) p ::= · · · | emp | {e1 → e2} | p1 ∗p2 | p1 −∗p2 | {e : τ}
(Type) τ ::= int | ref | wref τ

(HeapType) Ψ ::= {
1 : τ1, . . . , 
n : τn}
(LocalVarType) Γ ::= {x1 : τ1, . . . ,xn : τn}

Fig. 3. Assertions and types

Ψ,Γ ' e : τ

x ∈ dom(Γ)
Ψ,Γ ' x : Γ(x) Ψ,Γ ' n : int Ψ,Γ ' 
 : ref

Ψ(
) = τ
Ψ,Γ ' 
 : wref τ

∀i ∈ [1..n]. Ψ,Γ ' ei : int

Ψ,Γ ' op(e1, . . . ,en) : int

Fig. 4. Typing rules for expressions

Type int is for all integers and ref for all locations. Type “wref τ” is for locations in a
weak heap, but not in a strong heap. A heap type Ψ tells the type of every location in a
weak heap; mathematically, it is a finite map from locations to types. Given heap type
Ψ, location 
 has type “wref τ” if Ψ(
) equals τ. A local variable type, Γ, tells the type
of local variables.

Figure 4 presents typing rules for expressions, which are unsurprising. Notice that
the typing rule for “wref τ” requires that the location 
 is in the domain of the heap type
Ψ and Ψ(
) has to be the same as τ. This rule and the later weak-update rule enforce
type-preserving updates on weak heaps.

The following schematic diagram helps to understand the relationship between weak
heaps, strong heaps, local variables, assertions and various kinds of types in SLw:

As shown in the diagram, SLw conceptually divides a heap into a weak heap hw and
a strong heap hs. The weak heap is specified by a heap type Ψ, and the strong heap
by SL formula p. Pointers to weak-heap cells (in solid lines) have type “wref τ” or ref.
Pointers to strong heap cells (in dotted lines) can have only type ref.

Figure 5 presents rules for checking commands. These rules use the judgment
Ψ ' {Γ, p} �c {Γ′, p′}. In this judgment, Ψ, Γ and p are preconditions and specify
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Ψ ' {Γ, p}�c {Γ′, p′} (Well-formed statements)

Ψ,Γ ' e : ref Ψ,Γ ' y : τ
Ψ ' {Γ, {e → y}} x := [e] {Γ[x�τ], x = y∧{e → x}}

(S-LOAD)

where x �∈ FV(e)

Ψ,Γ ' x : ref

Ψ ' {Γ, {x → −}} [x] := e {Γ, {x → e}} (S-UPDATE)

Ψ ' {Γ, emp} x := alloc(e) {Γ[x� ref], {x → e}}
(S-ALLOC)

where x �∈ FV(e)

Ψ,Γ ' e : ref

Ψ ' {Γ, {e → −}} free(e) {Γ, emp}
(S-FREE)

Ψ ' {Γ, p}�c {Γ′, p′}
Ψ ' {Γ, p∗p1}�c {Γ′, p′ ∗p1}

(FRAME)

where no variable occurring free in p1 is modified by�c

↑ THE WORLD OF STRONG HEAPS

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↓ THE WORLD OF WEAK HEAPS

Ψ,Γ ' e : wref τ
Ψ ' {Γ, emp} x := [e] {Γ[x�τ], emp}

(W-LOAD)

Ψ,Γ ' x : wref τ Ψ,Γ ' e : τ
Ψ ' {Γ, emp} [x] := e {Γ, emp}

(W-UPDATE)

Ψ,Γ ' e : τ
Ψ ' {Γ, emp} x := alloc(e) {Γ[x�wref τ], emp}

(W-ALLOC)

Fig. 5. Rules for commands (Rules for assignments, conditional statements, loops, and sequenc-
ing are the same as the ones in Hoare Logic and are omitted)

conditions on the weak heap, local variables, and the strong heap respectively. Postcon-
ditions are Γ′ and p′; they specify conditions on local variables and the strong heap of
the state after executing �c. Readers may wonder why there is no postcondition speci-
fication of the weak heap. As common in mutable-reference type systems, the implicit
semantics of the judgment is that there exists an extended heap type Ψ′ ⊇ Ψ and the
weak heap of the poststate should satisfy Ψ′. In terms of type checking, the particular Ψ′

does not matter. The formal semantics of the judgment will be presented in Section 3.
Rules in Figure 5 are divided into two groups. One group is for the world of strong

heaps, and another for the world of weak heaps. The rules for strong heaps are almost
the same as the corresponding ones in standard SL, except that they also update Γ when
necessary.
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Operational semantics: (r,h,s2w(x) ·�c) −→ (r,h,�c)

Rule:
Ψ,Γ ' x : ref Ψ,Γ ' e : τ

Ψ ' {Γ, {x → e}} s2w(x) {Γ[x�wref τ], emp} S2W

Fig. 6. Rule for converting a location from the strong heap to the weak heap

' {Γ′
1, p

′
1}⇒ {Γ1, p1} Ψ ' {Γ1, p1}�c {Γ2, p2} ' {Γ2, p2}⇒ {Γ′

2, p
′
2}

Ψ ' {Γ′
1, p

′
1}�c {Γ′

2, p
′
2}

WEAKENING

' {Γ, p}⇒ {Γ′, p′}

' {Γ, p}⇒ {Γ, p ∧ {x : Γ(x)}} W1 ' p⇒ p′

' {Γ, p}⇒ {Γ, p′} W2

Fig. 7. Weakening rules

The rules for weak heaps are the ones that one would usually find in a type system for
mutable-reference types. The weak-update rule W-UPDATE requires that the pointer be
of type “wref τ”, and that the new value be of type τ. This rule enforces type-preserving
updates. Once these conditions hold, Γ remains unchanged after the update. Notice in
this rule there is no need to understand separation and aliases as the S-UPDATE rule
does. The W-ALLOC rule does not need to extend the heap type Ψ because Ψ is only
a precondition. When proving the soundness of the rule, we need to find a new Ψ′

that extends Ψ and is also satisfied by the new weak heap after the allocation. Finally,
there is no rule for free(e) in the world of weak heaps. Weak heaps should be garbage-
collected.1

Figures 6 and 7 present some rules that show the interaction between weak and strong
heaps. Figure 6 adds a new instruction “s2w(x)” for converting a location from a strong
heap to a weak heap. Operationally, this instruction is a no-op (so it is an annotation,
rather than a “real” instruction). Its typing rule, however, involves transforming the
ownership in the strong heap to a pointer of weak-reference types. Notice that there is
no rule for converting a location from the weak heap to the strong heap; this is similar
to deallocation in weak heaps and requires the help of garbage collectors.

Figure 7 presents weakening rules. Rule W1 converts type information in Γ to infor-
mation in assertion p. This is useful since information in Γ might be overwritten due
to assignments to variables. One of examples in later sections will show the use of this
rule. Rule W2 uses the premise ' p⇒ p′; any valid SL formula p⇒ p′ is acceptable.

2.3 Examples

We now show a few examples that demonstrate the use of SLw. In these examples,
we assume an additional type even for even integers. For clarity, we will also annotate

1 We do not formally consider the interaction between garbage collectors and weak heaps. When
considering a garbage collector, SLw has to build in an extra level of indirection for cross-
boundary references from strong heaps to weak heaps as objects in weak heaps may get moved
(this is how the JNI implements Java references in native code). We leave this as future work.
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the allocation instruction to indicate whether the allocation happens in the strong heap
or in the weak heap. We write x := allocs(e) for a strong-heap allocation. We write
x := allocw,τ(e) for a weak-heap allocation, and the intended type for e is τ. These
annotations help in guiding the type checking of SLw.

The first example shows how the counterexample in the introduction (formula (2) on
page 179) plays out in SLw. The following program first initializes the heap to a form
such that y points to a location of type “wref even” and x points to 4, and then performs
a heap update through x. The whole program is checkable in SLw with respect to any
heap type (remember the heap type specifies the initial weak heap). Below we also
include conditions of the form “Γ,p” between instructions.

{}, emp
z := allocw,even(2)

{z : wref even}, emp
y := allocs(z)

{y : ref,z : wref even}, {y → z} by rule (w1)
{y : ref,z : wref even}, {y → z}∧{z : wref even} by rule (w2)
{y : ref,z : wref even}, ∃v. {y → v}∧{v : wref even}

z := 0
{y : ref,z : int}, ∃v. {y → v}∧{v : wref even}

x := allocs(4)
{x : ref,y : ref,z : int}, ∃v. ({y → v}∧{v : wref even})∗ {x → 4}

[x] := 3
{x : ref,y : ref,z : int}, ∃v. ({y → v}∧{v : wref even})∗ {x → 3}

Different from the counterexample, the condition before “[x] := 3” limits where y can
point to. In particular, y cannot point to x because (1) by the type of v, variable y must
point to a weak-heap location; (2) x represents a location in the strong heap. Therefore,
the update through x does not invalidate the type of v. We could easily construct an
example where y indeed points to x. But in that case the type of v would be ref, which
would also not be affected by updates through x.

One of the motivations of SLw is to reason about programs where code in high-level
languages interacts with low-level code. Prior research [4, 14] has shown that it is error
prone when high-level code interoperates with low-level code. All kinds of errors may
occur. One common kind of errors occurs when low-level code makes type misuses of
references that point to objects in the weak heap. For instance, in the JNI, types of all
references to Java objects are conflated into one type in native code—jobject. Con-
sequently, there is no static checking of whether native code uses these Java references
in a type-safe way. Type misuses of these Java references can result in silent memory
corruption or unexpected behavior.

The first example already demonstrates how SLw enables passing pointers from
high-level to low-level code. In the example, the first allocation is on the weak heap
and can be thought of as an operation by high-level code. Then, the location is passed
to the low level by being stored in the strong heap. Unlike foreign function interfaces
where types of cross-boundary references are conflated into a single type in low-level
code, SLw can track the accurate types of those references and enable type safety.
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The next example demonstrates how low-level code can initialize a data structure in
the strong heap, and then transfer that structure to the weak heap so that the structure is
usable by high-level code.

{}, emp
x := allocs(4)

{x : ref}, {x → 4}
y := allocs(x)

{x : ref,y : ref}, {x → 4} ∗ {y → x}
s2w(x)

{x : wref even,y : ref}, {y → x}
s2w(y)

{x : wref even,y : wref (wref even)}, emp

3 Soundness of SLw

Soundness of SLw is proved by a semantic approach. We first describe a semantic
model for weak-reference types. Based on this model, semantics of various concepts
in SLw are defined. Every rule in SLw is then proved as a lemma according to the
semantics.

3.1 Modeling Weak-Reference Types

Intuitively, a type is a set of values. This suggests that a semantic type should be a
predicate of the metatype “Value→ Prop”. However, this idea would not support weak-
reference types. To see why, let us examine a naı̈ve model where “wref τ” in a heap
h would denote a set of locations 
 such that h(
) is of type τ. This simple model is
unfortunately unsound, which is illustrated by the following example:

1. Create a reference of type “wref even”, and let the reference be x.
2. Copy x to y. By the naı̈ve model, a reference of type “wref even” also has type

“wref int” (because an even number is also an integer). Let “wref int” be the type
of y.

3. Update the reference through y with an odd integer, say 3. As y has the type
“wref int”, updating it with an odd integer is legal.

4. Dereference x. Alas, the dereference returns 3, although the type of x implies a
result of an even number!

The problem with the naı̈ve model is that, with aliases, it allows inconsistent views of
memory. In the foregoing example, x and y have inconsistent views on the same memory
cell. To address this problem, SLw uses a heap type Ψ to type check a location. This
follows the approach of Tofte [16] and Harper [5]. An example Ψ is as follows:

Ψ = {
0 : even, 
1 : int, 
2 : wref even, 
3 : wref int} (3)

A heap type Ψ helps to define two related concepts, informally stated below (their
formal semantic definitions will be presented in a moment):
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(i) A location 
 is of type “wref τ” if and only if Ψ(
) equals τ.
(ii) A heap h is consistent with Ψ if for every 
, the value h(
) has type Ψ(
). For

the example Ψ, it means that h(
0) should be an even number, h(
1) should be an
integer, h(
2) should be of type “wref even”, ...

The heap type Ψ prevents aliases from having inconsistent views of the heap. Aliases
have to agree on their types because the types have to agree with the type in Ψ. In par-
ticular, the example showing the unsoundness of the naı̈ve model would not work in the
above model because, in step 3 of the example, y cannot be cast from type “wref even”
to “wref int”: type “wref even” implies that Ψ(y) = even, which is a different type from
int.

A subtlety of the above model is the denotation of “wref τ” depends on the heap type
Ψ, but is independent of the heap h. A weak-reference type is connected to the heap h
only indirectly, through the consistency relation between h and Ψ.

Example 3. Let h = {
0 → 4, 
1 → 3, 
2 → 
0, 
3 → 
1}. It is consistent with the
example Ψ in (3). To see this, 4 at location 
0 is an even number and 3 at location 
1

is an integer. At location 
2, 
0 is of type “wref even” because, by (i), this is equivalent
to Ψ(
0) = even—a true statement. Similarly, the value 
1 at location 
3 is of type
“wref int”. �

Formalizing a set of semantic predicates following (i) and (ii) directly, however, would
encounter difficulties because of a circularity in the model: by (ii), Ψ is a map from
locations to types; by (i), the model of types takes Ψ as an argument—Ψ is necessary
to decide if a location belongs to “wref τ”. If defined naı̈vely, the model would result in
inconsistent cardinality, as described by Ahmed [1].

We next propose a fixed-point approach. We rewrite the heap type Ψ as a recursive
equation. After adding Ψ as an argument to types, the example in (3) becomes:

Ψ = {
0 : even(Ψ), 
1 : int(Ψ), 
2 : (wref even)(Ψ), 
3 : (wref int)(Ψ)} (4)

Notice that Ψ appears on both the left and the right side of the equation. Once Ψ is
written as a recursive equation, it follows that any fixed point of the following functional
is a solution to the equation (4):

λΨ.{
0 : even(Ψ), 
1 : int(Ψ), 
2 : (wref even)(Ψ), 
3 : (wref int)(Ψ)} (5)

To get a fixed point of (5), we follow the indexed model of recursive types by Appel
and McAllester [2]. We first introduce some domains:

(SemHeapType) F ∈ Loc ⇀ SemIType

(SemIType) t ∈ SemHeapEnv→ Nat → Value → Prop

(SemHeapEnv) φ ∈ Loc ⇀ Nat → Value → Prop

We use F for a semantic heap type (it is the metatype of the denotation of heap types,
as we will see). It maps locations to indexed types. An important point is that from
F we can define λφ, 
. F(
) φ, which has the metatype SemHeapEnv → SemHeapEnv.
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Therefore, a semantic heap type is effectively a functional similar to the one in (5), and
a fixed point of F is of the metatype SemHeapEnv.

A semantic type t is a predicate over the following arguments: φ is a semantic
heap environment; k is a natural-number index; v is a value. The heap environment
φ ∈ SemHeapEnv is used in our model of WRef(t) to constrain reference types. The in-
dex k comes from the indexed model and is a technical device that enables us to define
the fixed point of a semantic heap type F.

Following the indexed model, we introduce a notion of contractiveness.

Definition 4. (Contractiveness)

contractive(F) � ∀
 ∈ dom(F). contractive(F(
))
contractive(t) � ∀φ,k, j ≤ k,v. (t φ j v) ↔ (t (approx(k,φ)) j v)
approx(k,φ) � λ
, j,v. j < k∧φ l j v.

We define (℘F) = λφ, 
. F(
) φ. That is, it turns F into a functional of type
SemHeapEnv→ SemHeapEnv.

Theorem 5. If contractive(F), then the following µF is the least fixed point2 of the func-
tional (℘F):

µF � λ
,k,v. (℘F)k+1(⊥) 
 k v,

where ⊥ = λ
,k,v. false, and (℘F)k+1 applies the functional k + 1 times.

The theorem is proved by following the indexed model of recursive types [2]. We
present the proof in our technical report [15].

The following lemma is an immediate corollary of Theorem 5.

Lemma 6. For any contractive F, any 
,k,v, we have
(
F(
) (µF) k v

)
↔

(
(µF)(
) k v

)
Most of the semantic types ignore the φ argument. For example,

Even � λφ,k,v. ∃u. v = 2×u.

We use capitalized Even to emphasize that it is a predicate, instead of the syntactic type
even. The model of weak-reference types uses the argument φ.

Definition 7. WRef(t) � λφ,k, 
. ∀ j < k,v. φ 
 j v ↔ t φ j v

In words, a location 
 is of type WRef(t) under heap environment φ, if φ(
) equals t
approximately, with index less than k.

Example 8. Let F0 = {
0 : Even, 
1 : WRef(Even)}. Then “WRef(Even) (µF0) k 
0”
holds for any k. To see this, for any j < k and v, we have

(µF0) 
0 j v ↔ F0(
0)(µF0) j v ↔ Even (µF0) j v

The first step is by lemma 6, and the second is by the definition of F0 at location 
0. We
can similarly show “WRef(WRef(Even)) (µF0) k 
1” holds. �

Note that the definition of WRef(t) is more general than the “wref τ” type in SLw, as τ
is syntactically defined, while t can be any (contractive) semantic predicate.

2 Since F is contractive in the sense that “F(
) φ k w” performs only calls to φ on arguments
smaller than k, it is easy to show by induction that any two fixed points of F are identical;
therefore, the least fixed point of F is also its greatest fixed point.
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Heap allocation. We need an additional idea to cope with heap allocation in the weak
heap. Our indexed types take the fixed point of a semantic heap type F as an argument.
But F changes after heap allocation. For example, from

F = {
0 : Even, 
1 : WRef(Even)} to F′ = {
0 : Even, 
1 : WRef(Even), 
2 : Even},

after 
2 is allocated and initialized with an even number.
After a new heap location is allocated, any value that has type t before allocation

should still have the same type after allocation. This is the monotonicity condition
maintained by type systems. To model it semantically, our idea is to quantify explic-
itly outside of the model of types over all future semantic heap types and assert that the
type in question is true over the fixed point of any future semantic heap type.

First is a semantic notion of type-preserving heap extension from F to F′:

Definition 9. F′ ≥ F �
contractive(F′)∧ contractive(F)∧∀
 ∈ dom(F),φ,k,v. F′(
) φ k v ↔ F(
) φ k v

Lemma 10. The relation F′ ≥ F is reflexive, anti-symmetric, and transitive (thus a par-
tial order).

Next, we define the consistency relation between h and F, and also a relation that states
a value v is of type t under F. Both relations quantify over all future semantic heap
types, and require that the type in question be true over the fixed point of any future
semantic heap type.

Definition 11. |= h : F � dom(h) ⊆ dom(F)∧∀
 ∈ dom(h).F |= h(
) : F(
)
F |= v : t � ∀F′ ≥ F.∀k. t (µF′) k v

With our model, the following theorem for memory operations can be proved (please
see our technical report [15] for proofs).

Theorem 12.

(i) (Read) If |= h : F, and 
 ∈ dom(h), and F |= 
 : WRef(t), then F |= h(
) : t.
(ii) (Write) If |= h : F, and 
 ∈ dom(h), and F |= 
 : WRef(t), and F |= v : t, then

|= h[
�v] : F.
(iii) (Allocation) If |= h : F, and F |= v : t, and contractive(t), and 
 /∈ dom(F), then

|= h-{
 → v} : F -{
 → t}.

3.2 Semantic Model of SLw

To show the soundness of SLw, we define semantics for judgments in SLw and then
prove each rule as a lemma according to the semantics. Figure 8 presents definitions
that are used in the semantics.

The semantics of types is unsurprising. In particular, the semantics of [[wref τ]] is
defined in terms of the predicate WRef(t) in Definition 7. All these types are contractive.
The semantics of Ψ and Γ is just the point-wise extension of the semantics of types.



190 G. Tan et al.

[[τ]] ∈ SemIType

[[int]] � λφ,k,v. ∃n.v = n. [[ref]] � λφ,k,v. ∃
.v = 
. [[wref τ]] � WRef([[τ]])

[[Ψ]] ∈ Loc ⇀ SemIType [[{
1 : τ1, . . . , 
n : τn}]] � {
1 : [[τ1]], . . . , 
n : [[τn]]}

[[Γ]] ∈ Var ⇀ SemIType [[{x1 : τ1, . . . ,xn : τn}]] � {x1 : [[τ1]], . . . ,xn : [[τn]]}

F,r,h |= p

F,r,h |= {e : τ} � F |= r(e) : [[τ]]
F,r,h |= emp � dom(h) = /0
F,r,h |= {e1 → e2} � dom(h) = r(e1) ∧ h(r(e1)) = r(e2)
F,r,h |= p1 ∗p2 � ∃h1,h2. (h = h1 �h2) ∧ (F,r,h1 |= p1) ∧ (F,r,h2 |= p2)
F,r,h |= p1 −∗p2 � ∀h1. ((dom(h1)∩dom(h) = /0) ∧ (F,r,h1 |= p1)) ⇒ (F,r,h1 �h |= p2)

F |= r : Γ � ∀x ∈ dom(Γ). F |= r(x) : [[Γ(x)]]
r,h |= F∗p � ∃h1,h2. (h = h1 �h2) ∧ (dom(h1) = dom(F)) ∧ (|= h1 : F) ∧ (F,r,h2 |= p)

Fig. 8. Semantic definitions

The predicate “F,r,h |= p” interprets the truth of assertion p. When p is a standard
SL formula, the interpretation is the same as the one in SL. When p is {e : τ}, the
interpretation depends on F. Notice that the interpretation of {e : τ} is independent of
the heap; it is a pure assertion (that is, it does not depend on the strong heap).

The definition of F |= r : Γ is the point-wise extension of F |= v : t to local vari-
able types. The definition of “r,h |= F∗ p” splits the heap into two parts. One for the
weak heap, which should satisfy F, and the other for the strong heap, which is specified
by p.

With the above definitions, we are ready to define the semantics of the judgments in
SLw. The following definitions interpret “Ψ,Γ ' e : τ”, “' p ⇒ p′”, and
“' {Γ, p}⇒ {Γ′, p′}”.

Definition 13.

Ψ,Γ |= e : τ � ∀F≥ [[Ψ]] . ∀r. F |= r : Γ ⇒ F |= r(e) : [[τ]].

|= p⇒ p′ � ∀F,r,h. (F,r,h |= p) ⇒ (F,r,h |= p′)

|= {Γ, p}⇒ {Γ′, p′} �
∀F,r,h. (F |= r : Γ ∧ r,h |= F∗p) ⇒ (F |= r : Γ′ ∧ r,h |= F∗p′)

Now we are ready to interpret Ψ ' {Γ, p} �c {Γ′, p′}. Following Hoare Logic, we
define both partial and total correctness:
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Definition 14. (Partial and total correctness)

Ψ |=p {Γ, p}�c {Γ′, p′} �
∀F≥ [[Ψ]],r,h.

(
(F |= r : Γ) ∧ (r,h |= F∗p)

)
⇒

safe(r,h,�c) ∧(
∀r′,h′. (r,h,�c) −→∗ (r′,h′,ε) ⇒∃F′ ≥ F. (F′ |= r′ : Γ′) ∧ (r′,h′ |= F′ ∗p′)

)
Ψ |=t {Γ, p}�c {Γ′, p′} �

(Ψ |=p {Γ, p}�c {Γ′, p′}) ∧(
∀F≥ [[Ψ]],r,h.

(
(F |= r : Γ) ∧ (r,h |= F∗p)

)
⇒ terminate(r,h,�c)

)
In the partial-correctness interpretation, it assumes a state that satisfies the condition
{Γ,p} and requires that the state be safe (see Definition 2 on page 181 for safety).
In addition, it requires that, for any terminal state after the execution of �c, we must
be able to find a new semantic heap type F′ so that F′ ≥ F and the new state satisfies
{Γ′,p′}. Note that F′ may be larger than F due to allocations in�c. The total-correctness
interpretation requires termination in addition to the requirements of partial correctness.

Theorem 15. All rules in Figures 5, 6 and 7 are sound for both partial and total cor-
rectness.

The proof uses Theorem 12. It is largely straightforward and omitted. We refer inter-
ested readers to our technical report [15] for the proof.

4 Related Work

We discuss related work in three categories: (1) work related to language interoperation;
(2) work related to integrating SL with type systems; and (3) work related to semantic
models of types.

Most work in language interoperation focuses on the design and implementation of
foreign function interfaces. Examples are plenty. Given a multilingual program, one
natural question is how to reason about the program as a whole. This kind of reasoning
requires models, program analyzers, and program logics that can work across language
boundaries. Previous work has addressed the question of how to model the interopera-
tion between dynamically typed languages and statically typed languages [9], and the
interoperation between two safe languages when they have different systems of com-
putational effects [18]. By integrating SL and type systems, SLw can elegantly reason
about properties of heaps that are shared by high-level and low-level code.

Previous systems of integrating SL with type systems [11, 8] assume that programs
are well-typed according to a syntactic type system, and SL is then used as an add-
on to reason about more properties of programs. Honda et al’s program logic [7, 20]
for higher-order languages supports reference types but also requires a separate type
system (in addition to the Hoare assertions); Reus et al [12] presented an extension of
separation logic for supporting higher-order store (i.e., references to higher-order func-
tions), but their logic does not support weak heaps which we believe embodies the key
feature of reference types (i.e., the ability to perform safe updates without knowing the
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exact aliasing relation). Compared to previous systems, SLw targets the interoperation
between high-level and low-level code. It allows cross-boundary references and mixes
SL formulas and types.

The soundness of SLw is justified by defining a semantic model, notably for types.
Ahmed [1] and Appel et al [3] presented a powerful index-based semantic model for a
rich type system with ML-style references. They rely on constructing a “dependently
typed” global heap type to break the circularity discussed in Section 3. Our current
work, in contrast, simply takes a fixed point of the recursively defined heap type pred-
icate and avoids building any dependently typed data structures. Our work also differs
from theirs in that we are reasoning about reference types in a program logic. Appel
et al. [3] can also support impredicative polymorphism which is not addressed in our
current work.

5 Discussion and Future Work

This work aims toward a framework for reasoning about language interoperation, but
a lot remains to be done. A realistic high-level language contains many more language
features and types. We do not foresee much difficulty in incorporating language features
and types at the logic level as their modeling is largely independent from the interaction
between weak and strong heaps. One technical concern is how to extend our semantic
model to cover a complicated type system, including function types and OO classes.

SLw does not formally consider the effect of a garbage collector. A garbage collector
would break the crucial monotonicity condition of the weak heap that our semantic
model relies on. We believe a possible way to overcome this problem is to use a region-
based type system [17]. A garbage collector would also imply that there cannot be
direct references from strong heaps to weak heaps; an extra level of indirection has to
be added.

6 Conclusion

In his survey paper of Separation Logic [13], Reynolds asked “whether the dividing line
between types and assertions can be erased”. This paper adds evidence that the type-
based approach has its unique place when ensuring safety in weak heaps and when rea-
soning about the interaction between weak and strong heaps. The combination of types
and SL provides a powerful framework for checking safety and verifying properties of
multilingual programs.
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Abstract. Handling concurrency using a shared memory and locks is tedious
and error-prone. One solution is to use message passing instead. We study here
a particular, contract-based flavor that makes the ownership transfer of messages
explicit. In this case, ownership of the heap region representing the content of a
message is lost upon sending, which can lead to efficient implementations. In this
paper, we define a proof system for a concurrent imperative programming lan-
guage implementing this idea and inspired by the Singularity OS. The proof sys-
tem, for which we prove soundness, is an extension of separation logic, which has
already been used successfully to study various ownership-oriented paradigms.

Introduction

Asynchronous message passing often suffers from two drawbacks: contents of mes-
sages have to be copied, and deadlocks can be tricky to avoid. However, if messages
to-be live in the same address space, the first issue can be resolved by sending a mere
pointer to the memory region where the message is stored instead of issuing a copy.
This implementation is sound provided that the emitting thread loses ownership over
the message, i.e. does not access it for reading or writing after emission.

The goal of this paper is to give a semantics and a proof theory for this way of
programming. Our idealized programming language allows memory manipulation and
asynchronous communications ruled by contracts, a basic form of session types, fol-
lowing the ideas of Sing#. Our proof system is based on separation logic [12], which
has already been used to specify and prove various ownership-based paradigms [10,4].
Contracts play an essential role in this proof system: message invariants are associated
to every contract’s message, in the same spirit as resource invariants in concurrent sepa-
ration logic [10]. Moreover, we show that they can ensure the absence of memory leaks
when channels are closed.

To better illustrate copyless message passing, consider the following code snippet,
where x, y can be thought of as buffers, and e, e′ as the two endpoints of a channel:

(e,e’) = open();
send(e,x);
y = receive(e’);
close(e,e’);

In a copying implementation, a whole copy of the buffer x would be allocated, and its
address stored in y, whereas in copyless message passing, the whole code would be
equivalent to x = y.

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 194–209, 2009.
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Our first contribution is the proof of soundness for our proof system: provable pro-
grams do not fault on memory accesses, are race free, and are contract obedient. How-
ever, and unlike for concurrent separation logic, it cannot entail the absence of memory
leaks, due to the possibility of non-local leaks when channels are closed.

Finding a semantics that both establishes the soundness of our proof system and
corresponds to the intended behaviour was challenging, because the standard semantics
for separation logic is a local semantics, for which for instance the equivalence between
the code above and x = y would not hold. Our second contribution is to propose a new
approach for defining such a semantics. Indeed, we define a local semantics based on
abstract separation logic [5], for which our proof system is sound, and then restrict it to
a global semantics, also sound by restriction. However, neither the local nor the global
semantics reflect the intended semantics faithfully.

Our third contribution is to state and prove a more general result that entails the
validity of the pointer-passing implementation and the absence of memory leaks. This
result, which we christen the transfers erasure property, relates the global semantics
to the intended semantics in a non-trivial way, and allows to state that programs p for
which the Hoare triple {emp} p {emp} is valid are leak free under some conditions on
the contracts.

We first introduce the language and its main features by a small motivating example.
We then present the programming language and our proof system in Sec. 2, and demon-
strate how to prove the example. Sec. 3 gives an overview of the main ingredients of our
semantics. We develop the semantics in more details in Sec. 4, leading to a soundness
result for our logic. Sec. 5 is devoted to the transfers erasure property.

Related work. The Singularity operating system [6] is a prominent application of
contract-based copyless message passing ideas. It can safely run processes sharing a
unique address space without memory protection. Executables are written in the Sing#
programming language, which supports (copyless) message passing primitives. Own-
ership violations are detected at compile-time using static analysis techniques, and
communications are ruled by contracts. Our work can be seen as an abstract model
of Sing#, though some differences between the two are worth noting: we chose to be
able to detect memory leaks, while Sing# is equipped with a garbage collector, and we
support complete mobility of channels, similar to π-calculus, whereas Sing# provides
internal mobility only. Finally, as our language is not full-fledged, we did not provide
mechanisms for error handling, for example when one endpoint is abruptly closed.

Concurrent Separation Logic [10] and the logic of Gotsman & al. for locks in the
heap [7] inspired our work. While the former cannot handle an unbounded number of
resources, it would surely have been possible to encode message passing commands in
the toy programming language of the latter. However, contracts seem of such a differ-
ent nature that it appeared simpler to take message passing instructions as primitive.
More importantly, the local semantics used in these works is an over-approximation of
the intended semantics, as the exchange of shared resources involves a possible non-
deterministic change of the resource content provided it still respects some invariant.
The transfers erasure property cannot be established in these approaches.

Contracts may be viewed as session types [13]. However, the approach is different
in this work, as our main concern with contracts is how they can help us to prove that
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channels do not leak memory, and not how they can prove the absence of communica-
tion errors (although this certainly is an interesting topic for future work). Session types
were also used on top of Java in SessionJ [9], but this does not address the problem of
copyless message passing.

Pym and Tofts [11], and O’Hearn and Hoare [8] have defined two other logics for
resource aware message passing programs. However, their respective models differ sig-
nificantly from ours as they are based on process algebras, and are not centered around
memory management.

1 Programming Language

1.1 Contracts

Contracts describe the behavior of channels. A channel is asynchronous, bi-directional,
and has two endpoints, distinguished for ease of reference: the serving endpoint and the
client endpoint. Contracts are state machines describing what sends (!) and receives (?)
are allowed in a given state. They are written from the server’s point of view, the client’s
one being dual. Each message sent over the channel is described by a message identifier.
Moreover, each message identifier is annotated with an invariant (between brackets) for
proofs’ purpose. These invariants are separation logic formulas, and replace Sing#
messages’ types. Their syntax and purpose will be explained in the next sections.

The contract C below describes the protocol implemented by our example. It has
three states, three transitions, and three messages may trigger these transitions.

contract C {
message ack [emp]
message cell [val �→ X]
message close_me [src

ep�→(C{end}, −) ∧ src = val]

initial state transfer { !cell --> wait_ack;
!close_me --> end; }

state wait_ack { ?ack --> transfer; }
final state end {} }

ack is a message used for synchronization purpose only, whereas cell and close_me

respectively carry (the addresses of) a list’s head and an endpoint. On a channel follow-
ing C, the serving endpoint would be able to perform as many sequences of sending a
memory cell and then waiting for an acknowledgment as it wishes, and will eventually
send a close me message to go to the final state end. This protocol can be used to
send a linked list over the channel until it is empty, and finally request a closing of the
channel, as we will see next.

1.2 Sending a List Cell By Cell

The imperative programming language we use features standard variable and memory
manipulation. We moreover use send(m, e, x) to send message m with value x over
endpoint e and x = receive(m, f) to retrieve this value through f , provided it is the
other end of the channel (i.e. f is the peer of e). Intuitively, send and receive are
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asynchronous communications, and act as enqueuing and dequeuing over one of the
two queues that are shared by two coupled endpoints (one queue for each direction).
Endpoints are allocated on the heap upon channel creation ((e,f)=open(C)) and closed
together (close(e,f)). This differs from most implementations, where endpoints can
be closed independently, but this case an implicit message is sent to notify the closing of
one of the endpoint to the other; in our setting, such a message has to be sent explicitly.

Let us now give a program implementing contract C. The serving endpoint e is held
by the putter program, which communicates with getter. The program is given a
list starting at the address x that it sends cell by cell over e. getter disposes the cells
one by one, and when the list becomes empty, putter sends its endpoint over itself so
that getter may close the channel. Comments (lines starting with // and annotations
between brackets) are elements of the proof and will be explained later.

1 putter(e,x) [e, x � e
ep�→(C{transfer}, X) ∗ list(x)] {

2 local t;
3 while (x != 0) {
4 // e, x, t � x �→ Y ∗ list(Y ) ∗ e

ep�→(C{transfer}, X)
5 t = *x;
6 send(cell, e, x);
7 // e, x, t � list(t) ∗ e

ep�→(C{wait ack}, X)
8 x = t;
9 receive(ack, e); }

10 // e, x, t � e
ep�→(C{transfer}, X)

11 send(close_me, e, e); } [e, x � emp]
12

13 getter(f) [f � f
ep�→(C̄{transfer}, Y)] {

14 local x, e = 0;
15 // 0 = x, e, f
16 while (e == 0) {
17 // O � f

ep�→(C̄{transfer}, Y) ∗ e = 0

18 switch receive {
19 x = receive(cell, f): {
20 // O � f

ep�→(C̄{wait ack}, Y) ∗ e = 0 ∗ x �→ −
21 free(x)
22 // O � f

ep�→(C̄{wait ack}, Y) ∗ e = 0

23 send(ack, f); }
24 e = receive(close_me, f): {} }}
25 // O � e

ep�→(C{end}, f) ∗ f
ep�→(C̄{end}, e)

26 close(e, f); } [f � emp]
27

28 main() [x � list(x)] {
29 local e,f;
30 (e,f) = open(C);
31 // x, e, f � list(x) ∗ e

ep�→(C{transfer}, f) ∗ f ep�→(C̄{transfer}, e)
32 putter(e,x); || getter(f); } [x � emp]

2 A Separation Logic for Copyless Message Passing

2.1 Syntax of Programs

We assume infinite sets Var = {e, f, x, y, . . .}, Loc = {l, . . .}, Endpoint = {ε, . . .},
MsgId = {m, . . . }, State = {a, b, . . .} and Val = {v, . . . } of respectively variables,
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memory locations, endpoints, message identifiers, contracts’ states and values. All sets
but values are pairwise disjoint, and Loc - Endpoint - {0} ⊆ Val . The grammar of
expressions, boolean expressions, atomic commands and programs is as follows:

E ::= x ∈ Var | v ∈ Val B ::= E = E | B and B | not B

c ::= assume(B) | x = E | x = new() | ∗E = E | x = ∗E | free (E)
| (e , f ) = open(C) | close (E,E) | send(m, E, E) | x = receive (m, E)

p ::= c | p; p | p ‖ p | p + p | p∗ | local x in p

assume(B) blocks unless B holds, and does nothing otherwise. Compound commands
are standard and are in order sequential and parallel composition, non-deterministic
choice, Kleene iteration and local variable creation. switch receive is defined as a
non-deterministic choice of the {x=receive(m,E); p} for every x = receive(m,E):

p of its body. We leave the similar definitions of while loops and if statements to the
attention of the reader. In our example of Sec. 1.2, subroutines putter and getter

should actually be inlined to fit our model, as it does not feature procedure calls. We
write v(E) the set of variables that appear in expression E.

Contracts. A contract is an edge-labeled oriented graph. Vertices are called states, and
every contract C distinguishes an initial state init(C) and a set of final states final(C).
Labels are either send label !m or receive label ?m , where m is a message identifier.
We write C̄ for the dual of contract C, i.e. C where ! and ? are swapped.

A contract specification is given by a map m → Im from message identifiers to
precise separation logic formulas (to be defined soon). Im is called the invariant of the
message. Only special variables val and src can appear free in Im.

2.2 Syntax of the Logic

We assume an extra infinite set LVar = {X,Y, . . . } of logical variables distinct from
the program’s variables. We extend the grammar of expressions to allow them to contain
logical variables. The assertion language is then as follows:

A ::= emps | own(x) | E = E stack predicates
| emph | empep | E → E | E ep→(C{a}, E) heaps predicates
| ¬A | A ∧A | ∃X.A | A ∗A | A −−∗ A connectives

All predicates and connectives are standard, except empep and E
ep→(C{a}, E). Before

defining the semantics of the logic, let us define some useful shorthands.
We will write emp for emph ∧ empep and, for instance, E → − for ∃X.E → X .

In this work, we use variables as resources [2] without permissions for simplicity, thus
forbidding concurrent reads. When O = x1, . . . , xn, we will write, as usual, O � A
as a shorthand for (own(x1) ∗ . . . ∗ own(xn)) ∧ A. Moreover, to avoid cumbersome
notations in formulas, we will sometimes allow reads to the same variable in the stack
in two disjoint states, i.e. have formulas of the form x � A(x) ∗ B(x). They should be
understood as x � ∃X.x = X ∧ (A(X) ∗B(X)).
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2.3 Basic Memory Model

Formulas are interpreted over a subset Σwf of the set Σ of basic memory pre-states
(s, h, k) defined by:

Σ � Stack × CHeap × EHeap Stack � Var ⇀ Val CHeap � Loc ⇀ Val

EHeap � Endpoint ⇀ Contract × State × Endpoint

It is equipped with a composition law ◦ of a separation algebra (see Sec. 3.1) defined as
the disjoint union - of each of the components of the pre-states: (s, h, k)◦ (s′, h′, k′) �
(s-s′, h-h′, k-k′). Stack and CHeap (cell heap) are standard, and EHeap (endpoint
heap) works in the same way as CHeap but is used to represent endpoints.

We define memory states Σwf as the elements of Σ that satisfy the axioms

Dual k(ε) = (C, a, ε′) & k(ε′) = (C′, b, ε′′) ⇒ ε′′ = ε & C′ = C̄
Irreflexive k(ε) = (−,−, ε′) ⇒ ε �= ε′

Injective k(ε1) = (−,−, ε′1) & k(ε2) = (−,−, ε′2) & ε1 �= ε2 ⇒ ε′1 �= ε′2

We restrict ◦ to a new operation • on memory states defined only when σ ◦ σ′ ∈ Σwf .
We will write σ�σ′ when this is the case. Let us now give the satisfaction relation �
between states in Σwf and formulas. We write �x�s to denote s(x) if x ∈ dom(s), and
�v�s denotes v.

(s, h, k) � E1 = E2 iff v(E1, E2) ⊆ dom(s) & �E1�s = �E2�s
(s, h, k) � emp♠ iff dom(♠) = ∅ (♠ ∈ {s, h, k})
(s, h, k) � own(x) iff dom(s) = {x}
(s, h, k) � E1 → E2 iff v(E1, E2) ⊆ dom(s) & dom(h) = {�E1�s}

& dom(k) = ∅ & h(�E1�s) = �E2�s
(s, h, k) � E1

ep→(C{a}, E2) iff v(E1, E2) ⊆ dom(s) & dom(k) = {�E1�s}
& dom(h) = ∅ & k(�E1�s) = (C, a, �E2�s)

σ � ¬A iff σ � A
σ � A1 ∧A2 iff σ � A1 & σ � A2
σ � ∃X.A iff ∃v ∈ Val . σ � A[X←v]
σ � A1 ∗A2 iff ∃σ1, σ2. σ = σ1 • σ2 & σ1 � A1 & σ2 � A2
σ � A −−∗ B iff ∀σ′�σ. σ′ � A implies σ • σ′ � B

2.4 Proof System

Our proof system is based on the framework of abstract separation logic. We extend
the rules of separation logic (frame rule, composition rules and the standard small
axioms for all pointer instructions) with four new small axioms for channel instruc-
tions. We abbreviate Im[src←E1, val←E2] as Im(E1, E2). Figure 1 presents all the
rules. Among these four new small axioms, the one for send deserves a special at-
tention, as we can derive two different small axioms from it: {O � E

ep→(C{a}, ε) ∗
Im(E,F )} send(m,E,F) {O�E ep→(C{a}, ε)} that accounts for the most standard send-
ing (taking A = E

ep→(C{b}, ε)), and sending the endpoint over itself is accounted by
{O�E

ep→(C{a}, ε)∗ (E ep→(C{b}, ε) −−∗ Im(E,F ))} send(m,E,F) {O�emp} (taking
A = emp). We will write ' {A} p {B} when this triple is derivable.
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x = v(B)
{x � x = v} assume(B) {x � x = v ∧ B} {x, O�E = v∧ emp} x = E {x, O� x = v∧ emp}

{x � emp} x = new() {x � x �→ −} {O � E �→ − ∧ F = v} ∗E = F {O � E �→ v}

{x, O�E = v∧v �→ v′} x = ∗E {x, O�x = v′∧v �→ v′} {O�E �→ −} free (E) {O�emp}

i = init(C)
{e, f � emp} (e , f ) = open(C) {e, f � e

ep�→(C{i}, f) ∗ f
ep�→(C̄{i}, e)}

a ∈ final(C)

{O � E
ep�→(C{a}, E

′) ∗ E
′ ep�→(C̄{a}, E)} close (E,E’) {O � emp}

a
!m−→ b ∈ C

{O � E
ep�→(C{a}, ε) ∗ (E ep�→(C{b}, ε) −−∗ (Im(E, F ) ∗ A))} send(m,E,F) {O � A}

a
?m−→ b ∈ C

{O, x � E
ep�→(C{a}, ε)} x = receive (m,E) {O, x � E

ep�→(C{b}, ε) ∗ Im(ε, x)}
{A} p {B}

{A ∗ F} p {B ∗ F}

A
′⇒A {A} p {B} B⇒B

′

{A
′} p {B

′}

{Ai} p {Bi} all i in I

{
�

i∈I

Ai} p {
�

i∈I

Bi}
{Ai} p {Bi} all i in I

{
G

i∈I

Ai} p {
G

i∈I

Bi}

{A} p {B} {A
′} p

′ {B
′}

{A ∗ A
′} p ‖ p

′ {B ∗ B
′}

{A} p {A
′} {A

′} p
′ {B}

{A} p; p
′ {B}

{A} p {B} {A} p
′ {B}

{A} p + p
′ {B}

{I} p {I}
{I} p

∗ {I}
{own(z) ∗ A} p[x←z] {own(z) ∗ B}

{A} local x in p {B}
z fresh

Fig. 1. Proof System Rules

2.5 Back to the Example

We now highlight some steps of the proof that the program p presented at Sec. 1.2
satisfies the Hoare triple {x � list(x)} p {x � emp}. Bracketed formulas are used
to denote the pre and post-condition of a program. We start with the precondition
x � list(x), where list(x) is the inductive list predicate verifying emp if x = 0 and
∃X.x → X ∗ list(X) otherwise. Before entering the parallel composition, we obtain
x, e, f� list(x)∗e ep→(C{transfer}, f)∗f ep→(C̄{transfer}, e). To apply the rule
for parallel composition, we have to split the state into two. putter will get resources
e, x � e

ep→(C{transfer},−) ∗ list(x) and getter f � f
ep→(C̄{transfer},−).

The next important step is after the loop, at line 9; we are left with just the endpoint e,
which we send in a close me message. According to Iclose me and the rule of send
with A = emp, the post-condition of putter is thus e, x � emp.

The proof of the getter program follows the same lines. Crucially, after receiving
the close me message, we can deduce that we have received the peer of f thanks to
Dual and the use of the src variable in Iclose me. This allows the CLOSE rule to fire
up. At the end of the parallel composition, we thus obtain empty heaps x � emp which
concludes the proof.
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3 Soundness

We now turn to proving that the proof system is sound and giving an accurate semantics
for programs. As the soundness of concurrent separation logic itself has proven hard to
establish in the past [3], we base our work on abstract separation logic, which allows
us to deduce the soundness of our proof system from the sole soundness of its axioms.
But this only resolves half of our concerns, for concurrent separation logic is not fit to
describe synchrony issues, for example that sends must happen before receives, nor does
it entail a pointer passing semantics, without transfers (the transfers erasure property).
In this section, we explain how to remedy this by extending the basic memory model.

As even an informal presentation of our semantics relies heavily on abstract separa-
tion logic [5], we begin this section by a short introduction to this framework.

3.1 Abstract Separation Logic in a Nutshell

A separation algebra is a cancellative, partial, commutative monoid (Σ, •, u) where
cancellative means that the partial function σ • (·) : Σ ⇀ Σ is injective; one may
write either σ1�σ2 or σ1⊥σ2 when σ1 • σ2 is defined, σ ! σ′ if there is σ1 such that
σ′ = σ • σ1, and denote the unique such σ1 by σ′ − σ when it exists. (P(Σ)�,()
denotes the powerset of Σ ordered by inclusion, extended with a greatest element *.
The operator ∗ defined by A∗B = {σ0•σ1 | σ0�σ1 & σ0 ∈ A & σ1 ∈ B} if A,B �= *,
* otherwise, defines a commutative ordered monoid (P(Σ)�, ∗, ∅,(). A property A is
precise if for all σ, there is at most one σ′ ! σ in A.

We will later define the semantics of all atomic commands as local functions. A
local function f : Σ → P(Σ)� is a total function such that for all σ, σ′ ∈ Σ, if
σ�σ′ then f(σ • σ′) ( {σ} ∗ f(σ′). f ( g denotes the pointwise order on local
functions. Composition f ; g of local functions is performed using the obvious lifting
of g to P(Σ)�: (f ; g)(σ) �

⊔
{g(σ′) | σ′ ∈ f(σ)} or * if f(σ) = *. A specifi-

cation φ is a set of pairs (A,B) in P(Σ). We write f � φ and say that f satisfies
φ when f(A) ( B for every (A,B) ∈ φ. The best local action of φ is defined by
bla[φ](σ) =

�
σ′�σ,σ′∈A,(A,B)∈φ{σ−σ′} ∗B. It is local, satisfies its specification, and

is the greatest such local function for the pointwise order on local functions [5].

Lemma 1. Basic memory states (Σwf , •, u) and pre-states (Σ, ◦, u), where u =
(∅, ∅, ∅), are separation algebras.

A simple way to obtain a soundness result for our proof system would thus be to define
the semantics of all atomic commands as the best local actions of their specifications.
Using the trace semantics we will present soon, all proof rules would be sound. As we
will explain now, this would lead to a very coarse semantics without synchronization
that over-approximates the communications. In particular, as mentionned in the intro-
duction, sending a message with value x and immediately retrieving it in y would not
be equivalent to simply assigning x to y.

3.2 Trace Semantics and Global Semantics

Syntactic traces. Let us define the traces T (p) of a program p as a set of sequences of
actionsα ∈ {c, norace(c1, c2), nx, dx} for all commands c, c1, c2, following the original



202 J. Villard, É. Lozes, and C. Calcagno

approach of abstract separation logic extended with the treatment of local variables: nx

allocates x ∈ Var on the stack and dx disposes it.

T (α) = {α} T (p1 + p2) = T (p1) ∪ T (p2) T (p∗) = (T (p))∗

T (p1; p2) = {tr1; tr2 | tr i ∈ T (pi)} T (p1 ‖ p2) = {tr1 zip tr2 | tr i ∈ T (pi)}

T ( local x in p) = {nz;T (p[x←z]); dz | z fresh in p}

Parallel composition is treated as a syntactic interleaving of commands. We force all
racy programs to fault by placing norace(c1, c2) each time c1 and c2 may be executed
simultaneously. This command will check that c1 and c2 can execute on disjoint por-
tions of the state. zip is thus defined by ε zip tr = tr zip ε = tr in the base case, and by
(c1; tr1)zip (c2; tr2) = norace(c1, c2); ((c1; (tr1zip (c2; tr2)))∪(c2; (c1; tr1)zip tr2)).

Semantics. The denotational semantics of traces is the composition of the interpretation
of atomic actions: �α� = �α� and �tr1; tr2� = �tr1�; �tr2�. This assumes that a seman-
tics �c� is defined for all primitive commands, which we will give later. The semantics
of norace(c1, c2) is the local function norace(�c1�, �c2�), defined by

norace(f, g)(σ̂) �
{
{σ̂} if ∃σ̂f , σ̂g. σ̂f • σ̂g = σ̂ & f(σ̂f ) �= * & g(σ̂g) �= *
* otherwise

Finally, the semantics of stack bookkeeping actions nx and dx are defined as the best
local actions �nx� � nx � bla [emps, own(x)] and �dx� � dx � bla[own(x), emps].

Following this approach is essential for deriving easily the soundness of the parallel
rule: �p ‖ p′�(σ • σ′) ( �p�(σ) ∗ �p′�(σ′). The downside is that parallel threads have
to work on disjoint memory states, hence receiving a message cannot be blocking and
must be non-deterministic. This poses two challenges: how to synchronize concurrent
actions and how to model inter-threads communication.

Successive semantics. Our approach here relies on three successive refinements of the
semantics defined by the small axioms of our proof system.

The first one enriches the memory model and the communication primitives so that,
at any point in the execution, the history of all past communications, including the
contents of all messages, can be observed in the resulting states. This is covered in
Sec. 4. However, this semantics is still local so we cannot link the histories of two
corresponding endpoints yet, as one of them may reside outside of the current heap.
Moreover, send and receive still act respectively as a disposal and a non-deterministic
creation of the message’s contents.

The next step is thus to consider programs as wholes. In this case, we can observe
the whole state at every point of the execution. In particular, both endpoints of every
opened channel will always be present. We may now restrict the states produced by the
commands to legal ones, i.e. states where receives have happened after the correspond-
ing send, and where contents of sent and received messages match (intuitions about
how this will be performed are introduced in the next two subsections). This will au-
tomatically restrict traces in the same way: a receive preceding the corresponding send
will produce an empty set of legal states. This is also how assume(B) works: it blocks
executions where B does not hold.
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The third and final semantics is the same as the global one, except that the commu-
nications are not loggued, thus achieving a pure pointer-passing semantics.

We will explain now what information histories will have to contain in the h.p.
model. The formal definition of legal states can be found in Sec. 5.

3.3 Synchronization

Concurrent separation logic uses critical sections to synchronize and communicate be-
tween processes. In this case, the synchronization may be performed at the syntactic
trace level, by considering only well-formed traces, in which two critical sections over
the same resource are never interleaved [5]. This syntactic synchronization is possible
because resources are not part of the expression language, and determining whether two
critical sections refer to the same resource can be done just by looking at the resource
identifier. This is not the case for channel communication, as retrieving which endpoint
is used for sending or receiving involves evaluating an expression, which cannot be
done at the trace level.

Instead, we rule out ill-synchronized traces at the semantics level by making them
block when executed. To achieve this, we must add information to the endpoints in the
model, namely how many messages have been sent and how many have been received
on this endpoint (see Sec. 3.5), and modify send and receive to increment these coun-
ters. Legal states will thus be such that any endpoint ε must have received less than
what its peer has sent. This ensures that traces where a receive happens when there is
no pending message inside the channel will block.

3.4 Communication

In concurrent separation logic, communication is achieved by passing pieces of states
around using conditional critical regions: acquiring a shared resource is modeled by
an allocation (roughly, �acquire r�(σ) = {σ} ∗ Ir), and releasing it is modeled by
deallocation of the part of memory corresponding to the invariant. Acquiring a resource
is thus non-deterministic, as the resource r may be acquired in any state satisfying the
resource invariant Ir , and not the state in which it was left after the last release. The
local semantics of receive suffer from the same caveat.

The semantics to which we aspire should be more precise and ensure that the contents
of what is received match what was sent. For this purpose, we have chosen to “log”
a copy of the message contents that is sent or non-deterministically received in the
thread-local heap. To describe “logging”, we enrich the model with timestamps: each
cell and endpoint is tagged with a timestamp τ ∈ T and a direction † ∈ {?, !}. We will
note [τ†]σ̂ for the memory state formed of a single log using timestamp τ . Sending σ̂
will deallocate it and allocate the log [τ !]σ̂, whereas the corresponding receive will
allocate σ̂′ • [τ?]σ̂′ for the same timestamp τ and some guessed σ̂′. Then, the memory
state [τ !]σ̂ • [τ?]σ̂′ will be declared legal if and only if σ̂ = σ̂′, which will ensure the
coherence of communications in the global semantics.

Moreover, we have to provide a mechanism for choosing which timestamp should be
used for logging for each message, and the endpoint’s owner that will issue a message
should locally choose its timestamp. We thus attach to every channel a pair of histories
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(
!, 
?) where 
!, 
? contain a list of the successive (distinct) timestamps at which the
messages respectively sent and received (from the serving endpoint point of view) will
have to be logged. Both endpoints will be equipped with these histories upon creation
(the client endpoint will be equipped with the dual pair (
?, 
!)) in order to log the same
message with the same timestamp when it is sent and received.

Finally, histories can also be used to check that the value and message identifier of
a message is the same on both endpoints involved. This could have been part of the
logging mechanism, but it has turned out to be simpler to consider it apart.

3.5 Refined Model

Adding up what has been informally described above, we obtain the following history
preserving memory model Σ̂ defined from histories Hist � (MsgId × Val × T )ω :

Σ̂ � Stack × ˆCHeap × ˆEHeap
ˆCHeap � Loc × T {?,!} ⇀ Val
ˆEHeap � Endpoint × T {?,!} ⇀ Contract × State × Endpoint × N2 × Hist2

Timestamps τ form an infinite set T , disjoint from previously defined sets, from which
we define polarized timestamps T {?,!} � (T × {?, !}) + {now}. We extend Val to
contain T . For simplicity, we may write now! and now? for now.

(Σ̂, ◦, u) defines a separation algebra where ◦ denotes disjoint union of (tuples of)
partial functions. To distinguish heaps of the basic and h.p. model, we adopt a hat nota-
tion, and let ĥ, k̂, . . . range over ˆCHeap, ˆEHeap.

We define the projection now : Σ̂ → Σ which associates to a state σ̂ = (s, ĥ, k̂) ∈ Σ̂

the state σ = (s, h, k) where h = ĥ(·,now) and k is k̂(·,now) where histories and
counters have been erased. We can now define what it means for a program executing
on h.p. states to satisfy a Hoare triple.

Definition 1 (Semantic Hoare Triple).
– If A,B ∈ P(Σ) and f : Σ̂ → P(Σ̂)�, we write 〈〈A〉〉 f 〈〈B〉〉 iff ∀σ̂. now(σ̂) ∈ A

implies now(f(σ̂)) ( B.
– We write � {A} p {B} iff ∀tr ∈ T (p). 〈〈A〉〉 �tr� 〈〈B〉〉.

4 Semantics of Programs

4.1 Refined Assertions

We now show how to interpret the logic in the refined model, so as to give a semantics
of commands from logical specifications and state the soundness theorem later on.

We let ts(
) denote the set of timestamps that appear in 
. If 
 is a history list and
i is an integer, 
[i] represents the ith item of 
. We write logs(σ̂) to denote the set of
polarized timestamps that appear in σ̂, i.e. snd(dom(ĥ)) ∪ snd(dom(k̂)).

If σ̂ = (s, ĥ, k̂), we write σ̂	τ† (resp. σ̂	T ) to denote the pre-state at timestamp τ†

defined by restricting ĥ and k̂ to the timestamp τ† (resp. the set of polarized timestamps
T ). This gives a semantics for formulas over Σ̂: for any σ̂ ∈ Σ̂, and for any A, σ̂ � A
if and only if (1) logs(σ̂) ⊆ {now} and (2) σ̂	now � A.
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We now extend the logic to be able to talk about logged cells. Note that, within a
memory state, the same location may be allocated with a different content for different
timestamps, which we call conflicting cells. For σ̂ = (s, ĥ, k̂) and a polarized timestamp
τ†, we write 〈τ†〉σ̂ for the set of states that result from σ̂ by tagging all cells with times-
tamp τ†, for any possible resolution of conflicting cells. Formally, σ̂′ = (s, ĥ′, k̂′) ∈
〈τ†〉σ̂ if logs(σ̂′) = {τ†} and for all l ∈ Loc (resp. for all ε ∈ Endpoint ) there is a
timestamp τ ′‡ such that ĥ′(l, τ†) = ĥ(l, τ ′‡) (resp. k̂′(ε, τ†) = k̂(ε, τ ′‡)). When there
are no conflicting cells, that is when 〈τ†〉σ̂ = {σ̂0}, we write [τ†]σ̂ to denote σ̂0. Fi-
nally, we write 〈τ†〉A to denote

⊔
{〈τ†〉σ̂ | σ̂ � A}, and 〈τ†1 ∗ τ‡2 〉A to denote the set

of states {[τ†1 ]σ̂ • [τ‡2 ]σ̂ | σ̂ � A}.
Finally, we restrict h.p. memory states to well-formed ones in the same way as for

memory states, and limit the composition of states so that the logged content of a mes-
sage is never split into two, nor extended by the frame rule, thus preventing two distinct
messages from being logged at the same timestamp.

Definition 2 (H.P. memory states). The separation subalgebra (Σ̂wf , •, û) of well-
formed h.p. memory states is the subalgebra of (Σ̂, ◦, û) obtained by restricting Σ̂ to
states σ̂ such that now(σ̂) ∈ Σwf , and strengthening the compatibility relation ⊥ by:
AtomicLogs: σ̂ • σ̂′ is defined if σ̂ ◦ σ̂′ ∈ Σ̂wf and for all † ∈ {?, !} and τ �= now,
[now](σ̂	τ†) � emp or [now](σ̂′	τ†) � emp.

Lemma 2. (Σ̂wf , •, û) is a separation algebra.

Finally, we extend the satisfaction relation of Sec. 2.3 to h.p. states by overloading
every predicate but

ep→ and every constructor in the obvious way. We overload
ep→ with

two new meanings:

(s, ĥ, k̂) � E
ep→(C{a}, E′, n?, n!, 
?, 
!) iff{

v(E,E′) ⊆ dom(s) & dom(k̂) = {(�E�s,now)} & dom(ĥ) = ∅
& k̂(�E�s,now) = (C, a, �E′�s, n?, n!, 
?, 
!)

(s, ĥ, k̂) � E
ep→(C{a}, E′) iff ∃n?, n!, 
?, 
!. (s, ĥ, k̂) � E

ep→(C{a}, E′, n?, n!, 
?, 
!)

4.2 Refined Small Axioms

We define the semantics �c� : Σ̂wf→P(Σ̂wf)� of an atomic command c as the best
local action of a specification φ̂ over Σ̂wf . For most of the commands, φ̂ is simply the
specification φ given by the small axiom associated to it in the proof system, interpreted
over Σ̂wf (according to the already mentioned interpretation of σ̂ � A: logs(σ̂) =
{now} and now(σ̂) � A). The only commands for which φ̂ �= φ are open, send and
receive, which need to deal with histories.

The semantics of open is the simplest one. As mentioned in Sec. 3.4, the histories
attached to the endpoints are guessed when they are created, and dual histories should
match; moreover, the queues’ counters are initialized to zero. The refined small axiom
for open is hence the following:

i = init(C)

{e, f � emp} (e , f ) = open(C) {e, f � e
ep�→(C{i}, f, 0, 0, �, �′) ∗ f

ep�→(C̄{i}, e, 0, 0, �′, �)}
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{O � E
ep�→(C{a}, ε, n?, n!, �?, �!) ∧ E

′ = v}
enq(E,E’)

{O � E
ep�→(C{a}, ε, n?, n! + 1, �?, �!) ∧ E

′ = v ∧ �![n!] = (−, v,−)}

{O, x � E
ep�→(C{a}, ε, n?, n!, �?, �!)}

x = deq(E)
{O, x � E

ep�→(C{a}, ε, n? + 1, n!, �?, �!) ∧ �?[n?] = (−, x,−)}

a
†m−→ b ∈ C

{O � E
ep�→(C{a}, ε, n?, n!, �?, �!)}

contract †(m,E)
{O � E

ep�→(C{b}, ε, n?, n!, �?, �!) ∧ �†[n†] = (m,−,−)}

{O, x � E
ep�→(C{a}, ε, n?, n!, �?, �!)}
x = cur ts †(E)

{O, x � E
ep�→(C{a}, ε, n?, n!, �?, �!) ∧ �†[n† − 1] = (−,−, x)}

{O, e � E
ep�→(C{a}, ε, n?, n!, �?, �!)} e = peer(E) {O, e � E

ep�→(C{a}, ε, n?, n!, �?, �!) ∧ e = ε}

{O � E = ε ∧ E
′ = v ∧ emp} new(m,E,E’) {O � E = ε ∧ E

′ = v ∧ Im(ε, v)}

{O � Im(E, E
′)} free (m,E,E’) {O � emp}

σ̂ � O � Im(E, E
′) ∧ t = τ

{σ̂} log†(m,E,E’,t) {〈now ∗ τ
†〉σ̂}

Fig. 2. Small axioms of the sub-atomic operations

The semantics of send and receive are more complex: they are the composition of
several sub-atomic operations that perform basic tasks.

send(m, E, E’) � atomic { contract!(m,E); enq(E,E’); local t in {

t = cur_ts!(E); log!(m,E,E’,t); free(m,E,E’);}}
x = receive(m,E) � atomic {contract?(m,E); x = deq(E);

local t,e in { t = cur_ts?(E); e = peer(E);

new(m,e,x); log?(m,e,x,t);}}
Intuitively, contract† checks whether the contract authorizes the communication,

enq and deq are the pure pointer passing counterparts of send and receive, cur_ts†

selects in the history which timestamp to use for logging the current communication,
peer(E) retrieves the peer of E, log† logs a copy of the part of the heap that is trans-
ferred, and new and free allocate and deallocate this transferred heap. Fig 2 presents
the small axioms defining these sub-atomic operations.

4.3 Soundness

In order to establish the soundness for the whole proof system, all we have to do is
to establish the soundness of all atomic commands with respect to their coarse small
axioms. We say that a local function f over Σ̂wf satisfies a specification φ over Σwf and
write f � φ if for all (A,B) ∈ φ, 〈〈A〉〉 f 〈〈B〉〉. Let now−1(A) denote the set of all
σ̂ ∈ Σ̂wf such that σ̂ = σ̂	now and now(σ̂) ∈ A.

Definition 3 (Implementation). A specification φ̂ over Σ̂wf implements a specification
φ over Σwf if ∀(A,B) ∈ φ. ∃(Â, B̂) ∈ φ̂. now−1(A) ( Â & now(B̂) ( B.
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Lemma 3. If φ̂ implements φ, then for all local function f , f � φ̂ implies f � φ.

We can show that the refined small axiom of open implements the corresponding coarse
axiom, and that sub-atomic commands implement some specifications which, com-
posed together, allow us to derive the coarse small axioms of send and receive. Ab-
stract separation logic allows us to conclude that our proof system is sound.

Lemma 4 (Soundness for atomic commands). If {A} c {B} is an axiom of our proof
system then for all σ̂ such that now(σ̂) � A, now(�c�(σ̂)) ( B.

Theorem 1 (Soundness). ' {A} p {B} implies � {A} p {B}.

We can easily derive from this theorem that in every provable program, there is no mem-
ory violation or race, and contracts are respected. Memory leaks are not yet guaranteed
to be avoided: this is the purpose of the transfers erasure property.

5 Transfers Erasure Property

In this section, we relate the transferring, local semantics we introduced for establishing
the soundness of our proof system to the intended non-transferring, global semantics.
Defining the non-transferring semantics is rather simple thanks to our decomposition
of send and receive in sub-atomic operations. check_inv is added so that sendnt

g still
faults whenever the invariant of the message is not satisfied.

Definition 4 (Non-transferring semantics). The non-transferring semantics �.�nt is
the semantics that differs from �.� by erasing transfers in send and receive:

send(m,E,E’)nt � atomic { contract!(m,E);enq(E,E’);check_inv(m,E,E’); }
x=receive(m,E)nt � atomic {contract?(m,E); x = deq(E); }

cnt � c otherwise
where check_inv(m,E,E’) is the best local action defined by the Hoare triples
{σ̂} check inv (m,E,E’) {σ̂} for all σ̂ satisfying Im(E,E′).

In order to relate �.� and �.�nt , we first need to restrict them to well-interleaved local
traces, otherwise many undesired executions would have to be considered: a receive
may precede a send, or the message that is sent may not necessarily be the same as the
one that is received. This can be observed directly on the resulting memory states thanks
to histories, so restricting the semantics to legal states is enough to rule out executions
that do not comply with the intended global semantics.

Let UL(σ̂) denote the set of unmatched logs of σ̂, that is UL(σ̂) = {τ† ∈ logs(σ̂) |
τ †̄ �∈ logs(σ̂)}, and let transfer(σ̂) denote σ̂	UL(σ̂). A state σ̂ is partitioned if and only
if 〈now〉transfer(σ̂) = {σ̂0} and σ̂ 	now ⊥σ̂0. When this is the case, the closure of
σ̂ is defined as closure(σ̂) � σ̂ 	now •[now]transfer(σ̂). A legal state should always
be partitioned (intuitively, a cell cannot be both in transfer and owned by a thread), the
logged contents of dual messages should match, and the read history of any endpoint
should have been played at most up to the same point as the write history of its peer.
Moreover, all timestamps should be different, except dual timestamps.
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Definition 5 (Legal state). A state σ̂ = (s, ĥ, k̂) is legal when it satisfies
Partitions σ̂ ∈ Σ̂wf is partitioned

DualMatch ∀τ. [now](σ̂	τ?) � ¬emp ⇒ σ̂	τ ! = σ̂	τ?

Asynch closure(σ̂) �
(
ε

ep→(−, ε′, n?,−,−,−) ∗
ε′

ep→(−, ε,−, n!,−,−) ∗ true

)
⇒ n! ≥ n?

DisjointLogs
∀ε, ε′, ε′′.

{
k(ε) = (−,−,−,−, 
?, 
!) & k(ε′) = (−, ε′′,−,−, 
′?, 


′
!)

& ε �= ε′ & ε �= ε′′

⇒ all timestamps appearing in ts(
?), ts(
!), ts(
′?), ts(
′!) are distinct

The global semantics is then defined as �c�g(σ̂) � {σ̂′ ∈ �c�(σ̂) | σ̂′ legal} if �c�(σ̂) �=
*, * otherwise. The global non-transferring semantics �.�nt

g is defined the same way.
Our aim is to show that the global semantics is the same as the non-transferring one,
up to a closure that brings back cells that are being transferred. It might be a surprise
that this result does not hold without some particular restrictions on the contracts that
ensure that no messages are lost when a channel is closed. We do not give the most gen-
eral condition on contracts that achieves this non-leaking property, but rather provide
a sufficient condition that is easy to check syntactically on the contract. These restric-
tions are very similar to those used in Singularity. A contract is deterministic if any two
distinct edges with the same source have different labels. It is positional if every two
edges with the same source are labeled with either two sends or two receives. A state
is synchronizing if every graph cycle that goes through it contains at least one send and
one receive.

Definition 6. A contract is non-leaking if it is deterministic, positional, and every final
state is a synchronizing state.

For instance, the contract of the example is non-leaking, but would be leaking if all
states were merged in a single state.

Theorem 2. For any provable program p with non-leaking contracts, for all tr ∈ T (p),
�tr�nt

g (u) = closure(�tr�g(u)).

Remark 1. In particular, if ' {emp} p {emp} and p terminates, then p does not fault on
memory accesses nor leaks memory for any of the considered semantics.

We establish this result by induction on tr with a stronger inductive property. Due to
lack of space, we do not detail the rather involved proof. One hard part of the proof, as
mentioned earlier, is to establish that no memory is leaked when a channel is closed.
Since non-leaking contracts are deterministic and positional, it can be proved that chan-
nels are in fact half-duplex. Moreover, as contracts are respected, in any reachable mem-
ory state, and for any coupled endpoints ε, ε′ of this state, the list of unread messages by
ε, if not empty, is the same as the one labeling a read path from the contract’s state of ε
to the one of ε′. We then prove the absence of memory leak by the following argument:
as a channel is closed if and only if the two endpoints are in the same final state, their
histories may differ only from a read or a write cycle in the contract, and since final
states are synchronizing, this cycle must be the empty cycle.
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Conclusion and Future Work

We presented a proof system for copyless message passing ruled by contracts, illustrat-
ing how contracts may facilitate the work of the Sing# compiler in the static analysis
that verifies the absence of ownership violations. We established the soundness of the
proof system with respect to an over-approximating local semantics where message
exchanges are unsynchronized, and restricted it to a global semantics for which we
established the transfers erasure property.

We illustrated our proof system on a small and rather simple example. We focused
on the foundations of our proof system in this work, but we wish to tackle more case-
studies in the future. We moreover plan to automate the proof inference using an ex-
isting tools like Smallfoot [1]. Another challenging application of our proof system
could be to prove a distributed garbage collector synchronized by message passing, for
which the transfers erasure property would potentially be an important issue.
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On Stratified Regions
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Abstract. Type and effect systems are a tool to analyse statically the
behaviour of programs with effects. We present a proof based on the so
called reducibility candidates that a suitable stratification of the type and
effect system entails the termination of the typable programs. The proof
technique covers a simply typed, multi-threaded, call-by-value lambda-
calculus, equipped with a variety of scheduling (preemptive, cooperative)
and interaction mechanisms (references, channels, signals).

Keywords: Types and effects, Termination, Reducibility candidates.

1 Introduction

In the framework of functional programs, the relationship between type systems
and termination has been extensively studied through the Curry-Howard corre-
spondence. It would be interesting to extend these techniques to programs with
effects. By effect we mean the possibility of executing operations that modify
the state of a system such as reading/writing a reference or sending/receiving a
message.

Usual type systems as available, e.g., in various dialects of the ML program-
ming language, are too poor to account for the behaviour of programs with
effects. A better approximation is possible if one abstracts the state of a system
in a certain number of regions and if the types account for the way programs
act on such regions. So-called type and effect systems [9] are an interesting for-
malisation of this idea and have been successfully used to analyse statically
the problem of heap-memory deallocation [11]. On the other hand, the proof-
theoretic foundations of such systems are largely unexplored. Only recently, it
has been shown [4] that a stratification of the regions entails termination in a
certain higher-order language with cooperative threads and references. Our pur-
pose here is to revisit this result trying to clarify and extend both its scope and
its proof technique (a more technical comparison is delayed to section 4). We
refer to [4] for a tentative list of papers referring to a notion of stratification for
programs with side effects. Perhaps the closest works in spirit are those that have
adapted the reducibility candidates techniques to the π-calculus [12,10]. Those
works exhibit type systems for the π-calculus that guarantee the termination of
the usual continuation passing style translations of typed functional languages
into the π-calculus. However, as pointed out by one of the authors of op.cit in [6],
they are not very successful in handling state sensitive programs. The approach
here is a bit different: one starts with a higher-order typed functional language
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which is known to be terminating and then one determines to what extent side-
effects can be added while preserving termination. Yet in another direction, we
notice that a notion of region stratification has been used in [3] to guarantee the
polynomial time reactivity of a first-order timed/synchronous language.

We outline the contents of the paper. In section 2, we introduce a λ-calculus
with regions. Regions are an abstraction of dynamically generated values such as
references, channels, and signals, and the reduction rules of the calculus are given
in such a way that the reduction rules for references, channels, and signals can be
simulated by those given for regions. In section 3, we describe a simple type and
effect system along the lines of [9]. In this discipline, types carry information on
the regions on which the evaluated expressions may read or write. The discipline
allows to write in a region r values that have an effect on the region r itself.
In turn, this allows to simulate recursive definitions and thus to produce non
terminating behaviours. In section 4, following [4], we describe a stratification
of the regions. The idea is that regions are ordered and that a value written in
a region may only produce effects in smaller regions. We then propose a new
reducibility candidates interpretation (see, e.g., [7] for a good survey) entailing
the termination of typable programs. In section 5, we enrich the language with
the possibility to generate new threads and to react to the termination of the
computation. The language we consider is then timed/synchronous in the sense
that a computation is regarded as a possibly infinite sequence of instants. An
instant ends when the calculus cannot progress anymore (cf. timed/synchronous
languages such as Timed CCS [8] and Esterel [5]). We extend the stratified
typing rules to this language and show by means of a translation into the core
language that typable programs terminate. We also show that a fixed-point com-
binator can be defined and typed so that recursive calls are allowed as long as
they arise at a later instant. This differs from [4] where a fixed-point combinator
is added to the language potentially compromising the termination property.

We refer to the report [1] for the full proofs.

2 A λ-Calculus with Regions

We consider a λ-calculus with regions. Regions are abstractions of dynamically
generated ‘pointers’ which, depending on the context, are called references, chan-
nels, or signals. Given a program with operators to generate dynamically values
(such as ref in the ML language or ν in the π-calculus), one may simply introduce
a distinct region for every occurrence of such operators. This amounts to col-
lapse all the ‘pointers’ generated by the operator at run time into one constant.
The resulting language simulates the original one as long as the values written
into regions do not erase those already there. In particular, termination for the
language with regions entails termination for the original language.

We notice that ordinary type system for programs with dynamic values per-
form a similar abstraction: all the values that are generated by an operator are
assigned the same type. For instance, typing νx P in the π-calculus will reduce
to typing the process P in a context where the name x is associated with a



212 R.M. Amadio

suitable type A. In the corresponding language with regions, one will replace the
name x with a region r and type [r/x]P ([r/x] is the substitution) in a region
context where r is associated with A.

To summarise, termination for the language with regions entails termination
for the original calculi and moreover ordinary type system implicitly abstract
dynamically generated values into regions. Therefore, we argue that one can
carry on the main type theoretic arguments at the level of regions rather than
at the more detailed level of dynamically generated values.1

2.1 Syntax

We consider the following syntactic categories:

x, y, . . . (variables)
r, s, . . . (regions)
e, e′, . . . (finite sets of regions)
A ::= 1 || RegrA || (A e−→ A) (types)
Γ ::= x1 : A1, . . . , xn : An (context)
R ::= r1 : A1, . . . , rn : An (region context)
M ::= x || r || ∗ || λx.M || MM || get(M) || set(M,M) (terms)
V ::= r || ∗ || λx.M (values)
v, v′, . . . (sets of value)
S ::= (r ⇐ v) || S, S (stores)
X ::= M || S (stores or terms)
P ::= X || X,P (programs)

We briefly comment the notation: 1 is the terminal (unit) type with value ∗;
RegrA is the type of a region r containing values of type A; A e−→ B is the type
of functions that when given a value of type A may produce a value of type B
and an effect on the regions in e; get is the operator to read some value in a
region and set is the operator to insert a value in a region.

We write [N/x]M for the substitution of N for x in M . If R = r1 : A1, . . . , rn :
An then dom(R) = {r1, . . . , rn}. If r ∈ dom(R) then we write R(r) for the type A
such that r : A occurs in R. We also define the term regrM as an abbreviation for
(λx.r)(set(r,M)). Thus the difference between set(r,M) and regrM is that in the
first case we return ∗ while in the second we return r. When writing a program
P = X1, . . . , Xn we regard the symbol ‘,’ as associative and commutative, or
equivalently we regard a program as a multi-set of terms and stores. We write
(r ⇐ V ) for (r ⇐ {V }). We shall identify the store (r ⇐ v1), (r ⇐ v2) with
the store (r ⇐ v1 ∪ v2). We denote with dom(S) the set of regions r such that
(r ⇐ v) occurs in S and define S(r) as the set {V | (r ⇐ V ) occurs in S}.

1 Incidentally, it seems much easier to produce denotational models of languages with
regions than for the original languages with dynamic values so that one can hope to
find models that do provide insight into the type systems.
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2.2 Reduction

A call-by value evaluation context E is defined as:

E ::= [ ] || EM || V E || get(E) || set(E,M) || set(V,E)

An elementary evaluation context is defined as:

El ::= [ ]M || V [ ] || get([ ]) || set([ ],M) || set(V, [ ])

An evaluation context can be regarded as the finite composition (possibly empty)
of elementary evaluation contexts. The reduction on programs is defined as
follows:

E[(λx.M)V ] → E[[V/x]M ] E[get(r)], (r ⇐ V ) → E[V ], (r ⇐ V )

E[set(r, V )] → E[∗], (r ⇐ V )
P → P ′

P, P ′′ → P ′, P ′′

Note that the semantics of set amounts to add rather than to update a binding
between a region and a value. Hence a region can be bound at the same time
to several values (possibly infinitely many) and the semantics of get amounts to
select non-deterministically one of them.

As already mentioned, the notion of region is intended to simulate some famil-
iar programming concepts such as references, channels, or signals. Specifically:
(i) when writing a reference, we replace the previously written value (if any),
(ii) when reading a (unordered, unbounded) channel we consume (remove from
the store) the value read, and finally (iii) the values written in a signal persist
within an instant and disappear at the end of it.2 One can easily formalise the
reduction rules for references, channels, and signals, and check that (within an
instant) each reduction step is simulated by at least one reduction step in the
calculus with regions. Thus, typing disciplines that guarantee termination for
the calculus with regions will guarantee the same property when adapted to
references, channels, or signals.

3 Types and Effects: Unstratified Case

We introduce a simple type and effect system along the lines of [9]. The following
rules define when a region context R is compatible with a type A (judgement
R ↓ A):

R ↓ 1
R ↓ A R ↓ B e ⊆ dom(R)

R ↓ (A e−→ B)
r : A ∈ R
R ↓ RegrA

2 Signals arise in timed/synchronous models where the computation is regulated by a
notion of instant or phase (see section 5).
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The compatibility relation is just introduced to define when a region context is
well formed (judgement R ') and when a type and effect is well-formed with
respect to a region context (judgements R ' A and R ' (A, e)).

∀ r ∈ dom(R) R ↓ R(r)
R '

R ' R ↓ A
R ' A

R ' A e ⊆ dom(R)
R ' (A, e)

A more informal way to express the condition is to say that a judgement r1 :
A1, . . . , rn : An ' B is well formed provided that: (1) all the region names occur-
ring in the types A1, . . . , An, B belong to the set {r1, . . . , rn} and (2) all types of
the shape Regri

C with i ∈ {1, . . . , n} and occurring in the types A1, . . . , An, B

are such that C = Ai. For instance, the reader may verify that r : 1
{r}−−→ 1 '

Regr1
{r}−−→ 1 can be derived while r1 : Regr2

(1
{r2}−−−→ 1), r2 : 1

{r1}−−−→ 1 ' cannot.
Also it can be easily checked that the following properties hold:

R ' 1 iff R '
R ' RegrA iff R ' and R(r) = A

R ' A
e−→ B iff R ', R ' A,R ' B, and e ⊆ dom(R)

R ' iff ∀ r ∈ dom(R) R ' R(r)

The subset relation on effects induces a subtyping relation on types and on
pairs of types and effects which is defined as follows (judgements R ' A ≤ A′,
R ' (A, e) ≤ (A′, e′)):

R ' A
R ' A ≤ A

R ' A′ ≤ A R ' B ≤ B′

e ⊆ e′ ⊆ dom(R)

R ' (A e−→ B) ≤ (A′ e′
−→ B′)

R ' A ≤ A′

e ⊆ e′ ⊆ dom(R)
R ' (A, e) ≤ (A′, e′)

We notice that the transitivity rule:

R ' A ≤ B R ' B ≤ C
R ' A ≤ C

can be derived via a simple induction on the height of the proofs. The subtyping
rule trades flexibility against precision of the type system. For instance, suppose
A1 = 1 e1−→ 1 and A2 = 1 e2−→ 1 and we want to define the type B of the
functionals that take a value V1 of type A1 and a value V2 of type A2 and compute
either V1∗ or V2∗. We can define B = A1

∅−→ (A2
e1∪e2−−−−→ 1). The reader can check

that both λx.λy.x∗ and λx.λy.y∗ have type B provided the subtyping rule is used.
Incidentally, we note that [4] seems to ‘forget’ the subtyping rule. While there
are no particular problems to provide a reducibility candidates interpretation
for this rule, we notice that without it the following diverging ML expression
let l = ref(λx.x) in l := λx.!lx; !l(), which is given in op.cit. to motivate the
stratification of regions does not type already in the ordinary unstratified type

and effect system because (λx.x) has type 1 ∅−→ 1 but not 1
{r}−−→ 1 where r is

the region associated with the reference l.
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We now turn to the typing rules for the terms. We shall write R ' x1 :
A1, . . . , xn : An if R ' and R ' Ai for i = 1, . . . , n. Note that in the following
rules we always refer to the same region context R.

R ' Γ x : A ∈ Γ
R;Γ ' x : (A, ∅)

R ' Γ r : A ∈ R
R;Γ ' r : (RegrA, ∅)

R ' Γ
R;Γ ' ∗ : (1, ∅)

R;Γ, x : A ' M : (B, e)
R;Γ ' λx.M : (A e−→ B, ∅)

R;Γ ' M : (A e2−→ B, e1) R;Γ ' N : (A, e3)
R;Γ ' MN : (B, e1 ∪ e2 ∪ e3)

R;Γ ' M : (RegrA, e)
R;Γ ' get(M) : (A, e ∪ {r})

R;Γ ' M : (RegrA, e1) R;Γ ' N : (A, e2)
R;Γ ' set(M,N) : (1, e1 ∪ e2 ∪ {r})

R;Γ ' M : (A, e) R ' (A, e) ≤ (A′, e′)
R;Γ ' M : (A′, e′)

Finally, we extend the typing rules to stores and general multi-threaded pro-
grams. To this end, it is convenient to introduce a constant behaviour type B
which is the type we give to multi-sets of threads and/or stores which are not
supposed to return a value but just to interact via side-effects. We will use
α, α′, . . . to denote either an ordinary type A or this new behaviour type B.

r : A ∈ R ∀V ∈ v R; Γ � V : (A, ∅)
R; Γ � (r ⇐ v) : (B, ∅)

R; Γ � Xi : (αi, ei) i = 1, . . . , n ≥ 1
R;Γ � X1, . . . , Xn : (B, e1 ∪ · · · ∪ en)

Remark 1. The derived typing rule for regrM is as follows:

r : A ∈ R R;Γ ' M : (A, e)
R;Γ ' regrM : (RegrA, e ∪ {r})

One can derive a more traditional ‘effect-free’ type system by erasing all the
effects from the types and the typing judgements. Note that in the resulting
system the subtyping rules are useless. We shall write 'ef for provability in this
system. This ‘weaker’ type system suffices to state a decomposition property of
the terms which is proven by induction on the structure of the term.

Proposition 1 (decomposition). If R;'ef M : A is a well-typed closed term
then exactly one of the following situations arises where E is an evaluation
context:

1. M is a value.
2. M = E[Δ] and Δ has the shape (λx.N)V , set(r, V ), or get(r).

3.1 Basic Properties of Typing and Evaluation

We observe some basic properties: (i) one can weaken both the type and region
contexts, (ii) typing is preserved when we replace a variable with an effect-free
term of the same type, and (iii) typing is preserved by reduction. If S is a store
and e is a set of regions then S|e is the store S restricted to the regions in e.
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Proposition 2 (basic properties, unstratified). The following properties
hold:

weakening. If R;Γ ' M : (A, e) and R,R′ ' Γ, Γ ′ then R,R′;Γ, Γ ′ ' M :
(A, e).

substitution. If R;Γ, x : A ' M : (B, e) and R;Γ ' N : (A, ∅) then R;Γ '
[N/x]M : (B, e).

subject reduction. Let M denote a sequence M1, . . . ,Mn. If R,R′;' M, S :
(B, e), R ' e, and M, S → M′, S′ then R,R′;' M′, S′ : (B, e), S|dom(R′) =
S′
|dom(R′), and M, S|dom(R) → M′, S′

|dom(R). Moreover, if M = M and
R,R′ ' M : (A, e) then M′ = M ′ and R,R′ ' M ′ : (A, e).

The weakening and substitution properties are shown directly by induction on
the proof height. Concerning subject reduction, it is useful to notice that if a term
M , of type and effect (A, e), is ready to read/write the region r then r ∈ e. This
follows from an analysis of the evaluation context. Then we prove the assertion by
case analysis on the reduction rule applied, relying on the substitution property.

Remark 2. The subject reduction property is formulated so as to make clear
that the type and effect system indeed delimits the interactions a term may have
with the store. Note that a term may refer to regions which are not explicitly
mentioned in its type and effect. For instance, consider M = (λf.∗)(λx.get(r)x)

and let R = r : 1 ∅−→ 1. Then R; ∅ ' M : (1, ∅), ∅ ' (1, ∅) but ∅; ∅ �' M : (1, ∅).
The subject reduction property guarantees that such a term will only read/write
regions included in the region context needed to type its type and effect.

3.2 Recursion

In our (unstratified) calculus, we can write in a region r a functional value λx.M
where M reads from the region r itself. For instance, regr(λx.(get(r))x).

This kind of circularity leads to diverging computations such as:

get(regrλx.get(r)x)∗ → get(r)∗, (r ⇐ λx.get(r)x) →
(λx.get(r)x)∗, (r ⇐ λx.get(r)x) → get(r)∗, (r ⇐ λx.get(r)x) → · · ·

It is well known that this phenomenon can be exploited to simulate recursive
definitions. Specifically, we define:

fixrf.M = λx.(get(regr(λx.[λx.get(r)x/f ]M x))) x (1)

By a direct application of the typing rules and proposition 2(substitution), one
can derive a rule to type fixrf.M .

Proposition 3 (type fixed-point). The following typing rule for the fixed
point combinator is derived:

r : A e−→ B ∈ R r ∈ e

R;Γ, f : A e−→ B ' M : (A e−→ B, ∅)
R;Γ ' fixrf.M : (A e−→ B, ∅)

(2)
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For a concrete example, assume basic operators on the integer type and let
M be the factorial function: M = λx.if x = 0 then 1 else x ∗ f(x − 1). Then
compute (fixrf.M)1. In this case we have e = {r} and r : int r−→ int ∈ R.

4 Types and Effects: Stratified Case

As we have seen, an unstratified simply typed calculus with effects may produce
diverging computations. To avoid this, a natural idea proposed by G. Boudol in
[4] is to stratify regions.

Intuitively, we fix a well-founded order on regions and we make sure that values
stored in a region r can only produce effects on smaller regions. For instance,

suppose V is a value with type (1
{r}−−→ 1). Intuitively, this means that when

applied to an argument U : 1, V may produce an effect on region {r}. Then
the value V can only be stored in regions larger than r. We shall see that this
stratification allows for an inductive definition of the values that can be stored
in a given region.

The only change in the type system concerns the judgements R ', R ' A,
and R ' (A, e) whose rules are redefined as follows:

∅ '
R ' A r /∈ dom(R)

R, r : A '
R '
R ' 1

R ' r : A ∈ R
R ' RegrA

R ' A R ' B e ⊆ dom(R)
R ' A

e−→ B

R ' A e ⊆ dom(R)
R ' (A, e) .

Proviso. Henceforth we shall use ' to refer to provability in the stratified system
and 'u for provability in the unstratified one. The former implies the latter since
R ' implies R 'u and R ' A implies R 'u A, while the other rules are unchanged.

4.1 Basic Properties Revisited

The main properties we have proven for the unstratified system can be specialised
to the stratified one.

Proposition 4 (basic properties, stratified). The following properties hold
in the stratified system.

weakening. If R;Γ ' M : (A, e) and R,R′ ' Γ, Γ ′ then R,R′;Γ, Γ ′ ' M :
(A, e).

substitution. If R;Γ, x : A ' M : (B, e) and R;Γ ' N : (A, ∅) then R;Γ '
[N/x]M : (B, e).

subject reduction. If R,R′;' M, S : (B, e), R ' e, and M, S → M′, S′

then R,R′;' M′, S′ : (B, e), S|dom(R′) = S′
|dom(R′), and M, S|dom(R) →

M′, S′
|dom(R). Moreover, if M = M and R,R′;' M : (A, e) then M′ = M ′

and R,R′;' M ′ : (A, e).
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4.2 Interpretation

We describe a reducibility candidates interpretation that entails that typed pro-
grams terminate. We denote with SN the collection of strongly normalising
single-threaded programs, i.e., the programs of the shape M,S such that all
reduction sequences terminate. We write (M,S) ⇓ (N,S′) if M,S

∗−→ N,S′ and
N,S′ �→. We write R′ ≥ R, and say that R′ extends R, if R′ ' and R′ = R,R′′

for some R′′.
The starting idea is that the interpretation of R ' is a set of stores and the

interpretation of R ' (A, e) is a set of terms. One difficulty is that the stores
and the terms may depend on a region context R′ which extends R. We get
around this problem, by making the context R′ explicit in the interpretation.
Then the interpretation can be given directly by induction on the provability
of the judgements R ' and R ' (A, e). This is a notable simplification with
respect to the approach taken in [4] where a rather ad hoc well-founded order
on judgements is introduced to define the interpretation.

A second characteristic of our approach is that the properties a thread must
satisfy are specified with respect to a ‘saturated’ store which intuitively already
contains all the values the thread may write into it. This approach simplifies
the interpretation and provides a simple argument to extend the termination
argument from single-threaded to multi-threaded programs. Indeed, if we a have
a set of threads which are guaranteed to terminate with respect to a saturated
store then their parallel composition will terminate too. To see this, one can
reason by contradiction: if the parallel composition diverges then one thread
must run infinitely often and, since the threads cannot modify the saturated
store (what they write is already there), this contradicts the hypothesis that all
the threads taken alone with the saturated store terminate.

Finally, minor technical differences with respect to [4] is that we interpret
the subtyping rule (cf. discussion in section 3) and that our notion of reducibil-
ity candidate follows Girard rather than Stenlund-Tait (see [7] for a detailed
comparison and references).

Region-context. Let R = r1 : A1, . . . , rn : An and Rri = r1 : A1, . . . , ri−1 :
Ai−1, for i = 1, . . . , n. We interpret a region-context R as a set of pairs
R′ ' S where R′ is a region-context which extends R and S is a ‘saturated’
store whose domain coincides with R:

R = { R′ ' S | R′ ≥ R, dom(S) = dom(R), and for i = 1, . . . , n
S(ri) = {V | R′ ' V ∈ Rri ' (Ai, ∅)} }

If R′ ≥ R then R(R′) is defined as the store S such that R′ ' S ∈ R.
Note that, for r ∈ dom(R) and R = R1, r : A,R2, V ∈ R(R′)(r) means
R′ ' V ∈ R1 ' (A, ∅).

Type and effect. We interpret a type and effect R ' (A, e) as the set of pairs
R′ ' M such that R′ extends R, and M is a closed term typable with respect
to R′ and satisfying suitable properties (1-3 below):
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R � (A, e) = {R′ � M | (1) R′ ≥ R, R′; ∅ � M : (A, e),
(2) for all R′′ ≥ R′ M, R(R′′) ∈ SN , and
(3) for all M ′, S′, R′′ ≥ R′ (M, R(R′′)) ⇓ (M ′, S′)

implies S′ = R(R′′) and C(A, R,R′′, M ′) }

where: C(A,R,R′′,M ′) ≡
(A = 1 ⊃ M ′ = ∗) ∧
(A = RegrB ⊃ M ′ = r) ∧
(A = A1

e′
−→ A2 ⊃ M ′ = λx.N ∧

for all R1 ≥ R′′, R1 ' V ∈ R ' (A1, ∅)
implies R1 ' M ′V ∈ R ' (A2, e

′) ) .

Suppose R = r1 : A1, . . . , rn : An. We note that the interpretation of R depends
on the interpretation of r1 : A1, . . . , ri−1 : Ai−1 ' Ai for i = 1, . . . , n and
the interpretation of R ' (A, e) depends on the interpretation of R and, when

A = A1
e′
−→ A2, on the interpretation of R ' (A1, ∅) and R ' (A2, e

′). It is easily
verified that the definition of the interpretation is well founded by considering as
measure the height of the proof of the interpreted judgement. We also note that
such a well-founded definition would not be possible in the unstratified system.
For instance, the interpretation of r : A ' (A, ∅) where A = 1 r−→ 1 should refer
to a store containing values of type A. Finally, we stress that the interpretations
of R and R ' (A, e) actually contain terms typable in an extension R′ of R but
that their properties are stated with respect to a store whose domain is dom(R).
This is possible because the type and effect system does indeed delimit the effects
a term may have when it is executed (cf. remark 2).

4.3 Basic Properties of the Interpretation

We say that a term M is neutral if it is not a λ-abstraction. The following
proposition lists some basic properties of the interpretation. Similar properties
arise in the reducibility candidates interpretations used for ‘pure’ functional
languages, but the main point here is that we have to state them relatively to
suitable stores. In particular, the extension/restriction property, which is perhaps
less familiar, is crucial to prove the following soundness theorem 1.

Proposition 5 (properties interpretation). The following properties hold.

Weakening. If R′′ ≥ R′ ≥ R, R ' (A, e), and R′ ' M ∈ R ' (A, e) then
R′′ ' M ∈ R ' (A, e).

Extension/Restriction. Suppose R′′ ≥ R′ ≥ R and R ' (A, e). Then R′′ '
M ∈ R ' (A, e) if and only if R′′ ' M ∈ R′ ' (A, e).

Subtyping. If R ' (A, e) ≤ (A′, e′) then R ' (A, e) ⊆ R ' (A′, e′).
Strong normalisation. If R′ ' M ∈ R ' (A, e) and R′′ ≥ R′ then M,R(R′′) ∈

SN .
Reduction closure. If R′ ' M ∈ R ' (A, e), R′′ ≥ R′, and M,R(R′′) →

M ′, S′ then R′′ ' M ′ ∈ R ' (A, e) and S′ = R(R′′).
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Non-emptiness. If R ' A then there is a value V such that for all R′ ≥ R and
e ⊆ dom(R), R′ ' V ∈ R ' (A, e).

Expansion closure. Suppose R ' (A, e), R′ ≥ R, R′; ∅ ' M : (A, e), and M
is neutral. Then R′ ' M ∈ R ' (A, e) provided that for all R′′ ≥ R′,M ′, S′

such that M,R(R′′) → M ′, S′ we have that R′′ ' M ′ ∈ R ' (A, e) and
S′ = R(R′′).

Proof hint.

Weakening. We rely on proposition 4((syntactic) weakening) and the fact that,
the properties the pairs R′ ' M must satisfy to belong to R ' (A, e), must
hold for all the extensions R′′ ≥ R′.

Extension/Restriction. By definition, R(R′′) coincides with R′(R′′) on
dom(R). On the other hand, the proposition 4(subject reduction) guarantees
that the reduction of a term of type and effect (A, e) will not depend and will
not affect the part of the store whose domain is dom(R′)\dom(R). We then
prove the property by induction on the structure of the type A.

Subtyping. This is proven by induction on the the proof of R ' A ≤ A′.
Strong normalisation. This follows immediately from the definition of the

interpretation.
Reduction closure. We know that M,R(R′′) must normalise to a value sat-

isfying suitable properties and the same saturated store R(R′′). Moreover,
we know that the store can only grow during the reduction. We conclude
applying the weakening property.

Non-emptiness/Expansion closure. These two properties are proven at
once, by induction on the proof height of R ' (A, e). We take as values: ∗
for the type 1, r for a type of the shape RegrB, and the ‘constant function’
λx.V2 for a type of the shape A1

e1−→ A2 where V2 is the value inductively built
for A2. To prove λx.V2 ∈ R ' (A1

e1−→ A2, e), we use the inductive hypothesis
of expansion closure of R ' (A2, e1). ��

4.4 Soundness of the Interpretation

By definition, if R ' M ∈ R ' (A, e) then R;' M : (A, e). We are going to show
that the converse holds too. First we need to generalise the notion of reducibility
to open terms.

Definition 1 (term interpretation). We write R;x1 : A1, . . . , xn : An |= M :
(B, e) if whenever R′ ≥ R and R′ ' Vi ∈ R ' (Ai, ∅) for i = 1, . . . , n we have
that R′ ' [V1/x1, . . . , Vn/xn]M ∈ R ' (B, e).

As usual, the main result can be stated as the soundness of the interpretation
with respect to the typing rules. Since terms in the interpretation are strongly
normalising relatively to a saturated store (cf. proposition 5), it follows that
typable (closed) terms are strongly normalising.

Theorem 1 (soundness). If R;Γ ' M : (B, e) then R;Γ |= M : (B, e).
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Proof hint. The proof goes by induction on the typing of the terms and exploits
the properties of the interpretation stated in proposition 5. As usual, the case
of the abstraction is proven by appealing to expansion closure and the case
of application follows from the very interpretation of the functional types and
reduction closure. The cases where we write or read from the store have to be
handled with some care. We discuss a simplified situation. Suppose R′ ≥ R =
R1, r : A,R2.

write. Suppose R;' set(r, V ) : (1, {r}) is derived from R;' V : (A, ∅). Then,
by induction hypothesis, we know that R′ ' V ∈ R ' (A, ∅). However, for
maintaining the invariant that the saturated store is unchanged, we need
to show that R′ ' V ∈ R1 ' (A, ∅), and this is indeed the case thanks to
proposition 5(restriction).

read. Suppose we have R′;' get(r) : (A, {r}). Now notice that proposition
5(non-emptiness) guarantees that R(R′)(r) is not empty. Thus get(r), R(R′)
will reduce to V,R(R′) for some value V such that R′ ' V ∈ R1 ' (A, ∅).
However, what we need to show is that R′ ' V ∈ R ' (A, ∅) and this is
indeed the case thanks to proposition 5(extension). ��

Corollary 1 (termination). (1) The judgement R;' M : (A, e) is provable if
and only if R ' M ∈ R ' (A, e).
(2) Every typable multi-threaded program R;' M1, . . . ,Mn : (B, e) terminates.

Corollary 1(1), follows from theorem 1 taking the context Γ to be empty. Corol-
lary 1(2) follows from the fact that each thread strongly normalizes with respect
to a saturated store. Then its execution is not affected by the execution of other
threads in parallel: all these parallel threads could do is to write in the saturated
store values which are already there.

5 Extensions

In this section we sketch two extensions of our basic model. The first simple
one (section 5.1) concerns the possibility of generating dynamically new threads
while the second (section 5.2) is a bit more involved and it concerns the notion
of timed/synchronous computation.

5.1 Thread Generation

In the presented system, the number of threads is constant. We describe a sim-
ple extension that allows to generate new threads during the execution. Namely,
(1) we regard a multi-set of terms M1, . . . ,Mn as a term of behaviour type
B and (2) we abstract terms of behaviour type B producing terms of type
(A e−→ B) for some type A, e (this formalisation is inspired by [2](chpt. 16)). It
is straightforward to extend the rules for the formation of region contexts and
types and for subtyping to take into account the behaviour type B. Similarly, the
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typing rules for abstraction and application are extended to take into account
the situation where the codomain of the functional space is B. The full definition
of this system is [1]. In this extended system, we can then type, e.g., a term that
after performing an input will start two threads in parallel: (λx.(M,N))get(r)
which would be written in, say, the π-calculus as r(x).(M | N).

In order to show termination of this extended language, we have to define the
interpretation of the judgement R ' (B, e). To this end, it is enough to extend
the definition in section 4.2 by requiring that a term in R ' (B, e) when run
in the saturated store will indeed terminate without modifying the store and
produce a multi-set of values. Formally, we add the condition ‘A = B ⊃ M ′ =
V1, . . . , Vn, n ≥ 1’ to the definition of the predicate C. We can then lift our results
to this system leaving the structure of the proofs unchanged.

5.2 Synchrony/Time

We consider a timed/synchronous extension of our language. Following an estab-
lished tradition, we consider that the computation is divided into instants and
that an instant ends when the computation cannot progress. Then we need at
least an additional operator that allows to write programs that react to the end
of the instant by changing their state in the following instant. We shall see that
the termination of the typable programs can be obtained by mapping reductions
in the extended language into reductions in the core language.

Syntax and Reduction. We extend the collection of terms as follows: M ::= · · · ||
M � M , where the operator else-next, written M � N , tries to run M and, if it
fails, runs N in the following instant (cf. [8]). We extend the evaluation contexts
assuming: E ::= · · · || E �M , and the elementary evaluation contexts assuming:
El ::= · · · || [ ] � M .

We define a simplification operator red that removes from a context all pending
branches else-next:

red(E) =

⎧⎨⎩ [ ] if E = [ ]
red(E′) if E = E′ � N
El [red(E′)] otherwise, if E = El [E′]

We say that an evaluation context E is time insensitive if red(E) = E. We adapt
the reduction rules defined in section 2 as follows:

E[(λx.M)V ] → red(E)[[V/x]M ]
E[get(r)], (r ⇐ V ) → red(E)[V ], (r ⇐ V )
E[set(r, V )] → red(E)[∗], (r ⇐ V ) .

Further, we have to describe how a program reacts to the end of the computation.
This is specified by the relation tick−−→ below:
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V
tick−−→ V S

tick−−→ S

M = E[get(r)] E time insensitive

M
tick−−→ M

M = E[E′[Δ] � N ] Δ ::= V || get(r)
E time insensitive

M
tick−−→ E[N ]

Pi
tick−−→ P ′

i i = 1, 2
P1, P2 �→

P1, P2
tick−−→ P ′

1, P
′
2

.

For instance, we can write (λx.M)get(r)�N for a thread that tries to read a value
from the region r in the first instant and if it fails it resumes the computation
with N in the following instant. We can also write ∗ � N for a thread that
(unconditionally) stops its computation for the current instant and resumes it
with N in the following instant.

Note that P tick−−→ only if P �→. The converse is in general false, but it holds for
well-typed closed programs (details in [1]). Thus for well-typed closed programs
the principle is that time passes (a tick−−→ transition is possible) exactly when the
computation cannot progress (a → transition is impossible). Then termination
is obviously a very desirable property of timed/synchronous programs.

Typing. The typing rules for the terms are extended as follows:

R;Γ ' M : (A, e) R;Γ ' N : (A, e′)
R;Γ ' M �N : (A, e)

.

Note that in typing M � N we only record the effect of the term M , that is
we focus on the effects a term may produce in the first instant while neglecting
those that may be produced at later instants.

Reduction. The decomposition proposition 1 can be lifted to the extended lan-
guage. There is a third case to be considered besides the two arising in proposi-
tion 1 which corresponds to the situation where the redex is under the scope of
an else-next. More precisely, in the third case a closed term M is decomposed
as E[E′[Δ] � N ] where E is a time insensitive evaluation context and Δ has the
shape V , (λx.N)V , set(r, V ), or get(r).

Focusing on the stratified case, one can adapt the weakening, substitution,
and subject reduction properties whose proofs proceed as in proposition 4. The
preservation of the type information by the passage of time (tick reduction) can
be stated as follows.

If R;' M, S : (B, e), and M, S
tick−−→ M′, S′ then S = S′ and there is an

effect e′ such that R;' M′, S : (B, e′).

Notice that the effect of the reduced term might be incomparable with the effect
of the term to be reduced. Still the following context substitution property allows
to conclude that the resulting term is well-typed.

If R;Γ, x : A ' E[x] : (B, e) where x is not free in the evaluation context
E and R;Γ ' N : (A, e′) then R;Γ ' E[N ] : (B, e ∪ e′).
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Translation. We consider a translation that removes the else-next operator while
preserving typing and reduction. Namely, we define a function 〈 〉 on terms such
that 〈M � N〉 = 〈M〉, 〈x〉 = x, 〈∗〉 = ∗, 〈r〉 = r, and which commutes with
the other operators (abstraction, application, reading, and writing). Also the
translation is extended to stores and programs in the obvious way: 〈(r ⇐ V )〉 =
(r ⇐ 〈V 〉), 〈X1, . . . , Xn〉 = 〈X1〉, . . . , 〈Xn〉.

Proposition 6 (simulation). (1) If R;Γ ' M : (A, e) then R;Γ ' 〈M〉 :
(A, e).
(2) If R;Γ ' P : (B, e) then R;Γ ' 〈P 〉 : (B, e).
(3) If R;' P : (B, e) and P → P ′ then 〈P 〉 → 〈P ′〉.
(4) A program P terminates if 〈P 〉 terminates.

The proof of this proposition is direct. In particular, to prove (3) we show that
the translation commutes with the substitution and that the translation of an
evaluation context is again an evaluation context.

Fixed-point, revisited. The typing rule (2) proposed for the fixed-point combi-
nator cannot be applied in the stratified system as the condition r : A e−→ B ∈ R
and r ∈ e cannot be satisfied. However, we can still type recursive calls that
happen in a later instant.

Proposition 7 (type fixed-point, revisited). The following typing rule for
the fixed point combinator is derived in the stratified system

R;Γ, f : A
e∪{r}−−−−→ B ' M : (A e−→ B, ∅) r : A e−→ B ∈ R

R;Γ ' fixrf.M : (A
e∪{r}−−−−→ B, ∅)

(3)

We prove this proposition by a direct application of the typing rules and the
substitution property (details in [1]). To see a concrete example where the rule
can be applied, consider a thread that at each instant writes an integer in a
region r′ (we assume a basic type int of integers):

M = λx.(λz. ∗ �f(x + 1))(set(r′, x))

Then, e.g., (fixrf.M)1 is the infinite behaviour that at the i-th instant writes i
in region r′. One can check the typability of fixrf.M taking as (stratified) region

context R = r′ : int , r : int
{r′}−−−→ 1.

6 Conclusion

We have introduced a λ-calculus with regions as an abstraction of a variety of
concrete higher-order concurrent languages with specific scheduling and inter-
action mechanisms. We have described a stratified type and effect system and
provided a new reducibility candidates interpretation for it which entails that
typable programs terminate.
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We have highlighted some relevant properties of the interpretation (proposi-
tion 5) which could be taken as the basis for an abstract definition of reducibility
candidate. The latter is needed to interpret second-order (polymorphic) types
(see, e.g., [7]). We believe the proposed proof is both more general because it
applies to a variety of interaction mechanisms and scheduling policies and sim-
pler to understand because the interpretation is given by a direct induction on
the proof system and because the invariant on the store is easier to manage (the
store is not affected by the reduction). This is of course a subjective opinion and
the reader who masters [4] may well find our revised treatment superfluous.

We have also lifted our approach to a timed/synchronous framework and de-
rived a form of recursive definition which is useful to define behaviours spanning
infinitely many instants.
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Abstract. We study the resource calculus – the non-lazy version of
Boudol’s λ-calculus with resources. In such a calculus arguments may
be finitely available and mixed, giving rise to nondeterminism, modelled
by a formal sum. We define parallel reduction in resource calculus and
we apply, in such a nondeterministic setting, the technique by Tait and
Martin-Löf to achieve confluence. Then, slightly generalizing a technique
by Takahashi, we obtain a standardization result.

1 Introduction

In the ‘90s Boudol introduced resource calculus [1] – an extension of λ-calculus
where arguments may come in limited availability and mixed together. Boudol’s
main motivation was studying a finer observational equivalence, arriving in par-
ticular to the one given by π-calculus via Milner’s translation [2].

The main difference with ordinary λ-calculus is the renewal of the application
of a function to an argument along two directions: on the one hand by introducing
depletable arguments that must be used exactly once, on the other by letting
the arguments come in multisets. Resource calculus is similar to Ehrhard and
Regnier’s differential λ-calculus [3]: the application of a function f to a linear
argument corresponds, in the terminology of [3], to applying the derivative of f
in 0 (which is a linear map) to that argument. Indeed, the second author shows
in [4] that resource calculus corresponds to the intuitionistic minimal fragment
of differential nets with promotion [5], exactly as λ-calculus corresponds to the
intuitionistic minimal fragment of linear logic proof-nets [6]. This translation
is therefore built on top of the proofs-as-programs correspondence, thus linking
a language for nondeterministic programs with a new kind of nondeterministic
proofs, the differential nets of differential linear logic.

Let us give a sample of resource calculus by means of an example. Let

I := λz.z D := λdz.z[d!][d!] B := λxy.I[x!, y!] M := λb.b[(b[d!][D[a]])
!
][c!],

where we follow the definition of the syntax as given in Figure 1(a). I is the stan-
dard λ-calculus identity. D is a standard λ-term too: it is λdz.zdd. The slight
� Partially founded by the French ANR project blanc CHOCO, ANR-07-BLAN-0324.

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 226–242, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Parallel Reduction in Resource Lambda-Calculus 227

difference is only in the notation: we write the two arguments of z with a bang
as superscript, emphasizing the fact that they are infinitely available arguments,
and provide them as two distinct multiset singletons, delimited by brackets and
called bags. This way of writing the application comes from Girard’s linear logic [6]:
indeed !-marked arguments (called perpetual) correspond exactly to exponential
boxes (see [4]), the synchronized areas of proofs viable for non-linear operations
(duplication and erasing). Along the same lines, the multiset bag constructor is
semantically justified by several denotational models of linear logic, by their in-
terpretation of the exponential modality.

Let us resume our example. The term B shows nondeterministic application:
I is applied to a bag of two (infinitely available) terms, x and y. The term M
is very like to the λ-term λb.b(bd(Da))c, a nesting of two if then else with
arguments d, Da and c (if b is fed with a boolean). All bags contain exactly
one element, modelling deterministic λ-calculus application. However the bags
[D[a]] and, inside it, [a] contain an element with no ! superscript, which sets the
term apart from ordinary λ-calculus. This means that the argument D[a] (resp.
a) must be used exactly once by the function which is applied to [D[a]] (resp.
[a]). Let us evaluate M [B!] following the reduction of Definition 4.

M [B!] −→ B[(B[d!][D[a]])!][c!] −→
(
λy.I[(B[d!][D[a]])!, y!]

)
[c!]

−→ I[(B[d!][D[a]])!, c!]

(1)

−→ B[d!][D[a]] + c −→
(
λy.I[d!, y!]

)
[D[a]] + c −→ I[d!, D[a]] + c (2)

−→ D[a] + c −→ λz.z[a]1 + λz.z1[a] + c. (3)

The steps in line (1) of the example are akin to ordinary λ-calculus ones: we
have a λ-abstraction fed with a bag containing exactly one infinitely available
element. The step from line (1) to line (2) is a nondeterministic one, the argument
of I being a bag with two elements, whence we have a sum of the two possible
results. Sums intuitively correspond to a version of nondeterminism where the
actual choice operation is left outside the calculus: the result of a term reduction
will in general be a large formal sum of terms. The next steps in line (2) are again
standard λ-calculus ones. The last term of line (2) has the nondeterministic redex
I[d!, D[a]]. One could be tempted to contract the redex into d+D[a], analogously
to the previous nondeterministic step, but in this case the element D[a] occurs
linearly in the bag, hence only the choices using D[a] exactly once are allowed.
Specifically I[d!, D[a]] −→ D[a]. Finally the last step has also a nondeterministic
feature, this time due to a concurrency effect. Indeed in the redex D[a], the
function D encodes a pair where both the left and right components ask for
the abstracted variable d. However the redex has only one linear occurrence of a
available, for which the left and right components are in concurrency for fetching
it. We thus have two possible outcomes, depending on which component takes
linearly a while forcing the other to collapse to 1 i.e. the empty multiset.

In this paper we prove two basic properties of resource calculus — confluence
(Theorem 4) and standardization (Theorem 6). Confluence does not contradict
nondeterminism because the result of a nondeterministic reduction is a sum of
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Λ: M, N, L ::= x | λx.M | (MP ) terms
Λarg: M (!), N (!) ::= M | M ! arguments
Λb: P, Q, R ::= [M (!)

1 , . . . , M
(!)
n ] bags

Λ(b): A, B ::= M | P expressions
μ, ν ∈ N〈Λ〉 π, ρ ∈ N〈Λb〉 α, β, γ ∈ N〈Λ(b)〉 := N〈Λ〉 ∪ N〈Λb〉 sums

(a) Grammar of terms, bags, expressions, sums.

λx.(
P

i Mi) :=
P

i λx.Mi [(
P

i Mi)]·P :=
P

i[M ]i ·P
(
P

i Mi)P :=
P

i MiP [(
P

i Mi)!]·P := [M !
1, . . . , M

!
k]·P

M(
P

i Pi) :=
P

i MPi.

(b) notation on N〈Λ(b)〉.

Fig. 1. Syntax of resource calculus

terms. It remains meaningful, as it states that nondeterminism is really internal,
and not caused by what an evaluator chooses to reduce. We achieve Theorem 4
by adapting the technique by Tait and Martin-Löf, using a suitable notion of
parallel reduction (Definition 6). A similar result is in [3] where confluence of
differential λ-calculus is proven. However our proof is somewhat simpler, using a
notion of development (Definition 7) as defined by Takahashi [7] for λ-calculus.
The result is at the same time proved for the outer reduction, which is meaningful
for the standardization theorem.

A reduction step is inner if the redex to be contracted is under the scope
of a bang, otherwise it is outer (Definition 5). Standardization states that ev-
ery reduction chain can be split into a concatenation of outer steps followed by
inner ones (Theorem 6). In λ-calculus such a result turned out to be fundamen-
tal for designing abstract machines computing (weak, head) normal forms, thus
giving the theoretical justification of actual evaluators of functional languages.
Although in our setting standardization does not give immediately a determin-
istic normalizing strategy (Example 1), it will help in implementing abstract
machines for resource calculus, which can in turn also help in analyzing resource
usage by ordinary λ-calculus programs [8]. Our proof of standardization adapts
the one by Takahashi for λ-calculus, based on parallel reduction and inner par-
allel reduction [7]. Actually our notion of inner parallel reduction (Definition 8)
is quite peculiar, possibly yielding a slight generalization of such technique.

We conclude the paper by discussing another, more atomic reduction of re-
source terms, called baby-step reduction in [4] (here Definition 10). Although
confluence of baby-step reduction is an easy consequence of Theorem 4 (Theo-
rem 7), we show how baby-step standardization fails in general, though it holds
for normal and head normal forms (Theorem 8).

2 Syntax and Reduction

We will now introduce resource calculus. Though the “protagonists” are terms,
for the ease of proofs it is best to present also other types of syntactic entities.
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y〈N/x〉 :=

(
N if y = x,
0 otherwise,

[M ]〈N/x〉 := [M〈N/x〉],
[M !]〈N/x〉 := [M〈N/x〉, M !],

(λy.M)〈N/x〉 := λy.(M〈N/x〉), y /∈ FV(N) ∪ {x},
(MP )〈N/x〉 := M〈N/x〉P + M(P 〈N/x〉),

1〈N/x〉 := 0,

(P ·R)〈N/x〉 := P 〈N/x〉·R + P ·R〈N/x〉.
(a) Linear substitution.

A〈〈N (!)/x〉〉 :=

(
A〈N/x〉 if N (!) = N ,
A {x + N/x} if N (!) = N !,

A〈〈[N (!)
1 , . . . , N

(!)
k ]/x〉〉 := A〈〈N (!)

1 /x〉〉 · · · 〈〈N (!)
k /x〉〉, x /∈

k[
i=1

FV(N (!)
i ).

(b) Argument and bag substitutions.

Fig. 2. Linear, argument and bag substitutions. Notice that the condition on bag
substitution can always be achieved by renaming.

We thus introduce the calculus as a many-sorted one: the grammars for gen-
erating terms Λ and bags Λb (which are in fact multisets of arguments Λarg)
is presented in Figure 1(a) together with their typical metavariables. Λ(b) (ex-
pressions) denotes either terms or bags. As we already mentioned, we also have
formal sums, denoted by the N〈 . 〉 notation (as formal sums are the freely gen-
erated modules over natural numbers). However in N〈Λ(b)〉, rather than taking
freely generated sums, we allow only objects of the same sort to be summed.

Bags are multisets presented in multiplicative notation, so that P ·Q is multiset
union, and 1 = [ ] is the empty bag. It must be noted though that we will never
omit the dot ·, to avoid confusion with application.

The grammar for terms and bags does not include sums in any point, so that
in a sense they may arise only on the “surface”. However as an inductive notation
(and not in the actual syntax) we extend all the constructors to sums as shown
in Figure 1(b). In fact all constructors but the (·)! are, as expected, linear. Notice
the similarity between the equation [(M + N)!] = [M !]·[N !] and ex+y = ex·ey:
this is not a coincidence, as Taylor expansion and semantics show well [9], and
can be traced back to linear logic’s exponential isomorphism !A⊗ !B ∼= !(A&B).

There is no technical difficulty in defining α-equivalence and the set FV(α) of
free variables as in ordinary λ-calculus.

Definition 1 (Substitutions). We define the following substitution operators.

1. A {N/x} is the usual capture free substitution of N for x. It is extended to
sums as in α {β/x} by linearity1in α and using the notations of Figure 1(b)
for β. The form A {x + N/x} is called partial substitution.

2. A〈N/x〉 is the linear substitution defined inductively in Figure 2(a). It is
extended to α〈β/x〉 by bilinearity in both α and β.

1 F (A) (resp. F (A,B)) is extended by linearity (resp. bilinearity) by setting
F

(∑
i Ai

)
=

∑
i F (Ai) (resp. F

(∑
i Ai,

∑
j Bj

)
=

∑
i,j F (Ai, Bj)).
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3. Argument substitution A〈〈N (!)/x〉〉 and its iteration A〈〈P/x〉〉, the bag substi-
tution, are shown in Figure 2(b). Notice that A〈〈1/x〉〉 = A. Bag substitution
is further generalized to α〈〈π/x〉〉 by bilinearity in both α and π.

As examples we show (supposing x not free in M,N):

x[x!] {M + N/x} = (M + N)[(M + N)!] = M [M !, N !] + N [M !, N !],

x[x!]〈M + N/x〉 = x[x!]〈M/x〉 + x[x!]〈N/x〉
= M [x!] + x[M,x!] + x[N, x!] + N [x!],

x[x!]〈〈[M,N !]/x〉〉= M [x!] {x + N/x} + x[M,x!] {x + N/x}
= M [N !, x!] + x[M,N !, x!] + N [M,N !, x!].

The definition of the linear substitution on a product of bags is clearly well
defined regardless of the decomposition of the bag. On the other hand in order
for the bag substitution to be well defined, we need to know that argument
substitutions can be freely commuted. Commutation of linear substitutions is
obtained from the so-called Schwartz lemma, a name due to linear substitution
corresponding to partial derivation2. Both of the following lemmas are proved
by structural induction (for details we refer to [3]).

Lemma 1 (Schwartz). For α a sum of expressions, μ, ν sums of terms and
x, y variables such that y /∈ FV(μ), we have(

α〈ν/y〉
)
〈μ/x〉 =

(
α〈μ/x〉

)
〈ν/y〉 + α〈ν〈μ/x〉/y〉.

In particular if x /∈ FV(ν) then the second addend is 0 and the two substitutions
commute.

Lemma 2. For α, μ, ν, x, y as in the above lemma, and moreover y /∈ FV(ν),
we have(

α {y + ν/y}
)
〈μ/x〉 =

(
α〈μ/x〉

)
{y + ν/y} + α〈ν〈μ/x〉/y〉 {y + ν/y} .

In particular if x /∈ FV(ν) then the two commute.

Furthermore we have, if x /∈ FV(μ) ∪ FV(ν),

(α {x + μ/x}) {x + ν/x} = α {x + μ + ν/x} = (α {x + ν/x}) {x + μ/x} .

Combined together, all the above implies that bag substitution is well defined,
given its condition on the variable. We give another result we will need later.

Lemma 3. If y /∈ FV(μ) ∪ FV(π) and x �= y, then

– α〈〈π/y〉〉〈μ/x〉 = α〈μ/x〉〈〈π/y〉〉 + α〈〈π〈μ/x〉/y〉〉, and
– α {0/y} 〈μ/x〉 = α〈μ/x〉 {0/y}.

2 Indeed, notice the parallel between ∂ey

∂x
= ∂y

∂x
ey and [M !]〈N/x〉 = [M〈N/x〉]·[M !].
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M R μ
λ

λx.M R λx.μ

M R μ
@l

MP R μP

P R π @r
MP R Mπ

M R μ
bag�

[M ]·P R [μ]·P
M R μ

bag!
[M !]·P R [μ!]·P

A R α sum
A + β R α + β

Fig. 3. Rules defining the passing to the context of a relation R. For linear context, one
just drops the bag! rule.

Proof. Sums pose no problems. Let us therefore reason, for the first point, by
induction on π = P . For P = 1 it amounts to seeing α〈μ/x〉 = α〈μ/x〉+α〈〈0/y〉〉.
For P = P ′ ·[L] we have by Schwartz lemma and inductive hypothesis:

α〈〈P ′/y〉〉〈L/y〉〈μ/x〉 = α〈〈P ′/y〉〉〈μ/x〉〈L/y〉 + α〈〈P ′/y〉〉〈L〈μ/x〉/y〉
= α〈μ/x〉〈〈P ′ ·[L]/y〉〉+ α〈〈(P ′〈μ/x〉)·[L]/y〉〉 + α〈〈P ′ ·([L]〈μ/x〉)/y〉〉

= α〈μ/x〉〈〈P/y〉〉 + α〈〈
(
(P ′〈μ/x〉)·[L] + P ′ ·([L]〈μ/x〉)

)
/y〉〉

= α〈μ/x〉〈〈P/y〉〉 + α〈〈P 〈μ/x〉/y〉〉.

For P = P ′ ·[L!] we have by Lemma 2 and inductive hypothesis:

α〈〈P ′/y〉〉 {y + L/y} 〈μ/x〉
= α〈〈P ′/y〉〉〈μ/x〉〈〈L!/y〉〉 + α〈〈P ′/y〉〉〈L〈μ/x〉/y〉〈〈L!/y〉〉

= α〈μ/x〉〈〈P ′ ·[L!]/y〉〉 + α〈〈P ′〈μ/x〉·[L!]/y〉〉 + α〈〈P ′ ·[L〈μ/x〉, L!]/y〉〉
= α〈μ/x〉〈〈P/y〉〉 + α〈〈(P ′ · [L!])〈μ/x〉/y〉〉 = α〈μ/x〉〈〈P/y〉〉 + α〈〈P 〈μ/x〉/y〉〉.

The second point is a straightforward induction on α. ��

2.1 Relations

We will now introduce the relations defining reductions in resource calculus. Such
relations will be in general defined by rules with premises and a conclusion.
Such rules then generate the relation R, meaning that R is the least relation
satisfying them, or equivalently is defined by inferences, i.e. trees made of such
rules. A relation T satisfies the rules generating a relation R if such rules with T
substituted for R are valid: then clearly R ⊆ T. We will use this to avoid repeating
identical steps in proofs by induction on the size of an inference of R. We denote
composition of relations by juxtaposition, so that a RT b iff ∃c s.t. a R c and
c T b.

Definition 2 (Passing to the context). A binary relation R on N〈Λ(b)〉 passes
to the context (resp. to the linear context) whenever it satisfies all the rules of
Figure 3 (resp. all the rules but the bag! rule).

Definition 3 (Compatibility). We take a binary relation R on N〈Λ(b)〉 to be
compatible if it commutes with all constructors of N〈Λ(b)〉, i.e. it satisfies all the
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var
x R x

M R μ P R π
@MP R μπ

M R μ
λλx.M R λx.μ

bag1
1 R 1

M R μ P R π
bag�

[M ]·P R [μ]·π
M R μ P R π

bag!
[M !]·P R [μ!]·π

Ai R αi, for 1 ≤ i ≤ k
sumPk

i=1 Ai R
Pk

i=1 αi

Fig. 4. Rules defining the compatibility for a relation R. In sum, 0 ≤ k �= 1.

rules of Figure 4. We write of linear compatibility when commutation is with
all constructs but the (·)! one: formally, R is linearly compatible if it satisfies all
rules for compatibility but the bag! one, which is replaced by

P R π
bag!=

[M !]·P R [M !]·π

Lemma 4. A (linearly) compatible relation R is necessarily reflexive and passing
to (linear) context.

Proof. Reflexivity is evident as soon as one sees that equality is precisely the
relation generated by the rules for both linear and regular compatibility. One
then sees that all rules for passing to (linear) context are admissible under the
rules for (linear) compatibility, by using reflexivity. ��

We write that a relation is sum-independent if
∑

i Ai R α implies that α =
∑

i βi

with Ai R= βi for all i, where R= is the reflexive closure of R. All the relations we
study here are sum-independent, a notion capturing the fact that no interaction
is possible between different addends of a sum. If the only rules introducing a
sum on the left are among the two for passing to context (sum) or compatibility
(sum), the generated relation is clearly sum-independent.

Further, we speak of a generalized rule meaning a rule where all expressions
in it are replaced by sums (using the notations of Figure 1(b) in the conclusion).
A relation strongly satisfies a rule if it satisfies its generalized version.

Lemma 5. The reflexive transitive closure R∗ of a sum-independent relation R
passing to (linear) context is sum-independent and (linearly) compatible.

Proof. (sketch) Sum-independence is immediate. Then, by going through all
passing to (linear) context rules, one sees that each one is strongly satisfied,
which enables to easily check that also compatibility rules are. All single pas-
sages are carried out by inductions on the reduction length.

Lemma 6. A (linearly) compatible sum-independent relation R strongly satisfies
the rules for (linear) compatibility.

Proof. (sketch) Straightforward check of all the rules.
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Definition 4 (β-Reduction). The β-reduction −→ is given by the rules for pass-
ing to the context (Figure 3) plus the following one:

g
(λx.M)P −→ M〈〈P/x〉〉 {0/x}

For an example of reduction, see the one given in the introduction. In [4,10] this
reduction is called the giant-step one (hence the name of the rule) to distinguish
it from the baby-step one we will discuss in Section 5.

Definition 5 (Outer, Inner Reduction). The outer reduction is the relation
o−→ generated by the rule g of Definition 4 and the rules of passing the linear con-
text (Figure 3 but the bag! rule). The inner reduction is the relation i−→ generated
by the rules of passing the context and the following rule

M
o−→ μ

in
[M !]·P i−→ [μ!]·P

Informally, outer reduction is the one reducing linear redexes not inside a (·)!,
inner is the rest. The rules we have provided for the inner reduction allow for more
neat proofs. Notice the difference between o−→ and the λ-calculus head reduction:
we have

(
λx.(λy.y)[N !]

)
[L!] o−→ (λx.N)[L!], which is false for head reduction. We

will see in Example 1 how usual head redexes are not sufficient for reaching head
normal forms, and linear arguments are to be taken into account as well. At this
point we decided, mainly for the sake of elegance, to extend the notion to all
linear redexes, even if under the scope of another linear redex.

Fact 1. We have that −→ = o−→∪ i−→ as is expected: o−→∪ i−→ satisfies the rules of
−→, and −→ those of both o−→ and i−→.

Fact 2. Using Lemma 6 one can also easily check that the relations ∗−→, i∗−→
and o∗−→ are sum-independent and strongly satisfying all of the rules for (linear)
compatibility.

3 Confluence

Definition 6 (Parallel reduction). The parallel reduction ⇒ (resp. the par-
allel outer reduction o⇒) is generated by the compatibility rules (resp. the linear
compatibility rules) plus the following one:

M ⇒ μ P ⇒ π
g

(λx.M)P ⇒ μ〈〈π/x〉〉 {0/x}

Fact 3. ⇒ and o⇒ are sum-independent and strongly satisfying all of their rules:
by Lemma 6 only the new rule must be checked, which is immediate by multi-
linearity of the substitution operator.



234 M. Pagani and P. Tranquilli

We will thus be liberal when saying we apply one of the rules for parallel reduc-
tion, by allowing them with sums of expressions in the premises.

Lemma 7 (Closures coincide). We have that −→ ⊆ ⇒ ⊆ ∗−→. In particular
∗−→ = ∗⇒ The same holds for o−→ and o⇒.

Proof. We show both inclusions by seeing that the right end satisfies the rules
of the left one. For the first inclusion, by Lemma 4 just the g rule needs to be
checked. This is straightforward by the g rule and reflexivity of ⇒ (Lemma 4).
For the second inclusion, by Lemma 5 only the g rule must be checked. Suppose
therefore that M

∗−→ μ and P
∗−→ π. By compatibility of ∗−→ (Lemma 5) we have

(λx.M)P ∗−→ (λx.μ)π ∗−→ μ〈〈π/x〉〉 {0/x} , where the last reduction (given by g) is
by compatibility with sum. The distinction between −→ and o−→ is left to Lemma 5.

��

Lemma 8 (Substitution for ⇒). For α ⇒ β and π ⇒ σ we have α〈〈π/x〉〉 ⇒
β〈〈σ/x〉〉 and α {0/x} ⇒ β {0/x}. The same holds for o⇒.

Proof. For the first result we reason by a primary induction on the size of π.
We proceed by splitting over the last rule used to infer π ⇒ σ. The proof for o⇒
proceeds almost identically, and we will highlight only its differences.
Case I (bag1, π = 1 = σ). As α〈〈1/x〉〉 = α ⇒ β = β〈〈1/x〉〉 we are done.
Case II (bag!, π = [N !]·Q). We have σ = [ν!]·τ with N ⇒ ν (ν = N for o⇒)
and Q ⇒ τ . Once we show that α {x + N/x} ⇒ β {x + ν/x} = β〈〈[ν!]/x〉〉 we
would be done, as by inductive hypothesis on Q we would get

α〈〈π/x〉〉 = α {x + N/x} 〈〈Q/x〉〉 ⇒ β〈〈[ν!]/x〉〉〈〈τ/x〉〉 = β〈〈σ/x〉〉.

We show it by induction on α. All but the base step for α a variable is trivial,
as the substitution commutes with all the constructors, and ⇒ is strongly com-
patible with them by Fact 3. For o⇒, in the case α = [M !], we have β = α and
there is nothing to prove. If α = y = β we have

y {x + N/x} = y + δx,yN ⇒ y + δx,yν = y〈〈[ν!]/x〉〉.

Case III (bag
, π = [N ]·Q). As in the above case, we just need to show that
α〈N/x〉 ⇒ β〈ν/x〉 when N ⇒ ν, as then the rest follows by inductive hypothesis
on Q. Again we reason by a secondary induction on α, splitting on which rule
was last used to infer α ⇒ β. Apart the base cases var, bag1, the other cases
uses secondary induction hypothesis and the strong compatibility of ⇒ (resp.
strong linear compatibility of o⇒).
Subcase III.a (var). We have α = y = β, and y〈N/x〉 = δx,yN ⇒ δx,yν =
y〈〈[ν]/x〉〉.
Subcase III.b (@). We have α = MR with M ⇒ μ, R ⇒ ρ and β = μρ. Then

α〈N/x〉 = M〈N/x〉R + MR〈N/x〉 ⇒ μ〈ν/x〉ρ + μρ〈ν/x〉 = (μρ)〈ν/x〉.
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x∗ := x, 1∗ := 1,

(λx.M)∗ := λx.M∗, [N ]∗ := [N∗],

(MP )∗ := M∗P ∗ if M is not an abstraction, [N !]∗ := [(N∗)!],

((λx.M)P )∗ := M∗〈〈P ∗/x〉〉 {0/x} , (P ·Q)∗ := (P ∗ ·Q∗).

Fig. 5. Inductive definition of developments

Subcase III.c (g). α = (λy.M)R, with M ⇒ μ, R ⇒ ρ and β = μ〈〈ρ/y〉〉 {0/y},
and by inductive hypothesis M〈N/x〉 ⇒ μ〈ν/x〉 and R〈N/x〉 ⇒ ρ〈ν/x〉. Now,
supposing y �= x and y �∈ FV(N) ⊇ FV(ν),

α〈N/x〉 = (λy.M〈N/x〉)R + (λy.M)(R〈N/x〉)
⇒ μ〈ν/x〉〈〈ρ/y〉〉 {0/y} + μ〈〈ρ〈ν/x〉/y〉〉 {0/y}

= μ〈〈ρ/y〉〉〈ν/x〉 {0/y} = μ〈〈ρ/y〉〉 {0/y} 〈ν/x〉,

where apart the inductive hypothesis we used Lemma 3.
Subcase III.d (otherwise). The other inductive steps are either trivial or easily
carried over by using arguments like the above.
Case IV (sum, π = P1 + · · · + Pk). We have α〈〈π/x〉〉 =

∑
i α〈〈Pi/x〉〉 and

σ =
∑

i ρi with Pi ⇒ ρi. We can apply inductive hypothesis k times and the sum
rule to get

α〈〈π/x〉〉 =
∑

i α〈〈Pi/x〉〉 ⇒
∑

i β〈〈ρi/x〉〉 = β〈〈σ/x〉〉.

The result for α {0/x} is an easy induction on the derivation α ⇒ β. ��

Definition 7 (Developments α∗ and α�). Given an expression A its de-
velopment A∗ ∈ N〈Λ(b)〉 is defined inductively in Figure 5. The definition is
extended to sums by linearity. The linear development α� is defined by the same
inductive rules (just replace ∗ with �), but for [N !] where [N !]� := [N !].

The name is due to the fact that it is a direct definition of the unique normal
form one would get in proving the finite development theorem.

Lemma 9 (Main Lemma). For any β such that α ⇒ β (resp. α
o⇒ β), we

have β ⇒ α∗ (resp. β o⇒ α�).

Proof. By induction on α, splitting on the last rule used for α ⇒ β (resp. α o⇒ β).
Again, we use only ⇒, and we mark only where the proof differs for o⇒.
Case I (var, α = x). As α∗ = x = β and we are done.
Case II (@, α = NP ). We have β = νπ with N ⇒ ν and P ⇒ π. By inductive
hypothesis ν ⇒ N∗ and π ⇒ P ∗. We have two subcases.
Subcase II.a (N not an abstraction). We directly have νπ ⇒ N∗P ∗ = (NP )∗

by a generalized @ rule (Fact 3).
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Subcase II.b (N = λx.L). We have then that ν = λx.δ with L ⇒ δ ⇒ L∗ by
inductive hypothesis. Then by a generalized g rule (Fact 3) we have (λx.δ)π ⇒
L∗〈〈P ∗/x〉〉 {0/x} = α∗.
Case III (g, α = (λx.L)P ). Again we have L ⇒ δ ⇒ L∗ and P ⇒ π ⇒ P ∗

by inductive hypothesis, where β = δ〈〈π/x〉〉 {0/x}. Then by Lemma 8 we have
β = δ〈〈π/x〉〉 {0/x} ⇒ L∗〈〈P ∗/x〉〉 {0/x} = α∗.
Case IV (Otherwise). The cases for sum and bag1 are trivial, while the ones for
bag
 and bag! (resp. bag!= for o⇒) are analogous to the non-redex application
(Subcase II.a). ��

Theorem 4 (Confluence). Both the β-reduction and the outer reductions are
confluent.

Proof. Lemma 9 gives strong confluence of ⇒, which in turn gives strong con-
fluence of ∗⇒ = ∗−→ (Lemma 7), another way to say that −→ is confluent. The
reasoning for o−→ is identical. ��

We could similarly prove the same for i−→, though we restrain from doing so just
because the proof would not have the same complete similarity as do the two for
−→ and o−→.

4 Standardization

Definition 8 (Inner Parallel Reduction). The inner parallel reduction is
the relation i⇒ generated by the rule

M
o∗−→ ν ν

i⇒ μ P
i⇒ π

in
[M !]·P i⇒ [μ!]·π

and those for compatibility (Figure 4) but the bag! rule.

We excluded the bag! as it is derivable from in, so that i⇒ is compatible anyway.
Notice that i⇒ �⊆ ⇒, as the outer reduction in the premise of in can go out of it.
In fact it is an inductive definition of a “huge” relation: once the standardization
theorem will be proved, but only then, it will turn out that i⇒ = i∗−→.

Fact 5. Using Lemma 6, one sees that i⇒ is sum-independent and strongly sat-
isfying all of its rules.

Lemma 10. We have that i−→ ⊆ i⇒ ⊆ i∗−→. In particular i∗−→ = i∗⇒.

Proof. By in and the reflexivity of i⇒ (Lemma 4), i⇒ satisfies the in rule. More-
over i⇒ passes to the context (still Lemma 4), so i⇒ satisfies all rules generating
i−→. We conclude i−→ ⊆ i⇒.

Let us prove i⇒ ⊆ i∗−→ by showing that i∗−→ enjoys the rules generating i⇒.
Lemma 5 proves that i∗−→ is compatible. As for in, suppose M

o∗−→ ν, ν
i∗−→ μ
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and P
i∗−→ π, we must prove [M !]·P i∗−→ [μ!]·π. By an easy induction on the

length of M o∗−→ ν one has [M !] i∗−→ [ν!], and by the compatibility of i∗−→ we have
[M !]·P i∗−→ [ν!]·P i∗−→ [μ!]·π. ��

Lemma 11 (Substitution for o∗−→). For α
o∗−→ β and π

o∗−→ ρ we have that
α〈〈π/x〉〉 o∗−→ β〈〈ρ/x〉〉 and α {0/x} o∗−→ β {0/x}.

Proof. By Lemma 7, we have o∗−→ = o∗⇒, so we can reason with o⇒ only. Then a
direct iteration of Lemma 8 (together with reflexivity of o⇒) yields α〈〈π/x〉〉 o∗⇒
β〈〈π/x〉〉 o∗⇒ β〈〈σ/x〉〉, together with α {0/x} o∗⇒ β {0/x}. ��

Substitution on inner reductions is subtler: in general α i∗−→ β and π
i∗−→ ρ do

not entail α〈π/x〉 i∗−→ β〈ρ/x〉. For example take M = y[(I[x])!] and N = y[x!],
we have M

i∗−→ N but M〈z/x〉 ≡ y[I[z], (I[x])!] i∗−→/ N〈z/x〉 ≡ y[z, x!]. However
what suffices for standardization is the following lemma.

Lemma 12 (Substitution for i⇒). Suppose α
i⇒ β and π

i⇒ ρ, then there
is βo ∈ N〈Λ(b)〉 such that α〈〈π/x〉〉 o∗−→ βo

i⇒ β〈〈ρ/x〉〉. Moreover α {0/x} i⇒
β {0/x}.

Proof. The proof of α {0/x} i⇒ β {0/x} is a straightforward induction on the
derivation of α

i⇒ β, using Fact 5 and, for the in rule case, Lemma 11. As for
α〈〈π/x〉〉 o∗−→ βo

i⇒ β〈〈ρ/x〉〉, we do induction on the derivation of π
i⇒ ρ. As

usual, we will use Fact 5 implicitly. We split in cases, depending on the last rule
inferring π

i⇒ ρ. The case bag1 is trivial, and the case sum is an easy consequence
of the linearity in π and the induction hypothesis.
Case I (in). We have π = [N !]·Q, ρ = [ν!]·τ and N

o∗−→ νo
i⇒ ν, Q i⇒ τ . Once

we have proved that α〈〈N !/x〉〉 o∗−→ βo
i⇒ β〈〈[ν!]/x〉〉, we would be done, as by

Lemma 11 and inductive hypothesis on Q we would have

α〈〈N !/x〉〉〈〈Q/x〉〉 o∗−→ βo〈〈Q/x〉〉 o∗−→ βoo
i⇒ β〈〈[ν!]/x〉〉〈〈Q/x〉〉 = β〈〈ρ/x〉〉.

The proof of α〈〈N !/x〉〉 o∗−→ βo
i⇒ β〈〈[ν!]/x〉〉 is by induction on the derivation

α
i⇒ β.

Subcase I.a (var). If α = β = y, then by compatibility α {x + N/x} =
y + δx,yN

o∗−→ y + δx,yνo
i⇒ y + δx,yν = β〈〈[ν!]/x〉〉.

Subcase I.b (in). We have α = [M !]·R, β = [μ!]·ρ′ and M
o∗−→ μo

i⇒ μ,
R

i⇒ ρ′. By Lemma 11 and inductive hypothesis on μo
i⇒ μ and R

i⇒ ρ′, we
have M〈〈N !/x〉〉 o∗−→ μo〈〈N !/x〉〉 o∗−→ μoo

i⇒ μ〈〈[ν!]/x〉〉 and R〈〈N !/x〉〉 o∗−→ ρo
i⇒

ρ′〈〈[ν!]/x〉〉. By compatibility of o∗−→ and a generalized in rule we have

[(M〈〈N !/x〉〉)!]·R〈〈N !/x〉〉 o∗−→ [(M〈〈N !/x〉〉)!]·ρo
i⇒ [(μ〈〈[ν!]/x〉〉)!]·ρ′〈〈[ν!]/x〉〉.
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Subcase I.c (@). We have α = MR, β = μρ′ and M
i⇒ μ, R

i⇒ ρ′. By in-
duction hypothesis we have M〈〈N !/x〉〉 o∗−→ μo

i⇒ μ〈〈[ν!]/x〉〉 and R〈〈N !/x〉〉 o∗−→
ρ′o

i⇒ ρ′〈〈[ν!]/x〉〉. We conclude by strong compatibility M〈〈N !/x〉〉R〈〈N !/x〉〉 o∗−→
μoρ

′
o

i⇒ μ〈〈[ν!]/x〉〉ρ′〈〈[ν!]/x〉〉.
Subcase I.d (Otherwise). The case bag
 is similar to the previous @ case; bag1
is trivial and λ, sum are easy consequences of the induction hypothesis.

Case II (bag
). We have π = [N ]·Q, ρ = ν·τ , with N
i⇒ ν and Q

i⇒ τ . As
in the previous case, once we prove that α〈N/x〉 o∗−→ βo

i⇒ β〈〈[ν]/x〉〉 we would
have concluded, as by Lemma 11 and inductive hypothesis on Q

i⇒ τ , we have
α〈N/x〉〈〈Q/x〉〉 o∗−→ βo〈〈Q/x〉〉 o∗−→ βoo

i⇒ β〈〈[ν]/x〉〉〈〈τ/x〉〉 = β〈〈ρ/x〉〉. We do in-
duction on the derivation of α i⇒ β.
Subcase II.a (var). If α = β = y, then by compatibility α〈N/x〉 = δx,yN

i⇒
δx,yν = β〈ν/x〉.
Subcase II.b (in). If α = [M !]·Q, β = [μ!]·τ and M

o∗−→ μo, μo
i⇒ μ, Q i⇒ τ ,

then Lemma 11 gives M〈N/x〉 o∗−→ μo〈N/x〉, and induction hypothesis yields
μo〈N/x〉 o∗−→ μoo

i⇒ μ〈ν/x〉 and Q〈N/x〉 o∗−→ τo
i⇒ τ〈ν/x〉. By strong compati-

bility and in, we have

α〈N/x〉 = [M〈N/x〉,M !]·Q + [M !]·Q〈N/x〉 o∗−→ [μoo,M
!]·Q + [M !]·τo

i⇒ [μ〈ν/x〉, μ!]·τ + [μ!]·τ〈ν/x〉 = β〈ν/x〉.

Subcase II.c (bag
). If α = [M ] · Q, β = [μ] · τ and M
i⇒ μ, Q

i⇒ τ ,
then induction hypothesis yields M〈N/x〉 o∗−→ μo

i⇒ μ〈ν/x〉 and Q〈N/x〉 o∗−→
τo

i⇒ τ〈ν/x〉. Strong compatibility of o∗−→ yields [M〈N/x〉]·Q o∗−→ [μo]·Q and
[M ]·[Q〈N/x〉] o∗−→ [M ]·τo. Strong compatibility of i⇒ gives [μo]·Q i⇒ [μ〈ν/x〉]·τ
and [M ]·τo

i⇒ [μ]·τ〈ν/x〉. Finally we conclude by the sum rule:

α〈N/x〉 = [M〈N/x〉]·Q + [M ]·Q〈N/x〉 o∗−→ [μo]·Q + [M ]·τo

i⇒ [μ〈ν/x〉, μ]·τ + [μ]·τ〈ν/x〉 = β〈ν/x〉.

Subcase II.d (Otherwise). The rule @ is handled similarly to the case bag
;
the cases λ and sum are easy consequences of the induction hypothesis; the rule
bag1 is immediate. ��

Lemma 13 (Postponement). We have i⇒ o−→ ⊆ o∗−→ i⇒.

Proof. Let α
i⇒ α′ o−→ β, we prove there is γ ∈ N〈Λ(b)〉 such that α

o∗−→ γ
i⇒ β.

Suppose that α′ o−→ β is inferred by rule g, all other cases are easy variants and
omitted. So, let α′ = (λx.M ′)P ′ and β = M ′〈〈P ′/x〉〉 {0/x}. Under these hypoth-
esis α

i⇒ α′ can be obtained only by means of a @ rule, therefore α = (λx.M)P
with M

i⇒ M ′ and P
i⇒ P ′. By Lemma 12 there is a sum ν ∈ N〈Λ〉 such that
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M〈〈P/x〉〉 {0/x} o∗−→ ν
i⇒ M ′〈〈P ′/x〉〉 {0/x}. Hence α

o−→ M〈〈P/x〉〉 {0/x} o∗−→ ν
i⇒

M ′〈〈P ′/x〉〉 {0/x} = β. ��

Theorem 6 (Standardization). We have ∗−→ = o∗−→ i∗−→.

Proof. Fact 1 gives ∗−→ = ( o−→ ∪ i−→)∗, and Lemma 10 o−→ ∪ i−→ ⊆ o−→ ∪ i⇒. Then
α

∗−→ β entails α
o∗−→ i⇒ · · · o∗−→ i⇒ β. By iterating Lemma 13 we have α

o∗−→i∗⇒ β.
So Lemma 10 allows us to conclude α

o∗−→ i∗−→ β. ��

In λ-calculus we have a notion of strong standardization stating that there is a
deterministic history-free strategy leading to a normal form (resp. head normal
form), e.g. left reduction. By history-free, we mean that the redex is chosen by
just looking at the term, regardless of the previous steps. In contrast, we argue
that resource calculus has no history-free effective strategy assuring a normal
form (resp. a head normal form) whenever it exists.

Example 1. Let us consider I[I!,
(
x[Ω, I1]

)!], where Ω = (λx.x[x!])λx.x[x!] is the
typical diverging term. We have I[I!, (x[Ω, I1])!] o−→ I+x[Ω, I1] o−→ I. In the second
term, we have two choices among the two linear arguments of the bag. Choosing
the first loops, while the second normalizes. However in general making the right
decision should be akin to solving the halting problem.

What could probably be done, though it is outside the scope of this work, is de-
vising a kind of fair strategy, in the sense of concurrent programming. By craftily
marking the redexes, one could probably make sure that, though sequentially,
all parallel subterms get a chance to be reduced, so that if there is a reduction
to 0 it would be found.

4.1 An Application

In a forthcoming paper the first author and Ronchi della Rocca characterize dif-
ferent notions of resource calculus solvability by means of the following definition
of may-head and must-head normalizability:

Definition 9 (Head Normal Form). We define simultaneously the class of
terms and that of bags in head normal form, hnf for short:

– λx.M is a hnf iff M is a hnf;
– yP1 . . . Pn is a hnf iff each Pi is a hnf;
– P = [M (!)

1 , . . . ,M
(!)
m ] is a hnf iff for each i, M (!)

i = Mi entails Mi is a hnf.

In case of a sum
∑m

i=1 Ai of expressions, we have two different notions of head
normal form:

–
∑m

i=1 Ai is a may-head normal form, mhnf for short, iff there is a i ≤ m
such that Ai is a head normal form;

–
∑m

i=1 Ai is a must-head normal form, Mhnf for short, iff m �= 0 and for
every i ≤ m, Ai is a head normal form.
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An expression A is may-head normalizable (resp. must-head normalizable) if it
is reducible to a mhnf (resp. Mhnf).

Corollary 1 (Head Normalization). Whenever α is may-head (resp. must-
head) normalizable, there is a mhnf (resp. Mhnf) β such that α

o∗−→ β.

Proof. Immediate from Theorem 6 and the fact that whenever β′ i∗−→ β we have
β′ mhnf (resp. Mhnf) iff β mhnf (resp. Mhnf). ��

5 Baby-Step Reduction

This section is devoted to presenting another, more atomic reduction of resource
terms.

Definition 10. The baby-step reduction b−→ (resp. outer baby-step reduction
ob−→) is the relation generated by the rules for passing to context (resp. to linear
context) of Figure 3 plus the following two:

b
(λx.M)[N (!)]·P b−→ (λx.M〈〈N (!)/x〉〉)P

b1
(λx.M)1 b−→ M {0/x}

The inner baby-step reduction ib−→ is b−→ \ ob−→.

Lemma 14. We have (λx.μ)P b∗−→ (λx.μ〈〈P/x〉〉)1. In particular −→ ⊆ b∗−→. The
same holds for the outer and inner versions.

Proof. We can proceed by induction on P : if P = 1 then the reduction chain is
empty and we are done. If P = [L(!)]·Q then (supposing μ =

∑
i Mi)

(λx.μ)P =
∑

i(λx.Mi)[L(!)]·Q b∗−→
∑

i(λx.Mi〈〈L(!)/x〉〉)Q
b∗−→

∑
i(λx.Mi〈〈L(!)/x〉〉〈〈Q/x〉〉)1 = (λx.μ〈〈P/x〉〉)1,

where in the first reduction we used compatibility with sum, while in the second
both it and inductive hypothesis. Applying final baby steps to all addends in
(λx.M)P ∗−→ (λx.M〈〈P/x〉〉)1 and closing by (linear) context gives the result on
−→ (resp. o−→). The result for ib−→ and i−→ follows. ��

Lemma 15. We have that b−→ ⊆ ≡β, where the β-equivalence ≡β is as usual
(←− ∪−→)∗. The same holds for the outer versions of the two reductions.

Proof. We check that −→ ∗←− satisfies the rules of b−→, concluding b−→ ⊆ −→ ∗←− ⊆ ≡β .
Notice first of all that ∗←− is compatible as ∗−→ is (Lemma 5). Then −→ ∗←− passes to
context, and we need to check just the two new rules. Of the two b1 is a special
case of g, while for the b rule we have

(λx.M)[L(!)]·P −→ M〈〈[L(!)]·P/x〉〉 {0/x} ∗←− (λx.M〈〈[L(!)]/x〉〉)P,

where there is the need of the transitive reflexive closure as a sum may have
arisen. Notice that Lemma 5 assures that the result is valid for ob−→ also. ��
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In particular by the above lemmas we have that the equational theory of the two
reductions is the same.

Theorem 7 (Confluence of baby-steps). The baby-step reduction and the
outer baby-step reduction is confluent.

Proof. By Lemma 15, confluence of −→ (which as known entails ≡β = ∗−→ ∗←−) and
Lemma 14, we have b∗←− b∗−→ ⊆ ≡β = ∗−→ ∗←− ⊆ b∗−→ b∗←−. The same passages on ob−→
give the result for the outer reduction. ��

The next question is whether the standardization result as presented by Theo-
rem 6 is valid also for b−→, but the answer is negative.

Example 2. Take M = (λd.I)[(I[x!, y!])!]. It is easily shown that I[x!, y!] ob∗−−→
x + y, which in turn gives rise to the following chain:

M
i∗−→ (λd.I)[(x + y)!] = (λd.I)[x!, y!] ob−→ (λd.I)[y!].

However the only outer redex in M gives rise in a single step to M
ob−→ (λd.I)1,

so that y is lost as soon as we make an outer reduction, which makes (λd.I)[y!]
unreachable.

The catch is that the baby-step reduction is somewhat too atomic: as inner sums
may split the elements of a bag, an inner reduction may change outer redexes in
way to which only the baby reduction is sensitive to. However, as normal forms
of the two reduction coincide, we can still get a weaker result.

Theorem 8. Whenever α
b∗−→ β and β is normal (resp. a mhnf or a Mhnf),

then α
ob∗−−→ ib∗−−→ β.

Proof. By Lemma 15 and confluence (thus uniqueness of normal form) we get
α

∗−→ β. By Theorem 6 α
o∗−→ i∗−→ β, which by Lemma 14 entails the result.

The part about head normalization is a direct consequence of Corollary 1 and
the above fact. ��
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Abstract. This paper proposes a natural deduction system CNDS4 for classical
S4 modal logic with necessity and possibility modalities. This new system is an
extension of Parigot’s Classical Natural Deduction with dual-context to formulate
S4 modal logic. The modal λμ-calculus is also introduced as a computational
extraction of CNDS4. It is an extension of both the λμ-calculus and the modal
λ-calculus. Subject reduction, confluency, and strong normalization of the modal
λμ-calculus are shown. Finally, the computational interpretation of the modal λμ-
calculus, especially the computational meaning of the modal possibility operator,
is discussed.

1 Introduction

Classical Natural Deduction (CND) [16] is a natural deduction system for classical
logic. It is introduced to extend the paradigm ’proofs as programs’ to classical logic.

Proofs as programs is known as the Curry-Howard correspondence, which is an iso-
morphism between proofs in logical systems and programs in computational systems. It
is studied widely, since it gives computational aspect in logical systems and theoretical
foundation of programming languages. The typical example of the correspondence is
the one between intuitionistic propositional logic and the simply typed λ-calculus.

Griffin [7] extended the Curry-Howard correspondence to classical logic by discov-
ering the connection between the type of call/cc and Peirce’s law. The λμ-calculus
introduced by Parigot [16] corresponds to CND in the same way that the λ-calculus
corresponds to intuitionistic natural deduction. The λμ-calculus has played a cen-
tral role for studying the Curry-Howard correspondence of classical logic in many
approaches such as semantics, abstract machine, functional programming with ex-
ception handling, and the computational duality between call-by-value and call-by-
name [17,15,2,20,5,8,23,9,11]D.

The Curry-Howard correspondence is also extended to intuitionistic modal logic.
Davies and Pfenning [4] showed that the λ-calculus with the S4 modal necessity op-
erator � provides a theoretical framework of staged computation by interpreting a for-
mula �A as a type of program codes of type A. Staged computation is a computational
mechanism that is used for programming techniques such as dynamic code genera-
tion and partial evaluation [22]. This mechanism is realized by specifying stages where
partial programs should be executed. A partial program that can be used at the cur-
rent or any later stages is treated as a program code at the current stage. Type the-
oretic approach of staged computation based on intuitionistic modal logic is studied
actively [4,3,6,18,13,24].

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 243–258, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The purpose of this paper is the following two points. First, we aim to extend the
paradigm ’proofs as programs’ to classical modal proofs. We extend CND to classical
S4 modal logic, and construct a term calculus that corresponds to the extended system.
Second, we aim to give a computational interpretation of classical modal proofs. In
particular, we focus on the computational meaning of the modal possibility operator.
The λ-calculi with both the modal necessary and possibility operators were introduced
in [1,18]. However, since they were constructed based on the analysis from a logi-
cal viewpoint, it is still unclear how the possibility operator is interpreted in staged
computation.

Some computational systems for classical modal logic have been proposed.
Kakutani [10] introduced the λμ-calculi for classical normal modal logic starting from
categorical semantics, and extended the computational duality in classical logic to clas-
sical modal logic. Shan [21] gave a term calculus that corresponds to sequent calculus
for classical S4 modal logic.

This paper presents an extension of classical natural deduction CNDS4 for classical
S4 modal logic. This system is a natural deduction system with multiple conclusions
to formulate classical logic, and dual-context to formulate S4 modal logic. CNDS4 has
both the modal necessity and possibility operators as primitives. We then introduce the
λμS 4-calculus as the extracted computational system from CNDS4. It extends proofs
as types of classical logic to classical modal logic. The λμS 4-calculus satisfies subject
reduction, strong normalization, and confluency.

As for the formulation of classical S4 modal logic in natural deduction style, the
one given by Prawitz [19] is known well. However, normalization in Prawitz’s system
does not hold. Medeiros pointed out it, and showed normalization by giving a modified
system [12]. This paper gives a stronger result than Medeiros’s one, since strong nor-
malization and confluency of CNDS4 is obtained from the results of the λμS 4-calculus.

We also discuss computational interpretation of the λμS 4-calculus. This calculus pro-
vides both mechanisms of staged computation and exception handling, because it is an
extension of both the modal λ-calculus and the λμ-calculus. A computational interpre-
tation of the possibility operator can be obtained via the duality of classical modal logic:
�A is a type of programs that can be used at some later stage. We consider an appli-
cation of the possibility operator by giving a program example of staged computation
with exception handling.

This paper is organized as follows. Section 2 introduces the classical natural de-
duction CNDS4, and shows its provability is equivalent to classical S4 modal logic.
Section 3 gives the λμS 4-calculus as the corresponding system of CNDS4. In Section 4,
we show subject reduction, strong normalization, and confluency of the λμS 4-calculus.
Section 5 gives some discussions on the computational interpretation of λμS 4. Finally,
we conclude the paper in Section 6.

2 Classical Modal Propositional Logic

We propose a natural deduction system for classical S4 modal logic (called CNDS4) ex-
tending Parigot’s Classical Natural Deduction (CND) [16]. CND is a natural deduction
system for classical logic, and has sequents with multiple conclusions. Though Parigot
gave CND for the second-order classical predicate logic, we consider the system for the
{⊃,¬,�,�}-fragment of classical S4 modal propositional logic for simplicity.
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Definition 1 (Formulas). Formulas (denoted by A, B, . . .) are defined by
A� X | A ⊃ A | ¬A | �A | �A,

where X, Y, Z, . . . are atomic formulas.

Let Γ, Δ, Σ, and Θ range over finite multisets of formulas.
The sequents of CNDS4 have the following form:

A1, . . . , An; B1, . . . , Bm �ND C1, . . . ,Cp; D1, . . . ,Dq,

where n,m, p, q ≥ 0. The parts A1, . . . , An; B1, . . . , Bm and C1, . . . ,Cp; D1, . . . ,Dq are
the antecedent and the succedent of this sequent, respectively. Each of them is separated
into two zones by the symbol ;. The classical antecedent and the classical succedent of
this sequent are the parts B1, . . . , Bm and C1, . . . ,Cp, respectively. They are sometimes
called the classical part of the sequent. The modal antecedent and the modal succedent
of this sequent are the parts A1, . . . , An and D1, . . . ,Dq, respectively. They are some-
times called the modal part of the sequent. We implicitly assume � at the head of each
Ai. We also assume � at the head of each D j. The interpretation of the above sequent is
given as follows: If all of �A1, . . .�An and B1, . . . , Bm are true, then some of C1, . . . ,Cp

or �D1, . . . ,�Dq is true.

Definition 2 (Inference rules). Inference rules of CNDS4 are defined as follows.

Σ;Γ, A �ND A, Δ;Θ
(AxC)

Σ, A;Γ �ND A, Δ;Θ
(AxM)

Σ;Γ, A �ND B, Δ;Θ
Σ;Γ �ND A ⊃ B, Δ;Θ

(⊃ I)
Σ;Γ �ND A ⊃ B, Δ;Θ Σ;Γ �ND A, Δ;Θ

Σ;Γ �ND B, Δ;Θ
(⊃ E)

Σ;Γ, A �ND Δ;Θ
Σ;Γ �ND ¬A, Δ;Θ

(¬I)
Σ;Γ �ND ¬A, Δ;Θ Σ;Γ �ND A, Δ;Θ

Σ;Γ �ND Δ;Θ
(¬E)

Σ; �ND A ;Θ
Σ;Γ �ND �A, Δ;Θ

(�I)
Σ;Γ �ND �A, Δ;Θ Σ, A;Γ �ND Δ;Θ

Σ;Γ �ND Δ;Θ
(�E)

Σ;Γ �ND Δ; A, Θ
Σ;Γ �ND �A, Δ;Θ

(�I)
Σ;Γ �ND �A, Δ;Θ Σ; A �ND ;Θ

Σ;Γ �ND Δ;Θ
(�E)

Σ;Γ �ND A, Δ;Θ
Σ;Γ �ND Δ; A, Θ

(IR)

The formulas explicitly mentioned in the rules are called active. The active formula
A ⊃ B of (⊃ E), ¬A of (¬E), �A of (�E), or �A of (�E) is said to be the major premise
of each rule.

(AxC) is the axiom rule for the classical part. (AxM) is the axiom rule for the modal
part. (IR) moves a formula from the classical succedent to the modal succedent. (⊃ I),
(¬I), (�I), and (�I) are introduction rules. (⊃ E), (¬E), (�E), and (�E) are elimination
rules.

Remark 1. (AxM) implicitly removes a �-operator, since each formula at the modal
antecedent is implicitly boxed. (�E) simply eliminates its major premise �A without
removing the �-operator. Both rules are necessary to show ; �ND �A ⊃ A; . Dually,
(IR) implicitly introduces a �-operator, since each formula at the modal succedent is
implicitly diamonded. (�I) specifies the �-operator that is implicitly introduced by
(IR). We need both rules to show ; �ND A ⊃ �A; .

Remark 2. The separation symbol ; in the sequents of CNDS4 is necessary for nor-
malization. Let CNDS4′ be a natural deduction system obtained by replacing sequents
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Σ;Γ �ND Δ;Θ of CNDS4 by �Σ, Γ � Δ,�Θ. Then normalization of CNDS4′ does not
hold. For example, the following proof is not normalizable.

�B � �B
�B � ��B

(�I)

� �B ⊃ ��B
(⊃ I) �A ⊃ �B � �A ⊃ �B �A � �A

�A ⊃ �B,�A � �B
(⊃ E)

�A ⊃ �B,�A � ��B
(⊃ E)

CNDS4 admits weakening and contraction rules.

Lemma 1 (Weakening). Assume Σ ⊆ Σ′, Γ ⊆ Γ′, Δ ⊆ Δ′, and Θ ⊆ Θ′. Then Σ;Γ �ND
Δ;Θ implies Σ′;Γ′ �ND Δ

′;Θ′.

Proof. The claim is shown by induction on the length of proofs.

In the following, if Σ;Γ �ND Δ;Θ is obtained from Σ′;Γ′ �ND Δ
′;Θ′ by applying rules

R1, . . . ,Rn several times, then we write
Σ′;Γ′ �ND Δ

′;Θ′

Σ;Γ �ND Δ;Θ
R1, . . . ,Rn. We will write R′ if an

elimination rule R is used with weakening. For example, (¬E)′ is used as follows:

Σ1, Σ2;Γ1, Γ2 �ND ¬A, Δ1, Δ2;Θ1, Θ2 Σ2, Σ3;Γ2, Γ3 �ND A, Δ2, Δ3;Θ2, Θ3

Σ1, Σ2, Σ3;Γ1, Γ2, Γ3 �ND Δ1, Δ2, Δ3;Θ1, Θ2, Θ3
(¬E)′

.

Lemma 2. (1) Σ, A;Γ �ND Δ;Θ holds if and only if Σ;�A, Γ �ND Δ;Θ holds.
(2) Σ;Γ �ND Δ; A, Θ holds if and only if Σ;Γ �ND Δ,�A;Θ holds.

Proof. (1) Assume Σ, A;Γ �ND Δ;Θ. Then we have Σ;�A, Γ �ND Δ;Θ by (AxC), and
(�E)′. Conversely, assume Σ;�A, Γ �ND Δ;Θ, then we have Σ;Γ �ND ¬�A, Δ;Θ by
(¬I). Here Σ, A;Γ �ND �A, Δ;Θ is shown by (AxM) and (�I). Therefore we obtain
Σ, A;Γ �ND Δ;Θ by (¬E)′.

(2) We obtain Σ;Γ �ND Δ,�A;Θ from Σ;Γ �ND Δ; A, Θ by using (IR). Conversely,
assume Σ;Γ �ND Δ,�A;Θ. Then we have Σ;Γ �ND Δ; A, Θ by (AxC), (IR), and (�E)′.

Lemma 3 (Left contraction). (1) If Σ, A, A;Γ �ND Δ;Θ, then Σ, A;Γ �ND Δ;Θ hold.
(2) If Σ;Γ, A, A �ND Δ;Θ, then Σ;Γ, A �ND Δ;Θ hold.

Proof. (1) and (2) are shown by induction on the length of proofs.

Lemma 4 (Right contraction). (1) If Σ;Γ �ND Δ, A, A;Θ, then Σ;Γ �ND Δ, A;Θ hold.
(2) If Σ;Γ �ND Δ;Θ, A, A, then Σ;Γ �ND Δ;Θ, A hold.

Proof. (1) Suppose we have Σ;Γ �ND Δ, A, A;Θ. Then Σ;Γ �ND Δ, A;Θ is obtained by:

....
; �ND ¬¬A ⊃ A;

;¬A �ND ¬A; Σ;Γ �ND Δ, A, A;Θ
Σ;Γ,¬A �ND Δ, A;Θ

(¬E)′
;¬A �ND ¬A;

Σ;Γ,¬A �ND Δ;Θ
(¬E)′

Σ;Γ �ND ¬¬A, Δ;Θ
(¬I)

Σ;Γ �ND Δ, A;Θ
(⊃ E)′

We claim that ; �ND ¬¬A ⊃ A; is proved from (AxC) by using (¬I) and (¬E). (2) is
shown by using (1) and Lemma 2.
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We sometimes write weakening and left contraction rules as follows.
Σ;Γ �ND Δ;Θ
Σ′;Γ′ �ND Δ

′;Θ′
(Wk)

Σ;Γ, A, A �ND Δ;Θ
Σ;Γ, A �ND Δ;Θ

(CtrCL)
Σ, A, A;Γ �ND Δ;Θ
Σ, A;Γ �ND Δ;Θ

(CtrML)

Σ;Γ �ND A, A, Δ;Θ
Σ;Γ �ND A, Δ;Θ

(CtrCR)
Σ;Γ �ND Δ; A, A, Θ
Σ;Γ �ND Δ; A, Θ

(CtrMR)

where Σ ⊆ Σ′, Γ ⊆ Γ′, Δ ⊆ Δ′, and Θ ⊆ Θ′. (CtrCR) and (CtrCL) are the right and
left contraction rules for the classical part. (CtrMR) and (CtrML) are the right and left
contraction rules for the modal part.

CNDS4 is equivalent to the classical S4 modal logic in the sense of provability. Here
we remember the sequent calculus style formulation of classical S4 modal logic.

The sequent calculus have sequents of the form Γ �SC Δ. The antecedent and succe-
dent of a sequent Γ �SC Δ is defined by Γ and Δ, respectively. The interpretation of a
sequent Γ �SC Δ is given as follows: If all formulas in Γ are true, then some formula in
Δ is true.

The inference rules of the sequent calculus for classical modal logic are given as
usual. We display only the rules for modal operators:
�Γ �SC A,�Δ
�Γ �SC �A,�Δ

(�R)
Γ, A �SC Δ

Γ,�A �SC Δ
(�L)

Γ �SC A, Δ
Γ �SC �A, Δ

(�R)
�Γ, A �SC �Δ
�Γ,�A �SC �Δ

(�L)

where �Γ is �A1, . . . ,�An if Γ is A1, . . . , An, �Δ is �B1, . . . ,�Bm if Δ is B1, . . . , Bm.

Theorem 1. Σ;Γ �ND Δ;Θ is provable if and only if �Σ, Γ �SC Δ,�Θ is provable.

Proof. The only-if-part is shown by induction on the proof of CNDS4. To show the
if-part, we first show the following claim (we call this claim (*)): �Σ, Γ �SC Δ,�Θ
implies ;�Σ, Γ �ND Δ,�Θ; . If we have this claim, we can show Σ;Γ �ND Δ;Θ by using
Lemma 2. The claim (*) is shown by induction on the proof of the sequent calculus. We
consider the cases (�R), (�L), (�R), and (�L).

The case of (�R): Assume that �Σ, Γ �SC �A, Δ,�Θ is proved from �Σ, Γ �SC
A, Δ,�Θ. By the condition of (�R), Γ and Δ should be �Γ′ and�Δ′ for some Γ′ and Δ′,
respectively. By the induction hypothesis, we have ;�Σ,�Γ′ �ND A,�Δ′,�Θ; . Then
we have Σ, Γ′; �ND A;Δ′, Θ by Lemma 2. Thus Σ, Γ′; �ND �A;Δ′, Θ is shown by
(�I). By using Lemma 2 again, we obtain ;�Σ,�Γ′ �ND �A,�Δ′,�Θ; . The case of
(�L) is shown similarly. The case of (�L) is proved by using the induction hypothesis
and Lemma 2. The case of (�R) is proved by using the induction hypothesis.

We define the normalization procedure of CNDS4. Each reduction step of the procedure
removes a formula occurrence (we call cut-formula) that is the consequence of an intro-
duction rule and the major premise of an elimination rule. We distinguish a reduction
step between logical reduction and structural reduction according to the occurrence of
its cut-formula. A reduction step is called logical when its cut-formula is the major
premise of an elimination rule, and it is introduced by the immediate preceding rule.
A reduction step is called structural when its cut-formula is the major premise of an
elimination rule, and it is not active in the immediate preceding rule.

The logical reduction and the structural reduction are defined as well as that of
CND [16] when its cut-formula is A ⊃ B or ¬A. We give the definition when the cut-
formula is �A or �A.

Logical �-reduction: We assume that the cut-formula has the form �A, and is the
major premise of a (�E) rule, and is introduced by the immediate preceding (�I) rule.
Then we have the following proof:
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....
Σ; �ND A;Θ
Σ;Γ �ND �A, Δ;Θ

(�I)

Σ0, A;Γ0 �ND A, Δ0;Θ0....
Σ, A;Γ �ND Δ;Θ

Σ;Γ �ND Δ;Θ
(�E)

.
This proof is reduced to the proof:

....
Σ; �ND A;Θ

Σ, Σ0;Γ0 �ND A, Δ0;Θ,Θ0
(Wk)

....
Σ, Σ;Γ �ND Δ;Θ,Θ

Σ;Γ �ND Δ;Θ
(CtrML), (CtrMR)

.
Logical �-reduction: We assume that the cut-formula has the form �A, and is the

major premise of a (�E) rule, and is introduced by the immediate preceding (�I) rule.
Then we have the following proof:

....
Σ0;Γ0 �ND A, Δ0;Θ0

Σ0;Γ0 �ND Δ0; A, Θ0
(IR)

....
Σ;Γ �ND Δ; A, Θ
Σ;Γ �ND �A, Δ;Θ

(�I)

....
Σ; A �ND ;Θ

Σ;Γ �ND Δ;Θ
(�E)

.
This proof is reduced to the proof:

....
Σ; A �ND ;Θ
Σ; �ND ¬A;Θ

(¬I)

....
Σ0;Γ0 �ND A, Δ0;Θ0

Σ, Σ0;Γ0 �ND Δ0;Θ,Θ0
(¬E)′

....
Σ, Σ;Γ �ND Δ;Θ,Θ

Σ;Γ �ND Δ;Θ
(CtrML), (CtrMR)

.
Structural �-reduction: We assume that the cut-formula has the form �A, and is the

major premise of a (�E) rule, and is not active in the immediate preceding rule. Then
we have the following proof:

.... π0

Σ0;Γ0 �ND �A, Δ0;Θ0.... π1

Σ;Γ �ND �A, Δ;Θ

....
Σ, A;Γ �ND Δ;Θ

Σ;Γ �ND Δ;Θ
(�E)

,
where �A is active in the last rule of π0, and not active in all rules of π1. This proof is
reduced to the following proof:

.... π0

Σ0;Γ0 �ND �A, Δ0;Θ0

....
Σ, A;Γ �ND Δ;Θ

Σ, Σ0;Γ, Γ0 �ND Δ, Δ0;Θ,Θ0
(�E)′

.... π1

Σ, Σ;Γ, Γ �ND Δ, Δ;Θ,Θ

Σ;Γ �ND Δ;Θ
(CtrCL), (CtrCR), (CtrML), (CtrMR)

.
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Structural �-reduction: We assume that the cut-formula has the form �A, and is the
major premise of a (�E) rule, and is not active in the immediate preceding rule. Then
we have the following proof:

.... π0

Σ0;Γ0 �ND �A, Δ0;Θ0.... π1

Σ;Γ �ND �A, Δ;Θ

....
Σ; A �ND ;Θ

Σ;Γ �ND Δ;Θ
(�E)

,
where �A is active in the last rule of π0, and not active in all rules of π1. This is reduced
to the following proof:

....
Σ0;Γ0 �ND �A, Δ0;Θ0

....
Σ; A �ND ;Θ

Σ0, Σ;Γ0, Γ �ND Δ0, Δ;Θ0, Θ
(�E)′

....
Σ, Σ;Γ, Γ �ND Δ, Δ;Θ,Θ

Σ;Γ �ND Δ;Θ
(CtrCL), (CtrCR), (CtrML), (CtrMR)

.
In the next section, we introduce the λμS 4-calculus that corresponds to CNDS4. The

reduction procedure of CNDS4 satisfies confluency and normalizability. They are ob-
tained from confluency (Theorem 4) and strong normalizability (Theorem 2) of the
λμS 4-calculus.

3 Modal λμ-calculus

This section gives the definition of the modal λμ-calculus (called λμS 4).

Definition 3 (Types). Let X, Y, Z . . . range over type variables. A type of the λμS 4-
calculus (denoted by T,U, . . .) is either the special type ⊥ or a normal type (denoted
by A, B, . . .) defined as follows:

Types T � A | ⊥
Normal types A� X | A ⊃ A | ¬A | �A | �A

There are four kinds of variables for the λμS 4-calculus, called classical variables, clas-
sical covariables, modal variables, and modal covariables. They are respectively cor-
responding to classical antecedent, classical succedent, modal antecedent, and modal
succedent of sequents in CNDS4.

Then we define expressions of the λμS 4-calculus.

Definition 4 (Expressions). Let x, y, . . . range over classical variables, a, b, . . . range
over classical covariables, χ, υ, . . . range over modal variables, and α, β, . . . range over
modal covariables. An expression (denoted by E, F, . . .) of the λμS 4-calculus is either
a term (denoted by M,N, . . .) or a statement (denoted by R, S , . . .). They are defined as
follows.

Expressions E � M | R
Terms M� x | λx.M | MM | λx.R | μa.R | χ | �M | �α.R
Statements R� [a]M | M · M | let �χ be M in R | αM | dia〈x.R〉(M)
λx.M binds the classical variable x in M. λx.R and dia〈x.R〉(M) bind the classical

variable x in R. μa.R binds the classical covariable a in R. let �χ be M in R binds
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the modal variable χ in R. �α.R binds the modal covariable α in R. A variable is called
free in an expression if it is not bound in the expression. The set of free variables in an
expression E is denoted by FV(E).

Terms are extensions of unnamed terms of Parigot’s λμ-calculus [16]. They are expres-
sions for normal types in the type system. Statements are extensions of named terms of
the λμ-calculus. They are expressions for ⊥ type.

Substitution E
[M/x

]
for a classical variable x is defined by the expression obtained

from E replacing each free occurrence of x by M. Substitution E
[M/χ

]
for a modal vari-

able χ is defined by the expression obtained from E replacing each free occurrence of χ
by M. Substitution E

[M/α
]

for a modal covariable α is defined by the result recursively
replacing each subexpression of the form αN in E by M · (N[M/α]). We write E

[
β/α
]

for the expression obtained from E replacing α by β.
An expression with one hole {−} that accepts a term is called contexts. C{M} is the

expression obtained from a context C by putting a term M in the hole. Elimination
contexts (denoted by E) are contexts defined as follows:
E� [a]{−} | {−} · N | [a]{−}N | let �χ be {−} in S | dia〈x.S 〉({−}).
Then we define substitution E

[E/[a]{−}
]

for a classical covariable a by the result
recursively replacing each subexpression of the form [a]N in E by E{M[E/[a]{−}

] }
. We

sometimes write E
[b/a
]

for E
[[b]{−}/[a]{−}

]
.

Definition 5 (Typing judgments and typing rules). A modal typing context (denoted
by Σ) is a set χ1 : A1, . . . , χn : An of modal variable declarations. A classical typing
context (denoted by Γ) is a set x1 : B1, . . . , xm : Bm of classical variable declarations. A
classical typing cocontext (denoted by Δ) is a set a1 : C1, . . . , ap : Cp of classical covari-
able declarations. A modal typing cocontext (denoted byΘ) is a set α1 : D1, . . . , αq : Dq

of modal covariable declarations. We assume that any two variables in a typing context
and cocontext are distinct.

A typing judgment (denoted by J) for the λμS 4-calculus takes either the form Σ;Γ �
M : A | Δ;Θ, or the form Σ;Γ � S : ⊥ | Δ;Θ, We will write Σ;Γ � E : T | Δ;Θ for
denoting the two forms of typing judgments together.

The intuitive meaning of a typing judgment J is given by the sequent J− of CNDS4

defined as follows. If J is Σ;Γ � M : A | Δ;Θ, then J− is defined by Σ−;Γ− �ND

A, Δ−;Θ−, where Σ− is A1, . . . , An if Σ is χ1 : A1, . . . , χn : An, Γ− is B1, . . . , Bm if Γ is
x1 : B1, . . . , xm : Bm, Δ− is C1, . . . ,Cp if Δ is a1 : C1, . . . , ap : Cp, and Θ− is D1, . . . ,Dq

if Θ is α1 : D1, . . . , αq : Dq. We also give J− by Σ−;Γ− �ND Δ
−;Θ− if J is Σ;Γ � S : ⊥ |

Δ;Θ. The computational interpretation of typing judgments of the λμS 4-calculus will be
discussed in Section 5.

Definition 6 (Typing rules). The typing rules for the λμS 4-calculus are defined as
follows.

Σ;Γ, x : A � x : A Δ;Θ
(AxC)

Σ, χ : A;Γ � χ : A Δ;Θ
(AxM)

Σ;Γ, x : A � M : B Δ;Θ
Σ;Γ � λx.M : A ⊃ B Δ;Θ

(⊃ I)
Σ;Γ � M : A ⊃ B Δ;Θ Σ;Γ � N : A Δ;Θ

Σ;Γ � MN : B Δ;Θ
(⊃ E)

Σ;Γ, x : A � S : ⊥ Δ;Θ
Σ;Γ � λx.S : ¬A Δ;Θ

(¬I)
Σ;Γ � M : ¬A Δ;Θ Σ;Γ � N : A Δ;Θ

Σ;Γ � M · N : ⊥ Δ;Θ
(¬E)
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Σ; � M : A ;Θ
Σ;Γ � �M : �A Δ;Θ

(�I)
Σ;Γ � M : �A Δ;Θ Σ, χ : A;Γ � S : ⊥ Δ;Θ

Σ;Γ � let �χ be M in S : ⊥ Δ;Θ
(�E)

Σ;Γ � S : ⊥ Δ;Θ, α : A
Σ;Γ � �α.S : �A Δ;Θ

(�I)
Σ;Γ � M : �A Δ;Θ Σ; x : A � S : ⊥ ;Θ

Σ;Γ � dia〈x.S 〉(M) : ⊥ Δ;Θ
(�E)

Σ;Γ � M : A Δ;Θ
Σ;Γ � αM : ⊥ Δ;Θ, α : A

(PassM)

Σ;Γ � M : A Δ;Θ
Σ;Γ � [a]M : ⊥ Δ, a : A;Θ

(PassC)
Σ;Γ � S : ⊥ Δ, a : A;Θ
Σ;Γ � μa.S : A Δ;Θ

(Act)

Note that J is derivable in λμS 4 implies J− is provable in CNDS4. On the other hand,
we can extract expressions of λμS 4 from proofs of CNDS4. Each inference rule (AxC),
(AxM), (⊃ I), (⊃ E), (¬I), (¬E), (�I), (�E), (�I), or (�E) of CNDS4 is interpreted as
the typing rule of λμS 4 with the same name. (PassM) simulates (IR).

Definition 7 (Reduction). The one-step reduction relation −→ is defined as the com-
patible closure of the following reduction rules.

(β ⊃) (λx.M)N −→ M
[N/x
]

(β¬) (λx.S ) · N −→ S
[N/x
]

(β�) let �χ be �M in S −→ S
[M/χ

]

(β�) dia〈x.S 〉(�α.R) −→ R
[
λx.S/α

]

(μ ⊃) (μa.S )N −→ μb.S [[b]{−}N/[a]{−}
]

(b � FV(S ) ∪ FV(N))
(μ¬) (μa.S ) · N −→ S

[{−} · N/[a]{−}
]

(μ�) let �χ be (μa.S ) in R −→ S
[
let �χ be {−} in R/[a]{−}

]

(μ�) dia〈x.R〉(μa.S ) −→ S
[
dia〈x.R〉(−)/[a]{−}

]

(rn) [b]μa.S −→ S
[[b]{−}/[a]{−}

]

(ημ) μa.[a]M −→ M (a � FV(M))
We write −→+ and −→∗ for the transitive closure and the reflexive transitive closure

of −→, respectively.
An expression E is called normal if there is no expression F such that E −→ F.

We claim that each reduction rule (β ⊃), (β¬), (β�), or (β�) is interpreted as the logical
reduction of each connectives in CNDS4. Each reduction rule (μ ⊃), (μ¬), (μ�), or (μ�)
is interpreted as the structural reduction of each connectives in CNDS4. (rn) and (ημ)
are interpreted as identity in CNDS4.

4 Subject Reduction, Confluence, and Strong Normalization of the
λμS4-Calculus

In this section, we show subject reduction, strong normalization, and confluence of the
λμS 4-calculus.

Lemma 5 (Weakening of λμS 4). Let Σ ⊆ Σ′, Γ ⊆ Γ′, Δ ⊆ Δ′, and Θ ⊆ Θ′. Then if
Σ;Γ � E : T Δ;Θ is derivable, then Σ′;Γ′ � E : T Δ′;Θ′ holds.

Proof. This claim is shown by induction on the structure of E.
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Lemma 6 (Substitution). (1) If Σ;Γ, x : A � E : T Δ;Θ and Σ;Γ � M : A Δ;Θ are
derivable, then Σ;Γ � E

[M/x
]
: T Δ;Θ holds.

(2) If Σ, χ : A;Γ � E : T Δ;Θ and Σ; � M : A ;Θ are derivable, then Σ;Γ �
E
[M/χ

]
: T Δ;Θ holds.

(3) If Σ;Γ � E : T Δ, a : A;Θ and Σ;Γ, x : A � E{x} : ⊥ Δ;Θ are derivable, then
Σ;Γ � E

[E/[a]{−}
]
: T Δ;Θ holds.

(4) If Σ;Γ � E : T Δ;Θ, α : A and Σ;Γ, x : A � S : ⊥ Δ;Θ are derivable, then
Σ;Γ � E

[
λx.S/α

]
: T Δ;Θ holds.

(5) If Σ;Γ � E : T Δ;Θ, α : A and Σ;Γ, x : A � βx : ⊥ Δ;Θ are derivable, then
Σ;Γ � E

[
β/α
]
: T Δ;Θ holds.

Proof. They are shown by induction on the structure of E.

By using substitution lemma, we can show that contraction rules of CNDS4 are admis-
sible in λμS 4.

Lemma 7 (Contraction of λμS 4). (1) If Σ;Γ, x : A, y : A � E : T | Δ;Θ is derivable,
then Σ;Γ, y : A � E

[y/x
]
: T | Δ;Θ holds.

(2) If Σ, χ : A, υ : A;Γ � E : T | Δ;Θ, then Σ, υ : A;Γ � E
[
υ/χ
]
: T | Δ;Θ holds.

(3) If Σ;Γ � E : T | Δ, a : A, b : A;Θ, then Σ;Γ � E
[b/a
]
: T | Δ, b : A;Θ holds.

(4) If Σ;Γ � E : T | Δ;Θ, α : A, β : A, then Σ;Γ � E
[
β/α
]
: T | Δ;Θ, β : A holds.

The types of expressions of λμS 4 are preserved by reduction.

Proposition 1 (Subject Reduction). If Σ;Γ � E : T Δ;Θ and E −→ F, then Σ;Γ �
F : T Δ;Θ holds.

Proof. This claim is shown by induction on the structure of one-step reduction with
Lemma 6.

We will prove strong normalization of the λμS 4-calculus. An expression is defined to
be strongly normalizing if there does not exist any infinite reduction sequence starting
from the expression.

Theorem 2 (Strong normalization of λμS 4). If Σ;Γ � E : T Δ;Θ is derivable in λμS 4,
then E is strongly normalizing.

We will show this theorem by giving translation from the λμS 4-calculus into the λμ-
calculus, and using strong normalization of the λμ-calculus. Strong normalization of
the (second-order) λμ-calculus is already shown by Parigot [17].

Parigot’s λμ-calculus [16] is given as follows.

Definition 8 (Parigot’s λμ-calculus). Types (denoted by τ, σ, . . .) of the λμ-calculus
are defined by:

Types τ� X | τ ⊃ τ | ⊥.
We will write ¬τ as an abbreviation of τ ⊃ ⊥.
The λμ-calculus has λ-variables (denoted by x, y, . . . , χ, υ, . . .) and μ-variables (de-

noted by a, b, . . . , α, β, . . .). We use distinguished μ-variables ξ, ζ, . . . for type ⊥. An
expression (denoted by e) of the λμ-calculus is either an unnamed term (denoted by
t, u, . . .) or a named term (denoted by n,m, . . .) defined by:

Expressions e� t | n
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Unnamed terms t� x | λx.t | tt | μa.n,
Named terms n� [a]t.
A typing judgment of the λμ-calculus is either the form Γ �λμ t : τ | Δ or the form

n : Γ �λμ Δ, where Γ is a set x1 : τ1, . . . , xn : τn, χ1 : σ1, . . . , χm : σm of λ-variable decla-
rations, Δ is a set a1 : τ′1, . . . , ap : τ′p, α1 : σ′1, . . . , αq : σ′q of μ-variable declarations. The
μ-variable declarations of the type ⊥ are not mentioned explicitly in typing judgments.

The typing rules of the λμ-calculus are given as follows.

Γ, x : τ �λμ x : τ | Δ
Γ, x : τ �λμ u : σ | Δ
Γ �λμ λx.u : τ ⊃ σ | Δ

Γ �λμ t : τ ⊃ σ | Δ Γ �λμ u : τ | Δ
Γ �λμ tu : σ | Δ

Γ �λμ u : τ | Δ
[a]u : Γ �λμ Δ, a : τ

n : Γ �λμ Δ, a : τ

Γ �λμ μa.n : τ | Δ.
We claim that [ξ]u : Γ �λμ Δ is derived from Γ �λμ u : ⊥ | Δ, and Γ �λμ μξ.n : ⊥ | Δ

is derived from n : Γ �λμ Δ, since the μ-variable declaration ξ : ⊥ is not mentioned
explicitly in typing judgments.

One step reduction � of the λμ-calculus is defined as the compatible closure of the
following relations.

(Beta) (λx.u)t � u[t/x]
(Mu) (μa.n)u � μb.n

[[b]{−}u/[a]{−}
]

(Rename) [b]μa.n � n
[[b]{−}/[a]{−}

]

(Eta) μa.[a]u � u (a is not free in u)
�+ and �∗ are defined as the transitive closure and the reflexive transitive closure of

�, respectively.

Theorem 3 (Strong normalization of λμ (Parigot [17])). Every typable expression is
strongly normalizing in the λμ-calculus.

Strictly speaking, strong normalization of the λμ-calculus without (Eta)-rule was shown
by Parigot. Strong normalization of the system with (Eta)-rule is also shown immedi-
ately from Parigot’s result.

Here we give a translation (−)dn from the λμS 4-calculus into the λμ-calculus. It maps
each modal operator to double negation.

Definition 9 (Translation (−)dn). Let A be a normal type in the λμS 4-calculus. The
type (A)dn of the λμ-calculus is defined by:

(X)dn = X (A ⊃ B)dn = (A)dn ⊃ (B)dn (¬A)dn = ¬(A)dn

(�A)dn = ¬¬(A)dn (�A)dn = ¬¬(A)dn.
Let E be an expression of the λμS 4-calculus. The expression (E)dnξ of the λμ-calculus

is defined by using a μ-variable ξ as follows.
(x)dnξ = x (λx.M)dnξ = λx.(M)dnξ (MN)dnξ = (M)dnξ (N)dnξ (μa.S )dnξ = μa.(S )dnξ
(λx.S )dnξ = λx.μζ.(S )dnξ (M · N)dnξ = [ξ]( (M)dnξ (N)dnξ ) ([a]M)dnξ = [a](M)dnξ
(χ)dnξ = χ (αM)dnξ = [α](λx.x(M)dnξ )

(�M)dnξ = λx.x(M)dnξ (let �χ be M in S )dnξ = [ξ]( (M)dnξ (λχ.μζ.(S )dnξ ) )

(�α.S )dnξ = μα.(S )dnξ (dia〈x.S 〉(M))dnξ = [ξ]( (M)dnξ (λx.μζ.(S )dnξ ) ),
where ζ and ξ are different μ-variables.

We define (Γ)dn by x1 : (A1)dn, . . . , xn : (An)dn if Γ is a classical typing con-
text x1 : A1, . . . , xn : An in λμS 4. We similarly define (Σ)dn of a modal typing con-
text Σ, and (Δ)dn of a classical typing cocontext Δ. We also define ¬¬(Θ)dn by
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α1 : ¬¬(B1)dn, . . . , αm : ¬¬(Bm)dn if a modal cocontext Θ is α1 : B1, . . . , αm : Bm. Then
the judgment (J)dnξ of the λμ-calculus for a judgment J of the λμS 4-calculus is given as
follows:

(Σ;Γ � M : A | Δ;Θ)dnξ = (Σ)dn, (Γ)dn �λμ (M)dnξ : (A)dn | (Δ)dn,¬¬(Θ)dn,

(Σ;Γ � S : ⊥ | Δ;Θ)dnξ = (S )dnξ : (Σ)dn, (Γ)dn �λμ (Δ)dn,¬¬(Θ)dn.

This translation preserves typing.

Proposition 2. If J is derivable in λμS 4, then (J)dnξ is derivable in λμ.

Proof. This claim is shown by induction on the derivation of the λμS 4-calculus.

The translation satisfies the following property.

Lemma 8. (1) (E)dnξ
[(N)dnξ /x

]
= (E
[N/x
]
)dnξ and (E)dnξ

[(N)dnξ /χ
]
= (E
[N/χ
]
)dnξ hold.

(2) (E)dnξ
[[ξ]{−}(N)dnξ /[α]{−}

]
�∗ (E

[N/α
]
)dnξ holds.

Proof. (1) is shown by induction on the construction of E. (2) is also shown by induc-
tion on the construction of E.

Definition 10. Let E be an elimination context of the λμS 4-calculus. Then (E)dnξ is de-

fined as follows: ([a]{−})dnξ = [a]{−}, ([a]{−}N)dnξ = [a]{−}(N)dnξ , ({−} · N)dnξ =

[ξ]{−}(N)dnξ , (let �χ be {−} in S )dnξ = [ξ]{−}(λχ.μζ.(S )dnξ ), (dia〈x.S 〉({−}))dnξ =
[ξ]{−}(λx.μζ.(S )dnξ ).

Then (E)dnξ satisfies the following properties.

Lemma 9. (1) (E{M})dnξ = (E)dnξ { (M)dnξ } holds.

(2) (E)dnξ
[(E)dnξ /[a]{−}

]
= (E
[E/[a]{−}

]
)dnξ holds.

(3) (E)dnξ { μa.n } �+ n
[(E)dnξ /[a]{−}

]
holds.

Proof. (1) is shown by the case analysis of E. (2) is shown by induction on E. (3) is
shown by the case analysis of E.

The translation (−)dnξ maps each one-step reduction of the λμS 4-calculus to one or more
steps reduction of the λμ-calculus.

Proposition 3. If E −→ E′ in λμS 4, then (E)dnξ �
+ (E′)dnξ in λμ.

Proof. The claim is proved by induction on the construction of E −→ E′ by using
Lemmas 8 and 9. We show the cases of (β�), (β�), (μ�), and (μ�)-rules. The case
of (β�) is shown as follows: (let �χ be �M in S )dnξ = [ξ]

(
(�M)dnξ (λχ.μζ.(S )dnξ )

)
=

[ξ]
( (
λx.x(M)dnξ

)(
λχ.μζ.(S )dnξ

) )
� [ξ]
(

(λχ.μζ.(S )dnξ )(M)dnξ
)
� [ξ]μζ.

(
(S )dnξ

[(M)dnξ /χ
] )
=

[ξ]μζ.
(
S
[M/χ

])dn
ξ �

(
S
[M/χ

])dn
ξ . The case of (β�) is shown as follows:

(dia〈x.R〉(�α.S ))dnξ = [ξ]
(

(�α.S )dnξ (λx.μζ.(R)dnξ )
)
= [ξ]

(
(μα.(S )dnξ )(λx.R)dnξ )

)
�

[ξ]μζ.(S )dnξ
[[ζ]{−}(λx.R)dnξ /[α]{−}

]
� (S )dnξ

[[ξ]{−}(λx.R)dnξ /[α]{−}
]
�∗ (S

[
λx.R/α

]
)dnξ . The

rules (μ�) and (μ�) are written together by E{ μa.S } −→ S
[E/[a]{−}

]
, where E

is an elimination contexts. Then these cases are shown using by Lemma 9 as fol-
lows: (E{ μa.S } )dnξ = (E)dnξ

{
(μa.S )dnξ

}
= (E)dnξ

{
μa.(S )dnξ

}
�+ (S )dnξ

[(E)dnξ /[a]{−}
]
=

( S
[E/[a]{−}

]
)dnξ .
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We complete the proof of strong normalization of the λμS 4-calculus.

Proof (Theorem 2). Assume that E is typable in λμS 4 and there is an infinite reduction
sequence E −→ E1 −→ . . . starting from E. Then (E)dnξ �

+ (E1)dnξ �
+ (E2)dnξ �

+ . . . is an

infinite reduction sequence starting from (E)dnξ by Proposition 3. Since (E)dnξ is typable
in λμ by proposition 2, it contradicts Theorem 3.

Finally, we will show confluence of the λμS 4-calculus.

Proposition 4 (Local confluence of λμS 4). If E −→ E1 and E −→ E2, then there exists
E3 that satisfies E1 −→∗ E3 and E2 −→∗ E3 for any expressions E, E1, and E2 of λμS 4.

Proof. This claim is shown by induction on the structure of E.

Confluence of the λμS 4-calculus is immediately shown by using Theorem 2, Proposi-
tion 4, and Newman’s lemma [14].

Theorem 4 (Confluence of λμS 4). If E −→∗ E1 and E −→∗ E2, then there exists E3

that satisfies E1 −→∗ E3 and E2 −→∗ E3 for any expressions E, E1, and E2 of λμS 4.

5 Discussions

(1) Syntax sugars. We define an additional term let �χ be M in N as an abbreviation
of μa.let �χ be M in [a]N. This term validates the following rules:
Σ, χ : A;Γ � N : B | Δ;Θ Σ;Γ � M : �A | Δ;Θ

Σ;Γ � let �χ be M in N : B | Δ;Θ , and let �χ be �M in N −→+ N[M/χ].

We also define an additional statement 〈α〉M by dia〈x.αx〉(M). It validates the follow-
ing rules:
Σ;Γ � M : �A | Δ;Θ

Σ;Γ � 〈α〉M : ⊥ | Δ;Θ, α : A, and 〈β〉�α.S −→+ S
[
β/α
]
.

(2) (η)-rules for � and � types. In this paper, we gave only (β) and (μ)-rules for
� and � types, since we started from the normalization procedure of CNDS4. We may
define (η)-rules for � and �-operators by:

(η�) let �χ be M in �χ −→ M (a is not free in M),
(η�) �α.〈α〉M −→ M (α is not free in M).
Unfortunately, (η�) breaks confluency of λμS 4. For example, [a]let �χ be M in �χ
is reduced to let �χ be M in [a](�χ) by (rn)-rule, and is also reduced to [a]M by
(η�)-rule.

(3) Computational interpretation of λμS 4. Finally, we try to give a computational
interpretation of the λμS 4-calculus. The λμS 4-calculus is an extension of the modal λ-
calculus [4,6] without (η)-rules. Davies and Pfenning [4] showed the modal λ-calculus
provides a framework for studying computation in stages. A value of type �A is con-
sidered as a program which can be used at any later stages. Thus they interpreted a type
�A as a type of program codes of type A. By taking the dual statement, a type �A will
be interpreted as a type of programs that can be used at some later stage.

A judgment χ : A; x : B � E : T a : C;α : D of λμS 4 will be interpreted as follows: If
each modal variable χ is supplied a program code of type A, and each classical variable
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x is supplied a value of type B, then evaluation of the expression E will either return a
value of type T , or pass a value of type C to some classical variable a, or pass a program
of type D that will be used at some later stage to some modal variable α.

Each expression for possibility operator is interpreted as follows. A statement αM
passes the value of M to α. A term �α.S returns a value which is passed to α in S .
These interpretations are similar to those of [a]M and μa.S . The different point is that
the returned value of�α.S is used at some later stage though the returned value of μa.S
is used at the current stage. A statement dia〈x.R〉(M) receives the output from M at
some later stage, and passes it to the continuation λx.R. The continuation dia〈x.R〉(−)
is understood as a package of the continuation λx.R, and keeps waiting for input val-
ues exceeding stages. We call this a persistent continuation as the dual counterpart of
persistent code [24].

(4) Staged computation with exception handling. As a possible application of per-
sistent continuations, we give an example of staged computation with exception han-
dling. We will informally assume the call-by-value λμS 4 with a recursion operator fix ,
if-then-else expression, and the types int (integers) and list (lists of integers). By
using expressions of the λμ-calculus, exception operators catch and throw are repre-
sented as follows: catch a.M := μa.[a]M, and throw (a,M) := μb.[a]M. For example,
let us consider the following program with catch and throw operators.

mlist = λN.λL.catch a.(mul N L)
mul = fix λF.λN.λL. if N = 0 then 1 else

if L = nil then 1 else
if hd(L) = 0 then throw (a, 0) else hd(L) ∗ (F (N − 1) tl(L)).

The function mlist of type int ⊃ list ⊃ int takes an integer N and a list L as its
inputs, and mul recursively multiplies the first N elements of L. If mul encounters an
element 0 during the calculation, then throw (a, 0) throws exception to catch operator
in mlist, and mlist immediately returns 0. However, we cannot write a staged pro-
gram using catch and throw that generates a program code of (mlist N) when the
argument N is statically known, because catch and throwmust be used in the same
scope of a �-operator. For example, the program catch a.�(throw (a, 0)) is not valid,
since the classical covariable a occurs freely in the scope of �-operator.

On the other hand, the following new operators can be defined in λμS 4:

catch�α.M := �α.〈α〉M, and throw�(α,M) := �β.〈α〉M (β is not free in M).

They operate similar to catch and throw by assuming (η�)-rule:

catch�α.V −→∗ V (α is not free in V , and V is a value),
catch�α.(throw�(α,M)) −→∗ M (α is not free in M),
�β.dia〈x.R〉(throw�(α,M)) −→∗ throw�(α,M).

We claim that catch�and throw�can be used if they are not in the same scope of a
�-operator. For example, the program catch�α.�(throw�(α, 0)) is a valid program,
since the modal covariable α can occur freely in the scope of �-operator. We also define
a term cast(M) by �α.αM, where α is not free in M. The meaning of cast(M) is
that the value of M will be used at some later stage. This term takes out the inside
continuation by unpacking a persistent continuation, and passes the value of M to the
inside continuation. Thus, dia〈x.R〉(cast(M)) is reduced to (λx.R)M.
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We then define the function mlistS of type int ⊃ �(list ⊃ �int) as follows.
mlistS (N) = let �χ be (mulS N) in �(λL.catch�α.(χL)),
mulS = fix λF.λN. if N = 0 then �(λL.cast(1)) else let �χ be F(N − 1) in �P(χ),
P(χ) = λL.if L = nil then cast(1) else

if hd(L) = 0 then throw�(α, cast(0)) else �β.dia〈x.β(hd(L) ∗ x)〉(χtl(L)).

The term mlistS (n) generates a program code of type �(list ⊃ �int) that
calculates the multiplication of the first n elements of the input list. The term
(mulS n) is reduced to �(Pn(λL.cast(1))), where Pn(M) is P(. . . P(M) . . .) (n times
of P). Thus the term mlistS (n) is reduced to �(λL.catch�α.Pn(λL′.cast(1))L).
Hence unbox(mlistS (4))[2, 4, 1, 3, 5] is reduced to catch�α.�β.dia〈 x.β(2 ∗ 4 ∗
1 ∗ 3 ∗ x) 〉(cast(1)), and then cast(24) is obtained. where unbox(M) is
let �χ be M in χ. On the other hand, unbox(mlistS (4))[2, 4, 0, 3, 5] is reduced to
catch�α.�β.dia〈 x.β(2∗4∗x) 〉(throw�(α, cast(0)), and then it reduced to cast(0) by
catch�/throw�mechanism. This simulates the catch /throw mechanism in mlist.

6 Conclusion and Future Work

We proposed a new natural deduction system CNDS4 for classical S4 modal logic. This
system was an extension of Parigot’s Classical Natural Deduction for classical logic.
We then introduced the λμS 4-calculus as a computational extraction of CNDS4, and
showed subject reduction, confluency, and strong normalization. In the previous sec-
tion, we discussed computational interpretation of the possibility operator introducing
the notion of persistent continuation. As we observed, the possibility operator enabled
the necessity operator to provide a theoretical framework for staged computation with
exception handling.

Our future work is as follows. (1) The call-by-value λμS 4-calculus: The calculus
given in this paper is based on call-by-name. We can also give the call-by-value vari-
ant of λμS 4-calculus, which is informally considered in Section 5. CPS based analysis
is deeply related to call-by-value systems. It will give us a new approach for studying
computational aspect of classical modal logic. (2) Formulation and application of per-
sistent continuations: For the clearer understanding of the possibility operator, persistent
continuations should be explored more deeply in the further work. (3) Computational
duality in classical modal logic: The λμS 4-calculus is given by adding the necessity and
possibility operators to the λμ-calculus in a symmetric way. This means that the duality
between call-by-value and call-by-name of classical logic will be naturally extended
to classical modal logic. This expected result will give us an approach for studying
persistent continuations.
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Abstract. We describe an algorithm for synthesizing resource invariants
that are used in the verification of concurrent programs. This synthesis
employs bi-abductive inference to identify the footprints of different parts
of the program and decide what invariant each lock protects. We demon-
strate our algorithm on several small (yet intricate) examples which are
out of the reach of other automatic analyses in the literature.

1 Introduction

Resource invariants are a popular thread-modular verification technique for con-
current lock-based programs. The idea is to associate with each lock an assertion,
called the resource invariant, that is true whenever no thread has acquired the
lock. When a lock is initialized, we must prove that the associated resource
invariant holds. When a thread acquires a lock, it can assume that the corre-
sponding resource invariant holds. When it releases the lock, it must ensure that
the resource invariant is still true.

In concurrent separation logic (CSL), O’Hearn [8] has adapted the notion of
resource invariants by making them record exactly the part of the memory that
a given lock protects. His elegant examples show how the ownership of memory
cells can be transferred from one thread to another via a resource invariant. CSL
provides simple proofs of programs such as the one in Fig. 1, where a memory
cell is allocated in one thread and deallocated in another.

The central problem facing any attempt to construct CSL proofs automati-
cally is the synthesis of suitable resource invariants. For instance, consider the
two programs in Fig. 2 (taken from [8]) implementing a one place pointer-
transferring buffer. In the first program, the memory cell x is transferred from
the first thread to the second one, and can be easily verified once we have guessed
the resource invariant (full ∧c →−)∨(¬full ∧emp). In the second program, there
is no transfer of ownership and the resource invariant is simply emp. To establish
a proof for these programs the choice of the resource invariant must mirror the
ownership property. O’Hearn does not address the issue of how to come up with
the correct resource invariant and states that “ownership is in the eye of the
asserter.” This is also the approach taken by Smallfoot [2], which required the
user to specify the resource invariants.

More recently, Gotsman et al. [6] proposed a very practical, heuristic method
for calculating resource invariants. Their method is based on a thread-modular
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put(x)
def= with buf when (!full) do { c := x; full := true; }

get(y)
def= with buf when (full) do { y := c; full := false; }

Fig. 1. Definitions of put(x) and get(y) operations

resource buf(c)

x = new();

put(x);

get(y);

dispose(y);

resource buf(c)

x = new();

put(x); dispose(x);
get(y);

Fig. 2. Single element buffers with ownership transfer (left) and without (right)

program analysis to compute resource invariants by a global fixpoint calculation.
In order to decide which part of the memory is owned by a thread and which
part belongs to a given lock, they use a predetermined reachability heuristic. The
problem with this approach is that it relies heavily on an ad hoc local heuristic.
For instance, in both programs of Fig. 2, at the end of the put(x) critical region,
we have the state full ∧ c = x ∧ c →−. To verify the left program, we need to
associate the memory cell c →− to the resource. To verify the right program,
the same memory cell must remain owned by the first thread. So, in general, the
splitting cannot be decided by a purely local heuristic. Instead, the contexts of
all conditional critical regions protecting the same resource need to be considered
and therefore global methods are required.

In general, designing a method able to synthesize resource invariants in a
thread-modular and automatic manner and susceptible to the ownership policy
of the program is very tricky since ownership is a global property of the system.
In this paper, we present an algorithm aiming at achieving this goal. Our method
is not based on reachability but rather on the idea of footprint — i.e., the region
of memory that a command requires in order to run safely. By employing the
footprint concept, we obtain a more systematic way for computing resource
invariants. We describe an algorithm that uses bi-abduction [3] to calculate what
state is actually protected by the resource. We show the effectiveness of our
algorithm by applying it to all the involved examples given by O’Hearn [8].

2 Informal Description of the Synthesis Algorithm

Intuitively, our algorithm works by guessing an initial set of resource invariants
and by iteratively refining the guess until either this is strong enough to prove
the program or the algorithm gives up because it cannot find a better refinement
of the current guess. More precisely, our algorithm can be described as follows:

1. For each Conditional Critical Region (CCR) in the system we take the empty
heap as the initial approximation of the state protected by the resource.

2. The current guess of the Resource Invariants (RI) is used to compute speci-
fications for all the CCRs. This step might refine the current RIs.

3. An attempt is made to prove each thread (separately) using the current
guess of RIs and current specifications of CCRs. If a proof can be built,
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the algorithm exits successfully: the current RIs are strong enough to prove
memory safety. Otherwise, the current RIs are refined, as described below.

4. The refinement is done by applying bi-abduction [3] on the continuation of
the CCR where the previous proof attempt failed. This is done to check
whether the program involves ownership transfer.

Note that in step 3, in constructing a proof for the threads, we assume that
the user annotates the program with both the association of variable names to
resources and preconditions for the threads, but not the resource invariants (or
loop invariants). We remark that the association of variables to resources can
sometimes be discovered by a tool like Locksmith [9], and it seems likely that
bi-abduction might be employed to discover these thread preconditions, just as it
was used in [3] to discover procedure preconditions. So in applying our algorithm
it is likely that an even greater degree of automation is possible. However, in this
paper, we make these assumptions to focus our study on the core algorithmic
difficulty of discovering the resource invariants.

3 Basics

3.1 Programming Language

We describe a simple parallel programming language following [8]. Let Res be a
countable set of resource names. A concurrent program Prg in this language con-
sists of an initialization phase where variables may be assigned a value, a single
resource declaration, and a single parallel composition of sequential commands

Prg ::= init ;
resource r1(variable list), . . . , rm(variable list)
C1 ‖ · · · ‖ Cn

Sequential commands are defined by the grammar:

C ::= x := E | x := [y] | [x] := E | x := new() | dispose(x)
| skip | C;C | if B then C else C | while B do C endwhile
| with r when B do C endwith

where E ∈ PVar ∪ {nil} and PVar is a countable set of program variables
ranged over by x, y, z, . . . . Sequential commands include standard constructs
(assignment, sequential composition, conditional, and iteration), dynamic al-
location (x := new()), explicit deallocation (dispose(x)), and operations for
accessing the heap: look-up (x := [y]) and mutation ([x] := E). Resources are
accessed using CCR commands with r when B do C endwith, where B is a
(heap-independent) boolean condition and C is a command. A CCR is a unit of
mutual exclusion; therefore two with commands for the same resource cannot
be executed simultaneously. In detail, with r when B do C endwith can be ex-
ecuted if the condition B is true and no other CCR for r is currently executing.
Otherwise its execution is delayed until both conditions are satisfied.



262 C. Calcagno, D. Distefano, and V. Vafeiadis

Notation. We introduce some notation used throughout the paper. Given a
concurrent program Prg , let CCR(Prg) denote the set of all its conditional
critical regions. Let Res(Prg) be the set of resources defined in Prg and let
CCR(r,Prg), with r ∈ Res(Prg), be the subset of CCR(Prg) acting on resource
r. For C = with r whenB do C′ endwith, we define guard(C) def= B, body(C) def= C′

and res(C) def= r the guard, the body and the resource of the CCR C, respectively.

3.2 Storage Model and Symbolic Heaps

We describe the storage model and symbolic heaps: a fragment of separation
logic formulae suitable for symbolic execution [1,5]. Let LVar (ranged over by
x′, y′, z′, . . . ) be a set of logical variables, disjoint from program variables PVar ,
to be used in the assertion language. Let Locs be a countably infinite set of
locations, and let Vals be a set of values that includes Locs . The storage model
is given by:

Heaps def= Locs ⇀fin Vals Stacks def= (PVar ∪ LVar) → Vals
States def= Stacks × Heaps

Program states are symbolically represented by special separation logic formulae
called symbolic heaps. They are defined as follows:

E ::= x | x′ | nil Expressions
Π ::= E=E | E �=E | true | Π ∧Π Pure formulae
S ::= E →E | ls(E,E) Basic spatial predicates
Σ ::= S | true | emp | Σ ∗Σ Spatial formulae
D ::= ∃x′. (Π ∧Σ) Disjuncts
H ::= D | H ∨H Symbolic heaps

Expressions are program or logical variables x, x′ or nil. Pure formulae are con-
junctions of equalities and disequalities between expressions, and describe prop-
erties of variables. Spatial formulae specify properties of the heap. The predicate
emp holds only in the empty heap where nothing is allocated. The formula Σ1∗Σ2
uses the separating conjunction of separation logic and holds in a heap h which
can be split into two disjoint parts h1 and h2 such that Σ1 holds in h1 and Σ2 in
h2. In symbolic heaps some (not necessarily all) logical variables are existentially
quantified. The set of all symbolic heaps is denoted by SH. S is a set of basic
spatial predicates. In this paper we consider a simple instance of S. However,
our algorithm works equally well for other more sophisticated choices of spatial
predicates such those described in [4,7]. The points-to predicate x → y denotes a
heap with a single allocated cell at address x with content y, and ls(x, y) denotes
a non-empty list segment from x to y (not including y).

3.3 Bi-abduction

The notion of bi-abduction was recently introduced in [3]. It is the combination
of two dual notions that extend the entailment problem: frame inference and
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abduction. Frame inference [1] is the problem of determining a formula F (called
the frame) which we need to add to the conclusions of an entailment H ' H ′ ∗F
in order to make it valid. In other words, solving a frame inference problem
means to find a description of the extra parts of heap described by H and not
by H ′. Abduction is dual to frame inference. It consists in determining a formula
A (called the anti-frame) describing the pieces of heap missing in the hypothesis
and needed to make an entailment H ∗ A ' H ′ valid.

Bi-abduction is the combination of frame inference and abduction. It consists
in deriving at the same time interdependent frames and anti-frames.

Definition 1 (Bi-Abduction). Given two heaps H and H ′ find a frame F and
an anti-frame A such that H ∗ A ' H ′ ∗ F

Many solutions are possible for A and F. A criterion to judge the quality of
solutions as well as a bi-abductive prover were defined in [3]. A modified version
of bi-abduction was proposed in [7].

Bi-abduction was introduced as a useful mechanism to construct composi-
tional shape analyses. Such analyses can be seen as the attempt to build proofs
for Hoare triples of a program. More precisely, given a program composed by
procedures p1(x1), . . . , pn(xn) the proof search automatically synthesizes pre-
conditions P1, . . . , Pn and postcondition Q1, . . . , Qn such that the following are
valid Hoare triples:

{P1} p1(x1) {Q1}, . . . , {Pn} pn(xn) {Qn}

The triples are constructed by symbolically executing the program and by com-
posing existing triples. The composition (and therefore the construction of the
proof) is done in a bottom-up fashion starting from the leaves of the call-graph
and then using their triples to build other proofs for procedures which are on
a higher-level in the call-graph. To achieve that, the following derived rule for
sequential composition [3] is used:

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∗ A}C1;C2 {Q2 ∗ F} Q1 ∗ A ' P2 ∗ F

(BA-seq)

In this paper we show that bi-abduction can be useful to achieve compositional
proofs of concurrent programs.

Throughout this paper we will write the frame and anti-frame to be deter-
mined in the bi-abduction problem in “frak” fonts (e.g., A,F,B . . . ) in order to
distinguish them from the known parts of the entailment.

4 Comparing Resource Invariants

In this section we study the structure of the solutions to the resource invariant
inference problem from a theoretical perspective. We define an order used to
compare those solutions, and show that an optimal invariant with respect to
that order always exists.
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Definition 2 (Safe Resource Invariant). Given a precondition P which holds
before entering a CCR with guard B and body C, we say that I is a safe resource
invariant starting from P if and only if the triple {P ∗ I ∧B}C {I ∗ true} holds.

In other words, I describes resource large enough for C to execute safely, yet
I is weak enough that C can re-establish it. For example, x→ 3 is too strong
if C is [x] := 4 (cannot be re-established), and emp does not describe enough
resource for C to execute safely. Perhaps surprisingly, these two requirements
are compatible with an order relation that admits an optimal solution, which we
describe below.

Definition 3. If I and I ′ are resource invariants, we define the preorder I ≤ I ′,
meaning that I is better (or smaller) than I ′, to hold if and only if I ′ |= I ∗ true.

When I ≤ I ′ we sometimes say that I ′ extends I. Note that ≤ is not antisym-
metric as I ≤ I ′ and I ′ ≤ I does not imply I = I ′. However, it implies min(I) =
min(I ′), where min is an operation that removes non-minimal states, defined as
follows: (s, h) |= min(X) ⇐⇒ (s, h) |= X and ∀h′. s, h′ |= X implies h ≤ h′.

Therefore, ≤ is antisymmetric modulo the equivalence relation I ∼ I ′ ⇐⇒
min(I) = min(I ′). For example, emp ≤ true and true ≤ emp, but min(emp) =
min(true) = emp.

Notice that if I1 and I2 are safe resource invariants starting from P , then so is
I1∨I2, by direct application of Hoare’s disjunction rule. Since I ′ ⇒ I implies I ≤
I ′, it can be readily seen that a (unique modulo ∼) minimal resource invariant
Ibest exists, and can be described directly as Ibest =

∨
{I | I r.i. for all CCRs}.

Hence the best invariant is logically weakest and spatially smallest.
The presentation of Ibest given above involves an infinite disjunction. This is

an ideal that any algorithm for invariant inference should try to approximate,
just as one usually does with loop invariants. One such algorithm is given in the
next section.

5 The Invariant Synthesis Algorithm

Algorithm 1 computes the set I of resource invariants for the program Prg or
returns failure. I is a function I : Res → SH associating to each resource r a
resource invariant I(r). The basic idea is to start with the minimal invariant emp
and then repeatedly refine it to a bigger one w.r.t. ≤ during symbolic execution.
The role of (perfect) abduction is to refine it by the minimum amount necessary
for the symbolic execution to go through. So the informal argument for each
refinement from I to I ′ is of the form “if there exists a safe invariant, it must
be ≥ I ′”. The initial approximation emp models a situation where resources are
neither protected nor transferred; only if the program requires it, is the invari-
ant refined into one which does so. More precisely, the basic idea is implemented
as follows. Initially the resource invariant of every resource r is initialized to be
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Algorithm 1. InvariantSynthesis(Prg)
1: I := {(r,

∨
Cr∈CCR(r,Prg)(emp ∧ guard(Cr))) | r ∈ Res(Prg)};

2: Failed := ∅;
3: while I /∈ Failed do
4: (I, Specs) := CompSpecs(I);
5: if ProofSearch(Prg , I,Specs) fails then
6: Failed := Failed ∪ {I}
7: C1; · · · ; Cj := FailingPath(Prg , I,Specs);
8: I := RefineOwnership(C1; · · · ; Cj , I);
9: else

10: return I
11: end if
12: end while
13: return failure

a disjunction of emp and the guard of its CCRs (Step 1).1 This gives the first
approximation for I. Specs is the set of Hoare triples {P}C {Q} defining a spec-
ification for all CCRs in the program. Specs is computed by using the function
CompSpecs which is applied the current guess of the invariants. CompSpecs is
explained in detail in Sec. 5.1, and while it generates specifications it may mod-
ify I giving a first refinement. CompSpecs returns a set of pairs (I ′,Specs) or
fails. ProofSearch(Prg , I,Specs) (see Sec. 5.2) is a procedure that tries to build
a separation logic proof of Prg using the specifications Specs and the resource
invariants I. The set Failed contains those invariants for which the algorithm
failed to build a proof. The loop starting at step 3 attempts to build a proof with
the result of CompSpecs. If the proof succeeds, the algorithm terminates with
success and returns the computed resource invariants. Otherwise, the algorithm
tries to refine the current guess. In that case, the invariant of the failing CCR
is refined using the procedure RefineOwnership (see Sec. 5.3). After I is refined
the set of CCR specifications is updated accordingly before attempting a new
proof of the program. The algorithm fails in case the refinement process returns
an invariant which was tried before with no success. Notice that CompSpecs is a
partial function, therefore, the algorithm fails also in case CompSpecs does not
return a value.

5.1 Computing Specifications for CCRs

The computation of CCRs’ specifications requires an abstraction function for
symbolic heaps α : SH −→ SH. Given the kind of symbolic heaps used in this
paper, it is enough to have α defined as in [5], although our algorithm is not

1 The rationale for adding CCRs’ guards to the initial invariant is that, when the
algorithm refines I(r) by examining a CCR Cr, the missing part will be added
only to the disjunct corresponding to Cr. This disjunct is determined by guard(Cr).
Adding ∗-conjuncts only to one disjunct (rather than to all of them) provides us
with a better invariant w.r.t. the defined order ≤.
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dependent on a specific choice. Moreover, let [P ]locQ be a function that replaces
shared variables (i.e., those listed in the resource declaration) in P using equal-
ities in Q. [·]loc : SH×SH−→ SH is defined as:

[P ]locQ = P [x1/c1, · · · , xn/cn]

where xi are local variables, ci are shared variables, and Q ≡ x1 = c1∧· · ·∧xn =
cn ∧Q′ and in Q′ there are no further equality terms between local and shared
variables.2 Similarly, define [·]sha as the dual function which tries to replace local
variables with shared variables.

Computing the Specification of a Single CCR. The computation of a
specification for the CCR with r when B do C endwith is done by performing a
compositional bottom-up analysis ([3] and Sec. 3.3) on the body C. The analysis
starts from the following precondition: B ∧ emp ∗ I(r).

This is different from [3], where the analysis started with precondition emp.
The bottom-up analysis will construct a proof of C by synthesizing P and Q
such that the triple {B ∧ P ∗ I(r)}C {Q} holds.3 Once this triple is computed,
a specification for the with command is obtained by applying the following new
rule (called BA-with):

{B ∧ (P ∗ I(r))}C {Q}
{P ∗ [A]locQ } with r when B do C endwith{α(∃c.F)}

Q ∗ A ' I(r) ∗ F

with additional side conditions:

1. no variable occurring free in [A]locQ is modified by C,
2. no other process modifies variables free in P ∗ [A]locQ or α(∃c.F).

Starting from a proof of the CCR’s body, this rule uses bi-abduction to derive two
symbolic heaps A and F. The anti-frame A needs to be added to the precondition
P to re-establish r’s resource invariant I(r). The frame F corresponds to the
postcondition of the with statement. Both frame and anti-frame are massaged
before using them in the specification to remove terms related to shared variables
(which should not appear in pre/postcodintions). In particular in the anti-frame
A, terms containing shared variables are rewritten (when possible) in terms of
local variables using known equalities in Q. This is the purpose of the function
[·]loc. The frame F is simplified by replacing uses of shared variables by local
variables whenever possible using the existing equalities, and by dropping pure
formulae involving shared variables. This is achieved by existentially quantifying
shared variables in F and by applying the abstraction α.

2 [·]loc is a well defined function if a fixed order among local variables is chosen.
3 The reason for not using a simple forward symbolic execution starting from emp ∗
I(r)∧B to build a proof of C is that, in general, this precondition is not enough for
proving C. Hence a precondition P �= emp needs to be derived, and this is done by
the bottom-up analysis.
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Lemma 1. The BA-with rule is sound.

Example 1. Assume the resource invariant I ≡ (¬full ∧ emp) ∨ (full ∧ emp). We
show the induced specifications for the CCRs in Fig. 1. Using emp as precondi-
tion, for put(x) we have the triple

{¬full ∧ emp ∗ I} c := x; full := true {full ∧ c=x ∧ emp}

From this, the bi-abduction engine is queried to derive F and A for the entailment
full ∧ c=x ∧ emp ∗ A ' I ∗ F. The solution is A ≡ emp and F ≡ c=x ∧ emp. This
is further simplified to remove terms with shared variables: [emp]locc=x∧I = emp
and α(∃c. c=x∧ emp) = true ∧ emp. Therefore, by applying the rule BA-with we
obtain the specification {emp} put(x){emp}.

Similarly for the CCR get(y), using emp as precondition of BA-with we have:

{full ∧ emp ∗ I} y := c; full := false {¬full ∧ y = c ∧ emp}

Now we appeal to bi-abduction for the query ¬full ∧y = c∧ emp∗A ' I ∗F. The
solution is A ≡ emp and F ≡ y=c∧emp and hence after the simplification of [·]loc
and α and applying BA-with we obtain the specification {emp} get(y){emp}.

Example 2. Consider now a different resource invariant I ≡ (¬full∧emp)∨(full∧
c →−). As in the previous example, we show the induced specifications for the
CCRs in Fig. 1, using this invariant instead. For put(x) we can derive the triple:

{¬full ∧ emp ∗ I} c := x; full := true {c=x ∧ full ∧ emp}.

Then, asking bi-abduction the question c=x ∧ full ∧ emp ∗ A ' I ∗ F yields the
solution A ≡ c →− and F ≡ c=x∧emp. By simplifying the anti-frame we obtain
[c →−]locc=x∧full = x →−, whereas for the frame we have α(∃c. c=x ∧ emp) =
true ∧ emp. Therefore, applying BA-with gives {x →−} put(x){emp}.

Similarly for get(y) we have:

{full ∧ emp ∗ I} y := c; full := false {¬full ∧ y=c ∧ c →−}

When posed the query ¬full ∧ y=c ∧ c → − ∗A ' I ∗ F the bi-abduction engine
finds the solutions A ≡ emp and F ≡ y=c ∧ c →−. A is already simplified,
whereas F is simplified to α(∃c. y=c ∧ c →−) = y →−. Hence BA-with returns
the specification {emp} get(y){y →−}.

The Function CompSpecs. The computation of specifications for all the CCRs
in the program is performed by CompSpecs. Given a set of resource invariants
I, this function is defined as:

CompSpecs : (Res → SH) −→ (Res → SH) × P(SH × C × SH)
CompSpecs(I) def= (I ′, {Spec(I ′, Cr) | Cr ∈ CCR(Prg)})

when (CCR(Prg), I) −→∗
1−→∗

2−→∗
3 (∅, I ′)
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Table 1. Transition rules for computing Specs and possibly refining I

Spec(I, Cr) = Fail P

L, I −→1 L, I[r ← Ir]
I(r) ≤ Ir and Cr ∈ L
Ir = α(I(r) ∗ PShared )

L, I −→2 L, I[r ←
∨

i∈X Di]
I(r) = D1 ∨ . . . ∨ Dn

X ⊆ {i | 1 ≤ i ≤ n}

Spec(I, Cr) = {P} Cr {Q}
L, I −→3 L \ {Cr}, I

Cr ∈ L

This definition uses the transition rules in Table 1 in three distinct phases:
invariant refinement (−→∗

1), pruning of disjuncts (−→∗
2), and checking of the

result (−→∗
3). Let Shared(P ) be the set of shared variables occurring in P , and

let PShared be the sub-formula of P containing only shared variables. L contains
the CCRs for which specifications have not yet been successfully computed. The
rules are applied to L and I until a specification has been computed for all
CCRs. The function Spec(I, Cr) tries to compute the specification for the CCR
Cr w.r.t. I as described above, i.e., using bottom-up analysis and BA-with. If
this succeeds, it returns the inferred triple {P} Cr {Q}; if, however, the side
conditions of the BA-with rule are violated, then it returns Fail P , where P is
the inferred precondition of the block, had the side conditions been satisfied.
The rule −→1 refines the current resource invariant when an attempt to find a
spec for the CCR’s body using the current invariant fails. The rationale is that
if shared state is needed by the critical region this should be provided by the
resource invariant and not by the precondition.4 The rule therefore tries to refine
I(r) by adding the terms with shared variables in P . If the resulting invariant
Ir extends the current guess for r, then this extension is used to replace I(r).
Rule −→2 can be applied when −→1 cannot refine I(r) any further. The task
of −→2 is to remove from I(r) those disjuncts that cannot be re-established by
the CCR’s body. Finally, rule −→3 records the fact that a spec for Cr has been
found by removing it from L.

Lemma 2. If the number of program variables in Prg is finite, then the transi-
tion system defined in Table 1 is finite.

The immediate consequence of this lemma is that CompSpecs can be effec-
tively computed by a fixpoint computation which applies systematically the rules
avoiding to re-apply them to previously visited states. Hence we have:

Corollary 1. The computation of CompSpecs terminates.

Example 3. We now consider a more involved example that shows the compu-
tation of the function CompSpecs. Here we use the memory manager described

4 Recall that precondition computed by bi-abduction corresponds to the footprint of
C, therefore it expresses the state needed to run the command.
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alloc(x)
def= with mm when (true) do {

if (f=nil) then x := new();

else x := f; f:=[x];

}

dealloc(y)
def=

with mm when (true) do {
[y] := f; f:= y;

}

Fig. 3. Definitions of alloc(x) and dealloc(y)

in [8] and reported in Fig. 3. We start by computing the specification of alloc(x)
using I0 ≡ true ∧ emp. We can prove the triple {P0} alloc(x){x →−} where

P0 ≡ (f=nil ∧ emp) ∨ (f →−).

However, the precondition specifies properties of the shared variable f , so we
need to apply rule −→1 of Table 1. The invariant is refined by adding P0 to the
current I0 and then abstraction α:

I1 = α(I0 ∗ P0) = (f=nil ∧ emp) ∨ (f → f ′)

where we have explicitly named the existential variable f ′ because it will be used
in the next iteration. When recomputing the specification of alloc(x) using I1
we obtain the triple {P1} alloc(x){x →−} where

P1 ≡ (f=nil ∧ emp) ∨ (f �=nil ∧ f ′=nil ∧ emp) ∨ (f �=nil ∧ f ′ →−).

Again by rule −→1 we obtain

I2 = α(I1 ∗ P1) = α((f=nil ∧ emp) ∨ (f → nil) ∨ (f → f ′ ∗ f ′ →−))
= (f=nil ∧ emp) ∨ (f → nil) ∨ ls(f, f ′)

A further iteration of −→1 produces the same P1 and

I3 = (f=nil ∧ emp) ∨ (f → nil) ∨ ls(f, f ′) ∨ ls(f, nil)

The candidate I3 is a fixpoint w.r.t. −→1 but it still produces the same P1,
therefore rule −→3 cannot be applied yet. This is caused by the disjunct ls(f, f ′),
which is too weak: starting from ls(f, f ′) the candidate invariant I3 cannot be
re-established. But now, rule −→2 can fire to remove disjunct ls(f, f ′) and obtain

I3 −→2 I4 = (f=nil ∧ emp) ∨ (f → nil) ∨ ls(f, nil)

Now rule −→3 can be applied, so I4 is a resource invariant for alloc(x). The
final specification of alloc(x) using I4 is {emp} alloc(x){x →−}.

Finally, I4 directly allows us to obtain {y →−} dealloc(y){emp} as specifi-
cation for dealloc(y).
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5.2 Proof Search

This phase attempts to build a compositional proof of the program by trying to
prove each thread in isolation. The building process is done using the bottom-up
analysis which starts from the beginning of the thread and tries to construct a
valid Hoare triple by symbolically executing the program as described in Sec. 3.3.
Let the concurrent program be

Prg = init ; resource r1(x1), . . . , rm(xm); C1 ‖ · · · ‖ Cn

Given PCi , a precondition for the thread Ci we can execute a proof search for
Ci by ProofSearch. This procedure uses the BA-seq rule to build the proof but
requires that at every application of this rule we have A ≡ emp. This condition
ensures that a proof for the thread Ci can actually be built from the precondition
PCi . In fact, it provides us with a notion of failure for a proof attempt. We say
that the proof search for Ci = C′

i;C
′′
i (from PCi) fails if by an application of

BA-seq we obtain the triple {PCi ∗A}C′
i {Q} for some Q ∈ SH and ¬(A ≡ emp).

We are usually interested in the shortest prefix C′
i which makes the proof fail.

The synthesis algorithm uses this notion of failure to detect when and where the
invariant needs to be refined because of possible ownership transfer.5

5.3 Refining Resource Invariants for Ownership Transfer

Algorithm 2 defines the procedure RefineOwnership, called by InvariantSynthesis
when the proof search fails. This typically happens because some ownership
transfer is needed for the program to be safe, but it is not enabled by the cur-
rent invariants I. RefineOwnership takes as parameter a sequence of commands
containing a CCR for which a proof attempt has failed. Consider the sequence
C1; · · · ;Cj ;C where the failure of the proof occurred in C. Let ρ ⊆ [1, j] be
the indexes of all the CCRs in the sequence. The algorithm starts from the last
CCR, i.e. Ck where k = max ρ, and tries to refine its invariant using function
RefOwn. If no refinement is possible (i.e. the invariant remains unchanged), then
the algorithm tries to refine the invariant of the previous CCR in the sequence,
and so on until no further CCR exists.

We now describe how the function RefOwn((Ĉ;Cr), Ĉ′) operates, where Cr ≡
with r when B do C′′ endwith is the CCR whose invariant will be refined, and
the Ĉ notation is used for sub-sequences of the failing sequence. Let P be the
precondition of the current thread, and let {P} Ĉ {Q} the result of the forward
analysis just before Cr and {B∧(Q∗I(r))}C′′ {Q′′ ∗I(r)} the results of forward
analysis until before exiting the CCR Cr. Let also {P ′} Ĉ′ {Q′} be the result of
spec inference for the continuation Ĉ′. We can then define

RefOwn((Ĉ;Cr), Ĉ′) def= ((B ∧ [A]sha(Q′′∗I(r))) ∨ (¬B ∧ emp)) ∗ I(r)
if (Q′′ ∗ I(r)) ∗ A ' (P ′ ∗ I(r)) ∗ F

5 Clearly the proof can fail for other reasons than the resource invariant. Other issues
for failure can be manifested in the fact that ¬(A ≡ emp).



Bi-abductive Resource Invariant Synthesis 271

Algorithm 2. RefineOwnership(C1; . . . ;Cj ;C, I)
1: ρ = {i ∈ [1, j] | Ci is a CCR};
2: do
3: k := max ρ;
4: ρ := ρ \ {k}
5: I ′ := RefOwn((C1; · · · ; Ck), (Ck+1; · · · ; Cj ; C))
6: while I(res(Ck)) = I ′ ∧ ρ �= ∅;
7: return I[res(Ck) ← I ′]

where recall that [·]sha, defined in Sec. 5.1, tries to replace local variables with
shared variables.

Intuitively RefOwn takes a trace ending in a CCR Cr and its continuation
Ĉ′, and returns a refined resource invariant for r which is updated only for
the part related to Cr and which takes into account the heap needed by Ĉ′.
The refinement is computed by solving a bi-abduction question involving the
symbolic state inside Cr before releasing the invariant, and the precondition of
the continuation suitably augmented with the invariant. In addition, only the
part of the anti-frame A involving shared variables is taken to refine the invariant.
In this context notice that a resource invariant should define properties of shared
variables of a resource. Therefore, since bi-abduction may express the anti-frame
in terms of local variables, in the newly computed invariant we use [·]sha for
replacing these local variables by equivalent shared ones.

Soundness and Termination. We now give some results about our invariant
generation method.

Theorem 1. The InvariantSynthesis algorithm is sound.

Corollary 2. If InvariantSynthesis(Prg) returns a set I then Prg is race-free.

Theorem 2. The InvariantSynthesis algorithm terminates provided that the un-
derlying forward analysis does.

5.4 Full Examples

Example 4. We describe the execution of the synthesis algorithm on the pro-
gram on the left side of Fig. 2 which performs transfer of ownership. The first
approximation of the resource invariant for resource buf is I0 = Iput∨Iget where

Iput = ¬full ∧ emp Iget = full ∧ emp (1)

Using I0 we obtain the first approximation of put(x) and get(y) specifications
(see Example 1 for the detailed derivation of these specs):

{emp} put(x){emp} {emp} get(y){emp} (2)

We then execute the ProofSearch procedure of both threads using I0 and emp as
preconditions. By BA-seq for the LHS thread we have:
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{emp} x = new(){x →−} {emp} put(x){emp}
{emp} x = new(); put(x){x →−}

by taking A ≡ emp and F ≡ x →−. Since A is emp, no refinement of I is required
and this completes the proof of the LHS thread. For the RHS we have:

{emp} get(y){emp} {y →−} dispose(y) {emp}
{y →−} get(y); dispose(y) {emp} (3)

However, we obtain this derivation by the anti-frame A ≡ y →−, and by our
notion of failure of the proof search introduced in Sec. 5.2 this means that we
cannot actually prove the RHS thread. The algorithm starts the refinement of
the invariant by inspecting the RHS and using the body of the CCR get(y):6

{(c = c′∧y = y′∧emp)∗(full∧I0)} y=c;full=false{c = c′∧y = c′∧¬full∧emp}

According to the definition of RefOwn we have to solve

(c = c′ ∧ y = c′ ∧ ¬full ∧ emp) ∗ A ' (I0 ∗ y →−) ∗ F

Here we have A ≡ y →− and [A]sha(c=c′∧y=c′∧¬full∧emp) ≡ c →−. Following the
algorithm, we extend the full disjunct of I0 to obtain a new candidate invariant:

I1 = (¬full ∧ emp) ∨ (full ∧ c →−) (4)

CompSpecs then updates the specifications for put(x) and get(y) using the new
invariant and the rule BA-with. As shown in Ex. 2 we obtain:

{x → } put(x){emp} {emp} get(y){y →−} (5)

The algorithm then uses the new specs in an attempt to prove LHS and RHS.

{emp} x = new(){x →−} {x →−} put(x){emp}
{emp} x = new(); put(x){emp}

{emp} get(y){y →−} {y →−} dispose(y) {emp}
{emp} get(y); dispose(y) {emp}

This time the proof succeeds, and the algorithm returns I1 as resource invariant.

Example 5. Here we discuss the execution of the synthesis algorithm on the
program on the right of Fig. 2, which does not involve ownership transfer. As in
Ex. 3 the algorithm initializes the resource invariant for buf to I0 = Iput ∨ Iget,
where Iput an Iget are defined as in (1). Moreover, the initial specs for put(x)
and get(y) are again as in (2). The forward analysis then easily proves the
following triples (at each step BA-seq rule gets A ≡ emp) :

{emp} x = new(); put(x); dispose(x) {emp} {emp} get(y){emp}

Hence the algorithm returns I0 as a suitable resource invariant for this program.
6 As in [3], we use auxiliary variables to record the initial value of program variables.
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Example 6. We now discuss a complex program which combines the one-place
pointer transferring buffer and the memory manager [8]:

alloc(x);
put(x);

get(y);
dealloc(y);

Step 1 of Algorithm 1 initializes the resource invariants to

I0
buf = (¬full ∧ emp) ∨ (full ∧ emp) I0

mm = true ∧ emp

CompSpecs derives specifications for the CCRs, and, as seen in Ex. 3, it refines
I0
mm to obtain a resource invariant I1

mm for the CCRs of resource mm. We have

{emp} put(x){emp} {emp} get(y){emp}
{emp} alloc(x) {x →−} {y →−} dealloc(y) {emp}

I1
mm = (f=nil ∧ emp) ∨ (f → nil) ∨ ls(f, nil)

As in Ex. 1, using such specifications we can derive a proof for the LHS:

{emp} alloc(x) {x →−} {emp} put(x){emp}
{emp} alloc(x); put(x) {x →−}

However, we cannot derive a proof for RHS since we get a non-empty anti-frame:

{emp} get(y){emp} {y →−} dealloc(y) {emp}
{y →−} get(y); dealloc(y) {emp}

Therefore, refinement is required. This is done as in Ex. 4 where we get Ibuf ≡
(¬full ∧ emp) ∨ (full ∧ c →−) and specifications {x →−} put(x){emp} and
{emp} get(y){y →−}. Using them, both LHS and RHS are then proved.

6 Related Work

Our method for computing resource invariants uses bi-abduction [3], a technique
that was introduced for discovering specifications of sequential programs. For
simplicity, we have assumed that each resource declarations is annotated with
the set of global variables it protects. Such annotations need not be given always
by the user, as they can often be inferred by tools such as Locksmith [9].

The only shape analysis based on concurrent separation logic that attempts to
calculate resource invariants is the thread-modular shape analysis by Gotsman
et al. [6]. This analysis uses a heuristic to decide how to partition the state into
local and shared after every critical region. As a result, it cannot use the same
heuristic to verify both programs in Fig. 2.

Note that these small programs can be verified with analyses that are not
thread-modular: e.g. by considering all thread interleavings as in Yahav [11],
or by keeping track of the correlations between the local states of each pair of
threads as in Segalov et al. [10]. The drawback of such analyses is that they do
not scale very well to large programs. In contrast, as our algorithm computes
resource invariants in a bottom-up fashion, we are hopeful that it will scale to
larger programs.
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7 Conclusion

In this paper, we have proposed a sound method for automating concurrent
separation logic proofs by synthesizing suitable resource invariants. Our method
is thread-modular in that it requires isolated inspection of sequential threads
instead of the global parallel composition. Its strength relies on the ability to
address one of the main open issues in the automation of proofs for concurrent
separation logic. This is the ability to discern, in a thread-local way, the cases
where the resource invariant needs to describe the transfer of ownership (among
threads) from those cases where no transfer should be involved. This inherent
complication has been described by O’Hearn by the expression “ownership is in
the eye of the asserter”. The technique proposed in this paper pushes the state
of the art in automatic generation of proofs towards the more ideal situation
where “ownership is in the eye of the mechanical method”. We believe that
this will open up interesting possibilities for achieving more scalable automatic
techniques for concurrent programs.
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Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401. Springer,
Heidelberg (2007)

5. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separa-
tion logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 287–302. Springer, Heidelberg (2006)

6. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:
PLDI 2007. ACM, New York (2007)

7. Gulavani, B., Chakraborty, S., Ramalingam, G., Nori, A.: Bottom-up shape analysis.
In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5679. Springer, Heidelberg (2009)

8. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science 375(1-3), 271–307 (2007)

9. Pratikakis, P., Foster, J.S., Hicks, M.: Context-sensitive correlation analysis for
detecting races. In: PLDI 2006. ACM, New York (2006)

10. Segalov, M., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Abstract
transformers for thread correlation analysis. In: Hu, Z. (ed.) APLAS 2009. LNCS,
vol. 5904. Springer, Heidelberg (2009)

11. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued
logic. In: POPL 2001. ACM, New York (2001)



Certify Once, Trust Anywhere: Modular Certification of
Bytecode Programs for Certified Virtual Machine

Yuan Dong, Kai Ren, Shengyuan Wang, and Suqin Zhang

Department of Computer Science and Technology Tsinghua University Beijing China, 100084
dongyuan@tsinghua.edu.cn, gleemanrk@gmail.com,

{wwssyy,zsq-dcs}@tsinghua.edu.cn

Abstract. Bytecodes and virtual machines (VM) are prevailing programming fa-
cilities in contemporary software industry due to their ease of portability across
various platforms. Thus, it is critical to improve their trustworthiness. This paper
addresses the interesting and challenging problem of certifying bytecode pro-
grams over certified VMs. Our solutions to this problem include: 1) A logical
systems (CBP) for a bytecode machine is built to modularly certify bytecode
programs with abstract control stacks and unstructured control flows, 2) and the
corresponding stack-based virtual machine is implemented and certified, 3) a sim-
ulation relation between bytecode program and VM implementation is developed
and proved to achieve the objective that once some safety property of a byte-
code program is certified in CBP system, the property will be preserved on any
certified VM. We prove the soundness and demonstrate its power by certifying
some example programs with the Coq proof assistant. This work not only pro-
vides a solid theoretical foundation for reasoning about bytecode programs, but
also gains insight into building proof-preserving compilers.

1 Introduction

Bytecode (such as Java bytecode [16] and .NET CIL [8]) and language VM (virtual
machine) are the key components of the many current web applications.

Major Challenges. Formal reasoning about bytecode programs is required both for
trustworthy web applications and proof-transforming compilers. Java and CIL are al-
ready verifiably type safe with the well-defined type system. Clearly, we want to cer-
tify more properties such as memory safety and partial correctness. Although some
efforts [18, 4, 2] on building logic system for bytecode programs have been made, the
task still remains challenging because of the complexity of abstract control stacks and
the lack of control flows information. Moreover, all these logic systems do focus on
bytecode programs; none of them takes virtual machines into account. Unfortunately,
there are lots of bugs in the well tested virtual machine [20]. Thus, even a certified
program may get stuck due to the virtual machine faults.

To tackle these challenges, this paper presents a way of building certified virtual ma-
chine and an end-to-end certification logic system for bytecode programs. We provide
a logic system for modularly verifying bytecode programs, a certified virtual machine
for interpreting bytecode programs, and a guarantee that a certified bytecode program

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 275–293, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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;Method: factorial | -{(p0, g0)} ;entry point, instruction sequence 1

;with while loop | 0 pushc 1 ;push imm 1 8 pushc 1 ;push imm 1

int factor(){ | 1 pop r ;r = 1 9 binop_ ;n-1

r = 1; | 2 goto 11 ;to the end 10 pop n ;save var n

while(n != 0){ | -{(p3, g3)} ;start loop -{(p11, g11)} ;inst seq 3

r = r*n; | 3 pushv r ;push var r 11 pushv n ;push var n

n = n-1; | 4 pushv n ;push var n 12 pushc 0 ;push imm 0

} | 5 binop* ;r*n 13 binop# ;n#0?

} | 6 pop r ;save var r 14 brture 3 ;conditional goto

| 7 pushv n ;push var n 15 ret ;function ret

Fig. 1. Stack-Based Bytecode Program

will run fine on the certified virtual machine. It is very difficult to build a logic system
for certifying bytecode programs as well as a corresponding certified virtual machine.
The major points are:

– How can we link certified bytecode programs and certified VM together? An open
logic framework was designed to integrate [9] the proof of different logic systems
for the X86 machine. But, it is very difficult to integrate the separated certified
program modules of different logic systems for different machines.

– To certify bytecode programs modularly, program logic for the virtual machine is
required to support both runtime stacks and unstructured control flows. We should
use similar logic systems for both the assembly program and the bytecode pro-
gram to make it easy to link the proof together. But, is the idea of logic system for
assembly code certification applicable to bytecode programs for a virtual machine?

Our Approach. A bytecode program with source code which involving while loop con-
trol structure is shown in Figure 1. The contents in the shadow box can be ignored now,
which will be discussed in details later. Here we give an informal overview about how
to certify this program in our method.

Firstly, we formalize two machines. We present the formal definition of bytecode lan-
guage which runs on a stack-based virtual machine named BCM (ByteCode Machine).
We use the formal definition of the X86 machine mentioned in SCAP paper [10].

Then, two logic systems for these two machines are provided to verify bytecode
programs and the virtual machine implementation separately and modularly. CertVM
(Certified VM), an implementation of BCM on the X86 machine is constructed. We use
SCAP, a simple but flexible Hoare-style logic (see Feng et al., [10]), to certify CertVM
modularly. Furthermore, we present a Hoare-style logic CBP(Certifying Bytecode Pro-
grams) system for BCM. This logic follows the invariant-based proof technique. We
define a program invariant to encode the memory safety property and the partial cor-
rectness which we are interested in.

Finally, the most important thing is to put these two logic systems together to guaran-
tee that certified bytecode programs run on the certified virtual machines without getting
stuck. The simulation relation proof shows that CertVM implementation is satisfied with
BCM operational semantics. This main theorem proves that for each bytecode program
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that is verified in the CBP logic, one can find an equivalent X86 program which is in a
simulation relation with the execution of the bytecode program by the virtual machine.
This equivalent program is verifiable in SCAP.

Our Contributions. In general, the most interesting point made by this paper about the
improvement over previous work is that of the certified virtual machine CertVM. We
present a Hoare-style logic system to support modular verification of bytecode pro-
grams with all kinds of stack-based control abstractions and unstructured control flows.
Formalizing the memory model of our CertVM, we give a certified virtual machine
with machine simulation relation proof. Building upon previous work on verification,
we make the following contributions:

– As far as we know, our work presents the first program logic facility with certified
VM for certifying the partial correctness of bytecode programs. Our work is static
certification so there is no additional runtime overhead.

– With the “plus simulation” relation, we prove the semantics preservation property
of our virtual machine. Furthermore, VM implementation and simulation relation
proof can be developed on any physical machines. As an important advantage, once
the properties of a bytecode program are certified, they will be preserved on any
certified virtual machine. That’s the reason of “Certify once, trust anywhere”.

– This logic system is, to our best knowledge, the first to extend FPCC(Foundational
Proof-Carrying Code) concepts [1] which is useful for machine code certification
to mid-level bytecode language. As we know, an interpreter is similar to the code
generator of a compiler. So, it is a feasible way to build a logic system for proof
and semantics preserving compilation from bytecode to machine code.

This system is fully mechanized. We give the complete soundness proof and a full
verification of an example in the Coq proof assistant [7]. The virtual machine CertVM
is implemented in X86 assembly language and is certified with SCAP logic system.
Furthermore, it is executable in the Bochs simulator [12].

The rest of this paper is organized as follows: we first formalize the bytecode vir-
tual machine BCM, give its operational semantics, and present a Hoare-style logic sys-
tem CBP for bytecode program certifying(Sec 2). We then give the implementation of
CertVM, prove the simulation relation, and put them together to prove the soundness
(Sec 3). After that, we show some examples and the implementation with Coq proof
assistant tools (Sec 4). Finally we discuss related works and draw a conclusion.

2 CBP Logic for ByteCode Virtual Machine

In this section, we present the definition and the operational semantics of BCM byte-
code machine. Then, we give the program logic CBP for certifying bytecode programs.

2.1 Bytecode Machine BCM

BCM Definition. In Figure 2, we show BCM definition. The whole machine configura-
tion is called a “World” (W), and consists of a read-only code heap (C), an updatable
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(World) W ::= (C,S,Kc,pc)
(CodeHeap) C ::= {f � I}∗

(State) S ::= (H,K)
(CStack Kc ::= nil | f ::Kc

(ProgCnt pc ::= n (nat nums)

(Memory H ::= {k � w}∗
(EStack K ::= nil | w ::K
(Labels) f,k ::= n (nat nums)
(Word) w ::= i (integers)

(OprNum) m ::= {+ . . ./,−·· ·+}
(Instr) ι ::= pushc w | pushv k | pop k | binop m | unop m | brtrue f | call f

(Commd) c ::= ι | ret | goto f

(InstrSeq) I ::= ι;I | ret | goto f

Fig. 2. Definition of BCM Bytecode Machine

C[f] �
{
c c = C(f) and c = goto f′, or ret
ι;I ι = C(f) and I = C[f+1] (F{a � b})(x) �

{
b if x = a
F(x) otherwise .

validK n K � top(K) + n ≤ max(K) validKc n Kc � top(Kc) + n ≤ max(Kc)
validRa Kc � ∃f,∃Kc

′.Kc = f ::Kc
′

Fig. 3. Definition of Representations

state (S), a function call stack (Kc), and a program counter (pc). The code heap is a
finite partial mapping from code labels (f) to instruction sequences (I). The state S con-
tains a memory heap (H) and an evaluation stack (K). The program counter pc points
to the current command in C. The instruction sequence I is a sequence of sequential in-
structions ending with jump or return commands. C[f] extracts an instruction sequence
starting from f in C, as defined in Figure 3. We use the dot notation to represent a com-
ponent in a tuple, e.g., S.K means the stack in state S. We also use function top() and
max() to get the current pointers and the upper bounds of K, Kc. Valid K or Kc means
that current pointer top() is in domain [0,max()] and points to some value.

The BCM Operational Semantics. In Figure 4, we also define the machine configuration
transition operational semantics of each instruction in a formal way. HereEnable(c)Kc S
gives the weakest condition for instruction c to execute. The relation NextS(c,pc,Kc)
shows the transition of states by executing c with program counter pc and call stack
Kc. While NextPC(c,S,Kc) shows how pc changes after c is executed with S and Kc.
NextKc(c,pc,S) gives the Kc changes after c execution with program counter pc and S.
The semantics of most instructions are straightforward. The execution of programs is
modeled as a small-step transition from one world to another. W −→ W′ is made by
executing the instruction pointed to by pc.

Specification Language. We use the mechanized meta-logic which is implemented in
the Coq proof assistant [7] as our specification language. The logic corresponds to a
higher-order predicate logic with inductive definitions. To specify a program with code
heap C, the programmer must insert specifications s at instruction sequence start points,
see Figure 1. As shown in Figure 5, the specification s is a pair (p,g). The assertion p
is a predicate over function call stack Kc and program state S, while guarantee g is a
predicate over two program states. We use p to specify the precondition over function
call stack, memory heap and stack. And use g to specify the guaranteed behavior from
the specified program point to the point when the current function returns.
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NextS(c,pc,Kc) S S′ where S = (H,K)
if c = if Enable(c) Kc S = then S′ =

pushc w validK 0 K (H,w ::K)
pushv f validK 0 K and H(f) = w (H,w ::K)
pop f K = w ::K′ (H{f�w},K′)
binop bop K = w1 ::w2 ::K′,w = bop(w1,w2) (H,w ::K′)
unop uop K = w1 ::K′,w = uop(w1) (H,w ::K′)
brtrue f K = w ::K′,w = True or False (H,K′)
call f validKc 0 Kc (H,K)
ret validRa Kc (H,K)
. . . (H,K)

NextKc(c,pc,S) Kc Kc
′ where S = (H,K)

if c = if Enable(c) Kc S = then Kc
′ =

call f validKc 0 Kc (pc+1) ::Kc
ret validRa Kc Kc

′

. . . . . . Kc

NextPC(c,S,Kc) pc pc
′ where S = (H,K)

if c = if Enable(c) Kc S = then pc′ =

brtrue f K = w ::K′,w = True f

K = w ::K′,w = False pc+1
call f validKc 0 Kc f

ret validRa Kc f

goto f f

. . . . . . pc+1
c = C(pc) Enable(c) Kc S NextS(c,pc,Kc) S S′ NextKc(c,pc,S) Kc Kc

′ NextPC(c,S,Kc) pc pc
′

(C,S,Kc,pc) −→ (C,S′,Kc
′,pc′)

(PC)

Fig. 4. Operational semantics of BCM

(Pred) p ∈ CStack → State → Prop (Guarantee) g ∈ State → State → Prop
(Spec) s ::= (p,g) (MPred) m ∈ Memory → Prop

(CdHpSpec) Ψ ::= {(f1,s1), . . . ,(fn,sn)}

Fig. 5. Specification Constructs for CBP

As we can see, the Enable(c) defined in Figure 4 is a special p. And the NextS(c,pc)
relation is a special form of g which is over the two adjacent states. We use the predicate
m to specify the memory heap. Specification Ψ for code heap C associates code labels
f with corresponding s. Note that multiple s may be associated with the same f, just as
a function may have multiple specified interfaces.

2.2 The CBP Program Logic

We use the following judgments to define the inference rules:

Ψ ' {s}W (well-formed world)
Ψ ' C :Ψ′ (well-formed code heap)
Ψ ' {s}I (well-formed instruction sequence)

Inference rules of the program logic are shown in Figure 6.
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Ψ '{s}W (Well-formed World)
Ψ ' C :Ψ′ Ψ ⊆ Ψ′ Ψ '{s}pc : C[pc] {s} Ψ′ S

Ψ '{s}(C,S,pc)
(WLD)

Ψ ' C :Ψ′ (Well-formed Code Heap)
for all (f,s) ∈ Ψ′ : Ψ '{s}f : C[f]

Ψ ' C :Ψ′ (CDHP)

Ψ1 ' C1 :Ψ′
1 Ψ2 ' C2 :Ψ′

2 C1#C2

Ψ1 ∪Ψ2 ' C1 ∪C2 :Ψ′
1 ∪Ψ′

2
(LINK)

Ψ '{s}I (Well-formed Instr. Sequence)
ι �∈ {brtrue ,call } Ψ '{(p′′,g′′)}pc+1 : I p ⇒ gι (p� gι) ⇒ p′′ (p◦ (gι ◦g′′)) ⇒ g

Ψ '{(p,g)}pc : ι; I
(SEQ)

(f′, (p′,g′)) ∈ Ψ Ψ '{(p′′,g′′)}pc+1 : I
(p� gbrT) ⇒ p′ (p◦ (gbrT ◦g′)) ⇒ g (p� gbrF) ⇒ p′′ (p◦ (gbrF ◦g′′)) ⇒ g

Ψ '{(p,g)}pc : brtrue f′;I
(BRTURE)

(pc+1, (p′′,g′′)) ∈ Ψ Ψ '{(p′′,g′′)}pc+1 : I
(p� gcall) ⇒ p′ (p� gfun) ⇒ p′′ (p◦ (gfun ◦g′′)) ⇒ g (f′, (p′,g′)) ∈ Ψ gfun = ((gcall ◦g′)◦gret)

Ψ '{(p,g)}pc : call lf′;I
(CALL)

(p◦gret) ⇒ g

Ψ '{(p,g)}pc : ret
(RET)

(f′, (p′,g′)) ∈ Ψ (p� ggoto) ⇒ p′ (p◦ (ggoto ◦g′)) ⇒ g

Ψ '{(p,g)}pc : goto f′
(GOTO)

Fig. 6. CBP Inference Rules

Program Invariants. The WLD rule formulates the program invariant enforced by our
program logic:

– The code heap C needs to be well-formed following the CDHP rule.
– The imported interface Ψ is a subset of the exported interface Ψ′, therefore C is

self-contained and each imported specification has been certified.
– Current pc has a specification s in Ψ, thus the current instruction sequence C[pc]

is well-formed with respect to s.
– Given exported Ψ′, the current state S satisfies the assertion s.

Program Modules. In the CDHP rule, Ψ contains specifications for external code (im-
ported by the local module C), while Ψ′ contains specifications for code blocks in the
module C for other modules. Thus, the CBP logic supports separate verification of pro-
gram modules. Modules are modeled as small code heaps which contain at least one
code block. The specification of a module contains not only specifications of the code
blocks in the current module, but also specifications of external code blocks which
will be called by this module. The well-formedness of each individual module is es-
tablished via the CDHP rule. Then, two non-intersecting well-formed modules can be
linked together via the LINK rule. The WLD rule requires all modules to be linked into a
well-formed global code heap.
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gbrT � λS,S′.NextS(brture, ) S S′ (where S.K = w ::K′,w = True)
gbrF � λS,S′.NextS(brture, ) S S′ (where S.K = w ::K′,w = False)
gc � λS,S′.NextS(c, ) S S′ (for all other c)

Fig. 7. Local State and Program Point Transitions

p⇒ g � ∀S. p S → ∃S′,g S S′ p� g � λS. ∃S0,p S0 ∧g S0 S

g◦g′ � λS,S′′. ∃S′. g S S′ ∧g′ S′ S′′ p⇒ p′ � ∀S. p S → p′ S

g⇒ g′ � ∀S,S′. g S S′ → g′ S S′ p◦g � λS,S′. p S∧g S S′

Fig. 8. Connectors for p and g

Sequential Instructions. Like traditional Hoare-logic [11], our logic also uses the pre-
and post-condition as specifications for programs. The SEQ rule is a schema for instruc-
tion sequences starting with an instruction ι (ι cannot be conditional jump or function
call instructions). It says it is safe to execute the instruction sequence I starting at the
code label pc, given the imported interface in Ψ and a precondition (p,g). An interme-
diate specification (p′′,g′′) with respect to which the remaining instruction sequence is
well-formed should be found. It is also used as a post-condition for the current instruc-
tion ι. We use gι to represent the state transition made by the instruction ι, which is
defined in Figure 7 and Figure 4. Since NextS does not depend on the current program
counter for these instructions “ ” is used to represent arbitrary pc.

The definitions in Figure 8 are used in these rules. The predicate p � gι specifies
the state resulting from the state transition gι, knowing the initial state satisfies p. The
composition of two subsequent transitions g and g′ is represented as g ◦ g′, and p ◦ g
refines g with the extra knowledge that the initial state satisfies p. The predicate p ⇒ gι
means that the state transition gι would not get stuck as long as the starting state satisfies
p. The second premise in the SEQ rule means if the current state satisfies p, after state
transition gι, the new state satisfies p′. The last premise in the SEQ rule requires the
composition of gι and g′′ fulfilling g, knowing the current state satisfies p.

Function Call and Return. Figure 9(b) shows the meaning of the specification (p,g)
for the function foo defined in Figure 9(a). Note that g may cover multiple instruction
sequences. If a function has multiple return points, g governs all the traces from the
current program point to any return point. Figure 9(c) illustrates a function call to bar
(point B) from foo at point A (label pc = 5), with the return address pc+1 (point D).
The specification of bar is (pB,gB). Specifications at A and D are (pA,gA) and (pD,gD)
respectively, where gA governs the code segment A-E and gD governs D-E.

To ensure that the program behaves correctly, we must enforce the following condi-
tions with a special guarantee gfun � λS,S′′.∃S′,∃S∗,gcal S S′ ∧gB S′ S∗ ∧gret S∗ S′′.

– the precondition of bar should be satisfied, i.e., ∀S,∃S′.pA S∧gcal S S′ → pB S′;
– after bar returns, caller foo resumes from D, ∀S,S′′.pA S → gfun S S′′ → pD S′′;
– if the function bar and the code segment D-E satisfy their specifications, the spec-

ification for A-E is satisfied, i.e., ∀S,S′′,S′′′.pA S → gfun S S′′ → gD S′′ S′′′ → g S S′′′.
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(a) (b) (c)

Fig. 9. The Model for Function Call/Return in CBP

The RET rule simply requires that the function has finished its guaranteed transition
at this point. In this rule, we do not need to know any information about the return
address. So it can be used to modularly certify any callee function separately.

Call Stack Invariant. Generalizing the safety requirement, we recursively define the
“well-formed function call stack” as follows:

WFST(g,Kc,S,Ψ)� ¬∃S′. g S S′, where Kc = nil.

WFST(g,Kc,S,Ψ)� ∀S′.g S S′ → p′ S′ ∧WFST(g′,Kc
′,S′,Ψ),

where ∃f,∃Kc
′.Kc = f ::Kc

′,(p′,g′) = Ψ(f).

When the function call stack is empty, we are in the top function which has no return
code pointer,i.e., ¬∃S′. g S S′. Then the stack invariant at every step of program execu-
tion is that, at each program point with (p,g), the program state S must satisfy p and
there exists a well-formed control stack in S. So the stack invariant is:

{(p,g)} Ψ S� p S∧WFST(g,Kc,S,Ψ).

Soundness of CBP. The soundness of the program logic is proved following the syn-
tactic approach based on the progress and preservation lemmas. It guarantees that the
complete system after linking never gets stuck as long as the initial state satisfies the
program invariant defined by the WLD rule. Furthermore, the invariant will be always
holding during execution, from which we can derive rich properties of programs.

Lemma 1 (Progress). If Ψ '{s}W, there exists a program W′, such that W −→ W′.

Lemma 2 (Preservation). If Ψ '{s}W, and W −→ W′, then there exists s′,
Ψ '{s′}W′.

Theorem 1 (CBP Soundness). For all program W, specification Ψ and assertion s. If
Ψ '{s}W, then for all natural number n, there exists a program W′ such that W−→nW′.
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3 Proof of ByteCode Virtual Machine

In this section, we present how to certify the implementation of a virtual machine
CertVM for BC/0. We first give the formal definition of x86 real-mode machine where
CertVM runs on. Then we introduce the program logic for this machine. Finally, we
show the design, implementation and formal proof of CertVM.

3.1 x86 Machine and SCAP Program Logic

X86 machine is defined in Figure 10. And Figure 11 shows its operational semantics.
This is a simplified version which includes only four general purpose registers. We use
SCAP [10] logic system to verify the CertVM implementation. The inference rules of
SCAP program logic are given in Figure 12. The soundness proof of SCAP is carried
out based on the progress and preservation lemmas which are similar to that of CBP.

3.2 The Design of CertVM

CertVM is implemented in real-mode x86 assembly language, and it is executable in
the Bochs simulator. The current implementation of CertVM mainly includes the loader
and the interpreter. Other advanced features such as garbage collection and just in-time
compilation are not included yet.

The memory space of CertVM consists of four major parts: code heap (C), memory
heap (H), evaluation stack (K) and function call stack (Kc). All of them are located in
x86 machine’s memory heap (Hx) as arrays. In the following analysis, function base()
and max() are used to get the base address and the maximum length of C, H, K and Kc.
And top() denotes the top pointer of stack K and Kc.

A loader is designed to launch the bytecode program. It loads bytecode programs
into C, initializes the memory heap H and the evaluation stacks K (setting the stack
pointer sp to zero). For the top level function, the bottom cell of function call stack Kc

is set to -1 (0xFFFF) and the stack pointer csp points to the second cell. And CertVM’s
pc is set to the entry point of the loaded bytecode program. After all the initializations,
it is ready to execute the bytecode program.

Every bytecode instruction is simulated by a sequence of x86 assembly instructions.
The simulation of a bytecode instruction consists of four phases: instruction fetch-
ing, decoding, dispatching and interpreting. Figure 13 shows the assembly instruction
sequence which simulate bytecode instruction goto as an example. The instruction se-
quence of bytecode fetching, decoding and dispatching is shared by all BC/0 instruc-
tions. Thus the simulation of every bytecode start at the label fetch. After fetching

(World) W ::= (C,S,pc)
(CodeHeap) C ::= {f � I}∗

(State) S ::= (H,R,zf)
(Memory) H ::= {l � w}∗
(RegFile) R ::= {r�w}∗

(Labels) l,f,pc ::= n (nat nums)
(Flags) zf ::= b

(Bit) b ::= 0 | 1
(Word) w ::= i (integers)

(WordReg) r ::= rAX | rBX | rCX | rDX
(Instr) ι ::= je f | movw w,r | movw rs,rd | movw w(rs),rd | movw rs,w(rd) | addw w,r | subw w,r | cmpw w,r

(Commd) c ::= ι | jmp f | jmpw r

(InstrSeq) I ::= ι;I | jmp f | jmpw r

Fig. 10. Definition of x86 Machine
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NextSc,pc S S′ where S = (H,R,zf)
if c = then S′ =
movw w,r (H,R{r�w},zf)
movw rs,rd (H,R{rd �R(rs)},zf)
movw rs,w(rd) (H{l �R(rs)},R,zf), if l = R(rd)+w and l ∈ dom(H)
movw w(rs),rd (H,R{rd �R(l)},zf), if l = R(rs)+w and l ∈ dom(H)
addw w,r (H,R{r�(R(r)+w)},zf)
subw w,r (H,R{r�(R(r)−w)},zf)
cmpw w,r (H,R,b), b = 0, if w = R(r); b = 1,else
. . . (H,R,zf)

NextPC(c,S) pc pc
′ where S = (H,R,zf)

if c = then pc′ =
je f f if zf = 0; pc+1 others
jmp f f

jmpw r f if f = R(r)
. . . pc+1

c = C(pc) NextS(c,pc) S S′ NextPC(c,S) pc pc
′

(C,S,pc) −→ (C,S′,pc′)
(PC)

Fig. 11. Operational semantics of x86 machine

Ψ '{s}W (Well-formed World)
Ψ ' C :Ψ′ Ψ ⊆ Ψ′ Ψ '{s}pc : C[pc] {s} Ψ′ S

Ψ '{s}(C,S,pc)
(WLD)

Ψ ' C :Ψ′ (Well-formed Code Heap)
for all (f,s) ∈ Ψ′ : Ψ '{s}f : C[f]

Ψ ' C :Ψ′ (CDHP)

Ψ1 ' C1 :Ψ′
1 Ψ2 ' C2 :Ψ′

2 C1#C2

Ψ1 ∪Ψ2 ' C1 ∪C2 :Ψ′
1 ∪Ψ′

2
(LINK)

Ψ '{s}I (Well-formed Instr. Sequence)

ι �∈ {je } Ψ '{(p′′,g′′)}pc+1 : I p ⇒ gι (p� gι) ⇒ p′′ (p◦ (gι ◦g′′)) ⇒ g

Ψ '{(p,g)}pc : ι; I
(SEQ)

(f′, (p′,g′)) ∈ Ψ Ψ '{(p′′,g′′)}pc+1 : I
(p� gjeT) ⇒ p′ (p◦ (gjeT ◦g′)) ⇒ g (p� gjeF) ⇒ p′′ (p◦ (gjeF ◦g′′)) ⇒ g

Ψ '{(p,g)}pc : je f′;I
(JE)

(f′, (p′,g′)) ∈ Ψ (p� gjmp) ⇒ p′ (p◦ (gjmp ◦g′)) ⇒ g

Ψ '{(p,g)}pc : jmp f′
(JMP)

(R(r), (p′,g′)) ∈ Ψ (p� gjmpw) ⇒ p′ (p◦ (gjmpw ◦g′)) ⇒ g

Ψ '{(p,g)}pc : jmpw r
(JMPW)

Fig. 12. SCAP Inference Rules for x86 Machine
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#Source code of CertVM | 12 addw %ax, %bx # 2 word long

-{(p f etch, g f etch)} #entry point | 13 movw (%bx), %ax #get entry point

1 fetch: #bytecode fetch | 14 jmpw *%ax #jump to code entry

2 movw (pc), %ax #bytecode pc | -{(pgoto, ggoto)} #instr. sequence 2

3 cmpw $0xFFFF,%ax #compare ra | 15 goto:

4 je fetch #loop forever | 16 movw (pc), %ax # code point

5 decode: | 17 movw $code, %bx # code base

6 movw $code, %bx #code base | 18 addw %ax, %bx # current base

7 addw %ax, %bx #current code | 19 movw 2(%bx),%cx # fetch i.a

8 movw (%bx), %ax #fetch i.f | 20 addw %cx, %cx # 4 bytes instr.

9 dispatch: | 21 addw %cx, %cx #

10 movw $table, %bx #dispatch table | 22 movw %cx, (pc) # target address

11 addw %ax, %bx #offset of code | 23 jmp fetch

Fig. 13. Fragment of CertVM Implementation

and decoding a bytecode, CertVM will jump to the unique entry point for each byte-
code. For bytecode goto, the entry point is the label “goto” of line 15 in Figure 13. The
entry points for all BC/0 instructions are stored in a bytecode instruction dispatching
table. Data structure “table” of line 9 in Figure 13 is the dispatching table of CertVM.
It should be preserved during virtual machine execution.

3.3 Proof of the Correctness of CertVM

Simulation Relation. To execute bytecode programs correctly, the x86 simulation pro-
gram should maintain an invariant for the interpretation of every bytecode instruction.
This invariant, called ”simulation relation”, is defined as a relation between the bytecode
machine world W = (C,(H,K),Kc,pc) and x86 machine world Wx = (Cx,(Hx,R,
zf),pcx). This relation should be maintained when the simulation program executes to
the fetching phase. This relation is shown in Figure 14, which indicates:

– the code heap of x86 world should be the code of CertVM,
– current program counter of x86 world points to fetch,
– the bytecode machine world Wx is mapped to x86 machine memory heap Hx,

following the memory relation α,
– there is no constrain for register file and flag.

We define certified virtual machine WFVM(W,Wx) for all bytecode program W and
X86 program Wx as a virtual machine with this simulation relation:

Definition 1 (Well-Formed VM). For all bytecode program W,W′ and x86 program
Wx, if W ∼ Wx and W −→ W′, there exists a x86 program W′x such that W′ ∼ W′x
and Wx −→+W′x.

Wx.Cx = CVM Wx.pcx = fetch α(W, Wx.Hx)

W ∼ Wx

Fig. 14. Simulation Relation
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Hx = Hxc�Hxh�Hxk�Hxkc�Hxp�Hxo
Hxc(f× 4) = C(f), ∀f ∈ [0,max(C)] Hxh(l × 2) = H(l), ∀l ∈ [0,max(H)]

Hxk(l × 2) = K(l), ∀l ∈ [0,max(K)] Hxkc(l × 2) = Kc(l), ∀l ∈ [0,max(Kc)]
Hxp(0) = pc Hxp(2) = top(K) Hxp(4) = top(Kc)

α(W, Wx.Hx)

Fig. 15. The Memory Map Relation

We use “Plus” simulation relation to describe the bytecode interpretation of VM. This
relation shows that CertVM implementation is satisfied with BCM operational seman-
tics. Once we carry out the simulation relation proof, we get a certified virtual machine.

The Memory Relation. As mentioned before, the code heap, memory heap, evaluation
stack and function call stack of bytecode machine are all stored as arrays in x86 machine
memory heap. These arrays are denoted as Hxc,Hxh,Hxk and Hxkc respectively. In
addition, Hxp denotes the memory chunk that stores the value of pc,sp and csp, and
Hxo denotes the free memory space.

The exact configuration of this memory heap partition is defined as follows:

Hxc �Hx[base(Hxc),(base(Hxc) + max(C) × 4)]
Hxh �Hx[base(Hxh),(base(Hxh) + max(H) × 2)]
Hxk �Hx[base(Hxk),(base(Hxk) + max(K) × 2)]
Hxkc �Hx[base(Hxkc),(base(Hxkc) + max(Kc) × 2)]
Hxp �Hx[base(Hxp),(base(Hxkc) + 6)]

Note that every bytecode instruction is 4 bytes long, and so it occupies max(C)× 4 cells
in Hx. And every item of K and Kc is only 2 bytes long. Therefore, the map relation
between x86 machine memory heap and bytecode world is defined in Figure 15.

Proof by Simulation. From CertVM implementation, we know that the entry point of
every bytecode is label fetch. To prove its correctness, we only have to show ”sim-
ulation relation” is achieved when CertVM jumps to fetch, and the bytecode world
defined in this relation has its successive state. Thus, we use the specification language
of SCAP to describe this simulation relation.

Suppose the specification at fetch is (pc,gc):

pc � λSx,∃W.α(W,Sx.Hx)∧Enable(c,S,Kc) where W = (C,S,Kc,pc)∧ c = C(pc)
gc � λS′

x,∃W,W′.W → W′ ∧α(W,Sx.Hx)∧α(W′,S′
x.Hx)

pc means that before executing fetch, the x86 machine world should maintain the sim-
ulation relation with a bytecode world that can transit to its next step. And gc ensures
that after interpreting a bytecode instruction, the simulation relation is still held. Thus,
we only need to use the inference rules of SCAP to prove that:

Ψxc '{[[ (pc, gc) ]]}fetch : CVM[fetch].

where Ψxc = {(fetch, [[ (pc,gc) ]]),(f, [[ (pc,gc) ]])}, f is the entry point in dispatch
table for bytecode c. By the well-formedness of code heap module CVM[fetch], we
can conclude that the CertVM is a well-formed virtual machine.
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Theorem 2 (Soundness Theorem). For all bytecode program W and x86 program
Wx, if Ψ '{s}W and WFVM(W,Wx), there exists specification Ψx and assertion
sx such that Ψx '{sx}Wx.

Well-formed bytecode program guarantees that every instruction can be executed, while
the CBP inference rules guarantee that the properties are still held in the new program
state. With WFVM, we know that for every bytecode execution step, there is a well-
formed x86 code heap. The SCAP logic guarantees that all well-formed x86 code heaps
be linked into one single well-formed global one.

4 Example and Implementation

A factorial function implemented with while loop and non-local variables and its caller
are shown in this section to demonstrate the particular features of our logic, and to show
how to write specification and how to prove bytecode programs with CBP. Actually, the
only work a programmer needs to do is to prove bytecode programs with CBP. Then
this logic system guarantees that a well-formed bytecode program will runs on CertVM
without getting stuck provided the x86 machine works.

4.1 Modular Certification: Factorial Function

Get Instruction Sequences. Factorial function source code and the bytecode program
with its specifications for BCM are shown in Figure 1 (Section 1). Finding the instruc-
tion sequence is the first step to certify a program. From the definition in Figure 2, we
know that an instruction sequence is a set of instructions ending with unconditional
jump jmp or function return ret. Thus, it can be seen that there are three instruction
sequences in while loop program. The instructions with labels 0∼2 form the first in-
struction block. And the second one is the instructions with label from 3 to 10. And the
last one is the block of remain instructions.

Write Specification for Instruction Sequences. Then the programmer needs to give code
heap specification Ψ, which is a finite mapping from code labels f to code specifications
s which is a pair (p,g). CBP specifications for code heap are embedded in the code,
enclosed by -{} in shadow box. Specifications of this example are given in Figure 16.
To simplify our presentation, we write the predicate p in the form of a proposition with
free variables referring to components of the state S.

Following the inference rules, the code specifications should be given for these points:
the head of a instruction sequence, the target labels of function call instruction call and

ppre � (validK 2 K) ∧ (validKc 0 Kc)∧ (validRa Kc)
p0 � ppre ∧ ((r� )∗ (∃i >= 0, n → i)), g0 � p0 → (H′(r) = H(n)!)
p3 � ppre ∧ ((H(r) >= 1)∧ (H(n) >= 0)), g3 � p3 → (H′(r) = H(r)∗H(n)!)
p11 � p3, g11 � g3

Fig. 16. Specifications: While Loop Example
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jump instructions (including goto and brture), and the function call return address which
is just after call instruction call.

The specification of the this procedure is given as (p0,g0). From p0, we know that
the values of variables r and n stored in memory heap are inside the proper scope. The
guarantee g0 specifies the behavior of the function: the non-local variables r and n fulfill
(H′(r) = H(n)!).

(p3,g3) is the assertion for while loop body. The pre-condition p3 means that the val-
ues of variables r and n are still inside the proper scope. The guarantee g3 says that the
result which is stored in memory heap must fulfill the loop fixpoint. The specification
(p11,g11) at the begin point of this while loop is equal to (p3,g3).

Certify and Link Them Together. To check the well-formedness of an instruction se-
quence beginning with ι, a programmer should apply the appropriate inference rules
and find intermediate assertions such as (p′,g′), which serves both as the post-condition
for ι and the pre-condition for the remaining instruction sequence.

After that, a programmer is also required to establish the well-formedness of each
individual module via the CDHP rule. Two non-intersecting well-formed code heaps can
then be linked together via the LINK rule. The WLD rule requires that all code heaps be
linked into one single well-formed global one.

Support Modular Certification. All the code specifications Ψ used in CBP rules are
the local specifications for the current module. Thus, CBP supports modular reasoning
about function call/return in the sense that caller and callee can be in different modules
and be certified separately. When specifying the callee procedure, we do not need any
knowledge about the return address in its pre-condition. The RET rule for the instruction
“ret” does not have any constraints on the return address.

4.2 Modular Certification: Caller of Factorial Function

Source code and bytecode program with specification of the caller for the while loop
factorial example are shown in Figure 17.

This function just initializes the variables n, and then calls function factor. The speci-
fication at the entry point is (p16,g16). The pre-condition p16 simply says that the mem-
ory cells for variables n and r are there for this function to run. The guarantee g16

//function caller | -{(p16, g16)} ;spec for caller

void caller(){ | 16 pushc 3 ;push imm 3

int n=3; | 17 pop n ;n = 3

call factor; | 18 call 0 ;call factor()

} | -{(p19, g19)} ;spec for return point

| 19 ret ;caller return

p′pre � (validK 2 K) ∧ (validKc 1 Kc)∧ (validRa Kc)
p16 � p′pre ∧ ((r� )∗ (n� )), g16 � p16 → (H′(r) = 3!)
p19 � p′pre ∧ ((r → 3!)∗n → 0)), g19 � p19 → (H′(r) = 3!)
p0 � ?, g0 � ?

Fig. 17. Caller of Factorial Function
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specifies the behavior of the caller procedure: the result r in memory heap is the facto-
rial of 3. The specification of the return point is (p19,g19). p19 means that the memory
cells for variables n and r are still there. The guarantee g19 is just the same as g16.

From CAL inference rule, we know that the specification of the callee’s entry point
should be added. The specification (p0,g0) in Figure 16 can be used. Furthermore, the
specification of function entry point defines its interface. A Caller can invoke any callees
which share the same interface.

4.3 Implementation with Coq

Our logic system presented in this paper has been applied to bytecode programs for our
verified stack-based virtual machine. We have formalized BCM, its operational seman-
tics, and the program logic CBP. We have also formalized a X86 machine, its opera-
tional semantics, and the SCAP program logic for it in the Coq proof assistant. With
SCAP logic, we proved the simulation relations of our virtual machine CertVM.

The syntax of our machine (both the bytecode machine and x86 machine), is encoded
in Coq using inductive definitions. Operational semantics of the machine and all the
inference rules of program logic are defined as inductive relations. The soundness of the
framework itself is formalized and certified in Coq following the syntactic approach.

These examples are usually implemented directly in bytecode and are hard to certify
using the existing approaches. Manually optimized bytecode or code generated by op-
timizing compilers can also be certified using our systems. The proof is also formalized
and implemented in Coq and is machine-checkable.

The Coq implementation has taken several months per person, out of which a signifi-
cant amount of efforts have been put on the implementation of basic facilities, including
lemmas and tactics for partial mappings and Separation Logic assertions. These com-
mon facilities are independent of the task of certifying examples. The implementation
of CBP logic system includes around 3200 lines of Coq encoding of BCM and its op-
erational semantics, 1000 lines encoding of CBP rules and the soundness proof. We
have written more than 15 thousand lines of Coq tactics to certify CertVM with SCAP
logic. We also have written about 1500 lines of Coq tactics to certify practical bytecode
examples, including the while-loop and function call/return.

Compared the experiences in CBP with that in SCAP, we found that the code size ra-
tios of bytecode programs to proofs and assembly code to proofs looks almost the same.

Component Name Number of lines

Basic Utility Definitions & Lemmas 2,367
BCM Machine & Operational Semantics 3,285
CBP Rules & Soundness 1,032
X86 Machine & SCAP logic 2,710
CertVM Memory Layout & Proof 15,429
Bytecode Examples Source Code Spec. & Proof 1,469
Total 26,292

Fig. 18. The Verified Package in Coq
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While bytecode is a fairly compact format compared to native code. Most JVM instruc-
tions use only 1 or 2 bytes. Moreover, they are sophisticated instructions that cannot
be translated into a single native processor instruction as a rule. In fact, our CertVM
expand code size by the factor of 15, while most Java compilers expand code size by a
factor of 5 to 10 [23]. With our logic, we only write proof for bytecode programs rather
than write proof for the corresponding assembly code directly. So the workload will be
greatly reduced by a factor of 5 to 10. That will be a significant improvement for fully
certified subroutines with machine checkable proofs.

Extensions and Future Work. The support of object-oriented features such as objects,
references, methods, and inheritance are important and useful. Extension of the program
logic to support exception handling is straightforward and interesting work. Following
the similar idea of function call/return, reasoning about exceptions is not much different
from reasoning about functions. Our logic system does not support concurrency yet. It
is actually an easy work to extend the machine to support concurrency. But it is difficult
to define a simple logic system to modularly certify concurrent bytecode programs. We
will try it in the near future.

On the certified virtual machine, there are also some interesting extensions. Verifi-
cation of the useful features such as memory management, just in-time compilation,
garbage collectors will lead to some exciting challenges.

5 Related Works and Conclusion

Logic for Bytecode and Virtual Machine. Quigley [18] has demonstrated that it is possi-
ble to define a Hoare-style logic for bytecode programs to prove the program containing
loops. A program logic [2] which combines Hoare triples for methods with instruction
specifications is presented for a Java-like bytecode language by Bannwart and Müller.
Their logic supports lots of object-oriented features such as objects, references, meth-
ods, and inheritance. Benton [4] proposed a typed, compositional logic for a stack-based
abstract machine to verify bytecode programs which are written in an imperative subset
of .NET CIL.

But, all these work only considered logic system for bytecode programs. None of
them took the virtual machine into account. Linking certified bytecode programs with
certified VM is very difficult. An open logic framework was designed to integrate [9]
the proof of different logic systems for the X86 machine only. In this paper, we inte-
grate the separated proof modules of different logic systems for different machine by
simulation relation proof. To our best knowledge, our logic system is the first facility to
link certified virtual machine with modularly certified bytecode programs.

Reasoning about Control Stacks. Reasoning about control stacks is extremely difficult
for low-level code programs. STAL and its variations [22] can only treat return code
pointers as first-class code pointers and stacks as “closures”. Tan and Appel [21] use the
implicit finite unions structure to study the low-level language. As a result, they arrived
at continuation-style Hoare logic explainable by indexed model, with a rather convo-
luted interpretation of Hoare triples involving explicit fixpoint approximations. Saabas
and Uustalu [19] introduced a compositional natural semantics and Hoare logic based
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on the implicit finite unions structure for a simple low-level language with expressions.
Ni and Shao’s work [17] combines the syntactic approach used in type systems with
logic systems to support code pointer specification. Following the producer/consumer
model, Feng etc. [10] proposed SCAP to modularly certify assembly code with stack-
based control abstractions. Benton’s typed, compositional logic for bytecode programs
uses a higher-level abstract machine with separate data stack and control stack.

We build a Hoare-style logic system to certify bytecode programs which run on
verified virtual machine. As the examples shown, program with complex control stack
operations can be certified within our logic. Our BCM is a higher-level machine with a
dedicated function call stack. It looks like Benton’s abstract machine. While our logic
system CBP is established following SCAP’s producer/consumer stack model. This idea
brings much convenience to the integration of SCAP and CBP proof.

Certified Compiler and Interpreter. Large efforts have been made on building reliable
compiler and interpreter with formal methods. Leagure etc. built a type preserving
Java compiler [13] and Chen etc. developed a type preserving optimizing compiler for
MSIL [5]. Chlipala presented a certified compiler from the simply-typed lambda cal-
culus to assembly language [6]. C0 compiler [14], a compiler from C subset language
C0 to the DLX machine language, is formally specified and proved in Isabelle/HOL.
The realistic and verified CompCert compiler [15], is developed and verified in Coq.
But all these work only focus on semantics preserving without well-formed properties
of source programs. Barthe etc.’s certificate translation provides a means to transfer the
benefits of source code verification to code consumers using PCC architectures [3].

With the formalization and the certification of the simulation relation, our work gives
a logic system to link the verified bytecode programs with the verified execution envi-
ronment. Based on FPCC architectures, our method guarantees that a certified bytecode
program runs on certified virtual machine will never get stuck as long as hardware
works. It’s an end-to-end solution and can be considered as one of the proof and seman-
tics preserving compilers.

Conclusion. This paper presents a logic system to verify the bytecode programs on
JVM. The main feature of the approach is that its verification not only takes the byte-
code programs, but also the VM into account. The paper also discusses some results on
using Coq to verify several small examples. To certify a bytecode program, a program-
mer’s task is only required to find the specification and establish the well-formedness of
individual bytecode module. This logic system guarantees that a certified bytecode pro-
gram will run on the certified VM without getting stuck unless hardware faults occur.
Our work provides a logic system for reasoning about bytecode programs for stack-
based virtual machine and makes an advance toward building a proof-transforming
compilation environment.
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Abstract. When describing the resource usage of a program, it is usual
to talk in asymptotic terms, such as the well-known “big O” notation,
whereby we focus on the behaviour of the program for large input data
and make a rough approximation by considering as equivalent programs
whose resource usage grows at the same rate. Motivated by the existence
of non-asymptotic resource usage analyzers, in this paper, we develop a
novel transformation from a non-asymptotic cost function (which can be
produced by multiple resource analyzers) into its asymptotic form. Our
transformation aims at producing tight asymptotic forms which do not
contain redundant subexpressions (i.e., expressions asymptotically sub-
sumed by others). Interestingly, we integrate our transformation at the
heart of a cost analyzer to generate asymptotic upper bounds without
having to first compute their non-asymptotic counterparts. Our exper-
imental results show that, while non-asymptotic cost functions become
very complex, their asymptotic forms are much more compact and man-
ageable. This is essential to improve scalability and to enable the appli-
cation of cost analysis in resource-aware verification/certification.

1 Introduction

A fundamental characteristics of a program is the amount of resources that
its execution will require, i.e., its resource usage. Typical examples of resources
include execution time, memory watermark, amount of data transmitted over the
net, etc. Resource usage analysis [15,14,8,2,9] aims at automatically estimating
the resource usage of programs. Static resource analyzers often produce cost
bound functions, which have as input the size of the input arguments and return
bounds on the resource usage (or cost) of running the program on such input.

A well-known mechanism for keeping the size of cost functions manageable and,
thus, facilitate human manipulation and comparison of cost functions is asymp-
totic analysis, whereby we focus on the behaviour of functions for large input data
and make a rough approximation by considering as equivalent functions which
grow at the same rate w.r.t. the size of the input date. The asymptotic point of
view is basic in computer science, where the question is typically how to describe
the resource implication of scaling-up the size of a computational problem, beyond
the “toy” level. For instance, the big O notation is used to define asymptotic upper
bounds, i.e, given two functions f and g which map natural numbers to real num-
bers, one writes f ∈ O(g) to express the fact that there is a natural constantm ≥ 1
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and a real constant c > 0 s.t. for any n ≥ m we have that f(n) ≤ c ∗ g(n). Other
types of (asymptotic) computational complexity estimates are lower bounds (“Big
Omega” notation) and asymptotically tight estimates, when the asymptotic up-
per and lower bounds coincide (written using “Big Theta”). The aim of asymptotic
resource usage analysis is to obtain a cost function fa which is syntactically simple
s.t. fn ∈ O(fa) (correctness) and ideally also that fa ∈ Θ(fn) (accuracy), where
fn is the non-asymptotic cost function.

The scopes of non-asymptotic and asymptotic analysis are complementary.
Non-asymptotic bounds are required for the estimation of precise execution time
(like in WCET) or to predict accurate memory requirements [4]. The motiva-
tions for inferring asymptotic bounds are twofold: (1) They are essential during
program development, when the programmer tries to reason about the efficiency
of a program, especially when comparing alternative implementations for a given
functionality. (2) Non-asymptotic bounds can become unmanageably large ex-
pressions, imposing huge memory requirements. We will show that asymptotic
bounds are syntactically much simpler, can be produced at a smaller cost, and,
interestingly, in cases where their non-asymptotic forms cannot be computed.

The main techniques presented in this paper are applicable to obtain asymp-
totic versions of the cost functions produced by any cost analysis, including lower,
upper and average cost analyses. Besides, we will also study how to perform a
tighter integration with an upper bound solver which follows the classical ap-
proach to static cost analysis by Wegbreit [15]. In this approach, the analysis is
parametric w.r.t. a cost model, which is just a description of the resources whose
usage we should measure, e.g., time, memory, calls to a specific function, etc.
and analysis consists of two phases. (1) First, given a program and a cost model,
the analysis produces cost relations (CRs for short), i.e., a system of recursive
equations which capture the resource usage of the program for the given cost
model in terms of the sizes of its input data. (2) In a second step, closed-form,
i.e., non-recursive, upper bounds are inferred for the CRs. How the first phase is
performed is heavily determined by the programming language under study and
nowadays there exist analyses for a relatively wide range of languages (see, e.g.,
[2,8,14] and their references). Importantly, such first phase remains the same for
both asymptotic and non-asymptotic analyses and thus we will not describe it.
The second phase is language-independent, i.e., once the CRs are produced, the
same techniques can be used to transform them to closed-form upper bounds,
regardless of the programming language used in the first phase. The important
point is that this second phase can be modified in order to produce asymptotic
upper bounds directly. Our main contributions can be summarized as follows:

1. We adapt the notion of asymptotic complexity to cover the analysis of re-
alistic programs whose limiting behaviour is determined by the limiting be-
haviour of its loops.

2. We present a novel transformation from non-asymptotic cost functions into
asymptotic form. After some syntactic simplifications, our transformation
detects and eliminates subterms which are asymptotically subsumed by oth-
ers while preserving the complexity order.



296 E. Albert et al.

3. In order to achieve motivation (2), we need to integrate the above transfor-
mation within the process of obtaining the cost functions. We present a tight
integration into (the second phase of) a resource usage analyzer to gener-
ate directly asymptotic upper bounds without having to first compute their
non-asymptotic counterparts.

4. We report on a prototype implementation within the COSTA system [3]
which shows that we are able to achieve motivations (1) and (2) in practice.

2 Background: Non-asymptotic Upper Bounds

In this section, we recall some preliminary definitions and briefly describe the
method of [1] for converting cost relations (CRs) into upper bounds in closed-
form, i.e., without recurrences.

2.1 Cost Relations

Let us introduce some notation. The sets of natural, integer, real, non-zero natu-
ral and non-negative real values are denoted respectively by N, Z, R, N+ and R+.
We write x, y, and z, to denote variables which range over Z. A linear expression
has the form v0 + v1x1 + . . .+ vnxn, where vi ∈ Z, 0 ≤ i ≤ n. Similarly, a linear
constraint (over Z) has the form l1 ≤ l2, where l1 and l2 are linear expressions.
For simplicity we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1, and l1 < l2 instead
of l1 + 1 ≤ l2. The notation t̄ stands for a sequence of entities t1, . . . , tn, for
some n>0. We write ϕ, φ or ψ, to denote sets of linear constraints which should
be interpreted as the conjunction of each element in the set and ϕ1 |= ϕ2 to
indicate that the linear constraint ϕ1 implies the linear constraint ϕ2. Now, the
basic building blocks of cost relations are the so-called cost expressions e which
can be generated using this grammar:

e::= r | nat(l) | e + e | e ∗ e | er | log(nat(l)) | nnat(l) | max(S)

where r ∈ R+, n ∈ N+, l is a linear expression, S is a non empty set of cost
expressions, nat : Z → N is defined as nat(v)= max({v, 0}), and the base of
the log is 2 (since any other base can be rewritten to 2). Observe that linear
expressions are always wrapped by nat as we explain below.

Example 1. Consider the simple Java method m shown in Fig. 1, which invokes
the auxiliary method g, where x is a linked list of boolean values implemented

static void m(List x, int i, int n){
while (i<n){

if (x.data) {g(i,n); i++;}
else {g(0,i); n=n-1;}
x=x.next;

}}

(1) 〈Cm(i, n) = 3
, ϕ1 = {i ≥ n}〉

(2) 〈Cm(i, n) = 15 + Cg(i, n) + Cm(i′, n)
, ϕ2 = {i < n, i′ = i + 1}〉

(3) 〈Cm(i, n) = 17 + Cg(0, i) + Cm(i, n′)
, ϕ3 = {i < n, , n′ = n − 1}〉

Fig. 1. Java method and CR



Asymptotic Resource Usage Bounds 297

in the standard way. For this method, the COSTA analyzer outputs the cost
expression C+

m=6+nat(n−i)∗max({21+5∗nat(n−1), 19+5∗nat(n−i)}) as an up-
per bound on the number of bytecode instructions that m executes. Each Java
instruction is compiled to possibly several bytecode instructions, but this is not
relevant to this work. We are assuming that an upper bound on the number of
executed instructions in g is C+

g (a, b)=4+5∗nat(b−a). Observe that the use of
nat is required in order to avoid incorrectly evaluating upper bounds to negative
values. When i ≥ n, the cost associated to the recursive cases has to be nulled
out, this effect is achieved with nat(n−i) since it will evaluate to 0. �

W.l.o.g., we formalize our mechanism by assuming that all recursions are direct
(i.e., all cycles are of length one). Direct recursion can be automatically achieved
by applying Partial Evaluation [11] (see [1] for the technical details).

Definition 1 (Cost Relation). A cost relation system S is a set of equations
of the form 〈C(x̄) = e +

∑k

i=1 Di(ȳi), ϕ〉 with k ≥ 0, where C and Di are
cost relation symbols, all variables x̄ and ȳi are distinct variables; e is a cost
expression; and ϕ is a set of linear constraints over x̄ ∪ vars(e)

⋃k

i=1 ȳi.

Example 2. The cost relation (CR for short) associated to method m is shown
in Fig. 1 (right). The relations Cm and Cg capture, respectively, the costs of
the methods m and g. Intuitively, in CRs, variables represent the sizes of the
corresponding data structures in the program and in the case of integer variables
they represent their integer value. Eq. 1 is a base case and captures the case where
the loop body is not executed. It can be observed that we have two recursive
equations (Eq. 2 and Eq. 3) which capture the respective costs of the then and
else branches within the while loop. As the list x has been abstracted to its
length, the values of x.data are not visible in the CR and the two equations have
the same (incomplete) guard, which results in a non-deterministic CR. Also,
variables which do not affect the cost (e.g., x) do not appear in the CR. How to
automatically obtain a CR from a program is the subject of the first phase of
cost analysis as described in Sec. 1. More details can be found in [2,8,14,15]. �

2.2 Non-asymptotic Upper-Bounds

We now describe the approach of [1] to infer the upper bound of Ex. 1 from
the equations in Ex. 2. It starts by computing upper bounds for CRs which
do not depend on any other CRs, referred to as standalone cost relations, and
continues by replacing the computed upper bounds on the equations which call
such relations. For instance, after computing the upper bound for g shown in
Ex. 1, the cost relation in Ex. 2 becomes standalone:

(1) 〈Cm(i, n) = 3 , ϕ1 = {i ≥ n}〉
(2) 〈Cm(i, n) = 15 + nat(n − i) +Cm(i′, n) , ϕ2 = {i < n, i′ = i + 1}〉
(3) 〈Cm(i, n) = 17 + nat(i) +Cm(i, n′) , ϕ3 = {i < n, n′ = n − 1}〉
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Given a standalone CR made up of nb base cases of the form 〈C(x̄)=basej , ϕj〉,
1≤j≤nb and nr recursive equations of the form, 〈C(x̄)=recj+

∑kj

i=1 C(ȳi), ϕj〉,
1≤j≤nr , an upper bound can be computed as:

(∗) C(x̄)+ = Ib ∗ worst({base1 , . . . , basenb}) + Ir ∗ worst({rec1 , . . . , recnr})
where Ib and Ir are, respectively, upper bounds of the number of visits to
the base cases and recursive equations and worst({Set}) denotes the worst-case
(the maximum) value that the expressions in Set can take. Below, we describe
the method in [1] to approximate the above upper bound.

Bounds on the Number of Application of Equations. The first dimension
of the problem is to bound the maximum number of times an equation can be
applied. This can be done by examining the structure of the CR (i.e., the number
of explicit recursive calls in the equations), together with how the values of the
arguments change when calling recursively (i.e., the linear constraints).

We first explain the problem for equations that have at most one recursive
call in their bodies. In the above CR, when calling Cm recursively in (2), the first
argument i of Cm increases by 1 and in (3) the second argument n decreases by
1. Now suppose that we define a function f(a, b) = b− a. Then, we can observe
that ϕ2 |= f(i, n) > f(i′, n)∧f(i, n) ≥ 0 and ϕ3 |= f(i, n) > f(i, n′)∧f(i, n) ≥ 0,
i.e, for both equations we can guarantee that they will not be applied more than
nat(f(i0, n0)) = nat(n0 − i0) times, where i0 and n0 are the initial values for
the two variables. Functions such as f are usually called ranking functions [13].
Given a cost relation C(x̄), we denote by fC(x̄) a ranking function for all loops
in C. Now, consider that we add an equation that contains two recursive calls:

(4) 〈Cm(i, n) = Cm(i, n′) + Cm(i, n′) , ϕ4 = {i < n, n′ = n− 1}〉

then the recursive equations would be applied in the worst-case Ir = 2nat(n−i)−1
times, which in this paper, we simplify to Ir = 2nat(n−i) to avoid having negative
constants that do not add any technical problem to asymptotic analysis. This
is because each call generates 2 recursive calls, and in each call the argument
n decreases at least by 1. In addition, unlike the above examples, the base-
case equation would be applied in the worst-case an exponential number of
times. In general, a CR may include several base-case and recursive equations
whose guards, as shown in the example, are not necessarily mutually exclusive,
which means that at each evaluation step there are several equations that can
be applied. Thus, the worst-case of applications is determined by the fourth
equation, which has two recursive calls, while the worst cost of each application
will be determined by the first equation, which contributes the largest direct
cost. In summary, the bounds on the number of application of equations are
computed as follows:

Ir =
{

nrnat(fC(x̄)) if nr > 1
nat(fC(x̄)) otherwise

Ib =
{

nrnat(fC(x̄)) if nr > 1
1 otherwise

where nr is the maximum number of recursive calls which appear in a sin-
gle equation. A fundamental point to note is that the (linear) combination of



Asymptotic Resource Usage Bounds 299

variables which approximates the number of iterations of loops is wrapped by nat.
This will influence our definition of asymptotic complexity. In logarithmic cases,
we can further refine the ranking function and obtain a tighter upper bound. If
each recursive equation satisfies ϕj |=fC(x̄)≥k∗fC(ȳi), 1≤i≤nr , where k>1 is a
constant, then we can infer that Ir is bounded by �logk(nat(fC(x̄))+1)�, as each
time the value of the ranking function decreases by k. For instance, if we replace
ϕ2 by ϕ′

2={i<n, i′=i∗2} and ϕ3 by ϕ′
3={i<n, n′=n/2} (and remove equation 4)

then the method of [1] would infer that Ir is bound by �logk(nat(n−i)+1)�.

Bounds on the Worst Cost of Equations. As it can be observed in the above
example, in each application the corresponding equation might contribute a non-
constant number of cost units. Therefore, it is not trivial to compute the worst-
case (the maximum) value of all of them. In order to infer the maximum value
of such expressions automatically, [1] proposes to first infer invariants (linear
relations) between the equation’s variables and the initial values. For example,
the cost relation Cm(i, n) admits as invariant for the recursive equations the
formula I defined as I((i0, n0), (i, n)) ≡ i ≥ i0 ∧ n ≤ n0 ∧ i < n, which captures
that the values of i (resp. n) are greater (resp. smaller) or equal than the initial
value and that i is smaller than n at all iterations. Once we have the invariant,
we can maximize the expressions w.r.t. these values and take the maximal:

worst({rec1 , . . . , recnr}) = max(maximize(I, {rec1 , . . . , recnr}))
The operator maximize receives an invariant I and a set of expressions to be max-
imized and computes the maximal value of each expression independently and re-
turns the corresponding set of maximized expressions in terms of the initial values
(see [1] for the technical details). For instance, in the original CR (without Eq. (4)),
we compute worst({rec1 , rec2})=max(maximize(I, {nat(n−i), nat(i)})) which
results in worst({rec1 , rec2}) = max({nat(n0 − i0 ), nat(n0−1 )}). The same pro-
cedure can be applied to the expressions in the base cases. However, it is unneces-
sary in our example, because the base case is a constant and therefore requires no
maximization. Altogether, by applying Equation (*) to the standalone CR above
we obtain the upper bounds shown in Ex. 1.

Inter-Procedural. In the above examples, all CRs are standalone and do not
call any other equations. In the general case, a cost relation can contain k calls to
external relations and n recursive calls: 〈C(x̄) = e+

∑k

i=1 Di(ȳi)+
∑n

j=1 C(z̄j), ϕ〉
with k ≥ 0. After computing the upper bounds D+

i (ȳi) for the standalone CRs,
we replace the computed upper bounds on the equations which call such rela-
tions, i.e., 〈C(x̄) = e +

∑k

i=1 D
+
i (ȳi) +

∑n

j=1 C(z̄j), ϕ〉.

3 Asymptotic Notation for Cost Expressions

We now present extended versions of the standard definition of the asymp-
totic notations big O and big Theta, which handle functions with multiple input
arguments, i.e., functions of the form Nn → R+.
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Definition 2 (big O, big Theta). Given two functions f, g : Nn → R+, we
say that f ∈ O(g) iff there is a real constant c > 0 and a natural constant m ≥ 1
such that, for any v̄ ∈ Nn such that vi ≥ m, it holds that f(v̄) ≤ c ∗ g(v̄).
Similarly, f ∈ Θ(g) iff there are real constants c1 > 0 and c2 > 0 and a natural
constant m ≥ 1 such that, for any v̄ ∈ Nn such that vi ≥ m, it holds that
c1 ∗ g(v̄) ≤ f(v̄) ≤ c2 ∗ g(v̄).

The big O refers to asymptotic upper bounds and the big Θ to asymptotically
tight estimates, when the asymptotic upper and lower bounds coincide. The
asymptotic notations above assume that the value of the function increases with
the values of the input such that the function, unless it has a constant asymp-
totic order, takes the value ∞ when the input is ∞. This assumption does not
necessarily hold when CRs are obtained from realistic programs. For instance,
consider the loop in Fig. 1. Clearly, the execution cost of the program increases
by increasing the number of iterations of the loop, i.e., n−i, the ranking function.
Therefore, in order to observe the limiting behavior of the program we should
study the case when nat(n− i) goes to ∞, i.e., when, for example, n goes to ∞
and i stays constant, but not when both n and i go to ∞. In order to capture
this asymptotic behaviour, we introduce the notion of nat-free cost expression,
where we transform a cost expression into another one by replacing each nat-
expression with a variable. This guarantees that we can make a consistent usage
of the definition of asymptotic notation since, as intended, after some threshold
m, larger values of the input variables result in larger values of the function.

Definition 3 (nat-free cost expressions). Given a set of cost expression E =
{e1, . . . , en}, the nat-free representation of E, is the set Ẽ = {ẽ1, . . . , ẽn} which
is obtained from E in four steps:

1. Each nat-expression nat(a1x1 + · · · + anxn + c) ∈ E which appears as an
exponent is replaced by nat(a1x1 + · · · + anxn);

2. The rest of nat-expressions nat(a1x1 + · · · + anxn + c) ∈ E are replaced by
nat(a1

b
x1 + · · · + an

b
xn), where b is the greatest common divisor (gcd) of

|a1|, . . . , |an|, and | · | stands for the absolute value;
3. We introduce a fresh (upper-case) variable per syntactically different nat-

expression.
4. We replace each nat-expression by its corresponding variable.

Cases 1 and 2 above have to be handled separately because if nat(a1x1+ · · ·
+anxn+c) is an exponent, we can remove the c, but we cannot change the
values of any ai. E.g., 2nat(2x+1) �∈O(2nat(x)). This is because 4x �∈O(2x). Hence, we
cannot simplify 2nat(2x) to 2nat(x). In the case that nat(a1x1+ · · ·+anxn+c) does
not appear as an exponent, we can remove c and normalize all ai by dividing them
by the gcd of their absolute values. This allows reducing the number of variables
which are needed for representing the nat-expressions. It is done by using just
one variable for all nat expressions whose linear expressions are parallel and grow
in the same direction. Note that removing the independent term plus dividing all
constants by the gcd of their absolute values provides a canonical representation
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for linear expressions. They satisfy this property iff their canonical representation
is the same. This allows transforming both nat(2x+3) and nat(3x+5) to nat(x),
and nat(2x+4y) and nat(3x+6y) to nat(x+2y).

Example 3. Given the following cost function:

5+7∗nat(3x + 1)∗max({100∗nat(x)2∗nat(y)4, 11∗3nat(y−1)∗nat(x + 5)2})+
2∗ log(nat(x + 2))∗2nat(y−3)∗ log(nat(y + 4))∗nat(2x−2y)

Its nat-free representation is:

5+7 ∗ A∗max({100 ∗ A2∗B4, 11 ∗ 3B∗A2})+2∗ log(A)∗2B∗ log(B)∗C
where A corresponds to nat(x), B to nat(y) and C to nat(x−y). �

Definition 4. Given two cost expressions e1, e2 and its nat-free correspondence
ẽ1, ẽ2, we say that e1∈O(e2) (resp. e1∈Θ(e2)) if ẽ1∈O(ẽ2) (resp. ẽ1∈Θ(ẽ2)).

The above definition lifts Def. 2 to the case of cost expressions. Basically, it states
that in order to decide the asymptotic relations between two cost expressions, we
should check the asymptotic relation of their corresponding nat-free expressions.
Note that by obtaining their nat-free expressions simultaneously we guarantee
that the same variables are syntactically used for the same linear expressions.

In some cases, a cost expression might come with a set of constraints which
specifies a class of input values for which the given cost expression is a valid
bound. We refer to such set as context constraint. For example, the cost ex-
pression of Ex. 3 might have ϕ={x≥y, x≥0, y≥0} as context constraint, which
specifies that it is valid only for non-negative values which satisfy x≥y. The
context constraint can be provided by the user as an input to cost analysis, or
collected from the program during the analysis.

The information in the context constraint ϕ associated to the cost expression
can sometimes be used to check whether some nat-expressions are guaranteed
to be asymptotically larger than others. For example, if the context constraint
states that x ≥ y, then when both nat(x) and nat(y) grow to the infinite we have
that nat(x) asymptotically subsumes nat(y), this information might be useful
in order to obtain more precise asymptotic bounds. In what follows, given two
nat-expressions (represented by their corresponding nat-variables A and B), we
say that ϕ|=A 5 B if A asymptotically subsumes B when both go to ∞.

4 Asymptotic Orders of Cost Expressions

As it is well-known, by using Θ we can partition the set of all functions defined
over the same domain into asymptotic orders. Each of these orders has an infinite
number of members. Therefore, to accomplish the motivations in Sect. 1 it is
required to use one of the elements with simpler syntactic form. Finding a good
representative of an asymptotic order becomes a complex problem when we deal
with functions made up of non-linear expressions, exponentials, polynomials, and
logarithms, possibly involving several variables and associated constraints. For
example, given the cost expression of Ex. 3, we want to automatically infer the
asymptotic order “3nat(y) ∗ nat(x)3”.
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Apart from simple optimizations which remove constants and normalize ex-
pressions by removing parenthesis, it is essential to remove redundancies, i.e.,
subexpressions which are asymptotically subsumed by others, for the final ex-
pression to be as small as possible. This requires effectively comparing subexpres-
sions of different lengths and possible containing multiple complexity orders. In
this section, we present the basic definitions and a mechanism for transforming
non-asymptotic cost expressions into non-redundant expressions while preserv-
ing the asymptotic order. Note that this mechanism can be used to transform
the output of any cost analyzer into an non-redundant, asymptotically equiv-
alent one. To the best of our knowledge, this is the first attempt to do this
process in a fully automatic way. Given a cost expression e, the transformations
are applied on its ẽ representation, and only afterwards we substitute back the
nat-expressions, in order to obtain an asymptotic order of e, as defined in Def. 4.

4.1 Syntactic Simplifications on Cost Expressions

First, we perform some syntactic simplifications to enable the subsequent steps
of the transformation. Given a nat-free cost expression ẽ, we describe how to
simplify it and obtain another nat-free cost expression ẽ ′ such that ẽ ∈ Θ(ẽ ′).
In what follows, we assume that ẽ is not simply a constant or an arithmetic
expression that evaluates to a constant, since otherwise we simply have ẽ ∈ O(1).
The first step is to transform ẽ by removing constants and max expressions, as
described in the following definition.

Definition 5. Given a nat-free cost expression ẽ, we denote by τ(ẽ) the cost
expression that results from ẽ by: (1) removing all constants; and (2) replacing
each subexpression max({ẽ1, . . . , ẽm}) by (ẽ1 + . . . + ẽm).

Example 4. Applying the above transformation on the nat-free cost expression
of Ex. 3 results in: τ(ẽ)=A∗(A2∗B4 + 3B∗A2)+ log(A)∗2B∗ log(B)∗C. �

Lemma 1. ẽ ∈ Θ(τ(ẽ))

Once the τ transformation has been applied, we aim at a further simplification
which safely removes sub-expressions which are asymptotically subsumed by
other sub-expressions. In order to do so, we first transform a given cost expres-
sion into a normal form (i.e., a sum of products) as described in the following
definition, where we use basic nat-free cost expression to refer to expressions of
the form 2r∗A, Ar, or log(A), where r is a real number. Observe that, w.l.o.g.,
we assume that exponentials are always in base 2. This is because an expression
nA where n > 2 can be rewritten as 2log(n)∗A.

Definition 6 (normalized nat-free cost expression). A normalized nat-free
cost expression is of the form Σn

i=1Π
mi

j=1bij such that each bij is a basic nat-free
cost expression.

Since b1 ∗b2 and b2 ∗b1 are equal, it is convenient to view a product as the multi-
set of its elements (i.e., basic nat-free cost expressions). We use the letter M to
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denote such multi-set. Also, since M1+M2 and M2+M1 are equal, it is convenient
to view the sum as the multi-set of its elements, i.e., products (represented as
multi-sets). Therefore, a normalized cost expression is a multi-set of multi-sets
of basic cost expressions. In order to normalize a nat-free cost expression τ(ẽ) we
will repeatedly apply the distributive property of multiplication over addition in
order to get rid of all parenthesis in the expression.

Example 5. The normalized expression for τ(ẽ) of Ex. 4 is A3∗B4+2log(3)∗B∗
A3+ log(A)∗2B∗ log(B) ∗ C and its multi-set representation is {{A3, B4},
{2log(3)∗B, A3}, {log(A), 2B , log(B), C}} �

4.2 Asymptotic Subsumption

Given a normalized nat-free cost expression ẽ = {M1, . . . ,Mn} and a context
constraint ϕ, we want to remove from ẽ any product Mi which is asymptoti-
cally subsumed by another product Mj , i.e., if Mj ∈ Θ(Mj + Mi). Note that
this is guaranteed by Mi ∈ O(Mj). The remaining of this section defines a deci-
sion procedure for deciding if Mi ∈ O(Mj). First, we define several asymptotic
subsumption templates for which it is easy to verify that a single basic nat-free
cost expression b subsumes a complete product. In the following definition, we
use the auxiliary functions pow and deg of basic nat-free cost expressions which
are defined as: pow(2r∗A) = r, pow(Ar) = 0, pow(log(A)) = 0, deg(Ar) = r,
deg(2r∗A) = ∞, and deg(log(A)) = 0. In a first step, we focus on basic nat-free
cost expression b with one variable and define when it asymptotically subsumes a
set of basic nat-free cost expressions (i.e., a product). The product might involve
several variables but they must be subsumed by the variable in b.

Lemma 2 (asymptotic subsumption). Let b be a basic nat-free cost expres-
sion, M = {b1, · · · , bm} a product, ϕ a context constraint, vars(b) = {A}
and vars(bi) = {Ai}. We say that M is asymptotically subsumed by b, i.e.,
ϕ |= M ∈ O(b) if for all 1 ≤ i ≤ m it holds that ϕ |= A 5 Ai and one of the
following holds:

1. if b = 2r∗A, then
(a) r > Σm

i=1pow(bi); or
(b) r ≥ Σm

i=1pow(bi) and every bi is of the form 2ri∗Ai ;
2. if b = Ar, then

(a) there is no bi of the form log(Ai), then r ≥ Σm
i=1deg(bi); or

(b) there is at least one bi of the form log(Ai), and r ≥ 1 + Σm
i=1deg(bi)

3. if b = log(A), then m = 1 and b1 = log(A1)

Let us intuitively explain the lemma. For exponentials, in point 1a, we capture
cases such as 3A = 2log(3)∗A asymptotically subsumes 2A ∗A2 ∗ . . .∗ log(A) where
in “. . .” we might have any number of polynomial or logarithmic expressions. In
1b, we ensure that 3A does not embed 3A ∗ A2 ∗ log(A), i.e., if the power is the
same, then we cannot have additional expressions. For polynomials, 2a captures
that the largest degree is the upper bound. Note that an exponential would
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introduce an ∞ degree. In 2b, we express that there can be many logarithms
and still the maximal polynomial is the upper bound, e.g., A2 subsumes A ∗
log(A)∗ log(A)∗ . . .∗ log(A). In 3, a logarithm only subsumes another logarithm.

Example 6. Let b = A3, M = {log(A), log(B), C}, where A, B and C corre-
sponds to nat(x), nat(y) and nat(x−y) respectively. Let us assume that the con-
text constraint is ϕ = {x ≥ y, x ≥ 0, y ≥ 0}. M is asymptotically subsumed by
b since ϕ |= (A 5 B) ∧ (A 5 C), and condition 2b in Lemma 2 holds. �

The basic idea now is that, when we want to check the subsumption relation
on two expression M1 and M2 we look for a partition of M2 such that we can
prove the subsumption relation of each element in the partition by a different
basic nat-free cost expression in M1. Note that M1 can contain additional basic
nat-free cost expressions which are not needed for subsuming M2.

Lemma 3. Let M1 and M2 be two products, and ϕ a context constraint. If there
exists a partition of M2 into k sets P1, . . . , Pk, and k distinct basic nat-free cost
expressions b1, . . . , bk ∈ M1 such that Pi ∈ O(bi), then M2 ∈ O(M1).

Example 7. Let M1 = {2log(3)∗B, A3} and M2 = {log(A), 2B, log(B), C}, with
the context constraint ϕ as defined in Ex. 6. If we take b1 = 2log(3)∗A, b2 = A3,
and partition M2 into P1 = {2B}, P2 = {log(A), log(B), C} then we have that
P1 ∈ O(b1) and P2 ∈ O(b2). Therefore, by Lemma 3, M2 ∈ O(M1). Also, for
M ′

2 = {A3, B4} we can partition it into P ′
1 = {B4} and P ′

2 = {A3} such that
P ′

1 ∈ O(b1) and P ′
2 ∈ O(b2) and therefore we also have that M ′

2 ∈ O(M1). �

Definition 7 (asymp). Given a cost expression e, the overall transformation
asymp takes e and returns the cost expression that results from removing all
subsumed products from the normalized expression of τ(ẽ), and then replace each
nat-variable by the corresponding nat-expression.

Example 8. Consider the normalized cost expression of Ex. 5. The first and
third products can be removed, since they are subsumed by the second one, as
explained in Ex. 7. Then asymp(e) would be 2log(3)∗nat(y) ∗ nat(x)3 = 3nat(y) ∗
nat(x)3, and it holds that e ∈ Θ(asymp(e)). �

In the following theorem, we ensure that after eliminating the asymptotically
subsumed products, we preserve the asymptotic order.

Theorem 1 (soundness). Given a cost expression e and a context constraint
ϕ, then ϕ |= e ∈ Θ(asymp(e)).

4.3 Implementation in COSTA

We have implemented our transformation and it can be used as a back-end
of existing non-asymptotic cost analyzers for average, lower and upper bounds
(e.g., [9,2,12,5,7]), and regardless of whether it is based on the approach to
cost analysis of [15] or any other. We plan to distribute it as free software soon.
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Currently, it can be tried out through a web interface available from the COSTA
web site: http://costa.ls.fi.upm.es. COSTA is an abstract interpretation-
based COSt and Termination Analyzer for Java bytecode which receives as input
a bytecode program and (a choice of) a resource of interest, and tries to obtain
an upper bound of the resource consumption of the program.

In our first experiment, we use our implementation to obtain asymptotic forms
of the upper bounds on the memory consumption obtained by [4] for the JOlden
suite [10]. This benchmark suite was first used by [6] in the context of memory
usage verification and is becoming a standard to evaluate memory usage analysis
[5,4]. None of the previous approaches computes asymptotic bounds. We are
able to obtain accurate asymptotic forms for all benchmarks in the suite and
the transformation time is negligible (less than 0.1 milliseconds in all cases). As
a simple example, for the benchmark em3d, the non-asymptotic upper bound
is 8∗nat(d−1)∗nat(b)+8∗nat(d)+8∗nat(b) +56∗nat(d−1)+16∗nat(c) +73 and we
transform it to nat(d)∗nat(b)+nat(c). The remaining examples can be tried online
in the above url.

5 Generation of Asymptotic Upper Bounds

In this section we study how to perform a tighter integration of the asymptotic
transformation presented Sec. 4 within resource usage analyses which follow the
classical approach to static cost analysis by Wegbreit [15]. To do this, we reformu-
late the process of inferring upper bounds sketched in Sect. 2.2 to work directly
with asymptotic functions at all possible (intermediate) stages. The motivation
for doing so is to reduce the huge amount of memory required for constructing
non-asymptotic bounds and, in the limit, to be able to infer asymptotic bounds
in cases where their non-asymptotic forms cannot be computed.

Asymptotic CRS. The first step in this process is to transform cost relations
into asymptotic form before proceeding to infer upper bounds for them. As be-
fore, we start by considering standalone cost relations. Given an equation of the
form 〈C(x̄)=e+

∑k

i=1 C(ȳi), ϕ〉 with k ≥ 0, its associated asymptotic equation
is 〈CA(x̄)=asymp(e)+

∑k

i=1 CA(ȳi), ϕ〉. Given a cost relation C, its asymptotic
cost relation CA is obtained by applying the above transformation to all its equa-
tions. Applying the transformation at this level is interesting in order to simplify
both the process of computing the worst case cost of the recursive equations and
the base cases when computing Eq. (∗) as defined in Sect. 2.2.

Example 9. Consider the following CR:

〈C(a, b) = nat(a + 1)2 , {a≥0, b≥0}〉
〈C(a, b) = nat(a−b)+ log(nat(a−b))+C(a′, b′) , {a≥0, b≥0, a′=a−2, b′=b+1}〉
〈C(a, b) = 2nat(a+b)+nat(a)∗ log(nat(a))+C(a′, b′) , {a≥0, b≥0, a′=a+1, b′=b−1}〉

By replacing the underlined expressions by their corresponding asymp expres-
sions as explained in Theorem 1, we obtain the asymptotic relation:
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〈CA(a, b) = nat(a)2 , {a≥0, b≥0}〉
〈CA(a, b) = nat(a−b)+CA(a′, b′) , {a≥0, b≥0, a′=a−2, b′=b+1}〉
〈CA(a, b) = 2nat(a+b)+CA(a′, b′) , {a≥0, b≥0, a′=a+1, b′=b−1}〉

In addition to reducing their sizes, the process of maximizing the nat expressions
is more efficient since there are fewer nat expressions in the asymptotic CR. �

An important point to note is that, while we can remove all constants from e, it
is essential that we keep the constants in the size relations ϕ to ensure soundness.
This is because they are used to infer the ranking functions and to compute the
invariants, and removing such constants might introduce imprecision and more
important soundness problems as we explain in the following examples.

Example 10. The above relation admits a ranking function f(a, b)=nat(2a +
3b+1) which is used to bound the number of applications of the recursive equa-
tions. Clearly, if we remove the constants in the size relations, e.g., transform
a′=a−2 into a′=a, the resulting relation is non-terminating and we cannot find
a ranking function. Besides, removing constants from constraints which are not
necessarily related to the ranking function also might result in incorrect invari-
ants. For example, changing n′=n+1 to n′=n in the following equation:

〈C(m,n) = nat(n) + C(m′, n′) , {m>0,m′<m,n′=n+1}〉
would result in an invariant which states that the value of n is always equal to the
initial value n0, which in turn leads to the upper-bound nat(m0)∗nat(n0) which
is clearly incorrect. A possible correct upper-bound is nat(m0)∗nat(n0 + m0)
which captures that the value of nat(n) increases up to nat(n0+m0). �

Asymptotic Upper Bounds. Once the standalone CR is put into asymptotic
form, we proceed to infer an upper bound for it as in the case of non-asymptotic
CRs and then we apply the transformation to the result. Let CA(x̄) be an asymp-
totic cost relation. Let C+

A (x̄) be its upper bound computed as defined in Eq. (∗).
Its asymptotic upper bound is C+

asymp(x̄) = asymp(C+
A (x̄)). Observe that we are

computing C+
A (x̄) in a non-asymptotic fashion, i.e., we do not apply asymp to

each Ib, Ir, worst in (∗), but only to the result of combining all elements. We
could apply asymp to the individual elements and then to the result of their
combination again. In practice, it almost makes no difference as this operation
is really inexpensive.

Example 11. Consider the second CR of Ex. 9. The analyzer infers the invariant
I = {0≤a≤a0, 0≤b≤b0, a≥0, b≥0}, from which we maximize nat(a)2 to nat(a0)2,
nat(a−b) to nat(a0) (since the maximal value occurs when b becomes 0), and
2nat(a+b) to 2nat(a0+b0). The number of applications of the recursive equations is
nat(2a0+3b0+1) (see Ex. 10). By applying Eq. (∗), we obtain the upper bound:
C+

A (a, b) = nat(2a+3b+1) ∗ max({nat(a), 2nat(a+b)}) + nat(a)2. Applying asymp
to the above upper bound results in: C+

asymp(a, b) = 2nat(a+b) ∗ nat(2a + 3b). �

Inter-procedural. The practical impact of integrating the asymptotic trans-
formation within the solving method comes when we consider relations with
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calls to external relations and compose their asymptotic results. This is because,
when the number of calls and equations grow, the fact that we manipulate more
compact asymptotic expressions is fundamental to enable the scalability of the
system. Consider a cost relation with k calls to external relations and n recursive
calls: 〈C(x̄)=e+

∑k

i=1 Di(ȳi)+
∑n

j=1 C(z̄j), ϕ〉 with k ≥ 0. Let D+
iasymp

(ȳi) be the
asymptotic upper bound for Di(ȳi). C+

asymp(x̄) is the asymptotic upper bound
of the standalone relation 〈C(x̄)=e+

∑k

i=1 D
+
iasymp

(ȳi)+
∑n

j=1 C(z̄j), ϕ〉.

Theorem 2 (soundness). C+(x̄) ∈ O(C+
asymp(x̄)).

Note that the soundness theorem, unlike Th. 1, guarantees only that the asymp-
totic expression is O and not Θ. Let us show an example.

Example 12. Consider ub=nat(a−b+1)∗2nat(c)+5 and asymp(ub)=nat(a−b)∗
2nat(c). Plugging ub in a context where b=a+1 results in 5 (since then nat(a−b+1)
=0). Plugging asymp(ub) in the same context results in 2nat(c) which is clearly
less precise. �

Intuitively, the source of the loss of precision is that, when we compute the
asymptotic upper bound, we are looking at the cost in the limiting behavior
only and we might miss a particular point in which such cost becomes zero. In
our experience, this does not happen often and it could be easily checked before
plugging in the asymptotic result, replacing the upper bound by zero.

5.1 Experimental Results on Scalability

In this section, we aim at studying how the size of cost expressions (non-
asymptotic vs. asymptotic) increases when larger CRs are used, i.e., the scal-
ability of our approach. To do so, we have used the benchmarks of [1] shown
in Table 1. These benchmarks are interesting because they cover the different
complexity order classes, as it can be seen, the benchmarks range from constant
to exponential complexity, including polynomial and divide and conquer. The
source code of such programs is also available at the COSTA web site.

As in [1], in order to assess the scalability of the approach, we have connected
together the CRs for the different benchmarks by introducing a call from each
CR to the one appearing immediately above it in the table. Such call is always
introduced in a recursive equation. Column #Eq shows the number of equations
in the corresponding benchmarks. Reading this column top-down, we can see that
when we analyze BST we have 31 equations. Then, for Fibonacci, the number
of equations is 39, i.e., its 8 equations plus the 31 which have been previously
accumulated. Progressively, each benchmark adds its own number of equations
to the one above. Thus, in the last row we have a CR with all the equations
connected, i.e., we compute an upper bound of a CR with at least 20 nested
loops and 385 equations.

Columns Tub and Taub show, respectively, the times of composing the non-
asymptotic and asymptotic bounds, after discarding the time common part for
both, i.e., computing the ranking functions and the invariants. It can be observed
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Table 1. Scalability of asymptotic cost expressions

Bench. Tub Taub Sizeub Sizeaub #Eq Sizeub
#Eq

Sizeaub
#Eq

Sizeub
Sizeaub

BST 0 0 23 4 31 0.74 0.13 5.75
Fibonacci 0 0 47 9 39 1.21 0.23 5.22
Hanoi 0 0 67 14 48 1.39 0.29 4.78
MatMult 0 0 152 38 67 2.27 0.56 4.00
Delete 0 4 320 65 100 3.20 0.65 4.92
FactSum 4 4 717 95 117 6.12 0.81 7.54
SelectOrd 0 4 1447 155 136 10.63 1.14 9.33
ListInter 4 16 3804 257 173 21.98 1.48 14.80
EvenDigits 4 20 7631 400 191 39.95 2.09 19.07
Cons 12 32 15268 585 214 71.34 2.73 26.09
Power 24 40 24265 588 223 108.81 2.63 41.26
MergeList 96 60 48536 828 245 198.10 3.37 58.61
ListRev 140 76 48545 829 254 191.12 3.26 58.55
Incr × 112 × 1126 282 × 3.99 ×
Concat × 164 × 1538 296 × 5.19 ×
ArrayRev × 232 × 2127 305 × 6.97 ×
Factorial × 284 × 2130 314 × 6.78 ×
DivByTwo × 328 × 2135 323 × 6.60 ×
Polynomial × 436 × 2971 346 × 8.58 ×
MergeSort × 440 × 3234 385 × 8.40 ×

that the times are negligible from BST to EvenDigits, which are the simplest
benchmarks and also have few equations. The interesting point is that when cost
expressions start to be considerably large, Tub grows significantly, while Taub

remains small. This is explained by the sizes of the expressions they handle, as
we describe below. For the columns that contain “×”, COSTA has not been
able to compute a non-asymptotic upper bound because the underlying Prolog
process has run out of memory.

Columns Sizeub and Sizeaub show, respectively, the sizes of the computed
non-asymptotic and asymptotic upper bounds. This is done by regarding the
upper bound expression as a tree and counting its number of nodes, i.e., each
operator and each operand is counted as one. As for the time, the sizes are quite
small for the simplest benchmarks, and they start to increase from SelectOrd.
Note that for these examples, the size of the non-asymptotic upper bounds is sig-
nificantly larger than the asymptotic. Columns Sizeub

#Eq and Sizeaub

#Eq show, resp., the
size of the non-asymptotic and asymptotic bounds per equation. The important
point is that while this ratio seems to grow exponentially for non-asymptotic up-
per bounds, Sizeaub

#Eq grows much more slowly. We believe that this demonstrates
that our approach is scalable, even if the implementation is still preliminary.
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6 Conclusions and Future Work

We have presented a general asymptotic resource usage analysis which can be
combined with existing non-asymptotic analyzers by simply adding our trans-
formation as a back-end or, interestingly, integrated into the mechanism for
obtaining upper bounds of recurrence relations. This task has been traditionally
done manually in the context of complexity analysis. When it comes to apply it
to an automatic analyzer for a real-life language, there is a need to develop the
techniques to infer asymptotic bounds in a precise and effective way. To the best
of our knowledge, our work is the first one which presents a generic and fully
automatic approach. In future work, we plan to adapt our general framework to
infer asymptotic lower-bounds on the cost and also to integrate our work into a
proof-carrying code infrastructure.
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Abstract. We define a higher-order process calculus with algebraic operations
such as encryption and decryption, and develop a bisimulation proof method for
behavioral equivalence in this calculus. Such development has been notoriously
difficult because of the subtle interactions among generative names, processes
as data, and the algebraic operations. We handle them by carefully defining the
calculus and adopting Sumii et al.’s environmental bisimulation, and thereby give
(to our knowledge) the first “useful” proof method in this setting. We demonstrate
the utility of our method through examples involving both higher-order processes
and asymmetric cryptography.

1 Introduction

Higher-order communication and encryption. The combination of cryptographic op-
erations and higher-order, concurrent programs is ubiquitous in modern computer sys-
tems. For instance, software distribution systems (such as Windows Update) usually
employ some digital signature scheme to verify the authenticity of the downloaded pro-
grams before installing them. For another example, Web-based e-mail user agents (such
as Gmail) often distribute complex code (typically in HTML and JavaScript) interpreted
at the client side, where the code itself is transferred through a secure channel, as well
as the messages sent and received by the code. Guaranteeing the security of such sys-
tems is even more important than in first-order programs, because of the higher chance
of “accidentally” executing arbitrary, malicious code.

Process calculi such as CCS and π-calculus have been useful for the verification of
concurrent systems in general. In particular, spi-calculus [2] and applied π-calculus [1]
are equipped with cryptographic operations such as encryption and decryption, and
can be used for formal reasoning about cryptographic protocols. On the other hand,
higher-order π-calculus [7] allows communication of processes themselves, and is able
to model systems that transfer programs.

To our knowledge, however, there has been little research1 on process calculus with
both higher-order communication and cryptographic operations, probably because their
combination is highly non-trivial. For instance, consider a process P = c〈Q〉 that sends
another process Q = c〈encrypt(m, k)〉 to a public communication channel c. The
process Q itself, when executed, sends message m encrypted under a secret key k. Now,
is it possible for an observer on c to obtain m by intercepting the communications? One

� Detailed proofs are available online [12].
1 An exception is a type system for higher-order spi-calculus [6], but it does not consider general

algebra, decomposition, behavioral equivalence, nor bisimulations.

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 311–326, 2009.
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might say no, because k is secret. Another might disagree, because the observer can
analyze the program text of Q and extract k from it. Yet another one might argue that
such an analysis is impossible, because m is encrypted before Q is published on the
network. But what if Q = c(x).c〈encrypt(x, k)〉 instead? How about Q = c(x).c
〈encrypt(m, k)〉 when m is independent of x?

The above gedankenexperiment leads us to our first observation that, unlike in applied
π-calculus, the values of function applications must be explicitly distinguished from the
function applications themselves in this setting. Thus, let us write f̂(V1, . . . , Vl) for the
values of function applications f(V1, . . . , Vl). In the last example, for instance, k (and
m) can be extracted if Q = c(x).c〈encrypt(m, k)〉, but they cannot if Q = c(x).c
〈 ̂encrypt(m, k)〉.

Accordingly, we need to provide a construct to decompose the syntax of communi-
cated terms (but not values) including communicated processes (but not running pro-
cesses), so that an observer can analyze them. For this purpose we introduce operations
of the form match M as x in R, which decompose the syntax (not value) of M and
bind x to the tuple of the decomposed elements. The point is that, if M is already a
value, like ̂encrypt(m, k), then it cannot be decomposed any further.

To make our theory realistic, we require that first-order terms are evaluated be-
fore they are sent to the network. Our calculus is thus “call-by-value.” As usual, how-
ever, call-by-name computation can easily be encoded by means of thunks (which are
straightforward to implement as processes).

Behavioural equivalence and bisimulations. The distinction between already computed
values and yet-to-be-computed terms is crucial but not sufficient for our development.
Specifically, we need a method for proving properties of processes. Traditionally, be-
havioral equivalence and bisimulations have been known to be useful for specifying and
proving many interesting properties of concurrent systems, including security proper-
ties such as secrecy and authenticity.

However, traditional bisimulation proof methods for π-calculi are not of help here.
Context bisimulation [7] is not useful by itself as a practical proof technique, because
of the universal quantification over all receiver (and sender) contexts. Normal bisim-
ulation [7] essentially encodes higher-order processes into the first order by passing
pointers only, and therefore would not be sound under the presence of decomposition
operation like ours.2 Environment-sensitive bisimulations in spi-calculus (see [5] for
example) are not applicable in our higher-order language, because the environment it-
self would include processes.

For these reasons, we adapt more recent work on environmental bisimulation [9, 14,
15] and extend it to account for the decomposition operation as well as the algebraic op-
erations (which generalize various cryptographic operations, as in applied π-calculus).
Although environmental bisimulations have previously been applied to λ-calculus with

2 In general, fully abstract (i.e., equivalence-preserving) encoding of our calculus into another
would be extremely non-trivial. This includes an “obvious” translation from higher-order pro-
cesses into the first order, where one communicates first-order terms representing the syntax of
processes and runs a process to interpret them. To prove it correct, one must anyway define a
higher-order calculus and then prove the translation to be fully abstract, which is more indirect
and requires more work than the present approach.
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encryption [14] and to higher-order π-calculus [9], our extension is far from trivial: to
formalize decomposition, we need to introduce quotations (as in Lisp) for terms as well
as for processes, which requires careful definition of several kinds of contexts and con-
text closure operations. Specification of the algebra also requires careful generalization
of the conditions on terms in previous environmental bisimulations.

Our contributions in the present paper are thus twofold: the definition of the calculus
itself, and the environmental bisimulation proof method for this calculus.

Overview of the environmental bisimulation. Our environmental bisimulation X is a
set of triples of the form (E , P,Q), where P and Q are the tested processes and E is
the environment, i.e., a binary relation on terms, representing the observer’s knowledge.
The membership (E , P,Q) ∈ X , which is often written PXEQ for readability, means
that processes P and Q are bisimilar under environment E . There are several conditions
on X , each corresponding to a change of the state of the observer and the processes.
For instance, as in traditional (weak) bisimulations, if either P or Q makes an internal
transition, then the other should make 0 or more internal transitions, and the resulting
processes should also be bisimilar (under the same environment E , because the ob-
server’s state has not changed). For output actions, if P sends a value V and becomes
P ′, then Q should also send some value W and become Q′, with the requirement that
P ′ and Q′ are bisimilar under the environment E ∪ {(V,W )}, which is extended with
the values the observer has learned.

For input, we must consider any pair of values that can be synthesized by the attacker
from its knowledge E . We use (Ê)∗ for the set of such value pairs, where Ê is the set of
pairs of values that can be obtained from E by first-order computation, and (Ê)∗ is the
context closure of Ê . Roughly, we define:

Ê = { (eval (D[Ṽ ]), eval (D[W̃ ])) | Ṽ EW̃ , fn(D) = ∅, D is first-order }
E∗ = { (C[Ṽ ], C[W̃ ]) | Ṽ EW̃ , fn(C) = ∅ }

(Here, Ṽ denotes a sequence V1, . . . , Vl, and Ṽ EW̃ denotes ViEWi for all i. We use
similar notations for various kinds of meta-variables throughout the paper.) Recall that,
unlike in previous environmental bisimulations with “built-in” conditions for some par-
ticular algebra (e.g., [14]), we need to consider general algebras. Ê accounts for the
synthesis of knowledge within such algebras.

For instance, let decrypt(encrypt(x, y), y) = x. If the ciphertexts (encrypt(V, k),
encrypt(W,k)) and the key pair (k, k) belong to E , then the plaintexts (V,W ) belong
to Ê . This is because the first-order observer context D = decrypt([]1, []2) can compute
them by putting the ciphertexts into its first hole []1 and the key to []2, like:

D[encrypt(V, k), k] = decrypt(encrypt(V, k), k) = V
D[encrypt(W,k), k] = decrypt(encrypt(W,k), k) = W

Thus, the bisimulation condition for input would be: for any V (Ê)∗W , if P receives V
and becomes P ′, then Q receives W and becomes Q′, with P ′ and Q′ bisimilar again
under environment E .

Furthermore, the observer can spawn arbitrary new processes from its knowledge
E . Thus, we also require P |P ′XEQ|Q′ for any PXEQ and P ′ÊQ′. This may seem to
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be a heavy condition because of the universal quantification over processes P ′ and Q′,
drawn from Ê . However, we in fact work out an up-to context technique, where the
requirement is weakened to P |P ′X (∗)

E Q|Q′ for a certain form of context closure X (∗)
E

for X . This essentially removes the universal quantification and significantly lightens
the burden of a bisimulation proof in higher-order process calculus.3 (Another subtle
but important trick here is that, unlike for input, Ê suffices in place of (Ê)∗. Informally,
this is because processes in (Ê)∗ can only make the same observations as those in Ê .)

Finally, for decomposition of processes and terms, we require PXE∪{(M ′,N ′)}Q for

any PXEQ and M ÊN , where M ′ and N ′ are the result of decomposing M and N ,
respectively. (Obviously, this Ê does not have to be (Ê)∗, because there is no point in
synthesizing a term and then decomposing it.) Again, this condition may seem heavy
because, by repeatedly applying it, we need to transitively include all the subterms of
M and N . As in the previous case, however, most of them can be removed by the up-to
context technique.

Overview of the paper. The rest of this paper is structured as follows. Section 2 for-
mally presents the syntax and labeled transition semantics of our calculus, which is
(formally) parametrized by the semantics of terms. Sections 3 and 4 define the environ-
mental bisimulation and the up-to context technique. Section 5 proves their soundness
and completeness with respect to reduction-closed barbed equivalence. Section 6 gives
examples and Section 7 concludes.

Throughout the paper, readers are assumed to be familiar with standard technical de-
velopments in the π-calculus [11] and be comfortable with basic mathematical notions
such as inductive (and coninductive) definitions of sets (and relations).

2 The Calculus

2.1 Syntax

As in applied π-calculus [1], our language consists of terms and processes. Terms rep-
resent channel names and communicated data. Processes represent running programs.
The set of terms is defined as follows:

M ::= x (variable) | a (name) | f (function)
| ‘P (quoted process) | ‘M (quoted term)
| M(M1, . . . ,Ml) (uncomputed application)
| f̂(V1, . . . , Vl) (computed application)

Meta-variables M,N range over terms, a, b, c, d, k, n over names, x, y over variables
and f, g over functions. Term M(M1, . . . ,Ml) represents function application that is
yet to be computed. Conversely, f̂(V1, . . . , Vl) represents function application that is
already computed, where function f of arity l has been applied to values V1, . . . , Vl.
Note that function symbols f are first-class but different from names (or variables) and
therefore cannot be bound. Term ‘P represents the syntax of processes, which allows

3 This was previously not possible and therefore is yet another technical contribution of the
present work. See footnote 4 in the next section for details.
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us to communicate terms containing processes (i.e, higher-order terms). Although it
has been written just P in previous work (e.g., [7, 9]) and in the introduction, we here
put the quotation mark to clarify the distinction between communicated and running
processes.4 Term ‘M represents the syntax of terms themselves. It is necessary for the
decomposition operation explained below.

Simultaneously, we define a subset of terms as values, i.e., results of computation:
V ::= a | f | ‘P | ‘M | f̂(V1, . . . , Vl)

Meta-variables V,W range over values. We write Quo for the set of values of the form
‘P or ‘M .

The set of processes is defined by:

P ::= 0 (nil) | run(M) (execution)
| M(x).P (input) | M〈N〉.P (output)
| !P (replication) | νa.P (restriction)
| (P |Q) (parallel composition)
| if M = N then P else Q (conditional)
| match M as x in P (decomposition)

P,Q,R range over processes. Their informal semantics is as follows. Process 0 does
nothing. Process run(M) executes quoted processes (i.e., ‘P ). Parallel composition
P |Q represents concurrent execution of P and Q. Replication !P executes as many
copies of P as necessary in parallel. Restriction νa.P creates a new name a and then
becomes P . Conditional if M = N then P else Q compares the values of M and N
(up to α-equivalence, because they may contain processes), and executes either P or
Q accordingly. Input M(x).P receives a value and output M〈N〉.P sends the value
of N on channel M , before becoming P . Process match M as x in P decomposes the
value of M (which should be either ‘P or ‘N ), binds x to the decomposed elements,
and executes P . Formal semantics of processes will be given in the next subsection.

As usual, we identify processes (and terms containing processes) up to α-conversion.
We write fn(M) and fn(P ) for the set of free names that appear in M and P , respec-
tively. We often omit trailing 0.

Contexts and context closure. Because we have terms, values and processes in our lan-
guage, we correspondingly define term contexts, value contexts and process contexts.
They have multiple holes (indexed by positive integers 1, 2, . . . ) for values.

Ct ::= x | Cv | Ct(Ct, . . . , Ct)

Cv ::= []i | a | f | ‘Cp | ‘Ct | f̂(Cv, . . . , Cv)
Cp ::= 0 | run(Ct) | Ct(x).Cp | Ct〈Ct〉.Cp | !Cp | νa.Cp | (Cp|Cp) |

if Ct = Ct then Cp else Cp | match Ct as x in Cp

4 This distinction permits a more convenient up-to context technique (clause 6 in Definition 3)
when the observer spawns new processes synthesized from its knowledge, because (unlike in
traditional higher-order π-calculus [7]) the execution of a process now requires an internal
transition step run(‘P ) τ−→ P . This was not the case in previous work [9] on environmental
bisimulation for higher-order π-calculus (with a limited version of up-to context [8, Defini-
tion E.1]), which often forced one to construct a significantly larger X than necessary in their
bisimulation proof.
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We write C for any of the contexts above, and bn(C) for the set of names bound in C.
As usual, contexts (unlike processes) are not identified by α-conversion in general, e.g.,
νm.a〈[]1〉.0 �= νn.a〈[]1〉.0 so bn(νm.a〈[]1〉.0) = {m} �= {n} = bn(νn.a〈[]1〉.0).

Since we are interested in behavioural equivalence of processes under contexts, we
define context closure operations as follows. Let E be a (binary) relation on closed
values. (As is often the case in π-calculi [11], “closed” in this paper means the lack of
free variables only. Free names are still possible.) Relation E∗ on closed terms is:

{ (Ct[Ṽ ], Ct[W̃ ]) | Ṽ EW̃ , bn(Ct) ∩ fn(Ṽ , W̃ ) = fn(Ct) = ∅ }
We sometimes (ab)use E∗ as a relation on closed processes, in which case it denotes:

{ (Cp[Ṽ ], Cp[W̃ ]) | Ṽ EW̃ , bn(Cp) ∩ fn(Ṽ , W̃ ) = fn(Cp) = ∅ }
In the definitions above, fn(Ct) and fn(Cp) are required to be empty so that con-
text cannot “guess” secret names just by chance. These conditions could be fn(Ct) ∩
fn(Ṽ , W̃ ) = ∅ and fn(Cp)∩ fn(Ṽ , W̃ ) = ∅, instead of fn(Ct) = ∅ and fn(Cp) = ∅, but
we preferred the latter for the sake of simplicity. This choice does not restrict observa-
tions made by contexts: one can put arbitrary free names into the holes of the contexts
by including them in E whenever necessary. Note also that contexts can create as many
fresh names as needed for observations, because bn(Ct) and bn(Cp) are not required to
be empty, though they should again be distinct from other free names as usual.

As already stated, our calculus is parametrized by the semantics of terms. To for-
malize our assumptions on these semantics, we define first-order contexts, i.e., contexts
with no quotation (and no names).

Dt ::= Dv | Dt(Dt, . . . , Dt) Dv ::= []i | f | f̂(Dv, . . . , Dv)

By using first-order contexts, we define another kind of context closure Ê as follows.
Let E be a relation on closed values. Then, relation Ê is defined to be:

{ (eval (Dt[Ṽ ]), eval (Dt[W̃ ])) | Ṽ EW̃ }
The function eval will be defined in the next subsection. Intuitively, Ê is the set of
(pairs of) values that can be computed from E only at the first order, i.e., without using
quotation or processes. Note that bn(Dt) = fn(Dt) = ∅ by definition.

2.2 Semantics

Semantics of terms. We require that the meaning of terms is formally defined by a
rewriting system [3] (cf. [4, Section 5], though their formulation is slighly different
from ours) on closed terms, and that the system is confluent and strongly normaliz-
ing for ground terms. An example representing asymmetric cryptography is given in
Section 6. Readers are referred to a standard textbook [3] for basic definitions in term
rewriting.

In the system, we also assume tuples (and projection operations for them) and con-
stant (i.e., nullary function) symbols name, fun, . . . (and equality tests on them) to
represent the syntax of processes. Recall that (function and) constant symbols are dif-
ferent from names.

The partial function eval returns the value of a given term. It is undefined if the
normal form of the term does not belong to the set of values defined in the previous
subsection. For example, eval (#1 (a, b)) = a and eval (#2 (c)) is undefined.
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Finally, we require that M(Ê)∗N implies eval (M)(Ê)∗eval (N). This requirement
is critical (and sufficient) throughout our developments. It means that the values of
(pairs of) terms synthesized from Ê can be synthesized from Ê itself. That is, eval does
not introduce any new names or higher-order values. Recall that Ê is a closure (and
evaluation) under nameless and first-order contexts only.

Semantics of processes. We define the semantics of processes by a labeled transition
system. The labels have three forms: τ , a(V ), and νc̃.a〈V 〉, representing the silent
action, an input action, and an output action, respectively. Metavariable α ranges over
labels. bn(α) is defined as bn(νc̃.a〈V 〉) = {c̃} and bn(τ) = bn(a(V )) = ∅. The
transitions are defined by the rules below, with symmetric rules (Par-R) and (Tau-R)
omitted. We write ⇒ for the reflexive and transitive closure of

τ−→.

eval(M) = a

M(x).P
a(V )−−−→ {V/x}P

(In)
eval(M) = a

M〈N〉.P a〈eval(N)〉−−−−−−−→ P
(Out)

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

P |Q α−→ P ′|Q
(Par-L)

P
νb̃.a〈V 〉−−−−−→ P ′ Q

a(V )−−−→ Q′ {b̃} ∩ fn(Q) = ∅
P |Q τ−→ νb̃.(P ′|Q′)

(Tau-L)

P |!P α−→ Q

!P α−→ Q
(Rep)

P
α−→ P ′ a �∈ bn(α) ∪ fn(α)

νa.P
α−→ νa.P ′ (Scope)

P
νb̃.a〈V 〉−−−−−→ P ′ c �= a c ∈ fn(V ) \ {b̃}

νc.P
νb̃,c.a〈V 〉−−−−−−→ P ′

(Open)
eval (M) = ‘P
run(M) τ−→ P

(Run)

eval(M) = eval(N)
if M = N then P else Q

τ−→ P
(IfTrue)

eval(M) �= eval(N)
if M = N then P else Q

τ−→ Q
(IfFalse)

eval(M) = V V ∈ Quo n �∈ fn(V, P )
match M as x in P

τ−→ νn.{reifyn(V )/x}P
(Match)

Most of the rules are straightforward adaptation of standard labelled transition in the
π-calculus [11]. As usual in untyped small-step operational semantics, transition gets
stuck if the assumptions are not satisfied, e.g., if eval (M) is not a name in rules (In)
and (Out). In rule (Match), the operator reifyn takes a quoted process or a quoted term
and decomposes it into a tuple. (The name n is used for substituting a bound name or a
bound variable, if there is any, in the reified process.) Formally, it is defined as:

reifyn(‘0) = (ẑero) reifyn(‘run(M)) = (êxe, ‘M)
reifyn(‘(M(x).P )) = (în, ‘M, n, ‘{n/x}P ) reifyn(‘(M1〈M2〉.P )) = (ôut, ‘M1, ‘M2, ‘P )
reifyn(‘!P ) = (r̂ep, ‘P ) reifyn(‘νc.P ) = (n̂ew, n, ‘{n/c}P )
reifyn(‘(P1|P2)) = (p̂ar, ‘P1, ‘P2)
reifyn(‘if M1 = M2 then P1 else P2) = (ĉond, ‘M1, ‘M2, ‘P1, ‘P2)
reifyn(‘match M as x in P ) = (m̂tch, ‘M, n, ‘{n/x}P )

reifyn(‘a) = (n̂ame, a) reifyn(‘f) = (f̂un, f)
reifyn(“P ) = (p̂quo, ‘P ) reifyn(“M) = (t̂quo, ‘M)
reifyn(‘(M(M1, . . . , Ml))) = (ûapp, ‘M, ‘M1, . . . , ‘Ml)
reifyn(‘f̂(V1, . . . , Vl)) = (ĉapp, f̂(V1, . . . , Vl))
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Structural equivalence. Define evaluation contexts by C ::= [] | (C|P ) | (P |C) |
νc.C. Structural equivalence ≡ is the smallest equivalence relation on processes that is
closed under evaluation contexts, with:

P ≡ P |0 P1|(P2|P3) ≡ (P1|P2)|P3 P1|P2 ≡ P2|P1 !P ≡ P |!P
νa.0 ≡ 0 νa.νb.P ≡ νb.νa.P P1|(νa.P2) ≡ νa.(P1|P2) (if a �∈ fn(P1))

The next lemma is useful for proving the soundness of some up-to techniques.

Lemma 1 (reduction respects structural equivalence)

1. P ≡ Q and P
α−→ P ′ imply Q

α−→ Q′ and P ′ ≡ Q′

2. P ≡ Q and Q
α−→ Q′ imply P

α−→ P ′ and P ′ ≡ Q′.

Proof. By induction on the derivation of P ≡ Q.

3 Environmental Bisimulation

As outlined in the introduction, an environmental relation is a set of elements of the
form (E , P,Q), where P , Q are closed processes and E is a binary relation on closed
values. Intuitively, P and Q are the tested processes and E is the environment, i.e., the
knowledge of the observer. We write PXEQ for (E , P,Q) ∈ X .

Definition 1 (environmental bisimulation). Environmental relation X is an environ-
mental bisimulation if PXEQ implies:

1. P
τ−→ P ′ implies Q ⇒ Q′ and P ′XEQ

′

2. P
a(V )−−−→ P ′ with aÊb and V (Ê)∗W implies Q ⇒ b(W )−−−→⇒ Q′ and P ′XEQ′

3. P
νc̃.a〈V 〉−−−−−→ P ′ with aÊb and c̃ �∈ fn(#1(E)) implies ∃d̃ �∈ fn(#2(E)). Q ⇒

νd̃.b〈W 〉−−−−−→⇒ Q′ and P ′XE∪{(V,W )}Q
′

4. the converse of (1-3) on Q
5. V1ÊW1 and V2ÊW2 imply V1 = V2 ⇐⇒ W1 = W2
6. ‘(P ′)Ê ‘(Q′) implies P |P ′XEQ|Q′

7. PXE∪{(a,b)}Q for any a �∈ fn(P,#1(E)) and b �∈ fn(Q,#2(E))
8. V ÊW implies:

(a) V = a implies W = b (i.e., if V is a name, then W is also a name)
(b) V = f implies W = f
(c) V = f̂(V1, . . . , Vl) implies W = ĝ(W1, . . . ,Wm)
(d) V ∈ Quo implies ∃b �∈ fn(E , P,Q). PXE∪{(reifyb(V ),reifyb(W ))}Q

9. the converse of 8 on W

Modulo symmetry, Definition 1 has 7 clauses. Clause 1 is the usual one for τ -transitions.
Clause 2 is the input case. The channel names a and b are related by the observer’s
knowledge Ê . The input values V and W are synthesized from Ê , as discussed in the in-
troduction. Clause 3 is the output case. Again, a and b are related by Ê . The environment
is extended with the output values, again as discussed in the introduction. Clause 5 ac-
counts for conditional contexts if []1 = []2 then P else Q. Clause 6 allows the observer
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to run processes from the environment at any time. Clause 7 allows creation of fresh
names by the observer. Clause 8 accounts for decomposition, with 8a–8c for contexts
of the form match ‘[]1 as x in P (which analyze the shape of the related values) and 8d
for match []1 as x in P .

Environmental bisimilarity ∼ is the union of all environmental bisimulations, which
exists because the union of all environmental bisimulations is an environmental bisim-
ulation (all the conditions above are monotone on X ). Therefore, P ∼E Q if PXEQ for
some environmental bisimulation X . The most important case is when E = {(a, a) |
a ∈ fn(P,Q)}. We write P 6 Q for P ∼E Q in this case. It asserts the equivalence
between two processes when the observer knows all of their free names.

4 Up-to Context Technique

Up-to techniques are enhancements of the bisimulation proof method (see, e.g., [10]).
“Bisimulations up-to” have weaker conditions than the original bisimulation clauses,
and are therefore easier to use, but yet are included in the bisimilarity (provided that
they are sound). We here present one of the most useful up-to techniques for our bisim-
ulation.

We first define context closure for environmental bisimulations.

Definition 2. For an environmental relation X , we write PX (∗)
E Q if P ≡ νc̃.(P0|P1)

and Q ≡ νd̃.(Q0|Q1) where P0XE′Q0 and P1(Ê ′)∗Q1, and if

Ê ⊆ { (V,W ) | V (Ê ′)∗W, fn(V ) ∩ {c̃} = fn(W ) ∩ {d̃} = ∅ }.

Intuitively, it is an extension of context closure for terms, where the observer’s processes
P1, Q1 are running in parallel with the tested processes P0, Q0, and fresh names c̃, d̃
have been generated but not exported yet.

Now we define the up-to technique. Essentially, this definition is obtained by replac-
ing X with X (∗) in each clause of Definition 1.

Definition 3 (environmental bisimulation up-to context). Environmental relation X
is an environmental bisimulation up-to context5 if PXEQ implies:

1. P
τ−→ P ′ implies Q ⇒ Q′ and P ′X (∗)

E Q′

2. P
a(V )−−−→ P ′ with aÊb and V (Ê)∗W implies Q ⇒ b(W )−−−→⇒ Q′ and P ′X (∗)

E Q′

3. P
νc̃.a〈V 〉−−−−−→ P ′ with aÊb and c̃ �∈ fn(#1(E)) implies ∃d̃ �∈ fn(#2(E)). Q ⇒

νd̃.b〈W 〉−−−−−→⇒ Q′ and P ′X (∗)
E∪{(V,W )}Q

′

4. the converse of (1-3) on Q
5. V1ÊW1 and V2ÊW2 imply V1 = V2 ⇐⇒ W1 = W2

6. ‘(P ′)Ê ‘(Q′) implies P |P ′X (∗)
E Q|Q′

7. PXE∪{(a,b)}Q for any a �∈ fn(P,#1(E)) and b �∈ fn(Q,#2(E))
8. V ÊW implies:

5 In fact, this is also up-to environment and up-to structural equivalence because of the use of ⊆
and ≡ in Definition 2.
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(a) V = a implies W = b (i.e., if V is a name, then W is also a name)
(b) V = f implies W = f
(c) V = f̂(V1, . . . , Vl) implies W = ĝ(W1, . . . ,Wm)
(d) V ∈ Quo implies ∃b �∈ fn(E , P,Q). PX (∗)

E∪{(reifyb(V ),reifyb(W ))}Q
9. the converse of 8 on W

Environmental bisimulations up-to context require weaker conditions than environ-
mental bisimulations. (Thus an environmental bisimulation is always an environmental
bisimulation up-to context.) Specifically, in clauses 1 to 3, the processes after transi-
tions are required to be bisimilar only “up to context,” i.e., modulo context closure.
Similarly, in clauses 6 and 8d, the resulting processes are required to be bisimilar only
modulo the context. Note that clause 6 is not a tautology because it allows to extract
(and execute) the quoted processes P ′ and Q′, while the context closure X (∗)

E does not
(see Definition 2).

Soundness of the up-to technique is guaranteed by the fact that an environmental
relation satisfying all the conditions above is a subset of ∼.

Theorem 1 (soundness of environmental bisimulation up-to context). Let Y be the
environmental bisimilarity up-to context. Then X = {(E , P,Q) | PY(∗)

E Q} is an envi-
ronmental bisimulation.

Proof. By checking each clause of environmental bisimulation against X . The non-
trivial cases are clauses 1, 2 and 3, which follow from the lemmas below (and their
symmetric versions).

Lemma 2 (input transition). Let P1E∗Q1 and aEb. Suppose that Ê respects equality
of names on the left hand side, i.e., for any a, there exists some b such that, for any W1,

aÊW1 implies W1 = b. If P1
a(V )−−−→ P ′

1, then for any W , there exists some Q′
1 such that

Q1
b(W )−−−→ Q′

1 with P ′
1(E ∪ {(V,W )})∗Q′

1.

Proof. By induction on the derivation of P1
a(V )−−−→ P ′

1.

Lemma 3 (output transition). Let P1E∗Q1 and aEb. Suppose Ê respects equality

of names on the left hand side (see above for definition). If P1
νc̃.a〈V 〉−−−−−→ P ′

1 with

c̃ �∈ fn(#1(E)), then there exist some Q′
1, W and d̃ with V ( ̂E ∪ {(c̃, d̃)})∗W such

that Q1
νd̃.b〈W 〉−−−−−→ Q′

1 with d̃ �∈ fn(#2(E)) and P ′
1(E ∪ {(c̃, d̃)})∗Q′

1.

Proof. By induction on the derivation of P1
νc̃.a〈V 〉−−−−−→ P ′

1.

Note that, in the two lemmas above, no other assumption is necessary for E .

Lemma 4 (τ transition). Suppose P1(Ê)∗Q1 and P0YEQ0 for an environmental
bisimulation Y up-to context. If P1

τ−→ P ′
1, then there exists some Q′

1 such that Q1
τ−→

Q′
1 with P0|P ′

1Y
(∗)
E Q0|Q′

1.

Proof. By induction on the derivation of P1
τ−→ P ′

1, using Lemma 2 and 3.
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Full details of the above proofs are available online [12].
While the up-to technique is useful for a bisimulation proof in general, we also use

Theorem 1 to prove the soundness of the environmental bisimulation itself in the next
section.

5 Soundness and Completeness of Environmental Bisimilarity

We first define our criterion of observational equivalence, i.e., reduction-closed barbed
equivalence. In this definition, meta-variable μ ranges over names and co-names (ā
etc.), P ↓a and P ↓ā mean that P can make an input and output transition on a, and
P ⇓μ is an abbreviation of P ⇒↓μ.

Definition 4 (reduction-closed barbed equivalence). Reduction-closed barbed equiv-
alence is the largest binary relation ≈ on closed processes such that P ≈ Q implies:

1. P
τ−→ P ′ implies Q ⇒ Q′ and P ′ ≈ Q′

2. P ↓μ implies Q ⇓μ

3. the converse of 1 and 2 on Q
4. P |R ≈ Q|R for all processes R

Theorem 2 (soundness and completeness of environmental bisimulation). If P 6
Q, then P ≈ Q and vice versa.

Proof. For soundness (the forward implication), we check each clause in Definition 4
against 6. The non-trivial case is clause 4. Suppose P 6 Q, i.e., P ∼E Q for E =
{(a, a) | a ∈ fn(P,Q)}. Let E ′ = {(b, b) | b ∈ fn(R)}. By clause 7 of environmental

bisimulation, P ∼E∪E′ Q. Since R(E ∪ E ′)∗R, we have P |R ∼(∗)
E∪E′ Q|R by Defini-

tion 2. Since ∼ is an environmental bisimulation up-to context, P |R ∼E∪E′ Q|R by
Theorem 1. Hence P |R 6 Q|R. For completeness (the backward implication), we take
an environmental relation X that subsumes reduction-closed barbed equivalence, and
prove it to be an environmental bisimulation. Again, see the online material [12] for
details.

Note that reduction-closed barbed congruence is uninteresting in our calculus, since it
almost coincides with α-equivalence (modulo possible differences between computed
applications) because of quotation and decomposition, i.e., contexts like match ‘[]1 as x
in P . (It is not interesting either to consider only contexts with no decomposition, be-
cause such contexts are too restricted, missing the whole point of our work.) In addition,
it is anyway easy to (state and) prove the congruence of P and Q just by considering
the equivalence of a〈‘P 〉 and a〈‘Q〉 instead, because an evaluation context can receive
‘P or ‘Q from a and use them in arbitrary manners.

6 Examples

In the examples below, we use the following rewriting rules for terms, representing
asymmetric cryptography.

pk (V ) → p̂k (V ) sk(V ) → ŝk (V )
f(V, p̂k(W )) → f̂(V, p̂k (W )) f−1(V, ŝk(W )) → f̂−1(V, ŝk (W ))
f−1(f̂(V, p̂k(W )), ŝk (W )) → V f(f̂−1(V, ŝk (W )), p̂k (W )) → V
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Functions pk and sk compute public and secret keys, respectively, from its argument.
Functions f and f−1 denote encryption (or verification) and decryption (or signing).
See e.g. [13] for more information on public-key encryption and digital signature.

The point of the examples is to show how to model and reason about higher-order
communication systems involving (public-key) encryption by using our approach. It
may also be possible to implement first-order variants of the systems, but they do not
devalue our examples (just as the existence of first-order programs such as mail(1)
does not devalue higher-order systems such as Gmail).

6.1 Software Distribution with Digital Signature

The following system P consists of a server and clients. The server distributes a pro-
gram R, which is then executed by the clients. For comparison, another system Q is
defined where the clients “somehow” know R in the first place.

P = νk.(Serverk|Clientk) Q = νk.(Serverk|Client ′k)
Clientk = !a(x).run(f(x, pk (k))) Client ′k = !a(x).νc.(c〈f(x, pk (k))〉|c(y).R)
Serverk = !a〈pk (k)〉|!a〈f−1(‘R, sk(k))〉

We assume k, c �∈ fn(R). Clientk receives a quoted process R signed under the secret
key ŝk (k), and then verifies and executes it. By contrast, Client ′k receives the same
process but discards it, and then executes R. Equivalence of the two systems P and Q
means that the clients can only execute R, not any Trojan horses. To prove this, we give
an environmental relation X such that PX (∗)

E Q for E = {(b, b) | b ∈ fn(P,Q)}.

Proposition 1. The X below is an environmental bisimulation up-to context.

X = {(E0, P0, Q0) | P0 = Serverk′ |Clientk′ |P1| . . . |Pl,
Q0 = Serverk′′ |Client ′k′′ |Q1| . . . |Ql,
l ≥ 0,
Pi = run(f(Vi, pk(k′))) for i ≥ 1,
Qi = νc.(c〈f(Wi, pk(k′′))〉|c(y).R) with c �∈ fn(Wi), for i≥1,
Ṽ (Ê0)∗W̃ ,
E0 = E1 ∪ E2,

E1 = {(p̂k(k′), p̂k (k′′)), (f̂−1(‘R, ŝk(k′)), f̂−1(‘R, ŝk(k′′)))},
E2 ⊇ {(b, b) | b ∈ fn(R, a)},
E2 is a finite bijection on names,
k′ �∈ fn(#1(E2)) and k′′ �∈ fn(#2(E2))}

Proof. By checking the conditions of environmental bisimulation up-to context, which
follow from the construction of X . Note, in particular, that we do not have to put (any
number of) R in parallel with P0 and Q0, thanks to the up-to context technique.

First, observe that PX (∗)
E Q by the definition of X (with l = 0) and by Definition 2

(context closure for environmental bisimulations). Hence P 6 Q by Theorem 1 (sound-
ness of environmental bisimulation up-to context) if X is an environmental bisimulation
up-to context.
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To check X against the conditions of environmental bisimulation up-to context (Def-
inition 3), consider first the transitions from P0 (Conditions 1, 2 and 3).

The output of pk(k′) to a by Serverk′ on the left hand side can be matched by that
of pk(k′′) to a by Serverk′′ on the right hand side. In these transitions, neither the
knowledge increases, nor the processes change (up-to structural equivalence). Ditto for
the output of f−1(‘R, sk(k′)) and f−1(‘R, sk(k′′)).

The input of Vi from a by Clientk′ spawns a new Pi, which can be matched by that
of Wi from a by Client ′k′′ , spawning a new Qi. Ditto for the internal communication
from Serverk′ to Clientk′ (and from Serverk′′ to Client ′k′′ ) over a.

The internal transition by the process execution run(f(Vi, pk(k′))) in Pi succeeds

only if the verification succeeds, i.e., only if Vi is of the form f̂−1(‘R′, ŝk(k′)) for some

R′. Since k′ �∈ fn(#1(E2)), this is possible only if Vi = f̂−1(‘R, ŝk(k′)), in which case

Wi = f̂−1(‘R, ŝk(k′′)). Then R is spawned both on the left hand side and on the right,
which is cancelled out by up-to context.

The transitions from Q0 (Condition 4) are similar. New processes spawned by the
context (Condition 6) are also cancelled out by up-to context. This is straightforward
because there are no quoted processes other than R in Ê0. Conditions 5, 8 and 9 follow
by straightforward induction on the first-order context Dt in the definition of Ê0 (see
Section 2.1). Finally, fresh names generated by the context (Condition 7) are immedi-
ately subsumed by the sub-environment E2.

We therefore have P ≈ Q from the soundness of environmental bisimulation (up-to
context).

6.2 Secure Mail User Agent

Consider a client-server system where the user downloads (from the server) an e-mail
user agent (MUA) to send an encrypted message.

P = νk1.(Serverk1 |Clientp,k1) Q = νk1.(Serverk1 |Client q,k1)
Clientx,k1 = νr .d〈f(r , pk(k1))〉.r(y).run(#1(y))|#2(y)〈x〉
Serverk1 = !c〈pk(k1)〉 | !d(x).νk2.νm.f−1(x, sk (k1))〈P̂ackm,k2〉
P̂ackm,k2 = (‘MUAm,k2 ,m) MUAm,k2 = m(y).c〈f(y, p̂k(k2))〉

In this example, c and d are public channels. The client first sends a request f(r , pk(k1))
to download the MUA, and waits for a reply on channel r . The server then sends the
MUA back to the client, with a fresh channel m for accepting the message y, and a
fresh secret key k2 for encrypting y. (We are using the private channel r only for the
sake of simplicity. It could be implemented over a public network just as in the previous
example.) Finally, the client sends its message x through m. Secrecy of the message
x can be formalized by a standard non-interference property, i.e., that the system is
equivalent regardless of the value of x. We here use two fresh, public names p and q for
the values of x.

Again, to prove this equivalence, we give an environmental relation X s.t. PX (∗)
E Q

for E = {(b, b) | b ∈ fn(P,Q)}.

Proposition 2. The X in Figure 1 is an environmental bisimulation up-to context.



324 N. Sato and E. Sumii

X = X1 ∪ X2 ∪ X3

X1 = {(E0, {k′
1,Ṽ/k1,z̃}P1, {q/p}{k′′

1 ,W̃/k1,z̃}P1) |
P1 = Serverk1 |Rk1 |Clientp,k1 ,

Rk1 = νk2.νm.f−1(z1, sk(k1))〈P̂ackm,k2〉| . . . |νk2.νm.f−1(zl, sk(k1))〈P̂ackm,k2〉,
l ≥ 0,

Ṽ (Ê0)∗W̃ ,
E0 = E1 ∪ E2,

E1 = { (cpk(k′
1), cpk(k′′

1 )) },
E2 ⊇ {(d , d), (c, c), (p, p), (q, q)},
E2 is a finite bijection on names,
k′
1 �∈ fn(#1(E2)) and k′′

1 �∈ fn(#2(E2))}
X2 = {(E0, {k′

1,Ṽ ,r′/k1,z̃,r}P2, {q/p}{k′′
1 ,W̃ ,r′′/k1,z̃,r}P2),

(E0, {k′
1,Ṽ ,r′/k1,z̃,r}P3, {q/p}{k′′

1 ,W̃ ,r′′/k1,z̃,r}P3),
(E0, {k′

1,Ṽ ,r′/k1,z̃,r}P4, {q/p}{k′′
1 ,W̃ ,r′′/k1,z̃,r}P4),

(E0, {k′
1,Ṽ ,r′/k1,z̃,r}P5, {q/p}{k′′

1 ,W̃ ,r′′/k1,z̃,r}P5) |
P2 = Serverk1 |Rk1 |r(y).(run(#1(y))|#2(y)〈p〉),
P3 = Serverk1 |Rk1 |νk2.νm.(run(#1(P̂ackm,k2))|#2(P̂ackm,k2)〈p〉),
P4 = Serverk1 |Rk1 |νk2.νm.(MUAm,k2 |#2(P̂ackm,k2)〈p〉),
P5 = Serverk1 |Rk1 |νk2.c〈f(p, cpk(k2))〉,
Rk1 = νk2.νm.f−1(z1, sk(k1))〈P̂ackm,k2〉| . . . |νk2.νm.f−1(zl, sk(k1))〈P̂ackm,k2〉,
l ≥ 0,

Ṽ (Ê0)∗W̃ ,
E0 = E1 ∪ E2,

E1 = { (cpk(k′
1), cpk(k′′

1 )),
( bf(r ′, cpk(k′

1)), bf(r ′′, cpk(k′′
1 ))) },

E2 ⊇ {(d , d), (c, c), (p, p), (q, q)},
E2 is a finite bijection on names,
k′
1, r

′ �∈ fn(#1(E2)) and k′′
1 , r ′′ �∈ fn(#2(E2))}

X3 = {(E0, {k′
1,Ṽ ,r′/k1,z̃,r}P6, {q/p}{k′′

1 ,W̃ ,r′′/k1,z̃,r}P6) |
P6 = Serverk1 |Rk1 ,

Rk1 = νk2.νm.f−1(z1, sk(k1))〈P̂ackm,k2〉| . . . |νk2.νm.f−1(zl, sk(k1))〈P̂ackm,k2〉,
l ≥ 0,

Ṽ (Ê0)∗W̃ ,
E0 = E1 ∪ E2,

E1 = { (cpk(k′
1), cpk(k′′

1 )),
( bf(r ′, cpk(k′

1)), bf(r ′′, cpk(k′′
1 ))),

( bf(p, cpk(k′
2)), bf(q, cpk(k′′

2 ))) },
E2 ⊇ {(d , d), (c, c), (p, p), (q, q)},
E2 is a finite bijection on names,
k′
1, r

′, k′
2 �∈ fn(#1(E2)) and k′′

1 , r ′′, k′′
2 �∈ fn(#2(E2))}

Fig. 1. Environmental relation for the secure mail user agent

Proof. By checking each condition of environmental bisimulation up-to context. Again,
this is easy thanks to the construction of X and to the up-to context technique.

As in the case of Proposition 1, we have PX (∗)
E Q (by taking l = 0 in X1) and

therefore P 6 Q, provided that X is an environmental bisimulation up-to context.
Let us first consider the transitions from {k′

1,Ṽ/k1,z̃}P1 in X1. The output of pk (k′1)
to c by Serverk′

1
on the left hand side is matched by that of pk (k′′1 ) to c by Serverk′′

1
on

the right, with no increase of knowledge and no change of processes (up-to structural
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equivalence). The input of Vi from d by Serverk′
1

is matched by that of Wi from d by
Serverk′′

1
, just incrementing the number l of processes in Rk′

1
and Rk′′

1
, respectively.

The possible output of P̂ackm′,k′
2

(with m′ and k′2 fresh) by Rk′
1

is matched by that

of P̂ackm′′,k′′
2

(with m′′ and k′′2 fresh) by Rk′′
1

. This increase of knowledge can then be
cancelled out by up-to context with (m′,m′′) and (k′2, k′′2 ) added in E2.

The output of f(r ′, pk(k′1)) (with r ′ fresh) to d by Clientp,k′
1

is matched by that of
f(r ′′, pk (k′′1 )) (with r ′′ fresh) to d by Clientq,k′′

1
. The results are included in X2.

Consider the transitions from {k′
1,Ṽ ,r ′

/k1,z̃,r}P2 in X2. The input and output by
Serverk′

1
and Rk′

1
are the same as in the case of X1 (see above). The internal communi-

cation between νk2.νm.f−1(Vi, sk(k′1))〈P̂ackm,k2〉 (in Rk′
1
, with Vi = f̂(r ′, p̂k (k′1)))

and r ′(y).(run(#1(y))|#2(y)〈p〉) is matched by that between νk2.νm.

f−1(Wi, sk(k′′1 ))〈P̂ackm,k2〉 (in Rk′′
1

, with Wi = f̂(r ′′, p̂k (k′′1 ))) and r ′′(y).
(run(#1(y))|#2(y)〈q〉). The processes then become {k′

1,Ṽ ,r ′
/k1,z̃,r}P3 and {q/p}

{k′′
1 ,W̃ ,r ′′

/k1,z̃,r}P3, respectively.
These processes make an internal transition by process execution run(#1

(P̂ackm,k2)), becoming {k′
1,Ṽ ,r ′

/k1,z̃,r}P4 and {q/p}{k′′
1 ,W̃ ,r ′′

/k1,z̃,r}P4. They then

make an internal communication over m and become {k′
1,Ṽ ,r ′

/k1,z̃,r}P5 and {q/p}
{k′′

1 ,W̃ ,r ′′
/k1,z̃,r}P5, which send f̂(p, p̂k(k′2)) and f̂(q, p̂k (k′′2 )) (with k′2 and k′′2 fresh)

to c. The results are included in X3. The other transitions are the same as in the case of
{k′

1,Ṽ ,r ′
/k1,z̃,r}P2 (see above).

The transitions from {k′
1,Ṽ ,r ′

/k1,z̃,r}P6 in X3 are subsumed by the previous cases.
Transitions from the right hand side are symmetric. Conditions on the environments
follow again by straightforward induction on the first-order context Dt in the definition
of Ê0 (Section 2.1). Again as in the case of Proposition 1, processes spawned by the
context are cancelled out by up-to context and fresh names generated by the context are
subsumed by E2.

To repeat, the point of these examples is to illustrate our reasoning method for higher-
order cryptographic processes (“Gmail”), even if it is possible to define first-order sys-
tems (“mail(1)”) with a similar functionality.

7 Conclusion

We defined a higher-order process calculus parametrized by general algebra (which,
for example, includes asymmetric cryptography), and developed a bisimulation proof
method for proving behavioral equivalence in this language. We gave examples involv-
ing the security of higher-order systems with public-key encryption and digital signing.

As is the case with any bisimulation technique (or any “proof method” in general),
it is always possible in hindsight to prove the same results as ours without explicitly
using bisimulations, just by inlining (thereby duplicating) their soundness proof every-
where. In our case, doing so amounts to a brute-force proof based on the definition of
reduction-closed barbed equivalence only. We emphasize that it is way too heavy to re-
peat such a proof in every instance of equivalence, so it pays to extract the proof pattern
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as a separate technique like ours. As in the present work, such development gives an
essential insight—based on environments—for the (otherwise sightless) proof.
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Abstract. In this paper we present polynomial time algorithms deciding
branching bisimilarity between finite-state systems and several classes of
infinite-state systems: BPA and normed BPP. The algorithm for BPA
improves a previous one given by Kučera and Mayr, while the one for
normed BPP demonstrates the polynomial-time decidability of the prob-
lem, which is unknown previously. The proof style follows an early work
of Kučera and Mayr, where similar results for weak bisimilarity are es-
tablished.

1 Introduction

Verification of infinite structures has been studied intensively during the past two
decades [1]. A subarea is the decidability and complexity issues on bisimulation-
like equivalence checking. This paper investigates the problem of checking branch-
ing bisimulation equivalence between infinite-state processes and finite-state ones.

The motivation of this study is that the intended behavior is often easier
to specify (by a finite-state system), but a ‘real’ implementation may contain
components which are infinite-state (e.g. counters, buffers). The aim of formal
verification is to check whether the finite-state specification and the infinite-state
implementation are semantically equivalent (i.e., bisimilar).

The infinite-state processes we consider here are BPA (Basic Process Algebra)
and BPP (Basic Parallel Processes), two subclasses in the PRS-hierarchy [2].
BPA models pure sequential programs, while BPP models pure parallel pro-
grams. A BPA process can also be regarded as a pushdown automata which
contains only one state, while a BPP process can be viewed as a labeled Petri
net which is communication-free. A process is normed if it can terminate success-
fully from any reachable state. The normed subclass of BPA (BPP) is denoted
by nBPA (nBPP or normed BPP).
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Many results have been established for bisimilarity checking, especially on
models in the PRS-hierarchy, for which a recent survey is given by J. Srba [3].
Most of these concern strong bisimilarity. In 1987, J.C.M. Baeten, J.A. Bergstra
and J.W. Klop [4] discovered that strong bisimilarity is decidable for processes
generating context-free languages, namely nBPA, for which the language equiv-
alence is already undecidable [5]. Later, S. Christensen et al extended the decid-
ability result to BPA [6] and BPP [7]. J. Srba gave PSPACE-hard complexity
lower bounds in the case of BPA [8] and BPP [9]. For BPP, P. Jančar further
proved that the problem is PSPACE-complete [10]. In the normed case, i.e. for
nBPA and nBPP, polynomial algorithms are presented by Y. Hirshfeld, M. Jer-
rum and F. Moller [11,12]. Checking weak bisimilarity is somehow more difficult.
Even in the case of nBPA or nBPP, the decidability is still open.

Since bisimilarity checking seems very hard for two infinite-state processes,
many literatures consider the problem between an infinite-state process and a
finite-state one, especially in the weak case. In [13], P. Jančar et al established
a general result that many bisimulation-like equivalences (including strong and
weak) are decidable between PAD and finite-state processes. PAD is a process
class that strictly subsumes BPA and BPP. Their result is based on a general
reduction from the bisimulation problem to the model checking problem for the
logic EF, which is decidable on PAD [14]. Following this approach, strong bisim-
ilarity with finite-state processes is decidable even for weakly extended PRS [15].
However, the approach adopted by P. Jančar et al cannot lead to efficient algo-
rithms. The first efficient algorithm in the weak case is due to A. Kučera and
R. Mayr [16], who presented polynomial algorithms deciding weak bisimilarity
between BPA (nBPP) and finite-state processes.

An alternative notion of weak bisimulation, called branching bisimulation [17],
receives special attention. Intuitively, in the ‘branching’ case, silent actions which
change the internal states is differed from which do not change. Baeten [18] gives
many examples on branching bisimulation and compare the difference between
branching and weak bisimilarity. As for the verification on infinite structures, an
early result is by H. Hüttel [19] who proved that branching bisimilarity is decid-
able for weakly normed BPA. Recently, Kučera and Mayr [20] presented a coarse
algorithm that decides branching bisimilarity between pushdown processes and
finite-state ones. A consequence of their algorithm is that branching bisimilarity
between BPA and finite-state processes is polynomial time decidable. Besides
the two remarkable results, little is known.

In this paper we present polynomial algorithms deciding branching bisimi-
larity between BPA (nBPP) and finite-state systems. The algorithm for BPA
improves the previous one by Kučera and Mayr [20] significantly, while the one
for nBPP demonstrates the polynomial-time decidability of the problem, which
is unknown previously. Our work makes up for the lack of study on the verifica-
tion for branching bisimulation over infinite structures.

We follow the scheme developed by Kučera and Mayr [16] for weak bisimilar-
ity, which goes with the general notion of bisimulation base. This notion is first
introduced by D.Caucal [21] and is used in many efficient algorithms [6,7,16].
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The scheme in [16] is divided into two stages. The first stage is to establish the
finite representability of bisimilarity. The core of this stage is to find a finite
relation, called bisimulation base, from which each pair of bisimilar processes
can be effectively generated. The second stage is to develop an algorithm that
computes the bisimulation base. To this end, the refinement technique is used. It
starts from a relation large enough to contain the base, and then iteratively per-
forms the refinement step by computing the expansion. If no further refinement
is possible, then the base is obtained. Throughout the refinement procedure, a
symbolic method is adopted to help compute the expansion in polynomial time.

In our algorithms, the first stage of the scheme is directly applied. Our main
efforts fall in the second stage, where substantial difference between weak and
branching bisimulation lies. We elaborate the phase of expanding. This elab-
oration will not only cope with the specific feature of branching bisimulation,
but technically benefit the refinement procedure as well. Under such efforts, we
obtain upper bounds which are both lower than the counterparts in [16].

The paper is organized as follows. Section 2 introduces some preliminaries.
Section 3 and Sect. 4 demonstrate the algorithms for BPA and normed BPP,
respectively. Section 5 concludes the paper.

2 Preliminaries

A labeled transition system (LTS) is a tuple (S,A ,→), where S is a set of states,
A is a set of actions and →⊆ S×A ×S is a set of transitions. The action label
A is ranged over by a, b, c, . . . , except for a special action τ which represents the
silent action. (p, a, q) ∈→ is conventionally written p

a−→ q, and this notation is
extended to all elements of A ∗ in the standard way. We say that q is reachable
from p if p w−→ q for some w ∈ A ∗. τ⇒ indicates the transitive closure of τ−→, while
⇒ indicates the reflexive transitive closure of τ−→.

Let (S,A ,→) be the underlying LTS. A binary relation R over S is a branch-
ing bisimulation iff whenever (p, q) ∈ R then for each a ∈ A :

– if p a−→ p′ then either q ⇒ q′
a−→ q′′ for some q′ and q′′ such that (p, q′) ∈ R

and (p′, q′′) ∈ R, or a = τ and (p′, q) ∈ R
– if q a−→ q′ then either p ⇒ p′

a−→ p′′ for some p′ and p′′ such that (p′, q) ∈ R
and (p′′, q′) ∈ R, or a = τ and (p, q′) ∈ R

branching bisimilarity ≈br is the largest branching bisimulation. Two states p,
q are branching bisimilar, if p ≈br q. ≈br is an equivalence relation.

Finite-state, BPA and BPP systems are subclasses of process rewrite systems
[2], a formal model of processes. Let Const = {X,Y, Z . . . } be a set of process
constants and Act = {a, b, c . . .} ∪ {τ} be a set of actions. The class of process
expressions E is generated by the grammar: E ::= ε | X | E‖E | E.E ,
where X ∈ Const and ε is a special constant that denotes the empty expression.
Intuitively, ‘.’ and ‘‖’ stand for sequential composition and parallel composition,
respectively. We do not distinguish expressions up to the congruence induced by
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the following laws: ‘.’ is associative, ‘‖’ is associative and commutative, and ε is
the unit for ‘.’ and ‘‖’.

A process rewrite system is specified by a finite set of rules Δ of which each
rule has the form E

a−→ F , where E, F ∈ E and a ∈ Act. The sets of process
constants and actions appeared in Δ are denoted Const(Δ) and Act(Δ), respec-
tively. Each process rewrite system Δ defines an LTS, where states are process
expressions over Const(Δ), Act(Δ) is the set of actions, and transitions are de-
termined by Δ and the following inference rules: (note that ‘‖’ is commutative)

(E a−→ F ) ∈ Δ

E
a−→ F

E
a−→ E′

E.F
a−→ E′.F

E
a−→ E′

E‖F a−→ E′‖F

Sequential and parallel expressions are process expressions without the ‘‖’ and
the ‘.’ operator, respectively. Finite-state, BPA and BPP systems are obtained
by putting certain restrictions on the form of the rules. Finite-state, BPA and
BPP allow only a single constant at the left-hand side of a rule, and a single
constant, sequential expression and parallel expression at the right-hand side,
respectively. The set of states of the LTS generated by a finite-state, BPA or BPP
system Δ is confined to Const(Δ), all sequential expressions over Const(Δ),
and all parallel expressions over Const(Δ), respectively. The number of process
constants contained in E is denoted by |E| (|ε| = 0).

An expression E under a BPA or BPP system Δ is normed if E w−→ ε for some
w ∈ Act(Δ)∗. Note that E is normed iff all constants in E are normed. A BPA
or BPP system Δ is normed if every constant of Const(Δ) is normed.

In the following, the BPA or BPP system considered is denoted by Δ, and the
finite-state system is denoted by Γ . Δ and Γ is usually considered as a single
system by taking their disjoint union. Const(Δ) is ranged over by X,Y, Z . . . ,
and Const(Γ ) is ranged over by f, g, h . . . . The size of Δ and Γ are denoted by
n and m, respectively.

An extra convention is useful to us:

– For f, g ∈ Const(Γ ), f �= g implies f �≈br g;
– There is no f ∈ Const(Γ ) such that f

τ⇒ f .

The two requirements can be met by the following procedure on Γ : first compute
the ≈br over Γ using the algorithm in [22], then combine the equivalent states
induced by ≈br (i.e. the quotient construction), and finally delete all self-loops
labeled with τ , i.e., transitions of the form f

τ−→f . This procedure is called con-
traction in this paper. With this convention, the definition of a branching bisim-
ulation R between Δ and Γ can be simplified as follows: whenever (E, f) ∈ R,

– if E a−→ E′ then either there is some f
a−→ f ′ such that (E′, f ′) ∈ R, or a = τ

and (E′, f) ∈ R;
– if f

a−→ f ′ then there is some E ⇒ E′ a−→ E′′ such that (E′, f) ∈ R and
(E′′, f ′) ∈ R.

See [23] for more information on contraction.
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3 BPA Processes

In this section we present an efficient algorithm deciding branching bisimilarity
between BPA system Δ and finite-state system Γ . Our algorithm improves a
previous one given in [20], which is rather coarse in general.

The set Const(Δ) falls into two disjoint subsets of normed and unnormed
constants. The set of all normed constants is denoted by Normed(Δ), which
can be computed in advance in O(n2) time. Elements of Const(Δ)∗ are ranged
over by α, β, . . . . In our demonstration, we will also use processes of the form
αf ; they are regarded as BPA processes with the underlying system Δ ∪ Γ .

First of all we establish a notion of bisimulation base between Δ and Γ . We
follow the scheme in [16] and much of the development is similar.

Definition 1. Let GΓ be the set:

GΓ = {(f, f)|f ∈ Const(Γ )} ∪ {(ε, f)|f ∈ Const(Γ ), ε ≈br f}

A relation K is well-formed iff GΓ ⊆ K and K is a subset of the relation G
defined by:

G = ((Normed(Δ) · Const(Γ )) × Const(Γ )) ∪ (Const(Δ) × Const(Γ )) ∪ GΓ

The bisimulation base, denoted B, is a well-formed relation defined as follows:

B = {(Y f, g)|Y f ≈br g, Y ∈ Normed(Δ)} ∪ {(Y, g)|Y ≈br g} ∪ GΓ

Any well-formed relation is of size O(nm2). G is the greatest well-formed relation.
As branching bisimilarity is a left congruence w.r.t. sequential composition,

we can generate from B new branching bisimilar pairs by substitution. This
generation procedure can be defined for any well-formed relation as follows:

Definition 2. Let K be a well-formed relation. The closure of K, denoted Cl(K),
is the least relation M which satisfies the following conditions:

1. K ⊆ M ,
2. if (Y f, g) ∈ K and (α, f) ∈ M , then (Y α, g) ∈ M ,
3. if (Y f, g) ∈ K and (αh, f) ∈ M , then (Y αh, g) ∈ M ,
4. if (α, g) ∈ M and α is unnormed, then (αβ, g), (αβh, g) ∈ M for every

β ∈ Const(Δ)∗ and h ∈ Const(Γ ).

Note that Cl(K) contains elements of just two forms: (α, g) and (αf, g). Clearly
Cl(K) =

⋃∞
i=0 Cl(K)i where Cl(K)0 = K and Cl(K)i+1 consists of Cl(K)i

and the pairs which can be immediately derived from Cl(K)i by the rule 2-4 of
Definition 2.

The following theorem shows that although the closure of a well-formed rela-
tion can be infinite, its structure is in some sense regular.

Theorem 1. Let K be a well-formed relation. For each g ∈ Const(Γ ) there is
a finite automaton AK

g of size O(nm2) constructible in O(nm2) time such that
L(AK

g ) = {α|(α, g) ∈ Cl(K)} ∪ {αf |(αf, g) ∈ Cl(K)}
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From the construction of AK
g , we can obtain that: for various g, the automaton

AK
g is only differed by the initial state which is determined by g (see also [16,

Sect. 6]). (Here the redundant part of the automaton is kept.) This initial state
is recorded as g̃. Below we will use AK to denote the automaton attached to K
with initial state unspecified.

Following Theorem 1, the membership problem of checking if (α, g) ∈ Cl(K)
or (αf, g) ∈ Cl(K) is decidable in O((|α| + 1)nm2) time.

Another property of Cl(K) is as follows.

Lemma 1. Let (αf, g) ∈ Cl(K). If (βh, f) ∈ Cl(K), then also (αβh, g) ∈
Cl(K). Similarly, if (β, f) ∈ Cl(K), then also (αβ, g) ∈ Cl(K).

The importance of the bisimulation base is clarified by the following theorem.

Theorem 2. For all α, f , g we have α ≈br g iff (α, g) ∈ Cl(B), and αf ≈br g
iff (αf, g) ∈ Cl(B).

Remark 1. All results above in this section have counterparts in [16]. The (only)
difference is as follows. Since we have the convention that Γ is contracted in ad-
vance, the form of Definition 1, Definition 2 is confined; The proof of Theorem 2
can be obtained by modifying the semantics of weak bisimulation with the one
of branching bisimulation in the proof of [16, Theorem 8].

By Theorem 1 and Theorem 2, once B is computed, it can be used to decide
branching bisimilarity between Δ and Γ in polynomial time.

Now we illustrate the computation of the bisimulation base. The computation
involves a notion of expansion and an approximation procedure. The expansion
serves as a one-step refinement on well-formed relations. With this notion, the
approximation procedure is as follows: we start from G as the initial approxima-
tion of B, and then iteratively compute the expansion on G. In each refinement
step, some pairs could be deleted from the current approximation. Whenever
there is no pair to delete during a refinement step, then the current approxima-
tion is exactly B.

Let K be a well-formed relation. Like [16, Definition 9], it seems that we may
define that a pair, say (X, g), expands in K by the following conditions:

– for each X
a−→ α, either there is some g

a−→ g′ such that (α, g′) ∈ Cl(K), or
a = τ and (α, g) ∈ Cl(K)

– for each g
a−→ g′, there is some X ⇒ α′ a−→ α such that (α′, g) ∈ Cl(K) and

(α, g′) ∈ Cl(K)

However the second condition involves two-level correlations: α′ matching g and
α matching g′. This leads to extra complexity for verification. To avoid this,
we adopt an indirect approach. The general idea is that for each g

a−→ h ∈ Γ ,
we introduce a regular language LK

[g,a,h] which accepts all expressions that can

immediately (without extra τ -steps) match the transition g
a−→ h. With this idea,

the second condition above can be rewritten as follows:
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– for each g
a−→ g′, there is some α′ such that X ⇒ α′ and α′ ∈ LK

[g,a,g′]

The actual situation is a little bit different, as will be illustrated below.

Definition 3. Let K be a well-formed relation. For each g
a−→ h ∈ Γ , we say

that a pair (X, g), (Xf, g) ∈ K satisfies the condition φK
[g,a,h], if:

– For (X, g): X is unnormed and there is some X
a−→ α such that (α, h) ∈

Cl(K)
– For (Xf, g): there is some X

a−→ α such that (αf, h) ∈ Cl(K)

Then, the (regular) language LK
[g,a,h] is defined as the union of the regular lan-

guages below:

– {X} · L(AK
f ), for (Xf, g) satisfies φK

[g,a,h]
– {X} · Const(Δ)∗ + {X} · Const(Δ)∗ · Const(Γ ), for (X, g) satisfies φK

[g,a,h]

The regular language LK
[g,a,h] tries to accept all processes E of the form α or αf

satisfying: (E, g) ∈ Cl(K), and there is some E
a−→ F such that (F, h) ∈ Cl(K).

This point is formulated in the next two lemmas.

Lemma 2. Let K be a well-formed relation and g
a−→ h ∈ Γ . If α ∈ LK

[g,a,h],

then (α, g) ∈ Cl(K) and there is some α
a−→ β such that (β, h) ∈ Cl(K). If

αf ∈ LK
[g,a,h], then (αf, g) ∈ Cl(K) and there is some α

a−→ β such that (βf, h) ∈
Cl(K).

Lemma 3. Let K be a well-formed relation such that B ⊆ K and g
a−→ h ∈ Γ .

If α ≈br g and there is α
a−→ β such that β ≈br h, then α ∈ LK

[g,a,h]. If αf ≈br g

and there is α
a−→ β such that βf ≈br h, then αf ∈ LK

[g,a,h].

Note that we use the relation ≈br in the premiss of Lemma 3. It cannot be
replaced by Cl(K), for which a counterexample is given in [23, Example 1].
However Lemma 3 will be strong enough for LK

[g,a,h] to ‘represent’ the set of

processes that can immediately match the transition g
a−→ h w.r.t Cl(K).

Another two properties of the language LK
[g,a,h] are as follows.

Lemma 4. Let K be a well-formed relation, g
a−→ h ∈ Γ and t ∈ Const(Γ ).

If αf ∈ LK
[g,a,h] and (β, f) ∈ Cl(K), then αβ ∈ LK

[g,a,h]. If αf ∈ LK
[g,a,h] and

(βt, f) ∈ Cl(K), then αβt ∈ LK
[g,a,h].

Lemma 5. Let K be a well-formed relation. If α ∈ LK
[g,a,h] and α is unnormed,

then αβ ∈ LK
[g,a,h] and αβf ∈ LK

[g,a,h] for any β ∈ Const(Δ)∗ and f ∈ Const(Γ ).

The proofs for Lemma 2-5 are put in [23] (Lemma 3-6) for lack of space.

Remark 2. Let K be a well-formed relation. To construct a finite automaton that
accepts LK

[g,a,h], we need only to add small ingredients into AK . Thus, only one
copy of AK is needed. This fact comes from the simple definition in Definition 3,
and will benefit the approximation procedure later on.
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Now we define the notion of expansion following the idea mentioned before. It
specifies the conditions on which a given pair is not deleted from the current
approximation of B.

Definition 4. Let K be a well-formed relation. A pair in K expands K iff

– the pair is of the form (Y, g) satisfying: whenever Y
a−→ α, there is some

g
a−→ g′ such that (α, g′) ∈ Cl(K), or a = τ and (α, g) ∈ Cl(K); and

whenever g
a−→ g′, there is some Y ⇒ α such that α ∈ LK

[g,a,g′].

– the pair is of the form (Y f, g) satisfying: whenever Y f
a−→ αf , there is some

g
a−→ g′ such that (αf, g′) ∈ Cl(K), or a = τ and (αf, g) ∈ Cl(K); and either

whenever g
a−→ g′ there is some Y ⇒ α such that αf ∈ LK

[g,a,g′], or Y ⇒ ε
and f = g.

– the pair is of the form (f, f) or (ε, f).

The set Exp(K) is defined as all pairs in K that expand K.

Remark 3. The second part of the condition for a pair of the form (Y f, g) is a
stronger setting of branching bisimulation. It stresses that to match the transi-
tion g

a−→ g′, f should not be involved. This takes advantage of the fact that,
given Y f ≈br g and g

a−→ g′, if there is Y f ⇒ f ⇒ f ′ a−→ f ′′ such that g ≈br f ′

and g′ ≈br f ′′, then by the stuttering lemma [17], we have f ≈br g thus f = g
by the contraction.

Similar to [16, Lemma 10], the notion of expansion is in some sense compatible
with branching bisimulation. This is specified in the following lemma.

Lemma 6. Let K be a well-formed relation such that Exp(K) = K. Then
Cl(K) is a branching bisimulation.

Proof. We prove alternately that every pair (α, g), (αf, g) of Cl(K)i with α �= ε
satisfies the following conditions :

– For (α, g): whenever α
a−→ β, there is some g

a−→ g′ such that (β, g′) ∈ Cl(K),
or a = τ and (β, g) ∈ Cl(K); and whenever g

a−→ g′, there is some α ⇒ β
such that β ∈ LK

[g,a,g′].

– For (αf, g): whenever αf
a−→ βf , there is some g

a−→ g′ such that (βf, g′) ∈
Cl(K), or a = τ and (βf, g) ∈ Cl(K); and either whenever g

a−→ g′ there is
some α ⇒ β such that βf ∈ LK

[g,a,g′], or f = g and α ⇒ ε.

Pairs of the form (f, f) and (ε, f) in Cl(K) are already branching bisimilar, thus
are not concerned here. By Lemma 2, these conditions guarantee that Cl(K) is
a branching bisimulation. The proof is by induction on i of Cl(K)i, and we will
only consider pairs of the form (αf, g) (the other is similar).

Base step: i = 0. Then (αf, g) ∈ K and the pair satisfies the conditions
directly by the fact that K = Exp(K).

Induction step: Let (αf, g) ∈ Cl(K)i+1. There are two possibilities:
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1. α = Y β, and there is some h such that (Y h, g) ∈ K, (βf, h) ∈ Cl(K)i.
Consider the pair (Y h, g) ∈ K. On one hand, suppose that Y

a−→ γ. Since
K = Exp(K), either there is some g

a−→ g′ such that (γh, g′) ∈ Cl(K), or
a = τ and (γh, g) ∈ Cl(K). By Lemma 1, we have either (γβf, g′) ∈ Cl(K)
or (γβf, g) ∈ Cl(K) as desired.

On the other hand, we have two cases: either, whenever g
a−→ g′ there is

some Y ⇒ γ such that γh ∈ LK
[g,a,g′], or, h = g and Y ⇒ ε. In the former

case, we have γβf ∈ LK
[g,a,g′] by Lemma 4 as desired. In the latter case,

consider the pair (βf, g). By inductive assumption, either f = g and β ⇒ ε,
or, whenever g

a−→ g′, there is some β ⇒ γ such that γf ∈ LK
[g,a,g′]. In the

first situation, we have α ⇒ ε and we are done; and in the second situation,
the result follows immediately by the fact that αf ⇒ γf .

2. α = βγ, (β, g) ∈ Cl(K)i and β is unnormed.
On one hand, whenever β

a−→ β′, by inductive assumption, either there is
some g

a−→ g′ such that (β′, g′) ∈ Cl(K), or a = τ and (β′, g) ∈ Cl(K).
By the fourth rule of Definition 2, we have either (β′γf, g′) ∈ Cl(K) or
(β′γf, g) ∈ Cl(K) as desired.

On the other hand, we have by inductive assumption: whenever g
a−→ g′,

there is some β ⇒ β′ such that β′ ∈ LK
[g,a,g′] (note that β � ε and β′ is

unnormed). By Lemma 5, we have β′γf ∈ LK
[g,a,g′] as desired. ��

With the notion of expansion established, B can be approximated in the following
way: B0 = G, Bi+1 = Exp(Bi).

Theorem 3. There is a natural number j, bounded by O(nm2), such that Bj =
Bj+1. Moreover, Bj = B.

Proof. It may be tedious but not difficult to observe that Exp (viewed as a
function on the complete lattice of well-formed relations) is monotone. Thus the
greatest fixed point exists and can be reached after O(nm2) steps, since the size
of G is O(nm2). The task remained is to show that Bj = B.

Bj ⊆ B: Directly by Lemma 6 and the fact that Bj ⊆ Cl(Bj).
B ⊆ Bj: We need only to show that if B ⊆ K, then B ⊆ Exp(K). Equivalently

we show that B = Exp(B) since Exp is monotone. We only consider pairs of the
form (Y f, g), the other is similar. Let (Y f, g) ∈ B. The first part of the condition
for the pair (Y f, g) in Definition 4 is satisfied directly by the contraction and
Theorem 2. As for the second part, we assume that Y � ε or f �= g (otherwise
we are done). Then whenever g

a−→ h, there is some Y ⇒ α
a−→ β such that

αf ≈br g and βf ≈br h (recall the contraction and Remark 3). By Lemma 3, we
have αf ∈ LB

[g,a,h] as desired. ��

Theorem 3 demonstrates the eligibility of the expansion. The task remained is to
show that the approximation procedure can be carried out in polynomial time.
In [16, Theorem 12], a ‘symbolic technique’ is used to represent infinite subsets
in the BPA state space. We reproduce it here in the following theorem.
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Theorem 4. For all X ∈ Const(Δ), there is a finite automaton DX of size
O(n) and constructible in O(n2) time such that L(DX) = {α|X ⇒ α}.

Proof. The proof is a simplified version of the one for [16, Theorem 12]. See [23,
Theorem 4] for details. ��

The crucial part of the computation is presented in the following theorem. Some
extra notations are adopted. Let A be a finite automaton. The set of states, the
transition relation and the set of final states of A is denoted Q(A), δ(A) and
F (A), respectively. Further the finite automaton obtained by letting p be the
initial state in A is denoted A〈p〉.

Theorem 5. Let K be a well-formed relation. The set Exp(K) can be computed
in O(n3m3) time.

Proof. We need some preparations. For each X ∈ Const(Δ) and f ∈ Const(Γ ),
we construct DX ·f which is the obvious concatenate automaton that accepts the
regular languageL(DX)·{f}. We construct another finite automaton ρ as follows:
δ(ρ) is initially empty, and then for each Y

a−→ α ∈ Δ, two extended transitions
(Y α

a , α, qρ) and (Y, α, qρ) are added to δ(ρ). Here Y α
a , Y and qρ are states of

Q(ρ) (which we do not state explicitly), and the extended transitions can be
decomposed to obtain the underlying standard transitions. Set F (ρ) = {qρ} and
the initial state of ρ is not concerned. This ends the construction for ρ. Further
for each f ∈ Const(Γ ), we construct the automaton ρ·f in the same way as
DX ·f , where the initial state is ignored as well. Note that ρ and each ρ·f , DX ·f
is of size O(n), and is constructible in O(n2) time. After these constructions,
we compute two subsets of Q(DX ·f) for each DX ·f , namely Q′(DX ·f) and
Q′′(DX ·f). Q′(DX ·f) contains all the states that accept a non-empty language
as a initial state. Q′′(DX ·f) is the set of states which are reachable from the
initial state of DX ·f by only (possibly zero) ε transitions. Similar computation
is also carried out on each automaton DX . All these takes O(n2m) time.

For each X ∈ Const(Δ), and f ∈ Const(Γ ), we construct λX (resp. λ(X,f))
to be the product automaton between DX (resp. DX ·f) and AK , and we con-
struct μ (resp. μf ) to be the product automaton between ρ (resp. ρ·f) and AK .
We stipulate that AK is on the right of these products. Note that each automa-
ton constructed above in this passage is of size O(n2m2) and constructible in
O(n2m2) time. Further, for each automaton A constructed above in this passage,
we compute a boolean marking M{A} on Q(A) such that for each p ∈ Q(A),
M{A}[p] = true iff L(A〈p〉) is non-empty. This takes O(n2m2) time for one such
A, and O(n3m3) time for all such A.

From Remark 2, the automaton AK can serve as a common component: we
need only to adjust the initial state if necessary. As we shall see, the automata
ρ and ρ·f will also be treated as certain common components in this proof.

We need to decide φK
[g,a,h] for each g

a−→ h ∈ Γ . However it is already computed.
By the construction of μ and Theorem 1, (Y, g) satisfies φK

[g,a,h] if and only if

(Y, g) ∈ K, Y is unnormed and M{μ}[(Y, h̃)] = true (note that (Y, h̃) ∈ Q(μ)).
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Similarly, (Y f, g) satisfies φK
[g,a,h] if and only if (Y f, g) ∈ K and M{μf}[(Y, h̃)]

= true.
Now we compute Exp(K). Consider pairs of the form (Y f, g). First we find all

Y ∈ Const(Δ), f ∈ Const(Γ ) and g
a−→ h ∈ Γ such that (L(DY )·{f})∩LK

[g,a,h] �=
∅. To this end, for each g

a−→ h ∈ Γ and each DY ·f we do the following: for each
transition (p, Z, q) ∈ δ(DY ·f) such that p ∈ Q′′(DY ·f), q ∈ Q′(DY ·f) and
Z ∈ Const(Δ), we check

– whether (Z, g) satisfies φK
[g,a,h] (already computed);

– whether there is some r ∈ Const(Γ ) such that (Zr, g) satisfies φK
[g,a,h] and

M{λ(Y,f)}[(q, r̃)] = true.

If either one is true, we assert that (L(DY ) · {f})∩LK
[g,a,h] �= ∅. This assertion is

guaranteed by Definition 3, Remark 2 and the product construction. The time
complexity is O(nm), since DY ·f is of size O(n) and each checking above takes
O(m) time. Thus the total time complexity here is O(n2m3). Then, we check
the conditions in Definition 4 for a pair (Y f, g) ∈ K. On one hand, we check:
whenever Y f

a−→ αf , either a = τ and M{μf}[(Y α
a , g̃)] = true, or there is some

g
a−→ h such that M{μf}[(Y α

a , h̃)] = true (note that (Y α
a , g̃), (Y α

a , h̃) ∈ Q(μf )).
By the construction of μf and Theorem 1, one can see that this really checks
the first part of the condition for the pair (Y f, g) in Definition 4. The checking
requires O(nm) queries of M{μf}, thus takes O(nm) time. On the other hand,
we need to check: either f = g and Y ⇒ ε, or whenever g

a−→ h there is some
Y ⇒ α such that αf ∈ LK

[g,a,h]. The former takes O(n2) time. For the latter, we

check by the ‘symbolic’ method: if (L(DY ) · {f})∩LK
[g,a,h] �= ∅ for all g a−→ h ∈ Γ ,

which are already computed. Since there are O(nm2) pairs of such form, the
total time complexity is loosely O(n3m3). Thus the overall time complexity for
this case is O(n3m3).

Pairs of the form (Y, g) in K are handled in nearly the same way as for
the previous case. First we find all Y ∈ Const(Δ) and g

a−→ h ∈ Γ such that
L(DY ) ∩ LK

[g,a,h] is non-empty. Then we perform the checking based on this
computation. The only difference is that we do not bother the special case in
Remark 3, and the appearance of ‘f ’ in the previous case is ignored. The overall
time complexity here will be lower. At this point we conclude that Exp(K) can
be computed in O(n3m3) time. ��

Then to compute B, we need to perform the computation of the expansion
O(nm2) times (Theorem 3). Thus we have the following theorem:

Theorem 6. The bisimulation base B can be computed in O(n4m5) time.

Based on Theorem 6, we obtain an efficient algorithm deciding branching bisim-
ilarity between BPA and finite-state processes. The algorithm largely refines the
previous one given in [20].
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4 Normed BPP Processes

In this section we show that branching bisimilarity can be decided in polyno-
mial time between normed BPP system Δ and finite-state system Γ . The basic
structure is similar to the one for BPA. Following [16], the bisimulation base is
established. Our main efforts lie in the computation of the base. We will only
state the main results for lack of space. The details can be found in [23].

We introduce some additional notations. The set of all parallel expressions
over Const(Δ) is denoted by Const(Δ)⊗. Elements of Const(Δ)⊗ are ranged
over by α, β, γ, and elements of Const(Δ)∗ are ranged over by ζ, η, θ and ξ.

We assume w.l.o.g that (†): for every f, g ∈ Const(Γ ) with g reachable from
f , there is h reachable from g such that ε ≈br h. States of Const(Γ ) which do not
meet (†) can be safely removed, since they will not be branching bisimilar with
any nBPP processes. It can be obtained that the contraction, which is performed
on Γ in advance, preserves (†).

We pre-compute the relation {(f‖g, h) | f‖g ≈br h}. This can be achieved by
performing the algorithm described in [22] on Γ ∪ (Γ‖Γ ), where Γ‖Γ contains
exactly all processes of the form f‖g with f, g ∈ Const(Γ ). It takes O(m4) time
since the size of Γ ∪ (Γ‖Γ ) is O(m2).

We reproduce the notion of linear representation in [16] here. For each α ∈
Const(Δ)⊗, the set Lin(α) is defined as follows:

Lin(X1‖. . .‖Xk) = {Xπ(1). . .Xπ(k)|π is a permutation of the set {1, 2, ...k}}

For example, Lin(X‖Y ‖Z) = {XY Z,XZY, Y XZ, Y ZX,ZXY,ZYX}. We as-
sume that each Lin(α) contains some unique element called canonical form of
Lin(α), denoted α. The canonical form can be chosen arbitrarily, e.g., one can
fix a linear order on Const(Δ) and let α be the sorted order of α. For each
ζ ∈ Const(Δ)∗, We use [ζ] to indicate the α ∈ Const(Δ)⊗ such that ζ ∈ Lin(α).

Definition 5. Let GΓ be the set {(ε, f)|f ∈ Const(Γ ), ε ≈br f}. A relation K
is well-formed iff GΓ ⊆ K and K is a subset of G defined by:

G = (Const(Δ) × Const(Γ )) ∪ GΓ

The bisimulation base for Δ and Γ , denoted B, is defined as follows:

B = {(X, f)|X ≈br f} ∪ GΓ

Definition 6. Let K be a well-formed relation. The closure of K, denoted Cl(K),
is the least relation M satisfying:

1. K ⊆ M
2. if (X, g) ∈ K, (β, h) ∈ M , and f ≈br g‖h, then (X‖β, f) ∈ M

Theorem 7. Let α ∈ Const(Δ)⊗, f ∈ Const(Γ ). We have that α ≈br f iff
(α, f) ∈ Cl(B).
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The following theorem is an enhanced version of [16, Theorem 24]. It shows that
the closure of any well-formed relation is in some sense regular.

Theorem 8. Let K be a well-formed relation. For each h ∈ Const(Γ ), there is a
finite automaton AK

h with O(m) states, of size O(nm2) constructible in O(nm2)
time and without ε transitions such that the following two conditions hold:

– if AK
h accepts some elements of Lin(α), then (α, h) ∈ Cl(K);

– if (α, h) ∈ Cl(K), then AK
h accepts all elements of Lin(α).

In the proof of Theorem 8, one can see that: for various h, the automaton AK
h

is only differed by the initial state (which is exactly h). We use AK to indicate
the automaton attached to K with initial state unspecified.

Remark 4. A small error is detected in [16, Theorem 24]. The time complexity
should be O(nm2) instead of O(nm) for the appearance of rules of the form
s → Xf in the construction of Gg. Then the overall complexity for nBPP in [16]
should be O(n12m11), instead of O(n12m9).

The following theorem establishes the symbolic representation of the set of states
reachable from a given X ∈ Const(Δ) through ‘⇒’.

Theorem 9. For all X ∈ Const(Δ) there is a context-free grammar GX in
3 -GNF (Greibach normal form, i.e., with at most 2 variables at the right hand
side of every production) of size O(n4), constructible in time O(n4) such that
the following three conditions hold:

1. if GX generates one element of Lin(α), then X ⇒ α;
2. if X ⇒ α, then GX generates at least one element of Lin(α);
3. if ζ ∈ L(GX) ∩ Lin(α) and ζ = ηY θ for some Y ∈ Const(Δ) and η, θ ∈

Const(Δ)∗, then there is some ξ ∈ Lin([η]‖[θ]) such that Y ξ ∈ L(GX).

The third condition of Theorem 9 is special. Informally it says that if X ⇒ α,
then in L(GX) each constant of α has a chance to appear at the beginning.

Then we establish the notion of expansion. The general idea is the same as in
Sect. 3. However its form is more complicated by the commutativity of ‘‖’.

Definition 7. Let K be a well-formed relation. For each g
a−→ h ∈ Γ , we say

that a tuple (X, r, s) ∈ Const(Δ)×Const(Γ )×Const(Γ ) satisfies the condition
φK

[g,a,h], if:

– (X, r) ∈ K and r‖s ≈br g

– there is r
a−→ t ∈ Γ and X

a−→ α ∈ Δ such that t‖s ≈br h and α ∈ L(AK
t )

We say that (X, s) satisfies φK
[g,a,h] if there is some r ∈ Const(Γ ) such that

(X, r, s) satisfies φK
[g,a,h]. Then the regular language LK

[g,a,h] is defined as the
union of all {X} · L(AK

s ) such that (X, s) satisfies φK
[g,a,h].

Remark 5. Again for any well-formed K, a finite automaton that accepts LK
[g,a,h]

is constructible from only one copy of AK , provided that φK
[g,a,h] has been com-

puted. The point is that all such automata shares the major part, i.e., AK .
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The relation between LK
[g,a,h] and the set of processes that can immediately match

the transition g
a−→h w.r.t Cl(K) is formulated in the following two lemmas.

Lemma 7. Let K be a well-formed relation. If LK
[g,a,h] contains some elements of

Lin(α), then (α, g) ∈ Cl(K) and there is some α
a−→ β such that (β, h) ∈ Cl(K).

Lemma 8. Let K be a well-formed relation such that B ⊆ K and g
a−→ h ∈ Γ . If

α ≈br g, α = X‖γ and there is X
a−→ α′ ∈ Δ such that α′‖γ ≈br h, then LK

[g,a,h]
contains all elements of {X} · Lin(γ).

Lemma 8 is weak, since it does not guarantee that all elements of Lin(α) fall
in LK

[g,a,h]. This is mainly because in Definition 7, the commutativity of ‘‖’ is
ignored. However this deficiency is in some sense made up by the third condition
of Theorem 9, as we shall see in the proof of Theorem 10.

Definition 8. Let K be a well-formed relation. We say that a pair (X, f) ∈ K
expands K iff

– whenever X
a−→ α, either there is some f

a−→ f ′ such that α ∈ L(AK
f ′), or

a = τ and α ∈ L(AK
f )

– whenever f ⇒ g
a−→ h, L(GX) ∩ LK

[g,a,h] is non-empty

Moreover, all pairs of the form (ε, g) in K expand K. The set Exp(K) is defined
as all pairs of K that expand K.

Lemma 9. Let K be a well-formed relation such that K = Exp(K). Then
Cl(K) is a branching bisimulation.

The approximation of B is the same as in Sect. 3.

Theorem 10. There is a j ∈ N bounded by O(nm) such that Bj = Bj+1 and
Bj = B.

Proof. The existence of such j that Bj = Bj+1 can be argued in the same way
as in Theorem 3. We only show that Bj = B.

Bj ⊆ B: Directly by Lemma 9 and the fact that Bj ⊆ Cl(Bj).
B ⊆ Bj: Equivalently we show that B = Exp(B) since Exp is monotone.

Let (X, f) ∈ B, we argue that the pair satisfies the conditions in Definition 8.
Whenever X

a−→ α, either a = τ and α ≈br f or there is some f
a−→ f ′ such

that α ≈br f ′. By Theorem 7, we have (α, f) ∈ Cl(B) in the former case and
(α, f ′) ∈ Cl(B) in the latter case. Then by Theorem 8, α ∈ L(AB

f ) in the former
case and α ∈ L(AB

f ′) in the latter case. Hence the first condition of Definition 8
is satisfied. Now we consider the second condition of Definition 8. Whenever
f ⇒ g

a−→ h, there is some X ⇒ α
a−→ β such that α ≈br g and β ≈br h (by

the contraction). Let α = Z‖γ, β = α′‖γ and Z
a−→ α′ ∈ Δ. By Theorem 9,

there is some ξ ∈ Lin(γ) such that Zξ ∈ L(GX). And by Lemma 8, we have
Zξ ∈ LB

[g,a,h]. Thus we have L(GX) ∩ LB
[g,a,h] is non-empty. Hence the second

condition of Definition 8 is satisfied. ��
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Theorem 11. Let K be a well-formed relation. The set Exp(K) can be com-
puted in O(n11m8) time.

Proof. The proof follows the methodology of the one for [16, Theorem 28], and
uses the fact stated in Remark 5. See [23, Theorem 11] for details. ��

Then to compute B, we need to perform the computation of the expansion within
O(nm) times (Theorem 10). Thus we have the following theorem.

Theorem 12. The bisimulation base B can be computed in O(n12m9) time.

The main theorem of this section is as follows.

Theorem 13. Branching bisimilarity between normed BPP and finite-state sys-
tems is decidable in polynomial time.

Proof. Let α ∈ Const(Δ)⊗ and f ∈ Const(Γ ). To decide whether α ≈br f ,
we first compute B in O(n12m9) time. Then we need only to check whether
α ∈ L(AB

g ) by Theorem 7 and Theorem 8. ��

5 Conclusion

We have presented polynomial time algorithms deciding branching bisimilarity
between BPA/nBPP and finite-state processes. The algorithm for BPA refines
the previous one in [20]. The one for nBPP shows the polynomial-time decidabil-
ity of the verification problem, which is not known previously. The techniques
developed in this paper (e.g. the expansion) are effective for branching bisimula-
tion. We believe that they can be applied to other bisimulations with two-level
correlations, e.g., η-bisimulation [17].

Since branching bisimulation often serves as an alternative for weak bisimula-
tion, it is interesting to compare the complexity of verification problems between
the two bisimulations. In this paper, the running time for computing the bisim-
ulation base is O(n4m5) for BPA and O(n12m9) for normed BPP. They are
both lower than the ones in [16], where the complexity is O(n5m7) for BPA
and O(n12m11) for nBPP (by Remark 4). It is possible to apply some of our
techniques back to [16] (e.g., common components in Remark 2 and Remark 5),
but the complexity will still be a little bit higher. Thus we have established a
case on infinite structure where branching bisimulation takes less time to decide
than weak bisimulation, for which similar comparison has already been made on
finite-state systems [22].
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13. Jančar, P., Kučera, A., Mayr, R.: Deciding bisimulation-like equivalences with
finite-state processes. Theor. Comput. Sci. 258, 409–433 (2001)

14. Mayr, R.: Decidability of model checking with the temporal logic ef. Theor. Com-
put. Sci. 256, 31–62 (2001)
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22. Groote, J.F., Vaandrager, F.W.: An efficient algorithm for branching bisimulation

and stuttering equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443,
pp. 626–638. Springer, Heidelberg (1990)

23. Fu, H.: Branching bisimilarity between finite-state systems and bpa or normed bpp
is polynomial-time decidable, http://basics.sjtu.edu.cn/~hongfei/

http://basics.sjtu.edu.cn/~hongfei/


Refining Abstract Interpretation-Based Static
Analyses with Hints

Vincent Laviron1 and Francesco Logozzo2
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Abstract. We focus our attention on the loss of precision induced by
abstract domain operations. We introduce a new technique, hints, which
allows us to systematically refine the operations defined over elements
of an abstract domain. We formally define hints in the abstract inter-
pretation theory, we prove their soundness, and we characterize two
families of hints: syntactic and semantic. We give some examples of
hints, and we provide our experience with hints in Clousot, our abstract
interpretation-based static analyzer for .Net.

1 Introduction

The three main elements of an abstract interpretation are: (i) the abstract ele-
ments (“which properties am I interested in?”); (ii) the abstract transfer functions
(“which is the abstract semantics of basic statements?”); and (iii) the abstract op-
erations (“how do I combine the abstract elements?”).

The loss of precision induced by the abstract elements is exemplified by
Fig. 1(a). The assertion cannot be proved using only convex numerical abstract
domains such as Intervals [4], Pentagons [18], Octagons [23] or even Polyhe-
dra [8]. The reason for that is that the most precise property at the join point
x == −1 ∨ x == 1 cannot be exactly represented in any of those domains. For
instance Intervals (Intv) approximate it with −1 ≤ x ≤ 1, so that the fact that
x �= 0 is lost. Many techniques have been proposed to overcome this problem.
They essentially rely on the refinement of the elements of the abstract domain.
Solutions include trace partitioning [16,20,9], domain completion [5], powerset
construction [1,19], and abstract domain extension [25]. Abstract transfer func-
tions may introduce an orthogonal loss of precision. For instance, in Fig. 1(b)
the expression initializer for z is in a quadratic form. Thus no linear numerical
abstract domain can precisely capture the relation between x, y and z. Stan-
dard domain refinements are of no help. A rough transfer function can simply
abstract away z. A more precise one can approximate z with an interval. How-
ever, a compositional evaluation of the expressions which mimics the concrete
one is not precise enough to discharge the assertion −2 ≤ z. Several authors
suggested methods to infer optimal transfer functions in particular settings as,
e.g., constraint matrices [24], shape analysis [26] or constant propagation [3].

Z. Hu (Ed.): APLAS 2009, LNCS 5904, pp. 343–358, 2009.
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void AbsEl(int x)

{ if(...) x =-1;

else x = 1;

assert x != 0;

}

(a)

void Transfer(int x, y)

{ assume 2 <= x <= 3;

assume -1 <= y <= 1;

int z = (x + y) * y;

assert -2 <= z;

}

(b)

void DomOp()

{ int x = 0, y = 0;

while (...)

{ if (...) { x++; y += 100; }

else if (...)

if (x >= 4) { x++; y++; }

}

(*) assert x <= y;

assert y <= 100 * x;

}

(c)

Fig. 1. Examples of orthogonal losses of precision in abstract interpretations: (a) a
convex domain cannot represent x �= 0; (b) a compositional transfer function does
not infer the tightest lower bound for z; and (c) the standard domain operations on
Polyhedra are not precise enough to infer the loop invariant x ≤ y

Surprisingly enough, the refinement of the operations over abstract elements
has been widely ignored in the literature (with the exceptions of [14,1,11,12]
which however focused their attention just on the widening operator).

Example. Let us consider the code snippet in Fig. 1(c). In order to prove the as-
sertions valid, the static analysis should infer the loop invariant x ≤ y ≤ 100 · x.
Different abstract domains infer different invariants. The Octagon abstract do-
main (Oct) is a weakly relational domain which captures properties in the form of
±x ± y ≤ k. It infers the loop invariant: 0 ≤ x ∧ 0 ≤ y ∧ x ≤ y. The Polyhedra
abstract domain (Poly) is a fully relational domain. It can infer and represent ar-
bitrary linear inequalities: Abstract elements are in the form

∑
i ai · xi ≤ k. As a

consequence one expects Poly to always be more precise than Oct. However, when
applied to the example, Poly infers the loop invariant: 0 ≤ x∧ 0 ≤ y∧ y ≤ 100 · x:
Even if Poly can exactly represent the constraint x ≤ y, it fails inferring it! This
is quite surprising. The reason for that should be found in the widening operators
over the two domains. The (standard) widening over Octagons explicitly seeks an
upper bound for the difference x− y (in the example 0). The (standard) widening
over Polyhedra preserves the inequalities that are stable over two loop iterations.
In the example, the constraint x ≤ y, even if implied by the abstract states to
be widened, is never materialized. Therefore, the state after widening does not
contain it either. Intuitively, in order to obtain the most precise loop invariant for
DomOp, one needs to refine the widening operator for Poly to be at least as pre-
cise as the one for Oct. One way to refine the widening is by remarking that the
predicate x ≤ y appears as a condition of some assertion, and then trying to ex-
plicitly materialize it. Another possible refinement is by seeking upper bounds for
the expression x − y. The first is an example of syntactic hint. The latter is an
example of semantic hint. Those observations can be extended and generalized to
other abstract domain operators.

The case for hints. The main goal for a static analysis designer is the pre-
cision/speed trade-off. To achieve it, the common practice is to drop some of
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the expressive power of the analysis while maximizing the inference power. In
Clousot, our static analyzer for .Net, we needed additional flexibility. Clousot
is mainly used to validate code contracts expressed by users in form of pre-
conditions, post-conditions and object invariant. First, we observed that usual
weakly-relational abstract domains are not precise enough to be used in a mod-
ular checker: for instance, it is often the case that the argument to establish an
“easy” precondition (e.g., x ≤ y) at the call site involves a complex reasoning
between several linear inequalities which require expensive abstract domains as
Poly. Second, we needed Clousot to be adaptable, in that it can either run in
an interactive environment (faster, but with more noise) or on a build machine
overnight (slower, but much more precise). As a consequence, we took a differ-
ent direction in the design of the abstract domains in Clousot: we retained the
expressive power while we gave up some of the inference (e.g., Pentagons [18]
and Subpolyhedra [17]). Hints, introduced in this paper, are an orthogonal to
the abstract domain, and they allow us to incrementaly increase the precision of
the analysis by refining the transfer functions.

Contribution. We introduce hints, a new technique which allows us to system-
atically refine static analyses. The main ideas of hints are: (i) to have a separate
module to figure out which constraints or families of constraints are of interest
for the analysis; and (ii) to use such a module to refine the operations of the ab-
stract domain. The main difference with related works on automatic refinement
of static analyses is that hints refine the operations over abstract elements and
not the elements themselves nor the transition relations. The main advantages
of hints are that: (i) they enable an easy refinement of static analyses; (ii) they
enable a fine-tuning of the cost/performance ratio; (iii) they make the analysis
more robust with respect to implementation-related precision bugs. Hints are
useful when the abstract operations are not complete w.r.t. the concrete ones,
which is often the case in practice.

We formalize hints using the abstract interpretation theory, and we prove
them correct w.r.t. a generic abstract interpreter. We characterize syntactic
(user-defined, thresholds) and semantic hints (saturation, die-hard, computed,
reductive). We show how they generalize existing techniques as, e.g., widening
with thresholds [2]. We applied hints to SubPolyhedra (SubPoly), a new, very
efficient numerical abstract domain to propagate arbitrary linear inequalities.
SubPoly has the same expressive power as Poly, but drops some of the inference
to achieve scalability. Hints allow SubPoly to recover precision without giving up
performances. Hints are implemented in Clousot, our static analyzer for .NET
available at [21].

2 Abstract Interpretation Frameworks

Abstract interpretation is a general theory of approximations which formalizes
the intuition that the semantics of a program is more or less precise depending
on the observation level. In particular, the static analysis of a program is a
semantics precise enough to capture the properties of interest and coarse enough
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to be computable. The concrete and abstract semantics of a program are defined
as fixpoints respectively over a concrete and an abstract domain. The concrete
and the abstract domains are related by a soundness relation, which induces the
soundness of the abstract semantics [6].

Static approximation: Abstract Domain. In the Galois connections ap-
proach to abstract interpretation [4], the concrete domain and the abstract
domain are assumed to be two complete lattices, respectively 〈C,(,�〉 and
〈A, (̄, �̄〉. The soundness relation is expressed by a pair of monotonic functions
〈α, γ〉, such that ∀e ∈ C.∀ē ∈ A. α(e)(̄ē ⇐⇒ e ( γ(ē). In such a setting,
the abstract join operator �̄ is optimal in that: ∀e1, e2 ∈ C. α(�(e1, e2)) =
�̄(α(e1), α(e2)) [5]. In practice, most analyses do not require the existence of
the best approximation for concrete elements, a sound approximation suffices.
For instance, there is no best polyhedron approximating the set of concrete
points B = {(x, y) ∈ R2 | x2 + y2 ≤ 1}. However, any polyhedron including
B is a sound abstraction. In the relaxed form of abstract interpretation [6],
the abstract domain is not required to be complete under �̄. It is simply a
pre-order 〈A,!,�,�〉. The soundness relation is expressed by a monotonic con-
cretization function γ ∈ [A → C], i.e., no abstraction function is required. The
abstract union � gathers together the information flowing from incoming edges.
It is not required to be the least upper bound (which may not exist at all):
∀ē0, ē1 ∈ A. ē0 ! ē0 � ē1 ∧ ē1 ! ē0 � ē1. It is a sound, but not optimal, approx-
imation of the concrete join: ∀ē0, ē1 ∈ A. � (γ(ē0), γ(ē1)) ( γ(�(ē0, ē1)). The
abstract intersection returns a common lower bound for the operands, which
approximates the concrete meet: ∀ē0, ē1 ∈ A. γ(ē0) � γ(ē1) ( γ(ē0 � ē1).

Hereafter we assume: (i) the concrete domain to be the complete lattice
〈P(Σ),⊆,∪,∩〉 where Σ is a set of concrete program states mapping variables to
values; (ii) the abstract domain to be a pre-order 〈A,!,�,�〉, therefore putting
ourselves in the setting of the relaxed form of abstract interpretation.

Dynamic approximation: Widening/Narrowing. In general A is of infinite
height, so that the fixpoint computation may not terminate. A widening oper-
ator � should then be defined to ensure the convergence of the iteration to a
post-fixpoint. Formally � satisfies: (i) ∀ē0, ē1 ∈ A. ē0, ē1 ! �(ē0, ē1); and (ii) for
each (possibily infinite) sequence of abstract elements ē0, ē1 . . . ēk the sequence
defined by ē�

0 = ē0, ē
�
1 = �(ē�

0 , ē1) . . . ē�
k = �(ē�

k−1, ēk) is ultimately stationary.
It is worth noting that a widening operator is not commutative. The loss of
precision introduced by the widening can be partially recovered using a narrow-
ing operator. A narrowing 	 operator satisfies: (i) ∀ē0, ē1 ∈ A. � (ē0, ē1) !	
(ē0, ē1) ! ē0, ē1; and (ii) for each (possibly infinite) sequence of abstract elements
ē0, ē1 . . . ēk the sequence defined by ē�

0 = ē0, ē
�
1 =	 (ē�

0 , ē1) . . . ē�
k =	 (ē�

k−1, ēk)
is ultimately stationary.

Transfer functions. It is common practice for the implementation of an abstract
domain A to provide some primitive transfer functions. The assignment abstract
transfer function, A.assign, is an over-approximation of the states reached after
the concrete assignment (E�E�(σ) denotes the evaluation of the expression E in the
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state σ) : ∀x, E.∀ē ∈ A. {σ[x → v] | σ ∈ γ(ē),E�E�(σ) = v} ⊆ γ(A.assign(ē, x, E)).
The test abstract transfer function, A.test, filters the input states (B�B�(σ) denotes
the evaluation of the Boolean expression B in the state σ): ∀B.∀ē ∈ A. {σ ∈ γ(ē) |
B�B�(σ) = true} ⊆ γ(A.test(ē, B)). The abstract checking A.check verifies if an
assertion A holds in an abstract state ē. It has four possible outcomes: true (A holds
in all the concrete states γ(ē)); false (!A holds in all the concrete states γ(ē)); bottom
(the assertion is unreached); top (the validity of A cannot be decided in γ(ē)).

3 Concrete and Abstract Semantics for a While language

We illustrate hints on a simple abstract interpreter for a while language. The con-
crete, reachable states semantics �·� ∈ [Stm × P(Σ) → P(Σ)] is in Fig. 3. The
abstract semantics s̄�·� ∈ [Stm × A → A] is in Fig. 2. It is parametrized by the
abstract domain 〈A,!,�,�〉 and a set of primitives assign, test, and check. The
skip statement has no effect on the abstract state. The effects of the assignment,
the assumption and the assertion are handled by the corresponding primitives of
the abstract domain. Please note that for the purposes of the analysis the effects of
assume and assert coincide: The assertions will be checked in a second phase, af-
ter the analysis has inferred the program invariants for all the program points. The
abstract semantics of sequence is function composition. The abstract semantics of
conditional: (i) pushes the guard and its negation onto the two branches; and (ii)
gathers the effects using the abstract union. The abstract semantics of while is
given in terms of fix, which computes the loop invariant as the limit of the fixpoint
iterations with widening. Given a function F ∈ [A → A], fix(F ) is the limit of the
iteration sequence: I0 = ⊥; In+1 = if F (In) ! In then In else In�F (In). The
post-state for while is then obtained by intersecting the loop invariant with the
negation of the guard. It is easy to show that for any program P, ∀e ∈ P(Σ).∀ē ∈
A. e ⊆ γ(ē) =⇒ �P�(e) ⊆ γ (̄s�P�(ē)).

s̄�skip;�(ē) = ē s̄�x = E;�(ē) = A.assign(ē, x, E)
s̄�assume B;�(ē) = s̄�assert B;�(ē) = A.test(B, ē)

s̄�C1 C2�(ē) = s̄�C2�(s̄�C1�(ē))
s̄�if(B) {C1}else {C2};�(ē) = s̄�C1�(A.test(B, ē))� s̄�C2�(A.test(!B, ē))

s̄�while(B) {C};�(ē) = let Ī = fixλX. ē� s̄�C�(A.test(B, X))
in A.test(!B, Ī)

Fig. 2. The abstract semantics for the while-language

�skip;�(e) = e �x = E;�(e) = {σ[x �→ v] | σ ∈ e, E�E�(σ) = v}
�assume B;�(e) = �assert B;�(e) = {σ ∈ e | B�B�(σ) = true}

�C1 C2�(e) = �C2�(�C1�(e))
�if(B) {C1}else {C2};�(e) = �C1�({σ ∈ e | B�B�(σ) = true}) ∪ �C2�({σ ∈ e | !B�B�(σ) = true})

�while(B) {C};�(ē) = let I =
S

i�C�
i({σ ∈ I | B�B�(σ) = true})

in {σ ∈ I | !B�B�(σ) = true}.

Fig. 3. The reachable states semantics for the while-language
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4 Hints

Hints are precision improving operators which can be used to systematically
refine and improve the precision of domain operations in abstract interpretation.
Domain operations are either basic domain operations (e.g., � or �) or their
compositions (e.g., λ(ē0, ē1, ē2). (ē0 � ē1)� (ē0 � ē2)).

Definition 1 (Hint, �). Let 7 ∈ [Cn → C] be a concrete domain operation
defined over a concrete domain 〈C,(,�,�〉. Let 7̄ ∈ [An → A] be the abstract
counterpart for 7 defined over the abstract domain 〈A,!,�,�〉. A hint ��̄ ∈
[An → A] is such that:

��̄(ē0 . . . ēn−1) ! 7̄(ē0 . . . ēn−1) (Refinement)
7(γ(ē0) . . . γ(ēn−1)) ( γ(��̄(ē0 . . . ēn−1)) (Soundness).

The first condition states that ��̄ is a more precise operations than 7̄. The second
condition requires ��̄ to be a sound approximation of 7. An important property
of hints is that they can be designed separately and the combined to obtain
a more precise hint. Therefore, if �1

�̄ and �
2
�̄ are hints, then �

�
�̄ (ē0 . . . ēn−1) =

�
1
�̄(ē0 . . . ēn−1)� �

2
�̄(ē0 . . . ēn−1) is a hint, too. Hints improve the precision of

static analyses without introducing unsoundness and preserving termination:

Theorem 1 (Refinement of the abstract semantics). Let �� and �� be
two hints refining respectively the widening and the abstract union, and let ��
be a widening operator. Let s̄∗�·� be the abstract semantics obtained from s̄�·� by
replacing �with �� and � with ��. Let P be a program. Then, ∀e ∈ P(Σ).∀ē ∈ A.

s̄∗�P�(ē) ! s̄�P�(ē) (Refinement)
e ⊆ γ(ē) =⇒ �P�(e) ⊆ γ (̄s∗�P�(ē)) (Soundness).

5 Syntactic Hints

Syntactic hints use some part of the program text to refine the operations of the
abstract domain. They exploit user annotations to preserve as much informa-
tion as possible in gathering operations (user-provided hints), and systematically
improve the widening heuristics to find tighter loop invariants (thresholds hints).

They are the easiest, and probably cheapest form of hints. First, we collect all
the predicates appearing as assertions or as guards. Then, the gathering opera-
tions are refined by explicitly checking for each collected predicate B, if it holds
for all the operands. If this is the case, B is added to the result. The predicate
seeker pred ∈ [Stm → P(BExp)] extracts from the program text the predicates
appearing in conditional and loop guards. User provided hints do not affect the
termination of the widening as we can only add finitely many new predicates:

Lemma 1 (User-provided hints). Let 7 ∈ {�,�}, and let P be a program.
Then: (i) �pred

� defined below is a hint; and (ii) �pred
� is a widening operator.
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�
pred
� (ē0, ē1) = let S = {B ∈ pred(P) | A.check(B, ē0) = true ∧ A.check(B, ē1) = true}

in A.test(
∧

B∈S B, �(ē0, ē1)).

In example of Fig. 1(b), pred(DomOp) = {x ≤ y, 4 ≤ x, y ≤ 100 · x}. The re-
fined domain operations keep the predicate x ≤ y, which is stable among loop
iterations, and hence is a loop invariant.

We found user-provided hints very useful in Clousot, our abstract interpreta-
tion based static analyzer for .Net. Clousot analyzes methods in isolation, and
supports assume/guarantee reasoning (“contracts”) via executable annotations.
Precision in propagating and checking program annotations is crucial to pro-
vide a satisfactory user experience. User-provided hints help to reach this goal
as the analyzer makes sure that at each joint point no user annotation is lost,
if it is implied by the incoming abstract states. They make the analyzer more
robust w.r.t. incompleteness of � or a buggy implementation which may cause
� to return a more abstract element than the one predicted by the theory. The
downside is that user-provided hints are syntactically based: For instance, if in
Fig. 1(c) we replace the assertion at (∗) with if 10 <= x then assert 5 <= y,
then pred(DomOp) = {10 ≤ x, 5 ≤ y}, so that �pred

�Poly
cannot figure out that x ≤ y,

and hence the analyzer cannot prove that the assertion is valid. Semantic hints
(Sect. 6.3) will fix it.

5.1 Thresholds Hints

Widening with threshold has been introduced in [2] to improve the precision of
standard widenings over non-relational or weakly relational domains. Roughly,
the idea of a widening with thresholds is to stage the extrapolation process, so
that before projecting a bound to the infinity, values from a set T are considered
as candidate bounds. The set T can be either provided by the user or it can be
extracted from the program text. The widening with thresholds is just another
form of hint. Let ē0 and ē1 be abstract states belonging to some numerical
abstract domain. Without loss of generality we can assume that the basic facts in
ē0, ē1 are in the form p ≤ k, where p is some polynomial. For instance x ∈ [−2, 4]
is equivalent to {−x ≤ 2, x ≤ 4}. The standard widening preserves the linear
forms with stable upper bounds: �(ē0, ē1) = {p ≤ k | p ≤ k0 ∈ ē0, p ≤ k1 ∈
ē1, k = if k1 > k0 then + ∞ else k0}. Given a finite set of values T, threshold
hints refine the standard widening by:

�
T
� (ē0, ē1) = {p ≤ k | p ≤ k0 ∈ ē0, p ≤ k1 ∈ ē1,

k = if k1 > k0 then min{t ∈ T ∪ {+∞} | k1 ≤ t} else k0}.

Lemma 2. �T
� is: (i) a hint; and (ii) a widening.

Example 1 (Widening with thresholds). Let us consider the code snippets in
Fig. 4 to be analyzed with Intervals. In the both cases, the (post-)fixpoint is
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void LessThan() {

int x = 0;

while (x < 1000)

x++;

}
(a) Narrowing

void NotEq() {

int x = 0;

while (x != 1000)

x++;

}
(b) Thresholds

Fig. 4. Two programs to be analyzed with Intervals. The iterations with widening infer
the loop invariant x ∈ [0, +∞]. In the first case, the narrowing step refines the loop
invariant to x ∈ [0, 1000]. In the second case, the narrowing fails to refine it.

reached after the first iteration �([0, 0], [1, 1]) = [0,+∞]. In the first case, the
invariant can be improved by a narrowing step to 	 ([0,+∞], [−∞, 1000]) =
[0, 1000] (see [4] for a definition of narrowing of Intv). In the second case, the
narrowing is of no help as 	 ([0,+∞],�([−∞, 1000], [1002,+∞])) = [0,+∞].
A widening with Thresholds T = {1000} helps discovering the tightest loop
invariant for both examples in one step as �T

�([0, 0], [1, 1]) = [0, 1000]. ��

Please note that user-provided hints are of no help in the previous example, as
pred(NotEq) = {x �= 1000} does not hold for all the operands of the widening.

The set T of thresholds is a parameter of the analyzer, which can either be
provided by the user, preset to some common values (e.g., T = {−1, 0, 1}), or
extracted from the program text. In Clousot, we use a function const ∈ [Stm →
P(int)] which extracts the constants appearing in the guards. We found the hint
�

const
� very satisfactory: (i) it helps inferring precise numerical loop invariants

without requiring the extra iteration steps required for applying the narrowing;
and (ii) it improves the precision of the analysis of code involving disequalities,
e.g., Fig. 4(b). A drawback is that the set T may grow too large, slowing down
the convergence of the fixpoint iterations. In Clousot, we infer thresholds on a
per-method basis, which helps maintaining the cardinality of T quite small.

6 Semantic Hints

Semantic hints provide a more refined yet more expensive form of operator refine-
ment. For instance, they exploit information in the abstract states to materialize
constraints that were implied by the operands (saturation hints, die-hard hints
and template hints) or they iterate the application of operators to get a more
precise abstract state (reductive hints).

6.1 Saturation Hints

A common way to design abstract interpreters is to build the abstract domain as
a composition of basic abstract domains, which interact through a well-defined
interface [7,15]. Formally, given two abstract domains A0,A1, the Cartesian prod-
uct A× = A0 × A1 is still an abstract domain, whose operations are defined as
the point-wise extension of those over A0 and A1. Let 7̄i ∈ [An

i → Ai], i ∈ {0, 1},
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then 7̄×((ē0
0, ē

0
1) . . . (ē

n−1
0 , ēn−1

1 )) = (7̄0(ē0
0 . . . ē

n−1
0 ), 7̄1(ē0

1 . . . ē
n−1
1 )). The Carte-

sian product enables the modular design (and refinement) of static analyses.
However, a naive design which does not consider the flow of information be-
tween the abstract elements may lead to imprecise analyses, as illustrated by
the following example.

Example 2 (Cartesian join). Let us consider the abstract domain Z = Intv×LT,
where LT = [Var → P(Var)] is an abstract domain capturing the “less than”
relation between variables. For instance, x < y ∧ x < z is represented in LT
by [x → {y, z}]. The domain operations are defined as one may expect [18]. Let
z̄0 = ([x → [−∞, 0], y → [1,+∞]], [·]) and z̄1 = ([·], [x → {y}]) be two elements of
Z ([·] denotes the empty map). Then the Cartesian join loses all the information:
�×(z̄0, z̄1) = ([·], [·]). ��

A common solution is: (i) saturate the operands; and (ii) apply the operation pair-
wise. The saturation materializes all the constraints implicitly expressed by the
product abstract state. Let ρ ∈ [A× → A×] be a saturation (a.k.a. closure) proce-
dure. Then the next lemma provides a systematic way to refine an operator 7̄×.

Lemma 3. The operator �ρ

�× below is a hint.

�
ρ

�̄×((ē0
0, ē

0
1) . . . (ēn−1

0 , ēn−1
1 )) = let r̄i = ρ(ēi

0, ē
i
1) for i ∈ 0 . . . n − 1 in �̄×(̄r0 . . . r̄n−1).

Example 3 (Cartesian join, continued). The saturation of z̄0 materializes the
constraint x < y : r̄0 = ([x → [−∞, 0], y → [1,+∞], [x → {y}]), and it leaves z̄1
unchanged. The constraint x < y is now present in both the operands, and it is
retained by the pairwise join. ��

It is worth noting that in general �ρ
� does not guarantee the convergence of the

iterations, as the saturation procedure may re-introduce constraints which were
abstracted away from the widening (e.g., Fig. 10 of [23]).

Saturation hints can provide very precise operations for Cartesian abstract
interpretations: They allow the analysis to get additional precision by combin-
ing the information present in different abstract domains. The main drawbacks
of saturation hints are that: (i) the iteration convergence is not ensured, so that
extra care should be put in the design of the widening; (ii) the systematic ap-
plication of saturation may cause a dramatic slow-down of the analysis. In our
experience with the combination of domains implemented in Clousot, we found
that the slow-down introduced by saturation hints was too high to be practical.
Die-hard hints, introduced in the next section, are a better solution to achieve
precision without giving up scalability.

6.2 Die-Hard Hints

These hints are based on the observation that often the constraints that one
wants to keep at a gathering point often appears explicitly in one of the operands.
For instance in Ex. 2 the constraint x < y is explicit in z̄1, and implicit in z̄0
(as x ≤ 0 ∧ 1 ≤ y =⇒ x < y). Therefore x < y holds for all the operands of the
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join so it is sound to add it to its result. Die-hard hints generalize and formalize
it. They work in three steps: (i) apply the gathering operation, call the result
r̄; (ii) collect the constraints C that are explicit in one of the operands, but are
neither present nor implied by r̄; and (iii) add to r̄ all the constraints in C which
are implied by all the operands. Formally:

�
d
(�̄,I)(ē0, ē1) = let r̄ = �̄(ē0, ē1), C = ∪i∈I{κ ∈ ēi | A.check(κ, r̄) = top}

let S = {κ ∈ C | A.check(κ, ē0) = A.check(κ, ē1) = true}
in A.test (∧κ∈Sκ, r̄) .

In defining the die-hard hint for �, one should pay attention to avoid loops which
re-introduce a constraint that as been dropped by the widening. One way to do
it is to have an asymmetric hint, which restricts C only to the first operand (e.g.,
the candidate invariant):

Lemma 4. �d
(�,{0,1}) and �d

(�,{0}) are hints and �d
(�,{0}) is a widening.

6.3 Computed Hints

Hints can be inferred from the abstract states themselves. By looking at some
properties of the elements involved in the operation, one can try to guess useful
hints.

Lemma 5 (Computed hints). Let ē0, ē1 ∈ A, Ξ ∈ [A × A → A] a function
which returns a set of likely bounds of ē0 � ē1. Then �

Ξ
� below is a hint.

�
Ξ
� (ē0, ē1) = let S = {B ∈ Ξ(ē0, ē1) | A.check(B, ē0) = true ∧ A.check(B, ē1) = true}

in A.test(
∧

B∈S B, ē0 � ē1).

Computed hints are useful when the abstract join � is not optimal. Otherwise,
�

Ξ
� is no more precise than �̄. For instance, in a Galois connections-based ab-

stract interpretation, �̄ is optimal, in that it returns the most precise abstract
element approximating the concrete union. As a consequence, no further infor-
mation can be extracted from the operands. It is worth noting that in general
�

Ξ
� is not a widening. However, one can extend the arguments of the previous

section to define an asymmetric hint �Ξ
� .

Template hints. Let A.range ∈ [Exp × A → Intv] be a function that returns
the range for an expression in some abstract state, e.g., it satisfies: ∀E. ∀ē ∈
A. A.range(E, ē) = [l, u] =⇒ ∀σ ∈ γ(ē). l ≤ E�E�(σ) ≤ u. If A.range(E, ēi) =
[li, ui] for i ∈ {0, 1}, then γ(�Intv([l0, u0], [l1, u1])) is an upper bound for E in
∪(γ(ē0), γ(ē1)). As a consequence given a set P of polynomial forms, one can
design the guessing function ΞP :

ΞP (ē0, ē1) = {l ≤ p ≤ u | p ∈ P ∧ [l, u] = �Intv(A.range(p, ē0), A.range(p, ē1)}.

The main difference between �ΞP

� and syntactic hints is that the bounds for the
polynomials in P are semantic, as they are inferred from the abstract states and
not from the program text. For instance, computed hints infer the right invariant
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in the counter-example of Sect. 1 with the set of templates Oct ≡ {x0 − x1 |
x0, x1 are program variables}. In general, template hints with Oct refine Poly so
to make it as precise as Oct.

void Foo() {

int i = 2, j = 0;

while (...)

if (...) { i = i + 4; }

else { i = i + 2; j++; }

assert 2 <= i - 2 * j; }

Fig. 5. Example requiring the use of
2D-convex hull hints

2D-Convex Hull hints. New linear in-
equalities can be discovered at join points
using the convex hull algorithm. For
instance, the standard join on Poly is de-
fined in that way [8]. However the con-
vex hull algorithm requires an expensive
conversion from a tableau of linear con-
straints to a set of vertexes and gener-
ators, which causes the analysis time to
blow up. A possible solution is to consider
a planar convex hull, which computes possible linear relations between pairs of
variables by: (i) projecting the abstract states on all the two-dimensional planes;
and (ii) computing the planar convex hull on those planes. Planar convex hull,
combined with a smart representation of the abstract elements allows us to au-
tomatically discover complex invariants without giving up performances. Let us
consider the code in Fig. 5 from [8]. At a price of exponential complexity, Poly
can infer the correct loop invariant, and prove the assertion correct. SubPoly re-
fined with 2D-Convex hull hints can prove the assertion, yet keeping a worst-case
polynomial complexity [17].

6.4 Reductive Hints

Intuitively, one way to improve the precision of a unary operator is to iterate
its application [13]. However, an unconditional iteration may be source of un-
soundness. For instance, let − ∈ [Intv → Intv] be the operator which applies the
unary minus to an interval. In general, ∀n ∈ N. ē = −2n(ē) �= −2n+1(ē). We say
that a function f is reductive if ∀x.f(x) ( x; and closing if it is reductive and
∀x.f(f(x)) = f(x).

Lemma 6 (Reductive hints). Let 7 ∈ [C → C] be a unary operator and
7̄ ∈ [A → A] its abstract counterpart. Let 7 be closing, 7̄ be reductive, and n ≥ 0.
Then ��̄(ē) = 7̄n(ē) is a hint.

The main application of reductive hints is to improve the precision in handling
the guards in non-relational abstract domains. Given a Boolean guard B and an
abstract domain A, ψ ≡ λē. A.test(B, ē) is an abstract operator which satisfies
the hypotheses of Lemma 6. Abstract compilation can be used to express ψ
in terms of domain operations, their compositions and state update. Lemma 6
justifies the use of local fixpoint iterations to refine the result of the analysis.
For instance, in the abstract domain [Var → {true, false,*,⊥}] the abstract
compilation of the predicate b1 == b2∧b2 == b3 is ψ ≡ λb.(b[b1, b2 → b(b1)∧
b(b2)])∧̇(b[b2, b3 → b(b2) ∧ b(b3)], where ∧̇ denotes the pointwise extension of
∧. In an initial abstract state b0 = [b1, b2 → *; b3 → true], ψ(b0) = [b1 →
*; b2, b3 → true] is refined by ψ2(b0) = [b1, b2, b3 → true] = ψn(b0), n ≥ 2.
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public BitArray(byte[] bytes) {

Contract.Requires(bytes != null);

this.m_array = new int[(bytes.Length + 3) / 4];

this.m_length = bytes.Length * 8;

int index = 0, j = 0;

for (; (bytes.Length - j) >= 4; j+=4)

this.m_array[index++] = (((bytes[j] & 0xff) | ((bytes[j + 1] & 0xff) << 8))

| ((bytes[j + 2] & 0xff) << 0x10)) | ((bytes[j + 3] & 0xff) << 0x18);

switch ((bytes.Length - j)) {

case 1 : goto Label_00DB;

case 2 : break;

case 3 : this.m_array[index] = (bytes[j + 2] & 0xff) << 0x10; break;

default: goto Label_00FC;

}

this.m_array[index] |= (bytes[j + 1] & 0xff) << 8;

Label_00DB:

this.m_array[index] |= bytes[j] & 0xff;

Label_00FC:

this.version = 0;

}

Fig. 6. Example of code from mscorlib.dll. Out of the 23 total array bound checks,
Clousot with 〈Pnt,�d

�,�〉 validates 13, Clousot with 〈SubPoly, ∅〉 validates 6 more, and
Clousot with 〈SubPoly,�d

�〉 validates the remaining 4.
.

7 Experience

We implemented hints in Clousot, our abstract interpretation-based static an-
alyzer for .Net. Clousot has been designed and it is used as the static checker
for the CodeContracts project [21]. CodeContracts provide a language-agnostic
approach to the definition of object invariants, method preconditions and post-
conditions. Contracts are specified by static methods of the Contracts class,
e.g., Contracts.Requires(x! = null); specifies that the parameter x should be
not null. More details on the specification language can be found in the documen-
tation on the CodeContracts website[21]. The Contracts class will be shipped in
the version 4.0 of the .Net framework [22] (at the moment of writing, in the public
beta 1 phase). Clousot is shipped on the DevLabs [21] website, and it is available
for free downloading for Academic use at http://research.microsoft.com/
en-us/projects/contracts/.

Clousot analyzes each method m in isolation. It assumes the precondition of
m, it progates it through the body, it computes loop invariants, and it uses the
inferred invariants to validate: (i) the method postcondition; (ii) the precondi-
tions of the methods invoked by m; (iii) the user provided assertions; and (iv) the
absence of runtime errors (e.g., null pointers, array out-of-bounds, divisions by
zero, negation of MinInt . . . ) and of buffer overruns [10]. When a method has no
annotations, Clousot simply assumes the worst case scenario (e.g., the param-
eters can assume any value compatible with their type). Orthogonally, Clousot
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can infer pre-conditions and post-conditions to help reduce the annotation bur-
den. Clousot analyzes m incrementally. The user specifies a sequence of pairs of
domains and set of hints 〈A0, H0〉 . . . 〈An, Hn〉. Clousot instantiates the abstract
semantics of m with the abstract domain Ai refined with the hints in Hi. If it can-
not discharge all the proof obligations, Clousot tries to discharge the remaining
proof obligations using the abstract domain Ai+1 refined with the hints Hi+1. We
designed new numerical abstract domains, ranging from imprecise yet very fast
(Pnt, [18]) to very precise but more expensive (SubPoly, [17]). In the incremental
setting of Clousot, hints allow a very fine tuning of the precision/cost ratio. For
instance, the same abstract domain can be refined with several hints: the more the
hints, the more precise the analysis, but also the more expensive it is.

We report the experimental results of refining the abstract operations of the two
extremes of the precision spectrum of Clousot’s numerical abstract domains: Pnt
and SubPoly. Pnt is a weakly relational domain which captures properties in the
form of x ∈ [a, b] ∧ x < y. SubPoly is a strongly relational domain which is as ex-
pressive as Poly, but drops some of the inference power to achieve scalability: Hints
are cardinal to recover precision yet mantaining performace. We run the experi-
ments on a Core2 Duo E6850@3.00Ghz PC, with 4 GB of RAM, running Windows
7. We analyzed four of the main libraries of the current release of the .Net frame-
work (v.3.5), available in every Windows distribution. The mscorlib.dll library
is the core of the .Net framework: it contains the definitions for the Object, Int32
. . . types, but also common data structures such as List, Dictionary, and many
other usefull classes (for reflection, security .. . ). The System.dll library is a higher
layer on mscorlib.dll. System.Web.dll and System.Design.dll contain classes
that simplify the access to the Web and the creation of user interfaces. In order to
provide an uniform and repeatable test bench: (i) we considered shipped assemblies
(hence with no annotations: The annotation processing is undergoing internally at
Microsoft); (ii) we turned off the inference capabilities of Clousot; and (iii) we used
Clousot only to check array creations and accesses (lower and upper bounds): the
shipped assemblies do not contain annotations, so there are no contracts to check.
The framework libraries contains tenths of thousands of array accesses, some of
them are quite easy (e.g., the sequential access of an array in a for loop) but others
require inferringmore complex relations between the array lengths and the indexes.
For instance, Fig. 6 shows the constructor of the BitArray type (we picked it ran-
domly from Clousot’s log). The Pnt and SubPoly abstract domains alone can be
used to prove most of the array accesses correct, however, all the proof obligations
can be discharged only using die-hard hints. One may object that the same result
can be obtained using existing domains such as Oct or Poly. However, Oct is unable
to capture the constraint 4 · m array.Length− bytes.Length == 3, which is nec-
essary to prove that index < m array.Length, and Poly suffers of a huge scalability
problem, which shows up even in small code snippets like the one in Fig. 6.

Figure 7 compares die-hard hints and saturation hints when used to refine the
join and widening of Pnt. The figure reports the analyzed assemblies, the total
number of analyzed methods, the total number of proof obligations checked
(i.e., array creations, lower bounds, and upper bounds), the number of proof
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P.O. Pnt Pnt + d
�,� Slow- Pnt + ρ

{�,�}× Slow-
Assembly Methods Checked Valid Time Valid Time down Valid Time down

mscorlib 17 286 14 059 3:03(0) 14 293 3:10(0) 1.0x 14 220 10:33(4) 3.3x
System 15 497 12 037 9 979 2:28(0) 10 321 2:36(0) 1.0x 10 143 9:43(2) 3.7x

System.Web 23 655 14 304 12 952 2:49(0) 13 034 2:55(0) 1.0x 13 048 8:30(0) 2.9x
System.Design 12 922 10 577 9 562 2:18(0) 10 135 2:21(0) 1.0x 9 947 7:39(5) 3.2x

Fig. 7. The experimental results of refining Pnt with die-hard hints and saturation hints.
Pnt with die-hard hints validates 1 231 more proof obligations. Pnt with saturation hints
are 3x slower, hit 11 timeouts (2 min), and validate 425 less accesses than �d.

obligations validated and the analysis time for the pair-wise gathering operations
and two refinements of the Pnt operations. The values in brackets denote the
number of methods for which the analysis timed out. Time out was set to 2
minutes. Die-hard hints allow Clousot to validate 1 231 accesses more than the
pair-wise joins at no extra cost. On the other hand, saturation hints induce an
average 3x slow-down of the analysis, which causes the analysis to time out for
11 methods, and hence to validate 425 less accesses. We manually inspected
the analysis logs. We found that 〈Pnt,�d

�,�〉 missed only few validations w.r.t.
〈Pnt,�ρ

{�,�}×〉. As a consequence, the use of a saturation procedure with Pnt

seems to be disadvantageous: the cost is too high, and the precision can be
recovered by more precise abstract domains anyway. Furthermore, we checked
some of the proof obligations reported as unproven or unreachable from Clousot.
Most of the unproven conditions are caused by the lack of contracts (mainly
postconditions and object invariants). However, some of the unproven conditions
turned out to be real bugs, and the unreachable ones, after fixing some bug of
the analyzer, were effectively dead-code.

Figure 8 focuses on the analysis of mscorlib using SubPoly refined with hints.
SubPoly is a very expressive abstract domain (as expressive as Poly), whose in-
ference precision can be fine tuned thanks to hints. The first column in the
table shows the results of the analysis with no hints. This is roughly equivalent
to precisely propagating arbitrary linear equalities and intervals, with limited
inference and no propagation of information between linear equalities and inter-
vals. User-provided hints and die-hard hints add more inference power, at the
price of a still acceptable slow-down. Computed hints (with Octagons and 2D-
Convex hull) further slow-down of the analysis, causing the analysis of various
methods to time out. We manually inspected the analysis logs to investigate
the differences. Ignoring the methods that timed-out, with respect to SubPoly∗,
〈SubPoly∗,�ΞOct

� 〉 and 〈SubPoly∗,�Ξ2DCH

� 〉 report respectively 125 and 124 less
false positives. Out of those, only 13 overlap.

One may wonder if computed hints are needed at all. We observed that, when
considering annotated code (unfortunately, just a small fraction of the overall
codebase at the moment of writing), one needs to refine the operations of the
abstract domains with hints in order to get a very low (and hence acceptable)
false alarms ratio (around 0.5%) . In fact, even if (relatively) rare, assertions
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SubPoly SubPoly∗ Slow SubPoly∗ + ΞOct

� Slow SubPoly∗ + Ξ2DCH

� Slow
Valid Time Valid Time down Valid Time down Valid Time down

14 230 4:29(0) 14 432 20:22(0) 4.5x 13 948 81:24(20) 18.2x 14 396 36:33(7) 8.1x

Fig. 8. The experimental results analyzing mscorlib with SubPoly and different seman-
tic hints. SubPoly∗ denotes SubPoly refined with �pred

� and �d
�,�. Computed hints signifi-

cantly slow-down the analysis, but they are needed to reach a very low false alarm ratio.

as in Fig. 1(b) and Fig. 5 are present in real code. Thanks to the incremental
structure of Clousot, we do not need to run SubPoly with all the hints on all
the analyzed methods, but we can focus the highest precision only on the few
methods which require it.

8 Conclusions

We introduced hints, a technique to systematically refine abstract domain op-
erations. Hints allow us improving the precision of abstract operation whenever
those are not complete, e.g., when the underlying abstract domain is not a com-
plete lattice (the common case in practice). We formalized hints in a relaxed
abstract interpretation setting, we proved their soundness, and we distinguished
between syntactic and semantics hints. We showed how some existing techniques
to improve the precision of static analyses, such as widening with thresholds and
reductive iterations are just instances of hints. We applied hints to the numerical
abstract domains defined in our abstract interpretation-based analyzer, showing
how they enable a powerful tuning of the precision/cost ratio. However, hints
are not restricted to numerical domains, and they can be easily generalized to
other kind of domains (for instance, for heap analysis) Future work will consider
combining hints with other forms of refinement, as domain refinement, counter
example-based refinement, and inference of optimal transfer functions.
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