

Lecture Notes in Computer Science 5931
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Martin Gilje Jaatun Gansen Zhao
Chunming Rong (Eds.)

Cloud Computing

First International Conference, CloudCom 2009
Beijing, China, December 1- 4, 2009
Proceedings

13

Volume Editors

Martin Gilje Jaatun
SINTEF IKT
NO-7465, Trondheim, Norway
E-mail: martin.g.jaatun@sintef.no

Gansen Zhao
South China Normal University
School of Computer Science
Guangzhou, China
E-mail: zhaogansen@gmail.com

Chunming Rong
University of Stavanger
Faculty of Science and Technology
Department of Electrical and Computer Engineering
NO- 4036, Stavanger, Norway
E-mail: chunming.rong@uis.no

Library of Congress Control Number: 2009939453

CR Subject Classification (1998): C.2.1, C.1.4, C.2.4, D.4.2, D.4.3, D.4.7, E.1

LNCS Sublibrary: SL 5 – Computer Communication Networks andTelecommunications

ISSN 0302-9743
ISBN-10 3-642-10664-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-10664-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12810659 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of CloudCom 2009, the First Interna-
tional Conference on Cloud Computing. The conference was held in Beijing,
China, during December 1–4, 2009, and was the first in a series initiated by
the Cloud Computing Association (www.cloudcom.org). The Cloud Computing
Association was founded in 2009 by Chunming Rong, Martin Gilje Jaatun, and
Frode Eika Sandnes. This first conference was organized by the Beijing Jiao-
tong University, Chinese Institute of Electronics, and Wuhan University, and
co-organized by Huazhong University of Science and Technology, South China
Normal University, and Sun Yat-sen University.

Ever since the inception of the Internet, a “Cloud” has been used as a
metaphor for a network-accessible infrastructure (e.g., data storage, computing
hardware, or entire networks) which is hidden from users. To some, the concept
of cloud computing may seem like a throwback to the days of big mainframe
computers, but we believe that cloud computing makes data truly mobile, al-
lowing a user to access services anywhere, anytime, with any Internet browser.
In cloud computing, IT-related capabilities are provided as services, accessible
without requiring control of, or even knowledge of, the underlying technology.
Cloud computing provides dynamic scalability of services and computing power,
and although many mature technologies are used as components in cloud com-
puting, there are still many unresolved and open problems.

The CloudCom 2009 conference provided a dynamic forum for engineers and
scientists in academia, industry, and government to exchange ideas and experi-
ences in developing: cloud/grid architectures; load balancing schemes; Optimal
deployment configurations; consistency models; virtualization technologies; mid-
dleware frameworks; software as a service (SaaS); hardware as a service (HaaS);
data grid & Semantic Web; Web services; security and risk; fault tolerance
and reliability; auditing, monitoring and scheduling; utility computing; high-
performance computing; and peer-to-peer computing, all within the concept of
cloud computing.

Almost 200 papers were submitted, from all around the world. The Program
Chairs rejected 20 clearly out-of-scope papers without review, and these are not
included in the acceptance ratio calculation. All relevant submissions were re-
viewed by at least three Technical Program Committee members or external
reviewers. In order to ensure a high quality, out of 167 papers in the submis-
sion and review system only 44 regular full-length papers were accepted for oral
presentation and inclusion in the proceedings, reflecting a 27% acceptance rate.
Since cloud computing is a relatively new field, we also included some contribu-
tions in the short paper sessions representing ongoing research and interesting
ideas. All of these papers and topics provided novel ideas, new results, work
in progress, and state-of-the-art techniques in this field. We thus made every

VI Preface

effort to stimulate the future research activities in the area of cloud comput-
ing, to encourage the dissemination of various research results and ideas, and to
make CloudCom2009 a real forum for cloud computing research and technology.
The program also included four invited talks from James Yeh, Geoffrey Fox,
Chunming Rong, and Rajkumar Buyya.

Organization of conferences with a large number of submissions requires a
lot of hard work and dedication from many people. We would like to take this
opportunity to thank numerous individuals whose work made this conference
possible and ensured its high quality. First and foremost, we thank the authors
of submitted papers for contributing to the conference technical program. We
are also grateful to the Program (Vice) Chairs, for their hard work and commit-
ment to quality when helping with the paper selection. We would also like to
thank all Program Committee members and external reviewers for their excel-
lent job in the paper review process. We are indebted to the Publicity Chairs for
advertising the conference, to the Local Organizing Committee for managing reg-
istration and other conference organization-related tasks, and to Beijing Jiatong
University, Chinese Institute of Electronics, and Wuhan University for hosting
the conference. We are also grateful to Liang Yan and Jie Lian for their intrepid
efforts managing the two mirrors of the conference website, and to EasyChair
for providing the conference management system.

Special thanks to Hamid R. Arabnia, University of Georgia, Han-Chieh Chao,
National Ilan University, Frode Eika Sandnes, Oslo University College,
Chunming Rong, University of Stavanger, and Hai Jin, Huangzhong University
of Science and Technology, for organising special issues in the Journal of Su-
percomputing, the Journal of Internet Technology, and the Journal of Computer
Science and Technology.

October 2009 Martin Gilje Jaatun
Gansen Zhao

Chunming Rong

Conference Organization

Honarary General Chair

Jichuan Wu Chinese Institute of Electronics, China

General Chairs (Academic)

Deyi Li Chinese Academy of Engineering, China
Hai Jin Huazhong University of Science & Technology,

China

General Chair (Organizing)

Yun Liu Beijing Jiaotong University, China

Program Chairs

Martin Gilje Jaatun SINTEF ICT, Norway
Gansen Zhao South China Normal University/Sun Yat-sen

University, China

Program Vice Chairs

Geoffrey Fox Indiana University, USA
Ho-fung Leung Chinese University of Hong Kong, China
Omer F. Rana Cardiff University, UK
Waleed Smari University of Dayton, USA
Luca Spalazzi Universitá Politecnica delle Marche, Italy
Yun Yang Swinburne University of Technology, Australia
Shi Ying Wuhan University, China

Award Chair

David Bader Georgia Institute of Technology, USA

VIII Organization

Panel Chairs

Rajkumar Buyya University of Melbourne and Manjrasoft,
Australia

Hai Jin Huazhong University of Science and
Technology, China

Steering Committee

Chunming Rong University of Stavanger, Norway (Chair)
Hai Jin Huazhong University of Science and

Technology, China
Martin Gilje Jaatun SINTEF, Norway
Rulin Liu Chinese Institute of Electronics, China

Advisory Committee

Hamid R. Arabnia University of Georgia, USA
Han-Chieh Chao National Ilan University, Taiwan, China
Geoffrey Fox Indiana University, USA
Benxiong Huang Huazhong University of Science and

Technology, China
Chung-Ming Huang National Chung Kung University, Taiwan,

China
Victor Leung University of British Columbia, Canada
Jianhua Ma Hosei University, Japan
Mark Musen Stanford University, USA
Jong Hyuk Park Kyungnam University, Korea
Frode Eika Sandnes Oslo University College, Norway
Cho-Li Wang University of Hong Kong, China
Zhiwei Xu Chinese Academy of Science, China
Laurence T. Yang St. Francis Xavier University, Canada

Finance Committee

Runhua Lin Chinese Institute of Electronics, China (Chair)
Zhenjiang Zhang Beijing Jiaotong University, China (Co-chair)
Gansen Zhao South China Normal University/Sun Yat-sen

University, China (Co-chair)

Organizing Committee

Yong Li Beijing Jiaotong University, China (Chair)
Kaihong Dong Chinese Institute of Electronics, China

(Co-chair)

Organization IX

Bing Li Wuhan University, China (Co-chair)
Yanning Zhang Beijing Jiaotong University, China (Co-chair)
Dan Tao Beijing Jiaotong University, China
Liang Yan University of Stavanger, Norway
Jin Liu Wuhan University, China
Yimin Zhang Chinese Institute of Electronics, China

Web Administration Chairs

Jie Lian Beijing Jiaotong University, China
Qing Liu Beijing Jiaotong University, China

Publicity Chair

Paul Van Binst Université Libre de Bruxelles, Belgium

Publication Chair

Wei Sun Sun Yat-sen University, China

European Liaison Chair

Erik Hjelmås Gjøvik University College, Norway

American Liaison Chair

Naixue Xiong Georgia State University, USA

Asia Liaison Chair

Robert Hsu Chung Hua University, Taiwan

Oceania Liaison Chair

Oliver Sinnen University of Auckland, New Zealand

Program Committee

Gagan Agrawal Ohio State University, USA
Ahmed Al-Dubai Napier University, UK
Bernady Apduhan Kyushu Sangyo University, Japan
Atta Badii University of Reading, UK

X Organization

Mark Baker University of Reading, UK
Kyrre Begnum Oslo University College, Norway
George Bosilca University of Tennessee, USA
Sergey Bratus Dartmouth College, USA
Lawrie Brown ADFA, Australia
Rajkumar Buyya University of Melbourne and Manjrasoft,

Australia
Jian Cao ShangHai Jiao Tong University, China
David Chadwick University of Kent, UK
Ruey-Maw Chen National Chin-Yi University of Technology,

Taiwan, China
Dickson Chiu Dickson Computer Systems, Hong Kong, China
Kenneth Chiu Binghamton University, USA
Fabio M. Costa Universidade Federal de Goiás, Brazil
Yuanshun Dai University of Electronic Science and

Technology of China, China
Reggie Davidrajuh University of Stavanger, Norway
Robert Deng Singapore Management University, Singapore
Frederic Desprez INRIA, France
Wanchun Dou Nanjing University, China
Chenggong Fan EMC China Research Center, China
Dan Feng Huazhong University of Science and

Technology, China
Jürgen Fuss University of Applied Sciences - Hageberg,

Austria
Stefanos Gritzalis University of the Aegean, Greece
Daniel Grosu Wayne State University, USA
Nils Gruschka NEC Laboratories Europe, Germany
Peiyuan Guo Beijing Technology and Business University,

China
Thomas Hacker Purdue University, USA
Yanbo Han Chinese Academy of Sciences, China
Zhen Han Beijing Jiaotong University, China
Qing He Chinese Academy of Sciences, China
Neil Chue Hong OMII, UK
Hui-Huang Hsu Tamkang University, Taiwan, China
Yongfeng Huang Tsinghua University, China
Yo-Ping Huang National Taipei University of Technology,

Taiwan, China
Ray Y.M. Huang National Cheng Kung University, Taiwan,

China
Marty Humphrey University of Virginia, USA
Michel Hurfin Irisa, INRIA, France
Ren-Hung Hwang National Chung Cheng University, Taiwan,

China

Organization XI

Jörg Hähner Leibniz University of Hannover, Germany
Luigi Lo Iacono NEC Laboratories Europe, Germany
Alexandru Iosup TU Delft, The Netherlands
Mike (Hua) Ji Juniper Networks, USA
Thilo Kielmann Vrije Universiteit, The Netherlands
Hiroaki Kikuchi Tokai University, Japan
Romain Laborde University Paul Sabatier, France
Bing Li Wuhan University, China
Juanzi Li Tsinghua University, China
Wenjun Li Sun Yat-sen University, China
Xuhui Li Wuhan University, China
Yan Li Intel, China
Yong Li Beijing Jiaotong University, China
Zhi Li 800APP, China
Peter Linington University of Kent, UK
Jiming Liu Hong Kong Baptist University, Hong Kong,

China
Yun Liu Beijing Jiaotong University, China
Peng Liu PLA University of Science and Technology,

China
Seng Wai Loke La Trobe University, Australia
Shizhu Long BORQS, China
Jinhu Lv Chinese Academy of Science, China
Huadong Ma Beijing University of Posts and

Telecommunications, China
Antonio Maña Gomez University of Malaga, Spain
Ian Marshall Lancaster University, UK
Hong Mei Peking University, China
Hein Meling University of Stavanger, Norway
Kai Xiang Miao Intel China Research Center, China
José A. Montenegro Universidad de Málaga, Spain
David Moreland CSIRO, Australia
Gero Mühl Technical University of Berlin, Germany
Tadahiko Murata Kansai University, Japan
Simin Nadjm-Tehrani Linköping University, Sweden
Dimitris Nikolopoulos Virginia Tech, USA
Josef Noll UniK, Norway
Oleksandr Otenko Oracle, UK
Maria S. Perez-Hernandez Universidad Politécnica de Madrid, Spain
Radu Prodan University of Innsbruck, Austria
Depei Qian BeiHang University, China
Huaifeng Qin Platform Computing, China
Julian L. Rrushi Oak Ridge National Laboratory, USA
Ali Shahrabi Glasgow Caledonian University, UK
Kuei-Ping Shih Tamkang University, Taiwan, China

XII Organization

Timothy K. Shih NTUE, Taiwan, China
Qinbao Song Xian Jiao Tong University, China
Willy Susilo University of Wollongong, Australia
Jie Tang Tsinghua University, China
Yong Tang South China Normal University, China
Feiyue Wang Chinese Academy of Sciences, China
Guojun Wang Central South University, China
Junfeng Wang Sichuan University, China
Peng Wang Chengdu University of Information Technology,

China
Qing Wang Chinese Academy of Sciences, China
Yi Wang Google China Research Lab, China
Von Welch University of Illinois, USA
Gilbert Wondracek TU Vienna, Austria
Song Wu Huazhong University of Science and

Technology, China
Xinran Wu Intel Research China, China
Jinhua Xiong Institute of Computing Technology, CAS,

China
Dongyan Xu Purdue University, USA
Zhiyong Xu Suffolk University, USA
Lu Yan University of Hertfordshire, UK
Shoubao Yang USTC, China
Geng Yang Nanjing University of Post &

Telecommunications, China
Chao-Tung Yang Tunghai University, Taiwan, China
Hongyu Yao Yoyo System, China
Jon (Jong-Hoon) Youn University of Nebraska at Omaha, USA
Feng Yu Southeast University, China
Huashan Yu Peking University, China
Nenghai Yu University of Science and Technology of China,

China
Zhiwen Yu Northwestern Polytechnical University, China
Sherali Zeadally University of the District of Columbia, USA
Cheng Zeng Wuhan University, China
Li Zha Institute of Computing Technology, CAS,

China
Feng Zhang Sun Yat-sen University, China
Li Zhang BeiHang University, China
Tingting Zhang Mid Sweden University, Sweden
Zonghua Zhang NICT, Japan
Wenyin Zhao KingQue Cor., China
Weimin Zheng Tsinghua University, China
Zhibin Zheng HUAWEI, China

Organization XIII

Sheng Zhong SUNY Buffalo, USA
Wenhui Zhou China Mobile Research Institute, China
Jinzy Zhu IBM Software Group Services, China
Peidong Zhu National University of Defense Technology,

China
Deqing Zou Huazhong University of Science and

Technology, China
Knut Øvsthus Bergen University College, Norway

External Reviewers

Azab, Abdulrahman
Cao, Zhidong
Chang, Lei
Chen, Jidong
Chen, Xi
Chen, Xu
Chen, Yu
Deng, Fang
Ding, Zhijun
Garg, Nandan
Hao, Lu
He, Chengwan
He, Keqing
Huang, Bo
Huang, Jiung-yao
Huang, Xiaomeng
Ibrahim, Shadi
Jeng, Yu-Lin
Liu, Haiwen
Liu, Jeff
Liu, Jin
Long, Qin
Luo, Xiangfeng
Muñoz, Antonio
Nyre, Åsmund Ahlmann
Ostermann, Simon
Peng, Rong
Rekleitis, Evangelos
Schneider, Joerg
Schoenherr, Jan H.
Shi, Feng
Shi, Xuanhua

Slagell, Adam
Sonmez, Ozan
Sun, Xiaoping
Sun, Yibo
Tang, Lei
Ting, Chuan-Kang
Voorsluys, William
Wang, Chi
Wang, Lei
Wang, Rui
Wang, Xingang
Wang, Zhu
Wu, Ling
Wu, Qian
Xiao, Chunxian
Xiao, Junchao
Xiaolong, Zheng
Yang, Bo
Yang, Qiusong
Yang, Ziye
Yigitbasi, Nezih
Zaman, Sharrukh
Zhai, Haoliang
Zhang, Chi
Zhang, Junsheng
Zhao, Zhuofeng
Zheng, Zibin
Zhou, Aoying
Zhou, Guofu
Zhou, Shuigeng
Zhydkov, Dmytro

Table of Contents

1. Invited Papers

The Many Colors and Shapes of Cloud . 1
James T. Yeh

Biomedical Case Studies in Data Intensive Computing 2
Geoffrey Fox, Xiaohong Qiu, Scott Beason, Jong Choi,
Jaliya Ekanayake, Thilina Gunarathne, Mina Rho, Haixu Tang,
Neil Devadasan, and Gilbert Liu

An Industrial Cloud: Integrated Operations in Oil and Gas in the
Norwegian Continental Shelf . 19

Chunming Rong

Cloudbus Toolkit for Market-Oriented Cloud Computing 24
Rajkumar Buyya, Suraj Pandey, and Christian Vecchiola

2. Full Papers

Self-healing and Hybrid Diagnosis in Cloud Computing 45
Yuanshun Dai, Yanping Xiang, and Gewei Zhang

Snow Leopard Cloud: A Multi-national Education Training and
Experimentation Cloud and Its Security Challenges 57

Erdal Cayirci, Chunming Rong, Wim Huiskamp, and Cor Verkoelen

Trust Model to Enhance Security and Interoperability of Cloud
Environment . 69

Wenjuan Li and Lingdi Ping

Dynamic Malicious Code Detection Based on Binary Translator 80
Zhe Fang, Minglu Li, Chuliang Weng, and Yuan Luo

A Privacy Manager for Cloud Computing . 90
Siani Pearson, Yun Shen, and Miranda Mowbray

Privacy in a Semantic Cloud: What’s Trust Got to Do with It? 107
Åsmund Ahlmann Nyre and Martin Gilje Jaatun

Data Protection-Aware Design for Cloud Services . 119
Sadie Creese, Paul Hopkins, Siani Pearson, and Yun Shen

Accountability as a Way Forward for Privacy Protection in the
Cloud . 131

Siani Pearson and Andrew Charlesworth

XVI Table of Contents

Towards an Approach of Semantic Access Control for Cloud
Computing . 145

Luokai Hu, Shi Ying, Xiangyang Jia, and Kai Zhao

Identity-Based Authentication for Cloud Computing 157
Hongwei Li, Yuanshun Dai, Ling Tian, and Haomiao Yang

Strengthen Cloud Computing Security with Federal Identity
Management Using Hierarchical Identity-Based Cryptography 167

Liang Yan, Chunming Rong, and Gansen Zhao

Availability Analysis of a Scalable Intrusion Tolerant Architecture with
Two Detection Modes . 178

Toshikazu Uemura, Tadashi Dohi, and Naoto Kaio

Data Center Consolidation: A Step towards Infrastructure Clouds 190
Markus Winter

Decentralized Service Allocation in a Broker Overlay Based Grid 200
Abdulrahman Azab and Hein Meling

DisTec: Towards a Distributed System for Telecom Computing 212
Shengqi Yang, Bai Wang, Haizhou Zhao, Yuan Gao, and Bin Wu

Cloud Computing Boosts Business Intelligence of Telecommunication
Industry . 224

Meng Xu, Dan Gao, Chao Deng, Zhiguo Luo, and Shaoling Sun

Composable IO: A Novel Resource Sharing Platform in Personal
Clouds . 232

Xiaoxin Wu, Wei Wang, Ben Lin, and Kai Miao

SLA-Driven Adaptive Resource Management for Web Applications on
a Heterogeneous Compute Cloud . 243

Waheed Iqbal, Matthew Dailey, and David Carrera

Cost of Virtual Machine Live Migration in Clouds: A Performance
Evaluation . 254

William Voorsluys, James Broberg, Srikumar Venugopal, and
Rajkumar Buyya

Cloud-Oriented Virtual Machine Management with MLN 266
Kyrre Begnum, Nii Apleh Lartey, and Lu Xing

A Systematic Process for Developing High Quality SaaS Cloud
Services . 278

Hyun Jung La and Soo Dong Kim

Cloud Computing Service Composition and Search Based on
Semantic . 290

Cheng Zeng, Xiao Guo, Weijie Ou, and Dong Han

Table of Contents XVII

Deploying Mobile Computation in Cloud Service . 301
Xuhui Li, Hao Zhang, and Yongfa Zhang

A Novel Method for Mining SaaS Software Tag via Community
Detection in Software Services Network . 312

Li Qin, Bing Li, Wei-Feng Pan, and Tao Peng

Retrieving and Indexing Spatial Data in the Cloud Computing
Environment . 322

Yonggang Wang, Sheng Wang, and Daliang Zhou

Search Engine Prototype System Based on Cloud Computing 332
Jinyu Han, Min Hu, and Hongwei Sun

Distributed Structured Database System HugeTable 338
Ji Qi, Ling Qian, and Zhiguo Luo

Cloud Computing: A Statistics Aspect of Users . 347
Gansen Zhao, Jiale Liu, Yong Tang, Wei Sun, Feng Zhang,
Xiaoping Ye, and Na Tang

An Efficient Cloud Computing-Based Architecture for Freight System
Application in China Railway . 359

Baopeng Zhang, Ning Zhang, Honghui Li, Feng Liu, and Kai Miao

Web Server Farm in the Cloud: Performance Evaluation and Dynamic
Architecture . 369

Huan Liu and Sewook Wee

SPECI, a Simulation Tool Exploring Cloud-Scale Data Centres 381
Ilango Sriram

CloudWF: A Computational Workflow System for Clouds Based on
Hadoop . 393

Chen Zhang and Hans De Sterck

A Novel Multipath Load Balancing Algorithm in Fat-Tree Data
Center . 405

Laiquan Han, Jinkuan Wang, and Cuirong Wang

Scheduling Active Services in Clustered JBI Environment 413
Xiangyang Jia, Shi Ying, Luokai Hu, and Chunlin Chen

Task Parallel Scheduling over Multi-core System . 423
Bo Wang

Cost-Minimizing Scheduling of Workflows on a Cloud of Memory
Managed Multicore Machines . 435

Nicolas G. Grounds, John K. Antonio, and Jeff Muehring

XVIII Table of Contents

Green Cloud on the Horizon . 451
Mufajjul Ali

Industrial Cloud: Toward Inter-enterprise Integration 460
Tomasz Wiktor Wlodarczyk, Chunming Rong, and
Kari Anne Haaland Thorsen

Community Cloud Computing . 472
Alexandros Marinos and Gerard Briscoe

A Semantic Grid Oriented to E-Tourism . 485
Xiao Ming Zhang

Irregular Community Discovery for Social CRM in Cloud Computing . . . 497
Jin Liu, Fei Liu, Jing Zhou, and ChengWan He

A Contextual Information Acquisition Approach Based on Semantics
and Mashup Technology . 510

Yangfan He, Lu Li, Keqing He, and Xiuhong Chen

Evaluating MapReduce on Virtual Machines: The Hadoop Case 519
Shadi Ibrahim, Hai Jin, Lu Lu, Li Qi, Song Wu, and Xuanhua Shi

APFA: Asynchronous Parallel Finite Automaton for Deep Packet
Inspection in Cloud Computing . 529

Yang Li, Zheng Li, Nenghai Yu, and Ke Ma

3. Short Papers

Secure Document Service for Cloud Computing . 541
Jin-Song Xu, Ru-Cheng Huang, Wan-Ming Huang, and Geng Yang

Privacy of Value-Added Context-Aware Service Cloud 547
Xin Huang, Yin He, Yifan Hou, Lisi Li, Lan Sun, Sina Zhang,
Yang Jiang, and Tingting Zhang

A Simple Technique for Securing Data at Rest Stored in a Computing
Cloud . 553

Jeff Sedayao, Steven Su, Xiaohao Ma, Minghao Jiang, and Kai Miao

Access Control of Cloud Service Based on UCON . 559
Chen Danwei, Huang Xiuli, and Ren Xunyi

Replica Replacement Strategy Evaluation Based on Grid Locality 565
Lihua Ai and Siwei Luo

Performance Evaluation of Cloud Service Considering Fault Recovery . . . 571
Bo Yang, Feng Tan, Yuan-Shun Dai, and Suchang Guo

Table of Contents XIX

BlueSky Cloud Framework: An E-Learning Framework Embracing
Cloud Computing . 577

Bo Dong, Qinghua Zheng, Mu Qiao, Jian Shu, and Jie Yang

Cloud Infrastructure & Applications – CloudIA . 583
Anthony Sulistio, Christoph Reich, and Frank Doelitzscher

One Program Model for Cloud Computing . 589
Guofu Zhou and Guoliang He

Enterprise Cloud Architecture for Chinese Ministry of Railway 595
Xumei Shan and Hefeng Liu

Research on Cloud Computing Based on Deep Analysis to Typical
Platforms . 601

Tianze Xia, Zheng Li, and Nenghai Yu

Automatic Construction of SP Problem-Solving Resource Space 609
Jin Liu, Fei Liu, Xue Chen, and Junfeng Wang

An Idea of Special Cloud Computing in Forest Pests’ Control 615
Shaocan Jiang, Luming Fang, and Xiaoying Huang

IBM Cloud Computing Powering a Smarter Planet 621
Jinzy Zhu, Xing Fang, Zhe Guo, Meng Hua Niu, Fan Cao,
Shuang Yue, and Qin Yu Liu

Cloud Computing: An Overview . 626
Ling Qian, Zhiguo Luo, Yujian Du, and Leitao Guo

Integrating Cloud-Computing-Specific Model into Aircraft Design 632
Tian Zhimin, Lin Qi, and Yang Guangwen

Towards a Theory of Universally Composable Cloud Computing 638
Huafei Zhu

A Service-Oriented Qos-Assured and Multi-Agent Cloud Computing
Architecture . 644

Bu-Qing Cao, Bing Li, and Qi-Ming Xia

Price-Oriented Trading Optimization for Grid Resource 650
Hao Li, Guo Tang, Wei Guo, Changyan Sun, and Shaowen Yao

A Requirements Recommendation Method Based on Service
Description . 656

Da Ning and Rong Peng

Extending YML to Be a Middleware for Scientific Cloud Computing 662
Ling Shang, Serge G. Petiton, Nahid Emad, Xiaolin Yang, and
Zhijian Wang

XX Table of Contents

Power-Aware Management in Cloud Data Centers . 668
Milan Milenkovic, Enrique Castro-Leon, and James R. Blakley

Parallel K -Means Clustering Based on MapReduce 674
Weizhong Zhao, Huifang Ma, and Qing He

Storage and Retrieval of Large RDF Graph Using Hadoop and
MapReduce . 680

Mohammad Farhan Husain, Pankil Doshi, Latifur Khan, and
Bhavani Thuraisingham

Distributed Scheduling Extension on Hadoop . 687
Zeng Dadan, Wang Xieqin, and Jiang Ningkang

A Data Distribution Aware Task Scheduling Strategy for MapReduce
System . 694

Leitao Guo, Hongwei Sun, and Zhiguo Luo

Cloud Computing Based Internet Data Center . 700
Jianping Zheng, Yue Sun, and Wenhui Zhou

Author Index . 705

The Many Colors and Shapes of Cloud

James T. Yeh

IBM Corporation

Abstract. While many enterprises and business entities are deploying
and exploiting Cloud Computing, the academic institutes and researchers
are also busy trying to wrestle this beast and put a leash on this possi-
ble paradigm changing computing model. Many have argued that Cloud
Computing is nothing more than a name change of Utility Computing.
Others have argued that Cloud Computing is a revolutionary change of
the computing architecture. So it has been difficult to put a boundary of
what is in Cloud Computing, and what is not. I assert that it is equally
difficult to find a group of people who would agree on even the definition
of Cloud Computing. In actuality, may be all that arguments are not
necessary, as Clouds have many shapes and colors. In this presentation,
the speaker will attempt to illustrate that the shape and the color of the
cloud depend very much on the business goals one intends to achieve. It
will be a very rich territory for both the businesses to take the advantage
of the benefits of Cloud Computing and the academia to integrate the
technology research and business research.

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 2–18, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Biomedical Case Studies in Data Intensive Computing

Geoffrey Fox1,2, Xiaohong Qiu1, Scott Beason1, Jong Choi1,2, Jaliya Ekanayake1,2,
Thilina Gunarathne1,2, Mina Rho2, Haixu Tang2, Neil Devadasan3, and Gilbert Liu4

1 Pervasive Technology Institute
2 School of Informatics and Computing

3 The Polis Center
4 School of Medicine Indiana University

{gcf,xqiu,smbeason,jychoi,jekanaya,tgunarat,mrho,
hatang}@indiana.edu,

{ndevadas,gcliu}@iupui.edu

Abstract. Many areas of science are seeing a data deluge coming from new
instruments, myriads of sensors and exponential growth in electronic records.
We take two examples – one the analysis of gene sequence data (35339 Alu
sequences) and other a study of medical information (over 100,000 patient
records) in Indianapolis and their relationship to Geographic and Information
System and Census data available for 635 Census Blocks in Indianapolis. We
look at initial processing (such as Smith Waterman dissimilarities), clustering
(using robust deterministic annealing) and Multi Dimensional Scaling to map
high dimension data to 3D for convenient visualization. We show how scaling
pipelines can be produced that can be implemented using either cloud
technologies or MPI which are compared. This study illustrates challenges in
integrating data exploration tools with a variety of different architectural
requirements and natural programming models. We present preliminary results
for end to end study of two complete applications.

Keywords: MapReduce, Clouds, MPI, Clustering, Sequencing, Dryad. Hadoop.

1 Introduction

Data Intensive Computing is very popular at this time. Partly this is due to the well
understood data deluge with all activities including science, government and modern
Internet (Web 2.0) systems all generating exponentially increasing data. One special
driver is that Web Search and related data mining can use an especially simple
programming model MapReduce of which there are now several implementations. It
is attractive to understand how generally applicable MapReduce is to other data
intensive problems as one can expect excellent commercial support for software in
this area. We have looked at the impact of clouds and compared Yahoo (Hadoop) and
Microsoft (Dryad) implementations of the MapReduce step presenting Dryad results
here. We choose two biomedical applications. The first addresses the structure of
Gene families and the processing steps involve sequence alignment, clustering and
visualization after projecting sequences to 3 dimensions using Multidimensional

 Biomedical Case Studies in Data Intensive Computing 3

scaling MDS. The second application involves correlating electronic patient records
with environmental information (from Geographical Information Systems) associated
with the patient location. Here the end to end study involves substantial data
validation, processing with many standard tools such as those in R but also many
possible other applications such as Multidimensional Scaling dimension reductions
and Genetic algorithm based optimizations.

We present performance results from Tempest – An Infiniband connected 32 node
system running Windows HPCS with each node having 24 cores spread over 4 Intel
chips. Such a modest cluster can fully process all stages of the 35,000 element Alu
study in less than a day and is suitable for up to 200,000 sequences even though all
steps in analysis are of O(N2) time complexity. We estimate that a 1024 node Tempest
architecture cluster would tackle well our million sequence goal. We find systems
easy to use and program as well as giving good wall clock execution time. Some of
our studies used a slightly older cluster Madrid with 8 nodes each with four AMD
Opteron chips with 4 cores each. Section 2 presents some overall architecture
comments while sections 3 and 4 describe the two main applications. Section 5 has
conclusions and future work.

2 Data Intensive Computing Architecture

The computer architecture needed to support data intensive computing is obviously
complex and varied. Here we do not discuss virtualization or issues of distributed
systems which although important are not the topic of this paper. We abstract many
approaches as a mixture of pipelined and parallel (good MPI performance) systems,
linked by a pervasive storage system. Here we have many interesting possibilities
including Amazon and Azure “Blob” storage, traditional supercomputer environment
like Lustre plus importantly the file systems (such as Cosmos from Microsoft or
HDFS from Hadoop) supporting the new MapReduce systems. These cloud/Web 2.0
technologies support a computing style where data is read from one file system,
analyzed by one or more tools and written back to a database or file system. An
important feature of the newer approaches is explicit support for file-based data
parallelism which is needed in our applications. In figure 1, we abstract this
disk/database-compute model and assume it will underlie many applications even
when some of resources will be local and others in the cloud or part of a large grid. In
figures 2 and 3 we give in more detail the data pipelines used in the applications of
sections 3 and 4 respectively.

We record in table 1, the major facilities used in this study. Note they run
Windows (HPC Edition) and stress both multicore and traditional parallelism. The
largest Tempest cluster has 768 Intel Cores spread over 32 nodes while the smaller
one Madrid has 128 Opteron cores spread over 8 nodes. Our work [5, 19, 21]
stresses both Windows and Linux so we can explore Hadoop, Dryad and the
emerging cloud approaches. This paper focuses on results from the Windows
clusters.

4 G. Fox et al.

Table 1. Hardware and software configurations of the clusters used in this paper. In addition a
traditional 8-node Linux Cluster “Gridfarm” was used to run statistics package R in section 4.

System/
Size

CPU Memory Operating
System

Network

Tempest
32
Cluster
+ 1 Head

4 Intel Six
CoreXenon
E7450 2.4
GHz

Cluster:48 GB
Head: 24 GB

12 MB Cache

Windows
Server
2008 HPC
Ed. (SP1)

1 Gbps
Ethernet

Madrid
8 Cluster
+ 1 Head

4 AMD Quad
Core.
Opteron
8356 2.3GHz

Cluster:16 GB
Head: 8 GB

2 MB Cache

Windows
Server HPC
Ed. (SP1)

20Gbps
Infiniband

Database

Files

Database

Files

Database

Files

Database

Files

Database

Files

Database

Files

Database

Files

Database

Files

Database

Files

Initial
Processing

Higher Level Processing
(e.g. R, PCA, Clustering

Correlations)
maybe MPI

Prepare for
Visualization

(e.g. MDS)

Instruments

User Data

Users

Visualization
User Portal
Knowledge
Discovery

Fig. 1. A Data intensive computing architecture

Visualization
PlotvizBlocking

Sequence
alignment

MDS

Dissimilarity
Matrix

(624,404,791
values)

FASTA File
Alu Sequences
(35339)

Form
block

Pairings

Pairwise
clustering

Fig. 2. Stages of Gene sequencing application processing pipeline

Health Data
Visualization

Plotviz
validating
regrouping

PCA
R

CCA
Subblock
groups

MDS
PC data

CCA vectors
distance

Fig. 3. Stages of health application processing pipeline

 Biomedical Case Studies in Data Intensive Computing 5

3 Gene Sequencing Applications

3.1 Alu Sequencing Studies

The Alu clustering problem [13] is one of the most challenging problem for
sequencing clustering because Alus represent the largest repeat families in human
genome. There are about 1 million copies of Alu sequences in human genome, in
which most insertions can be found in other primates and only a small fraction (~
7000) are human-specific insertions. This indicates that the classification of Alu
repeats can be deduced solely from the 1 million human Alu elements. Notable, Alu
clustering can be viewed as a classical case study for the capacity of computational
infrastructures because it is not only of great biological interests, but also a problem
of a scale that will remain as the upper limit of many other clustering problem in
bioinformatics for the next few years, e.g. the automated protein family classification
for a few millions of proteins predicted from large metagenomics projects.

3.2 Smith Waterman Dissimilarities

The first step is to identify human Alu gene sequences which were obtained by using
Repeatmasker [14] with Repbase Update [15]. We have been gradually increasing the
size of our projects with the sample in this paper having 35339 sequences (while we
are preparing to analyze 300,000) and requires a modest cluster such as Tempest (768
cores). Note from the discussion in section 3.1, we are aiming at supporting problems
with a million sequences -- quite practical today on TeraGrid and equivalent facilities
given basic analysis steps scale like O(N2).

We used open source version [16] of the Smith Waterman – Gotoh algorithm SW-
G [17, 18] modified to ensure low start up effects by each thread/processing large
numbers (above a few hundred) at a time. Memory bandwidth needed was reduced by
storing data items in as few bytes as possible.

3.2.1 Performance of Smith Waterman Gotoh SW-G Algorithm with MPI
The calculation of the 624 million independent dissimilarities is of course
architecturally simple as each computation is independent. Nevertheless it shows
striking structure shown in figure 4. As in previous papers [5, 21], we look at different
patterns denoted as (Thread per process) x (MPI process per 24 core node) x (Number
of Nodes) or in short the pattern txmxn. We have for Tempest defined in table 1, n
<=32 and txm <= 24. We present results in terms of parallel overhead f(P) defined for
Parallelism P by

f(P) = [PT(P) – P(Ref)T(Ref)] /(P(Ref)T(Ref)) (1)

Where we set usually Ref =1 but later we use Ref as the smallest number of processes
that can run job efficiently.

The striking result for this step is that MPI easily outperforms the equivalent
threaded version of this embarrassingly parallel step. In figure 4, all the peaks in the
overhead correspond to patterns with large values of thread count t. On figure 4, we
note that MPI intranode 1x24x32 pattern completes the full 624 billion alignments in

6 G. Fox et al.

Fig. 4. Performance of Alu Gene Alignments for different parallel patterns

2.33 hours – 4.9 times faster than threaded implementation 24x1x32. This 768 core
MPI run has a parallel overhead of 1.43 corresponding to a speed up of 316.

The SW-G alignment performance is probably dominated by memory bandwidth
issues but we are still pursuing several points that could affect this but not at our
highest priority as SW-G is not a dominant step. We have tried to identify the reason
for the comparative slowness of threading. Using Windows monitoring tools, we
found that the threaded version has about a factor of 100 more context switches than
in case where in MPI we have one thread per process. This could lead to a slow down
of threaded approach and correspond to Windows handing of paging of threads with
large memory footprints [30]. We have seen this effect in many related circumstances.
There is also an important data transfer effect that we discuss in the following
subsection.

3.2.2 The O(N2) Factor of 2 and Data Transfer
There is a well known factor of 2 in many O(N2) parallel algorithms such as those in
direct simulations of astrophysical stems. We initially calculate in parallel the
Distance or Dissimilarity D(i,j) between points (sequences) i and j and as discussed
above this is done in parallel over all processor nodes selecting criteria i < j to avoid
calculating both D(i,j) and the identical D(j,i). This can require substantial file transfer
as it is unlikely that nodes requiring D(i,j) in a later step, will find that it was
calculated on nodes where it is needed.

For example the MDS and PW(PairWise) Clustering algorithms described in next
2 sections, require a parallel decomposition where each of N processes (MPI
processes, threads) has 1/N of sequences and for this subset {i} of sequences stores in
memory D({i},j) for all sequences j and the subset {i} of sequences for which this
node is responsible. This implies that we need D (i,j) and D (j,i) (which are equal)
stored in different processors/disks). This is a well known collective operation in MPI
called either gather or scatter. Note that we did NOT get good performance for data
transfer of D(i.j) to its needed final processor from either MPI (it should be a seconds

 Biomedical Case Studies in Data Intensive Computing 7

on Petabit/sec Infiniband switch) or Dryad. We intend to make the needed collective
(reduction) primitives more precise and expect substantial performance improvement.
However, for the results presented here the timings include the I/O necessary to write
results from each process to local disk. An additional step was necessary in our
processing workflow to combine the results into a single file used in downstream
processing such as clustering and MDS.

3.2.3 Use of Dryad in Smith-Waterman Computation
We performed a detailed study [19, 29] of DryadLINQ – Microsoft’s implementation
of MapReduce [31, 32] for the computation described in previous subsection for MPI.
It is nontrivial to produce final output – the D(i,j) in a form suitable for use in next
stage of pipeline – this is currently a single final file holding all the independent
dissimilarities.

We adopted a coarse grain task decomposition approach [29] which requires
minimum inter-process communicational requirements to ameliorate the higher
communication and synchronization costs of the DryadLINQ parallel runtime
compared to MPI. To explain our algorithm, let’s consider an example where N gene
sequences produces as discussed above, a pairwise distance matrix of size NxN. We
decompose the computation task by considering the resultant matrix and group the
overall computation into a blocks by dividing original matrix into BxB subblocks
where B is a multiple (>2) of the available computation nodes. As discussed above,
due to the symmetry of the distances D(i,j) and D(j,i) we only calculate the distances
in the blocks of the upper triangle of the blocked matrix. Diagonal blocks are
especially handled and calculated as full sub blocks. As the number of diagonal
blocks is B and total number B(B+1)/2, there is no significant compute overhead
added by ignoring symmetry in diagonal blocks. The blocks in the upper triangle are
partitioned (assigned) to the available compute nodes and an DryadLINQ “Apply”
operation is used to execute a function to calculate (N/B)x(N/B) distances in each
block. After computing the distances in each block, the function calculates the
transpose matrix of the result matrix which corresponds to a block in the lower
triangle, and writes both these matrices into two output files in the local file system.
The names of these files and their block numbers are communicated back to the main
program. The main program sorts the files based on their block number s and perform
another DryadLINQ “Apply” operation to combine the files corresponding to a row of
blocks in a single large row block.

Figures 5, 6 and 7 present our initial results. Fig. 5 compares the DryadLINQ
performance with that of MPI showing the DryadLINQ performance lies between two
different versions of the MPI code [29]. In figure 6, we take a fixed Alu dataset of
10,000 sequences and compare its performance as a function of the number of nodes.
Note in all these figures we scale results so perfect scaling would correspond to a flat
curve independent of the value of the abscissa. Figure 6 only shows some 20%
increase in execution time as the core count increases. One problem with current
MapReduce implementations is that they are not set up to do dynamic scheduling that
help efficiency of a pleasing parallel job mix of inhomogeneous tasks. We examine
this in fig. 7 where we artificially increase the scatter in the sequence lengths of the
input data. The “real” data shown in figures 5 and 6 has a standard deviation of the

8 G. Fox et al.

0

1

2

3

4

5

6

7

0 10000 20000 30000 40000 50000 60000

Ti
m

e
pe

r d
is

ta
nc

e
ca

lc
ul

at
io

n
 p

er
 co

re
 (

m
ili

se
co

nd
s)

Sequeneces

Performance of Dryad vs. MPI of SW-Gotoh Alignment

Dryad (replicated data)

Block scattered MPI
(replicated data)
Dryad (raw data)

Space filling curve MPI
(raw data)
Space filling curve MPI
(replicated data)

Fig. 5. Comparison of Dryad MapReduce framework with MPI on Smith Waterman Gotoh
distance calculations on first step of Alu sequence study pipeline as a function of number of
sequences from 10,000 to 50,000. Those “marked replicated” are generated artificially to have
uniform inhomogeneity. The raw data for 35339 and 50,000 sequences are also shown.

0

1

2

3

4

5

6

7

288 336 384 432 480 528 576 624 672 720

Ti
m

e
pe

r d
is

ta
nc

e
ca

lc
ul

at
io

n
pe

r c
or

e
(m

ill
is

ec
on

ds
)

Cores

DryadLINQ Scaling Test on SW-G Alignment

Fig. 6. Scaling test of Dryad MapReduce framework on Smith Waterman Gotoh distance
calculations on first step of Alu sequence study pipeline as a function of number of cores

length that is 10% of the mean length. However in figure 7 we increase the standard
deviation up to 75% of the mean. By randomizing the sequences in each block we are
still able to maintain good performance as seen in fig. 7.

Note that fig. 7 shows both the actual computation and total time including data
reorganization for the MPI step. Currently we are extending these results to quantify
the comparison between Hadoop [33] and DryadLINQ. In previous work, we have
found similar performance between these two MapReduce implementations with
Dryad showing somewhat better results [34, 35] in some cases.

 Biomedical Case Studies in Data Intensive Computing 9

Fig. 7. Study of DryadLINQ processing time on Tempest with statistically load balanced
inhomogeneous data with a fixed mean length of 400 characters. The top curve shows the total
processing time while the bottom has the final data distribution stage excluded.

0

0.002

0.004

0.006

0.008

0.01

0.012

30000 35000 40000 45000 50000 55000

Number of Sequences

Time per Alignment ms Dryad

Hadoop

Fig. 8. Study of DryadLINQ (on Windows HPCS) v Hadoop (on RedHat Enterprise Linux)
processing Smith Waterman pairwise computations on an IBM IDataplex for samples of 35,339
and 50,000 sequences. The results are presented as time per pair.

We performed initial experiments on an IBM IDataplex with 32 nodes each with
32GB memory and two Intel Xeon L5420 CPU’s with 4 cores at 2.50GHz.
Surprising the Java alignment code used in Hadoop ran faster (20%) per distance
calculation than the C# version and the results in fig. 8 have been corrected for this.
Even with this, the Dryad run is somewhat slower than Hadoop in fig. 8.

10 G. Fox et al.

3.3 Pairwise Clustering

As data sets increase in size, we expect some applications to require particularly
robust algorithms that are as insensitive as possible to well known difficulties such
as “trapping in local minima”. This increases computing challenge which grows to
accommodate data set size and the needed increased robustness of results. For
example, clustering methods like Kmeans are very sensitive to false minima but
some 20 years ago a more robust EM (Expectation Maximization) method using
annealing (deterministic not Monte Carlo) was developed by Ken Rose (UCSB)
[1], Fox and others [4]. In this algorithm, the annealing is in distance (as
represented by D(i,j)) resolution. One slowly lowers a Temperature T that
implements an algorithm sensitive to distance scales of order T0.5. This method has
the interesting feature that it automatically splits clusters when instabilities
detected. Further it has a highly efficient parallel algorithm which we have studied
in detail in earlier papers on smaller problems [5]. These clustering approaches are
fuzzy methods where points are assigned probabilities for belonging to a particular
cluster.

There are striking differences between the parallel pattern dependence of figures 4
and 9 which shows the performance of Pairwise Clustering. In all cases MPI is used
as communication mechanism between nodes but we can use any mix of threading
and MPI on a single node. For figure 4 intranode MPI always gave best performance
but in figure 9, intranode threading is the best at high levels of parallelism but worst at
low parallelism. We have analyzed this in detail elsewhere and found it is a
consequence of MPI communication overheads that increase as data parallel unit (of

Fig. 9. Paralled Overhead (equation 1) normalized to 4 way parallel MPI job. It is plotted upto
744 way parallel case.

 Biomedical Case Studies in Data Intensive Computing 11

size 35339/(m n)) decreases. For large data parallel units MPI is fastest but for smaller
ones used here in production, threading. The poor threaded performance for low
levels of parallelism is due to context switches for large memory jobs discussed in
section 3.2.1.

The original clustering work was based in a vector space (like Kmeans) where a
cluster is defined by a vector as its center. However in a major advance 10 years ago
[2, 3], it was shown that one could use a vector free approach and operate with just
the dissimilarities D(i,j). This unfortunately does increase the computational
complexity from O(N) to O(N2) for N sequences. It appears however more natural and
even essential for studies of gene sequences which do not have Euclidean vectors
easily associated with them. We completed these pairwise vector free algorithms and
implemented them in parallel. We have discussed elsewhere [5] detailed algorithm
and performance issues. Here we report the clustering as part of a large end to end
component of our “Million Sequence Analysis as a Service project”. All capabilities
discussed in this paper will be made available as cloud or TeraGrid services over the
next year.

3.4 Multidimensional Scaling MDS

Given dissimilarities D(i,j), MDS finds the best set of vectors xi in any chosen
dimension d (d=3 in our case) minimizing:

Σi,j weight(i,j) (D(i,j)m – |xi – xj|
n)2 (2)

The form of the weight(i,j) is chosen to reflect importance of a point or perhaps a
desire (Sammon’s method with weight(i,j)=1/ D(i,j)) to fit smaller distance more
precisely than larger ones. The index n is typically 1 (Euclidean distance) but 2 also
useful. m is 1 in this paper but m=0.5 is interesting.

We have previously reported results using Expectation Maximization and we are
exploring adding to this deterministic annealing to improve robustness. Here we use a
different technique exploiting that (2) is “just” χ2 and one can use very reliable
nonlinear optimizers to solve it [20]. We have implemented and got good results with
the Levenberg–Marquardt approach (adding suitable multiple of unit matrix to
nonlinear second derivative matrix) to χ2 solution.

This “MDS as χ2” approach allows us to incorporate some powerful features
including very general choices for the weight(i,j) and n. Our MDS service is fully
parallel over unknowns xi. Further it allows “incremental use”; fixing an MDS
solution from a subset of data and adding new points at a later time. One can also
optimally align different versions of MDS (e.g. different choices of weight(i,j) to
allow precise comparisons. All our MDS services feed their results directly to
powerful Point Visualizer. Figure 10 shows the end to end Alu study after SW-G
alignments, pairwise clustering and MDS projection. One sees three small clusters red
(2794 points), yellow (3666) and green (1838 sequences) isolated from larger (27041)
collection of blue sequences that are presumably older. Note that total time for all 3
steps on the full Tempest system is about 6 hours and clearly getting to a million
sequences is not unrealistic and would take around a week on a 1024 node cluster.

12 G. Fox et al.

Fig. 10. Pairwise Clustering of 35339 Alu Sequences visualized with MDS

4 Linking Environment and Health Data

4.1 Introduction

Another area where our tools are naturally used comes in Geographical information
systems where we have already presented results [21]. Here we link environmental
and patient (health) data. This is challenging as a community’s vulnerability and
impact may depend on special concerns like environmentally sensitive areas or
historical structures, socioeconomic conditions, and various social concerns such as
the degree of public trust, education levels, literacy, and collective action and
solidarity. The event impact must account for a blend of physical and social measures.

One example is the SAVI Community Information System (www.savi.org)1 is one
of the nation’s largest community information systems [22]. SAVI, designed to
improve decision-making in Central Indiana communities, includes over a ~22
million individual data values, and provides over 161,322 event datasets, 3,099 basic
indicators on the socio-economic conditions, health, economy, housing, and many
other aspects of the community. Further it makes them available for 11 types of
geographic areas, such as census tracts, neighborhoods, and school corporations. The
SAVI system is now being used by a variety of other sectors for community
development, public health research, education, program planning, disaster mitigation
planning and more. Only recently has the field of social epidemiology begun to
develop the theoretical tools that make possible the identification of explanatory
pathways from the physical and social infrastructure to health-related behaviors,
which then lead to adverse health outcomes [23-25]. We see geographic clustering
[21, 36] in many health outcomes because social environment has an effect on health
and/or health behaviors [26-28].

4.2 Correlating Environment and Patient Data

We used an ongoing childhood obesity study as our first application to test the
relevance of our tools in the area of linking environment and social/health data. [6-7]
Obesity is presently one of the most pervasive, serious, and challenging health
problems facing the world. Over the past 30 years, the obesity rate has nearly tripled

 Biomedical Case Studies in Data Intensive Computing 13

for children ages 2 to 5 years (from 5 to 14 percent) and tripled for youth ages 12 to
19 years (from 5 percent to 17 percent). The obesity rate for children 6 to 11 years of
age has quadrupled from 4 to 19 percent. What is causing the dramatic and
threatening rise in obesity? Bray concisely captured the etiology of obesity in
metaphor: “Genes load the gun, the environment pulls the trigger.” 23 Genetic factors
are thought to account for 25-40% of the variance in BMI (Body Mass Index) by
determining differences in such things as resting metabolic rate and weight gain in
response to overfeeding. However, it is highly improbable that changes in genetic
factors explain the rapid increases in obesity prevalence over the past two decades.
[26] Rather the obesity epidemic is almost certainly rooted in environmental factors
that promote excessive caloric intake and sedentary lifestyle [8].

In addition to physical environmental factors, social environmental factors also
have bearing on obesity by facilitating or constraining behavior. Specific social
environmental factors that have been examined include crime, safety, social support,
social networks, and neighborhood socioeconomic status. Perceived (or actual) lack
of a safe environment is a significant barrier to physical activity. According to a study
conducted by the Centers for Disease Control in 2004, persons who perceived their
neighborhoods as less than extremely safe were more than twice as likely to have no
leisure-time physical activity, and those who perceived their neighborhoods as not at
all safe were nearly three times as likely to have no leisure-time physical activity.
Research also indicates that parental concerns about traffic and crime have a strong
influence on children’s physical activity levels and that child and parent perceptions
of the environment are as important as the actual environment.

This motivates studies that study linkage between patient health and environment
factors. We can examine urban planning data that provides information on
characteristics of the built environment, such as street features, land use mix, and
neighborhood greenness. We examine insurance information from patient medical
records as an indicator of family-level social environment. We examine U.S. Census
and Uniform Crime Report information for areas surrounding patients’ residential
addresses as indicators of neighborhood social environment. Here we are setting up
the infrastructure linking the tool R with our other tools described in section 3 and
only have preliminary results on this use case for our new generation of large scale
data analysis tools. As there are some 30 patient attributes and over one hundred
environmental attributes, tools like MDS that reduce dimensionality were a focus.

4.3 Canonical Correlation Analysis and Multidimensional Scaling

The canonical correlation analysis (CCA) is a tool of multivariate statistical analysis
for finding correlations between two sets of variables [9, 10]. Here we are applying
CCA to correlate patient health and environmental factors. Our full data set we used
for this research consists of over 314,000 real-life patient records collected over 15
years and measured on about 180 variables, mostly related with biological and
environmental factors. We stored our full data set (with size 832 MB) in a database
system for easy exploration and fast extraction. Among the full data set, we only used
the cleanest data for our initial studies. For performing CCA over the patient data set
and conducting various kinds of statistical analysis, we used R, one of the most well-
known statistical computing environments. R expedites complicated statistical data

14 G. Fox et al.

a) b)

Fig. 11. a) The plot of the first pair of canonical variables for 635 Census Blocks and b) the
color coded correlation between MDS and first eigenvector of PCA decomposition

manipulations with ease by utilizing highly optimized and multi-threaded numeric
packages, such as BLAS, Goto-BLAS [11], and ATLAS [12]. Another advantage in
using R is that we can use various open-source add-on packages for additional
functionalities. For example, with the help of packages for databases, such as
PostgreSQL and MySQL, we can directly access the data stored in the database
system.

The core idea in CCA is to find an optimal linear projection of two sets of data in a
sense that the correlation of them in the projected space, also called “canonical
space”, is maximized. More specifically, for the given two sets of data matrix X and
Y, the CCA seeks two optimal projection vectors a and b, which make the following
correlation maximum:

corr(,)U Vρ = ,

where
TU a X= and

TV b Y= are vectors in the canonical space. One can see that

the vector U and V, known as canonical correlation variables, are the new
representation of the data matrix X and Y in the canonical space, transformed by the
projection vector a and b respectively..

In our project, the CCA is a good match as we have two sets of data – patient and
environmental data – and want to find out which variables of environmental data have
some connections to patient’s obesity or more generally their health. For this purpose,
we can use X as an environmental data and Y as a patient data with the CCA
formalism to find the best optimal canonical variables U and V, which maximize the
correlation between the patient and the environmental data. As an alternative to CCA,
which maximizes vector in both data sets, one can find the vectors a and b by fixing
the vector in one sector. For example with our health data set, we can find new
projection vector a by fixing b in terms of Principle Components (PC) of the patient
data matrix Y.

Since the well known CCA algorithm itself is not our focus in this paper, we will
not present more details in As an example of CCA results to the patient data set, we

 Biomedical Case Studies in Data Intensive Computing 15

found the optimal correlation in the canonical space (Figure 11a)). Those results can
feed in to the MDS to find more robust structures in 3-dimension (Figure 11b). More
details can be found in [9, 10, 30]. Each point corresponds to one of 635 Census
blocks. We color projections on a green (lowest) to red/mauve (highest) scale and see
clear clustering of the different colors in different regions of MDS. The low (green)
values occur together and are well separated from the high weighted red and mauve
points. In these plots the MDS was weighted (using weight(i,j) in equation (2))
proportional to the number of patients in block. Figures 11b) show correlations for a
pure principal component analysis PCA and similar results are seen for the optimal
CCA vector U. The correlation between PCA eigenvector and MDS decomposition
was 0.86 (using CCA applied to MDS and environmental data) where as correlation is
0.67 between MNDS and the optimal vector U from patient analysis.

In processing CCA in our project, we have used R as statistical computing
environments to utilize various matrix manipulation and linear algebra packages with
efficiency. Also, by building R with multi-threaded enabled BLAS libraries, we got
parallel speed up in our 8 core Linux cluster nodes “Gridfarm”. We are continuing
these studies on Tempest using a Genetic algorithm to find the optimal set of
environment features and this type of loosely coupled problem is suitable for clouds
and we will look at an Hadoop/Dryad implementation. We believe linking of R and
MapReduce will be very powerful as is the current MPI link.

5 Conclusions

This paper examines the technology to support rapid analysis of genome sequencing
and patient record problems that typify today’s high end biomedical computational
challenges. As well as our local sample problems, we would like to refine and test the
technology on a broader range of problems. To encourage this, we will make key
capabilities available as services that we eventually be implemented on virtual
clusters (clouds) to address very large problems. Relevant services we will make
available include the basic Pairwise dissimilarity calculations, R (done already by us
and others), MDS in EM and χ2 forms; the vector and pairwise deterministic
annealing clustering including support of fingerprints and other ”unusual” vectors.
Our point viewer (Plotviz) will be made available either as download (to Windows!)
or as a Web service. We note all our current code is written in C# (high performance
managed code) and runs on Microsoft HPCS 2008 (with Dryad extensions).

Cloud technologies such as Hadoop and Dryad are very attractive as robust
commercially supported software environments. Further many services will run on
virtual machine based clouds such as Azure and EC2. In our two problems, we have
found steps that currently need MPI. These run well but do not have the intrinsic
flexibility and robustness of MapReduce. We note that our MPI applications are not
like traditional particle dynamics or differential equation solvers with many small
messages. Rather they can be implemented efficiently with only MPI Barrier,
Broadcast and Reduction operations which are typical of linear algebra. We are
exploring [34, 35] extensions of MapReduce – we call them MapReduce++ -- that
support the iterative structure of parallel linear algebra. We expect these to be an

16 G. Fox et al.

attractive implementation paradigm for biomedical applications and allow easy
porting of our current MPI codes.

In summary, we’ve shown two examples of data intensive science applications in
area of biology and health using several modern technologies. We suggest that these
ideas will support new generations of large scale data analysis systems for patient
records, demographic data and next generation gene sequencers.

References

1. Rose, K.: Deterministic Annealing for Clustering, Compression, Classification,
Regression, and Related Optimization Problems. Proceedings of the IEEE 80, 2210–2239
(1998)

2. Hofmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing. IEEE
Transactions on Pattern Analysis and Machine Intelligence 19, 1–13 (1997)

3. Klock, H., Buhmann, J.M.: Data visualization by multidimensional scaling: a deterministic
annealing approach. Pattern Recognition 33(4), 651–669 (2000)

4. Granat, R.A.: Regularized Deterministic Annealing EM for Hidden Markov Models, Ph.D.
Thesis, UCLA (2004)

5. Fox, G., Bae, S.-H., Ekanayake, J., Qiu, X., Yuan, H.: Parallel Data Mining from
Multicore to Cloudy Grids. In: Proceedings of HPC 2008, High Performance Computing
and Grids Workshop, Cetraro Italy, July 3 (2008)

6. Liu, G., Wilson, J., Rong, Q., Ying, J.: Green neighborhoods, food retail, and childhood
overweight: differences by population density. American Journal of Health
Promotion 21(I4 suppl.), 317–325 (2007)

7. Liu, G., et al.: Examining Urban Environment Correlates of Childhood Physical Activity
and Walkability Perception with GIS and Remote Sensing. In: Geo-spatial Technologies in
Urban Environments Policy, Practice, and Pixels, 2nd edn., pp. 121–140. Springer, Berlin
(2007)

8. Sandy, R., Liu, G., et al.: Studying the child obesity epidemic with natural experiments,
NBER Working Paper in (May 2009), http://www.nber.org/papers/w14989

9. Hardoon, D., et al.: Canonical correlation analysis: an overview with application to
learning methods. Neural Computation 16(12), 2639–2664 (2004)

10. Härdle, W., Simar, L.: Applied multivariate statistical analysis, pp. 361–372. Springer,
Heidelberg (2007)

11. Goto, K., Van De Geijn, R.: High-performance implementation of the level-3 blas. ACM
Trans. Math. Softw. 35(1), 1–14 (2008)

12. Whaley, R., Dongarra, J.: Automatically tuned linear algebra software. In: Proceedings of
the 1998 ACM/IEEE conf. on Supercomputing (CDROM), pp. 1–27 (1998)

13. Batzer, M.A., Deininger, P.L.: Alu repeats and human genomic diversity. Nat. Rev.
Genet. 3(5), 370–379 (2002)

14. Smit, A.F.A., Hubley, R., Green, P.: Repeatmasker (2004),
 http://www.repeatmasker.org

15. Jurka, J.: Repbase Update: a database and electronic journal of repetitive elements. Trends
Genet. 9, 418–420 (2000)

16. Waterman, S.: Software with Gotoh enhancement,
 http://jaligner.sourceforge.net/naligner/

17. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal
of Molecular Biology 147, 195–197 (1981)

 Biomedical Case Studies in Data Intensive Computing 17

18. Gotoh, O.: An improved algorithm for matching biological sequences. J. of Molecular
Biology 162, 705–708 (1982)

19. Ekanayake, J., Balkir, A.S., Gunarathne, T., Fox, G., Poulain, C., Araujo, N., Barga, R.:
DryadLINQ for Scientific Analyses. In: Proceedings of eScience conference (2009),

 http://grids.ucs.indiana.edu/ptliupages/publications/
 DryadLINQ_for_Scientific_Analyses.pdf

20. Kearsley, A.J., Tapia, R.A., Trosset, M.W.: The Solution of the Metric STRESS and
SSTRESS Problems in Multidimensional Scaling Using Newton’s Method, technical
report (1995)

21. Qiu, X., Fox, G.C., Yuan, H., Bae, S.-H., Chrysanthakopoulos, G., Nielsen, H.F.: Parallel
Clustering and Dimensional Scaling on Multicore System. In: Bubak, M., van Albada,
G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 407–416.
Springer, Heidelberg (2008)

22. Frederickson, K.E.: Enhanced Local Coordination and Collaboration through the Social
Assets and Vulnerabilities Indicators (SAVI) Project. In: Proceedings of the American
Public Health Association Annual Conference, Washington, D.C (1998)

23. American Public Health Association, National Public Health Week, Eliminating Health
Disparities: Communities Moving from Statistics to Solutions, Toolkit (2004)

24. Berkman, L.F., Glass, T.: Social integration, social networks, social support, and health.
In: Berkman, L.F., Kawachi, I. (eds.) Social Epidemiology, pp. 137–173. Oxford
University Press, New York (2000)

25. Shaw, M., Dorling, D., Smith, G.D.: Poverty, social exclusion, and minorities. In: Marmot,
M., Wilkinson, R.G. (eds.) Social Determinants of Health, 2nd edn., pp. 196–223. Oxford
University Press, New York (2006)

26. Berkman, L.F., Kawachi, I.: A historical framework for social epidemiology. In: Berkman,
L.F., Kawachi, I. (eds.) Social Epidemiology, pp. 3–12. Oxford Univ. Press, New York
(2000)

27. Kawachi, I., Berkman, L.F. (eds.): Neighborhoods and Health. Oxford University Press,
New York (2003)

28. Robert, S.: Community-level socioeconomic status effects on adult health. Journal of
Health and Social Behavior 39, 18–37 (1998)

29. Qiu, X., Ekanayake, J., Beason, S., Gunarathne, T., Fox, G., Barga, R., Gannon, D.:
Cloud Technologies for Bioinformatics Applications. In: 2nd ACM Workshop on
Many-Task Computing on Grids and Supercomputers (SuperComputing 2009), Portland,
Oregon, November 16 (2009), http://grids.ucs.indiana.edu/ptliupages/
publications/MTAGS09-23.pdf

30. Fox, G., Qiu, X., Beason, S., Choi, J.Y., Rho, M., Tang, H., Devadasan, N., Liu, G.: Case
Studies in Data Intensive Computing: Large Scale DNA Sequence Analysis as the Million
Sequence Challenge and Biomedical Computing Technical Report, August 9 (2009),

 http://grids.ucs.indiana.edu/ptliupages/publications/
 UsesCasesforDIC-Aug%209-09.pdf

31. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel
programs from sequential building blocks. In: European Conference on Computer Systems
(March 2007)

32. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P., Currey, J.:
DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a
High-Level Language. In: Symposium on Operating System Design and Implementation
(OSDI), CA, December 8-10 (2008)

33. Apache Hadoop, http://hadoop.apache.org/core/

18 G. Fox et al.

34. Ekanayake, J., Qiu, X., Gunarathne, T., Beason, S., Fox, G.: High Performance Parallel
Computing with Clouds and Cloud Technologies (August 25, 2009) (to be published as
book chapter),

 http://grids.ucs.indiana.edu/ptliupages/publications/
 cloud_handbook_final-with-diagrams.pdf

35. Ekanayake, J., Fox, G.: High Performance Parallel Computing with Clouds and Cloud
Technologies. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS,
vol. 5931, Springer, Heidelberg (2009),

 http://grids.ucs.indiana.edu/ptliupages/publications/
 cloudcomp_camera_ready.pdf

36. Qiu, X., Fox, G.C., Yuan, H., Bae, S.-H., Chrysanthakopoulos, G., Nielsen, H.F.: Parallel
Clustering And Dimensional Scaling on Multicore Systems. In: Bubak, M., van Albada,
G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 407–416.
Springer, Heidelberg (2008),

 http://grids.ucs.indiana.edu/ptliupages/publications/
 hpcsApril12-08.pdf

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 19–23, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Industrial Cloud: Integrated Operations in Oil and
Gas in the Norwegian Continental Shelf

Chunming Rong

Department of Electrical Engineering and Computer Science
University of Stavanger, N-4036 Stavanger, Norway

chunming.rong@uis.no

Abstract. Cloud computing may provide the long waiting technologies and
methodologies for large scale industrial collaboration across disciplines and
enterprise boundaries. Industrial cloud is introduced as a new inter-enterprise
integration concept in cloud computing. Motivations and advantages are given
by a practical exploration of the concept from the perspective of the on-going
effort by the Norwegian oil and gas industry to build industry wide information
integration and collaboration. ISO15926 is recognized as a standard enabling
cross boundaries data integration and processing.

Keywords: cloud computing, integrated operations.

1 Introduction

In a large scale industrial operation, making the right decisions depends on the
accurate overview of the current operation status built upon the received operational
data flow. The challenge is to deal with the information flow in an integrated, cost
efficient?, secure and reliable way, while confronting the following: the data flow
increases in both quantity and complexity; the received information may often cross
disciplines and even company or enterprise boundaries; new information may also be
data-mined or extracted from existing information. Furthermore, consistent views of
the situations among different involved members should be maintained to avoid
conflicts and errors. For real time operational control, the accurate overview must be
constantly maintained during the operation. In addition, before being used in a
decision making process, information quality should be ensured for both retrieved and
extracted data, by consulting related information, e.g. historic events, or current
statuses of the other connected components. To exchange, process and analyze the
increasing digital data flows from industrial operations, an integrated information
platform should be established in an industry wide effort.

Cloud computing technology has the potential to meet the above mentioned
challenges. The general goal of cloud computing is to obtain better resource
utilization and availability among connected entities. Existing cloud computing
models have been focused on providing cost effective services for enterprise, or small
and medium businesses. Within an enterprise, information may be interpreted and
classified according to the organizational authority of the enterprise. On the other

20 C. Rong

hand, due to political and social differences, information integration efforts in the
public domain have often met with difficulties in reaching consensus for large scale
data interpretations. For an industry wide collaboration, the involvement of an
industry wide authority or association is essential for leadership and consensus on
information classification, standardization and interpretation. An industrial wide
collaboration has its unique characters and challenges. Applying cloud computing
across enterprises has many implied obstacles, but the benefits and potentials
encourage us to explore applications of the concept. Existing general solutions such as
the information grid [1] are not adequate to deal with the complexity involved. To
facilitate the information convergence across enterprises, an industrial cloud is
introduced in our paper [2] as a new inter-enterprise integration concept in cloud
computing, providing a convenient, integrated and cost efficient? solution in large
scale industrial collaborations.

2 Integrated Operations in the Norwegian Continental Shelf

The global energy situation has been dependent on oil and gas products for the last
decades. The recent energy crisis occurs in a combination of increasing demand and
reduction of production reserves. The Norwegian Continental Shelf (NCS) is a case in
point. Many of the oil and gas fields on the NCS had their peak production periods in
the 1990s. The situation reflects on both less volume and higher unit costs in their oil
and gas production. Consequently, the rise of consumer energy prices was inevitable
in order to keep up with demand, while production from such fields on the NCS was
approaching the limit for what was profitable. To prevent many of the fields from
planned shutdown, the oil and gas industry in Norway recognizes the needs to apply
new technologies and methodologies to improve the production process with a
cheaper, faster, automated and collaborative solution. Better access to relevant data
and tighter collaboration between geographically distributed personnel should lead to
faster and better decisions.

Furthermore, the reduction in oil reserves has pushed the exploration of new oil
and gas fields further north and even into the arctic region, e.g. the recent Snow-
White field is currently the north-most field in operation on the NCS. In addition to
the remoteness of the area, rough weather and oceanic conditions are obviously
associated with such operations in the high north. Hence, asset and resource
management through remote and distributed control is preferred. However, it leads to
heavy demands on the communication links and information flow. Additional
complexity comes from the connecting and integrating business processes and
information sources across organizational boundaries. Furthermore, the environmental
vulnerability of the high north areas requires special attention in such operations, and
the tolerance for environmental hazards should be approaching zero as a commitment
for such exploration licenses. Therefore, the capability of real time monitoring and
control is essential for a successful remote operation, between fields and operation
centers located elsewhere. Heavily instrumented facilities must be installed for remote
data retrieval and control. Key work processes must also be renewed with automated
real time data handling embedded.

 An Industrial Cloud: Integrated Operations in Oil and Gas 21

To meet all the requirements and at the same time maintain profitable operations,
the Norwegian Oil Industry Association (OLF) and its associated members have
joined forces on a vision of large scale industrial collaboration on the NCS, called
Integrated Operations (IO) [3], defined as “collaboration across disciplines,
companies, organizational and geographical boundaries, made possible by real-time
data and new work processes, in order to reach safer and better decisions – faster”.
The key element in IO is the integrated digital information platform to provide
industrial services and solutions for those interconnected entities. The goal is to
increase the amount of oil extracted from the reservoir while reducing the cost, and to
be able to operate safely and sustainably in remote, vulnerable and hazardous areas.
According an OLF study [4], the effort of IO is predicted to add value of USD 50
billion to the NCS operations, based on the reduced costs and increased production.
Integrated operations are recognized as a key element in the future of the oil and gas
industry, e.g. the on-going IO in the High North (IOHN) project [5] consists of key
members from both IT, defense, and oil and gas operator and service companies in
NCS.

The development of IO can be characterized as an industrial effort on cloud
computing. A prerequisite for the development of next generation of IO is a robust
digital infrastructure and a platform for effective and efficient information exchange.
For the oil and gas industry on the NCS, all production platforms and most of other
installations are connected with communication fibers and some with redundant
communication links through e.g. radio or satellite. The available communication
infrastructure is modern and unique. Above physical level, there is the so called SOIL
Network (Secure Oil Information Link) to provide the inter-enterprise information
exchange network. The infrastructure makes possible further development of a robust
industry-wide digital platform using the cloud computing concept, providing not only
effective and efficient information exchange but also enabling service delivery.

Information integration is essential to allow the data exchange and sharing across
boundaries, and to support data interpretation, information validation and related web
services for data mining. Many sub-domain standards exists side by side, e.g. within
the sub-domain of drilling and completion alone, there are more than five different
communication standards to relate to, e.g., WITSML [6] or OPC-UA [7]. The
development of the ISO 15926 [8] based oil and gas ontology has provided
opportunities to unify and integrate different data standards and to apply information
validation and reasoning methodology. Together with the POSC Caesar organization
[9], the work of realizing IO has encouraged the implementation of many enabling
technologies and standards such as semantic web and ISO15926 by the members of
OLF.

Many fields on the NCS have been modernized with heavily instrumented
facilities. The advance in sensor and actuator technologies allows increasing amount
of data to be retrieved and delivered in real time over the information infrastructure.
Different kinds of data are retrieved from the instrumented installations and stored in
distributed databases. Both current and historic data are available from these
databases for decision making. The databases may also be available cross enterprise
boundaries. This huge amount of data may now be made accessible in real-time for
personnel located far away from the offshore platform. However, humans have a
limited ability to deal with large amounts of data, especially when it arrives constantly

22 C. Rong

and simultaneously. Hence, it is important to automate the data processing, and filter
out unnecessary information and present what is relevant for the tasks at hand.
Among the related efforts in IO, the TAIL IO project [10] is most noticeable.

Real time operational control is a significant part of the proposed IO architecture.
Recent developments in information and communication technologies enable a more
cost efficient utilization of real-time data from the offshore installations, allowing a
tighter integration of offshore and onshore personnel, operator companies and service
companies.

By integrating and presenting relevant data, new work benches and visualization
solutions have been developed to provide an overview of the current state of various
systems at the remote installation. Personnel collaborate across a distance sharing this
common view of the data. This may result in improvements within fields such as
production optimization, process optimization, better work planning, better risk and
personnel safety management.

3 Conclusion

Collaboration between different companies in an industry is important to meet the
challenges of the future. The effort of realizing the vision of IO in NCS has explored
many enabling technologies and methodologies such as cloud computing and
semantic web with implementation and field tests. However, there remain many
challenges, e.g. unified industry wide data standards (of which ISO15926 is
recognized as a strong candidate), work flow and work processes renewal, security,
reliability and availability. To establish an industrial cloud, the involvement of
industry wide authorities or associations, like OLF and POSC Caesar is essential for
leadership and consensus reaching. Implementation of IO on the NCS shall enable
real time data decision-making worldwide and provide new collaboration models that
link offshore installations, onshore headquarters and service companies. The related
innovations in technologies, methodologies and work processes have great potential
to create new value and opportunities and to lead us to safer, faster and better
decisions.

References

1. Alonso, O., Banerjee, S., Drake, M.: The Information Grid: A Practical Approach to the
Semantic Web,

 http://www.oracle.com/technology/tech/semantic_technologies/
 pdf/informationgrid_oracle.pdf

2. Wlodarczyk, T., Rong, C., Thorsen, K.A.: Industrial Cloud: Toward Inter-Enterprise
Integration. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931,
pp. 460–471. Springer, Heidelberg (2009)

3. OLF, Website on Integrated Operations, http://www.olf.no/io
4. OLF, Potential value of Integrated Operations on the Norwegian Shelf, OLF report (2006),

http://www.olf.no/getfile.php/zKonvertert/www.olf.no/
Aktuelt/Dokumenter/Potential%20value%20of%20Integrated%
20Operations%20on%20the%20Norwegian%20Shelf.pdf

 An Industrial Cloud: Integrated Operations in Oil and Gas 23

5. Integrated Operations in the High North (IOHN),
 http://www.posccaesar.org/wiki/IOHN

6. Energistics, http://www.witsml.org
7. POSC Caesar Association, http://www.posccaesar.org
8. ISO, ISO 15926: Industrial automation systems and integration – Integration of life-cycle

data for process plants including oil and gas production facilities,
 http://www.iso.org

9. OPC Foundation, http://www.opcfoundation.org
10. StatoilHydro and consortium consisting of ABB, IBM, Aker Solutions and SKF, TAIL IO,

http://www-05.ibm.com/no/solutions/chemicalspetroleum/
tail.html

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 24–44, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Cloudbus Toolkit for Market-Oriented Cloud Computing

Rajkumar Buyya1,2, Suraj Pandey1, and Christian Vecchiola1

1 Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Australia
{raj,spandey,csve}@csse.unimelb.edu.au

2 Manjrasoft Pty Ltd, Melbourne, Australia

Abstract. This keynote paper: (1) presents the 21st century vision of computing
and identifies various IT paradigms promising to deliver computing as a utility;
(2) defines the architecture for creating market-oriented Clouds and computing
atmosphere by leveraging technologies such as virtual machines; (3) provides
thoughts on market-based resource management strategies that encompass both
customer-driven service management and computational risk management to
sustain SLA-oriented resource allocation; (4) presents the work carried out as
part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Plat-
form as a Service software system containing SDK (Software Development Kit)
for construction of Cloud applications and deployment on private or public
Clouds, in addition to supporting market-oriented resource management; (ii) in-
ternetworking of Clouds for dynamic creation of federated computing environ-
ments for scaling of elastic applications; (iii) creation of 3rd party Cloud broker-
ing services for building content delivery networks and e-Science applications
and their deployment on capabilities of IaaS providers such as Amazon along
with Grid mashups; (iv) CloudSim supporting modelling and simulation of
Clouds for performance studies; (v) Energy Efficient Resource Allocation
Mechanisms and Techniques for creation and management of Green Clouds;
and (vi) pathways for future research.

Keywords: Cloud Computing, Cloudbus, Virtualization, Utility Computing.

1 Introduction - Technology Trends

In 1969, Leonard Kleinrock, one of the chief scientists of the original Advanced Re-
search Projects Agency Network (ARPANET) project which seeded the Internet, said
[1]: “As of now, computer networks are still in their infancy, but as they grow up and
become sophisticated, we will probably see the spread of ‘computer utilities’ which, like
present electric and telephone utilities, will service individual homes and offices across
the country.” This vision of computing utilities, based on a service provisioning model,
anticipated the massive transformation of the entire computing industry in the 21st cen-
tury whereby computing services will be readily available on demand, like water, elec-
tricity, gas, and telephony services available in today’s society. Similarly, computing
service users (consumers) need to pay providers only when they access computing

 Cloudbus Toolkit for Market-Oriented Cloud Computing 25

services, without the need to invest heavily or encounter difficulties in building and
maintaining complex IT infrastructure by themselves. They access the services based on
their requirements without regard to where the services are hosted. This model has been
referred to as utility computing, or recently as Cloud computing [2].

Cloud computing delivers infrastructure, platform, and software (application) as
services, which are made available as subscription-based services in a pay-as-you-go
model to consumers. These services in industry are referred to as Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), re-
spectively. Berkeley Report [3] released in Feb 2009 notes - “Cloud computing, the
long-held dream of computing as a utility, has the potential to transform a large part
of the IT industry, making software even more attractive as a service”.

Clouds aim to power the next generation data centers by architecting them as a
network of virtual services (hardware, database, user-interface, application logic) so
that users are able to access and deploy applications from anywhere in the world on
demand at competitive costs depending on users Quality of Service (QoS) require-
ments [4]. It offers significant benefit to IT companies by freeing them from the low
level tasks of setting up basic hardware (servers) and software infrastructures and
thus enabling them to focus on innovation and creating business value for their
services.

The business potential of Cloud computing is recognised by several market re-
search firms including IDC (International Data Corporation), which reports that
worldwide spending on Cloud services will grow from $16 billion by 2008 to $42
billion in 2012. Furthermore, many applications making use of Clouds emerge simply
as catalysts or market makers that bring buyers and sellers together. This creates
several trillion dollars of business opportunity to the utility/pervasive computing
industry, as noted by Bill Joy, co-founder of Sun Microsystems [5].

Cloud computing has high potential to provide infrastructure, services and capa-
bilities required for harnessing this business potential. In fact, it has been identified as
one of the emerging technologies in IT as noted in “Gartner’s IT Hype Cycle” (see
Figure 1). A “Hype Cycle” is a way to represent the emergence, adoption, maturity
and impact on applications of specific technologies.

Cloud computing is definitely at the top of the technology trend, reaching its peak
of expectations in just 3-5 years. This trend is enforced by providers such as Ama-
zon1, Google, SalesForce2, IBM, Microsoft, and Sun Microsystems who have begun
to establish new data centers for hosting Cloud computing applications such as social
networking (e.g. Facebook3 and MySpace4), gaming portals (e.g. BigPoint5), business
applications (e.g., SalesForce.com), media content delivery, and scientific workflows.
It is predicted that within the next 2-5 years, Cloud computing will become a part of
mainstream computing; that is, it enters into the plateau of productivity phase.

1 http://www.amazon.com/
2 http://www.salesforce.com/
3 http://www.facebook.com/
4 http://www.myspace.com/
5 http://www.bigpoint.net/

26 R. Buyya, S. Pandey, and C. Vecchiola

Fig. 1. Hype Cycle of Emerging Technologies, 2009 - Source: Gartner (August 2009)

The rest of the paper is organized as follows: Section 2 presents a high-level defini-
tion of Cloud computing followed by open challenges and a reference model;
Section 3 presents Cloudbus vision and architecture in conformance with the high-
level definition; Section 4 lists specific technologies of the Cloudbus toolkit that have
made the vision a reality; Section 5 talks about integration of the Cloudbus toolkit
with other Cloud management Technologies; and finally, Section 6 concludes the
paper providing insights into future trends in Cloud computing.

2 Cloud Computing

Cloud computing [3] is an emerging paradigm that aims at delivering hardware infra-
structure and software applications as services, which users can consume on a pay-
per-use-basis. As depicted in Fig. 1, Cloud computing is now at the peak of its hype
cycle and there are a lot of expectations from this technology. In order to fully under-
stand its potential, we first provide a more precise definition of the term, then intro-
duce a reference model for Cloud computing, and briefly sketch the challenges that
lies ahead.

2.1 Cloud Definition

The cloud symbol traditionally represents the Internet. Hence, Cloud computing refers
to the practice of moving computing to the Internet. Armbrust et al. [3] observe
that “Cloud computing refers to both the applications delivered as services over the

 Cloudbus Toolkit for Market-Oriented Cloud Computing 27

Internet and the hardware and system software in the data centers that provide those
services”. This definition captures the real essence of this new trend, where both
software applications and hardware infrastructures are moved from private environ-
ment to third parties data centers and made accessible through the Internet. Buyya et
al. [2] define Cloud as “a type of parallel and distributed system consisting of a col-
lection of interconnected and virtualized computers that are dynamically provisioned
and presented as one or more unified computing resources based on service-level
agreements”. This definition puts Cloud computing into a market oriented perspective
and stresses the economic nature of this phenomenon.

The key feature, emerging from above two characterizations is the ability to deliver
both infrastructure and software as services that are consumed on a pay-per-use-basis.
Previous trends were limited to a specific class of users, or specific kinds of IT re-
sources; the approach of Cloud computing is global and encompasses the entire com-
puting stack. It provides services to the mass, ranging from the end-users hosting their
personal documents on the Internet to enterprises outsourcing their entire IT infra-
structure to external data centers. Service Level Agreements (SLAs), which include
QoS requirements, are set up between customers and Cloud providers. An SLA speci-
fies the details of the service to be provided in terms of metrics agreed upon by all
parties, and penalties for violating the expectations. SLAs act as a warranty for users,
who can more comfortably move their business to the Cloud. As a result, enterprises
can cut down maintenance and administrative costs by renting their IT infrastructure
from Cloud vendors. Similarly, end-users leverage the Cloud not only for accessing
their personal data from everywhere, but also for carrying out activities without
buying expensive software and hardware.

Figure 2 shows the high level components of the service-oriented architectural
framework consisting of client’s brokering and coordinator services that support util-
ity-driven management of Clouds: application scheduling, resource allocation and
migration of workloads. The architecture cohesively couples the administratively and
topologically distributed storage and compute capabilities of Clouds as parts of a
single resource leasing abstraction [4]. The system will ease the cross-domain integra-
tion of capabilities for on-demand, flexible, energy-efficient, and reliable access to the
infrastructure based on emerging virtualization technologies [6,7].

The Cloud Exchange (CEx) acts as a market maker for bringing together service
producers and consumers. It aggregates the infrastructure demands from the applica-
tion brokers and evaluates them against the available supply currently published by
the Cloud Coordinators. It aims to support trading of Cloud services based on com-
petitive economic models such as commodity markets and auctions. CEx allows the
participants (Cloud Coordinators and Cloud Brokers) to locate providers and consum-
ers with fitting offers. Such markets enable services to be commoditized and thus, can
pave the way for the creation of dynamic market infrastructure for trading based on
SLAs. The availability of a banking system within the market ensures that financial
transactions pertaining to SLAs between participants are carried out in a secure and
dependable environment. Every client in the Cloud platform will need to instantiate a
Cloud brokering service that can dynamically establish service contracts with Cloud
Coordinators via the trading functions exposed by the Cloud Exchange.

28 R. Buyya, S. Pandey, and C. Vecchiola

Fig. 2. Utility-oriented Clouds and their federated network mediated by Cloud exchange

2.2 Open Challenges

Cloud computing introduces many challenges for system and application developers,
engineers, system administrators, and service providers. Fig. 3 identifies some of
them. Virtualization enables consolidation of servers for hosting one or more services
on independent virtual machines in a multi-tenancy manner. When a large number of
VMs are created they need to be effectively managed to ensure that services are able
to deliver quality expectations of users. That means, VMs need to be migrated to
suitable servers when QoS demand on services is high and later get consolidated dy-
namically to a fewer number of physical servers.

One of the major concerns when moving to Clouds is related to security, privacy,
and trust. Security in particular, affects the entire cloud computing stack. The Cloud
computing model promotes massive use of third party services and infrastructures to
host important data or to perform critical operations. In this scenario, the trust towards
providers is fundamental to ensure the desired level of privacy for applications hosted
in the Cloud. At present, traditional tools and models used to enforce a secure and
reliable environment from a security point of view are the only ones available.

Besides security, there are legal and regulatory issues that need to be taken care of.
When moving applications and data to the Cloud, the providers may choose to locate
them anywhere on the planet. The physical location of data centers and clusters de-
termines the set of laws that can be applied to the management of data. For example,
specific cryptography techniques could not be used because they are not allowed in
some countries. Simply, specific classes of users, such as banks, would not be com-
fortable to put their sensitive data into the Cloud, in order to protect their customers

 Cloudbus Toolkit for Market-Oriented Cloud Computing 29

Fig. 3. Cloud computing challenges

and their business. At present, a conservative approach is taken for what concerns hosting
sensitive data. An interesting initiative is the concept of availability zones6 promoted by
Amazon EC2. Availability zones identify a set of resources that have a specific geo-
graphic location. Currently there are two regions grouping the availability zones: US and
Europe. Although this initiative is mostly concerned with providing of better services in
terms of isolation from failures, network latency, and service downtime, it could be an
interesting example for exploring legal and regulatory issues.

In most cases, the desired level of security is established within a Service Level
Agreement (SLA). SLAs also establish the price of services, and specific activities
such as resource metering, billing, and pricing have to be implemented in order to
charge users. At present, the adopted solutions fall into the “pay-as-you-go” model,
where users are charged according to the use they make of the service. More sophisti-
cated and flexible pricing policies have to be developed and put in place in order to
devise an efficient pricing model for the Cloud computing scenario.

As services are offered on a subscription basis, they need to be priced based on us-
ers’ QoS expectations that vary from time to time. It is also important to ensure that
whenever service providers are unable to meet all SLAs, their violation needs to be
managed to reduce penalties.

Data centers are expensive to operate as they consume huge amount of electricity.
For instance, the combined energy consumption of all data centers worldwide is
equivalent to the power consumption of Czech Republic. As a result, their carbon
footprint on the environment is rapidly increasing. In order to address these issues,
energy efficient resource allocation and algorithms need to be developed.

6 http://aws.amazon.com/ec2/

30 R. Buyya, S. Pandey, and C. Vecchiola

In addition, practical and engineering problems are yet to be solved. Cloud com-
puting infrastructures need to be scalable and reliable. In order to support this, a large
number of application service consumers from around the world, Cloud infrastructure
providers (i.e., IaaS providers) have been establishing data centers in multiple geo-
graphical locations to provide redundancy and ensure reliability in case of site fail-
ures. Cloud environments need to provide seamless/automatic mechanisms for scaling
their hosted services across multiple, geographically distributed data centers in order
to meet QoS expectations of users from different locations. The scaling of applica-
tions across multiple-vendor infrastructures requires protocols and mechanisms
needed for the creation of InterCloud environments.

From applications’ perspective, the development of platform and services that take
full advantage of the Cloud Computing model, constitute an interesting software
engineering problem.

These are some of the key challenges that need to be addressed for a successful
adoption of the Cloud computing paradigm into the mainstream IT industry. R&D
initiatives in both academia and industry are playing an important role in addressing
these challenges. In particular, the outcome of such research in terms of models,
software frameworks, and applications constitute the first tools that can be used to
experience Cloud computing. The Cloudbus Toolkit is a step towards this goal.

2.3 Cloud Computing Reference Model

Fig. 4 provides a broad overview of the scenario envisioned by Cloud computing.
This scenario identifies a reference model into which all the key components are or-
ganized and classified. As previously introduced, the novelty of this approach inter-
cepts the entire computing stack: from the system level, where IT infrastructure is
delivered on demand, to the user level, where applications transparently hosted in the
Cloud are accessible from anywhere. This is the revolutionary aspect of Cloud com-
puting that makes service providers, enterprises, and users completely rethink their
experience with IT.

The lowest level of the stack is characterized by the physical resources, which con-
stitute the foundations of the Cloud. These resources can be of different nature: clus-
ters, data centers, and desktop computers. On top of these, the IT infrastructure is
deployed and managed. Commercial Cloud deployments are more likely to be consti-
tuted by data centers hosting hundreds or thousands of machines, while private
Clouds can provide a more heterogeneous environment, in which even the idle CPU
cycles of desktop computers are used to leverage the compute workload. This level
provides the “horse power” of the Cloud.

The physical infrastructure is managed by the core middleware whose objectives
are to provide an appropriate runtime environment for applications and to utilize the
physical resources at best. Virtualization technologies provide features such as appli-
cation isolation, quality of service, and sandboxing. Among the different solutions for
virtualization, hardware level virtualization and programming language level virtual-
ization are the most popular. Hardware level virtualization guarantees complete isola-
tion of applications and a fine partitioning of the physical resources, such as memory
and CPU, by means of virtual machines. Programming level virtualization provides
sandboxing and managed executions for applications developed with a specific

 Cloudbus Toolkit for Market-Oriented Cloud Computing 31

Fig. 4. Cloud computing reference model

technology or programming language (i.e. Java, .NET, and Python). Virtualization
technologies help in creating an environment in which professional and commercial
services are integrated. These include: negotiation of the quality of service, admission
control, execution management and monitoring, accounting, and billing.

Physical infrastructure and core middleware represent the platform where applica-
tions are deployed. This platform is made available through a user level middleware,
which provides environments and tools simplifying the development and the deploy-
ment of applications in the Cloud. They are: web 2.0 interfaces, command line tools,
libraries, and programming languages. The user-level middleware constitutes the
access point of applications to the Cloud.

At the top level, different types of applications take advantage of the offerings pro-
vided by the Cloud computing reference model. Independent software vendors (ISV)
can rely on the Cloud to manage new applications and services. Enterprises can lever-
age the Cloud for providing services to their customers. Other opportunities can be
found in the education sector, social computing, scientific computing, and Content
Delivery Networks (CDNs).

It is quite uncommon for a single value offering to encompass all the services de-
scribed in the reference model. More likely, different vendors specialize their business
towards providing a specific subclass of services that address the needs of a market
sector. It is possible to characterize the different solutions into three main classes:
Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure /
Hardware as a Service (IaaS/HaaS). Table 1 summarizes the nature of these categories
and lists some major players in the field.

32 R. Buyya, S. Pandey, and C. Vecchiola

Table 1. Cloud computing services classification

Category Characteristics Product Type Vendors & Products
SaaS Customers are provided

with applications that are
accessible anytime and
from anywhere.

Web applications
and services (Web
2.0)

SalesForce.com (CRM)
Clarizen.com
(Project Management)
Google Documents, Google
Mail (Automation)

PaaS Customers are provided
with a platform for devel-
oping applications hosted
in the Cloud.

Programming APIs
and frameworks;
Deployment system.

Google AppEngine
Microsoft Azure
Manjrasoft Aneka

IaaS/HaaS Customers are provided
with virtualized hardware
and storage on top of
which they can build their
infrastructure.

Virtual machines
management infra-
structure, Storage
management

Amazon EC2 and S3;
GoGrid; Nirvanix

Infrastructure as a Service (IaaS) or Hardware as a Service (HaaS) solutions deliver

IT infrastructure based on virtual or physical resources as a commodity to customers.
These resources meet the end user requirements in terms of memory, CPU type and
power, storage, and, in most of the cases, operating system as well. Users are billed
on a pay-per-use basis. They have to set up their applications on top of these
resources that are hosted and managed in data centers owned by the vendor. Amazon
is one of the major players in providing IaaS solutions. Amazon Elastic Compute
Cloud (EC2) provides a large computing infrastructure and a service based on
hardware virtualization. By using Amazon Web Services, users can create Amazon
Machine Images (AMIs) and save them as templates from which multiple instances
can be run. It is possible to run either Windows or Linux virtual machines, for which
the user is charged per hour for each of the instances running. Amazon also provides
storage services with the Amazon Simple Storage Service (S3)7, users can use
Amazon S3 to host large amount of data accessible from anywhere.

Platform as a Service solutions provide an application or development platform in
which users can create their own application that will run on the Cloud. More
precisely, they provide an application framework and a set of API that can be used by
developers to program or compose applications for the Cloud. PaaS solutions often
integrate an IT infrastructure on top of which applications will be executed. This is
the case of Google AppEngine and Microsoft Azure, while other solutions, such as
Manjrasoft Aneka, are purely PaaS implementations.

Google AppEngine8 is a platform for developing scalable web applications that run
on top of data centers maintained by Google. It defines an application model and
provides a set of APIs that allow developers to take advantage of additional services
such as Mail, Datastore, Memcache, and others. AppEngine manages the execution of
applications and automatically scales them up/down as required. Google provides a

7 http://aws.amazon.com/s3/
8 http://code.google.com/appengine/

 Cloudbus Toolkit for Market-Oriented Cloud Computing 33

free but limited service, while utilizes daily and per minute quotas to meter and price
applications requiring a professional service. Azure9 is a cloud service operating
system that serves as the development, run-time, and control environment for the
Azure Services Platform. By using the Microsoft Azure SDK, developers can create
services that leverage the .NET Framework. These services have to be uploaded
through the Microsoft Azure portal in order to be executed on top of Windows Azure.
Additional services, such as workflow execution and management, web services
orchestration, and access to SQL data stores, are provided to build enterprise
applications. Aneka [20], commercialized by Manjrasoft, is a pure PaaS
implementation and provides end users and developers with a platform for developing
distributed applications for the Cloud by using .NET technology. The core value of
Aneka is a service oriented runtime environment that is deployed on both physical
and virtual infrastructures and allows the execution of applications developed by
means of various programming models. Aneka provides a Software Development Kit
(SDK) helping developers to create applications and a set of tools for setting up and
deploying clouds on Windows and Linux based systems. Aneka does not provide an
IT hardware infrastructure to build computing Clouds, but system administrators can
easily set up Aneka Clouds by deploying Aneka containers on clusters, data centers,
desktop PCs, or even bundled within Amazon Machine Images.

Software as a Service solutions are at the top end of the Cloud computing stack and
they provide end users with an integrated service comprising hardware, development
platforms, and applications. Users are not allowed to customize the service but get
access to a specific application hosted in the Cloud. Examples of SaaS
implementations are the services provided by Google for office automation, such as
Google Mail, Google Documents, and Google Calendar, which are delivered for free
to the Internet users and charged for professional quality services. Examples of
commercial solutions are SalesForce.com and Clarizen.com, which provide online
CRM (Customer Relationship Management) and project management services,
respectively.

3 Cloudbus Vision and Architecture

Fig.5 provides a glimpse in the future of Cloud computing. A Cloud marketplace,
composed of different types of Clouds such as computing, storage, and content
delivery Clouds, will be available to end-users and enterprises.

Users can interact with the Cloud market either transparently, by using applications
that leverage the Cloud, or explicitly, by making resource requests according to appli-
cation needs. At present, it is the responsibility of the users to directly interact with
the Cloud provider. In the context of a real Cloud marketplace, users will indirectly
interact with Cloud providers but they will rely on a market maker or meta-broker
component, which is in charge of providing the best service according to the budget
and the constraints of users. A Cloud broker client, directly embedded within applica-
tions, or available as a separate tool, will interact with the market maker by specifying
the desired Quality of Service parameters through a Service Level Agreement. As a

9 http://www.microsoft.com/azure/

34 R. Buyya, S. Pandey, and C. Vecchiola

Fig. 5. Cloud computing marketplace

result of the query, the meta-broker will select the best option available among all the
Cloud providers belonging to the Cloud marketplace. Such interaction will take place
through native interfaces exposed by the provider or via standardized brokering ser-
vices.

In order to increase their chances of providing a better service to customers, differ-
ent Cloud providers could establish peering arrangements among themselves in order
to offload to (or serve from) other providers’ service requests. Such peering arrange-
ments will define a Cloud federation and foster the introduction of standard interface
and policies for the interconnection of heterogeneous Clouds. The integration of dif-
ferent technologies and solutions into a single value offering will be the key to the
success of the Cloud marketplace. PaaS solutions, such as Aneka [20], could rely on
different providers for leveraging the workload and balance the use of private re-
sources by provisioning virtual resources from public Clouds. This approach not only
applies for compute intensive services, but also for storage and content delivery.
MetaCDN [8], which is a Content Delivery Cloud, aims to provide a unified access to
different storage Clouds in order to deliver a better service to end-users and maximize
its utility.

The scenario projected by using the Cloud marketplace has its own challenges.
Some of them have been already discussed in Section 2.2. In order to make this vision
a reality, considerable amount of research has to be carried out through vigorous ex-
periments. Simulation environments will definitely help researcher in conducting

 Cloudbus Toolkit for Market-Oriented Cloud Computing 35

Fig. 6. The Cloudbus Toolkit. The picture represents a layered view of the collection of tech-
nologies and components for market oriented Cloud computing available within the Cloudbus
Toolkit.

repeatable and controllable experiments, while devising new policies and algorithms
for resource provisioning or new strategies for an effective and energy efficient use
of physical resources. Simulation toolkits, should be able to model any possible
scenario and any layer of the Cloud computing reference model: from the fundamen-
tal components of the infrastructure, such as physical nodes, data centers, and virtual
machines, to the high level services offered to end users. This will help researchers
to finely reproduce their problem frame they want to solve and to obtain reliable
results.

The Cloudbus Toolkit is a collection of technologies and components that com-
prehensively try to address the challenges involved in making this vision a con-
crete reality. Fig. 6 provides a layered view of the entire toolkit and puts it into the
context of a real Cloud marketplace. At the top of the stack, real life applications
belonging to different scenarios (finance, science, education, engineering, multi-
media, and others) leverage the Cloud horse power. Resources available in the

36 R. Buyya, S. Pandey, and C. Vecchiola

Cloud are acquired by means of third party brokering services that mediate the
access to the real infrastructure. The Cloudbus toolkit mostly operates at this level
by providing a service brokering infrastructure and a core middleware for deploy-
ing applications in the Cloud. For what concerns the brokering service, the Market
maker is the component that allows users to take full advantage of the Cloud mar-
ketplace. The Market maker relies on different middleware implementations to
fulfill the requests of users: these can be Cloudbus technologies or third parties
implementations. Fig. 6 provides a breakdown of the components that constitute
the Cloudbus middleware. Technologies such as Aneka or Workflow Engine pro-
vide services for executing applications in the Cloud. These can be public Clouds,
private intranets, or data centers that can all be uniformly managed within an
InterCloud realm.

In the following sections, we will present more details about the Cloudbus toolkit
initiative and describe how they can integrate with each other and existing technologies
in order to realize the vision of a global Cloud computing marketplace.

4 Cloudbus / CLOUDS Lab Technologies

The CLOUDS lab has been designing and developing Cloud middleware to support
science, engineering, business, creative media, and consumer applications on Clouds.
A summary of various Cloudbus technologies is listed in Table 2. We briefly describe
each of these technologies in the following sub-sections.

4.1 Aneka

Aneka [20] is a “Platform as a Service” solution for Cloud computing and provides a
software platform for developing and deploying applications in the Cloud. The core
features of Aneka are: a) a configurable software container constituting the building
blocks of the Cloud; b) an open ended set of programming models available to devel-
opers to express distributed applications; c) a collection of tools for rapidly prototyp-
ing and porting applications to the Cloud; d) a set of advanced services that put the
horse power of Aneka in a market oriented perspective.

One of the elements that make Aneka unique is its flexible design and high level of
customization allowing it to target different application scenarios: education, engi-
neering, scientific computing, and financial applications. The Aneka container, which
is the core of the component of any Aneka based Cloud, can be deployed into any
computing resource connected to the Internet whether it be physical or virtual. This
makes the integration with public and private Clouds transparent; and specific ser-
vices for dynamic provisioning of resources are built into the framework in order to
exploit the horse power of the Cloud.

A collection of standardized interfaces, such as Web Services, make Aneka
completely integrate with client applications and third party brokering services that
can negotiate the desired Quality of Service and submit applications to Aneka
Clouds.

 Cloudbus Toolkit for Market-Oriented Cloud Computing 37

Table 2. Components of Cloudbus Toolkit

Technology Description
Aneka A software platform for developing and deploying

Cloud computing applications.

Broker A middleware for scheduling distributed applications
across Windows and Unix-variant distributed
resources.

Workflow Management
System

A middleware that handles dependent tasks,
implements scheduling algorithms and manages the
execution of applications on distributed resources.

Market Maker/ Meta-
Broker

A matchmaker that matches user’s requirements with
service providers’ capabilities at a common
marketplace.

InterGrid A model that links islands of Grids through peering
arrangements to enable inter-Grid resource sharing.

MetaCDN A system that intelligently places users’ content onto
“Storage Cloud” resources based on their QoS and
budget preferences.

Energy Efficient Computing A research on developing techniques and
technologies for addressing scalability and energy
efficiency.

CloudSim A simulation toolkit that helps users model: compute,
storage, network and other related components of
Cloud data centers.

4.2 Broker

The Grid Service Broker [9] mediates access to distributed physical and virtual re-
sources by (a) discovering suitable data sources for a given analysis scenario, (b)
selecting suitable computational resources, (c) optimally mapping analysis jobs to
compute resources, (d) deploying and monitoring job execution on selected resources,
(e) accessing data from local or remote data source during job execution and (f) col-
lating and presenting results. It provides a platform on which enhanced resource
brokering strategies can be developed and deployed.

The broker supports various application models such as parameter sweep, work-
flow, parallel and bag of tasks. It has plug-in support for integration with other
middleware technologies such a Globus [21], Aneka [20], Unicore [22] and ssh
plug-in for accessing Condor [23], Unix based platforms via fork, PBS [24] and
SGE [25]. The broker can provision compute and storage services in Cloud re-
sources via SSH. It also provides QoS parameters in its service description for
applications requiring a mix of public and private Cloud resources. For e.g. part of
an application workload can be offloaded to Amazon EC2 and rest to local
resources dynamically.

38 R. Buyya, S. Pandey, and C. Vecchiola

4.3 Workflow Engine

The Workflow Management System (WMS) [10] aids users by enabling their applica-
tions to be represented as a workflow and then execute on the Cloud from a higher
level of abstraction. The WMS provides an easy-to-use workflow editor for applica-
tion composition, an XML-based workflow language for structured representation,
and a user-friendly portal with discovery, monitoring, and scheduling components. It
can be used with either Aneka [20] and/or Broker [9] to manage applications running
on distributed resources. These tools put together enables users to select distributed
resources on Clouds and/or Grids, upload/download huge amount of data to/
from selected resources, execute applications on distributed resources using various
scheduling algorithms and monitor applications’ progress in real-time.

The WMS has been used for several real-world applications such as: fMRI brain
imaging analysis [11,10], evolutionary multi-objective optimizations using distributed
resources [11] and intrusion detection systems with various models [12].

4.4 Market Maker/Meta-broker

Market Maker/Meta-broker [13,14] is a part of Cloud infrastructure that works on
behalf of both Cloud users and Cloud service providers. It mediates access to distrib-
uted resources by discovering suitable Cloud providers for a given user application
and attempts to optimally map users’ jobs and requirements to published services. It
is a part of a global marketplace where service providers and consumers join to find
suitable match for each other. It provides various services to its customers such as
resource discovery, meta-scheduler, reservation service, queuing service, accounting
and pricing services.

4.5 From InterGrid to InterCloud

In the coming years, users will be able to see a plethora of Cloud several providers
around the world desperate to provide resources such as computers, data, and instru-
ments to scale science, engineering, and business applications. In the long run, these
Clouds may require sharing its load with other Cloud service providers as users may
select various Cloud services to work on their applications, collectively. Therefore,
dispersed Cloud initiatives may lead to the creation of disparate Clouds with little or
no interaction between them. The InterCloud model will: (a) promote interlinking of
islands of Clouds through peering arrangements to enable inter-Cloud resource shar-
ing; (b) provide a scalable structure for Clouds that allow them to interconnect with
one another and grow in a sustainable way; (c) create a global Cyberinfrastructure to
support e-Science and e-Business applications.

At present, the InterGrid project [15] is a first step towards realizing the InterCloud
vision. It has been implemented using the existing Grid infrastructure. The system
uses virtual machines as building blocks to construct execution environments that
span multiple computing sites. The computing sites could be a combination of
physical machines hosted on Grid sites or virtual machines running on cloud
infrastructures, such as Amazon EC2.

 Cloudbus Toolkit for Market-Oriented Cloud Computing 39

4.6 MetaCDN

MetaCDN [8] is a system that exploits “Storage Cloud” resources offered by multiple
IaaS vendors, thus creating an integrated overlay network that provides a low cost,
high performance CDN for content creators. It removes the complexity of dealing
with multiple storage providers, by intelligently matching and placing users’ content
onto one or many storage providers based on their quality of service, coverage and
budget preferences. By using a single unified namespace, it helps users to harness the
performance and coverage of numerous “Storage Clouds”.

4.7 Energy Efficient Computing

In order to support elastic applications, Cloud infrastructure providers are establishing
Data Centers in multiple geographic locations. These Data Centers are expensive to
operate since they consume significant amount of electric power. For instance, the
energy consumption of Google Data Center is equivalent to the power consumption of
cities such as San Francisco. This is not only increasing the power bills, but also con-
tributing to global warming due to its high carbon footprint. Indeed, the ICT sector is
currently responsible for about 2 percent of global greenhouse gas emissions.

In our current research, we are investigating and developing novel techniques and
technologies for addressing challenges of: application scalability and energy efficiency
with the aim of making a significant impact on industry producing service-oriented
Green ICT technologies. As part of this, we explored power-aware scheduling [16],
which is one of the ways to reduce energy consumption when using large data-centers.
Our scheduling algorithms select appropriate supply voltages of processing elements to
minimize energy consumption. As energy consumption is optimized, operational cost
decreases and the reliability of the system increases.

4.8 CloudSim

The CloudSim toolkit [17] enables users to model and simulate extensible Clouds as
well as execute applications on top of Clouds. As a completely customizable tool, it
allows extension and definition of policies in all the components of the software
stack. This makes it suitable as a research tool as it can relieve users from handling
the complexities arising from provisioning, deploying, configuring real resources in
physical environments.

CloudSim offers the following novel features: (i) support for modeling and simula-
tion of large scale Cloud computing infrastructure, including data centers on a single
physical computing node; and (ii) a self-contained platform for modeling data centers,
service brokers, scheduling, and allocations policies. For enabling the simulation of
data centers, CloudSim provides: (i) virtualization engine, which aids in creation and
management of multiple, independent, and co-hosted virtualized services on a data
center node; and (ii) flexibility to switch between space-shared and time-shared allo-
cation of processing cores to virtualized services. These features of CloudSim would
speed up the development of new resource allocation policies and scheduling
algorithms for Cloud computing.

CloudSim evolved from GridSim [18], a Grid simulation toolkit for resource mod-
eling and application scheduling for parallel and distributed computing. GridSim

40 R. Buyya, S. Pandey, and C. Vecchiola

provides a comprehensive facility for creating different classes of heterogeneous
resources that can be aggregated using resource brokers for solving compute and data
intensive applications. It provides a framework for incorporating failures, advance
reservations, allocation policies, data models, network model extensions, background
traffic and load, and so forth, which are also present in the CloudSim toolkit.

5 Related Technologies, Integration, and Deployment

The Cloudbus toolkit provides a set of technologies completely integrated with each
other. More importantly, they also support the integration with third party technolo-
gies and solutions. Integration is a fundamental element in the Cloud computing
model, where enterprises and end-users offload their computation to third party
infrastructures and access their data anytime from anywhere in a ubiquitous manner.

Many vendors provide different solutions for deploying public, private, and hybrid
Clouds. At the lowest level of the Cloud computing reference model, virtual server
containers provide a management layer for the commodity hardware infrastructure:
VMWare10, Xen [7], and KVM11 (Kernel-based Virtual Machine) are some of the
most popular hypervisors available today. On top of these, “Infrastructure as a Ser-
vice” solutions such as Amazon EC2, Eucalyptus [28], and OpenNebula [29] provide
a high level service to end-users. Advanced resource managers such as OpenPEX [27]
complete the picture by providing an advance reservation based approach for provi-
sioning virtual resources on such platforms. Technologies such as Aneka and the
Workflow Engine can readily be integrated with these solutions in order to utilize
their capabilities and scale on demand. This applies not only for compute type work-
loads, but also for storage Clouds and CDNs, as demonstrated by the MetaCDN
project. At a higher level, the Market maker and the Grid Service Broker are able to
provision compute resources with or without a SLA by relying on different
middleware implementations and provide the best suitable service to end-users.

The Cloudbus toolkit is a work in progress, but several Cloudbus technologies
have been already put into action in real scenarios. A private Aneka Cloud has been
deployed at GoFront12 in order to increase the overall productivity of product design
and the return of investment of existing resources. The Workflow Engine has been
used to execute complex scientific applications such as functional Magnetic Reso-
nance Imaging (fMRI) workflows on top of hybrid Clouds composed of EC2 virtual
resources and several clusters in the world [10, 11]. Various external organizations,
such as HP Labs are using CloudSim for industrial Cloud computing research.

Furthermore, Aneka has been extended to support dynamic pooling of resources
from public Clouds. This capability of Aneka enables creation of hybrid Clouds by
leasing additional resources from external/public Clouds such as Amazon EC2 when-
ever the demand on private Cloud exceeds its available capacity. In addition, Aneka
supports federation of other private Clouds within an enterprise, which are managed
through Aneka or other vendor technologies such as XenServer and VMWare.

10 http://www.vmware.com
11 http://www.linux-kvm.org
12 http://www.gofront.com

 Cloudbus Toolkit for Market-Oriented Cloud Computing 41

Moreover, some of our Cloudbus technologies have been utilized by commercial
enterprises and they are demonstrated at public international events such as the 4th
IEEE International Conference on e-Science held in Indianapolis, USA; and the 2nd
IEEE International Scalable Computing Challenge hosted at the 9th International
Conference on Cluster Computing and Grid (CCGrid 2009) held in Shanghai, China.
These demonstrations included fMRI brain imaging application workflows [11, 19],
and gene expression data classification [26] on Clouds and distributed resources.

6 Future Trends

In the next two decades, service-oriented distributed computing will emerge as a
dominant factor in shaping the industry, changing the way business is conducted and
how services are delivered and managed. This paradigm is expected to have a major
impact on service economy, which contributes significantly towards GDP of many
countries, including Australia. The service sector includes health services (e-health),
financial services and government services. With the increased demand for delivering
services to a larger number of users, providers are looking for novel ways of hosting
their application services in Clouds at lower cost while meeting the users’ quality of
service expectations. With increased dependencies on ICT technologies in their
realization, major advances are required in Cloud Computing to support elastic
applications offering services to millions of users, simultaneously.

Software licensing will be a major hurdle for vendors of Cloud services when pro-
prietary software technologies (e.g. Microsoft Windows OS) have to be made avail-
able to millions of users via public virtual appliances (e.g. customized images of OS
and applications). Overwhelming use of such customized software would lead to
seamless integration of enterprise Clouds with public Clouds for service scalability
and greater outreach to customers. More and more enterprises would be interested in
moving to Clouds for cooperative sharing. In such scenarios, security and privacy of
corporate data could be of paramount concern to these huge conglomerates. One of
the solutions would be to establish a globally accredited Cloud service regulatory
body that would act under a common statute for certifying Cloud service providers,
standardizing data formats, enforcing service level agreements, handling trust
certificates and so forth.

On one hand, there are technological challenges; on the other, there are issues with
balancing usage cost and services delivered. Cloud service providers are already tus-
sling by advertising attractive pricing policies for luring users of all kinds to use their
services (e.g. Amazon, SalesForce, Google, etc.). As the market condition is deter-
mined through cutthroat competition between many vendors, dynamic negotiations
and SLA management will play a major role in determining the amount of revenue to
be generated for service providers. Similarly, users will be able to choose better ser-
vices that fit their requirements and budget. They will be evaluating services based on
their level of QoS satisfaction, so that they get the right value for the price paid.

As the price for commodity hardware and network equipments for a data center is
already getting cheaper, significant part of the total cost of operating Cloud services
in industrial scale is determined by the amount of energy consumed by the data cen-
ter. To conserve energy and save cooling costs, data centers could adopt energy

42 R. Buyya, S. Pandey, and C. Vecchiola

efficient resource allocation policies. Moreover, they could use renewable sources of
energy to power up their centers and leave the least carbon footprint, in the long run.

A daunting task for any vendor is to keep its Cloud services alive and running for
as long as it takes. As users gradually become dependent on Cloud services, a sudden
disruption of any of the services will send a ripple effect around the world that could:
destabilizing markets (e.g. financial institutions such as banks depending on Clouds),
paralyzing IT services (e.g. gmail services) and so forth. For preventing these effects
arising from vendor “lock-in”, interoperability issues between Cloud service
providers should be adequately addressed.

Nevertheless, Cloud Computing is the technology for realizing a long awaited
dream of using distributed compute, storage resources and application software
services as commodities (computing utilities).

As the technology is gradually changing from Cluster and Grid computing to
Cloud computing, the Cloudbus toolkit is also evolving towards being more robust
and scalable to support the hype. We are continuously consolidating our efforts to
enhance the toolkit such that it is able to support more and more users.

Acknowledgments. All members of our CLOUDS Lab have been actively contribut-
ing towards various developments reported in this paper. In particular, we would like
to thank Srikumar Venugopal, Xingchen Chu, Rajiv Ranjan, Chao Jin, Michael Mat-
tess, William Voorsluys, Dileban Karunamoorthy, Saurabh Garg, Marcos Dias de
Assunção, Alexandre di Costanzo, Mohsen Amini, James Broberg, Mukaddim
Pathan, Chee Shin Yeo, Anton Beloglazov, Rodrigo Neves Calheiros, and Marco
Netto.

References

[1] Kleinrock, L.: A Vision for the Internet. ST Journal of Research 2(1), 4–5 (2005)
[2] Buyya, R., Yeo, C.S., Venugopal, S.: Market-Oriented Cloud Computing: Vision, Hype,

and Reality for Delivering IT Services as Computing Utilities, Keynote Paper. In: Pro-
ceedings of the 10th IEEE International Conference on High Performance Computing and
Communications, Dalian, China, September 25-27 (2008)

[3] Armbrust, M., Fox, A., et al.: Above the Clouds: A Berkeley View of Cloud Computing.
Technical Report No. UCB/EECS-2009-28, University of California at Berkley, USA
(February 10, 2009)

[4] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th
Utility. Future Generation Computer Systems 25(6), 599–616 (2009)

[5] London, S.: Inside Track: The high-tech rebels. Financial Times, September 6 (2002)
[6] VMware: Migrate Virtual Machines with Zero Downtime,

 http://www.vmware.com/
[7] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,

I., Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of the 19th ACM
Symposium on Operating Systems Principles. ACM Press, New York (2003)

[8] Broberg, J., Buyya, R., Tari, Z.: MetaCDN: Harnessing ‘Storage Clouds’ for High Per-
formance Content Delivery. Journal of Network and Computer Applications 32(5), 1012–
1022 (2009)

 Cloudbus Toolkit for Market-Oriented Cloud Computing 43

[9] Venugopal, S., Nadiminti, K., Gibbins, H., Buyya, R.: Designing a Resource Broker for
Heterogeneous Grids. Software: Practice and Experience 38(8), 793–825 (2008)

[10] Pandey, S., Voorsluys, W., Rahman, M., Buyya, R., Dobson, J., Chiu, K.: A Grid Work-
flow Environment for Brain Imaging Analysis on Distributed Systems. In: Concurrency
and Computation: Practice and Experience. Wiley Press, New York (2009)

[11] Pandey, S., Dobson, J.E., Voorsluys, W., Vecchiola, C., Karunamoorthy, D., Chu, X.,
Buyya, R.: Workflow Engine: fMRI Brain Image Analysis on Amazon EC2 and S3
Clouds. In: The Second IEEE International Scalable Computing Challenge (SCALE
2009) in conjunction with CCGrid 2009, Shanghai, China (2009)

[12] Pandey, S., Gupta, K.K., Barker, A., Buyya, R.: Minimizing Cost when Using Globally
Distributed Cloud Services: A Case Study in Analysis of Intrusion Detection Workflow
Application, Technical Report, CLOUDS-TR-2009-6, Cloud Computing and Distributed
Systems Laboratory, The University of Melbourne, Australia, August 7 (2009)

[13] Garg, S.K., Venugopal, S., Buyya, R.: A Meta-scheduler with Auction Based Resource
Allocation for Global Grids. In: Proceedings of the 14th IEEE International Conference
on Parallel and Distributed Systems. IEEE CS Press, Los Alamitos (2008)

[14] Garg, S.K., Buyya, R., Siegel, H.J.: Time and Cost Trade-off Management for Scheduling
Parallel Applications on Utility Grids. Future Generation Computer Systems (July 25,
2009) (in press), doi:10.1016/j.future.2009.07.003

[15] de Assunção, D., Buyya, M., Venugopal, S.: InterGrid: A Case for Internetworking Is-
lands of Grids. Concurrency and Computation: Practice and Experience 20(8), 997–1024
(2008)

[16] Kim, K.H., Buyya, R., Kim, J.: Power Aware Scheduling of Bag-of-Tasks Applications
with Deadline Constraints on DVS-enabled Clusters. In: Proceedings of the 7th IEEE In-
ternational Symposium on Cluster Computing and the Grid (CCGrid). IEEE CS Press,
Los Alamitos (2007)

[17] Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and Simulation of Scalable Cloud
Computing Environments and the CloudSim Toolkit: Challenges and Opportunities,
Keynote Paper. In: Proceedings of the 7th High Performance Computing and Simulation
(HPCS 2009) Conference, Leipzig, Germany (2009)

[18] Buyya, R., Murshed, M.: GridSim: A Toolkit for the Modeling and Simulation of Dis-
tributed Resource Management and Scheduling for Grid Computing. Concurrency and
Computation: Practice and Experience (CCPE) 14(13-15), 1175–1220 (2002)

[19] Pandey, S., Jin, C., Voorsluys, W., Rahman, M., Buyya, R.: Gridbus Workflow Manage-
ment System on Clouds and Global Grids. In: Proceedings of the 4th International Con-
ference on eScience, pp. 323–324 (2008)

[20] Vecchiola, C., Chu, X., Buyya, R.: Aneka: A Software Platform for.NET-based Cloud
Computing. In: Gentzsch, W., Grandinetti, L., Joubert, G. (eds.) High Performance &
Large Scale Computing, Advances in Parallel Computing. IOS Press, Amsterdam (2009)

[21] Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. International
Journal of Supercomputer Applications 11(2), 115–128 (1997)

[22] Erwin, D.W., Snelling, D.F.: UNICORE: A grid computing environment. In: Sakellariou,
R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, p. 825.
Springer, Heidelberg (2001)

[23] Thain, D., Tannenbaum, T., Livny, M.: Distributed Computing in Practice: The Condor
Experience. Concurrency and Computation: Practice and Experience (CCPE) 17, 323–
356 (2005)

44 R. Buyya, S. Pandey, and C. Vecchiola

[24] Bayucan, A., Henderson, R., Lesiak, C., Mann, B., Proett, T., Tweten, T.: Portable Batch
System: External Reference Specification, Technical report, MRJ Technology Solutions
(1999)

[25] Gentzsch, W.: Sun Grid Engine: Towards Creating a Compute Power Grid. In: Proceed-
ings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID
2001), Brisbane, Australia. IEEE CS Press, Los Alamitos (2001)

[26] Chu, X., Vecchiola, C., Abedini, M., Buyya, R.: Microarray Gene Expression Data
Analysis for Cancer Diagnosis on Enterprise Clouds. In: The Second IEEE International
Scalable Computing Challenge (SCALE 2009), CCGrid 2009, Shanghai, China (2009)

[27] Venugopal, S., Broberg, J., Buyya, R.: OpenPEX: An Open Provisioning and EXecution
System for Virtual Machines, Technical Report, CLOUDS-TR-2009-8, CLOUDS Labo-
ratory, The University of Melbourne, Australia, August 25 (2009)

[28] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorod-
nov, D.: The Eucalyptus Open-source Cloud Computing System. In: Proceedings of the
9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid
2009), Shanghai, China, pp. 124–131 (2009)

[29] Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.: Capacity Leasing in Cloud Sys-
tems using the OpenNebula Engine. In: Workshop on Cloud Computing and its Applica-
tions 2008 (CCA 2008), Chicago, Illinois, USA (October 2008)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 45–56, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Self-healing and Hybrid Diagnosis in Cloud Computing*

Yuanshun Dai1,2, Yanping Xiang1, and Gewei Zhang2

1 Collaborative Autonomic Computing Laboratory, School of Computer Science,
University of Electronic Science and Technology of China

2 Department of Electrical Engineering and Computer Science, University of Tennessee, USA
ydai1@ece.utk.edu, yanping_xiang@yahoo.com.cn,

sundaywork@gmail.com

Abstract. Cloud computing requires a robust, scalable, and high-performance
infrastructure. To provide a reliable and dependable cloud computing platform,
it is necessary to build a self-diagnosis and self-healing system against various
failures or downgrades. This paper is the first to study the self-healing function,
a challenging topic in today’s clouding computing systems, from the
consequence-oriented point of view. To fulfill the self-diagnosis and self-
healing requirements of efficiency, accuracy, and learning ability, a hybrid tool
that takes advantages from Multivariate Decision Diagram and Naïve Bayes
Classifier is proposed. An example is used to demonstrate that this proposed
approach is effective.

Keywords: Self-healing, Autonomic computing, Multivariate Decision
diagram, Naïve Bayes.

1 Introduction

An evolutionary trend in computing has started to take place called cloud computing,
which aims to realize Massive-Scale Service Sharing over the Internet. Cloud
computing is a general term for anything that involves delivering hosted services over
the Internet. These services are broadly divided into four categories: Infrastructure-as-
a-Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS), and
Data-as-a-Service (DaaS). Since cloud computing can offer ready access to entirely
new business capabilities, less expensive IT resources, and unrivaled flexibility for
businesses of every size, it appears to offer significant economic benefits if the risks
can be offset , thus becoming a hot topic for major vendors, including top firms such
as Amazon, Google, and Microsoft. Cloud computing service providers will need a
robust, scalable, and high-performance infrastructure to compete in this emerging
market; therefore, the many challenges involved in adopting cloud computing must be
thoroughly investigated.

A cloud can be defined as a pool of computer resources that can host a variety of
different workloads, including batch-style back-end jobs and interactive user

* Partially supported by National Science Foundation, USA (No. 0831609 and 0831634).
 Partially supported by National Natural Science Foundation of China (No. 60974089).

46 Y. Dai, Y. Xiang, and G. Zhang

applications [1]. Clouds are used by a huge number of people. The resource sharing at
various levels results in various clouds. In sum, they represent a very complex system.
As computer systems become increasingly large and complex, their dependability and
autonomy play a critical role in supporting next-generation science, engineering, and
commercial applications [2-3]. Clouds offer the automatic resizing of virtualized
resources. Cloud scalability is mainly enabled by increasing the number of working
nodes and requires dynamic self-configuration in accordance with high-level policies
(representing business-level objectives). Cloud computing provides computing
services to large pools of users and applications, and, thus, Clouds are exposed to a
number of dangers such as accidental/deliberate faults, virus infections, system
failures etc. [4]. As a result, clouds often fail, become compromised, or perform
poorly, therefore becoming unreliable. Consequently, in cloud computing, the
challenge to design, analyze, evaluate, and improve dependability remains. Clouds are
generally massive and complex. In order to cope with their existing complexity and
reduce the continued development of their complexity, the difficult but obviously
interesting option of endowing clouds with the abilities of self-diagnosis and self-
healing presents itself. A possible solution may reside in autonomic computing that
enables systems to manage themselves without direct human intervention.

Autonomic computing is about shifting the burden of managing systems from
people to technologies. The aim of autonomic computing is to develop the systems’
capabilities of self-managing the distributed computing resources, to adapt to
unpredictable changes while hiding the system's intrinsic complexity to users. The
idea of Autonomic computing is to mimic the autonomic nervous systems found in
biology, as first presented by IBM researchers [5] and extensively studied in follow-
up research [6-8]. This autonomic nervous system controls important bodily functions
(e.g. respiration, heart rate, and blood pressure) in an unconscious manner. Today’s
computing systems are like humans that lack autonomic nervous systems,
consequently resulting in unreliability and vulnerability. Autonomic computing
systems have four fundamental features: be self-configuring, self-healing, self-
optimizing, and self-protecting [5]. To provide a reliable and dependable cloud
computing platform, it is necessary to build a self-diagnosis and self-healing system
against various failures or downgrades.

Self-healing is the capability to discover, diagnose, and react to system disruptions.
The main objective of adding self-healing features to any system is to maximize the
availability, survivability, maintainability, and reliability of the system [5]. Systems
designed to be self-healing are able to heal themselves at runtime in response to
changing environmental or operational circumstances. Clouds are a large pool of easily
usable, accessible, and volatile virtualized resources. They need to be self-healing
because they are so complex, continuously adapting to additions, removals, and
failures of nodes/resources. The enormity of how to self-configure according to a
dynamically changing environment is out of the scope of this paper. This paper instead
proposes a novel solution in self-healing that is based on consequence-oriented
diagnosis and healing..

Instead of detecting the causes that lead to the symptoms, consequence-oriented
diagnosis offers predictions of the consequences resulting from the symptoms. In the
consequence-oriented concept, the efficiency, accuracy, and learning ability of the
diagnosis tool are important. Thus, a new hybrid diagnosis tool that combines the

 Self-healing and Hybrid Diagnosis in Cloud Computing 47

Multivariate Decision Diagram (MDD) and Naïve Bayes Classifier is developed.
Whereas the MDD can quickly categorize the degree of the severity of consequences
according to the symptoms, the Naïve Bayes classification provides a more precise
prediction on different candidate consequences associated with the corresponding
probabilities. Naïve Bayes learning is used to integrate the machining learning ability
into this system. In addition, these two methodologies operate in a holistic manner.

The rest of the paper is organized as follows: Section 2 presents self-diagnosis and
self-healing. Section 3 focuses on the hybrid diagnosis tool, the kernel of the self-
healing system. Section 4 gives an example to show the effectiveness of the
self-healing function. In Section 5, the conclusion is provided.

2 Self-diagnosis and Self-healing

Self-healing, automatically detecting errors and recovering from failures, is a
challenging topic in cloud computing. Current self-healing is far from perfect. Most
self-healing systems diagnose and heal the failure after failure occurs rather than
anticipating failures. Accurate self-healing instead needs to involve more complicated
computation, analysis, and decision processes, analyzing system-level models and
making decisions in a holistic manner. Suspect events including abnormal cases that
are detected should lead to the analysis to anticipate/forestall failure.

Traditional mechanisms for diagnosis and healing test and locate bugs that should
be removed from software codes. However, such procedures have to stop the program
and recompile it, which is not suitable for the self-healing function in cloud
computing because the hosts in clouds are massive and are not expected to reboot or
stop programs for recompilation. Moreover, the bugs and locations of the problems
can vary, so it is impractical to ask the host itself to precisely locate errors and to
intelligently remove them from the codes as if a professional programmer.

To make self-healing more tractable, we hereby present consequence-oriented
diagnosis and recovery. Even though there are numerous and various bugs, the
consequence on the host’s performance may be similar. For example, a memory
leak may be caused by forgetting to release memory occupied by some objects
when deleted. As a result, after running a long time, the host fails to properly work
due to the exhaustion of its memory. Such a bug may exist at an arbitrary
module/class/function/line in different programs. However, wherever the error
exists or whatever types of programs they are, the consequence on the host is
similar, i.e., memory consumption. Therefore, consequence-oriented healing is
designed to help the hosts recover by reclaiming the leaked memory without
stopping the current processes or rebooting the computer.

A software system may contain various faults/errors/bugs that reside in different
modules, classes, or lines and lead to some symptoms. These symptoms can be
monitored in the real-time system, see e.g. [9-10]. The influences of the bugs, the
symptoms in the system, are accumulated so as to cause a certain consequence that
affects the overall performance and quality of the service or task. Thus, an innovative
direction for the ultimate objective of self-healing is presented here. Gleaning the
symptoms through monitoring, the host predicts or diagnoses the possible
consequences from the symptoms.

48 Y. Dai, Y. Xiang, and G. Zhang

The consequence oriented concept is predictive and preventative by diagnosing the
symptoms detected in the real-time, before the catastrophic failures really occur. This
new concept can prevent serious consequences derived from the monitored symptoms
in advance. Based on the concept of consequence-oriented self-healing, the two
important functions of self-diagnosis and self-healing will be discussed as follows:

2.1 Consequence-Oriented Self-diagnosis

Unlike traditional fault detection and isolation (FDI) methods, consequence oriented
diagnosis diagnoses not only the content of the consequences but also the severity
levels, according to the symptoms. Because self-healing is real-time, the timing for
diagnosis and healing is important. Some diagnosis and prescriptions are time
consuming and can only be applied in situations with minor symptoms that are not
very serious; they cannot be applied to serious problems which may quickly bring the
system down. At this point, some quick diagnoses and prescriptions (though not so
precise) should be applied in order to prevent complete failure as obtaining a precise
diagnosis after the system has gone down or the mission has failed is worthless.

Therefore, the severity levels of the consequences should be diagnosed first. There
are several requirements for the diagnosis of consequence severity. First, it should be
quick and straightforward because the severity level will determine the next step of
consequence diagnosis and start the different categories of the healing method.
Second, the definition of the severity levels should be related to the degree the system
can afford the detected symptoms because the timing for healing is critical. Third, the
severity levels should also reflect how far the current state is away from a serious
consequence, which tells an approximate duration for the next diagnosis and healing
to prevent the occurrence of system failures. Thus, the definitions of the severity
levels should be carefully analyzed and preset according to these requirements. The
MDD (Multivariate Decision Diagram), introduced later in Section 3.1, is very
effective and efficient in satisfying the above requirements for the severity diagnosis.

After determining the severity levels, the consequence diagnosis enters the next
phase. This phase first determines the category of consequences corresponding to the
severity levels. Then, which diagnosis system to be used is decided based on the
category because each category of consequence has its own diagnosis system trained
particularly for a set of consequences. Here, we use the Naïve Bayes classifier system,
further elaborated in Section 3.2. Following that, the corresponding prescription needs
to be opened and executed for healing. Finally, the healing result feeds back to adjust
the Naïve Bayes network in the diagnosis system through certain machine learning
mechanisms.

In accordance with these requirements, the consequence-oriented diagnosis
integrates different tools as needed in a holistic system. We name this approach as the
hybrid diagnosis which integrates the Multivariate Decision Diagram and the Naïve
Bayes Classifier.

2.2 Consequence Oriented Self Healing

Accompanying the consequence oriented concept, self-healing needs to be
implemented via three necessary components: Prescriptions, Healing Categories, and
Recursive Healing Method.

 Self-healing and Hybrid Diagnosis in Cloud Computing 49

As an important component in consequence-oriented healing, we hereby propose
the idea of Prescriptions. The prescription ought to recover the patient host and
processes from or prevent serious consequences or failures. However, different
prescriptions are aimed at fulfilling different requirements, so it is possible for a
certain prescription to satisfy some requirements but sacrifice others, especially when
some requirements are in conflict or present tradeoffs.

The host will choose corresponding categories of self-healing approaches
according to determined severity levels. Four typical healing categories are described
here.

Minor severity level: The patient process is allowed to continue running. In the
meantime, follow-up diagnosis steps are executed to find the possible consequences
and then decide the corresponding prescriptions to heal it.

Major severity level: The patient process is suspended immediately and then the
follow-up diagnosis starts to detect the consequences and recover from/prevent the
consequence.

Serious level: If the patient process has the potential to cause the destruction of the
entire system, then the fastest and simplest way is to kill this dangerous process.
However, before the process becomes serious (such as during the earlier minor or
major phases), the host should have initiated another backup process to run for the
same function, though ineffectively.

Catastrophic level: If the host is detected with catastrophic failure (unable to run),
then reboot the system. After rebooting, the previously monitored and stored states of
all processes can help restart the system from the latest checkpoint.

Even though we introduced four different categories for healing according to four
severity levels, it does not affect the generality of this framework. More categories
can be added as needed in reality.

After identifying the possible consequences (named as diseases hereafter), the
healing process starts to recover from them. The recursive healing method is
presented as follows:

After the diagnosis, the host determines a prescription for healing the identified
disease. The host runs the prescription. The results after the healing are fed back.
However, if the problem still persists, the second option for prescription output by the
hybrid diagnosis can be tried, or further diagnosis is completed and another
prescription is tried. This step can be recursively attempted for several rounds until
one prescription works to alleviate the consequence. In the case all attempts are
useless; the host can restart the corresponding processes or reboot the operation
system. Before the restart process, some important variables or states can be recorded
in order to allow the system to recover back to the latest healthy check-point. The
healing results will also be reported to the diagnosis modules for learning. As it is
possible that the patient host lacks sufficient resources to support the healing, in such
cases, the system can assign another host to heal the patient host.

The above recursive healing method not only tries multiple prescriptions according
to the possibilities assigned by the hybrid diagnosis but also utilizes other hosts to
realize peer healing if the current host itself has inadequate resources to execute the
prescriptions.

50 Y. Dai, Y. Xiang, and G. Zhang

3 Hybrid Diagnosis Approach

The hybrid diagnosis approach is a general concept that represents a combination of
the analytical tools cooperating together to realize the diagnosis purpose as shown in
Fig. 1.

Y
C Naïve

Bayes
Classifier

Healing Z

S

S X

NB
Learn ing

Multivariate
Decision
Diagram

Pre-proces

Fig. 1. Hybrid diagnosis integrating the MDD and the Naïve Bayes Classifier

There are several important modules for the hybrid diagnosis. The first module is
to quickly get the overall severity levels in order to decide which type of healing
method or prescription to apply. Depending on the severity, the corresponding
diagnosis and healing category can be selected, e.g. some severe problems need quick
solutions whereas some minor problems need intelligent solutions. Determining a
wrong category may lead to missing the best recovery time. Thus, we implement the
MDD (Multivariate Decision Diagram) [11], to determine severity levels, which is
very efficient as the first module in Fig. 1.

Then, the Naïve Bayes Classifier is applied to infer the possible consequences.
First, the severity level C output from the MDD module feeds forward to the Healing
module for selecting the corresponding healing categories. The severity level C also
feeds forward to diagnosis module to determine which model to apply. The symptoms
S are pre-processed to X and then feed into the Naïve Bayes Classifier to derive the
possibilities associated with corresponding consequences. Finally, the results are the
consequences (Y) out of the diagnosis for self-healing. Then, the healing module
selects and runs the corresponding prescription with the result Z. After that, the Naïve
Bayes learning is applied to train the Naïve Bayes network and then to adjust the
parameters.

The MDD and Naïve Bayes network integrate together to realize the hybrid
diagnosis function. The following subsections respectively show how to deploy them
into this hybrid diagnosis.

3.1 Multiple-valued Decision Diagrams (MDD)

The Multiple-valued decision diagram (MDD) [12] is a natural extension of Binary
Decision Diagram (BDD)[13-14] to the multiple-valued case. A MDD is a directed
acyclic graph (DAG) with up to n sink nodes, each labeled by a distinct logic value 0,
1, ……, n-1. Each non-sink node is labeled by an n-valued variable and has n

 Self-healing and Hybrid Diagnosis in Cloud Computing 51

outgoing edges, one corresponding to each logic value. MDDs have been used in
multiple-valued logic design in the circuit area. They have recently been adapted to
the reliability analysis of fault tolerant systems in Xing & Dai [11].

The MDD-based approach is very efficient in determining the severity level of the
system, because the MDD is ready and the criteria for severity levels of context
indices are also set by models in advance. The resulting almost one-step inference,
important in deciding the right healing category, serves as the basis for timely
diagnosis and healing.

3.2 The Naïve Bayes Classifier

A Naïve Bayes classifier is a simple probabilistic classifier based on applying Bayes'
theorem. The Naïve Bayes model is a specific form of Bayesian network which is
widely used for classification. Fig.2 shows graphically the structure of the Naïve
Bayes. It contains two kinds of nodes: a class node and attribute nodes. In the Naïve
Bayes, though each attribute node has one class node as its parent, there are no direct
links among attributes.

C

A1 A2
A3 A4

Fig. 2. An example of the Naïve Bayes

Classification is one of the most remarkable problems in machine learning and data
mining. Consider the classification problem: Let C be the random variable denoting
the class of an instance. Let (A1, A2, A3,…, An) represent the observed attributes with
discrete values. The goal is to estimate the maximum posterior probability for an
instance. The Bayes theorem can be used to calculate the probability of class value c
given an instance X with a set of attribute values {a1, a2, …, an}:

1 1
1 1

1 1

() (, , |)
(| , ,)

(, ,)
n n

n n
n n

P C c P A a A a C c
P C c A a A a

P A a A a

= = = == = = =
= =

K
K

K

(1)

P (A1=a1,…,An=an) is a constant if the values of the attribute variables are known;
P(C=c) is the prior probability which can be obtained from statistics. So
P(A1=a1,…,An=an|C=c) is the bottleneck for the calculation. Naïve Bayes models
assume that all attributes are conditionally independent given the class, called the
conditional independent assumption. Then:

1 1
1

(, , |) (|)
n

n n i i
i

P A a A a C c P A a C c
=

= = = = = =∏K

(2)

52 Y. Dai, Y. Xiang, and G. Zhang

The Naïve Bayes classifier combines the Naïve Bayes probability model with
a decision rule. One common rule is to select the class that is most probable. The
Naïve Bayes Classifier assigns the most probable category according to the following
formula:

1

arg max () (|)
n

nb i i
c C i

C P C c P A a C c
∈ =

= = = =∏

(3)

The Naïve Bayes classifier is applied to our consequence oriented diagnosis. In Fig. 3,
the input set S is a cluster of symptoms and some other related context measures
gleaned by monitoring the patient process. Then, the pre-process converts the
symptom set S into a set of qualitative attributes for the Naïve Bayes as a sequence of
intervals. It maps every symptom value into a qualitative value according to its
corresponding interval. Different measures have their own mapping rules which
depend on their characteristics.

Y Naïve
Bayes

Classifier

X Pre-proces S

Fig. 3. The Naïve Bayes Classifier in the hybrid diagnosis

Then, the output of pre-process X= {a1, a2, …, an} feeds forward into the module
Naïve Bayes classifier for classification. The normal output of a Naïve Bayes
Classifier is the most probable category. In our system, the output of the module
Naïve Bayes Classifier Y = {p1, p2, …, pn} is a set in which each element is the
probability of each category which corresponds to the predicted consequence. Y is the
result of the diagnosis according to the input, which feeds into the healing module to
find the corresponding prescriptions and recover from/prevent the predicted
consequence(s). The predicted consequence with the largest probability is the most
possible one. The number of iterations for the recursive healing method depends on
the configuration and severity changing. The healing module selects and runs the
corresponding prescription with the result Z. Z is a set of results in which each
element is the result whether the problem is alleviated or not through the cure,
according to the corresponding predicted consequence.

The Naïve Bayes learning is applied to train the Naïve Bayes network and then to
adjust the parameters. Z and X become the input of the NB (NB refers to the Naïve
Bayes) learning module as shown in Fig. 1. The NB learning module adds sample
data to the whole dataset, and then a new learning process is executed which can
update the condition probability table (CPT). This is very important in the real-time
environment. The newest result can be applied to self-diagnosis immediately.
However, the drawback is also obvious, i.e. computing cost using this method is very
expensive. Another method is to use a suitable-size subset of data for incremental
Naïve Bayes learning, which starts a new learning process when the amounts of

 Self-healing and Hybrid Diagnosis in Cloud Computing 53

sample data reach a threshold. Obviously, in this case, the Naïve Bayes network
cannot be updated in time when new sample data come.

The Naïve Bayes is one of the most efficient and effective inductive learning
algorithms for machine learning and data mining. The condition independent
assumption is clearly violated in real-world problems. However Naïve Bayes
classifiers often work better in many complex real-world situations [15]. A lot of
research [16] has been done to relax the independence assumption of the Naïve Bayes
approach. In this diagnosis system, dependencies among attributes should be taken
into account in the future research.

4 Example

An example is used here to illustrate the process of self-diagnosis and self-healing.
We applied the above self-diagnosis and self-healing system onto three often
occurring malfunctions in computing systems: CPU Overload, Memory Leak, and
High Average Disk Queue Length.

As mentioned in Section 2, self-diagnosis is used here to predict the possible
consequences from the symptoms. First, the MDD is applied to quickly assess the
overall severity levels to determine which category of healing method or prescription
to apply. In the first step, the three symptoms are represented by a set with three
elements S= {s1, s2, s3}: where s1 is the degree of severity of CPU overload, s2 is the
severity of memory leak, and s3 is the severity of hard-disc I/O. We define three levels
of severity according to specific criteria for each element, including Good Status,
Minor Problem, and Serious Problem as denoted by 0, 1 and 2, respectively. Given
the combination of the symptoms of the three components (CPU, Memory, and Hard-
disk), we also define the severity levels of system in three levels as well: Good Status
(0), Minor Problem (1), and Serious Problem (2). Then, we built the MDD as depicted
in Fig. 4. Input the series of detected symptoms into the MDD to find the path that
reaches a certain system severity level (the bottom line in Fig. 4). For example, if all
components (CPU, Memory and Hard-disc I/O) are in good status staying at 0, the
severity level of the system is good; if any one component stays at status 2 (serious
problem), the severity level of the system goes to status 2. Thus, the first module in
the hybrid diagnosis approach (Fig. 4.) can be used to quickly determine the severity
level of the system given a set of detected symptoms.

If the MDD outputs a good status, then there is no need to go through the following
much more complicated diagnosis processes. If the MDD outputs a minor problem,
then the following procedures are triggered without stopping any program.
Otherwise, if the MDD outputs a serious situation, some suspect programs (those that
consume the most resources, such as Memory) are suspended and then the following
diagnosis starts. After the problems are solved by our self-healing mechanism, the
suspended programs resume and continue running.

After that, as Fig. 3 shows, the Naïve Bayes Classifier module is applied to the
diagnosis. The pre-process maps the symptom set S into a set of qualitative attributes
for the Naïve Bayes. Then, the output of pre-process X goes through the module
Naïve Bayes Classifier. Fig.5 represents our structure of the Naïve Bayes Classifier
for classification. Attribute nodes are CPU, Memory and Hard-disc I/O. Each attribute

54 Y. Dai, Y. Xiang, and G. Zhang

0 1 2

S1

S3

S2 S2

Fig. 4. The MDD for severity analysis

Memory

Class Class

Hard
Disc I/O

CPU

Fig. 5. The Naïve Bayes model for classification

node has the class node as its parent. The class node has three states corresponding to
the predicted consequences (i.e. Too much CPU consumption; Not enough memory;
Slow Hard-Disk I/O).

In this Hybrid diagnosis, X = {a1, a2, a3} is inputted into the Naïve Bayes Classifier
module, where each attribute value belongs to a sequence of intervals. For example,

the value of the attribute CPU a1∈{ 0-20% CT, 20%CT-40%CT, 40%CT-60%CT,
60%CTe-80%CT, 80%CT-100%CT}, where CT denotes CPU Time. After the
classification, we obtain the diagnosis result Y = {p1, p2, p3} is a set in which p1 is the
probability of “Too much CPU consumption”, p2 is the probability of “Not enough
memory”, and p3 is the probability of “Slow Hard-Disk I/O”. We need to process the
self-healing according to the sequence of the probability corresponding to respective
consequences. The most possible consequence is healed by a given prescription first
and then by the second until the problems are really solved. The healing module we
implemented here is consequence-oriented healing, the same as proposed in the above
Section 2. In this case, we studied three consequences and designed three
corresponding prescriptions to heal them.

After the healing, we scan to determine actual problems, denoted by Z. In this case
Z = {z1, z2, z3}, where zi takes binary values {0, 1}. ‘1’ denotes the corresponding
consequence is actually confirmed, and ‘0’ denotes that the corresponding

 Self-healing and Hybrid Diagnosis in Cloud Computing 55

consequence does not exist. For example, Z = {1, 0, 0} represents the case that the
system records the consequences related to CPU speed.

X and Z act as the input of the NB learning module for training the CPT directly.
The updated Naïve Bayes can be applied to the self-diagnosis immediately.

5 Conclusion

To provide a reliable and dependable cloud computing platform, it is difficult but
obviously interesting to build a self-diagnosis and self-healing system to
prevent/forestall various failures or downgrades. Self-healing is a challenging topic in
today’s cloud computing systems. This paper proposes a novel solution in self-healing
that is based on the consequence-oriented diagnosis and healing. Consequence-
oriented diagnosis offers the prediction of the consequence from the symptoms
instead of detecting the causes that lead to the symptoms. To fulfill the self-diagnosis
and self-healing requirements of efficiency, accuracy, and learning ability, a hybrid
tool that combines the MDD and Naïve Bayes Classifier was proposed. An example is
employed to show the effectiveness of our approach. However, much more research
and experimentation should be conducted to pioneer future work in this area.

References

1. Erdogmus, H.: Cloud Computing. IEEE Software 26(2), 4–6 (2009)
2. Dai, Y.S., Xie, M., Poh, K.L.: Markov Renewal Models for Correlated Software Failures

of Multiple Types. IEEE Trans. Relia. 54, 100–106 (2005)
3. Dai, Y.S., Marshall, T., Guan, X.H.: Autonomic and Dependable Computing: Moving

Towards a Model-Driven Approach. J. Comput. Sci. 2(6), 496–504 (2006)
4. Xie, M., Dai, Y.S., Poh, K.L.: Computing Systems Reliability: Models and Analysis.

Kluwer Academic Publishers, New York (2004)
5. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer 36(1),

41–50 (2003)
6. Motuzenko, P.: Adaptive Domain Model: Dealing with Multiple Attributes of Self-

managing Distributed Object Systems. In: 1st International Symposium on Information
and Communication Technologies, pp. 549–554 (2003)

7. Paulson, L.: Computer System, Heal Thyself. Computer 35(8), 20–22 (2002)
8. Patterson, D., Brown, A., Broadwell, P., et al.: Recovery Oriented Computing roc):

Motivation, Definition, Techniques, and Case Studies. Technical Report CSD-02-1175,
Univ. of California-Berkeley (2002)

9. Hinchey, M., Dai, Y.S., Rash, J.L., Truszkowski, W., Madhusoodan, M.: Bionic
Autonomic Nervous System and Self-healing for NASA ANTS Missions. In: 22nd Annual
ACM Symposium on Applied Computing, pp. 90–96 (2007)

10. Dai, Y.S., Hinchey, M., Madhusoodan, M., Rash, J.L., Zou, X.: A Prototype Model for
Self-Healing and Self-reproduction in Swarm Robotics System. In: 2nd IEEE Symposium
on Dependable, Autonomic and Secure Computing, pp. 3–11 (2006)

11. Xing, L., Dai, Y.S.: Reliability Evaluation using Various Decision Diagrams. In: 10th
Annual International Conference on Industrial Engineering Theory, Applications and
Practice, pp. 448–454 (2005)

56 Y. Dai, Y. Xiang, and G. Zhang

12. Miller, D.M., Drechsler, R.: Implementing a Multiple-Valued Decision Diagram Package.
In: 28th International Symposium on Multiple-Valued Logic, pp. 27–29 (1998)

13. Lee, C.Y.: Representation of Switching Circuits by Binary-Decision Programs. Bell
Systems Technical J. 38, 985–999 (1959)

14. Akers, S.B.: Binary Decision Diagrams. IEEE Trans. Computers 27(6), 509–516 (1978)
15. Domingos, P., Pazzani, M.: On the Optimality of the Simple Bayesian Classifier under

Zero-one Loss. Machine Learning 29, 103–137 (1997)
16. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine

Learning 29(2-3), 131–163 (1997)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 57–68, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Snow Leopard Cloud: A Multi-national Education
Training and Experimentation Cloud and Its Security

Challenges

Erdal Cayirci1, Chunming Rong1, Wim Huiskamp2, and Cor Verkoelen2

1 Electrical Engineering & Computer Science Department,
NATO Joint Warfare Center / University of Stavanger,

Stavanger, Norway
{erdal.cayirci,chunming.rong}@uis.no

2 TNO Defence, Safety and Security,
The Hague, The Netherlands

{wim.huiskamp,cor.verkoelen}@tno.nl

Abstract. Military/civilian education training and experimentation networks
(ETEN) are an important application area for the cloud computing concept.
However, major security challenges have to be overcome to realize an ETEN.
These challenges can be categorized as security challenges typical to any cloud
and multi-level security challenges specific to an ETEN environment. The
cloud approach for ETEN is introduced and its security challenges are ex-
plained in this paper.

Keywords: Snow Leopard, military simulation, training, shared scenarios,
LVC, multi-resolution simulation, exercise, experiment.

1 Introduction

In recent years, modern armed forces have been developing their persistent networks
for training, education and experimentation. The US Joint National Training Capabil-
ity (JNTC) [1], which provides a persistent network for joint (i.e., multi-service,
army, navy, air force and marines together) training services, is an example. The
North Atlantic Treaty Organization (NATO) is also developing a persistent training
capability for NATO, its nations and partners. This initiative is lead by NATO ACT
(Allied Command Transformation) and is known as Program Snow Leopard. The
enabling network for Snow Leopard is called NATO Education and Training Network
(NETN) [2, 3]. The NATO Modeling and Simulation Task Group MSG-068 has been
tasked to develop NETN standards and recommendations and to demonstrate their
practicality.

Snow Leopard will use the MSG-068 NETN recommendations for delivering to
the Alliance and its Partners a persistent, distributed education and training capability
that supports training spanning from strategic down to tactical level across the full
spectrum of operations, leveraging national expertise and capabilities. Snow Leopard
has four pillars organized as separate projects: advanced distributed learning (ADL),

58 E. Cayirci et al.

Fig. 1. The Structure of Snow Leopard

shared scenarios, NATO Training Federation (NTF) and NATO Live, Virtual, Con-
structive (NLVC) federation. These pillars will be available as services to NATO
Headquarters, Nations and Partners over a persistent network.

Snow Leopard connectivity should be flexible in the sense that nations and organi-
zations that have access to the Snow Leopard infrastructure will be able to perform
exercises or experiments in different configurations. In some cases all nations may
want to join a specific event, in other cases, a (small) number of nations may use
Snow Leopard for a particular training exercise or mission preparation event. The
preparation time to set up a particular event should be minimized as a result of the
permanent character of Snow Leopard.

The following applications are foreseen in Snow Leopard:

- Simulation systems (including simulated radio and data links), possibly with
hardware in the loop for training purposes.

- Command and control (C2) systems, mainly identical to the applications that
are used operationally.

- Video teleconferencing (VTC) for exercise mission briefings, mission plan-
ning and after action review. VTC is also used for technical briefings, techni-
cal planning and technical after action review.

- VoIP for technical management and control (before, during and after the ex-
ercise).

- Network remote management, control and monitoring.
- Network time synchronization (using Network Time Protocol NTP).

Classified data storage and data exchange for planning, training, results, documenta-
tion and shared scenarios should also be accessible from all sites [13]. This includes:

- E-mail
- Webservers and collaborative workspaces
- FTP servers (e.g. to distribute scenario data)

A subset of these services and data can be classified as NATO Secret, and may be
accessible only for a subset of users. Nations or organizations that are not involved in
a particular event taking place on the Snow Leopard infrastructure should not have
access to the data related to that event. Therefore, security services are also required
for the realization of the concept.

Snow Leopard Cloud: A Multi-national Education Training and Experimentation Cloud 59

Two NATO training centers have an important role in the implementation of Snow
Leopard: Joint Forces Training Center (JFTC) in Bydgoszcz, Poland and Joint War-
fare Center (JWC) in Stavanger, Norway, which are responsible for tactical and op-
erational/higher level training respectively. JFTC will be the hub for tactical level
live, virtual and constructive simulations called NATO Live Virtual Constructive
(NLVC) federation. On the other hand JWC is the hub for another simulation federa-
tion called NATO Training Federation (NTF). JFTC and JWC will start providing
services from new facilities in 2010 and 2011 respectively. In new facilities both
para-virtualization and clustering techniques will be used extensively for operating
system, platform, network and application virtualizations.

The MSG-068 TG has already made some key decisions for the simulation
infrastructure to fulfill the Snow Leopard requirements: Interoperability between live,
virtual and constructive simulations will be based on the High Level Architecture
(HLA, IEEE 1516 [7-11]), as agreed by NATO STANAG 4603 [14] and NATO M&S
Master Plan [13]. A modular federation object model (FOM) [1, 10] approach will be
applied to extend the well-known HLA real-time platform reference FOM (RPR FOM
V2). The Combined Federated Battle Laboratories Network (CFBLNet) will provide
the secure network link among JWC, JFTC, NATO, Partner and Contact Nations.
NETN will allow the centers, headquarters and units in these nations to dynamically
access the training, education and experimentation resources, i.e., software, platforms,
architectures and data available in JWC and JFTC, as well as in the nations.

Snow Leopard can be a good candidate to create a multi-national joint education,
training and experimentation cloud (ETEC). NETN can be perceived as a very large
cloud public to accredited sites in nations, and also connects other national private
clouds like JNTC. It can provide:

- Shared resources applications like joint exercise management module
(JEMM) and joint exercise scenario tool (JEST), simulation systems like joint
theater level simulation (JTLS), joint conflict and tactical simulation
(JCATS) and virtual battlespace simulation (VBS2)[4] in the form of soft-
ware as a service (SaaS)

- Central Runtime Infrastructure (RTI) component of HLA, HLA federation
execution control tools, exercise logging services, database management sys-
tems, Wiki and other web services in the form of platform as a service (PaaS)

- CFBLNet, video teleconference (VTC), voice over IP (VoIP), network con-
trol and monitoring, network time protocol servers and other infrastructure
elements in the form of infrastructure as a service (IaaS).

An ETEC can also be very useful for civilian purposes like training and education for
large scale complex crises response operations because:

- A common architecture and collaboration environment is needed also for
civilian purposes, such as, complex national or multinational crises man-
agement.

- For local crises management training, small organizations often cannot
afford maintaining an organization and architecture for exercising and
training.

60 E. Cayirci et al.

ETEC can provide not only IaaS, PaaS and SaaS but also other services like exer-
cise/training planning and management. Therefore, ETEC is a very attractive con-
cept for Snow Leopard. However security is a major challenge for the realization of
ETEC concept. In this paper we introduce ETEC for Snow Leopard and its security
challenges. In Section 2 the conventional approach proposed by MSG-068 and our
ETEC approach are introduced and compared. Then we examine the security chal-
lenges typical for any cloud in Section 3. Multi level security (MLS) is not a neces-
sity but may increase ETEC capabilities and efficiency considerably. In Section 4
various forms and challenges of MLS are introduced. We conclude our paper in
Section 5.

2 ETEC Architecture for Snow Leopard and Its Advantages

In the first quarter of 2009, MSG-068 completed the technical recommendations for
Snow Leopard, and the Taskgroup tested the practicality of the recommendations in
experiments throughout 2009. The current design of Snow Leopard, i.e., new facilities
and MSG-068 recommendations, is depicted in Figure 2.

Scenarios
&

Databases
CFBLNet

NETN
Enclave

JWC

JFTC

VMware ESXi
for NTF &

EXCON Tools
VMware View

VMware ESXi
for NLVC &

EXCON Tools

VMware View

Nation-A
NETN

Propreitary
Databases

Shared
Databases

NTF and/or NLVC
Federates

Remote
EXCON
NETN

Handheld clients

Thin/thick clients

Fig. 2. NETN as it is designed

Snow Leopard Cloud: A Multi-national Education Training and Experimentation Cloud 61

MSG-068 recommends CFBLNet as the networking infrastructure for Snow Leop-
ard. CFBLNet is a network built and maintained by its members. The network
consists of sites, national Point of Presence (PoPs), infrastructure, services and
knowledge management. The national/organizational PoP is the connection from the
national/organizational Wide Area network (WAN) to the international part of the
CFBLNet WAN. The CFBLNet BlackBone (i.e., Black backbone) provides a com-
mon, closed, unclassified IP routed network layer implementation using a mixture of
both ATM and IP bearer networks. Its primary purpose is to transport encrypted traf-
fic throughout the network. Enclaves are the cryptographic protected networks on top
of the CFBLNet BlackBone. Each enclave has a classification and a marking indicat-
ing security level and the countries allowed connecting. CFBLNet enclaves can be
accredited upto NATO Secret level events. The classification, i.e., NATO Secret,
NATO Restricted, NATO Unclassified and Unlimited, of an enclave can change from
one event to another. However, an enclave can only have a single classification level
at a time. It is possible to connect an enclave to other NATO networks. In this case
guards (data-diodes) and firewalls are used to apply strict flow control mechanisms.

MSG-068 also recommends an RPR2 based FOM and HLA 1516-2009 for federat-
ing live virtual constructive simulations. The reference Federation Agreement and
FOM Document (FAFD) for NETN was completed in May 2009. Since this topic is
outside the scope of this paper, we do not give the details about FAFD. Interested
reader can find more detailed information about FAFD in [1, 11, 12].

Two important parts of NETN will be JFTC and JWC local area networks (LAN)
which consist of completely virtualized services. These networks and all the virtual-
ized functional area services (FAS) running on them will be carefully designed and
accredited for each event, i.e., an exercise or experimentation, through a process,
which typically lasts 12 months.

Most challenging FAS in this environment are related to computer assisted exer-
cise (CAX) support. There are four classes of CAX services: CAX planning and
management, complex military simulation systems, interfaces between simulation
and C2 systems and experimentation services. Especially the simulation tools are
different from typical services. They are a very complex set of processes that work
together and interact with each other. Therefore, JWC is rigorously testing virtualiza-
tion environments (VMware ESXi and VMware View) for the simulation tools. Most
of the results from the preliminary tests run in a small testbed in Stavanger, Norway
were positive. Some minor problems were corrected by configuration changes, i.e.,
higher RAM available, etc. In October 2009, the fully virtualized architecture for
computer assisted exercises will be tested for the first time during a major exercise.

In the following years, a new set of services will be introduced with Snow Leop-
ard. The services that include also the new tools can be categorized as follows:

- Advanced distributed learning tools and databases
- Shared scenario and database resources
- NATO training federation (NTF), i.e., an HLA federation made up of con-

structive, virtual and live simulation systems (Note that NTF was already
successfully used in a major exercise).

62 E. Cayirci et al.

- NATO live virtual constructive (NLVC) federation for low level tactical
training

- Exercise/experiment planning and management tools, such as joint exercise
management module (JEMM) and joint exercise scenario tool (JEST)

- All kinds of functional area services (FAS), such as command and control
(C2) systems, logistics systems and operational planning tools.

The infrastructure for Snow Leopard, i.e., NETN, is already partly available in JWC
and JFTC. NETN will extend it mainly with distributed exercise control (EXCON)
capabilities and an architecture that allows national simulation and C2 systems to join
NTF or NLVC.

Shared
Scenarios &
Databases

NATO ETEC

VMware ESXi
for NTF,
NLVC &

EXCON Tools

VMware View

National Private ETEC

Shared
Databases

Propreitary
Databases

NTF and/or NLVC
Federates

Propreitary
Databases

Fig. 3. NATO education training and experimentation cloud

Snow Leopard Cloud: A Multi-national Education Training and Experimentation Cloud 63

Figure 3 shows the proposed ETEC approach for NETN, which can further in-
crease the efficiency and flexibility of NETN. JWC and JFTC facilities and infrastruc-
ture allow quick adaptation of the ETEC approach. National private ETECs can also
join the NATO ETEC to create more flexibility and extensive usage. Therefore, we
can perceive the overall architecture as a hybrid cloud that has both public and private
components. Propriety databases can also be used with this cloud. They may remain
outside of the ETEC, but can become available through a controlled access from in-
side the ETEC. A NATO ETEC can reduce the cost of NATO exercises and experi-
ments considerably because:

- Handheld devices and terminals cheaper than typical client workstations, can
use all the services in ETEC without any configuration requirement as long
as they can gain access to the ETEC.

- Hardware for servers are procured for only one site.
- Software licenses are obtained for only one site. Licenses may be shared be-

tween users that don’t require permanent use. For example, VBS2.
- Software and hardware configurations and upgrades are carried out at only

one site. Therefore operations and maintenance costs are reduced.

Nations and Partners can use this architecture not only for NATO exercises but also to
train their tactical forces for coalition operations more efficiently and less costly. For
example several nations can train their tactical forces for a coalition operation without
involving any NATO Headquarters by using NATO ETEC. Moreover, such an ETEC
can be opened for UN and other international governmental and non-governmental
organizations, which cannot afford to procure and maintain such a complex training
and experimentation cloud.

However the ETEC approach for NETN also has many challenges and most of
these challenges are related to security, especially to multi-level security. In the fol-
lowing sections we explain the security challenges of ETEC.

3 Security Challenges for Cloud Computing

Major security challenges for ETEC, which are also typical for any cloud, can be
listed as follows:

Privacy: Users must rely on the ETEC administration for the protection of their
privacy and security of their proprietary data because the first and most important
difference of ETEC from the conventional approach is that the users do not own the
hardware and software. Instead they receive the services available in ETEC based on
a per use service model. For a NATO ETEC, there are two sides of this issue: nations
and national data, NATO and NATO data. This issue can be even more challenging if
Partner and Contact nations are allowed to use NATO ETEC resources. It may be
needed to keep some data always invisible to some ETEC users. Alternatively, some
data provided by a NATO organization or a nation for use during an event may not be
releasable to the participants although they are using it during the event. For example,
the JWC exercise flow (JEMM) database for an exercise is not releasable to any na-
tion or NATO organization after that exercise ends. This policy is implemented

64 E. Cayirci et al.

because some parts of the exercise data can be used in the next exercise. When these
data are prematurely available to the training audience of the next exercise it may
hinder achieving the exercise objectives. It may be desirable to use own data that is
secured locally while receiving IaaS, PaaS and SaaS from ETEC, and sharing these
data only with the users approved by the owner of the data. Data segregation, which
ensures that reliable encryption is always available, is also an issue related to privacy.
Of course encryption brings up the requirement for a secure, efficient and practical
key distribution scheme. It is not easy to design a secure key distribution scheme for
such a dynamic and flexible environment.

Anonymity and Traffic Analysis: Not only the private data owned by a particular
user, but also the anonymity of the users may need to be protected. In addition, ETEC
should prevent users from unauthorized analysis of the network traffic to derive some
information about the operational postures of the units. For example certain patterns
of network traffic among certain headquarters before an air-to-ground attack package
starts flying in a simulation during an exercise may be very important intelligence for
a user that represents the opposing forces. Therefore, ETEC should protect anonymity
and prevent (undesired) traffic analysis. Keeping the data and service locations
anonymous and using techniques like load balancing both for servers and networking
resources can help dealing with this issue.

Single Point to Attack and Single Point of Failure: Although centralization of ser-
vices increases the security of a system by reducing the size of infrastructure to pro-
tect, that also creates points of gravitation for attacks. Services in a cloud can be a
very attractive target for hackers. Moreover, when a system is hacked and/or fails, the
impact is much bigger comparing to distributed computation approaches. Therefore,
ETEC requires comprehensive intrusion prevention, detection and response tech-
niques and fault tolerance measures. Actually we can state that both clustering and
para-virtualization techniques that will be used in JWC and JFTC are naturally fault
tolerant. Still there are key services, and when one of them are compromised, all ele-
ments in the cloud can be affected.

Large Databases and High Number of Clients: The centralization of services also
reduces the probability of configuration errors since there is no need for local system
administrators. Therefore, at the first glance it looks like the points that can be ex-
ploited by the hackers are less comparing to the conventional approach. However, a
cloud typically has huge number of users, much bigger databases and a much higher
number of processes. This creates new opportunities for denial of service attacks. For
example a single malicious user that uses multiple identities, i.e., sybil attack, can
attempt to consume as much system resources as possible. The cloud can be accessi-
ble from many different points by many users using generic and simple client devices,
it is therefore not an easy task to detect an intruder. Huge databases, high number of
users and services also make the detection of bugs, covert channels and bypasses a
very difficult task. Therefore each module, component and their contents should be
carefully verified and accredited before putting into service. This may increase the
time required to modify a cloud or adding a new piece of data or software into it.

Snow Leopard Cloud: A Multi-national Education Training and Experimentation Cloud 65

Denial of Service (DoS) Attacks in Medium Access Control (MAC) and Higher
Layers of Networking Protocols: Malicious intermediate nodes in the routes be-
tween the users/clients and centralized services can degrade the service quality. Al-
though this kind of attacks is not specific to cloud computing, users of clouds are
more sensitive to it because they are highly dependent on the centralized resources.
Resource centralization also makes the organization of such attacks easier. Some ex-
amples for this kind of attacks are as follows:

- A malicious node may selectively forward the packets coming from the
cloud or the users. Although the attack is organized in network layer, it has
also effects in transport layer. In transport layer protocols like TCP, a missing
packet indicates congestion, which means reducing the transmission speed by
starting slow start process from the beginning. Since the malicious node
drops only some random packets, it is not easy to discover it.

- A malicious node may not forward any packet to or from a cloud. This attack
has a bigger impact comparing to selective forwarding. However, it is also
easier to detect and recover from.

- A malicious node can do acknowledgement spoofing. There are various
impacts of this. By acknowledgement spoofing congestion can be created.
Alternatively, acknowledgements can be replayed, which indicates negative
acknowledgement in various TCP derivatives like TCP-Reno.

- If wireless links are involved in any part of the communications, the security
risks are even higher. For example, clear to send (CTS) signals can be
jammed to organize very cost effective and practical jamming attacks in
MAC layer for IEEE 802.11. Similarly, request to send signals broadcasted
periodically can jam a wireless IEEE 802.11 channel very effectively.

Self-configuring, Self-optimizing, Self-monitoring and Self-healing Procedures:
Cloud computing requires algorithms for self configuration, self optimization, self
monitoring and self healing. These processes may create opportunities to exploit for
security attacks because of two reasons: First their implementation may have some
bugs, and a hacker can use those bugs to gain access to a service. Second, a hacker
may make these processes misbehave to degrade the services or to gain access to a
service. For example a malicious user may change some system variables to show a
system resource busy, and make a load balancing algorithm assign no task to the sys-
tem resource, which is available in reality.

4 Multi-Level Security for ETEC

All the security challenges explained in Section 3 are also valid for an ETEC. In addi-
tion to those, an ETEC, especially a NATO ETEC, has another major challenge, which
is multi-level security (MLS). Within current collective mission simulation environ-
ments all security domains are required to agree on a common security classification.
Information kept within each security domain must then be altered to comply with the
agreed common security classification. This requires a costly and time consuming ef-
fort per collective mission simulation (re)configuration. There is an increasing need for

66 E. Cayirci et al.

a security solution that enables the sharing of simulation information across these secu-
rity domains to establish collective simulations without a potential information leakage
and confidentiality breach. This problem of information flow has been identified in the
NATO M&S Master Plan [13] (Section 3.9).

In the current NETN design, an enclave in CFBLNet can have a single security
classification. This means that only users that have a security clearance equal to or
higher than the security classification of the enclave can access the enclave, and data
that has higher classification level cannot be processed in the enclave. CFBLNet pro-
cedures allow changing the security level of an enclave from time to time. However,
an enclave can have only a single security classification level at a time. There can be
multiple enclaves for NETN with different security classification. Each of these en-
claves means separate clouds that require separate servers, i.e., both hardware and
software. This can be called multiple single level security (MSL), and seems the only
practical option in the beginning. It is also possible to connect enclaves with different
security classification through mail guards and firewalls that apply strict flow control
mechanisms (e.g. data diodes).

Benefits of a NATO ETEC can be fully achieved when true multi level security
(MLS) is realized. That means all users with different clearances can access a cloud,
and an automated security mechanism can guarantee the following:

- A user cannot access a service that has higher security classification than
his/her clearance. Please note that a service can be software, platform, infra-
structure or data in ETEC.

- A process can read and write an object if it has a classification level equal to
the classification of the object.

- A process can read an object with a classification label of a lower level than
its own clearance.

- A process cannot write to an object with a lower classification level to pre-
vent leakage.

- A process cannot read or write to an object that has higher classification
level, which is also related to the first item in this list.

A reliable flow control mechanism is required in order to meet these requirements.
That can be achieved by labeling each data item, service and user with its security
classification and clearance, and by implementing procedures for the automated secu-
rity mechanism based on these labels. Of course, service labeling is a major challenge
when it is an ETEC because an ETEC is characterized by huge number of users and
very large databases. Moreover, clearance management for the users in such a dy-
namic environment with so many users is not an easy task. We expect that service
labeling and clearance management for an ETEC will be much more complex than
key management in mobile ad hoc networks.

Efficient sanitization techniques allow a reader to see parts of a document,
which has security classification lower or equal to his/her clearance, although the
classification of the overall document is higher. Sanitization is almost a “mission
impossible”. First, sanitization requires an intelligence to decide which parts of a ser-
vice cannot be seen by a particular user and should be removed before serving the
user. Second, it also requires an effective and scalable implementation for high

Snow Leopard Cloud: A Multi-national Education Training and Experimentation Cloud 67

number of users and large databases. Please note that some of the services in ETEC,
such as live and virtual simulations are real time services and have very stringent la-
tency constraints. Moreover, utilities in some applications make this task harder. For
example, some documents may keep editing information to be capable for undoing
changes later. Therefore, the parts deleted during sanitization can be undone if the
mechanism misses those utilities.

Information kept within a simulator includes for instance models, attributes and
values. In relation to simulation new factors complicate the problem of sanitization:

- The value as such of a particular object may be unclassified (e.g. a geo-
graphical position as shown on a C2 system), but derived values may be
classified under certain conditions. For example, velocity of the object can be
derived from its position updates. The average velocity may be unclassified,
however, the breaking capabilities or turn rates (when avoiding threats) may
be classified.

- Combinations of unclassified values may disclose classified data. For exam-
ple, position information of a strike package provides details about the doc-
trines that are used for specific operations.

- Data rates as such may provide classified information.

The ongoing MLS research activity investigates, through use-cases, how information
classification and release within the simulation context should be handled. The tech-
niques developed for flow control and sanitization of simulation data should be care-
fully designed such that adversaries cannot find and exploit covert channels or bypass
the security mechanisms.

Fig. 4. Labeling and release mechanism for simulations

Finaly HLA components and procedures like object models, RTI and FEDEP may
have a role in enhancing security in an ETEC. The information elements of the
simulation are described within the Federation Object Model. The FOM is used to
determine and define classified information elements. The actual prevention of releas-
ing classified information is initially based on the individual classified information
elements using some kind of release mechanism that is integrated into the HLA mid-
dleware (RTI).

The proposed security mechanisms/processes to prevent information leakage
should become an integral part of the simulator development process, such as the
HLA FEDEP (or its successor DSEEP) process.

68 E. Cayirci et al.

5 Conclusion

The ACT Program Snow Leopard is aiming to deliver a persistent network that con-
sists of ADL, shared scenarios and live, virtual, constructive simulation capabilities.
MSG-068 NETN TG is developing standards and recommendations to be used by
Snow Leopard. Technical recommendations are almost completed and testing of these
recommendations has started. Virtualization related testing were conducted during a
large military exercise in late October 2009. The experimentation and demonstration
for overall NETN recommendations will be conducted during a large standalone ex-
periment event in the second half of 2010. These efforts can lead to a multi national
education training and experimentation cloud. However, the cloud approach has some
major security challenges to tackle with first. Some of these challenges are typical to
any cloud. There are also multi level security requirements for fully utilizing ETEC
concept. Concepts for addressing MLS in distributed simulation environments have
been identified and will be developed and tested in the following years. Once devel-
oped and validated, these measures will greatly enhance the advantages and flexibility
of ETEC for distributed training in a multi-national context.

References

1. Lofstrand, B., Khayari, R., Keller, K., Greiwe, K., Hulten, T., Bowers, A., Faye, J.-P.: Lo-
gistic FOM Module in Snow Leopard: Recommendations by MSG-068 NATO Education
and Training Network Task Group. In: Fall Simulation Interoperability Workshop (SIW)
(September 2009)

2. Cayirci, E.: Exercise Structure for Distributed Multi-resolution NATO Computer Assisted
Exercises. In: ITEC 2007 (May 2007)

3. Cayirci, E.: Distributed Multi-resolution Computer Assisted Exercises. In: NATO Model-
ling and Simulation Conference (October 2007)

4. Cayirci, E., Marincic, D.: Computer Assisted Exercises and Training: A Reference Guide.
John Wiley and Sons, Chichester (2009)

5. McGowan, G., Raney, C.: Integrating Multi-Level Security into the Joint Warfighter
Training Environment. In: The Interservice/Industry Training, Simulation & Education
Conference (I/ITSEC), Orlando (2008)

6. Knapp, G.F.: The Joint National Training Capability, The cornerstone of Training Trans-
formation. In: NATO Modelling and Simulation Conference, Koblenz (2004)

7. IEEE Std 1516 TM -2000: IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) - Framework and Rules

8. IEEE 1516.1TM -2000: IEEE Standard for Modeling and Simulation (M&S)
9. High Level Architecture (HLA) - Federate Interface Specification

10. IEEE 1516.2TM -2000: IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) - Object Model Template (OMT) Specification

11. IEEE Standard1516.3-2000, IEEE Recommended Practice for High Level Architecture
(HLA) Federation and Development and Execution Process FEDEP

12. MSG-068 NETN TG Technical Report Draft 1.3, NATO Modeling and Simulation Group,
NATO Research and Technology Organization, Paris (2009)

13. NATO M&S Masterplan (AC/323 (SGMS) D/2 Version 1.0 (1998)
14. NATO STANAG 4603 Modelling and Simulation Architecture Standards for technical in-

teroperability: High Level Architecture (HLA)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 69–79, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Trust Model to Enhance Security and Interoperability of
Cloud Environment∗

Wenjuan Li1,2 and Lingdi Ping1

1 College of Computer Science and Technology, Zhejiang University,
Hangzhou, Zhejiang 310058, China

2 Hangzhou Normal University, Hangzhou, Zhejiang 310012, China
liellie@163.com, Ldping@cs.zju.edu.cn

Abstract. Trust is one of the most important means to improve security and
enable interoperability of current heterogeneous independent cloud platforms.
This paper first analyzed several trust models used in large and distributed en-
vironment and then introduced a novel cloud trust model to solve security issues
in cross-clouds environment in which cloud customer can choose different pro-
viders’ services and resources in heterogeneous domains can cooperate. The
model is domain-based. It divides one cloud provider’s resource nodes into the
same domain and sets trust agent. It distinguishes two different roles cloud cus-
tomer and cloud server and designs different strategies for them. In our model,
trust recommendation is treated as one type of cloud services just like computa-
tion or storage. The model achieves both identity authentication and behavior
authentication. The results of emulation experiments show that the proposed
model can efficiently and safely construct trust relationship in cross-clouds
environment.

Keywords: cloud computing, trust model, heterogeneous domain, role, trust
recommendation.

1 Introduction

Cloud computing based on many other existing technologies is a new method for
sharing infrastructure which provides customers with extremely strong computation
capability and huge memory space while with low cost. But now cloud computing is
faced with many problems to be resolved especially security. Till now most IT
enterprises’ cloud platforms are heterogeneous, independent and not interoperable. For
the benefit of human society and the development of cloud computing, one uniform and
interoperable cross-clouds platform will surely be born in the near future. And in
cross-clouds environment, security is the most important issue. Compared to traditional
technologies, cloud has many specific features, such as it is ultra-large-scale and
resources belong to each cloud providers are completely distributed, heterogeneous and
totally virtualized. Traditional security mechanisms such as identity validation,

∗

 This project is supported by Chinese National Advanced Science and Technology
863(2008BA21B03 and 2008AA01A323).

70 W. Li and L. Ping

authentication and authorization were no longer suitable for cloud. Trust which is
originally society notion in constructing human beings’ relationship is now an essential
substitute for former security mechanism in distributed environments. Some experts
said the biggest issue of cloud computing 2009 is trust [6].

While in fact trust is the most complex relationship between entities because it is
extremely abstract, unstable and difficult to be measured and managed. Today there is
no special trust model for cloud computing environment. But as we know cloud has
inextricably linked to distributed systems, so we try to establish our cloud trust model
on the basis of in-deep research of previous studies.

This paper proposed a novel trust model which ensured the security of cloud entities
both customers and providers in cross-clouds applications. It divided cloud nodes into
two categories: customers and servers and designed different trust strategies for them.
Trust domains were established based on independent single-cloud platform. Trust
choice and update strategies took into account both the independence of nodes and
manageable of domains. What’s more, trust recommendation in this model was treated
and managed as one type of cloud services.

This paper was constructed as follows: part 2 describes the main concept of trust and
part 3 analyzes and compares several existing trust models. Part 4 introduces the new
cross-clouds trust model. Part 5 shows results of our emulation experiments and the last
part is conclusion and future work.

2 Definitions

2.1 Trust Relationship

The following are some correlative definitions:

* Definition1: Trust is referred to the recognition of entity’s identity and the con-
fidence on its behaviors. Trust is subjective behavior since entity’s judgement is
usually based on its own experiences. Trust is described by trust value.

* Definition2: Trust value or trust degree is used to measure the degree of trust.
Trust value often depends on special time and special context.

* Definition3: Direct trust means trust that is obtained by entities’ direct interac-
tion.

* Definition4: Indirect trust or recommended trust means trust that is obtained from
credible third party who has direct contact with the designated one. Recom-
mended trust is one important way to obtain trust degree of unknown entities.

2.2 Classification of Trust

Trust can be classified into different categories according to different standards.

* According to attributes: identity trust and behavior trust
* According to obtaining way: direct trust and recommended trust
* According to role: code trust, third party trust and execution trust, etc.
* According to based theory: subjective trust and objective trust.

 Trust Model to Enhance Security and Interoperability of Cloud Environment 71

2.3 Features of Trust

In our opinion trust has the following main features:

* Subjective, uncertainty and fuzzy.
* Asymmetry. If A and B have to set up trust relationship, A’s evaluated trust for B

can be different from B for A
* Inconstancy and context-sensitive. Trust is changing along with special time and

special context..
* Condition based transitivity. A’s trust value for B is always unequal to the rec-

ommended trust that is received from C. There always exists a recommendation
factor.

3 Trust Models in Distributed Environment [7-11]

With the widespread application of large scale and distributed systems such as Grid
computing, Ubiquitous computing, P2P computing and Ad hoc networks, trust models
fit for them have been in-depth researches. In this part we discuss the previous trust
models designed for distributed systems.

3.1 PKI Based Trust Model

This trust model depends on a few leader nodes to secure the whole system. The
leaders’ validity certifications are signed by CA. GSI Security Infrastructure of Globus
the most famous Grid toolkit is also based on PKI technology. GSI introduces the
concept of user agent. PKI model may cause uneven load or a single point of failure
since it rely on leader nodes too much.

3.2 Network Topology Based Trust Model

This trust model is constructed on the basis of network topology. Each entity’s trust is
evaluated according to its location in system topology and it usually uses tree or graph
traversal algorithm. Trust management mechanism in this model is relatively simple.
But due to the extremely complexity of network environment, trust values are often
inaccurate which may cause system security risks.

3.3 Basic Behavior Based Trust Model

This model uses history trade records to compute trust. One entity’s trust is gained by
considering both former trade experiences and other nodes’ recommendation. Trust
value is relatively complete and reliable in this model while at the same time with
large-scale computation and other burden.

3.4 Domain Based Trust Model

This trust model is mostly used in Grid computing. It divides Grid environment into
several trust domains and distinguishes two kinds of trust. One is in-domain trust rela-
tionship and the other is inter-domain trust relationship. It establishes different strate-
gies for them. The mechanism of this model is reasonable in that since nodes in the

72 W. Li and L. Ping

same domain usually are much more familiar, they generally have higher trust degree
for each other. This algorithm is low computational complexity because in-domain
trust’s computation only depends on the number of nodes in a domain and inter-domain
trust only depends on the number of domains. Domain based model can be seen as a
compromise between PKI and network topology. But just like PKI, it may cause net-
work bottleneck and a single point of failure and it ignores the trust decision inde-
pendence of entities.

3.5 Subjective Trust Model

Distributed applications are often faced with two major security scenarios. First, user
programs may contain malicious codes that may endanger or weaken resources.
Second, resources once infected by network attacks may damage user applications. So
Subject logic based trust model divides trust into several subclass: execution trust,
code trust, authority trust, direct trust and recommendation trust and so on. Also it
designs different strategies for each kind of trust. Subjective trust is a subjective de-
cision about specific level of entity's particular characters or behaviors. Entity A trusts
entity B means A believes that B will perform certain action in some specific situation.
Probability theory for example D-S theory or fuzzy mathematics is the basic tool to
define trust. But generally speaking subjective trust cannot reflect fuzziness and is
only reasoning on probability models which were over formalized and far away from
real essence of trust management. Literature [9] proposed a new subjective trust model
based on cloud model which can better describe the fuzziness and randomicity. There
are other defects such as it cannot realize the integration of identity and behavior
certification and the mechanism is so complex that it is difficult to realize the system
based on it.

3.6 Dynamic Trust Model

Dynamic trust mechanism is a new and hot topic of security research for distributed
applications. Construction of dynamic trust relationship needs to solve the following
mathematics issues.

* To decide trust degree space. Always it is defined by fuzzy logics.
* To design mechanism of acquirement of trust value. There are two kinds of

methods: direct or indirect.
* To design mechanism of trust value evaluation or evolution.

The research of dynamic trust model is still at the initial stage with a lot of problems to
be resolved.

* Definition confusion of dynamic trust relationship. Since trust is a subjective
concept there is no universal definition that can be widely accepted.

* Diversity of trust model. Dynamic trust models are based on special application
environment and lack universality.

* Difficulties in the evaluation of trust model performance.
* Lack of the realization or application of model.

 Trust Model to Enhance Security and Interoperability of Cloud Environment 73

4 Proposed Trust Model

We proposed a novel trust model that can be used in large-scale and completely dis-
tributed cross-clouds environment based on the previous research. The following is the
detail of our model.

The model differentiates two kinds of cloud roles: client and server or customer and
provider. Clients are enterprises or individuals who choose to use cloud services, while
service nodes are resources of cloud providers. Resources that belong to the same
providers will attend the same trust domain and each domain set trust agent.

4.1 Trust Relationship Table

Each client stores and maintains a customer trust table.

Table 1. Customer trust table

Domain name Service type Trust value/trust degree Generation time

The key of the table showed above contains the first and second attributes. Domain

name is one cloud provider’s unique identity in uniform cloud platform. Service type
can be computation, storage and so on. In our model, the most specific service type is
trust recommendation. When customer uses certain provider’s service for the first time,
it will use recommended trust provided by the other familiar providers to compute
original trust. After the trade, it updates the corresponding trust according to trade
result, and also it updates the recommendation factor of corresponding providers.
Recommendation factor here is the trust value of recommendation service. Trust value
or trust degree is used for trade judgement. The last column “generation time” is used to
update trust.

Providers rely on their domain trust agent to manage trust. Agent stores and main-
tains domain trust table which records other domains’ trust. Domain trust is used when
one provider cooperates with some others, turns over customer’s services, recommends
trust, etc. Each time when two providers cooperate for the first time, they can also
request for trust recommendation from their familiar domains. In this case recom-
mendation is also one cooperation type. Table2 below is domain trust table.

Table 2. Domain trust table

Domain name Cooperation type Trust value/trust degree Generation time

4.2 Realization Mechanism

Figure 1 shows the basic realization framework of the new model.

74 W. Li and L. Ping

Fig. 1. Realization mechanism

4.2.1 Trust Decision

Safe transactions in cross-clouds environment are ensured by trust mechanism of which
the key is trust decision. When customers want to use cloud services, they have to make
trust decision. Also when service providers want to cooperate, they have to make trust
decision. Explicit trust decision needs a threshold. Unless trust value is bigger than or
trust degree is higher than the threshold, entities will not continue their transaction. In
our model, threshold is customizable and cloud entity or trust domain can independ-
ently set its threshold according to its current level of security.

The general process of trust decision in our model is as follows: first of all, to search
corresponding value of special trading partner in local trust table (for customer is
customer trust table and for provider is domain trust table). If there exists the value and
it exceeds the threshold, entity will agree to continue the transaction else transaction
will be suspended. If no corresponding record is found, entity will broadcast trust re-
quest within familiar domains. And original trust for counterparty will be calculated
using the received recommendation trust and corresponding recommendation factor.

Algorithm to Obtain Direct Trust for the familiar nodes.

DirectSearch(nodeB,serviceType){/*example of nodeA
searches nodeB’s trust in local trust table*/

 Boolean found=false;

 TargetNode *isTargetNode=nodeA.dir;

 While(!found||isTargetNode!=null) {

Resource
Resource
Node

Agent

 Domain
 Trust Table

 Customer
Trust Table

Cloud customer Trust query

Trust update

Trust update

Trust query

S
ervice R

equest

R
ecom

m
end

 Trust
 Domain

Service Provide

Open
Cloud Environment

Resource
 Node

Trust Agent

History Data

Trust communication

History Data

 Trust Model to Enhance Security and Interoperability of Cloud Environment 75

if(isTargetNode->id==nodeB) {

 found=true;

for(;isTargetNode->context==serviceType||isTargetNode!=
nodeB;isTargetNode =isTargetNode->next)

{ if(isTargetNode->context==serviceType)

{return isTargetNode->trustValue;}

}

} else { isTargetNode=isTargetNode->next;}

 }

 if(!found) {return –1;}

}

Algorithm to Compute Recommendation Trust.

RecommendSearch(nodeB,serviceType){/*example of nodeA
calculates nodeB’s recommendation trust */

 Boolean found=false;

 float trustValue;

 RecomNode *isRecomNode=nodeA.dir;

 While(!found||isRecomNode!=null){

if(isRecomNode->context==recommendation){

trustValue=requestforRecom(isRecomNode,nodeB,

serviceType);/*Agent will reply recommendation
trust for nodeB of the special trade type*/

 }

if(trustValue>=0){

found=true;

return trustValue*isRecomNode->trustValue;

}

 isRecomNode=isRecomNode->next;

 }

 if(!found) return -1;

}

We suppose that rows in each trust table are already sorted by trust value in de-
scending order. And for simplicity in recommendation circumstances, entity just
chooses to use the recommendation trust of the node with highest recommendation

76 W. Li and L. Ping

factor. Besides since trust is always context dependent, our algorithms take into ac-
count service types.

4.2.2 Trust Update
Two factors cause the update of trust: one is time and the other is re-evaluation of trust
after each transaction. Time influence is continuous while transactions’ are leaping. So
the model adopts different strategies to evaluate them. It tends to use appropriate at-
tenuation function to measure time influence. And in contrast it counts much on the
evaluation of last time transaction rather than history cooperation data. Below is the
different update policy for different cloud role.

* For customers:

* To set a time-stamp and periodically delete expired records.

Example of Time Update.

ETimeUpdate(){

 DirNode *isDirNode=nodeA.dir;

 DirNode *p=nodeA.dir;

 IsDirNode= IsDirNode->next;

 While(p!=null) {

if(isDirNode->time>=MAXTIME) {

 p->next=IsDirNode->next;

 Delete IsDirNode;

 p=p->next;

 IsDirNode=p->next;

 } else {

 p=p->next;

 IsDirNode=p->next;}

 }

}

* To re-evaluate trust after each transaction. If it is the first time, customer will
increase one record in customer trust table to store the new provider’s trust
and at the same time update the recommendation service trust of providers
who offered recommended trust. Else it just replaces the old trust with the new
one.

* For agents:

* To refresh trust using proper time attenuation function.
* To update domain trust value after each cooperation with other domains.

 Trust Model to Enhance Security and Interoperability of Cloud Environment 77

5 Emulation Experiment and Results

We designed simulation experiments realizing the emulation of cross domain transac-
tions based on proposed model and traditional domain-based model. The experiments
set up two evaluation factors: trust accuracy and transaction success rate. Trust accu-
racy means the ratio of obtaining correct trust value through trust mechanism to the
total number of evaluations. Transaction success rate means the ratio of success
transactions to the ideal number of transactions.

Simulation experiments simulated cloud platform that contained 2000 nodes and
10 trust domains. In initial time, node randomly became a customer node or joined a
domain and became a resource node. Each node should complete 100 times transac-
tions. For each customer node each time, it randomly chose a certain domain to
provide download service. For each resource node each time, the specific domain it
belonged to randomly chose another domain to cooperate. So the total number of
transactions was 200,000. Since each time before nodes began transaction they made
trust decisions, the total number of trust evaluations was also 200,000. Malicious
node or bad nodes in the experiments were referred to those who refused to provide
services or deliberately cheat in trust recommendation. The following two figures
show the results.

The results show the proposed model can ensure higher transaction success rate on
the basis of relative higher trust accuracy compared to simple domain-based model in
cross-domain environment with transaction fraud and malicious recommendation.

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60%

the ratio of malicious nodes

tr
us

t a
cc

ur
ac

y

proposed model

without trust
mechanism
domain-based model

Fig. 2. Result of Trust Accuracy. X-axis represents the ratio of malicious nodes and Y-axis
represents trust accuracy.

78 W. Li and L. Ping

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50%

the Ratio of Malicious Nodes

S
uc

ce
ss

 T
ra

de
 R

at
e

proposed model

without trust mechanism

domain-based model

Fig. 3. Result of Success Transaction Rate. X-axis represents the ratio of malicious nodes and
Y-axis represents success trade rate.

6 Conclusion and Future Work

This paper introduces a novel trust model that can be used in cross-clouds environment.
We distinguished two different roles in cloud: customer and provider. Resources that
belong to the same provider will be managed in the same trust domain. In each trust
domain we set up a trust agent to charge domain’s trust. What’s more the model treats
recommendation as one type of cloud service. Simulation experiments show the pro-
posed model can establish trust relationship between customer and provider and be-
tween different cloud platforms fast and safe.

In future, there are still a lot of issues to be studied. We will establish a cross-clouds
security prototype system and implement the proposed model in the test-bed. Since in
reality entities behaviors are more complex and there are many other potential security
risks in ultra-large-scale cross-clouds environment, we will perfect our model and
improve its performance when in use and so on.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, San Francisco (1999)

2. Chinacloud.cn, http://www.chinacloud.cn
3. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open Grid

Services Architecture for Distributed Systems Integration. Technical report, Global Grid
Forum (2002)

4. Xu, Z., Feng, B., Li, W.: Cloud Computing Technology. Publishing House of Electronics
Industry, Beijing (2004)

5. Gartner.: Security Issue of Cloud Computing,
 http://cio.ctocio.com.cn/12/8723012.shtml

 Trust Model to Enhance Security and Interoperability of Cloud Environment 79

6. Urquhart, J.: The Biggest Cloud-Computing Issue of 2009 is Trust (2009),
 http://news.cnet.com/8301-19413_3-10133487-240.html

7. Li, W., Wang, X., Fu, Y., Fu, Z.: Study on Several Trust Models in Grid Environment.
Journal of Fuzhou University Natural Science Edition 34(2), 189–193 (2006)

8. Blaze, M., loannidis, J., Keromytis, A.D.: Experience with the KeyNote Trust Management
System. Applications and Future Directions. In: iTrust 2008, pp. 284–300 (2003)

9. Meng, X., Zhang, G., Kang, J., Li, H., Li, D.: A New Subjective Trust Model Based on
Cloud Model. In: ICNSC 2008, 5th IEEE International Conference on Networking, Sensing
and Control Sanya China, April 6-8, pp. 1125–1130 (2008)

10. Xiao-Yong, L.I., Xiao-Lin, G.U.I.: Research on Dynamic Trust Model for Large Scale
Distributed Environment. Journal of Software 18(6), 1510–1521 (2007)

11. Song, S., Hwang, K., Macwan, M.: Fuzzy Trust Integration for Security Enforcement in
Grid Computing. In: Jin, H., Gao, G.R., Xu, Z., Chen, H. (eds.) NPC 2004. LNCS,
vol. 3222, pp. 9–21. Springer, Heidelberg (2004)

12. Altman, J.: PKI Security for JXTA Overlay Network, Technical Report,TR-I2-03-06, Palo
Alto; Sun Microsystem (2003)

13. Perlman, R.: An Overview of PKI Trust Models. IEEE Network 13, 38–43 (1999)
14. Dou, W., Wang, H., Jia, Y., Zou, P.: A Recommendation-Based Peer-to-Peer Trust Model.

Software Journal 15(4), 571–583 (2004)
15. Gan, Z., Zeng, G.: A Trust Evaluation Model Based on Behavior in Grid Environment.

Computer Application and Software 22(2), 63–64 (2005)
16. Zhu, J., Yang, S., Fan, J., Chen, M.: A Grid&P2P Trust Model Based on Recommendation

Evidence Reasoning. Journal of Computer Research and Development 42(5), 797–803
(2005)

17. Li, X., Michael, R., Liu, J.: A Trust Model Based Routing Protocol for Secure Ad Hoc
Network. In: Proceedings of the 2004 IEEE Aerospace Conference, vol. 2, pp. 1286–1295
(2004)

18. Lin, C., Varadharajan, V., Wang, Y.: Enhancing Grid Security with Trust Management. In:
Proceedings of the 2004 IEEE International Conference on Service Computing, pp. 303–310
(2004)

19. Azzendin, F., Maheswaran, M.: Evolving and Managing Trust in Grid Computing Systems.
In: Proceedings of the 2002 IEEE Canadian Conference on Electrical & Computer Engi-
neering, vol. 3, pp. 1424–1429 (2002)

20. Abdul-Rahman, A., Hailes, S.: Supporting Trust in Virtual Communities. In: Proceedings of
the 33rd Hawaii International Conference on System Sciences, Hawaii, vol. 1 (2000)

21. Wang, L., Yang, S.: A Trust Model in Grid Environment. Journal of Computer Engineering
and Application 40(23), 50–53 (2004)

22. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A Security Architecture for Computational
Grids. In: The 5th ACM Conference on Computer and Communication Security, pp. 83–92
(1998)

23. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree
Compared. In: Grid Computing Environments Workshop, GCE 2008. IEEE, Los Alamitos
(2008)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 80–89, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Dynamic Malicious Code Detection
Based on Binary Translator

Zhe Fang, Minglu Li, Chuliang Weng, and Yuan Luo

Department of Computer Science,
Shanghai Jiaotong University

pighogswine@sjtu.edu.cn,
{li-ml,weng-cl,luoyuan}@cs.sjtu.edu.cn

Abstract. The binary translator is a software component of a computer system.
It converts binary code of one ISA into binary code of another ISA. Recent
trends show that binary translators have been used to save CPU power con-
sumption and CPU die size, which makes binary translators a possible indispen-
sable component of future computer systems. And such situation would give
new opportunities to the security of these computer systems. One of the oppor-
tunities is that we can perform malicious code checking dynamically in the
layer of binary translators. This approach has many advantages, both in terms of
capability of detection and checking overhead. In this paper, we proposed a
working dynamic malicious code checking module integrated to an existent
open-source binary translator, QEMU, and explained that our module’s capabil-
ity of detection is superior to other malicious code checking methods while ac-
ceptable performance is still maintained.

Keywords: binary translator, malicious code, dynamic detection.

1 Introduction

The Binary translator is a software component of a computer system. It converts bi-
nary code of one instruction set architecture (ISA) into binary code of another ISA.
After the conversion, the binary translator executes the converted binary code and
manages the runtime environment. A binary translator might interpret and execute
one instruction at a time in some cases (e.g. in BIOS code). But in most cases, it trans-
lates code at basic block or greater granularity which involves intermediate language
(IL) generation, optimization and assembling.

Binary translators have long been the solution to emulate or virtualize one ISA as
another ISA, so as to resolve ISA compatibility issues between the software and the
CPU. Sun’s binary translator UQDBT [1] could virtualize SPARC as x86, or vice
versa. Intel’s binary translator IA32-EL [2] could virtualize Itanium as x86. In such a
sense, binary translators enable the underlying CPUs to execute a greater variety of
software already existent, stable, powerful and popular, and thus have great signifi-
cance in extending the underlying CPU’s market share.

 Dynamic Malicious Code Detection Based on Binary Translator 81

Moreover, recent trends have put binary translators into new use. Instead of tack-
ling ISA compatibility issues, binary translators have been used to save CPU power
consumption and CPU die size. Transmeta’s binary translator CMS [3] virtualizes its
own VLIW [4] CPU Astro into x86 and saved power greatly while sacrificing limited
performance. Binary translators could also save CPU die size. For example, modern
out-of-order super-scalars’ [5] dynamic instruction scheduling mechanism, such as
implementation of Tomasulo [6], consumes a lot of circuit, if this scheduler could be
replaced by binary translator’s scheduling function, the die size and IC complexity
could decrease considerably.

With future CPU design and manufacturing requiring more and more on minimiz-
ing power consumption and minimizing die size, binary translations have good reason
to be an indispensable software component on a computer system. And this gives new
opportunities to the security of computer systems.

One of the opportunities is that malicious code checking can be performed dy-
namically in the layer of binary translators. This approach has several advantages:

• Binary translators have full control of which binary code are translated and exe-
cuted, which promises that no malicious code could bypass the binary translator
without being translated, since the underlying CPU simply could not execute un-
translated binary code of another ISA.

• Binary translators are usually much more complicated than a simple instruction-
by-instruction interpreter such as Bochs [7]. They usually aggressively optimize
the binary code, and cache the translated binary code for later effective reuse.
This means that for some already-checked secure code in cache, the checking
time overhead is almost zero when being executed again.

• Most binary translators translate binary code dynamically. This provides dynamic
malicious code checking with more runtime information. For example, an indirect
branch instruction’s target address is stored in a register and can only be deter-
mined at run time. For traditional static malicious code checking methods [8], in-
direct branch’s target address cannot be determined because there is only a scan
and match of patterns in the binary file thus providing no runtime register values.
In contrast, for dynamic malicious code checking in a binary translator, the men-
tioned target address in the register is available at run time, in that this dynamic
information is required by the binary translator to detect whether the next basic
block at the target address is not yet executed or already executed and thus stored
in cache of translated code.

• Since binary translators collect considerable information, such as instruction de-
coding information, to understand the binary code in order to translate it, we can
use this information to perform dynamic code checking with limited time over-
head. For example, binary translators decode each instruction to intermediate lan-
guage before optimization, and the decoded information can be used for dynamic
malicious code checking as well, and there is no further decoding time overhead.
In comparison, other virtual machine-based code checking methods such as a
sandbox [9], requires to do all the work by itself for the sole intention of mali-
cious code detection, which imposes painful time overhead during execution.

In this paper, we will introduce first our dynamic malicious code checking module as
a whole and then each component respectively in detail. During the explanation of

82 Z. Fang et al.

each component, their advantages are also pointed out, and the reason should also be
clear after the explanation of each component’s mechanism. Finally, there is a
performance evaluation of our dynamic malicious code checking module and a con-
clusion.

2 Related Work

The idea of our work is different from sandbox [9], in that sandbox requires extra
CPU and memory resources of the computer system for virtual machines, while our
solution observes that binary translator might become indispensable for computer
systems as described in the previous section and we can take advantage of it for secu-
rity purposes. The security mechanism for JVM goes beyond sandbox [11], and is
more close to the idea of our work. However, only a limited variety of software runs
on JVM, such a security solution has limited monitoring scope, while on a computer
system with binary translator, all software runs on the binary translator, sometimes
including the operating system [3, 10].

There is also a great amount of clever work based on static malicious code detec-
tion [8, 12]. But our work also takes advantage of runtime dynamic information as
described in the previous section. Note that dynamic detection also means there
should be restrictions on runtime overhead, which is not as sensitive an issue for static
solutions.

3 DMCC Module Overview

The dynamic malicious code checker (DMCC) module is a security extension to the
binary translator. DMCC module is responsible for dynamically checking the code
being translated and taking initiatives if malicious code is detected. Fig. 1 illustrates
the architectural overview of DMCC module and the binary translator. In our proto-
type, the open-source binary translator QEMU [10] is used as base code, but we only
rely on QEMU’s features that are general to most binary translators, which makes
DMCC module a more general security solution.

In Fig. 1, all the arrows represent data flow. Binary code image for translation is
first retrieved by the decoder. The decoder converts each instruction into its corre-
sponding intermediate language representation. Then, the optimizer collects these ILs
and does all kinds of optimization on them. Finally, the code generator generates
binary code of the underlying CPU’s ISA with the optimized ILs and stores these
codes in the binary translator’s cache for execution. The cache will not be invalidated
unless the original code image is modified due to SMC or the binary translator de-
cides to retranslate it more aggressively seeking better performance for frequently
used code. DMCC rules are malicious code rules specified by the user. The DMCC
parser takes them as input and yields functions used by the DMCC engine.

As shown in Fig. 1, the DMCC module is composed of the DMCC rules, the
DMCC parser and the DMCC engine. The extended binary translator is composed of
the DMCC engine, the decoder, the optimizer, the code generator, and the cache. As
shown in Fig. 1, the DMCC rules and the DMCC parser are offline parts of the

 Dynamic Malicious Code Detection Based on Binary Translator 83

Fig. 1. The DMCC Module and Binary Translator Overview

extended binary translator. Code image is standalone because it is merely binary code
on the media or loaded to memory, which is to be translated. Note that the cache is
also an integrated part of the binary translator because it also includes the functional-
ity that manages the cache, such as cache lookup.

4 DMCC Module Components

The DMCC rules, the DMCC parser and the DMCC engine of the DMCC module is
elaborated on respectively in this section.

4.1 DMCC Rule

The DMCC rules are specified in a text file by the user. The user could be anti-virus
experts, system administrators or so. The rules can be replaced or extended according
to new security requirements and situations.

The user specifies the rule according to a simple rule grammar. The following is an
example. In our example, an x86 self-modifying code snippet is used as imaginary
malicious code, our goal is to specify the corresponding rule as general as possible for
the DMCC module to detect it and its variants.

In this snippet, the second and the third “inc ebx” instruction will be overwritten by
two “nop” instructions when executing “rep stosb” instruction. So when “write_hex”

84 Z. Fang et al.

is called to print register ebx’s value, 0x02 is printed (register ebx actually only in-
cremented twice), instead of 0x04. It is possible that this kind of code can lead to even
more malicious behaviors.

A self-modifying code snippet

no_operation:
 nop
start:
 mov byte al, [no_operation]
 xor dword ebx, ebx
 mov dword ecx, 0x02
 rep stosb
mark:
 inc dword ebx
 inc dword ebx
 inc dword ebx
 inc dword ebx
 call dword [function_pointer]
 ret
end:
function_pointer: dd write_hex

And a DMCC rule could then be specified as the following. Within each pair of
braces is one DMCC rule. In a rule file, multiple DMCC rules can be provided. On
each line is a rule statement. There are two kinds of statements, instruction type and
constraint. In order to accurately specify a constraint, some instruction types or their
operand types are numbered for reference, such as “inst0” and “reg3”.

On Line2, “inst0” says it could be any instruction type.
On Line3, “mov reg0, mem0” says it is a “mov” instruction type, with a register

operand as target and a memory operand as source.
On Line4, it constrains that the “reg0” operand on Line4 must be register al, which

is required by “rep stosb” on Line8.
On Line5, it constrains that the “mem0” operand on Line4 must point to the “inst0”

instruction on Line1.
On Line6, “mov reg3, imm0” says it is a “mov” instruction type, with a register

operand as target and an immediate operand as source.
On Line7, it constrains that the “reg3” operand on Line6 must be register ecx,

which is required by “rep stosb” on Line8.
On Line 8, “rep stosb” says it is a “rep stosb” instruction type. Note that this in-

struction takes register al and ecx as implicit operands.
On Line9 ~ Line14, the statements make sure that the instructions replaced by

“inst0” are precisely on the instruction boundary. “%” is modulo operation.
Comparing the code snippet and the DMCC rule, we can see that the DMCC rule is

more general and can be even more powerful if there is a wise user to specify the
rules. In addition, the DMCC rule is also designed for dynamic checking, which will
be elaborated on in detail with the DMCC parser.

 Dynamic Malicious Code Detection Based on Binary Translator 85

A DMCC rule correspondent to the previous self-modifying code snippet

1 {
2 inst0;
3 mov reg0, mem0;
4 reg0 == al;
5 mem0 == CURRENT - (SIZEOF(inst0));
6 mov reg3, imm0;
7 reg3 == ecx;
8 rep stosb;
9 inst1;
10 inst2;
11 inst3;
12 inst4;
13 SIZEOF(inst1) == SIZEOF(inst2) ==
SIZEOF(inst3) == SIZEOF(inst4);
14 SIZEOF(inst0) * imm0 % SIZEOF(inst1) == 0;
15 ret
16 }
17
18 {
19 /* other rules */
20 }

4.2 DMCC Parser

The DMCC parser parses the DMCC rules. It takes the DMCC rule file as input and
outputs a source file, which contains several functions for the DMCC engine to call.
These functions take an execution trace, which is a list of instructions as input, and
outputs whether malicious code is detected. One thing to emphasize is that the input
execution trace is a sequence of instructions in their execution order, rather than a
sequence of instructions in their code image layout order. Thus in the input execution
trace, branch instructions are also eliminated, because all the instructions are already
in their execution order and any branch instruction information is unnecessary in this
case. For example, code image like the following:

 xor ebx, ebx;
 je taken;
fall_through:
 inc ebx;
 /* … */
taken:
 dec ebx;

would yield according to dynamic information an input execution trace as:

 xor ebx, ebx;
 inc ebx;

or an input execution trace as:

 xor ebx, ebx;
 dec ebx;

86 Z. Fang et al.

The input execution trace is dynamically collected and provided by the DMCC engine
which is a module inside the binary translator. The input execution trace provided in
execution order benefits malicious code checking considerably, in that it provides
which instructions sequence is actually to be processed by the CPU in order. In con-
trast, a list of instructions in code image layout order lacks dynamic information, such
as the target of an indirect branch, or the result of self-modifying code. Even if the
input CPU state and memory state is provided, it is hard to figure out the actual exe-
cution order, because other inputs such interrupts are almost impossible to predict or
provide in a reasonable way. So doing dynamic malicious code checking in binary
translator is a corollary choice.

By calling the functions generated by the DMCC parser, whether the input execu-
tion trace is malicious code is checked against the DMCC rules implemented by the
functions. In fact, more complicated checking method can be implemented based on
the dynamic information provided by the DMCC engine as needed, but since it’s not
designed so, extending the DMCC parser might not be as easy a task as extending the
DMCC rule for non-developer users.

4.3 DMCC Engine

The DMCC engine is an integrated component added to the binary translator. It has
three main functionalities: collect and provide input execution trace for the DMCC
parser generated functions, perform checking by calling these functions, and take
initiatives if malicious code is detected.

The DMCC engine collects information in two ways, by monitoring the binary
translator’s decoding process and by looking into binary translator’s cache. For code
that has never been executed, the DMCC engine monitors the decoder to collect the
input execution trace. Since code image that has never executed must not have been
translated, it must not have been decoded. So the decoding order is the same as the
execution order. Thus, the DMCC engine could collect a list of instructions in execu-
tion order. For code that has already been executed and cached, the DMCC engine
looks into the cached decoding information and forms a list of instructions as input
execution trace accordingly.

One issue should be noted that many binary translators such as QEMU do a kind of
optimization called “chaining”. “Chaining” requires more consideration when collect-
ing an input execution trace in the binary translator’s cache. Here is an example to
explain the issue. In Fig. 2, BB1’ is translated code cache for the basic block BB1,
while BB2’ is translated code cache for the basic block BB2. At the end of execution
of BB1’ a branch instruction targeted to BB2 is to be executed. According to the defi-
nition of a basic block, the last instruction is always a branch instruction or the like,
such as a call instruction. When encountering such a branch, the control is transferred
to the binary translator. The binary translator looks up for the translated code cache of
BB2. If BB2’ is found, the binary translator transfers control to BB2’; if not, translate
BB2 first and then transfer to BB2’. Transferring control back and forth is time con-
suming, because the execution context is switched back and forth and a lot of load
and store instructions take place. This is where “chaining” comes to place. It modifies
the branch target of BB1’ from the binary translator to BB2’ if it exists, and thus
saves context switches dramatically. But the issue from the DMCC engine point

 Dynamic Malicious Code Detection Based on Binary Translator 87

Fig. 2. An example of “Chaining” optimization

of view is that, after executing BB1’, the control will not be transferred to the binary
translator, so the DMCC engine could not monitor and collect cached decoding in-
formation of BB2’ once BB1’ starts to execute. So the DMCC engine has to be con-
siderate enough to check if BB1’ is “chained” to BB2’. If so, the cached decoding
information of BB2’ should be collected before BB1’ starts to execute.

5 Performance Evaluation

The DMCC will harm the performance of the system as a trade-off for security. We
estimated the performance drop with different numbers of DMCC rules specified with
SPECINT 2000. Note that due to the difficulty to find such great numbers of DMCC
rules, we make the DMCC module to treat duplicate rules as entirely independent
ones.

Fig. 3. Binary Translator Performance Drop

88 Z. Fang et al.

The test environment is a RHEL5.2 Linux with modified QEMU 0.10 working on
an AMD Athlon 2.71GHz processor. The SPECINT 2000 benchmarks are built with
the default configuration in the same environment by GCC. The performance is
measured by means of the product of the SPEC benchmarks, where less means better.

In Fig. 3, the x axis is the number of DMCC rules specified; the y axis is the SPE-
CINT 2000 performance drop with the DMCC module enabled. We can see that our
DMCC module imposes acceptable percentage (< 3%) of performance drop when the
number of rules is less than several dozen thousand. When the number of rules
reaches several hundred thousand, the performance is getting wildly poor.

The possible approach is that only keep a few most active dynamic checking rules
in the DMCC module, and for those checking that could be done outside of binary
translator, such as those can be checked statically, move them outside.

6 Conclusion

As a conclusion, the DMCC module can work quite well to dynamically detect mali-
cious code that can be specified with our DMCC rule grammar. The significance is
that the DMCC module has advantage over both static malicious code checking and
virtual sandbox checking. The former lack dynamic runtime information while the
latter causes too much overhead.

The DMCC module also has acceptable performance at its current complexity
when the number of DMCC rules is limited to several dozen thousand.

In future work, we will enhance the DMCC parser, in order to make the DMCC
rule grammar more expressive and so more powerful. Also, we will enhance the bi-
nary translator’s chaining mechanism so that it supports the DMCC module better.
And hopefully, we will provide more mechanism that takes more advantage of dy-
namic information in the binary translator.

Acknowledgments. This work was supported in part by National Key Basic Research
and Development Plan (973 Plan) (No. 2007CB310900), and National Natural Sci-
ence Foundation of China (No. 90612018).

References

1. Ung, D., Cifuentes, C.: Dynamic binary translation using run-time feedbacks. Science of
Computer Programming 60(2) (2006)

2. Baraz, L., Devor, T., Etzion, O., Goldenberg, S., Skaletsky, A., Yun Wang Zemach, Y.:
IA-32 execution layer: a two-phase dynamic translator designed to support IA-32 applica-
tions on Itanium®-based systems. In: 36th Annual IEEE/ACM International Symposium
on Micro-architecture (2003)

3. The Technology Behind CrusoeTM Processors, Transmeta Corporation (2000)
4. Fisher, J.A.: Very long instruction word architectures and the ELI-512. In: Proceedings of

the 10th annual international symposium on Computer architecture (1983)
5. Smith, J.E., Sohi, G.S.: The micro-architecture of superscalar processors. Proceedings of

the IEEE (1995)

 Dynamic Malicious Code Detection Based on Binary Translator 89

6. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units. IBM
Journal of research and Development (1967)

7. Lawton, K.P.: Bochs: A Portable PC Emulator for Unix/X. Linux Journal (1996)
8. Mihahai, C.: Static analysis of executables to detect malicious patterns. In: Proceedings of

the 12th conference on USENIX Security Symposium (2006)
9. Natvig, K.: Sandbox Technology inside AV Scanners. In: Virus Bulletin Coference (2001)

10. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator, USENIX (2005)
11. Gong, L.: Going beyond the sandbox: An overview of the new security architecture in the

Java development kit 1.2. In: Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems (1997)

12. Sung, A.H.: Static analyzer of vicious executables (SAVE). In: 20th Annual Computer Se-
curity Applications Conference (2004)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 90–106, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Privacy Manager for Cloud Computing

Siani Pearson, Yun Shen, and Miranda Mowbray

HP Labs, Long Down Avenue, Stoke Gifford, Bristol BS34 8QZ, UK
{siani.pearson,yun.shen,miranda.mowbray}@hp.com

Abstract. We describe a privacy manager for cloud computing, which reduces
the risk to the cloud computing user of their private data being stolen or mis-
used, and also assists the cloud computing provider to conform to privacy law.
We describe different possible architectures for privacy management in cloud
computing; give an algebraic description of obfuscation, one of the features of
the privacy manager; and describe how the privacy manager might be used to
protect private metadata of online photos.

Keywords: Cloud computing, privacy.

1 Introduction

In this paper we describe a privacy manager for cloud computing, which reduces the
risk to the cloud computing user of their private data being stolen or misused, and also
assists the cloud computing provider to conform to privacy law.

Cloud computing, in which services are carried out on behalf of customers on
hardware that the customers do not own or manage, is an increasingly fashionable
business model. The input data for cloud services is uploaded by the user to the cloud,
which means that they typically result in users’ data being present in unencrypted
form on a machine that the user does not own or control. This poses some inherent
privacy challenges.

There is a risk of data theft from machines in the cloud, by rogue employees of
cloud service providers or by data thieves breaking into service providers’ machines,
or even by other customers of the same service if there is inadequate separation of
different customers’ data in a machine that they share in the cloud. Governments in
the countries where the data is processed or stored may have legal rights to view the
data under some circumstances [1,2]. There is also a risk that the data may be put to
unauthorized uses. It is part of the standard business model of cloud computing that
the service provider may gain revenue from authorized secondary uses of the user’s
data, most commonly the targeting of advertisements. However, some secondary data
uses would be very unwelcome to the data owner (such as, for example, the resale of
detailed sales data to their competitors). At present there are no technological barriers
to such secondary uses.

There are, however, some legal constraints on the treatment of users’ private
data by cloud computing providers. Privacy laws vary according to jurisdiction, but
EU countries generally only allow personally-identifiable information to be processed
if the data subject is aware of the processing and its purpose, and place special

 A Privacy Manager for Cloud Computing 91

restrictions on the processing of sensitive data (for example, health or financial data),
the explicit consent of the data owner being part of a sufficient justification for such
processing [3]. They generally adhere to the concept of data minimization, that is,
they require that personally identifiable information is not collected or processed
unless that information is necessary to meet the stated purposes. In Europe, data sub-
jects can refuse to allow their personally identifiable data to be used for marketing
purposes [4]. Moreover, there may be requirements on the security and geographical
location of the machines on which personally identifiable data is stored. A UK busi-
ness processing data about individual customers with some cloud computing services
could find itself in breach of UK data processing law, if these services do not give
assurances that the machines they use are adequately secure [5]. European law limit-
ing cross-border data transfers also might prohibit the use of the cloud computing
services to process this data if they stored data in countries with weak privacy protec-
tion laws [6].

The structure of the paper is as follows. In section 2 we present our solution, which
is in the form of a privacy manager for cloud computing. In section 3 we discuss dif-
ferent architectures for privacy management in cloud computing, giving an overview
of how the privacy manager may be used. We also describe how Trusted Computing
mechanisms [7] can optionally be used to enhance privacy management. In Section 4
we describe obfuscation in mathematical terms. We give an algebraic formulation of
the task of obfuscation, and algebraic specifications of different obfuscation methods
suitable for particular examples. In Section 5 we discuss an application scenario, the
management of online photos, and present the user interface for the privacy manager
for this application. In Section 6 we review previous approaches to privacy manage-
ment for data repositories. The paper concludes with a general analysis and discussion
of next steps.

2 Our Solution: Privacy Manager

Our contribution to addressing these problems is a Privacy Manager, which helps the
user manage the privacy of their data in the cloud. As a first line of defence, the pri-
vacy manager uses a feature called obfuscation, where this is possible. The idea is that
instead of being present unencrypted in the cloud, the user’s private data is sent to the
cloud in an encrypted form, and the processing is done on the encrypted data. The
output of the processing is de-obfuscated by the privacy manager to reveal the correct
result. (We call it obfuscation rather than encryption because some of the information
present in the original data is in general still present in the obfuscated data.) The ob-
fuscation method uses a key which is chosen by the user and known by the privacy
manager, but which is not communicated to the service provider. Thus the service
provider is not able to de-obfuscate the user’s data, and the un-obfuscated data is
never present on the service provider’s machines. This reduces (or even eliminates)
the risks of theft of this data from the cloud and unauthorized uses of this data. More-
over, the obfuscated data is not personally identifiable information, and so the service
provider is not subject to the legal restrictions that apply to the processing of the un-
obfuscated data. Where obfuscation is practical, the principle of data minimization
gives a legal impetus to use it.

92 S. Pearson, Y. Shen, and M. Mowbray

However, it is not practical for all cloud applications to work with obfuscated data.
For applications for which users have to upload some private data to the cloud, the
privacy manager contains two additional features, called preferences and personae,
which help the users to communicate to service providers their wishes for the use of
this personal data. These two features do not guarantee that a user’s wishes will be
observed if the service provider is not trustworthy. However they assist trustworthy
service providers to respect privacy laws that require the user’s consent.

The preferences feature allows users to set their preferences about the handling of
personal data that is stored in an unobfuscated form in the cloud. A similar approach
has been taken within P3P [8] and PRIME [9]. It communicates these preferences to a
corresponding policy enforcement mechanism within the cloud service. The prefer-
ences can be associated with data sent to the cloud, and preferably cryptographically
bound to it (by encrypting both the policy and data under a key shared by the sender
and receiver). For stickiness of the privacy policy to the data, public key enveloping
techniques can be used. Alternatively, it is possible to use policy-based encryption of
credential blobs (a form of Identity-Based Encryption (IBE) technology) [10]: the
policies could be used directly as IBE encryption keys to encrypt the transferred mate-
rial [11]. Part of the preference specification could involve the purpose for which the
personal data might be used within the cloud, and this could be checked within the
cloud before access control were granted, using mechanisms specified via [12].

The persona feature allows the user to choose between multiple personae when in-
teracting with cloud services. In some contexts a user might want to be anonymous,
and in others he might wish for partial or full disclosure of his identity. The user’s
choice of persona provides a simple interface to a possibly complex set of data use
preferences communicated to the service provider via the preference feature, and may
also determine which data items are to be obfuscated.

This paper extends the basic idea of a client-based Privacy Manager introduced in
[13]. We describe several different possible architectures for usage of a Privacy Man-
ager in cloud computing, not just one in which the privacy manager is within the
user’s client; we show how trusted computing can be used to enhance this approach;
we give a general mathematical description of the obfuscation mechanisms used
within the Privacy Manager; and we describe an application to a particular scenario –
photo management in the cloud – and a demonstration of the Privacy Manager that
allows investigation of how the Privacy Manager can operate in practice to help users
protect their private information in the cloud.

3 Architectural Options

In this section we describe different possible architectures for privacy management
within cloud computing, and demonstrate how trusted computing can be used to
strengthen this approach. The most appropriate architecture to be used depends upon
the cloud infrastructure deployed for a particular environment, and the trust relation-
ships between the parties involved.

 A Privacy Manager for Cloud Computing 93

3.1 Privacy Manager in the Client

The overall architecture of our solution is illustrated in Figure 1. Privacy Manager
software on the client helps users to protect their privacy when accessing cloud ser-
vices. A central feature of the Privacy Manager is that it can provide an obfuscation
and de-obfuscation service, to reduce the amount of sensitive information held within
the cloud. For further detail, see Section 4. In addition, the Privacy Manager allows
the user to express privacy preferences about the treatment of their personal informa-
tion, including the degree and type of obfuscation used. Personae – in the form of
icons that correspond to sets of privacy preferences – can be used to simplify this
process and make it more intuitive to the user. So for example, there could be an icon
with a mask over a face that corresponds to maximal privacy settings, and other icons
that relate to a lower level of protection of certain types of personal data in a given
context. The user’s personae will be defined by the cloud service interaction context.
Personae may be defined by the user, although a range of default options would be
available.

Trusted computing solutions, like those being developed by the Trusted Computing
Group (TCG) [14], can address the lower-level protection of data, and this can be
exploited in our solution. The TCG is an organization set up to design and develop
specifications for computing platforms that create a foundation of trust for software
processes, based on a small amount of extra hardware called a Trusted Platform Mod-
ule (TPM) [14]. This tamper-resistant hardware component within a machine acts as a
root of trust. In the longer term, as specified by TCG, trusted computing will provide
cryptographic functionality, hardware-based protected storage of secrets, platform
attestation and mechanisms for secure boot and integrity checking [7]. Allied pro-
tected computing environments under development by certain manufacturers and
open source operating systems such as Linux can support TCG facilities further. For
details about how trusted computing might be used to enhance privacy, see [15].

Fig. 1. Client-Based Privacy Manager

94 S. Pearson, Y. Shen, and M. Mowbray

As an enhancement to our solution, a TPM on the client machine can be used to
protect the obfuscation keys and provide further benefits. The privacy manager soft-
ware and the methods linking sensitive data to pseudonyms can be protected by a
TPM (see Figure 1). The TPM can provide encryption services and also allow integ-
rity checking of the Privacy Manager software. In general, the main benefits that
trusted computing could provide for client-based privacy management are hardware-
based cryptographic functionality, confidentiality and integrity. In terms of confiden-
tiality, it decreases the risk of unsecured access to secret material, by means of tam-
per-resistant hardware-based protection of keys. Moreover, protected data on the plat-
form is not usable by other platforms. Trusted computing could yield greater trust in
integrity of the privacy management software, integrity of the involved platforms, and
platform identities.

3.2 Privacy Manager in a Hybrid Cloud

As an alternative, as illustrated in Figure 2, the Privacy Manager may be deployed in
a local network, or a private cloud, to protect information relating to multiple parties.
This would be suitable in environments, such as enterprise environments, where local
protection of information is controlled in an adequate manner and its principal use
would be to control personal information passing to a public cloud. The Privacy Man-
ager can itself be virtualized within the internal cloud. Note that the TPM could also
be virtualized, within the private cloud.

Advantages to this approach include that the benefits of the cloud can be reaped
within the private cloud, including the most efficient provision of the Privacy
Manager functionality. It can provide enterprise control over dissemination of

Fig. 2. Enterprise-focused Privacy Manager

 A Privacy Manager for Cloud Computing 95

sensitive information, and local compliance. A significant issue however is scalabil-
ity, in the sense that the Privacy Manager might slow down traffic, provide a bottle-
neck and may not be able to adequately manage information exposed between com-
posed services.

There are various different options with respect to this type of architecture. For ex-
ample, the proxy capability could be combined, even in a distributed way, with other
functionalities, including identity management. Another example is that trusted vir-
tual machines [16] could be used within the privacy cloud to support strong enforce-
ment of integrity and security policy controls over a virtual entity (a guest operating
system or virtual appliance running on a virtualized platform). It would be possible to
define within the Privacy Manager different personae corresponding to different
groups of cloud services, using different virtualized environments on each end user
device. In this way, virtualization is used to push control from the cloud back to the
client platform. As with the previous architecture, there could be mutual attestation of
the platforms, including integrity checking.

3.3 Privacy Infomediary within the Cloud

Figure 3 shows how the Privacy Manager may be deployed as (part of) a privacy in-
fomediary [17], mediating data transfer between different trust domains. The Privacy
Manager would act on behalf of the user and decide the degree of data transfer al-
lowed, based upon transferred user policies and the service context, and preferably
also an assessment of the trustworthiness of the service provision environment. Noti-
fication and feedback by the Privacy Manager to the user would also be preferable
here, in order to increase transparency and accountability.

Fig. 3. Privacy Manager within the Cloud

96 S. Pearson, Y. Shen, and M. Mowbray

The infomediary could be a consumer organization or other entity that is trusted by
the users. It might alternatively be an entity that already exists within the cloud in
order to provide an alternative function, such as an identity provider or auditor, and
the functionality could be an extension of that. For example, the open source project
Otemba [18] implements key management and user management, separating crypto-
graphic keys from the cloud infrastructure. A key management role might be extended
to a general infomediary role.

The infomediary may also play a role in checking that the user preferences are sat-
isfied before providing a decryption key for decrypting any data that needs to be de-
crypted in order for the cloud service to be provided (for example, it could be a Trust
Authority in order to provide IBE decryption keys [10,11]). Again, trusted infrastruc-
ture [7] could be useful in ensuring that the infrastructural building blocks of the
cloud are secure, trustworthy and compliant with security best practice.

The following section provides more detail about the obfuscation mechanism used
by the Privacy Manager, in these different cases.

4 Obfuscation

The aim of obfuscation is to solve the following general problem. A user has private
data x. He wishes to carry out some communication protocol with a service provider,
which will enable him to learn the result of some function f on x, without revealing x
to the service provider. (The function f may itself depend on some data known to the
service provider but not to the user, and on some data supplied by the user which is
not private).

If the user and service provider are both willing to use whatever protocol will solve
the problem, and have sufficient computing power and storage to do so, Yao’s proto-
col for secure two-party computation [19] solves this problem for any f which can be
expressed as a circuit. In fact, Yao’s protocol can be used to ensure that the service
provider learns no information at all about x. So in this case, any polynomial-time
application could be calculated in a completely obfuscated fashion. In fact, Yao’s
protocol can be used to ensure that the service provider learns no information at all
about x. Yao’s protocol requires several rounds of interactions between the user and
service provider, which depend on the choice of f. Gentry [20] has recently removed
this requirement for interaction by constructing a remarkable encryption scheme
which allows the service provider to calculate the encrypted value of f(x) given the
encrypted value of x, for any f which can be expressed as a circuit, while also ensur-
ing that the service provider learns no information about x. Gentry’s encryption
scheme improves on prior work on homomorphic encryption, eg. [21].

However, there are two problems with applying these solutions in cloud comput-
ing. The first is efficiency. Gentry’s full scheme is impractical due to its rather high
computational complexity. Although there has been a body of work improving the
efficiency of Yao’s protocol and related secure computation techniques such as pri-
vacy-preserving data mining [21,22], when the input data x is large these methods can
still require a large amount of storage or computation on the part of the user. One of
the attractions of cloud computing is that it can enable users to process or store large
amounts of data at times of peak demand without having large amounts of computing

 A Privacy Manager for Cloud Computing 97

resources in-house. The other problem is that cloud computing providers may not be
willing to rewrite their applications. If this is the case, the user has to calculate f(x)
using only the functions provided by the service, which in this section are denoted
f1,…, fn. The set of functions f for which it is possible to do this without revealing x to
the service provider depends on f1,…, fn and on the extent of the user’s computing
resources. For some specialized cloud computing services, only one function is pro-
vided, which will typically be a MapReduce-style function [23] if the input data is a
large data set; some more generic services offer full SQL SELECT functionality [24].

The requirement that we make of obfuscation in this paper is only that it is difficult
for the service provider to determine x given the obfuscated data. It may be that the
service provider can easily obtain some information about x, but not enough to deter-
mine x. As a different example of obfuscation methods that allow some but not all
information about the input data to be learned from the obfuscated data, Narayanan
and Shmatikov [25] describe an obfuscation method which allows individual records
to be retrieved from an obfuscated database by anyone who can specify them pre-
cisely, while making "mass harvesting" queries matching a large number of records
computationally infeasible. As remarked in [25], there is a tension between the strict
security definitions and loose notions of efficiency used by the cryptography commu-
nity, and the strict efficiency requirements but loose security requirements of the da-
tabase community. Like the database community we prioritize efficiency over
strength of the security definition, as it is essential for us that the privacy manager be
practical and scalable to implement.

4.1 The Algebra of Obfuscation

The general algebraic description of obfuscation is as follows. Suppose you wish to
use an application to calculate the result of a function f on an input x, without reveal-
ing x to the application. The application can calculate functions f1,…, fn. (Typically,
but not necessarily, one of these will be equal to the function f). You can use the ap-
plication to compute function f in an obfuscated fashion if for some positive integer m
there are encryption functions o1,…, om such that it is difficult to determine x from the
tuple o1(k,x),…., om(k,x) without knowing the key k, and a decryption function d such
that for all inputs x and keys k,

d(k, f1(o1(k,x)),…, fm(om(k,x))) = f(x) (1)

To perform the obfuscated calculation, first encrypt x with each of the encryption
functions to form the tuple (o1(k,x),…, om(k,x)), using a key k known to you but not to
the application. Send the values in the tuple to the application, to compute the values
f1(o1(k,x)),…, fm(om(k,x)). Finally, apply the decryption function to obtain f(x) from the
key k and the values output from the application. Since the only information the ap-
plication receives is the tuple (o1(k,x),…, om(k,x)), it is difficult for the application to
determine x.

We now give some examples of calculating functions an obfuscated fashion. Since
we are interested in using cloud applications, in the examples the functions f1,…, fn are
typically SQL SELECT commands or MapReduce-style functions of a list (possibly a
very long list) of values, indexed by a finite index set I.

98 S. Pearson, Y. Shen, and M. Mowbray

Example 1: Using Privacy Homomorphisms
Privacy homomorphisms were first introduced by Rivest, Adelman and Dertouzos
[26], who give several examples. A privacy homomorphism is a family of functions
(ek,dk,f,g) where ek is an encryption function depending on key k, such that for each
key k and messages a1,…, ar,

dk(g(ek(a1),…, ek(ar))) = f(a1,…, ar) (2)

If you wish to calculate function f and know a privacy homormorphism (ek,dk,f,g), you
can use it to calculate f in an obfuscated fashion via an application that can calculate
the function g. Set m=1 and f1=g, and for each x = (xi:i in I), i in I and key k, set
oi(k,x) = ek(xi). Set d to be the function sending (k,y) to dk(y) for all y. Then by equa-
tion (2), equation (1) holds.

Example 2: TC3 Health
TC3 Health [27] is a cloud-based company which checks health insurance claims on
behalf of insurance companies. The functions that they calculate have the property
that if a patient identifier (a name, say, or a hospital ID) is replaced everywhere in the
input by a pseudonym, the resulting output is the same as that obtained by replacing
the patient identifier by the pseudonym everywhere in the original output. They are
therefore able to offer a service which checks the claims without requiring patient
identifiers to be released to the cloud: the insurance companies replace the patient
identifiers with (unique) pseudonyms, send the result as input to TC3 Health, and
translate back the pseudonyms in the output. In terms of equation (1) above, m=1, the
key k is the insurance company’s map from patient identifiers to pseudonyms, o1 is
the application of this map and d is the application of the inverse map.

Example 3: Share Investment Web Site
In this example the function calculated is the current value of a portfolio of shares x =
(xi: i in I) where I is a set of companies and xi is the number of shares of company i in
the portfolio. The application offers the same function, which calculates the sum over
i in I of xi.vi, where vi is the current value of a share in company i: the value vi is
known to the application, but the share owner does not know the value without help
from the application. A straightforward way of performing this calculation in an ob-
fuscated fashion is choose k to be a positive integer and set

m=1, o1(k,x)=k.x, d(k,y)=k-1.y for all k, x, y (3)

In fact, some people use just this obfuscation method when they calculate the value of
their portfolios online. However, o1(x) reveals the set of companies whose shares are
contained in the portfolio (and also their relative frequency). This information might
be enough to identify an individual investor. Moreover, the key k must be a divisor of
the highest common factor of the entries of o1(x), and so may be easy to guess given
o1(x) and some likely bounds on the total value of the portfolio. An obfuscation
method that does not give away as much information is to construct several different
portfolios, such that x is a linear combination of these portfolios, and derive the value
of x from the values of these portfolios.

For example, choose a key k consisting of a map k0: I → {1,2}, two portfolios k1,
k2, and two integers k3, k4 greater than 1. For any portfolio x write x(k,1), x(k,2) for the

 A Privacy Manager for Cloud Computing 99

portfolios (xi: i in I, k0(xi)=1) and (xi: i in I, k0(xi)=2) respectively. Set m=3 and de-
fine the obfuscation functions by

o1(k,x) = x(k,1) + k1, o2(k,x) = x(k,2) + k2,

o3(k,x) = k3. k1+ k4.k2 + (k3-min{k3,k4}).x(k,1) + (k4-min{k3,k4}).x(k,2)
(4)

If you know the triple (o1(k,x), o2(k,x), o3(k,x)) but not k, it is difficult to guess x, and
also difficult to guess the set of companies i such that xi > 0 or the relative values of
these xi. Define the deobfuscation function d by

d(k,v1,v2,v3) = (min{k3, k4})-1. (k3.v1 + k4.v2 - v3) for all v1,v2,v3 (5)

It is straightforward to check that equation (1) holds for these obfuscation functions
and deobfuscation function, when both f and f1 are the function that returns the value
of the portfolio. So this allows the value of portfolio x to be calculated in an obfus-
cated fashion.

Example 4: Simple Obfuscation of SQL Queries
Suppose that x = (xi: i in I) describes the content of a SQL database: each xi is a data-
base row, containing entries xi(1), …, xi(c) in columns 1 to c. For j=1,2,..c let nj be the
name of column j, and let Vj be the set of values that are permitted in column j. The
application can perform SQL queries, and we would like to compute an SQL query of
the form

SELECT <ex 1> WHERE <ex 2> GROUP BY <ex 3> ORDER BY
<ex 4> LIMIT n

in an obfuscated fashion, where

• <ex 1> is a nonempty list of terms of the form MAX(ni), SUM(ni), COUNT(*) or
ni for some 1 ≤ i ≤ c,

• <ex 2> is obtained by combining terms of the form ni = nj , ni = v, or ni >
v (for some 1 ≤ i, j ≤ c and v in Vi) using the logical operators AND, OR and NOT,

• <ex 3> is a possibly nonempty list of column names,
• <ex 4> is an element of <ex 1> or its negative, or is empty
• n is either a positive integer or infinity; if it is infinity then the "LIMIT n" clause

is omitted from the query.

If any of <ex 2>, <ex 3>, <ex 4> are empty then the relevant subclause is omitted
from the query. Examples of such queries include, for instance,

SELECT MAX(n3) WHERE ((n7 != v7 OR n3 <= v3) AND n1 = n2)

SELECT n1, SUM(n5), COUNT(*) GROUP BY n1 ORDER BY -
SUM(n5) LIMIT 10

The key k used for the obfuscation of such a query consists of c+1 functions

π: {1,2,…,c}→ {1,2,…,c}, ki: Vi → Vπ(i) (1 ≤ i ≤ c) (6)

100 S. Pearson, Y. Shen, and M. Mowbray

chosen such that ki is sum-preserving if SUM(ni) is in <ex 1>, and is order-
preserving if either MAX(ni)is in <ex 1>, ni > v appears in <ex 2>, or ni ap-
pears in <ex 4>. The obfuscation function o1 is given by

o1: (k, x) → (yi: 1 ≤ i ≤ c) such that for all i, yπ(i) = ki(xi) (7)

To calculate the query in an obfuscated form, an obfuscated query is performed on
o1(k, x), where the obfuscated query f1 (which depends on the original query and on k)
is obtained by substituting each column name ni in the original query by nj where j =
π(i), and substituting each value v in the original query occurring in a substring of
form ni = v or ni > v by the value ki(v). The answer (ans1,…, ansa) is then de-
crypted using function d, (which again depends on the original query and k), where

• d(ans1,…, ansa) = (d’(ans1),…, d’(ansa)),
• d’(ansj) = ki

-1(ansj) if the jth element of <ex 1> in the original query is ni,
MAX(ni) or SUM(ni),

• d’(ansj) = is ansj if the jth element of <ex 1> in the original query is COUNT(*).

It is straightforward to check that the result of this calculation is the same as the result
of performing the original query on x, so equation (1) holds.

Example 5: More Complicated SQL Query Obfuscation
In the previous example, the value of an entry in the obfuscated input database de-
pended only on the value of one entry in the original database. It is possible to calcu-
late selected SQL queries in an obfuscated fashion in such a way that the entries in
some columns of the obfuscated database depend on multiple entries in the original
database. As an example, consider the two queries

SELECT SUM(n2) WHERE n1 = v

SELECT n1 GROUP BY n1

and suppose that the values in column 1 of the original database are particularly sensi-
tive, so for extra protection we want to avoid having any entry in the obfuscated data-
base depend solely on an element in column 1 of the original database. Pick a key k
consisting of c+3 one-to-one functions

π: {1,..c}→{1,…c}, q: Vπ(1) → {0,1}, k0: V1 →V π(1) ,

ki: Vi → V π(i) , 1 ≤ i ≤ c
(8)

where k2 is chosen to be sum-preserving, and q can be expressed in the SQL query
language. Set m=1 and define the obfuscation function o1 by

o1: (k, x) → (yi: 1≤i≤ c) such that yπ(i) = ki(xi) for all i>1,

yπ(1) = kj(x1) where j = q(yπ(2))
(9)

The same obfuscation function can be used for both queries. Write m1, m2 for the
names of columns π(1), π(2), and w0, w1 for the values k0(v), k1(v). In the case of the
first query, set f1 to be the function calculating the query

SELECT SUM(m2) WHERE ((m1=w0 AND q(m2)=0) OR (m1=w1 AND
q(m2)=1))

 A Privacy Manager for Cloud Computing 101

and set d to be the function sending (k,y) to k2
-1(y). In the case of the second query, set

f1 to be the function calculating the query

SELECT m1, q(m2) GROUP BY m1, q(m2)

and set d to be the function which, given key k and a list of pairs (y1,y2) with y2 in
{0,1}, calculates ky2

-1(y1) for each pair in the list and returns a list of the unique re-
sults obtained. As for the other examples, it is straightforward to check that for both
of the queries equation (1) holds (with m=1), so that the query is calculated in an ob-
fuscated fashion.

In this section we have described various different obfuscation mechanisms that
can be used by the Privacy Manager. Different functions, with varying degrees of
obfuscation, can be specified within preferences available to the user via the Privacy
Manager. This process can be made more intuitive via the use of personae, as de-
scribed in Section 2. The following section provides an illustration of this approach
which is fully implemented.

5 Online Photo Scenario

This section looks at a particular scenario, and describes how the privacy manager
could operate in this scenario. In particular, we discuss the user interface for the pri-
vacy manager for this application.

5.1 Scenario: Cloud Photo Application

Vincent, a professional photographer and freelance writer for a geographic magazine,
loves taking photographs, travelling, and writing articles. He is also a social man and
likes to share his photos with family members and members of the photographic fo-
rums that he subscribes to.

Vincent recently bought a new professional digital camera with a built-in Global
Positioning System (GPS) module, which provides a NMEA data stream from which
the camera can extract the positional information (longitude and latitude) and record
in the image metadata the location that the picture was taken. This feature helps him
track and organize pictures geographically.

Vincent uses a commercial digital imaging web site to share his pictures online and
order various products displaying his photos, such as postcards, T-shirts, and calen-
dars. He likes the web site’s simple and straightforward user interface. However, he
soon realizes that the positional information contained in the pictures shot by his new
camera may reveal the location of his house and his travel patterns, as such GPS in-
formation can be easily and accurately visualized in Google Earth.

With an increasing number of people using GPS-enabled cameras, the company
owning the web site rolls out a new privacy manager assisting people to obfuscate
certain metadata attributes which may reveal their private information – for example
location information. By using this privacy manager, only the owner of the pictures
can have access to the obfuscated attributes. The quality of the pictures is not af-
fected. To demonstrate the scalability of our proposed obfuscation methods, we im-
plemented two functions ki for use in simple SQL query obfuscation (see example 4

102 S. Pearson, Y. Shen, and M. Mowbray

Fig. 4. Privacy Manager User Interface

of Section 4): add, which adds a secret number to an unencrypted numerical value,
and Caesar, which does Caesar’s Alphabet encryption using a secret alphabet order
and shift value. Our implementation was not optimized for speed, but carried out
100,000 add calculations in 0.6s, and 100,000 Caesar calculations in 1.03s.

5.2 Privacy Manager User Interface

We have built a demonstrator of the use of the privacy manager within this scenario.
The user interface for the privacy manager is shown in Figure 4. The end user selects
the pictures that will be shared through certain cloud services. Specific personae, e.g.
family, business, or anonymous, can be applied to obfuscate certain attributes associ-
ated with the pictures. The user can also customize the personae (i.e. choosing which
attributes are to be obfuscated, and by which obfuscation methods) by changing the
default settings via the privacy personae configuration window. By using the Privacy
Manager, only the owner has control over the attributes, and the underlying obfusca-
tion methods (as stated in Section 4) are transparent to the end users. Nevertheless,
this method will not affect photo quality and still allows the photos to be further en-
crypted.

6 Previous Approaches to Privacy Management for Data
Repositories

Since in this paper we are interested in managing the privacy of data which is sent to a
database in the cloud, in this section we place this work in a wider context by review-
ing previous general approaches to privacy management for data repositories, for

 A Privacy Manager for Cloud Computing 103

which various techniques have been developed to ensure that stored data is accessed
in a privacy compliant way.

Some mechanisms and solutions have been built to encrypt confidential data when
it is stored in data repositories, for example solutions using Translucent Databases
[28]. Most of these solutions focus on confidentiality and access control aspects, and
have little flexibility in providing policy-driven mechanisms encompassing aspects
beyond authentication and authorization. [29,30] describe access control policy-based
encryption mechanisms for XML documents. [29] describes mechanisms for fine-
grained encryption of parts of XML documents, in which decryption keys can either
be granted to data receivers or collected from LDAP servers, based on data receivers’
credentials. [30] focuses on related cryptographic mechanisms.

Hippocratic Databases [31] include mechanisms for preserving the privacy of the
data they manage. Their proposed architecture is based on the concept of associating
privacy metadata (i.e. privacy policies) to data stored in data repositories, along with
mechanisms to enforce privacy. The drawback of this approach is that it might require
substantial changes to current data repository architectures, and therefore might take a
long time and require substantial investment (by all the involved parties) to succeed.
In addition, this approach does not take into account that the management of privacy
spans across the database boundaries: such management has to be carried out within a
broader context within cloud computing.

Although now withdrawn from production, IBM Tivoli Privacy Manager [32] pro-
vided mechanisms for defining fine-grained privacy policies and associating them
with data. The privacy policies contain authorization constraints along with con-
straints on contextual information and intent. This approach addressed the privacy
management problem purely from an access control perspective within a single enter-
prise. It did not include additional aspects relevant for privacy management within
cloud computing such as trust management and dealing with ongoing privacy obliga-
tions dictated by legislation and enterprises’ guidelines.

An alternative approach is based on an adaptive privacy management system
where data are retrieved from standard data repositories, and parts of these data are
encrypted and associated with privacy policies [33]. This aims to make use of current
data repository technologies and reduce to the minimum the impact on them, in terms
of required changes: interactions with data repositories can still happen but in a way
that confidential data is protected and contextually released, in a fine-grained way,
based on the fulfilment of associated privacy policies.

7 Analysis and Next Steps

The current state of this work is that we have a working implementation of the obfus-
cation feature of the privacy manager, both for the online photo application described
in this paper and for another scenario that we have implemented [13] which is based
on SalesForce.com’s sales force automation suite [34]. The techniques described in
examples 5 and 6 of Section 4 are implemented within our code, and it would be rela-
tively simple to extend this to implement the other examples. Our next steps are to

104 S. Pearson, Y. Shen, and M. Mowbray

extend this implementation to a greater range of cloud scenarios, including more
complex ones.

Ideally, the privacy manager might be extended to allow consideration of trust as-
sessment of third parties (risk management [35], reputation management [36], etc.),
policy enforcement on service side (cf. sticky policies, involvement of Trust Authori-
ties [11]), feedback and notification, subject data access requests, etc. We plan to con-
sider these aspects in the EnCoRe project [37].

Our solution is not suitable for all cloud applications. Theoretically, as dis-
cussed in Section 4, any application which calculates a function of the input that
can be expressed as a circuit could be calculated in a fully obfuscated fashion, if
the service provider were willing to implement the application using Yao’s proto-
col [19] or Gentry’s encryption scheme [20]: however, the implementation of these
for a large data set x may be impractical when resources are limited. For users with
access to limited computing resources there is a tradeoff between the extent to
which data is obfuscated and the set of applications that can effectively be used,
even when the service provider gives full cooperation. Nevertheless, if the service
provider cooperates then the other features of our solutions can still be used.

The picture is different if the service provider does not provide full cooperation.
Some cloud service providers that base their business models on the sale of user data
to advertisers (or other third parties) may not be willing to allow the user to use their
applications in a way that preserves his privacy. Other providers may be willing to
respect users’ privacy wishes, but not to implement the service-side code that is nec-
essary for some of the privacy manager’s features. Yet other service providers may
claim to cooperate, but not be trustworthy. In these cases, the features of our solution
other than obfuscation will not be effective, since they require the honest cooperation
of the service provider.

There is still a possibility that in these cases a user may be able to use obfuscation
to protect the privacy of his data. However, the ability to use obfuscation without any
cooperation from the service provider depends not only on the user having access to
sufficient computing resources to carry out the obfuscation and de-obfuscation, but
also on the application having been implemented in such a way that it will work with
obfuscation. For example, a service that is customized with a map showing the area
around a US user’s zip code might theoretically be implemented in a way that would
allow a user to obtain the correct customized result without revealing his zip code to
the service provider. But a common method of implementing this type of service is to
pass the input zip code directly to a map server, and mash up the map with the result
from the rest of the service. With such an implementation it is difficult for the user to
obtain the correct result without revealing the correct zip code to the application. As a
more general example, for some applications it may be difficult to discover the set of
input values that are treated as valid by the application. Without some knowledge of
the set of valid inputs, it is not possible to design an obfuscation function such that the
obfuscated input data is still valid input.

Despite this, we believe that many existing cloud services could be used in an ob-
fuscated fashion without any cooperation from the service provider.

 A Privacy Manager for Cloud Computing 105

8 Conclusion and Acknowledgements

In conclusion, we have described a Privacy Manager and shown that this is a practical
approach. We have also explored how the architecture would vary for different sce-
narios.

An earlier draft of this paper benefitted from helpful feedback from John Erickson
and Guillaume Belrose.

References

1. Regulation of Investigatory Powers Act, Part II, s 28, UK (2000)
2. Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept

and Obstruct Terrorism (USA PATRIOT ACT) Act, Title V, s 505 (2001)
3. Organization for Economic Co-operation and Development (OECD): Guidelines Govern-

ing the Protection of Privacy and Transborder Flow of Personal Data. OECD, Geneva
(1980)

4. EU Data Protection Directive (95/46/EC) (1995)
5. Salmon, J.: Clouded in uncertainty – the legal pitfalls of cloud computing. Computing

magazine, September 24 (2008), http://www.computing.co.uk/computing/
features/2226701/clouded-uncertainty-4229153

6. Mowbray, M.: The Fog over the Grimpen Mire: Cloud Computing and the Law. Scripted
Journal of Law, Technology and Society 6(1) (April 2009)

7. Pearson, S. (ed.): Trusted Computing Platforms. Prentice-Hall, Englewood Cliffs (2002)
8. World Wide Web Consortium (W3C): Platform for Privacy Preferences (P3P) Project,

http://www.w3.org/P3P
9. PRIME, Privacy and Identity Management for Europe,

 https://www.prime-project.eu/
10. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Goos, G.,

Hartmanis, J., van Leeuwen, J. (eds.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001)

11. Casassa Mont, M., Pearson, S., Bramhall, P.: Towards Accountable Management of Iden-
tity and Privacy: Sticky Policies and Enforceable Tracing Services. In: IEEE Workshop on
Data and Expert Systems Applications, pp. 377–382. IEEE Computer Society Press,
Washington (2003)

12. Casassa Mont, M., Thyne, R.: A systemic approach to automate privacy policy enforce-
ment in enterprises. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 118–
134. Springer, Heidelberg (2006)

13. Mowbray, M., Pearson, S.: A client-based privacy manager for cloud computing. In:
COMSWARE 2009. ACM, New York (2009)

14. Trusted Computing Group: Trusted Platform Module (TPM) Specifications (2009),
 https://www.trustedcomputinggroup.org/specs/TPM/

15. Pearson, S.: Trusted Computing: Strengths, Weaknesses and Further Opportunities for En-
hancing Privacy. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS,
vol. 3477, pp. 305–320. Springer, Heidelberg (2005)

16. Dalton, C., Plaquin, D., Weidner, W., Kuhlmann, D., Balacheff, B., Brown, R.: Trusted
virtual platforms: a key enabler for converged client devices. In: ACM SIGOPS Operating
Systems Review, vol. 43(1), pp. 36–43. ACM, New York (2009)

106 S. Pearson, Y. Shen, and M. Mowbray

17. Gritzalis, D., Moulinos, K., Kostis, K.: A privacy-enhancing e-business model based on in-
fomediaries. In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS 2001.
LNCS, vol. 2052, pp. 72–83. Springer, Heidelberg (2001)

18. Otemba project: The Reasons for Otemba’s Existence, http://sourceforge.net/
apps/trac/otemba/wiki/Reasons%20for%20existence

19. Yao, A.C.: How to Generate and Exchange Secrets. In: 27th Symposium of Foundations of
Computer Science (FoCS), pp. 162–167. IEEE Press, New York (1986)

20. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: 41st ACM Sympo-
sium on Theory of Computing, Bethesda, Maryland, USA, May 31-June 2 (2009), pp.
169–178 (2009)

21. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

22. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. J. Cryptology 15(3), 151–222
(2002)

23. Liu, K.: Privacy Preserving Data Mining Bibliography, http://www.cs.umbc.edu/
~kunliu1/research/privacy_review.html

24. Dean, J., Ghemawat, S.: Map Reduce: Simplified data processing on large clusters. Com-
munications of the ACM 51(1) (2008)

25. Date, C.J.: A guide to the SQL standard. Addison-Wesley Longman Publishing Co., Bos-
ton (1986)

26. Narayanan, A., Shmatikov, V.: Obfuscated Databases and Group Privacy. In: Proceedings
of the 12th ACM conference on Computer and Communications Security, pp. 102–111

27. Rivest, R., Adelman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In:
DeMillo, R.A., et al. (eds.) Foundations of Secure Computation, pp. 168–179. Academic
Press, New York (1978)

28. Amazon Web Services LLC: Case Studies: TC3 Health, http://aws.amazon.com/
solutions/case-studies/tc3-health/

29. Wayner, P.: Translucent Databases, Flyzone Press (2002)
30. Bertino, E., Ferrari, E.: Secure and Selective Dissemination of XML Documents. In: Proc.

TISSEC, pp. 290–331. ACM, New York (2002)
31. Miklau, G., Suciu, D.: Controlling Access to Published Data Using Cryptography. In:

VLDB, VLDB Endowment (2003)
32. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In: Proc. VLDB,

VLDB Endowment, pp. 143-154 (2002)
33. IBM: IBM Tivoli Privacy Manager for e-Business (2009), http://www-01.ibm.com/

software/tivoli/products/privacy-mgr-e-bus/
34. Casassa Mont, M., Pearson, S.: An Adaptive Privacy Management System for Data Re-

positories. In: Katsikas, S.K., López, J., Pernul, G. (eds.) TrustBus 2005. LMXS,
vol. 3592, pp. 236–245. Springer, Heidelberg (2005)

35. Salesforce.com, Inc.: Sales Force Automation, http://www.salesforce.com/
products/sales-force-automation/

36. Haimes, Y.Y.: Risk Modeling, Assessment, and Management. Systems, Man, and Cyber-
netics, Part C: Applications and Reviews 29(2), 315 (1999)

37. Despotovic, Z., Aberer, K.: P2P reputation management: Probabilistic estimation vs. social
networks. Management in Peer-to-Peer Systems, Computer Networks 50(4), 485–500
(2006)

38. EnCoRe: EnCoRe: Ensuring Consent and Revocation,
 http://www.encore-project.info

Privacy in a Semantic Cloud: What’s Trust Got
to Do with It?

Åsmund Ahlmann Nyre and Martin Gilje Jaatun

SINTEF ICT, NO-7465 Trondheim, Norway
{Asmund.A.Nyre,Martin.G.Jaatun}@sintef.no

http://www.sintef.no/ses

Abstract. The semantic web can benefit from cloud computing as a
platform, but for semantic technologies to gain wide adoption, a solu-
tion to the privacy challenges of the cloud is necessary. In this paper
we present a brief survey on recent work on privacy and trust for the
semantic web, and sketch a middleware solution for privacy protection
that leverages probabilistic methods for automated trust and privacy
management for the semantic web.

1 Introduction

Cloud Computing will be an enabler for the Semantic Web, e.g. by distributing
analysis, transformation and querying of data [1]. The Semantic Web as envi-
sioned by Berners-Lee et al. [2] represents a shift from machine readable data
towards machine understandable data, allowing machines (e.g. agents) to make
intelligent decisions based on the meaning of data on the web.

Similarly, securing the Semantic Web constitutes a shift from current security
solutions relying on humans to perform intelligent decisions and assessments, to a
semantic security solution where this can be done by automatic and autonomous
agents. Providing a basis for such intelligence is assumed to be a highly difficult
and complex task [3], but is nevertheless a prerequisite for the anticipated wider
adoption of the Semantic Web and semantic technologies.

According to a recent survey on European citizens’ perceptions on privacy
[4], two-thirds of participants said to be concerned that organisations holding
personal information would not handle them appropriately, which is the at the
same level as the previous [5]. The survey also showed that four out of five EU
citizens feel uneasy about transmitting personal data on the internet due to
lack of security, while only one out of five said they used tools for technologies
to increase the level of security. This indicates that there is a strong need for
better and more reliant privacy control to combat the current threat, and an
even stronger one for the future threats.

However, any such privacy enhancing technology is not anticipated to be im-
plemented and deployed in operational environments without providing signif-
icant evidence of its correctness and fitness for use. This paper will sketch the
first step in creating a privacy middleware for the Semantic Web to be adopted
and deployed by the industry.

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 107–118, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.sintef.no/ses

108 Å.A. Nyre and M.G. Jaatun

The remainder of the paper is organised as follows. In section 2 we give a
brief overview of existing approaches and solutions to privacy and trust and
investigate the current challenges. Next, in section 3 we outline our approach
to privacy enforcement through integrated trust and privacy management. Our
solution is then discussed in Section 4, before we give our concluding remarks
and outline further research in Section 5.

2 Foundations

Although practical security solutions for the semantic web remain elusive, there
is an ample body of relevant security knowledge to draw upon. In the following
we provide a brief survey on the state of the art of privacy and trust on the
semantic web.

2.1 Privacy

The semantic web opens a whole new world of automated data collection and
aggregation, surpassing current web searches by far in terms of precision. It is
evident that privacy protection will be an absolute necessity for it to be accepted
and fully utilised by end users.

Privacy Preferences and Policies. All major web sites with user interaction
currently provide privacy policies describing how personal information will be
handled. The fact that such policies are not understood (or even read) by users,
served as one of the main motivations for the early Privacy Enhancing Technolo-
gies (PETs) [6,7,8]. The W3C recommendation Platform for Privacy Preferences
(P3P) specification [8] utilises a mark-up language to allow websites to declare
their privacy policy in a standardised fashion, which again allow user agents to
display the policy in a way users can easily understand. P3P does not provide
privacy on its own, but merely helps users make informed decisions about inter-
acting with specific websites. Much of the criticism towards this specification [9]
stems from the failure to adhere to privacy standards and regulations.

With semantically annotated policies, privacy negotiations may be conducted
autonomously by agents. Several policy languages have been proposed for both
security and privacy policy specification (e.g. [10,11,12]). By matching users’
policies (or preferences) with web services’ policies, privacy can be maintained
automatically without the need for manual investigation. A review and compar-
ison of current policy languages [13] suggest that policy languages in general
are quite expressive, but further work is required especially for improved usage
control and minimal information disclosure. Another point being made is the
need for user-friendly interfaces and the ability to adapt to changing preferences
and requirements.

Privacy through Anonymity. A way to protect one’s privacy is to remain
anonymous, e.g. by providing only non-identifiable information. This is common
in the health sector, where e.g. medical status needs to be published in a way

Privacy in a Semantic Cloud: What’s Trust Got to Do with It? 109

so that the patient’s identity is not revealed. K-anonymity [14] is one approach
to restrict semi-identifiable information such that at least K subjects share any
combination. Other approaches include general anonymity, pseudo anonymity
and trap-door anonymity. Pseudo anonymity refers to situations where the iden-
tity of users are not their real identity (e.g. usernames, subscriber ID, etc) and
thereby provide protection from entities that do not know the link between the
pseudonym and the real identity. To be anonymous, a user must not identify
herself with anything that can link information from different sources.

However, for some types of services, e.g. online social networks (Facebook,
LinkedIn, etc.), the benefit is greatly reduced if identity information is not
provided. Anonymity is therefore not the answer to all privacy problems.

Privacy Regulations. Unlike other security mechanisms, privacy is also pro-
tected by law. Hence, any privacy policy (and preference) should be according
to the privacy legislation of the given country. EU directives on privacy protec-
tion [15,16] place requirements on member states’ legislation as to how personal
information is stored, handled and shared. The P3P specification has been crit-
icised for its lack of support for such legislation. The architecture proposed in
[17] uses the principles from the EU directives as a foundation for its legislation
compliance. The architecture is capable of mediating between users, websites
and legislation, to ensure that all parties’ requirements are satisfied. While most
privacy enhancing technologies are focused solely on protecting personal infor-
mation explicitly given by users, this architecture is determined to protect both
active data (controlled by user, e.g. credentials), semi-active data (partly con-
trolled by user, e.g. sensor data) and passive data (uncontrolled by user, e.g.
surveillance cameras).

Privacy through Usage Control. Park and Sandhu [18] proposed the generic
UCON usage control model aimed at being generic enough to encompass both
traditional access control, Digital Rights Management (DRM) and trust man-
agement. As noted by the authors, privacy management (i.e. controlling personal
information) may be seen as the reversed version of DRM; where users are plac-
ing restrictions on service providers’ use of information. The basic model is built
up of subjects, objects, rights, authorisations, obligations and conditions. Sub-
jects and objects are similar to that of other access control mechanisms, with
the distinction that their attributes may be mutable, i.e. they may change due
to access requests. Rights are not considered static and the existence of a certain
right or privilege is determined by a usage decision function upon requesting to
invoke it. Authorisations determine whether the subject is allowed to perform
the requested operation on the object. Obligations refer to the mandatory re-
quirements a subject must fulfil before or during usage while conditions describe
how environmental or system status may influence usage decisions.

Privacy Policy Enforcement. The current web provides no means of con-
trolling information after it has been published. Anything on the web is visible

110 Å.A. Nyre and M.G. Jaatun

by all, and is generally hard (or even impossible) to remove. Thus, the best pri-
vacy policy would be never to make personal information available to anyone.
However, that would also greatly reduce the usefulness of the web, especially the
interactive, user-driven services.

Policy enforcement has traditionally (e.g. for access control) been done by a
central entity, typically the provider. However, with distributed information and
ubiquitous environments, the information provider might be required to enforce
restrictions on remote devices. Realising this, Sandhu et al. [19] propose a client-
side enforcement strategy based on trusted computing and Privacy Enforcement
Implementation (PEI) models.

The approach taken by Lioudakis et al. [17] is to establish a privacy infras-
tructure similar to that of public keys (PKI). Service providers implement a
Discrete Box functioning as a privacy proxy for end-users. Whether to grant
requests for personal information is handled by the containing Policy Decision
Point and Policy Enforcement Point (PDP/PEP) of the Discrete Box. Policies
considered for such a decision include both statutory, service provider and user
policies. The idea is that the service provider’s privacy proxy guarantees that
all applicable policies (regardless of origin) are met whenever access to personal
information is granted. To prevent misbehaving privacy proxies, the infrastruc-
ture is equipped with a set of Privacy Authorities to supervise service providers’
adherence to general legislation, user policies and their own specific policies.
There are apparent similarities with the Certificate Authority required for the
X.509 Certificate infrastructure [20]. Additionally, when applied to the semantic
web, each user agent must have its own privacy proxy (Discrete Box), which is
a major challenge in terms of scalability.

As stated earlier, the P3P specification [8] offers no enforcement guarantees,
and hence the user must determine on its own whether to trust the service
provider to adhere to its own policy.

Commercially available privacy management systems (e.g. IBM’s Enterprise
Privacy Architecture) assume centralised data storage, which leaves them unable
to cope with distributed data on the semantic web. The system proposed by Song
et al. [21], utilises social networks as a model to control private data flow within
enterprises, not across organisational boundaries.

2.2 Trust Management

Trust, and more specifically trust management, has received considerable atten-
tion from security researchers over the past years [22], apparently without being
able to make a definite impact on services that are actually deployed on the
internet.

The problem with trust is that it takes various meanings in various contexts.
In a PKI, a certificate is said to be trusted if the link between the owner entity
(e.g. user) and the public key is either known in advance, or is confirmed by
a trusted entity. On the current web, the content of a web page is assumed to
be trusted if it is provided by a trusted source (as seen by the user). What
constitutes a trusted source, is not trivially explained.

Privacy in a Semantic Cloud: What’s Trust Got to Do with It? 111

Definitions. Trust is not easily defined and many definitions exist both within
computer science and social sciences [23,24,25]. Mayer et al. [24] state that or-
ganisational studies dealing with trust has been hampered by lack of consensus
on contributing factors, trust itself and outcomes of trust. This is supported by a
survey of organisational trust [25] and a computer science counterpart [23] where
several definitions of trust are listed based on different factors and viewpoints.
The common factors of these definitions are vulnerability and risk, implying that
the trustor must be vulnerable to the actions of the trustee and that the inher-
ent risk is recognised and accepted in order to call it trust. Mayer et al. argue
that it is the recognition of risk that separates trust from confidence, where the
latter does not consciously consider the risk involved. Cooperation is another
factor that may be both a contributing factor and an outcome of trust. Trust
may result in cooperation and cooperation may result in trust, but they are
not dependent on one another. Entities may be forced to cooperate without any
trust relation. Similarly, predictability of entities may be a contributing factor
of trust, however only if performance is satisfactory. If always performing badly,
predictability may lead to decreased trust [24].

We choose to use the definition from [24] where trust is defined as the will-
ingness of a party to be vulnerable to the actions of another party based on
the expectation that the other will perform a particular action important to the
trustor, irrespective of the ability to monitor and control that other party.

Trust Models. As with trust definitions; several different trust models have
been proposed over the years, covering different aspects and views of trust. Many
of the models that have been proposed have been targeting a very specific use
(e.g. e-commerce) and therefore have sacrificed completeness for simplicity, while
others have attempted to specify general and somewhat complex trust models.

Mayer et al. [24] focused on a general model. They viewed a trust relation
as dependent on the trustor’s willingness to trust and the trustworthiness of
the trustee (as seen by the trustor). The main factors of trustworthiness were
identified as ability, benevolence and integrity. On the trustor’s part, disposition
to trust and perceived risk were identified as the most influential factors with
regards to trust. Furthermore, the outcome of a trust relation (experience) is
assumed to influence one or more of the trustworthiness factors and hence the
trustworthiness of the trustee.

The work by Marsh [26] was an early attempt to establish a formalism for
trust in computer science in general, and artificial intelligence in particular. The
formalism allows agents to compute a trust value based on a set of factors in order
to arrive at a trust decision automatically. The complexity of the model makes
it difficult to use in practise, however as inspiration the model has contributed
greatly to advances in research on trust.

Acknowledging that the complexity of several proposed models does not nec-
essarily give better trust assessments, Conrad et al. [27] proposed a lightweight
model for trust propagation. The parameters self confidence, experience, hearsay
and prejudice are used to model and assess trust. This computational model also
allows agents to compute a trust value to automatically perform trust decisions.

112 Å.A. Nyre and M.G. Jaatun

The degree of self confidence determines how much influence own experience and
hearsay would have on the computed trust value. The prejudice determines the
initial value of experience and hearsay, before experience is accumulated.

In the model proposed by Gil and Artz [28] the idea is to arrive at content
trust, where the information itself is used for trust calculation. This allows for a
whole new range of parameters (such as bias, criticality, appearance, etc.) to be
used when assessing trust in resources. The problem of such parameters is that
they require user input, which conflicts with the assumption of agents conducting
the assessment autonomously.

Trust Propagation. Golbeck and Hendler [29] describe an algorithm for in-
ferring trust and reputation in social networks when entities are not connected
directly by a trust relationship. This is done by computing the weighted distance
from the source to the sink. Any distrusted entity is not included in the compu-
tation since the trust assessments done by such entities are worthless. Guha et al.
[30] introduce the notion of distrust to address the problem of expressing explicit
distrust as a contrast to the absence of trust. Absence of trust may come from
lack of information to conduct a proper trust assessment, while distrust expresses
that a proper assessment have been conducted and that the entity should not
be trusted. Furthermore, they argue that distrust could also be propagated and
proposes several propagation models in addition to trust transitivity, including
co-citation, which is extensively used for web searches.

Huang and Fox [31] claim that not all kinds of trust can be assumed to be
transitive. They note that trust based on performance, i.e. an entity performing
as expected repeatedly, is not necessarily transitive, while trust based on a belief
that the entity will perform as expected often is.

3 Probabilistic Privacy Policy Enforcement

From the discussions above we know that some of the proposed PETs assume
that entities will always adhere to and enforce their own policies, either because
they are trusted or because there is an infrastructure in place that would not
allow them to misbehave. As a consequence, enforcement is seen as binary, either
it is done or it is not.

While assuming that all entities will enforce relevant policies is clearly not
a good idea, there are quite some difficulties involved in relying on trusted
computing for guarantees.

1. Trusted computing requires an infrastructure (hardware and software) for it
to work. Hence, any entity that does not comply with this not allowed to
take part.

2. Trusted third parties are needed and are not easily established. Although
some have been successfully established for the X.509 Public Key Infras-
tructure, it is not generally viewed as an unconditional success [32].

3. There may be situations where users do want to communicate with entities
not part of the privacy infrastructure, even though this would generally

Privacy in a Semantic Cloud: What’s Trust Got to Do with It? 113

conflict with their privacy requirements. Users would therefore be forced to
disable any PET functionality in order to do this.

4. With any such system, there is a critical mass of users/providers that must
be attained before users will view investments in such tools beneficial.

Example 1. Consider three websites; one evil, one benign and one somewhere
in between (probably owned by Google). All provide a privacy policy, possibly
very different from one another. Using mere policies, no distinction is made as
to the level of trust to be placed in the websites’ adherence to their policies,
i.e. there is no enforcement. Using trusted computing, only the benign website
will be included in the infrastructure, and hence communication with possibly
misbehaving websites are impossible (using privacy management).

A user may want to interact with such shady websites despite warnings of mis-
behaviour and would therefore greatly benefit from a privacy technology that
would:

1. Alert the user of the trustworthiness of the website.
2. Record the user’s willingness to interact and the willingness to (potentially)

be vulnerable to exploit.
3. Provide means to mitigate the risk and calculate criticality and consequence

of interaction (e.g. distribution of personal data).
4. Provide anonymity where where appropriate.

We therefore propose a probabilistic approach to policy enforcement, where users
are given a probability that their requirements will be respected and polices
enforced. Thus when interacting with websites who are known to be less trust-
worthy, policy adherence is given by a probability metric that the website will
actually enforce its own policies. Our enforcement model does not include a
privacy or trust model, i.e. it is only occupied with how to handle uncertainty
in enforcement and provide a tool for interacting with non-conforming entities
while minimising the risks involved.

3.1 Personal Data Recorder

The semantic web offers great opportunities for information aggregation, which
is generally difficult to protect oneself from.

Example 2. Consider the situation where a user wanting to stay unidentified has
provided his postal code and anonymous e-mail address to a website. Later he
also provides age and given name (not the full name) and the anonymous e-mail
address. Now, the website is able to combine the data (postal code, age and
given name) to identify the anonymous user.

Protecting users from this kind of aggregation requires complete control of what
information has been distributed and to whom. In our scheme, this is done by the
Personal Data Recorder (PDR), which basically records what data is transmitted
to which receivers. Thus in the above example, the second interaction with the

114 Å.A. Nyre and M.G. Jaatun

website should have been blocked, since it enables the website to reveal the
user’s identity. The PDR allows the user to view himself through the eyes of
the receiving party, and thereby perform aggregation to see whether too much
information is provided.

3.2 Personal Data Monitor

The personal data monitor (PDM) is responsible for computing and assessing
policies and behaviour, and to update the personal data recorder with inferred
knowledge. A problem with the PDR is that it is not capable of handling re-
distribution of data (receiver forwards the data to other recipients). However,
all personal data are assumed accompanied by a privacy policy and obligations.
Using the probabilistic privacy enforcement described earlier, the PDM is able to
compute the probability that the receiving entity is redistributing information.
That is, the PDM will determine the likelihood that the personal information dis-
tributed to the receiver will also reach other. This need not be criminal or shady
activity either, it is actually quite common in business life. For instance, sending
an e-mail with a business proposition to a specific employee of a company, it is
likely that other employees in that company also will receive the e-mail (e.g. his
superior). The PDM is in such a case responsible for inferring other recipients
and to include such information in the Personal Information Base.

Information that is made publicly available on the Internet, would generally be
considered to be available to all. Hence, any interaction later on should consider
this information when assessing the kind of information to reveal.

3.3 Trust Assessment Engine

The Trust Assessment Engine (TAE) is responsible for calculating trust values
of different entities in order to determine their trustworthiness. The TAE is thus
focused solely on assessing communicating parties and does not take into account
risk willingness, vulnerability and criticality.

3.4 Trust Monitor

The trust monitor (TM) is responsible for detecting events that might affect the
perceived trustworthiness and the willingness to take risks. The trust monitor
is thus responsible for calculating and deciding on what is an acceptable trust
level, given the circumstances. Any computed trust value and feedback received
from cooperating entities is stored in the trust assessment repository.

3.5 Policy Decision Point

The Policy Decision Point (PDP) is responsible for the final decision on whether
to engage in information exchange and if so; under what conditions. The PDP
collects the views of both the TM and the PDM and compares their calculations
to the policies and requirements found in the policy repository. The decision is
reported back to the TM and PDM to allow recalculation in case the decision
alters the calculated trust values or distribution of personal information.

Privacy in a Semantic Cloud: What’s Trust Got to Do with It? 115

Fig. 1. Middleware architecture for probabilistic privacy management

4 Discussion

The practical application of Privacy Enhancing Technologies is limited by the
human cognitive capacity – or rather, the lack thereof. However, even on the se-
mantic web, information is ultimately communicated from one human to another,
and thus if we want to apply trust to this equation, we have to base ourselves
on human notions of trust, which are neither binary nor straight-forward.

In fact, the word “trust” is used to mean many things even in a human context,
and is often misunderstood when applied to end-user applications. One example
is the Pretty Good Privacy (PGP) program, which allows users to collect public
keys of friends and associates, and subsequently assign a “trust level” to these
keys. A common misconception is that this trust level reflects on the degree
of certainty that the given key is the correct key for that particular associate;
while in reality it reflects to which degree the user is willing to trust other keys
signed by that particular associate. These concepts are quite different: While I
am confident that I have the right key for my friend Bob on my computer, I also
know that Bob is a fool who at regular intervals is sending money to Nigerian
princesses, and also freely signs any key that comes his way.

Our proposed middleware relies heavily on the Personal Data Recorder, but it
is clear that this element will not be able to cope with passive data collection; in a
real-life example, this would require you to e.g. carry a device that could detect all
surveillance cameras and record what they capture of your movements. However,
since the possibilities for aggregation are so abundant on the semantic web, it is
vital that any new PET takes steps to limit unnecessary information spread.

116 Å.A. Nyre and M.G. Jaatun

In one way, it may seem that a PET application that introduces anonymous
or pseudonymous data would be anathema to the semantic web, since nobody
wants inaccurate or false data in their system. However, we do not advocate that
information that a person wants to be disseminated should be anonymised, but
rather that the user should be in control of her own information (as in the spirit
of European privacy legislation).

One might argue that it would be better if the option to remain anonymous
were offered by the various providers, but currently it seems that the providers
have no incentive for offering such an option – to the contrary, providers seem
to want to go to great lengths to collect as much information as possible. If we
want to be able to communicate with whomever we want, but still want to have
protection against aggregation, it seems the only solution is to lie. Since most
humans are bad liars, our privacy middleware will help users to “lie” consistently,
allowing them to reap the benefits of the semantic web and cloud computing
without sacrificing their privacy.

However, as already mentioned, there are circumstances when use of a service
precludes anonymity – e.g. when ordering a book from Amazon.com, you have
to provide a valid postal address, or you will never receive your purchase. Thus
the trust aspect of the middleware is used to automatically determine which
information is necessary to divulge, and performing a risk calculation. Combined
with the personal data recorder, there are multiple opportunities for automatic
extensions, e.g. calculating the impact of mergers (when your local Mom & Pop
bookstore is acquired by Waldenbooks) or changes in privacy policies.

5 Conclusion and Further Work

In this paper we have outlined existing approaches to privacy and trust manage-
ment and the fundamental challenges of the emerging semantic web. We have
proposed a new way of handling policy enforcement remotely, based on com-
puting the probability that the recipient will adhere to the established policies.
The probability is computed on the basis of trust assertions, user’s willingness to
trust, and the personal information involved. We believe that such an approach
would facilitate a gradual deployment of software since it may prove beneficial
to users, regardless of whether other users have adopted it.

We acknowledge that these are early thoughts and that proper justification
and simulations should be provided before the benefits of our proposed approach
can be rightfully claimed. In particular, a more detailed description of how the
Personal Data Recorder and Personal Data Monitor should be designed to meet
the goals stated is an important subject for further research. Also, the interface
between a trust management system and the personal data service needs to be
properly specified to clearly separate the responsibilities of the two, so as to
allow for different trust management systems to be utilised. Verification of the
approach through simulation or user-testing forms a natural next step.

Privacy in a Semantic Cloud: What’s Trust Got to Do with It? 117

References

1. Mika, P., Tummarello, G.: Web semantics in the clouds. IEEE Intelligent Sys-
tems 23, 82–87 (2008)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific America,
34–43 (2001)

3. Bussler, C.: Is semantic web technology taking the wrong turn? Internet Comput-
ing, IEEE 12, 75–79 (2008)

4. Data protection in the european union - citizens’ perceptions. Flash Eurobarometer
225, The Gallup Organization (2008)

5. Data protection. Special Eurobarometer 192, European Opinion Research Group
EEIG (2003)

6. Burkert, H.: Privacy-enhancing technologies: typology, critique, vision. In: Agre, P.,
Rotenberg, M. (eds.) Technology and Privacy: The New Landscape, pp. 125–142.
MIT Press, Cambridge (1997)

7. Goldberg, I., Wagner, D., Brewer, E.: Privacy-enhancing technologies for the inter-
net. In: Proc. of 42nd IEEE Spring COMPCON. IEEE Computer Society Press,
Los Alamitos (1997)

8. Cranor, L., Langheinrich, M., Marchiori, M., Reagle, J.: The platform for privacy
preferences 1.0 (p3p1.0) specification. W3C Recommendation (2002)

9. EPIC: Pretty poor privacy: An assessment of p3p and internet privacy. Technical
report, Electronic Privacy Information Center (2000)

10. Kagal, L., Finin, T., Joshi, A.: A policy based approach to security for the semantic
web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 402–418. Springer, Heidelberg (2003)

11. Bonatti, P., Olmedilla, D.: Driving and monitoring provisional trust negotiation
with metapolicies. In: Sixth IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, pp. 14–23 (2005)

12. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specifica-
tion language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001)

13. Duma, C., Herzog, A., Shahmehri, N.: Privacy in the semantic web: What policy
languages have to offer. In: Eighth IEEE International Workshop on Policies for
Distributed Systems and Networks, POLICY 2007, pp. 109–118 (2007)

14. Sweeney, L.: K-Anonymity: a model for protecting privacy. International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems 10, 557–570 (2002)

15. EU: Directive 2002/58/ec of the european parliament and of the council concerning
the processing of personal data and the protection of privacy in the electronic
communications sector. Official Journal of the European Communities (2002)

16. EU: Directive 95/46/ec of the european parliament and of the council of 24 october
1995 on the protection of individuals with regard to the processing of personal
data and on the free movement of such data. Official Journal of the European
Communities (1995)

17. Lioudakis, G.V., Koutsoloukas, E.A., Dellas, N.L., Tselikas, N., Kapellaki, S., Prez-
erakos, G.N., Kaklamani, D.I., Venieris, I.S.: A middleware architecture for privacy
protection. Computer Networks 51, 4679–4696 (2007)

18. Park, J., Sandhu, R.: The UCONABC usage control model. ACM Transactions on
Information Systems Secuity 7, 128–174 (2004)

19. Sandhu, R., Zhang, X., Ranganathan, K., Covington, M.J.: Client-side access con-
trol enforcement using trusted computing and PEI models. Journal of High Speed
Networks 15, 229–245 (2006)

118 Å.A. Nyre and M.G. Jaatun

20. Housley, R., Polk, W., Ford, W., Solo, D.: RFC 3280: Internet X.509 Public Key In-
frastructure Certificate and Certificate Revocation List (CRL) Profile. RFC Editor
(2002)

21. Song, R., Korba, L., Yee, G.: Privacy management system using social networking.
In: Korba, L. (ed.) IEEE International Conference on Systems, Man and Cyber-
netics, ISIC, pp. 3327–3332 (2007)

22. Varadharajan, V.: A note on Trust-Enhanced security. Security & Privacy, IEEE 7,
57–59 (2009)

23. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web. Web
Semantics: Science, Services and Agents on the World Wide Web 5, 58–71 (2007)

24. Mayer, R., Davis, J., Schoorman, F.: An integrative model of organizational trust.
Academy of Management Review 2, 709–734 (1995)

25. Bigley, G., Pearce, J.: Straining for shared meaning in organization science: Prob-
lems of trust and distrust. Academy of Management Review 23, 405–421 (1998)

26. Marsh, S.P.: Formalizing Trust as a Computational Concept. PhD thesis, Depart-
ment of Comuting Science and Mathematics, University of Sterling (1994)

27. Conrad, M., French, T., Huang, W., Maple, C.: A lightweight model of trust prop-
agation in a multi-client network environment: to what extent does experience
matter? In: The First International Conference on Availability, Reliability and Se-
curity, ARES 2006, 6 p. (2006)

28. Gil, Y., Artz, D.: Towards content trust of web resources. In: WWW 2006: Pro-
ceedings of the 15th international conference on World Wide Web, pp. 565–574.
ACM, New York (2006)

29. Golbeck, J., Hendler, J.: Accuracy of metrics for inferring trust and reputation
in semantic web-based social networks. In: Motta, E., Shadbolt, N.R., Stutt, A.,
Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 116–131. Springer,
Heidelberg (2004)

30. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and dis-
trust. In: WWW 2004: Proceedings of the 13th international conference on World
Wide Web, pp. 403–412. ACM, New York (2004)

31. Huang, J., Fox, M.S.: An ontology of trust: formal semantics and transitivity. ACM,
New York (2006)

32. Lopez, J., Oppliger, R., Pernul, G.: Why have public key infrastructures failed so
far? Internet Research 15, 544–556 (2005)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 119–130, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Data Protection-Aware Design for Cloud Services

Sadie Creese1, Paul Hopkins1, Siani Pearson2, and Yun Shen2

1 International Digital Laboratory, University of Warwick, Coventry, UK.
2 HP Labs, Long Down Avenue, Bristol, UK. BS34 8QZ

{Sadie.Creese,P.D.Hopkins}@warwick.ac.uk,
{Siani.Pearson,Yun.Shen}@hp.com

Abstract. The Cloud is a relatively new concept and so it is unsurprising that
the information assurance, data protection, network security and privacy con-
cerns have yet to be fully addressed. This paper seeks to begin the process of
designing data protection controls into clouds from the outset so as to avoid the
costs associated with bolting on security as an afterthought. Our approach is
firstly to consider cloud maturity from an enterprise level perspective, describ-
ing a novel capability maturity model. We use this model to explore privacy
controls within an enterprise cloud deployment, and explore where there may
be opportunities to design in data protection controls as exploitation of the
Cloud matures. We demonstrate how we might enable such controls via the use
of design patterns. Finally, we consider how Service Level Agreements (SLAs)
might be used to ensure that third party suppliers act in support of such controls.

Keywords: Data protection, information security, privacy, cloud computing,
design pattern, capability maturity model.

1 Introduction

Cloud computing offers a utility model for IT, enabling users to access applications,
middleware and hardware via the Internet as opposed to owning it themselves. The
vision for the Cloud is one where applications, platforms and infrastructure can all be
consumed as and when required. The ability to rapidly scale-up and scale-down is
perceived by many to directly lead to cost savings. Other benefits include fast access
to new applications, easier ability to try things out before large-scale investment and
staying on the leading edge. ‘Cloud nirvana’ is a future where cloud service providers
(SPs) utilise the cloud to deliver dynamic capability enhancements, resources are
switched on and off like taps, and users can switch suppliers quickly in order to ac-
cess the best solution on the market. Current expectations of the market potential
remain high, with Gartner predicting a services market value of $150bn by 2013 [1].

The adoption of cloud services will vary across enterprises and users. Early take-up
appears to be within the technology sector with other potential users voicing concerns
surrounding security and privacy of data. Undoubtedly, any model which involves data
assets residing on equipment not within users’ immediate control needs to address
security and privacy. In ‘cloud nirvana’ environments this will only become more

120 S. Creese et al.

acute, and potentially more challenging. Current recommendations and approaches to
information security in the cloud are essentially based on today’s best practice sur-
rounding traditional outsourcing. Certainly, this is an obvious and valid starting point,
and one which is recognised by those operating in the data-centre and secure-hosted
service space, since they already possess the relationships, infrastructure, and business
models which could easily be extended into a cloud service domain.

However, the cloud vision does offer some particularly challenging privacy prob-
lems that are unlikely to be sufficiently addressed by today’s best practice [2]. Privacy
can be thought of as a human right that is rather complex to analyse [3]. We focus in
this paper on the issue of privacy in the sense of data protection (processing of data on
identifiable living people), as defined by Directive 95/46/EC [4]. There are differing
interpretations of what this may mean in a practical sense, since users of cloud ser-
vices are likely to have varying expectations of confidentiality, control, and service
responsiveness in response to their changing privacy requirements. The protection of
these expectations will be met to equally varying degrees by the legal and regulatory
structures in operation, which in themselves could vary as a cloud service could tran-
scend national boundaries.

We seek here to begin addressing whether there are opportunities to design-in data
protection during this cloud start-up phase, so avoiding costly future bolt-ons and sub-
optimal protection resulting from design decisions in conflict with data protection
needs. We cannot provide a complete treatment in a paper of this size; instead we
focus on three aspects of the cloud deployment lifecycle: Firstly, we consider cloud
adoption at the enterprise level and the likely maturity characteristics, developing a
novel capability maturity model for enterprises exploiting cloud services. We use this
maturity model as a basis for identifying opportunities for designing in privacy, and
capture this analysis in a privacy maturity model. Secondly, we consider the design
stage for a cloud service and how we might use design patterns to enable enterprises
to adopt data protection design principles. Finally, we consider how the use of third
party suppliers of cloud services might impact upon privacy, and how the associated
risks might be mitigated via the use of Service Level Agreements (SLAs).

2 Related Work

Whilst there is no existing published work directly considering how to develop
mechanisms for designing in data protection controls in the cloud, there are a range of
work areas upon which our research is based. We discuss these here.

The point of a capability maturity model (CMM) is generally to understand the
maturity of organisations through various characteristics: see [5] for detailed definition
and history. Such maturity models can help facilitate process development and enter-
prise evolution by identifying maturity milestones and benchmarks for comparison.
Thus, it is possible to plan, prioritise and invest in order to progress along the maturity
model until the most effective and beneficial state is achieved for the enterprise. It
should be noted that it is unlikely always to be the case that a higher maturity leads to
greater profit in a commercial organisation, or that cloud deployment makes sense for
every application (see [6]). By considering a maturity model for cloud exploitation we
hope to identify the key developmental stages for a number of enterprise characteristics,

 Data Protection-Aware Design for Cloud Services 121

which in turn will have implications for information security and data protection
strategies. Hence it may be possible to anticipate future needs and begin delivering
techniques for architecting data-protection aware clouds. A number of Cloud maturity
models have been proposed, for example see [7,8,9]. In [7] a cloud maturity model is
presented that is specifically aimed at data centres. Whilst it offers inspiration when
considering a model for exploitation of cloud by an enterprise, it cannot be directly
applied. Wardley [9] implies that to achieve cloud maturity the following are likely to
exist (accumulatively as maturity grows): resilient architecture, SLAs, an option to run
the service in-house, evidential portability between SPs, third party assurance and moni-
toring of services, a marketplace of providers with easy switching, third party manage-
ment of cloud market exploitation. However, as for [7], the detail is missing.

Dr. Dobb’s Jake Sorofman [8] proposes a slightly different model where: the low-
est level of cloud maturity involves adoption of virtualisation for seamless portability
of applications and a shared server infrastructure; level two is cloud experimentation
where a cloud is deployed (internally or externally) based on controlled and bounded
deployments; level three is cloud foundations where governance, controls, proce-
dures, policies and best practice begin to form initially focused on internal and non-
mission critical applications; level four cloud advancement sees the scaling up of the
volume of cloud applications and broad-based deployments; and level five is cloud
actualisation where dynamic workload balancing occurs across multiple utility clouds
and applications are distributed based on cloud capacity, cost and proximity to users.
This does not break down maturity across enterprise characteristics, but is the closest
to what we require and, in combination with a detailed capability model for service-
oriented architectures (SOAs) designed by IBM (see [10]) forms the foundation upon
which we design our new capability maturity model for cloud.

Privacy design techniques are not a new concept: various companies, notably Mi-
crosoft [11], have produced detailed privacy design guidelines. Cannon has described
processes and methodologies about how to integrate privacy considerations and engi-
neering into the development process [12]. Privacy design guidelines in specific areas
are given in [13,14], and [2] considers the case of cloud computing. In November
2007 the UK Information Commissioners Office (ICO) [15] (an organisation respon-
sible for regulating and enforcing access to and use of personal information),
launched a Privacy Impact Assessment (PIA) [15] process (incorporating privacy by
design) to help organizations assess the impact of their operations on personal pri-
vacy. This process assesses the privacy requirements of new and existing systems; it
is primarily intended for use in public sector risk management, but is increasingly
seen to be of value to private sector businesses that process personal data. Similar
methodologies exist and can have legal status in Australia, Canada and the USA [16].
This methodology aims to combat the slow take-up to design in privacy protections
from first principles at the enterprise level, see [17] for further discussion, [18] for
further background, and [19] for a useful classification system for online privacy.

However, whilst there is a body of privacy design guidelines, there exist no practi-
cal techniques for designing specifically for cloud environments. To do this we
choose to focus on the utility of design patterns [20]. We believe that in some circum-
stances they could be useful since the use-cases that drive cloud computing are famil-
iar ones and so design patterns to fit these can be produced [21]. Some previous work
has been carried out in the privacy design pattern area, but not for cloud computing:

122 S. Creese et al.

[22] describes four design patterns that can aide the decision making process for the
designers of privacy protecting systems. These design patterns are applicable to the
design of anonymity systems for various types of online communication, online data
sharing, location monitoring, voting and electronic cash management and do not ad-
dress use within an enterprise.

3 Cloud Capability Maturity Model

We begin by considering capability maturity for enterprises exploiting clouds, consid-
ering a number of key characteristics: business strategy, governance, procurement
methods, applications, information and information security.

Table 1. Capability Maturity Model for Cloud Computing

We present our capability maturity model for enterprises exploiting cloud services
in Table 1 above. Level 1 represents today’s environment where users of cloud ser-
vices are adopting offerings to enable additional functionality, and controlling the
risks via standard outsourcing risk management processes. The cloud service is
consumed within a business unit and is typically siloed off from the rest of the enter-
prise. Information security is focused at the perimeter. At Level 2 best practice begins
to emerge surrounding the adoption of cloud services within an enterprise, and the
enterprise begins to roll out a broader adoption strategy. This in turn generates

 Data Protection-Aware Design for Cloud Services 123

enterprise level metadata which underpins new information based services. At Level 3
cloud and other business processes become aligned, enabling a more integrated man-
agement activity. This in turn delivers enhanced productivity. It also facilitates a sin-
gle enterprise cloud ontology, which when shared with partners and suppliers can
directly enhance delivery. The importance of cloud to the enterprise results in a dedi-
cated support function being maintained within the enterprise. The information secu-
rity function delivers monitoring and audibility across the enterprise. At Level 4 the
impact of cloud on the enterprise becomes measurable, compliance metrics are estab-
lished and services and applications are measured for quality. Information security
functions for cloud are also measured for impact on the overall risk mitigation strat-
egy. At Level 5 cloud services become dynamically reconfigurable in response to the
increased awareness delivered by the various metrics and changing operating re-
quirements. Governance mechanisms can be dynamically monitored and enforced.
Procurement methods become dynamic, with SLAs requiring an agile and perhaps
automated solution, in order to provide the agility required by the enterprise. Informa-
tion security mechanisms also require additional automation and multi-level security
solutions will need to be present and effective.

From an enterprise perspective it is at the points of crossing maturity levels that
change is likely, for all characteristics. With change comes the potential for introduc-
tion of information security vulnerabilities, and alongside opportunities for designing
in privacy. Consider the governance perspective: in the lower maturity levels best
practice will be based upon existing outsourcing practice. However, as cloud exploita-
tion matures this is unlikely to be sufficient since the dynamic business models and
agility of service deployment will move at a faster pace. New best practice in risk
management will certainly be required, and this will impact governance.

We can use this cloud exploitation capability maturity model to motivate a privacy
maturity model for clouds which elucidates the enterprise architecture characteristics
which will offer opportunities to deliver privacy preserving functionality, and will
necessarily vary as cloud adoption matures.

4 Examples of Privacy Controls in Cloud Computing

It is possible to represent a privacy maturity model by capturing key privacy controls
that have been identified in Table 1 above. These controls are shown in Table 2, and
are loosely based upon the simpler model for privacy risks (in general) described in
[24]. The controls are focused at an appropriate level to allay potential concerns relat-
ing to why personal information is collected, and how it will be used in the cloud or
passed on to affiliated clouds at different maturity levels. However, the relative con-
trol level is selected according to the cloud maturity level. As an example, obligation
management can evolve with increasing privacy risks, such that at preliminary stage
contracts are used for legal compliance for data treatment, this would correspond to
the initial services maturity level defined in Table 1. Before any transition to the use
of ‘architected services’, obligations must be defined within the organisation and for
third parties with whom information is shared, which may assure the user in a more
mature or advanced level. However, obligations should be automated to facilitate

124 S. Creese et al.

management processes and therefore enable the transition for cloud service providers
to a level at which they can be dynamically composed and measured (e.g. level 4 and
above). Finally, at the highest level the obligation management procedure is continu-
ally refined and improved with respect to the enterprise’s continuous exploitation of
cloud services while responsibly protecting the individuals’ private information [25].
Hence, in order to transition across the relative maturity levels; the privacy controls
are also required to transition; however, given the relationship is business- and regula-
tory- context dependant, the mapping cannot be guaranteed to be linear with busi-
nesses given freedom on their adoption of controls relative to their maturity in the use
of cloud services. We hope to develop this mapping as part of future work.

In the next section, we demonstrate how guidance about designing such privacy
controls into cloud services may be achieved by means of design patterns, and discuss
a sticky privacy policies pattern in detail.

Table 2. Examples of Privacy Controls in Cloud Computing

5 Designing Privacy into the Cloud via Design Patterns

The examples of privacy controls in cloud computing given above show that there
will be multiple opportunities to design in data protection. In order to exploit these
opportunities we require methods that can support an enterprise through its evolution
towards maturity, which can incorporate anecdotal advice as well as more formal
prescriptive solutions. Such methods also need to be flexible enough to incorporate
solutions of varying types, including: processes; techniques; methods; training; soft-
ware configurations; applications; communications protocols. We have selected de-
sign patterns [20] since they meet all of these requirements.

 Data Protection-Aware Design for Cloud Services 125

Key aspects of design patterns have already been introduced in Section 2. There
are multiple approaches one might take to how solutions for different maturity levels
of Table 1 are reflected into the corresponding design patterns. Our approach is to
have the patterns correspond to giving further details of techniques in each ‘cell’ of
Table 2, so that for each maturity level there would be a set of patterns. Where closely
related techniques could be used across more than one level of Table 1, a single pat-
tern may be used and the distinction between maturity levels made within the context
and solution descriptions (see example below); in such a case a subjective judgement
is needed, in the sense that if the variation is great then a new pattern would be cre-
ated.

We describe below a draft design pattern for building a data protection mechanism
into a cloud, specifically Sticky Privacy Policies. This pattern provides a method for
addressing maturity within the enterprise use of privacy policy (identified by our
capability maturity analysis outlined above); it corresponds to the control for Privacy
Policy Enforcement used at level 4 in Table 2. Due to space limitations we concen-
trate on this example. We have also defined a number of others in a similar manner,
including: obligation management, data fragmentation, user interface design tech-
niques, risk assessment, reputation management, and user anonymisation.

Sticky Privacy Policy Example

Name: Sticky Privacy Policies Classification: Privacy Policy Enforcement

Intent: to bind a privacy policy to the data to which it refers

Motivation: The sticky privacy policy would ensure that policies relating to data are
propagated and enforced along all supply chains in the cloud ecosystem and all
mechanisms through which the data is stored, processed and shared.

Context: You are designing a cloud service solution and want to make sure that mul-
tiple parties are aware of and act in accordance with your policies as personal and
sensitive data is passed along the chain of parties storing, using and sharing that data.

Problem: Data could be treated by receivers in ways that the data subject or initiator
would not like. The policy could be ignored or separated from the data.

Forces: Factors related to Privacy Policy specification and maintenance and user
control (in Table 2) are relevant, as well as contextual factors, notably user trust. For
example, in situations where the user has low trust in the service providers, or they
have unknown length and composition, the level of user control required increases,
gradually implementing the solution set from this pattern.

Solution: Enforceable ‘sticky’ electronic privacy policies: personal information is
associated with machine-readable policies, which are preferences or conditions about
how that information should be treated (for example, that it is only to be used for
particular purposes, by certain people or that the user must be contacted before it is
used) in such a way that this cannot be compromised. When information is processed,

126 S. Creese et al.

this is done in such a way as to adhere to these constraints. These policies are associ-
ated with data using cryptographic mechanisms. At level 5, Identifier-Based Encryp-
tion (IBE) [26] is particularly appropriate as it means that a third party needs to check
certain properties at the time of decryption, before a decryption key is released.

Design Issues
• To what level of granularity of data should the policy be attached? It could be

anything from a personal data element (e.g. name, etc.) to a whole database
• It might be better to have a reference to a policy bound to the data rather than the

actual policy bound to the data, for practicality reasons
• Need to be compatible with current/legacy systems
• Need to provide mechanism to enforce and audit between parties
• Need to provide mechanism for the parties to assess their enforcement abilities
• Need to provide economically feasible mechanism to enforce the policy.

Consequences: Benefits: Policies can be propagated throughout the cloud, strong
enforcement of these policies, strong binding of data to policies, traceability (for the
IBE approach [26]). Multiple copies of data each have the policy attached.

Liabilities: Scalability and practicality: if data is bonded with the policy, this makes
data heavier and potentially not compatible to current information systems. It may be
difficult to update the policy once the data is sent to the cloud, as there can be multi-
ple copies of data and it might not be known where these are. Once the data is de-
crypted and in clear, the enforcement mechanism becomes weak, i.e. it is hard to
enforce that the data cannot be shared further in clear, but must instead be passed on
in the sticky policy form; therefore, audit must be used to check that this does not
happen.

Known Uses: Policy specification, modelling and verification tools include EPAL
[27], OASIS XACML [28], W3C P3P [29] and Ponder [30]. Various different solu-
tions to sticky policies are compared in [31]. Notably, a technical solution for sticky
policies and tracing services is introduced in [26] that leverages Identifier-Based En-
cryption (IBE) and trusted technologies. This solution requires enforcement for third
party tracing and auditing parties. An alternative solution that relies on a Merkle hash
tree has been proposed by Pöhls in [32]. A unified policy model is discussed in [33],
which discusses steps towards privacy management for an organisation or across
organisations within a federated identity management environment.

Related Patterns: obligations (obligations can be stuck to data), identity management
(e.g. polices bound to data managed in identity management system), audit, Digital
Rights Management (DRM).

Our conclusion is that a pattern approach is viable and scalable. However, patterns
can only be as good as experience and analysis allow and so they will need to be
evolved and refined. But they could offer a practical approach to enabling the adop-
tion of best practice in discrete steps as an enterprise builds towards their optimum
level of cloud exploitation maturity.

 Data Protection-Aware Design for Cloud Services 127

6 Maintaining Data Protection in the Cloud via SLAs

Whilst patterns provide an intuitive way to engage with system architects and policy
developers during cloud service design, they may not be ideal for enabling contractual
risk management maturity in deployed cloud services. Service level agreements
(SLAs) are an industry standard approach for controlling risk, and so are a more natu-
ral starting point. For many outsourced services the SLA is a key document as it at-
tempts to define the relationship between the customer and provider of a service, the
service itself and the parameters which can be used to define performance of the ser-
vice supplier [34]. In practice the SLA can have many more functions, dependant
upon the service type and level (of Table 1) to which it is targeted. An enterprise may
have a number of SLA agreements which can either be standalone or with multiple
dependencies. For example, the hosting of a single server on which Human Resources
(HR) data is stored may have a separate SLA from that of the database that it hosts
and from that of the provision of the supported HR service.

In general, SLAs can be split into three functional areas [35], which may be simpli-
fied as: service description (including roles and responsibilities); SLA governance
(identifying metrics and the process for dispute resolution); SLA change management
(managing uncertainty and renegotiating services in the agreement). In order to be
effective SLAs are broken down into specific service objectives with key performance
indicators (KPIs) specifying the service delivered by the outsourced service. One of
the key difficulties [36] is mapping the service KPI to a meaningful metric and ensur-
ing that there is a shared understanding of that metric with the provider and the cus-
tomer.

While recent work [37] has attempted to define KPIs for information security, to
the best of our knowledge KPIs for information privacy have yet to be adequately
tackled. The reason for this is probably twofold: firstly, as considered in Section 3,
privacy is a broader topic and there are many different interpretations based upon
societal, cultural and contextual factors; secondly, the privacy of an individual is
interpreted through a number of data protection laws, which can potentially be con-
tradictory, sector specific and vary between countries even when they interpret the
same principles or directive (as is the case in the EEA).

At the lowest level (Level 1) of maturity cloud services (cf Table 1) are not too dis-
similar to the current services we use today; standard contractual methods are used
and SLAs will typically be natural language documents; thus high-level requirements
will be directly translated into the SLA, where possible. For example, the UK Data
Protection eighth principle states that personal data “should not be transferred outside
the EEA unless an adequate level of data protection is ensured” and this can be di-
rectly expressed as a condition against which certain actions could constitute a serious
breach of SLA.

The SP has the responsibility of designing and operating a system such that this
breach is not the case and yet currently no standards or mechanisms exist for assess-
ing the effectiveness or suitability of the design. By contrast as the cloud matures (cf
Table 1) so a broader number of suppliers become interdependent and are used in a
more dynamic manner. Increasing dynamics for quality of service and choice has
already been recognised within other projects examining Grid [38] and SOA [39].
These projects have highlighted the need to be able to handle: SLAs that are com-
posed of a hierarchy of technologies to comprise an overall service level objective

128 S. Creese et al.

within an agreement; service provision that may need to change between providers
either for functional, price or quality reasons; the SLA subsequently being negotiated,
planned and deployed. A requirement of the SLA is that they are expressed in pa-
rameters that are tangible and can be processed by machines rather than requiring
interpretation at human quarterly review meetings.

We believe that by exposing and interpreting these clauses as service level objec-
tives within an SLA, we will provide engineering requirements against which we can
map design solutions. For example, the ‘sticky policy’ design pattern can be used to
ensure that the user can be assured that the data processor has correct instructions for
each individual data item as to where it may be transferred and processed (e.g. outside
of the EEA/Safe Harbour etc) and gain assurance in so doing. However, challenges
still remain in strongly defining both the design pattern properties (such as the ability
to strongly identify processing parties, via IBE) and the detail required by the service
level objective to satisfy the service user (such as identifying all data processors).
Clearly, both objective and data protection properties must be expressed in a solution
neutral format as well as having a common ontology that can be encoded within a
machine readable format around which communication can take place. Due to space
limitations we are unable to present any further examples. It may be possible to define
a pattern which communicates how an enterprise should seek to utilise SLAs as it
matures; however, at this time the technical capability does not exist to actually sup-
port the higher levels of maturity envisaged.

7 Conclusion and Acknowledgements

We have demonstrated that through the creation of novel capability maturity models
for cloud exploitation and associated privacy requirements in an enterprise we can
begin to identify opportunities to produce methods for designing data protection into
clouds. Design patterns provide a good mechanism for expressing such techniques in a
manner which could be useful at all levels of maturity. We believe that such patterns
could also be applicable for architecting SLAs. Our future work will include a more
complete analysis of where the maturity models indicate opportunities for designing in
privacy, including an assessment of those which should be considered high priority. It
is clear that privacy controls (cf. Table 2) could be highly context-dependent. To avoid
overlooking the subtleties of individual privacy concerns, which may vary with con-
text, we must be careful not to use too general a template. Further research is required
to elucidate the user related contextual factors affecting the degree of privacy protec-
tion that is necessary for a given context. Such factors include: sensitivity of data,
location of data, sector, contractual restrictions, cultural expectations, user trust (in
organisations, etc.), trustworthiness of partners, security deployed in the infrastructure,
etc. We will explore the use of recommendations which could be deduced via a deci-
sion based support system that assesses context, and then outputs a list of recommen-
dations and controls, as has been done with [23]. Further analysis is also required to
study the utility of the design pattern approach by application to a case study, and the
issues surrounding legal protections and their inclusion in SLA design patterns.

This research is being conducted as part of the EnCoRe project [40], focused on
delivering usable consent and revocation controls for managing personal data and
considering amongst others cloud service operating environments.

 Data Protection-Aware Design for Cloud Services 129

References

1. Gartner: Forecast: Sizing the Cloud; Understanding the Opportunities in Cloud Services
(March 2009)

2. Pearson, S.: Taking Account of Privacy when Designing Cloud Computing Services. In: ICSE-
Cloud 2009, Vancouver. IEEE, Los Alamitos (2009); HP Labs Technical Report, HPL-2009-54
(2009), http://www.hpl.hp.com/techreports/2009/HPL-2009-54.html

3. Solove, D.J.: A Taxonomy of Privacy. University of Pennyslavania Law Review 154(3),
477 (2006),

 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=667622
4. Council Directive 95/46/EC. On the protection of individuals with regard to the processing

of personal data and on the free movement of such data. OJ, L281, pp. 31-50 (1995)
5. Wikipedia (2009),

 http://en.wikipedia.org/wiki/Capability_Maturity_Model
6. Smith, R.: Cloud Maturity Models Don’t Make Sense (2008),
 http://www.informationweek.com/blog/main/archives/2008/12/
 cloud_maturity.html;jsessionid=OL1NSZLUOGDMCQSNDLPCKHSCJUNN2JVN

7. Urquhart, J.: A maturity model for cloud computing (2009),
 http://news.cnet.com/8301-19413_3-10122295-240.html

8. Sorofman, J.: The cloud computing adoption model (2009),
 http://www.ddj.com/architect/211201818

9. Wardley, S.: Maturity models for the cloud (2009), http://blog.gardeviance.org/
2008/12/maturity-models-for-cloud.html

10. OpenGroup: A Maturity Model for SOA (2009), http://www.opengroup.org/
projects/soa-book/page.tpl?CALLER=faq.tpl&ggid=1319

11. Microsoft Corporation: Privacy Guidelines for Developing Software Products and
Services, Version 2.1a (2007), http://www.microsoft.com/Downloads/
details.aspx?FamilyID=c48cf80f-6e87-48f5-83ec-
a18d1ad2fc1f&displaylang=en

12. Cannon, J.C.: Privacy: What Developers and IT Professionals Should Know. Addison-
Wesley, Reading (2004)

13. Patrick, A., Kenny, S.: From Privacy Legislation to Interface Design: Implementing In-
formation Privacy in Human-Computer Interactions. In: Dingledine, R. (ed.) PET 2003.
LNCS, vol. 2760, pp. 107–124. Springer, Heidelberg (2003)

14. Belloti, V., Sellen, A.: Design for Privacy in Ubiquitous Computing Environments. In:
Proc. 3rd conference on European Conference on Computer-Supported Cooperative Work,
pp. 77–92 (1993)

15. Information Commissioner’s Office: PIA handbook (2007),
 http://www.ico.gov.uk/

16. Office of the Privacy Commissioner of Canada: Fact sheet: Privacy impact assessments
(2007), http://www.privcom.gc.ca/

17. Information Commissioners Office: Privacy by Design. Report (2008),
 http://www.ico.gov.uk

18. Jutla, D.N., Bodorik, P.: Sociotechnical architecture for online privacy. IEEE Security and
Privacy 3(2), 29–39 (2005)

19. Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Transactions on Software Engi-
neering, 1–42 (2008)

20. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
Pattern Language: Towns, Buildings, Construction. Oxford University Press, Oxford (1977)

130 S. Creese et al.

21. Arista, Cloud Networking: Design Patterns for ‘Cloud Centric’ Application Environments
(2009),

 http://www.aristanetworks.com/en/
 CloudCentricDesignPatterns.pdf

22. Hafiz, M.: A collection of privacy design patterns. Pattern Languages of Programs, 1–13
(2006)

23. Pearson, S., Sander, T., Sharma, R.: A Privacy Management Tool for Global Outsourcing.
In: DPM 2009. LNCS, vol. 5939. Springer, Heidelberg (2009)

24. The Institute of Internal Auditors: Managing and Auditing Privacy Risks,
 http://www.theiia.org/download.cfm?file=33917

25. Casassa Mont, M.: Dealing with privacy obligations: Important aspects and technical ap-
proaches. In: Katsikas, S.K., López, J., Pernul, G. (eds.) TrustBus 2004. LNCS, vol. 3184,
pp. 120–131. Springer, Heidelberg (2004)

26. Casassa Mont, M., Pearson, S., Bramhall, P.: Towards Accountable Management of Iden-
tity and Privacy: Sticky Policies and Enforceable Tracing Services. In: Mařík, V.,
Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 377–382.
Springer, Heidelberg (2003)

27. IBM, The Enterprise Privacy Authorization Language (EPAL), EPAL specification, v1.2
(2004),

 http://www.zurich.ibm.com/security/enterprise-privacy/epal/
28. OASIS, eXtensible Access Control Markup Language (XACML),

 http://www.oasis-open.org/committees/
 tc_home.php?wg_abbrev=xacml

29. Cranor, L.: Web Privacy with P3P. O’Reilly & Associates, Sebastopol (2002)
30. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification Lan-

guage (2001),
 http://wwwdse.doc.ic.ac.uk/research/policies/index.shtml

31. Tang, Q.: On Using Encryption Techniques to Enhance Sticky Policies Enforcement,
Technical Report TR-CTIT-08-64, Centre for Telematics and Information Technology,
University of Twente, Enschede (2008)

32. Pöhls, H.C.: Verifiable and Revocable Expression of Consent to Processing of Aggregated
Personal Data. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS, vol. 5308,
pp. 279–293. Springer, Heidelberg (2008)

33. Schunter, M., Waidner, M.: Simplified privacy controls for aggregated services - suspend
and resume of personal data. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776,
pp. 218–232. Springer, Heidelberg (2007)

34. Clarke, I., Miller, S.G.: Protecting Free Expression Online with Freenet. IEEE Computing
(2002)

35. Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., Kubiatowicz. J.: Pond: the
OceanStore Prototype. In: FAST 2003 (2003)

36. Huang, C.D., Goo, J.: Rescuing IT Outsourcing- Strategic Use of Service Level Agree-
ments, IT Pro. (2009)

37. Yearworth, M., Monahan, B., Pym, D.: Predictive Modelling for Security Operations Eco-
nomics, HPL-2006-125 (2006)

38. EU FP7 Network of Excellence(2009) , http://www.coregrid.net/
39. EU FP7 Project SLA Aware Infrastructure (2009), http://sla-at-soi.eu/
40. EnCoRe: Ensuring Consent and Revocation project (2008),

 http://www.encore-project.info

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 131–144, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Accountability as a Way Forward for Privacy Protection
in the Cloud

Siani Pearson1 and Andrew Charlesworth2

1 HP Labs, Long Down Avenue, Stoke Gifford, Bristol, UK BS34 8QZ
2 Centre for IT and Law, University of Bristol, Queens Road, Bristol, UK BS8 1RJ

Siani.Pearson@hp.com, a.j.charlesworth@bris.ac.uk

Abstract. The issue of how to provide appropriate privacy protection for cloud
computing is important, and as yet unresolved. In this paper we propose an ap-
proach in which procedural and technical solutions are co-designed to demon-
strate accountability as a path forward to resolving jurisdictional privacy and
security risks within the cloud.

Keywords: Accountability, cloud computing, privacy.

1 Introduction

Cloud computing is a means by which highly scalable, technology-enabled services
can be easily consumed over the Internet on an as-needed basis [1]. The convenience
and efficiency of this approach, however, comes with privacy and security risks [2]. A
significant barrier to the adoption of cloud services is thus user fear of confidential
data leakage and loss of privacy in the cloud. Furthermore, the cross-jurisdictional
nature of clouds presents a new challenge in maintaining the data protection required
by current legislation including restrictions on cross-border data transfer.

At the broadest level, privacy is a fundamental human right that encompasses the
right to be left alone, although an analysis of the term is complex [3]. In the commer-
cial, consumer context, privacy entails the protection and appropriate use of the per-
sonal information of customers, and the meeting of expectations of customers about
its use. For organisations, privacy entails the application of laws, policies, standards
and processes by which Personally Identifiable Information (PII) of individuals is
managed.

We focus in this paper on: privacy in the sense of data protection, as defined by Di-
rective 95/46/EC [4] (rather than the narrower US sense of data security); data that is
PII (information that can be traced to a particular individual, such as a phone number
or social security number); the corporate entity seeking to contract for services in the
cloud, either for its own use, or to offer to its customers, as this entity is most likely to
have resources to use our proposed path of technical and procedural solutions. How-
ever, our solution is not EU-specific, and is compatible with privacy principles under-
lying American and Asia-Pacific regulation and legislation, as well as a self-
regulatory approach.

132 S. Pearson and A. Charlesworth

This paper proposes the incorporation of complementary regulatory, procedural
and technical provisions that demonstrate accountability into a flexible operational
framework to address privacy issues in this cloud computing scenario. The structure
of the paper is as follows: consideration of open issues that relate to cloud computing
and privacy; an explanation of accountability and how this might apply in cloud com-
puting; proposal of legal mechanisms, procedures and technical measures that tie in
with this approach; an assessment of this approach and conclusions.

2 Privacy Issues for Cloud Computing

Privacy is a key business risk and compliance issue, as it sits at the intersection of
social norms, human rights and legal mandates [5]. Conforming to legal privacy re-
quirements, and meeting client privacy expectations with regard to PII, require corpo-
rations to demonstrate a context-appropriate level of control over such data at all
stages of its processing, from collection to destruction. The advantages of cloud com-
puting – its ability to scale rapidly (through subcontractors), store data remotely (in
unknown places), and share services in a dynamic environment – can thus become
disadvantages in maintaining a level of privacy assurance sufficient to sustain confi-
dence in potential customers. For example:

- Outsourcing. Outsourcing of data processing invariably raises governance and
accountability questions. Which party is responsible (statutorily or contractually)
for ensuring legal requirements for PII are observed, or appropriate data handling
standards are set and followed [6]? Can they effectively audit third-party compli-
ance with such laws and standards? To what extent can processing be further
sub-contracted, and how are the identities, and bona fides, of sub-contractors to
be confirmed? What rights in the data will be acquired by data processors and
their sub-contractors, and are these transferable to other third parties upon bank-
ruptcy, takeover, or merger [7]? ‘On-demand’ and ‘pay-as-you-go’ models may
be based on weak trust relationships, involve third parties with lax data security
practices, expose data widely, and make deletion hard to verify.

- Offshoring. Offshoring of data processing increases risk factors and legal com-
plexity [8]. Issues of jurisdiction (whose courts can/will hear a case?), choice of
law (whose law applies?) and enforcement (can a legal remedy be effectively ap-
plied?) need to be considered [9]. A cloud computing service which combines
outsourcing and offshoring may raise very complex issues [10].

- Virtualization. There are security risks in sharing machines, e.g. loss of control
over data location, and who has access to it. Transactional data is a byproduct
with unclear ownership, and it can be hard to anticipate which data to protect.
Even innocuous-seeming data can turn out to be commercially sensitive [11].

- Autonomic technology. If technological processes are granted a degree of
autonomy in decision making, e.g. automatically adapting services to meet
changing needs of customers and service providers, this challenges enterprises’
abilities to maintain consistent security standards, and to provide appropriate
business continuity and back-up, not least as it may not be possible to determine
with any specificity where data processing will take place within the cloud [12].

 Accountability as a Way Forward for Privacy Protection in the Cloud 133

As cloud computing exhibits all the aspects above, privacy solutions need to address a
combination of issues, and this may require new and even unique mechanisms rather
than just a combination of known techniques for addressing selected aspects. For
example, privacy problems when transferring PII across borders within a group of
companies can be addressed via Binding Corporate Rules, and yet this approach
would not be available to a corporation seeking to adopt a cloud computing solution
where PII will be handled by third party cloud service providers.

Overall, the speed and flexibility of adjustment to vendor offerings, which benefits
business and motivates cloud computing uptake, brings a higher risk to data privacy
and security. This is a key user concern, particularly for financial and health data.

2.1 Mapping Legal and Regulatory Approaches

Effective corporate governance is vital to compliance with the type of regional block
regulatory governance models which underpin Binding Corporate Rules in Europe
and Cross Border Privacy Rules in Asia-Pacific Economic Cooperation (APEC) coun-
tries. Organizations that process PII must safeguard it (including limiting its use and
disclosure) or face legal, financial and reputational penalties. Where there are inade-
quate information governance capabilities in the cloud, this will severely restrict the
outsourcing of key business processes using cloud-based service marketplaces.

Companies and governmental organisations are increasingly aware of the need to
integrate privacy into the technology design process [13, 14]. However, tools and
technical controls alone cannot fully address privacy issues in cloud computing, due
to diverse privacy obligations upon, and privacy practices within, organisations [15].
Cloud service providers (SPs) and marketplace providers need to design their proc-
esses to ensure those obligations and practices can be mapped against a combination
of technical and procedural measures, which together provide broad assurance that
appropriate contextual safeguards apply to PII processing in the cloud. Context is key
to requirements. Identical information collected in different contexts by different
entities might involve totally divergent data protection criteria [16, 17].

Such a mapping exercise requires an understanding of the rationales for, and the
objectives of, the protection of PII, and how these translate to the cloud computing
environment. If cloud computing is to reach its full potential, where customers are
willing to entrust PII to such a service marketplace, these criteria need to be met:

1. a determination of risks and requirements involved in a given interaction situa-
tion e.g. consideration of the underlying legal, policy and social context.

2. a determination of what protective measures (procedural and/or technological)
are appropriate, based on this information.

3. effective ways of providing assurance and auditing that potential partners protect
PII, in accordance with contextually appropriate protective measures.

4. a degree of transparency, in the sense of visibility into the data protection obliga-
tions and processes of potential suppliers.

Requirements arising from applying privacy legislation to the cloud are considered in
[2]. A key issue is the need to respect cross-border transfer obligations. As this is
particularly difficult to ensure within cloud computing, it is suggested that legislation

134 S. Pearson and A. Charlesworth

will need to evolve to allow compliance in dynamic, global environments. The notion
of accountability is likely to provide a way forward, as discussed in this paper.

3 Accountability: A Way Forward

In this section we examine what accountability is and how we believe accountability
and corporate responsibility with regard to the use of PII might be applicable in cloud
computing. In doing so, we present how accountability can help fill the gaps identi-
fied above. Finally, we explain what procedural measures are needed, and the basis of
a technological approach to provide accountability.

3.1 What Is Accountability?

It is important to clearly define what is meant by ‘accountability’ as the term is sus-
ceptible to a variety of different meanings within and across disciplines. For example,
the term has been used for a number of years in computer science to refer to an im-
precise requirement that is met by reporting and auditing mechanisms (see for exam-
ple, [18]). In this paper the context of its use is corporate data governance (the man-
agement of the availability, usability, integrity and security of the data used, stored, or
processed within an organization), and it refers to the process by which a particular
goal – the prevention of disproportionate (in the circumstances) harm to the subjects
of PII – can be obtained via a combination of public law (legislation, regulation),
private law (contract), self-regulation and the use of privacy technologies (system
architectures, access controls, machine readable policies).

To date, national and international privacy protection approaches have been heav-
ily influenced by public law, and premised upon ‘command and control’ regulatory
strategies. However, such legislative and regulatory mechanisms have declined in
effectiveness as technological developments render the underlying regulatory tech-
niques obsolete. Effective privacy protection for PII in some business environments
is thus heavily compromised, and the ability of organizations to meaningfully quan-
tify, control, and offset, their business risk is significantly impeded.

It enjoins upon ‘data controllers’ a set of largely procedural requirements for their
processing activities, and therefore conveys the impression that formal
compliance will be enough to legitimise their activities. It encourages a box-
ticking mentality, rather than a more systemic, and systematic, approach to
fulfilling its values. [19]

The EU data protection regime, in particular, lacks effective regulatory responses for
key developing technologies, such as mobile e-commerce and cloud computing [20].
Equally, self-regulation, in isolation, has failed to gain traction as a plausible alterna-
tive for effective privacy protection, with weak risk assessment and limited compli-
ance checking [21].

Accountability in our sense will be achieved via a combination of private and pub-
lic accountability. Public accountability is derived from an active interaction between:
subjects of PII; regulatory bodies, such as Information Commissioners; data control-
lers. It is premised upon highly transparent processes. Private accountability, in con-
trast, is derived from the interaction between data controllers and data processors, and

 Accountability as a Way Forward for Privacy Protection in the Cloud 135

is premised on contract law, technological processes, and practical internal compli-
ance requirements. The objective of such accountability is not to meet ‘a set of
largely procedural requirements for … processing activities’ but rather to reduce the
risk of disproportionate (in context) harm to the subjects of PII, and thus reduce or
permit the amelioration of negative consequences for the data controller. It reflects an
acceptance that absolute reduction of harm to the subjects of PII is an impossible goal
in a disaggregated environment, such as a cloud service, and that the ability to re-
spond flexibly and efficiently (or systemically and systematically) to harms arising
will provide a more efficient form of privacy protection than enforcing blunt and/or
static ‘tick-box’ compliance criteria.

Weitzner et al have previously used the term “information accountability” to refer
to checking ‘whether the policies that govern data manipulations and inferences were
in fact adhered to’ [22]. Our usage of the term ‘accountability’ differs from this to the
extent that adherence to policy becomes less critical than achieving a proportionate
and responsive process for reacting to context-dependent privacy risks.

Crompton et al note that in contrast to the EU’s ‘adequacy’ regime, ‘accountabil-
ity’ is increasingly popular in jurisdictions such as Australia, Canada and the US [23].
As discussed below, accountability in this context means placing a legal responsibility
upon an organization that uses PII to ensure that contracted partners to whom it sup-
plies the PII are compliant, wherever in the world they may be. Our accountability
model reflects the basic premise of this approach, but expands upon it in suggesting
ways in which organizations might take the ‘accountability’ approach further in order
to develop a reflexive privacy process.

3.2 How Accountability Might Provide a Way Forward for Privacy Protection
within Cloud Computing

Solutions to privacy risks in the cloud involve reintroducing an element of control.
For the corporate user, privacy risk in cloud computing can be reduced if organisa-
tions involved in cloud provision use a combination of privacy policies and contrac-
tual terms to create accountability in the form of transparent, enforceable commit-
ments to responsible data handling [2, 19]. Specifically, accountable organisations
will ensure that obligations to protect data (corresponding to user, legal and company
policy requirements) are observed by all processors of the data, irrespective of where
that processing occurs.

Through contractual agreements, all organizations involved in the cloud provision
would be accountable. While the corporate user, as the first corporate entity in the
cloud provision, would be held legally accountable, the corporate user would then
hold the initial service provider (SP1) accountable through contractual agreements,
requiring in turn that SP1 hold its SPs accountable contractually as well. This is
analogous to some existing cases in outsourcing environments, where the transferor is
held accountable by regulators even when it is the transferee that does not act in ac-
cordance with individuals’ wishes [23].

The following elements are key to provision of accountability within the cloud:

- Transparency. Individuals should be adequately informed about how their data
is handled within the cloud and the responsibilities of people and organisations in
relation to the processing of PII should be clearly identified. As with other

136 S. Pearson and A. Charlesworth

disaggregated data environments, transparency in cloud computing is important
not only for legal and regulatory reasons, but also to avoid violation of social
norms [24]. In the context of this paper, transparency means a level of openness
about an entity’s handling of PII that permits meaningful accountability.

- Assurance. The corporate user provides assurance and transparency to the cus-
tomer/client through its privacy policy, while requiring similar assurances from
the SP through contractual measures and audits.

- User trust. Accountability helps foster user trust. When it is not clear to indi-
viduals why their personal information is requested, or how and by whom it will
be processed, this lack of control will lead to suspicion and ultimately distrust
[25]. There are also security-related concerns about whether data in the cloud will
be adequately protected [6].

- Responsibility. Most data protection regimes require a clear allocation of re-
sponsibility for the processing of PII, as existing regulatory mechanisms rely
heavily upon user and regulator intervention with responsible parties. Disaggre-
gated data environments, e.g. mobile e-commerce and cloud computing, can hin-
der determination of that responsibility. Predetermining responsibility, via con-
tract, as information is shared and processed within the cloud, pre-empts percep-
tions of regulatory failure, which may erode user trust. It also permits companies
to assess their trading risks in terms of potential financial losses and data privacy
breaches. This knowledge can be used to establish organisational and group pri-
vacy and security standards, and to implement due diligence/compliance meas-
ures which conform to regulatory parameters, but which are otherwise negotiable
between contracting organisations, based on relevant operational criteria [20].

- Policy compliance. Accountability helps ensure that the cloud service complies
with laws, and also the mechanisms proposed in this paper help compliance with
cloud provider organisational policies and user preferences, and with auditing.

With a legal and regulatory approach, location is paramount to enforcement. With
accountability, location either becomes less relevant to the customer/client because of
assurances that data will be treated as described regardless of jurisdiction or becomes
transparent through contracts specifying where data processing will take place. In the
accountability model, the corporate user works with legal and regulatory bodies to
move data between jurisdictions through mechanisms such as Binding Corporate
Rules and intra-company agreements. For the corporate user, the flexibility to move
customer/client data between jurisdictions has a big impact on cost.

With accountability, regulators enforce the law on the ‘first in the chain’ in regard
to the misdeeds of anybody in the chain, including those further along. However,
whether any regulatory framework will be effective depends upon a number of char-
acteristics including the background of the regulator (country, resources available to
prosecute, etc.). This approach is more effective if action can be taken against an
organization that has a presence in the regulator’s home jurisdiction.

Accountability is included in various privacy frameworks, including Canada and
USA and the APEC privacy framework. In the EU it applies in the restricted sense
that data controllers (DCs) are directly responsible for the actions of their data proces-
sors (DPs) (and thus for clouds of DPs and sub-DPs). The difference in approaches
becomes more obvious where there are multiple DCs; if these are responsible sepa-
rately (DCs in common, but not joint DCs) it is hard to police via the EU model, as

 Accountability as a Way Forward for Privacy Protection in the Cloud 137

the data subject (DS) may be unable to identify and enforce rights against a specific
DC in a cloud computing environment with a mix of DCs and DPs.

The key issue in responsibility (and accountability) terms under EU law is who is
making the decision about the particular processing purpose, and not who is carrying
out the processing. A central problem in the mobile e-commerce and cloud computing
environments is that it is unclear to the DS if, and if so, where, a breach is taking
place, so that they can enforce rights against the relevant DC. The contractual ap-
proach provides a mechanism for avoiding that accountability-negating uncertainty, in
a manner which permits the DC to demonstrate compliance with the substantive law
(and boost user trust), without undue reliance upon the flawed mechanism in the leg-
islation. The accountability process is expanded outwards by the initial DC to DPs
and other DCs by contract, then information that the initial DC derives from the ac-
countability processes can be passed upwards to the regulator and downwards to the
DS, so that both can perform the functions envisaged by the legislation.

In conclusion, accountability can play a role in ensuring that laws that apply to
cloud computing are enforced. There is a role for regulators in the form of criminal
penalties for misuse. Also, there is a role for technology, as considered below.

3.3 Procedural Approach

Procedural is used here in the sense of governance, business practices (e.g. strong
privacy policies) and contractual agreements. Privacy policies can be defined at a
number of levels and be reflected within internal and external corporate policy state-
ments, contracts, Service Level Agreements (SLAs), security policies, etc. Policies
are passed on when sharing information with third parties and organisational policies
are used to help ensure legal compliance. In general, they should be based upon estab-
lished privacy principles, such as the OECD privacy principles [26] and regulatory
requirements specific to the region(s) in which the company is operating.

For our approach, cloud computing providers should move away from terms and
conditions of service towards contracts between the client and the initial service pro-
vider (SP), and between that SP and other cloud providers. This approach is consistent
with industry self-regulation (for example, Truste certification [27]). At issue in cloud
computing is that most policies have a clause that frees the company to change its
policy at any time, often, but not always, with some form of notice. These clauses
may need to be re-examined in the cloud environment, where data is perhaps not as
easily destroyed or returned to its original owner.

The corporate user has options that the consumer does not in using contracts as a
governance measure for control within the cloud environment. Contractual obliga-
tions are those imposed on an entity by incorporation in a contract of similar legally
binding agreement between that entity and other party. The corporate user has experi-
ence in using contracts to control offshoring and outsourcing relationships. These
experiences can be leveraged in the cloud.

SLAs for the cloud are still being developed and there are still a number of open is-
sues [28]. SLAs can be informal or formal with the former being more in the nature of
a promise than a contract and the latter being ancillary to a contract between parties,
with breach of an SLA term not being in general as severe as a breach of contract.
Moreover, third parties (i.e users) would not easily be able to rely on the terms of an
SLA between a cloud computing company and a corporation selling such services

138 S. Pearson and A. Charlesworth

onwards (i.e. the customer), as there are processes for varying the terms, without the
need to renegotiate the whole SLA with customers.

Nevertheless, specific contractual agreements can be used between the cloud provider
and the corporate user, just as contracts are used today with traditional SPs. SPs can pass
on obligations to subcontractors via contracts – they would require written permission to
subcontract with agreements that must be no less restrictive than the agreement the cor-
porate user has with the SP, and reserve the right to enter at will into additional confiden-
tiality agreements directly with the subcontractors. Such contracts have to be plausibly
capable of supporting meaningful enforcement processes, and capable of at least some
degree of meaningful oversight/audit. The contracts can be used to:

1. address the issue of location – by requiring prior written consent for transfers to
any third country

2. restrict use of data
3. prevent copying or reproducing of data without express written permission, ex-

cept as technically necessary to fulfil the agreement (e.g. backup protection)
4. restrict employee access to the associated data (e.g. on a need to know basis),

require that the SP provide employee privacy training, and require employees to
sign confidentiality agreements

5. specify security levels – at least the same level of care applied to the SP’s own
similar data, but not less than a reasonable level of care, implementation of any
security measures required by applicable laws

6. require immediate notification by specified means (e.g., via telephone with writ-
ten follow-up), for any suspected data breach, and cooperation in resolving

7. reserve the right to audit
8. require upon request or at termination, that PII be delivered back to the data con-

troller or data subject, and all copies be destroyed.

3.4 Co-design Involving Technological Approach

We now explain our technological approach and how it ties in with the procedural
approach.

The direction in which we are carrying out research is to underpin the procedural
approach above with a technological approach that helps provide accountability. In
this, natural language policies in the contract are associated with lower-level policies
that are machine-readable and that can be acted upon automatically within the cloud
without the need for human intervention. These policies define the usage contraints of
the associated PII. In this approach, as with Weitzner’s approach [22], the data is
accessible, but its usage is constrained. The main problem in the cloud is how this can
be enforced: one option is a Creative Commons-type approach [29], where holders are
made aware of their obligations and their behaviour can be audited with regard to this.
If more enforcement is required, obligation management and identity management
[30] could be used to manipulate data and aid data minimisation, deletion and man-
agement of notifications to individuals, but it is difficult to envisage how such a tech-
nical solution could work within non-constrained cloud environments.

Although we do not in general hide the data within the cloud, there is still the pos-
sibility to obscure it in some contexts: for example, sensitive data can in some cases
be obfuscated in the cloud [31] and multi-party security (zero knowledge) techniques
can be used [32].

 Accountability as a Way Forward for Privacy Protection in the Cloud 139

In our approach, the machine-readable policies would include preferences or condi-
tions about how PII should be treated (for example, that it is only to be used for par-
ticular purposes, by certain people or that the user must be contacted before it is
used). When PII is processed, this is done in such a way as to adhere to these con-
straints. Existing policy specification, modelling and verification tools that can be
used as a basis for this representation include EPAL [33], OASIS XACML [34], W3C
P3P [35] and Ponder [36]. Policies can be associated with data with various degrees
of binding and enforcement. Trusted computing and cryptography can be used to stick
policies to data and ensure that that receivers act according to associated policies and
constraints, by interacting with trusted third parties [37, 38]. Strong enforcement
mechanisms include Digital Rights Management (DRM) techniques [39] and enforce-
able ‘sticky’ electronic privacy policies [37, 40].

Accountability and good privacy design go together, in that privacy protecting con-
trols should be build into different aspects of the business process. This should be a
reflexive process in that it is underpinned by a non-static compliance mechanism that is
an ongoing process of privacy review throughout the contractual chain. There will be
developmental, contractual and technical processes in play that encourage an organisa-
tion’s cloud contractors to review and improve their privacy standards on an ongoing
basis – this discourages ‘cheating’ by contractors, rewards effective privacy protec-
tions, and prioritises the prevention of disproportionate (in context) privacy harms over
inconsequential, (in context) privacy harms. This contrasts with the application of
privacy protection in a ‘box-ticking fashion’, where checking ‘our contractor is ‘ade-
quate’ according to this set of static criteria’ is likely to either waste resources on low
risk privacy harms or fail to identify developing high risk privacy harms. Audit infor-
mation can be produced, e.g. by logging, usage of third parties and tracking [41]. In
particular, sticky policy techniques can be used to ensure an audit trail of notification
and disclosure of data to third parties [37]. Third party certifiers or auditors can peri-
odically verify data protection controls, and also underpin a range of new accountabil-
ity-related services that offer a cloud computing infrastructure assurances as to the
degree of privacy offered (e.g. analogous to privacy seal provision for web services
[42] and mechanisms for privacy assurance on the service provider side [43]).

It is necessary to utilize security techniques within the cloud to protect PII from
unauthorised access or modification, and to protect backup, protect and manage mul-
tiple data copies and delete PII. To limit who has access to personal information
within an organisation, privacy-aware access control [44] deployed within that or-
ganization can make decisions and enforce access control policies, intercepting que-
ries to data repositories and returning sanitized views (if any) on requested data.

Policy enforcement within the cloud is a difficult issue – and a combined technical
and procedural approach to this is preferable. The strongest binding between these
would be if the wording in the contracts can be translated into machine-readable poli-
cies that are bound to data, and then enforced within the cloud. However, this binding
cannot be an exact one from laws to human-readable policies to machine-readable
policies, due to interpretation of the law, and furthermore only a restricted part of this
translation process can be easily automated. Translation of legislation/regulation to
machine readable policies has proven very difficult, although there are several exam-
ples of how translations of principles into machine readable/actionable policies can be
done, e.g. Privacy Incorporated Software Agent (PISA) project [45] (deriving and
modelling privacy principles from [27]); Sparcle project [46], (transforming natural

140 S. Pearson and A. Charlesworth

based policies into XML code that can be utilized by enforcement engines); REALM
project [47] (translating high level policy and compliance constraints into machine
readable formats); Breaux and Antón [48] (extracting privacy rules and regulations
from natural language text); OASIS LegalXML [49] (creating and managing contract
documents and terms).

Our approach is to add a technical descriptor at the bottom of a contract that de-
scribes what a cloud SP should do. For example, there could be a policy text in words
that forms part of the contract, then a legal XML expression corresponding to this also
within the contract [46]. Also, there could be a mapping from legal XML expression
to a policy associated with data covered by the contract, and this policy might be
expressed in a language like XACML [34]. However, there are currently gaps be-
tween these layers, so further work is needed to allow and provide an automatic trans-
lation. In addition, the mapping needs to be agreed, perhaps involving a third party to
pre-define clauses and their meanings. A similar approach could be taken to that pro-
posed for assurance control policies [43], to avoid having to use a fine-grained onto-
logical approach. In general, there is a tension between flexibility of expression and
ease of understanding of such policies. There is a role for standardization as these
technical policies need to be understood by multiple parties so that they can be dealt
with and enforced by policy decision points and policy enforcement points within the
cloud infrastructure. Current technical policies of this type are access control policies,
obligations and security policies. More work needs to be done in defining these, and
we are working on this within the Encore project [50].

As an extension of this approach, there can be a role for infomediaries, e.g. as a
Trust Authority [37], to check policies apply before allowing the decryption of data,
and to play a role in auditing at this point. They could help check the situation before
authorising access to personal information, e.g. via IBE [37], or else using secret
sharing techniques where the decryption key is broken down and shared between
multiple parties, a certain number of whom need to agree in order to be able to build
up the decryption key, in a process that exploits Shamir’s key sharing algorithm
(analogous to the approach used in [51]). Potentially, privacy infomediaries [52]
could be used in other ways that help provide accountability, e.g. by acting as insur-
ance brokers and paying claims in case of privacy breaches. Who plays the role of
privacy infomediary could vary according to the context; it could be a trusted identity
provider for a federated set of services, a web proxy at an enterprise boundary, or a
consumer organisation.

Mechanisms for checking compliance will be a mixture of procedural and techni-
cal, involving both auditing and regulatory aspects. There is also a role for risk and
trust assessment (including reputation management) [53] before issuing contracts, to
help satisfy regulators that best practice is being carried out, and in measuring metrics
specified within SLAs. Decision support tools might be useful for lawyers represent-
ing the cloud providers, and to determine appropriate actions that should be allowed
and to assess risk before PII is passed on (this could be part of a Privacy Impact As-
sessment [54]). In addition automated access control decision-making could incorpo-
rate privacy policy checking.

If trusted infrastructure [38,,55] were available within the cloud, it could help: en-
sure that the infrastructural building blocks of the cloud are secure, trustworthy and
compliant with security best practice; determine and provide assurance regarding

 Accountability as a Way Forward for Privacy Protection in the Cloud 141

location [56]; provide a basis for enhanced auditing of platforms [38, 55]. Furthermore,
trusted virtual machines [57] can support strong enforcement of integrity and security
policy controls over a virtual entity; for different groups of cloud services, there could
be different personae and virtualized environments on each end user device.

4 Analysis of Our Approach

We believe accountability is a useful basis for enhancing privacy in many cloud com-
puting scenarios. Corporate management can quickly comprehend its links with the
recognized concept of, and mechanisms for achieving, corporate responsibility. An
effective approach will require a combination of procedural and technical measures to
be used and co-designed. In essence, this would use measures to link organisational
obligations to machine readable policies, and mechanisms to ensure that these policies
are adhered to by the parties that use, store or share that data, irrespective of the juris-
diction in which the information is processed (ideally, with a technical basis for en-
forcement backing up contractual assurances that incorporate privacy). Companies
providing cloud computing services would give a suitable level of contractual assur-
ances, to the organisation that wishes to be accountable, that they are can meet the
policies (i.e. obligations) that it has set, particularly PII protection requirements. Tech-
nology can provide a stronger level of evidence of compliance, and audit capabilities.

While our approach can provide a practical way forward, it has limitations. First,
while contracts provide a solution for an initial SP to enforce its policies along the
chain, risks that cannot be addressed contractually will remain. For example, data
generally has to be unencrypted at the point of processing, creating a security risk and
vulnerability due to the cloud’s attractiveness to cybercriminals. Secondly, only large
corporate users are likely to have the legal resources to replace generic SLAs with
customized contracts. Finally, adding requirements to the vendor chain will increase
the cost of the service. Use of contracts will be most effective for more sensitive or
more highly regulated data that merits additional and more costly protection. We
believe that this approach should be scalable.

Accountability is not a substitute for data protection laws, nor would our approach
render other approaches for privacy enhancement unnecessary; rather, it is a practical
mechanism for helping reduce end user privacy risk and enhance end user control.

5 Conclusions

The current regulatory structure places too much emphasis on recovering if things
go wrong, and not enough on trying to get organizations to ‘do the right thing’ for
privacy in the first place. Provision of a hybrid accountability mechanism via a
combination of legal, regulatory and technical means leveraging both public and pri-
vate forms of accountability could be a practical way of addressing this problem; it is
a particularly appropriate mechanism for dealing with some of the privacy issues that
arise and are combined within cloud computing. Specifically, we advocate a co-
regulation strategy based on a corporate responsibility model that is underpinned
primarily by contract, and which thus places the onus upon the data controller to take
a more proactive approach to ensuring compliance, but at the same time works to
encourage cloud service vendors and their subcontractors to compete in the service

142 S. Pearson and A. Charlesworth

provision arena, at least in part, on the basis of at least maintaining good, and ideally
evolving better, privacy enhancing mechanisms and processes. Further work needs to
be done to effectively realize this approach, and we are continuing research in this
area within the Encore project [50].

Acknowledgments. This work has greatly benefitted from input by Stacy Martin and
MariJo Rogers, and broadly related discussions with colleagues from Encore project,
Marty Abrams, Malcolm Crompton, Paul Henrion, Wayne Pauley and Scott Taylor.

References

1. HP cloud website, http://h71028.www7.hp.com/enterprise/us/en/
technologies/cloud-computing.html?jumpid=ex_r2858_us/en/
large/tsg/go_cloud

2. Pearson, S.: Taking Account of Privacy when Designing Cloud Computing Services.
In: ICSE-Cloud 2009, Vancouver. IEEE, Los Alamitos (2009); HP Labs Technical
Report, HPL-2009-54 (2009), http://www.hpl.hp.com/techreports/2009/
HPL-2009-54.html

3. Solove, D.J.: A Taxonomy of Privacy. University of Pennsylvania Law Review 154(3),
477–564 (2006)

4. Council Directive 95/46/EC: On the protection of individuals with regard to the processing
of personal data and on the free movement of such data. OJ, L281, pp. 31–50 (1995)

5. Ackerman, M., Darrell, T., Weitzner, D.: Privacy in Context. Human Computer Interac-
tion 16(2), 167–176 (2001)

6. Cloud Security Alliance: Security Guidance for Critical Areas of Focus in Cloud Comput-
ing (2009),

 http://www.cloudsecurityalliance.org/guidance/csaguide.pdf
7. Gellman, R.: Privacy in the Clouds: Risks to Privacy and Confidentiality from Cloud Com-

puting. World Privacy Forum (2009), http://www.worldprivacyforum.org/
pdf/WPF_Cloud_Privacy_Report.pdf

8. Abrams, M.: A Perspective: Data Flow Governance in Asia Pacific & APEC Framework
(2008), http://ec.europa.eu/justice_home/news/information_dossiers/
personal_data_workshop/speeches_en.htm

9. Kohl, U.: Jurisdiction and the Internet. Cambridge University Press, Cambridge (2007)
10. Mowbray, M.: The Fog over the Grimpen Mire: Cloud Computing and the Law. Script-ed

Journal of Law, Technology and Society 6(1) (April 2009)
11. Hall, J.A., Liedtka, S.L.: The Sarbanes-Oxley Act: implications for large-scale IT out-

sourcing. Communications of the ACM 50(3), 95–100 (2007)
12. McKinley, P.K., Samimi, F.A., Shapiro, J.K., Chiping, T.: Service Clouds: A Distributed

Infrastructure for Constructing Autonomic Communication Services. In: Dependable,
Autonomic and Secure Computing, pp. 341–348. IEEE, Los Alamitos (2006)

13. Microsoft Corporation: Privacy Guidelines for Developing Software Products and Ser-
vices, v2.1a (2007),

 http://www.microsoft.com/Downloads/details.aspx?FamilyID=c48
 cf80f-6e87-48f5-83ec-a18d1ad2fc1f&displaylang=en

14. Information Commissioners Office: Privacy by Design, Report (2008),
 http://www.ico.gov.uk

 Accountability as a Way Forward for Privacy Protection in the Cloud 143

15. Bamberger, K., Mulligan, D.: Privacy Decision-making in Administrative Agencies. Uni-
versity of Chicago Law Review 75(1) (2008)

16. Nissenbaum, H.: Privacy as Contextual Integrity. Washington Law Review 79(1), 119–158
(2004)

17. 6, P.: Who wants privacy protection, and what do they want? Journal of Consumer Behav-
iour 2(1), 80–100 (2002)

18. Cederquist, J.G., Conn, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I.: An audit logic for
accountability. In: Policies for Distributed Systems and Networks, pp. 34–43. IEEE, Los
Alamitos (2005)

19. UK Information Commissioner’s Office A Report on the Surveillance Society (2006)
20. Charlesworth, A.: The Future of UK Data Protection Regulation. Information Security

Technical Report 11(1), 46–54 (2006)
21. Charlesworth, A.: Information Privacy Law in the European Union: E. Pluribus Unum. or

Ex. Uno. Plures. Hastings Law Review 54, 931–969 (2003)
22. Weitzner, D., Abelson, H., Berners-Lee, T., Hanson, C., Hendler, J.A., Kagal, L.,

McGuinness, D.L., Sussman, G.J., Waterman, K.K.: Transparent Accountable Data Min-
ing: New Strategies for Privacy Protection. In: Proceedings of AAAI Spring Symposium
on The Semantic Web meets eGovernment. AAAI Press, Menlo Park (2006)

23. Crompton, M., Cowper, C., Jefferis, C.: The Australian Dodo Case: an insight for data pro-
tection regulation. World Data Protection Report 9(1) (2009)

24. Dolnicar, S., Jordaan, Y.: Protecting Consumer Privacy in the Company’s Best Interest.
Australasian Marketing Journal 14(1), 39–61 (2006)

25. Tweney, A., Crane, S.: Trustguide2: An exploration of privacy preferences in an online
world. In: Cunningham, P., Cunningham, M. (eds.) Expanding the Knowledge Economy.
IOS Press, Amsterdam (2007)

26. Organization for Economic Co-operation and Development: Guidelines Governing the
Protection of Privacy and Transborder Flow of Personal Data. OECD, Geneva (1980)

27. Truste: Website (2009), http://www.truste.org/
28. SLA@SOI: Website (2009), http://sla-at-soi.eu/
29. Creative Commons: Creative Commons Home Page (2009),

 http://creativecommons.org
30. Casassa Mont, M.: Dealing with privacy obligations: Important aspects and technical ap-

proaches. In: Katsikas, S.K., López, J., Pernul, G. (eds.) TrustBus 2004. LNCS, vol. 3184,
pp. 120–131. Springer, Heidelberg (2004)

31. Mowbray, M., Pearson, S.: A Client-Based Privacy Manager for Cloud Computing. In:
Proc. COMSWARE 2009. ACM, New York (2009)

32. Yao, A.C.: How to Generate and Exchange Secrets. In: Proc. FoCS, pp. 162–167. IEEE,
Los Alamitos (1986)

33. IBM: The Enterprise Privacy Authorization Language (EPAL), EPAL specification, v1.2 (2004),
http://www.zurich.ibm.com/security/enterprise-privacy/epal/

34. OASIS: XACML,
 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

35. Cranor, L.: Web Privacy with P3P. O’Reilly & Associates, Sebastopol (2002)
36. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification Language

(2001), http://wwwdse.doc.ic.ac.uk/research/policies/index.shtml
37. Casassa Mont, M., Pearson, S., Bramhall, P.: Towards Accountable Management of Iden-

tity and Privacy: Sticky Policies and Enforceable Tracing Services. In: Mařík, V.,
Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 377–382.
Springer, Heidelberg (2003)

144 S. Pearson and A. Charlesworth

38. Pearson, S.: Trusted computing: Strengths, weaknesses and further opportunities for en-
hancing privacy. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS,
vol. 3477, pp. 305–320. Springer, Heidelberg (2005)

39. Kenny, S., Korba, L.: Applying Digital Rights Management Systems to Privacy Rights
Management Computers & Security 21(7) (2002)

40. Tang, Q.: On Using Encryption Techniques to Enhance Sticky Policies Enforcement. TR-
CTIT-08-64, Centre for Telematics and Information Technology, Uni. Twente (2008)

41. Golle, P., McSherry, F., Mironov, I.: Data Collection with self-enforcing privacy. In: CCS
2006, Alexandria, Virginia, USA. ACM, New York (2006)

42. Cavoukian, A., Crompton, M.: Web Seals: A review of Online Privacy Programs. In: Privacy
and Data Protection (2000), http://www.privacy.gov.au/publications/
seals.pdf

43. Elahi, T., Pearson, S.: Privacy Assurance: Bridging the Gap between Preference and Prac-
tice. In: Lambrinoudakis, C., Pernul, G., Tjoa, A.M. (eds.) TrustBus. LNCS, vol. 4657, pp.
65–74. Springer, Heidelberg (2007)

44. Casassa Mont, M., Thyne, R.: A Systemic Approach to Automate Privacy Policy En-
forcement in Enterprises. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp.
118–134. Springer, Heidelberg (2006)

45. Kenny, S., Borking, J.: The Value of Privacy Engineering. JILT, 1 (2002),
 http://elj.warwick.ac.uk/jilt/02-1/kenny.html

46. IBM: Sparcle project,
 http://domino.research.ibm.com/comm/research_projects.nsf/
 pages/sparcle.index.html

47. IBM: REALM project,
 http://www.zurich.ibm.com/security/publications/2006/
 REALM-at-IRIS2006-20060217.pdf

48. Travis, D., Breaux, T.D., Antón, A.I.: Analyzing Regulatory Rules for Privacy and Secu-
rity Requirements. Transactions on Software Engineering 34(1), 5–20 (2008)

49. OASIS: eContracts Specification v1.0 (2007), http://www.oasis-open.org/
apps/org/workgroup/legalxml-econtracts

50. EnCoRe: Ensuring Consent and Revocation project (2008),
 http://www.encore-project.info

51. Flegel, U.: Pseudonymising Unix Log Files. In: Davida, G.I., Frankel, Y., Rees, O. (eds.)
InfraSec 2002. LNCS, vol. 2437, pp. 162–179. Springer, Heidelberg (2002)

52. Gritzalis, D., Moulinos, K., Kostis, K.: A Privacy-Enhancing e-Business Model Based on
Infomediaries. In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS
2001. LNCS, vol. 2052, pp. 72–83. Springer, Heidelberg (2001)

53. Pearson, S., Sander, T., Sharma, R.: A Privacy Management Tool for Global Outsourcing.
In: DPM 2009 (2009)

54. Warren, A., Bayley, R., Charlesworth, A., Bennett, C., Clarke, R., Oppenheim, C.: Privacy
Impact Assessments: international experience as a basis for UK guidance. Computer Law
and Security Report 24(3), 233–242 (2008)

55. Trusted Computing Group (2009), https://www.trustedcomputinggroup.org
56. Pearson, S., Casassa Mont, M.: A System for Privacy-aware Resource Allocation and Data

Processing in Dynamic Environments. In: I-NetSec 2006, vol. 201, pp. 471–482. Springer,
Heidelberg (2006)

57. Dalton, C., Plaquin, D., Weidner, W., Kuhlmann, D., Balacheff, B., Brown, R.: Trusted
virtual platforms: a key enabler for converged client devices. Operating Systems Re-
view 43(1), 36–43 (2009)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 145–156, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards an Approach of Semantic Access Control for
Cloud Computing

Luokai Hu1,2, Shi Ying1, Xiangyang Jia1, and Kai Zhao1,3

1 Wuhan University, State Key Lab of Software Engineering, 430072 Wuhan, China
2 Hubei University of Education, Computer School, 430205 Wuhan, China
3 Xinjiang University, Department of Computer, 830046 Urumchi, China

Luokaihu@gmail.com

Abstract. With the development of cloud computing, the mutual understand-
ability among distributed Access Control Policies (ACPs) has become an
important issue in the security field of cloud computing. Semantic Web tech-
nology provides the solution to semantic interoperability of heterogeneous ap-
plications. In this paper, we analysis existing access control methods and pre-
sent a new Semantic Access Control Policy Language (SACPL) for describing
ACPs in cloud computing environment. Access Control Oriented Ontology Sys-
tem (ACOOS) is designed as the semantic basis of SACPL. Ontology-based
SACPL language can effectively solve the interoperability issue of distributed
ACPs. This study enriches the research that the semantic web technology is ap-
plied in the field of security, and provides a new way of thinking of access con-
trol in cloud computing.

Keywords: Semantic Web, Access Control, SACPL, ACOOS, Cloud
Computing.

1 Introduction

With the development of Internet and computer software technology, there is a long-
term existence of a new trend expected to continue, which is the so-called Cloud
Computing. Applications and storage of information will be significant changed in
Cloud Computing environment. Applications and data are no longer running and kept
in the personal desktop computer, but all are hosted to the "Cloud", which is a cloud-
like collection formed by various personal computers and servers that can be visited
via the Internet. Cloud computing will allow users from anywhere in the world to
access applications and data and you will no longer be restricted on the desktop,
which makes remote collaboration easier.

Cloud computing, with a great flexibility and ease of use, makes the safety of data
and applications becoming one of the biggest problems. Because Web-based applica-
tions have potential security risks, many companies prefer to remain applications
(services) and data under the control of their own. In fact, applications and informa-
tion using of cloud hosting, in rare cases, has the risk of loss of data or illegal access.
The data security and backup tool in a big cloud hosting company may be better than

146 L. Hu et al.

in the average enterprise. Nevertheless, even if the security threats of the critical data
and services hosted in different places are perceived, it may prevent some companies
to do so. Therefore, the access to applications or data needs to have appropriate
permissions. Traditional syntax-based access control methods can not provide the
semantic interoperability for software network environment, such as cloud computing,
because of the distributed ACPs among various PCs and servers in various places.

The semantic web is an extension of the current web in which information is given
well-defined meaning, better enabling computers and people to work in cooperation
[1]. This article proposes a semantic access control approach, which applies Semantic
Web Technology to access control method. This study provided a new train of
thought for access control in cloud computing environments.

2 Related Works

An access control system is typically described in three ways: access control policies,
access control models and access control mechanisms [2]. Policy defines the high
level rules according to which access control must be regulated. Model provides a
formal representation of the ACPs. Mechanism defines the low level functions that
implement the controls imposed by the policy and formally stated in the model.

Access Control Policies can be generally divided into three main policy categories:
Discretionary Access Control (DAC), Mandatory Access Control (MAC), and Role-
Based Access Control (RBAC). Early DAC models, such as the access control matrix
model [3] and the HRU (Harrison–Ruzzo–Ullman) model [4], provide a basic frame-
work for describing DAC policy. In these models, it is the users’ discretion to pass
their privileges on to other users, leaving DAC policies vulnerable to Trojan Horse
attacks [2]. The lattice-based multilevel security policy [5], policies represented by
the Bell–LaPadula model [6,7] and the Biba model [8] are typical MAC policies.
RBAC policies employ roles to simplify authorization management for enforcing
enterprise-specific security policies [9].

By combining a formal framework and a logic-based language, Jajodia et al. de-
veloped the authentication specification language (ASL) that can be used to identify
different AC policies that can coexist within the same system and be enforced by the
same security server [10].

Furthermore, Security Assertion Markup Language (SAML) [11] is an XML
framework identified by organization for the advancement of structured information
standards (OASIS) security services to exchange authorization information. For AC
application across enterprises, Belokosztolszki and Moody proposed meta-policies
[12]. Hada and Kudo presented XML access control language (XACL), an XML-
based language for provisional authorization, articulating the security policies to be
enforced for specific access to XML documents and provides a sophisticated AC
mechanism, which enables an initiator to securely browse and update XML docu-
ments [13].

EXtensible Access Control Markup Language (XACML) [14], a standard AC pol-
icy description language used in e-business, was proposed by organization for the
advancement of structured information standards committee, and defined as an XML

 Towards an Approach of Semantic Access Control for Cloud Computing 147

schema for both AC policy language and a request/response language. XACML can
be applied to represent the functionalities of most policy representation mechanisms
and express AC statements (who can access what, where and when) [15].

Determined semantics information can ensure the existence of a common under-
standing for the unknown entities previously. Not only can the policy interaction
among multiple systems but also the conflict detection and coordination be realized.
Recent studies proposed the policy specification based on Semantic Web technology.
KAoS uses DAML as the basis for representing and reasoning about policies within
Web Services, Grid Computing, and multi-agent system platforms [16]. KAoS also
exploits ontology for representing and reasoning about domains describing organiza-
tions of human, agent, and other computational actors.[17] Rei is a deontic logic-
based policy language that is grounded in a semantic representation of policies in
RDF-S [18]. However, developers of KAoS augured that the pure OWL based
method has difficulty in definition of some types of policy [17]. On the basis of
XACML and RBAC, access control oriented ontology is used as the semantic annota-
tion of policy specification. Our approach has more powerful description capability
than the pure OWL, which is more suitable to implement mutual understanding and
semantic interoperability of distributed policy in cloud computing environments.

3 Access Control Oriented Ontology System

Access Control Oriented Ontology System (ACOOS) is designed to provide the
common understandable semantic basis for access control in cloud computing envi-
ronments. ACOOS can be divided into four parts, Subject Ontology, Object Ontology,
Action Ontology and Attribute Ontology. In this paper, the Web Ontology Language
(OWL) is selected as the modeling language of ACOOS. Specifically, its sub-
languages OWL DL is used in order to ensure the completeness of reasoning and
decidability.

Ontology is helpful to construct authorization policy within the scope of whole
cloud computing environment based on policy definition elements with determined
semantics. All authorization entities (subject, object or action) and their attributes
should be understood as the unambiguous meaning in the cloud computing environ-
ment. The action should be determined in according with the policy to ensure that
policy administrator of cloud computing environment can define the ACPs and enti-
ties which can be understood by other administrators in different applications.

(1) Subject Ontology
Subject is the entity that has a number of action permissions over object. In the cloud
computing environment, a subject can be a user, a user group, an organization, a role,
a process, a service and so on, which can also be called Cloud Droplet. There is no
absolute boundary between subject and object. The object entity in some scene of
applications may also appear as the subject in the scene of other applications, and vice
versa. The attribute of a subject is described by the data property and object property
of OWL with hasSubjectDataAttribute and hasSubjectAttribute respectively.

148 L. Hu et al.

The role in subject ontology represents the capability of a subject to implement a
task. Access permission of resources can be encapsulated in the role. If a subject is
assigned to a role, it can access the resources indirectly.

In the ontology, the role assignment of subject can be generally grouped in two
ways. The first one is explicit assignment, that is, directly use of object properties
such as playsRole to assign a role for a subject. The second is implicit assignment,
that is, through the describing subject attributes and attribute requirement of role re-
spectively, the subject that meets the requirements of the role attribute can be as-
signed with the corresponding role. The second approach is recommended to achieve
the dynamic role assignment more effectively.

The use of role is one of the methods to achieve fine-grained access control. The
method described in this article supports the role-based access control. The role of
access control can be used as the subject of ACPs.

(2) Object Ontology
Object is the entity as receptor of action and is need for protection. In the cloud com-
puting environment, the typical object can be data, documents, services and other
resources. The attribute of an object is described by the data property and object prop-
erty of OWL with hasObjectDataAttribute and hasObjectAttribute respectively. Simi-
lar to the role of subject, object group can also be used to define the rule to organize
objects. Each object group in fact establishes a new object concept, all object indi-
viduals of the object concept have object attribute values of the object group. The
formal representation using description logic is as follows:

ObjectGroupi≡∀hasObjAtt1.AttriValuei1⊓∃hasObjAtt1.AttriValuei1⊓...

⊓∀hasObjAttn.AttriValuein⊓∃hasObjAttn.AttriValuein

∀i(i=1,2,…,m)(m<=n), hasObjAtti is the sub property of object property hasObjec-
tAttribute or data property hasObjectDataAttribute

(3) Action Ontology
As concerned with the cloud computing technology, usually a large number of sub-
jects and objects but only a relatively small number of actions could be found, such as
reading, writing and execution and so on. In addition, in the cloud computing envi-
ronment, the procedure often requires the ability to work in parallel, therefore, some
actions should be increased such as parallel read, parallel write, parallel execution,
parallel reading and writing, parallel writing and reading and so on. However, in the
business area of cloud computing, there are relatively more actions named business
function process. Action also has properties, known as the ActionAttribute, which
describes various information of action for authorization and management.

Similar to the role and object group, action group can be defined with helpful for
the definition of rules. The definition of action group, nearly the same with the object
group, will not repeat it again.

(4) Attribute Ontology
Attribute types are defined in the attribute ontology, can be used to define the attribute
of almost all entities, including the subject, object and action.

 Towards an Approach of Semantic Access Control for Cloud Computing 149

MasterDegree

PhD

rdfs:subClassOf

owl:equivalentClass

owl:ObjectProperty:greaterThan

Degree

SeniorHigh

SchoolLevel

JuniorHigh

SchoolLevel

DoctorDegreeBachelorDegree
UnderCollageLevel

Fig. 1. An example of partial order in attribute ontology

In the ACP, the attribute value of entities is often needed to determine whether
meet the Permit conditions or Deny ones. An important issue in attribute definition is
the partial order between attribute values. For the attribute value of data property, its
partial order can be defined according with the actual numerical value. For the non-
data property of attribute values, the manual approach is recommended to explicitly
define partial order between attribute values. The following approach of ontology
representation for partial order is proposed in this paper.

1) The partial order definition of non-data property attributes value:

① If class Ai and Aj satisfy Ai⊑Aj, Aj is greater than Ai in the partial order；
② If class Ai and Aj satisfy Ai⊑∃greaterThan.Aj, Ai is greater than Aj in the partial

order；
③ Leaf class is the class that has no subclass. Only the attribute class at the leaf

node can be the attribute of entities.

2) The approach of adding an attribute:

① If the adding attribute class Ax is the subclass of an existing attribute class AE in

ontology, the subclass relationship of Ax and AE (Ax⊑AE) should be added by
manual. Find the class k

EA that is “only greater” than class Ax and the class j
EA

that is “only less” than Ax in the subclass chain of class AE
(i i

E EA | i = 1...n,A ⊑AE) and create the relation Ax⊑∃greaterThan. j
EA and

k
EA ⊑∃greaterThan.Ax respectively. The attribute class MasterDegree needs to

be added into the attribute ontology in Fig. 1, the following relations needs to
be created:

DoctorDegree⊑∃greaterThan.MasterDegree, MasterDe-

gree⊑∃greaterThan.BachelorDegree.

② If the adding class Ax is the equivalent class of an existing class AE in the ontol-
ogy, the equivalent class relationship Ax and AE (Ax≡AE) is needed to add by
manual, no other relation should be added.

③ Can not add new super class of an attribute class with existing super class, that
is, the multiple inheritance is not allowed.

150 L. Hu et al.

4 Semantic Access Control Policy Language (SACPL)

In the distributed computing environment, the access control method has changed
from the centralized management into a distributed management approach. There has
been policy markup language, such as XACML, to support description and manage-
ment of distributed policies. In the cloud computing environment, as the development
of distributed computing, the same ACP may be deployed and implemented in many
points of the whole or a part of the security domain. The ACP of an object (resource)
may be completed by a number of departments even organizations, such as informa-
tion systems department, human resources and financial department. The same ACP
may be applied to the internal network protection, e-mail system, remote access sys-
tems, or a cloud computing platform. As a result, in cloud computing environment,
the issue of interoperability among policies is more important than ever before.

Fig. 2. Meta Model of the SACPL

4.1 Meta-model of SACPL

In this paper, through the semantic annotation of XACML, an ontology-based Seman-
tic Access Control Policy Language (SACPL) is proposed. Specifically, subject, ob-
ject, action and attribute variables as the basic semantic element are annotated by
ACOOS and some syntax elements such as priority and confidentiality is added. The
language can be applied to access control of cloud computing environments and the

 Towards an Approach of Semantic Access Control for Cloud Computing 151

semantic access control is realized. Figure 2 gives the Meta Model of the SACPL
language.

4.1.1 Rule and Rule Set
The typical access control applications scenario might be as follows. When a subject
requests to perform an action on an object, the corresponding rules are evaluated by
the enforcement engine for the request. A typical access control rule is expressed as a
3-tuple subject, object, action, such that a subject can perform some action on an
object [19]. The SACPL language extends the typical access control rule 3-tuple to
include conditions, confidentiality and priority as we now discuss.

Each access control rule defines a specific combination of: zero or one target, a
condition set, an effect, zero or one priority and confidentiality of a rule. The target of
the rule includes action, subject that issues the action, object that accepts the action
and the environment. Action defines what operations (query, update, execution, or
even more detailed action, etc.) of the target are controlled by the rules for more fine-
grained access control. If the action part is empty, then the rule is effective for all
actions of the subject and object. The subject and the object here can be a single user,
a role or user group of security domain for support of RBAC. If the target or part of
the target is empty, then use the target defined in policy.

The confidentiality of a rule is used for feedback of the refused request and an ex-
ample is given in section 4.3. The effect of a rule defines an authorization result pre-
determined by the rule-making of the action when the target and condition are
matched. A rule can have various effects (e.g., allow/deny/oblige/refrain). Since allow
and deny rules are the most common ones, this paper focuses on these two kinds of
rules. Allow rules authorize a subject to access a particular object. Deny rules explic-
itly prohibit a subject from accessing a particular object.

The conditions of a rule define a logical expression for factors beyond the target
that affect the applicability of the rules (such as state information of resource). The
expression can be and/or relation of several conditions. If the conditions are empty,
the rule applies in all circumstances. The conditions of the rules need to use the se-
mantic variables defined in the policy, which is generally used to represent the attrib-
utes of subject, object and action. It can also be called semantic attribute variables,
which can effectively avoid the problem of incomprehensibility of policy caused by
the heterogeneous of variables in the syntax layer.

Rule set describes how to compose the various rules on generating the final au-
thorization results of the policy. There are four combination algorithms, Deny-
overrides, Permit-overrides, First-applicable, and Priority-overrides. The first three
algorithms are recommended by XACML, will not repeat them here. They also can be
applied to the policy combination. Rule-maker could specify the priority of rules in
the priority-overrides algorithm subjectively, which is not recommended for policy
combination. In addition, the Only-one-applicable algorithm is also suitable for the
policy combination.

The pseudo-code of Priority-overrides algorithm is as follows.

Decision priorityOverrideRuleCombingAlgorithm(Rule
rules[], COMBTYPE comtype){

152 L. Hu et al.

/* The priority is initialized as 0. The priority is
defined as five grades and expressed with an integer 1-
5, the greater the value, the higher the priority
level. 0 indicates that the priority of rule is not
set, that is the default value.*/
 int priority = 0 ;
/* Authorization result is initialized as Deny. Au-
thorization result is defined as four kinds of situa-
tion and expressed with enumeration type, namely: Deny,
Permit, Indeterminate and NotApplicable.*/
 Decision decision = NotApplicable ;
 Rule ruleSP = NULL ;
 int n = 0;
 for(i=0; i<lengthof(rules); i++){
 decisionTemp = evaluate(rules[i]) ;
 priorityTemp = checkPriority (rules[i]) ;
 if(priorityTemp > priority){
 if(decisionTemp == Deny||decisionTemp == Permit){
 decision = decisionTemp ;
 priority = priorityTemp ;
 n=ruleSP.flush() ;
 }
 }
 else if (priorityTemp == priority)
 n = ruleSP.addRule(i) ;
 }
 if(n>0){
 if(comtype == DenyOverrides)
 decision = denyOverridesRuleCombiningAlgorithm() ;
 else if(comtype == PermitOverrides)
 decision =permitOverridesRuleCombiningAlgorithm();
 else if(comtype == FisrtApplicableOverrides)
 decision = firstOverridesRuleCombiningAlgorithm();
 else
 return NotApplicable ;
 }
 return decision ;
}

4.1.2 Policy and Policy Set
Policy is the smallest component in SACPL. Each SACPL policy contains a group of
access control rules based on the same target of the policy. Policy is logical form of
structure and expression of access control rules in a security domain. The policy tar-
get and rule target have the same structure, it will not repeat them. The reason why a
policy also has a target is as follows.

1. When the rules in a rule set have the same subject, object, action or environment,
they are unnecessary specified in the rules repeatedly but inherit from the policy.

2. The target of policy can be used as an index. When an access request arrives, the
corresponding policy could be found more quickly so that efficiency of the en-
tire access control will be improved.

 Towards an Approach of Semantic Access Control for Cloud Computing 153

Attribute variables of policy give the definition of semantic variables that would be
used in the conditions of the policy’s rules. Attribute variables are usually the attrib-
utes of subjects, objects and actions.

Policy Set is the structure form of the distributed policies in cloud. URL reference
is employed to organize the policy or policy set to form a new policy set, which can
not be used in the rule set. Different from the policy set definition of XACML, the
policy set of SACPL does not contain a target.

Finally, each SACPL policy description document should be attached on the digital
signature of policy maker to ensure its authenticity and reliability.

4.2 Syntax Structure of SACPL

We propose XML-based syntax structure to support semantic policy description
model based on SACPL meta-Model. SACPL syntax structure is shown in Fig. 3.
Since the description of policy is more complex than policy set, this paper focuses on
the specification of policy. It should generate semantic description document with
the extension name of SACPL when SACPL language is used to describe semantic
ACPs.

We next use an example to illustrate the basic element of SACPL. In plain lan-
guage, a policy is:

 Any staff who has greater than or equal to master degree can read the com-
pany's technical documentation, but it can not be modified.

The following xml-based policy document illustrates the policy of the above company
using SACPL.

Fig. 3. Syntax Structure of SACPL and Relationship between ACOOS and SACPL

154 L. Hu et al.

<Policy xsi:schemaLocation=”http://www.sklse.org/ac/SACPL-1.0-schema.xsd”>
 <Target>
 <Subject name="employee" ontologyRef="http://www.sklse.org/onto4AC#OfficerWorker" />
 </Target>
 <AttributeVariable name="degree" type=”subject” ontologyRef="www.sklse.org/onto4AC#
EducationalLevel" />
 <RuleSet combining="priorityOverride">
 <Rule>
 <Target>
 <Object name="book"
ontologyRef="http://www.sklse.org/onto4AC#TechnicalDocumentation" />
 <Action name="read" ontologyRef="http://www.sklse.org/onto4AC#OnlineRead" />
 </Target>
 <Effect type="Permit" />
 <Confidentiality type=" Secret" />
 <Priority value="2" />
 <ConditionSet>
 <Conditions combiningType="OR">
 <Condition type="GreaterThan" VariableReference="degree" value="master"
dataType=”http://www.w3c.org/2001/XMLSchema#String”
ontologyRef="http://www.sklse.org/onto4AC#MasterDegree" />
 <Condition type="Equals" VariableReference="degree" value="master"
dataType=”http://www.w3c.org/2001/XMLSchema#String”
ontologyRef="http://www.sklse.org/onto4AC#MasterDegree" />
 </Conditions>
 </ConditionSet>
 </Rule>
 <Rule>
 <Target>
 <Object name="book"
ontologyRef="http://www.sklse.org/onto4AC#TechnicalDocumentation" />
 <Action name="modify" ontologyRef="http://www.sklse.org/onto4AC#OnlineModify" />
 </Target>
 <Effect type="Deny" />
 <Confidentiality type="Secret" />
 <Priority value="3" />
 </Rule>
 </RuleSet>
</Policy>

4.3 Context of SACPL

SACPL provides a semantic policy description language which is suitable for cloud
computing environment. However, specific applications may have their own special
way to describe the attributes of entities and the request of the application environ-
ments may be different from the request description of SACPL. Therefore, request of
specific environment should be translated into the request which can be recognized by
SACPL, named SACPL Context. SACPL Context still uses ontology for semantic
annotating of four basic elements (subject, object, action and attribute variable). The
semantic interoperability is achieved through the same ontology system (ACOOS)
between SACPL and SACPL Context.

Take the policy of section 4.2 as an example. A company employee named Jack (on-
tology annotation), with bachelor degree (ontology annotation), would like to read the
company's technical documentation (ontology annotation) "file://company/tc/SRS1.0".
According to the partial order of degree defined in ACCOS, it can be reasoned that the

 Towards an Approach of Semantic Access Control for Cloud Computing 155

authorization result of the access request is Deny. The corresponding Request and Re-
sponse Context is as follows.

<Request>
 <Subject value="Jack" ontologyRef="http://www.sklse.org/onto4AC#OfficerWorker">
 <Attribute value=”Bachelor” dataType=”http://www.w3c.org/2001/XMLSchema#String”
ontologyRef="http://www.sklse.org/onto4AC#BachelorDegree "></Attribute>
 </Subject>
 <Object value="file://company/tc/SRS1.0"
dataType=”http://www.w3c.org/2001/XMLSchema#anyURL”
ontologyRef="http://www.sklse.org/onto4AC#TechnicalDocumentation">
 </Object>
 <action value="read" ontologyRef="http://www.sklse.org/onto4AC#OnlineRead"></action>
<Request>

Because the confidentiality of rule is "secret", the reason for the Deny is empty
(NULL) in the Response Context, that is, the details of violated rule can not be re-
vealed.

<Response>
 <Decision>Deny</Decision>
 <Reason>NULL</Reason>
</Response>

5 Conclusion

Ontology is ideal for cloud computing environment with characteristics of decentral-
ized and highly heterogeneous. The specification of security policy and security prop-
erty of different resources (entities) will have clear semantics using ontology-based,
the same set of lexical semantic descriptions. Considering the limitations of tradi-
tional access control method in the cloud computing, this paper introduces the Seman-
tic Web technologies to the distributed role-based access control method and proposes
an ontology-based Semantic Access Control Policy Language (SACPL). Some syntax
elements of XACML, such as subject, object, action and attribute variables, are anno-
tated with semantic information using the Access Control Oriented Ontology System
(ACOOS) and some syntax elements are added such as priority and confidentiality.
This approach can solve the problem of semantic interoperability and mutual under-
standing on the distributed access control policies of resources when we do the cross-
organizational work together. This study provides a new method for ACP specifica-
tion in cloud computing environment. However, there are several issues in our next
study. The approach of automatic conflict resolution for rules or policies and seman-
tics-based access control mechanism for variable granularity are the focus of our
future work.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grant (No. 60773006), the National Research Foundation for
the Doctoral Program of Higher Education of China (No. 20060486045) and the
youth project “A Semantic Security Policy Language and its Application” of Hubei
University of Education Grant.

156 L. Hu et al.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)
2. Samarati, P., de di Vimercati, S.C.: Access control: Policies, models, and mechanisms. In:

Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196. Springer,
Heidelberg (2001)

3. Lampson, B.W.: Protection. In: Proceedings of the 5th Princeton Symposium on Informa-
tion Science and Systems, pp. 437–443 (1971); ACM Operating Systems Review 8(1), 18–
24 (1974)

4. Harrison, M.H., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Communica-
tions of the ACM 19(8), 461–471 (1976)

5. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976)

6. Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations, vol. 1,
Technical Report MTR-2547, MITRE Corporation (1973)

7. Bell, D.E., LaPadula, L.J.: Secure Computer System: Unified Exposition and Multics In-
terpretation, Technical Report MTR-2997, Rev. 1, MITRE Corporation (1976)

8. Biba, K.J.: Integrity Considerations for Secure Computer Systems, Technical Report
MTR-3153, Rev. 1, MITRE Corporation (1977)

9. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control mod-
els. IEEE Computer 29(2), 38–47 (1996)

10. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for multiple
access control policies. ACM Transactions on Database Systems 26(2), 214–260 (2001)

11. OASIS, Security Assertion Markup Language Version 1.1 (2003),
 http://www.oasis-open.org/committees/download.php/3406/
 oasis-sstc-saml-core-1.1.pdf

12. Belokosztolszki, A., Moody, K.: Meta-policies for distributed role-based access control
systems. In: Proceedings of the Third International Workshop on Policies for Distributed
Systems and Networks, pp. 106–115 (2002)

13. Hada, S., Kudo, M.: XML document security based on provisional authorization. In: Pro-
ceedings of the Seventh ACM Conference on Computer and Communications Security, pp.
87–96 (2000)

14. OASIS, Extensible Access Control Markup Language (XACML) Version 2.0 (2005),
 http://docs.oasis-open.org/xacml/2.0/
 access_control-xacml-2.0-core-spec-os.pdf

15. Lorch, M., Kafura, D., Shah, S.: An XACML-based policy management and authorization
service for globus resources. Grid Computing, 208–210 (2003)

16. Johnson, M., et al.: KAoS semantic policy and domain services: An application of DAML
to Web-Services-based grid architectures. In: Proceedings of the AAMAS 2003 Workshop
on Web Services and Agent-Based Engineering, Melbourne, Australia (2003)

17. Tonti, G., et al.: Semantic web languages for policy representation and reasoning: A com-
parison of KAoS, Rei and Ponder. In: Proceedings of the 2nd International Semantic Web
Conference, Florida, USA (2003)

18. Kagal, L.: Rei: A Policy Language for the Me-Centric Project. HP Labs Technical Report,
HPL-2002-270 (2002)

19. Denning, D.E., Denning, P.J.: Cryptography and Data Security. Addison-Wesley, Reading
(1982)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 157–166, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Identity-Based Authentication for Cloud Computing

Hongwei Li1, Yuanshun Dai1,2, Ling Tian1, and Haomiao Yang1

1 Collaborative Autonomic Computing Lab, School of Computer Science and Engineering,
University of Electronic Science and Technology of China

hongwei-li@tom.com, ruan052@126.com, yanghaomiao@sohu.com
2 Innovative Computing Lab, Department of Electronic Engineering & Computer Science,

University of Tennessee, Knoxville, USA
ydai1@eecs.utk.edu

Abstract. Cloud computing is a recently developed new technology for
complex systems with massive-scale services sharing among numerous users.
Therefore, authentication of both users and services is a significant issue for the
trust and security of the cloud computing. SSL Authentication Protocol (SAP),
once applied in cloud computing, will become so complicated that users will
undergo a heavily loaded point both in computation and communication. This
paper, based on the identity-based hierarchical model for cloud computing
(IBHMCC) and its corresponding encryption and signature schemes, presented
a new identity-based authentication protocol for cloud computing and services.
Through simulation testing, it is shown that the authentication protocol is more
lightweight and efficient than SAP, specially the more lightweight user side.
Such merit of our model with great scalability is very suited to the massive-
scale cloud.

Keywords: cloud computing, identity-based cryptography, authentication.

1 Introduction

Cloud computing is a style of computing in which dynamically scalable and often
virtualized resources are provided as a service over the Internet. Users need not have
knowledge of, expertise in, or control over the technology infrastructure ‘in the cloud’
that supports them [1,2]. Authentication, thus, becomes pretty important for cloud
security. Applied to cloud computing and based on standard X.509 certificate-based
PKI authentication framework, SSL Authentication Protocol (SAP) [3] is low
efficient. The authors of Grid Security Infrastructure (GSI) conceded that the current
GSI technique has a poor scalability [4]. W.B. Mao analyzed that this scalability
problem is an inherent one due to the use of SAP [5].

Grid computing and cloud computing are so similar that grid security technique
can be applied to cloud computing. Dai et al. made great contribution to Grid security
[6-9]. Recently, identity-based cryptography (IBC) is developing very quickly [10-
12]. The idea of applying IBC to grid security was initially explored by Lim (2004)
[13]. Mao et al. (2004) proposed an identity-based non-interactive authentication
framework for grid [5]. The framework is certificate-free. But the unique Private Key

158 H. Li et al.

Generator (PKG) becomes the bottleneck of framework. Lim and Robshow (2005)
proposed a hybrid approach combining IBC [14]. The approach solves escrow and
distribution of private key. However, the non-interactive and certificate-free quality is
lost. Chen (2005) revisited the GSI in the GT version2 and improved the GSI
architecture and protocols [15]. It is significant to study IBC and cloud computing.

In this paper, based on identity-based hierarchical model for cloud computing
(IBHMCC) and corresponding encryption and signature schemes, an identity-based
authentication for cloud computing (IBACC) is proposed. IBACC is more efficient
and lightweight than SAP, specially the more lightweight user side, which contributes
good scalability to the much larger cloud systems.

The remaining of the paper is organized as the following. Section 2 introduces the
identity-based hierarchical model for cloud computing (IBHMCC). In section 3, we
propose identity-based encryption and signature technology for the IBHMCC.
Section 4 proposes identity-based authentication mechanism for cloud computing.
Section 5 makes the performance analysis for our new protocols and did simulated
experiments to validate the techniques.

2 Identity-Based Hierarchical Model for Cloud Computing

As shown in Fig.1, IBHM for cloud computing (IBHMCC) is composed of three
levels. The top level (level-0) is root PKG. The level-1 is sub-PKGs. Each node in
level-1 corresponds to a data-center (such as a Cloud Storage Service Provider) in the
cloud computing. The bottom level (level-2) are users in the cloud computing. In
IBHMCC, each node has a unique name. The name is the node’s registered
distinguished name (DN) when the node joins the cloud storage service. For
example, in the Fig.1, DN of the root node is 0DN , DN of node M is MDN and

DN of node N is NDN . We define the identity of node is the DN string from the

root node to the current node itself. For example, the identity of entity N is

0 || ||N M NID DN DN DN= . “ || ” denotes string concatenation. We further define

0 0| ,NID DN= 1 0| || ,N MID DN DN= 2 0| || ||N M NID DN DN DN= .The rule is applicable

to all nodes in the hierarchical model.
The deployment of IBHMCC needs two modules: Root PKG setup and Lower-

level setup.

N

root

M

Fig. 1. IBHM for cloud computing

 Identity-Based Authentication for Cloud Computing 159

Root PKG setup: Root PKG acts as follows:

1. Generate group 1 2,G G of some prime order q and an admissible pairing

1 1 2: G G G× →ê ;

2. Choose an arbitrary generator 1P G∈ ;

3. Choose cryptography hash functions *
1 1 2 2:{0,1} , : {0,1}nH G H G→ → for some

n ;

4. Pick a random *
qα ∈Z and set 0 ,Q Pα= 0 1 0 0 0(),P H DN S Pα= = . The root PKG’s

master key is 0S and the system parameters are 1 2 0 0 1 2, , , , , , ,G G Q P P H H< >ê .

Lower-level setup

1. Assume there are m nodes in the level-1. For each node, the root PKG acts as
follows (let X be an arbitrary node in the m nodes):

2. Compute the public key of node X : 1(),X XP H ID= where 0 ||X XID DN DN= ;

3. Pick the secret point *
X qρ ∈Z for node X . Xρ is only known by node X and its

parent node;
4. Set the secret key of node X : 0 ;X X XS S Pρ= +

5. Define the Q-value: |1XID XQ Pρ= . |1XIDQ is public.

After the above five steps are finished, all nodes in the level-1 get and securely keep
their secret keys and the secret points. On the other hand, the public key and the
Q-value are publicized.

Then, Each node in the level-1 similarly repeats the above steps (2-5). Similarly,
all nodes in level-2 keep the secret keys and the secret point while publicizing the
public key and Q-value.

3 Identity-Based Encryption and Signature for IBHMCC

In the cloud computing, it is frequent for the entities to communicate mutually. To
achieve the security in the communication, it is important to propose an encryption
and signature schemes. Therefore, we propose an identity-based encryption (IBE) and
identity-based signature (IBS) schemes for IBHMCC in the following.

3.1 Identity-Based Encryption

IBE is based on the above Root PKG setup and Lower-level setup algorithms. It is
composed by two parts: Encryption and Decryption.

Encryption: Assume 1E and 2E are two entities in the cloud computing. The identity

of entity 2E is
2 0 1 2|| ||EID DN DN DN= . To encrypt message m with

2EID , 1E acts

as follows:

1. Compute

1 1 0 1(||)P H DN DN= (1)

160 H. Li et al.

2 1 0 1 2(|| ||)P H DN DN DN= (2)

2. Choose a random *
qr ∈Z ;

3. Output the ciphertext

1 2 2, , , ()rC rP rP rP H g m=< ⊕ > (3)

where 0 0(,)g Q P= ê which can be pre-computed.

Decryption: After receiving the ciphertext 0 1 2, , , ,C U U U V=< > entity 2E can

decrypt C using its secret key
2 0 1 1 2 2ES S P Pρ ρ= + + , where 1ρ is the secret point of

node 0 1||DN DN , 2ρ is the secret point of node 0 1 2|| ||DN DN DN :

1. Compute

2

2

0

|
1

(,)

(,)
E

E

ID i i
i

U S
d

Q U
=

=

∏
2

ê

ê

(4)

where
2 2

|1 1 |2 2,
E EID IDQ P Q Pρ ρ= = ;

2. Output the message 2 ()m H d V= ⊕ .

3.2 Identity-Based Signature

IBS is also based on Root PKG setup and Lower-level setup algorithms. It
incorporates two algorithms: signature and verification.

Signature: To sign message m , entity 2E acts as follows:

1. Compute 1 0 1 2(|| || ||)mP H DN DN DN m= ;

2. Compute
2 2E mS Pδ ρ= + , where 2ρ is the secret point of entity 2E ;

3. Output the signature
2 2

|1 |2, , ,
E Em ID IDP Q Qδ< > .

Verification: Other Entities can verify the signature by acting as follows: Confirm

(,)P δê = 2(,)mP Pρê 0 0(,)Q Pê
2

|
1

(,)
EID i i

i
Q P

=
∏
2
ê (5)

if the equation is true, the signature is validated.

4 Identity-Based Authentication for Cloud Computing

In this section, based on the former IBE and IBS schemes, an identity-based
authentication for cloud computing (IBACC) is proposed.

 Identity-Based Authentication for Cloud Computing 161

Fig. 2. Identity-based Authentication Protocol

where

,C Sn n : the fresh random number

ID : the session identifier

Cspecification : the cipher specification of C

Sspecification : the cipher specification of S

CSF : a pre-master secret used to generate the shared key

[]
CP CSE F : encrypt CSF with the public key CP of entity C using the encryption

algorithm of IBE
M : all handshake messages since the ClientHello message

[]
SSSig M : sign M with the private key SS of entity S using the signature

algorithm of IBS

In step (1), the client C sends the server S a ClientHello message. The message
contains a fresh random number Cn , session identifier ID and Cspecification .

CSpecification extends from TLS to handle the IBE and IBS schemes. For example,

CSpecification could be the form _ _ _ _ _TLS IBE IBS WITH SHA AES . IBE and

IBS are used as secure transporting and authentication. SHA is the hash function.
AES is the symmetric encryption algorithm.

In step (2), the server S responds with a ServerHello message which contains a
new fresh random number Sn , the session identifier ID and the cipher

specification Sspecification . The Sspecification is S ’s supporting ciphersuite.

Then C chooses a pre-master secret CSF and encrypts it with the public key CP of

entity C using the encryption algorithm of IBE. The ciphertext is transmitted to C as
ServerKeyExchange message. Then S generates a signature []

SSSig M as the

IdentityVerify message to forward to C . Finally, The ServerHelloDone message
means the step (2) is over.

In step (3), C firstly verifies the signature []
SSSig M with the help of SID . Pass of

verification means S is the valid owner of SID . This completes authentication form

(1) C S→ : ClientHello (, ,C Cn ID specification)

 ClientHelloDone
(2) S C→ : ServerHello (, ,S Sn ID specification)

 ServerKeyExchange ([]
CP CSE F)

 IdentityVerify ([]
SSSig M)

ServerHelloDone
(3) C S→ : ClientFinished

162 H. Li et al.

S to C .Then C decrypts the []
CP CSE F with its private key CS . Because of the fresh

CSF , the correct decryption indicates C is the valid owner of CID . This step

authenticates the validity of C . The ServerFinished message means the step (3) finishes.
Eventually, a shared secret key between C and S is calculated by CSK =

(, ,)CS C SPRF F n n , where PRF is pseudo-random function.

5 Performance Analysis and Simulation

In this section, performance comparisons between SAP and IBACC are firstly
discussed. Then simulation experiment gives precise results.

5.1 Communication Cost

The comparison of communication cost between the two different protocols is shown
in table 1. Note that only dominant communication is considered, i.e. certificate,
signed or encrypted messages, which may have the greatest consumptions of the
network bandwidth.

Table 1. Comparison of communication cost

SAP IBACC
Certificate RSA Signature IBS Signature IBE Ciphertext
2 2 1 1

Reference [3] shows that communication cost of SAP is two public key certificates
and two RSA signatures. However, in the IBACC, the communication cost is only one
IBS signature and one IBE ciphertext.

5.2 Computation Cost

The comparison of computation cost between the two different protocols is shown in
table 2. Note that only dominant computation is considered, i.e. encryption,
decryption and authentication.

Table 2. Comparison of computation cost

SAP IBACC
Client 1 RENC , 1 RSIG and Authenticating server 1 IENC and 1 ISIG
Server 1 RDEC , 1 RSIG and Authenticating client 1 IDEC and 1 IVER

Where

RENC = RSA encryption

RDEC = RSA decryption

 Identity-Based Authentication for Cloud Computing 163

IENC = IBE encryption

IDEC = IBE decryption

RSIG = RSA signature

ISIG = IBS signature

IVER = IBS signature verification

Authenticating server=Including building certification path of server and verifying
signatures.

Authenticating client= Including building certification path of client and verifying
signatures.

The paper [3] showed that in the SAP, the computation cost of client was one RSA
encryption, one RSA signature and Authenticating server. The computation cost of
server was one RSA decryption, one RSA signature and Authenticating client.
However, in the IBACC, the computation cost of client is one IBE encryption and one
IBS signature. The computation cost of server is one IBE decryption and one IBS
signature verification.

5.3 Simulation and Experiment Results

Simulation Platform and Reference
The platform of simulation experiment is GridSim [16] which is a simulation
platform based on Java. Special users and resources can be generated by rewriting
these interfaces. This aligns well with various users and resources of cloud
computing. Furthermore, GridSim is based on SimJava which is a discrete event
simulation tool based on Java and simulates various entities by multiple thread. This
aligns well with randomness of cloud computing entity action. Therefore, it is
feasible to simulate our proposed authentication protocol of cloud computing by
GridSim.

The simulation environment is composed of four computers which are all
equipped with P4 3.0 CPU, 2G memory. Certification chain is important for SAP.
The shorter, the better. The shortest certification chain includes all 4 certifications:

1CA , client and 2CA , server. There are a cross authentication for 1CA and 2CA . It is
in this scene that SAP and IBACC are compared. Based on openssl0.9.7, SAP is
implemented. Pairing computing adapts the algorithms of reference [17]. To
precisely simulate the network delay, there are 25~45ms waiting time before
messages are sent.

Simulation Results and Analysis
Fig.3 illustrates the authentication time of IBACC is approximately 571 ms while that
of SAP is 980 ms. That is to say, authentication time of IBACC is 58% of that of
SAP. Fig.4 shows thecommunication cost of IBACC is approximately 1785 bytes
while that of SAP is 5852 bytes. That is to say, communication cost of IBACC is 31%
of that of SAP. The simulation results confirm that the communication cost of IBACC
is less and the authentication time is shorter.

164 H. Li et al.

0

500

1000

1500

simulation time

a
u
t
h
e
n
t
i
c
a
t
i
o
n

t
i
m
e

(
m
s
)

IBACC SAP

IBACC 560 573 567 571 562 578 566 576

SAP 980 973 988 993 968 983 984 975

1 2 3 4 5 6 7 8

Fig. 3. Comparison of authentication time

0

2000

4000

6000

8000

simulation time

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
b
y
t
e
s
)

IBACC SAP

IBACC 1782 1883 1785 1788 1889 1792 1779 1784

SAP 5858 5844 5847 5833 5855 5845 5882 5849

1 2 3 4 5 6 7 8

Fig. 4. Comparison of communication cost

0

100

200

300

simulation time

c
o
m
p
u
t
a
t
i
o
n

t
i
m
e

o
f

c
l
i
e
n
t
(
m
s
)

IBACC SAP

IBACC 41 42 41 40 39 38 43 44

SAP 276 258 266 275 277 276 273 270

1 2 3 4 5 6 7 8

Fig. 5. Comparison of computation time of client

 Identity-Based Authentication for Cloud Computing 165

0

100

200

300

400

simulation time

c
o
m
p
u
t
a
t
i
o
n

t
i
m
e

o
f

s
e
r
v
e
r
(
m
s
)

IBACC SAP

IBACC 202 201 199 198 205 204 203 201

SAP 315 314 311 310 316 318 312 313

1 2 3 4 5 6 7 8

Fig. 6. Comparison of computation time of server

As shown in Fig.5, computation time of client for IBACC is approximately 41 ms
while that for SAP is 272 ms. That is to say, computation time of client for IBACC is
15% of that for SAP. Fig.6 illustrates computation time of server for IBACC is
approximately 202 ms while that for SAP is 313 ms. That is to say, computation time
of server for IBACC is 65% of that for SAP. The simulation results confirm that both
client and server of IBACC are more lightweight than those of SAP.

Furthermore, computation time of client is 20% of that of server in IBACC. This
aligns well with the idea of cloud computing which allows the user with an average or
low-end platform to outsource its computational tasks to more powerful servers. As a
result, the more lightweight user side can connect more servers and contribute to the
larger scalability.

6 Conclusion

Authentication is necessary in Cloud Computing. SSL Authentication Protocol is of
low efficiency for Cloud services and users. In this paper, we presented an identity-
based authentication for cloud computing, based on the identity-based hierarchical
model for cloud computing (IBHMCC) and corresponding encryption and signature
schemes. Being certificate-free, the authentication protocol aligned well with
demands of cloud computing. Performance analysis indicated that the authentication
protocol is more efficient and lightweight than SAP, especially the more lightweight
user side. This aligned well with the idea of cloud computing to allow the users with
an average or low-end platform to outsource their computational tasks to more
powerful servers.

References

1. Erdogmus, H.: Cloud Computing: Does Nirvana Hide behind the Nebula? IEEE
Software 26(2), 4–6 (2009)

2. Leavitt, N.: Is Cloud Computing Really Ready for Prime Time? Computer 42(1), 15–20
(2009)

166 H. Li et al.

3. Freier, A.O., Karlton, P., Kocher, P.C.: The SSL Protocol, Version 3.0.INTERNET-
DRAFT (November 1996), http://draft-freier-ssl-version3-02.txt

4. Foster, I., Kesslman, C., Tsudik, G.: A Security Architecture for Computational Grids. In:
ACM Conference on Computers and Security, pp. 83–90 (1998)

5. Mao, W.B.: An Identity-based Non- interactive Authentication Framework for
Computational Grids, May 29 (2004),

 http://www.hpl.hp.com/techreports/2004/HPL-2004-96.pdf
6. Dai, Y.S., Pan, Y., Zou, X.K.: A hierarchical modelling and analysis for grid service

reliability. IEEE Transactions on Computers 56(5), 681–691 (2007)
7. Dai, Y.S., Levitin, G., Trivedi, K.S.: Performance and Reliability of Tree-Structured Grid

Services Considering Data Dependence and Failure Correlation. IEEE Transactions on
Computers 56(7), 925–936 (2007)

8. Dai, Y.S., Levitin, G.: Reliability and Performance of Tree-structured Grid Services. IEEE
Transactions on Reliability 55(2), 337–349 (2006)

9. Dai, Y.S., Xie, M., Wang, X.L.: Heuristic Algorithm for Reliability Modeling and
Analysis of Grid Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part
A 37(2), 189–200 (2007)

10. Boneh, D., Gentry, C., Hamburg, M.: Space Efficient Identity Based Encryption without
Pairings. In: Proceedings of FOCS 2007, pp. 647–657 (2007)

11. Boneh, D.: Generalized Identity Based and Broadcast Encryption Schemes. In: Pieprzyk, J.
(ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470. Springer, Heidelberg (2008)

12. Boyen, X.: General Ad Hoc Encryption from Exponent Inversion IBE. In: Naor, M. (ed.)
EUROCRYPT 2007. LNCS, vol. 4515, pp. 394–411. Springer, Heidelberg (2007)

13. Lim, H.W., Robshaw, M.: On Identity- Based. Cryptography and Grid Computing. In:
Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS,
vol. 3036, pp. 474–477. Springer, Heidelberg (2004)

14. Lim, H.W., Robshaw, M.: A dynamic key infrastructure for GRID. In: Sloot, P.M.A.,
Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470,
pp. 255–264. Springer, Heidelberg (2005)

15. Chen, L., Lim, H.W., Mao, W.B.: User-friendly grid security architecture and protocols.
In: Proceedings of the 13th International Workshop on Security Protocols (2005)

16. Buyya, R., Murshed, M.: GridSim: a toolkit for the modeling and simulation of distributed
resource management and scheduling for grid computing. Journal of concurrency and
computation practice and experience 14(13-15), 1175–1220 (2002)

17. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based
cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368.
Springer, Heidelberg (2002)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 167–177, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Strengthen Cloud Computing Security with Federal
Identity Management Using Hierarchical Identity-Based

Cryptography

Liang Yan1, Chunming Rong1, and Gansen Zhao2

1 University of Stavanger, Norway
{liang.yan,chunming.rong}@uis.no

2 South China Normal University, China
zhaogansen@gmail.com

Abstract. More and more companies begin to provide different kinds of cloud
computing services for Internet users at the same time these services also bring
some security problems. Currently the majority of cloud computing systems
provide digital identity for users to access their services, this will bring some
inconvenience for a hybrid cloud that includes multiple private clouds and/or
public clouds. Today most cloud computing system use asymmetric and tradi-
tional public key cryptography to provide data security and mutual authentica-
tion. Identity-based cryptography has some attraction characteristics that seem
to fit well the requirements of cloud computing. In this paper, by adopting fed-
erated identity management together with hierarchical identity-based cryptogra-
phy (HIBC), not only the key distribution but also the mutual authentication can
be simplified in the cloud.

1 Introduction

Cloud Computing is a new computing model that distributes the computing missions
on a resource pool that includes a large amount of computing resources. It is the result
of development of infrastructure as a service (IAAS), platform as a service (PAAS),
and software as a service (SAAS). With broadband Internet access, Internet users are
able to acquire computing resource, storage space and other kinds of software services
according to their needs. In cloud computing, with a large amount of various comput-
ing resources, users can easily solve their problems with the resources provided by a
cloud. This brings great flexibility for the users. Using cloud computing service, users
can store their critical data in servers and can access their data anywhere they can
with the Internet and do not need to worry about system breakdown or disk faults, etc.
Also, different users in one system can share their information and work, as well as
play games together. Many important companies such as Amazon, Google, IBM,
Microsoft, and Yahoo are the forerunners that provide cloud computing services.
Recently more and more companies such as Salesforce, Facebook, Youtube, Myspace
etc. also begin to provide all kinds of cloud computing services for Internet users.

168 L. Yan, C. Rong, and G. Zhao

Currently, as shown in Figure 1, there are mainly three types of clouds: private
clouds, public clouds and hybrid clouds [15]. Private clouds, also called internal
clouds, are the private networks that offer cloud computing services for a very restric-
tive set of users within internal network. For example, some companies and universi-
ties can use their internal networks to provide cloud computing services for their own
users. These kinds of networks can be thought as private clouds. Public clouds or
external clouds refer to clouds in the traditional sense [13], such as enterprises that
provide cloud computing services for the public users. Hybrid clouds are the clouds
that include multiple private and/or public clouds [14]. Providing security in a private
cloud and a public cloud is easier, comparing with a hybrid cloud since commonly a
private cloud or a public cloud only has one service provider in the cloud. Providing
security in a hybrid cloud that consisting multiple service providers is much more
difficult especially for key distribution and mutual authentication. Also for users to
access the services in a cloud, a user digital identity is needed for the servers of the
cloud to manage the access control. While in the whole cloud, there are many differ-
ent kinds of clouds and each of them has its own identity management system. Thus
user who wants to access services from different clouds needs multiple digital identi-
ties from different clouds, which will bring inconvenience for users. Using federated
identity management, each user will have his unique digital identity and with this
identity, he can access different services from different clouds.

Identity-based cryptography [10] is a public key technology that allows the use of a
public identifier of a user as the user’s public key. Hierarchy identity-based
cryptography is the development from it in order to solve the scalability problem.
Recently identity-based cryptography and hierarchy identity-based cryptography have
been proposed to provide security for some Internet applications. For example,
applying identity-based cryptography in the grid computing and web service security
have been explored in [11] [8] [12] and [5].

This paper proposes to use federated identity management in the cloud such that
each user and each server will have its own unique identity, and the identity is allo-
cated by the system hierarchically. With this unique identity and hierarchical identity-
based cryptography (HIBC), the key distribution and mutual authentication can be
greatly simplified.

Cloud

Hybrid
Cloud

Public
CloudPirvate

Cloud

Fig. 1. Cloud type

 Strengthen Cloud Computing Security with Federal Identity Management 169

The rest of this paper is organized as follows. In Section 2, we introduce security
problems and related solutions in cloud computing. In Section 3, we describe the
principle of identity-based cryptography and HIBC. In Section 4, we describe how to
use federated identity management and HIBC in the cloud computing system to pro-
vide security. Section 5 concludes the paper.

2 Security in Cloud Computing

Cloud computing have many advantages in cost reduction, resource sharing, time
saving for new service deployment. While in a cloud computing system, most data
and software that users use reside on the Internet, which bring some new challenges
for the system, especially security and privacy. Since each application may use
resource from multiple servers. The servers are potentially based at multiple locations
and the services provided by the cloud may use different infrastructures across
organizations. All these characteristics of cloud computing make it complicated to
provide security in cloud computing. To ensure adequate security in cloud computing,
various security issues, such as authentication, data confidentiality and integrity, and
non-repudiation, all need to be taken into account. Currently, WS-Security service is
wildly used in the cloud to provide security for the system. In WS-Security, XML
encryption and XML signature are used to provide data confidentiality and integrity.
Mutual authentication can be supported by adding X.509 certificate and Kerberos
tickets into SOAP message header.

As mentioned earlier, there are three types of clouds in general: private cloud,
public cloud and hybrid cloud. In a public cloud, resources are dynamically
provisioned on a fine-grained, self-service basis over the Internet. Services in the
cloud are provided by an off-site third-party provider who shares resources and bills
on a fine-grained utility computing basis. While in most private clouds, with limited
computing resources, it is difficult for a private cloud to provide all services for their
users, as some services may more resources than internal cloud can provide. Hybrid
cloud is a potential solution for this issue since they can get the computing resources
from external cloud computing providers. Private clouds have their advantages in
corporation governance and offer reliable services, as well as they allow more control
than public clouds do. For the security concerns, when a cloud environment is created
inside a firewall, it can provide its users with less exposure to Internet security risks.
Also in the private cloud, all the services can be accessed through internal connec-
tions rather than public Internet connections, which make it easier to use existing
security measures and standards. This can make private clouds more appropriate for
services with sensitive data that must be protected. While in a hybrid cloud, it
includes more than one domain, which will increase the difficulty of security
provision, especially key management and mutual authentication. The domains in a
hybrid cloud can be heterogeneous networks, hence there may be gaps between these
networks and between the different services providers. Even security can be well
guaranteed in each of private/public cloud, while in a hybrid cloud with more than
one kind of clouds that have different kinds of network conditions and different secu-
rity policies, how to provide efficient security protection is much more difficult. For
example, cross domain authentication can be a problem in a hybrid cloud with

170 L. Yan, C. Rong, and G. Zhao

different domains. Although some authentication services such as Kerberos can pro-
vide multi-domain authentication, but one of the requirements for the multi-domain
Kerberos authentication is that the Kerberos server in each domain needs to share a
secret key with servers in other Kerberos domains and every two Kerberos servers
need to be registered with each other. The problem here is if there are N Kerberos
domains and each of them want to trust each other, then the number of key exchanges
is N(N-1)/2. For a hybrid cloud with a large number of domains, this will bring a
problem for scalability. If different networks in a hybrid cloud using different authen-
tication protocols, this problem can be more complex.

In a cloud, the cloud computing system needs to provide a strong and user-friendly
way for users to access all kinds of services in the system. When a user wants to run
an application in the cloud, the user is required to provide a digital identity. Normally,
this identity is a set of bytes that related to the user. Based on the digital identity, a
cloud system can know what right this user has and what the user is allowed to do in
the system. Most of cloud platforms include an identity service since identity informa-
tion is required for most distributed applications [3]. These cloud computing systems
will provide a digital identity for every user. For example, user with a Windows Live
ID can use cloud computing services provided by Microsoft and user who wants to
access cloud computing services from Amazon and Google also needs an Amazon-
defined identity and Google account. Here, each of these companies is a public cloud.
The problem here is this digital identity can only be used in one private cloud or one
public cloud. Users want to access services in the cloud that provided by different
clouds will need to have multiple identities, each for one of the cloud. This is obvi-
ously not user friendly.

To solve these problems in the cloud, we propose to use federated identity man-
agement in clouds with HIBC. The proposed scheme does not only allow users from a
cloud to access services from other clouds with a single digital identity, it also simpli-
fies the key distribution and mutual authentication in a hybrid cloud.

3 Identity-Based Cryptography and Signature

Identity-based cryptography and signature schemes were firstly proposed by Shamir [10]
in 1984. But only in 2001, a efficient approach of identity-based encryption schemes was
developed by Dan Boneh and Matthew K. Franklin [2] and Clifford Cocks [4]. These
schemes are based on bilinear pairings on elliptic curves and have provable security.
Recently hierarchical identity-based cryptography (HIBC) has been proposed in [6, 7] to
improve the scalability of traditional identity-based cryptography scheme.

Identity-based cryptographic scheme is a kind of public-key based approach that
can be used for two parties to exchange messages and effectively verify each other’s
signatures. Unlike in traditional public-key systems that using a random string as the
public key, with identity-based cryptography user’s identity that can uniquely identify
that user is used as the public key for encryption and signature verification. Identity-
based cryptography can ease the key management complexity as public keys are not
required to be distributed securely to others. Another advantage of identity-based
encryption is that encryption and decryption can be conducted offline without the key
generation center.

 Strengthen Cloud Computing Security with Federal Identity Management 171

In the identity-based cryptography approach, the PKG should creates a "master"
public key and a corresponding "master" private key firstly, then it will make this
"master" public key public for all the interested users. Any user can use this “master”
public key and the identity of a user to create the public key of this user. Each user
wants to get his private key needs to contact the PKG with his identity. PKG will use
the identity and the "master" private key to generate the private key for this user. In
Dan Boneh and Matthew K. Franklin’s approach, they defined four algorithms for a
complete identity-based cryptography system. It includes setup, extract, encryption
and decryption.

1. Setup: PKG create a master key mK and the system parameters P. mK is

kept secret and used to generate private key for users. System parameters P
are made public for all the users and can be used to generate users’ public
key with their identities.

2. Extract: When a user requests his private key from the PKG, PKG will use

the identity of this user, system parameters P and master key mK to gener-

ate a private key for this user.
3. Encryption: When a user wants to encrypt a message and send to another

user, he can use the system parameters P, receiver’s identity and the message
as input to generate the cipher text.

4. Decryption: Receiving a cipher text, receiver can use the system parameters
P and his private key got from the PKG to decrypt the cipher text.

In a network using identity-based cryptography, the PKG needs not only to generate
private keys for all the users, but also to verify the user identities and establish secure
channels to transmit private keys. In a large network with only one PKG, the PKG
will have a burdensome job. In this case, HIBC [6] can be a better choice. In a HIBC
network, a root PKG will generate and distribute private keys for domain-level PKGs
and the domain-level PKGs will generate and distribute private keys to the users in
their own domain. HIBC is suitable for a large scale network since it can reduce the
workload of root PKG by distribute the work of user authentication, private key gen-
eration and distribution to the different level of PKGs. It can also improve the security
of the network because user authentication and private key distribution can be done
locally. The HIBC encryption and signature algorithms include root setup, lower-level
setup, extraction, encryption, and decryption.

1. Root setup: root PKG will generate the root PKG system parameters and a
root secret. The root secret will be used for private key generation for the
lower-level PKGs. The root system parameters are made publicly available
and will be used to generate public keys for lower-level PKGs and users.

2. Lower-level setup: Each lower-level PKG will get the root system parame-
ters and generate its own lower-level secret. This lower-level secret will be
used to generate private keys for the users in its domain.

3. Extract: When a user or PKG at level t with its identity (1,..., tID ID) re-

quests his private key from its upper-level PKG, where (1,..., iID ID) is the

identity of its ancestor at level i (1 ≤ i ≤ t), the upper-level PKG will use this

172 L. Yan, C. Rong, and G. Zhao

identity, system parameters and its own private key to generate a private key
for this user.

4. Encryption: User who wants to encrypt a message M can use the system pa-
rameters, receiver’s identity and the message as input to generate the cipher
text.

 C = Encryption (parameters, receiver ID, M).
5. Decryption: Receiving a cipher text, receiver can use system parameters and

his private key got from the PKG to decrypt the cipher text.
 M = Decryption (parameters, k, C), k is the private key of the receiver

6. Signing and verification: A user can use parameters, its private key, and
message M to generate a digital signature and sends to the receiver. Receiver
and verify the signature using the parameters, message M, and the sender’s
ID.

Signature = Signing (parameters, k, M), k is the sender’s private key.
Verification = (parameters, sender ID, M,Signature).

There are some inherent limitations with the identity-based cryptography [1]. One of
the issues is the key escrow problem. Since users’ private keys are generated by PKG,
the PKG can decrypt a user’s message and create any user’s digital signature without
authorization. This in fact means that PKGs must be highly trusted. So the identity-
based scheme is more appropriate for a closed group of users such as a big company
or a university. Since only under this situation, PKGs can be set up with users’ trust.

In a system using HIBC, every PKG in the hierarchy knows the users’ private keys
in the domain under the PKG. Although key escrow problem can not be avoided, this
can limit the scope of key escrow problem. Another drawback of the identity-based
cryptography is the revocation problem. Because all the users in the system use some
unique identifiers as their public keys, if one user’s private key has been compro-
mised, the user need to change its public key. For example, if the public key is the
user’s name, address, or email address, it is inconvenient for the user to change it.
One solution for this problem is to add a time period to the identifier as the public key
[2], but it can not solve this problem completely.

4 Using Federated Identity Management in Cloud

4.1 Federated Identity Management in the Cloud

Compared with centralized identity, which is used to deal with security problems
within the same networks, federated identity is adopted to deal with the security prob-
lems that a user may want to access external networks or an external user may want
to access internal networks. Federated identity is a standard-based mechanism for
different organization to share identity between them and it can enable the portability
of identity information to across different networks. One common use of federated
identity is secure Internet single sign-on, where a user who logs in successfully at one
organization can access all partner networks without having to log in again. Using
identity federation can increase the security of network since it only requires a user to
identify and authenticate him to the system for one time and this identity information
can be used in different networks. Use of identity federation standards can not only

 Strengthen Cloud Computing Security with Federal Identity Management 173

help the user to across multiple networks include external networks with only one
time log in, but also can help users from different networks to trust each other.

Using identity federation in the cloud means users from different clouds can use a
federated identification to identify themselves, which naturally suit the requirement of
identity based cryptography in cloud computing. In our approach, users and servers
in the cloud have their own unique identities. These identities are hierarchical identi-
ties. To access services in the cloud, users are required to authenticate themselves for
each service in their own clouds. In some cases, servers are also required to authenti-
cate themselves to users. In a small and closed cloud, this requirement can be satisfied
easily. While in a hybrid cloud, there are multiple private and/or public clouds and
these clouds may rely on different authentication mechanisms. Providing effective
authentications for users and servers from different cloud domains would be difficult.
In this paper, we propose to use federated identity management and HIBC in the
cloud. In the cloud trusted authority PKGs are used and these PKGs will not only act
as PKGs in traditional identity-based cryptography system but also allocate hierarchi-
cal identities to users in their domains. There is a root PKG in overall domain of each
cloud, and each sub-level domain (private or public cloud) within the cloud also has
its own PKG. The root PKG will manage the whole cloud, each private cloud or
public cloud is the first level and users and servers in these clouds are the second
level. The root PKG of the cloud will allocate and authenticate identities for all the
private and public clouds. For example, it can allocate identity UiS to a private cloud
of University of Stavanger. Each private cloud and public cloud uses its own domain
PKG to allocate and manage the identities of all the users and servers in its own
cloud. Each user and server in this domain has its own identity and this identity is a
hierarchical identity, which includes both the identity of the user or server and the
identity of the domain. For example, the identity of user Alice in the private cloud of
University of Stavanger can be UIS.Alice.

Fig. 2. Federated identity management in cloud

174 L. Yan, C. Rong, and G. Zhao

4.2 Key Generation and in the Cloud

Using HIBC in the cloud, an important part is key generation and distribution. As
shown in [6], the security of HIBC scheme is based on the using of admissible pair-
ing. Let

1G and
2G be two groups of some large prime order q and

1G is an additive

group and
2G is a multiplicative group, we can call ê an admissible pairing if ê :

1 2 2G G G× → have the following properties.

1. Billinear: For all
1,P Q G∈ and , qa b Z ∗∈ , ˆ ˆ(,) (,) abe aP bQ e P Q= .

2. Non-degenerate: There exits
1,P Q G∈ , such that ˆ(,) 1e P Q ≠ .

3. Computable: For all
1,P Q G∈ , there exits a efficient way to calcu-

late ˆ(,)e P Q .

An admissible pairing can be generated by suing a Weil pairing or a Tate pairing [2].

Here, in the cloud we use two levels PKG, the root PKG is 0level PKG and the

PKGs in the private or public clouds are 1level PKGs. The root setup can be done as

follow:

1. Root PKG generates
1G ,

2G and an admissible pairing

1 2 0 0 1 2ˆ ˆ ˆ(,) (,) 1(, , , , , ,)e a P b Q e P Q G G e P Q H H= ≠ ê :

1 2 2G G G× → .

2. Root PKG chooses 0 1P G∈ and
0 qs Z ∗∈ and set

0 0 0Q s P= .

3. Root PKG chooses hash function { }1 1: 0 , 1H G
∗ → and

{ }2 2: 0 ,1
n

H G → .

Then the system parameters are
1 2 0 0 1 2ˆ(, , , , , ,)G G e P Q H H and are public avail-

able, 0s is the root PKG’s secret and is known only by the root PKG.

For the lower level PKGs and users and servers in the cloud, they can use the sys-
tem parameters and any user’s identity to generate its public key. And every user or
servers in the cloud can connect the PKGs in their cloud domain to get their private
keys. For example, the PKG in private cloud of University of Stavanger with identity
UIS, its public key can be generated as

1 ()u isp H U I S= and the root PKG can gen-

erate its private key as
0u is u iss s P= . For a user with identity UIS.Alice in the private

cloud University of Stavanger , her public key can be generated as

1 ()uisaliceP H UIS Alice= and the PKG can generate her private key as

uisalice uis uis uisalices s s P= + .

4.3 Date Encryption and Digital Signature

In the cloud, one of the most important security problems are mutual authentication
between users and servers, protection of data confidentiality and integrity during data

 Strengthen Cloud Computing Security with Federal Identity Management 175

transmission by encryption using secret keys. In a cloud using federated identity, any
user and server has its unique identity and any user and server can get the identity of
any other user/server by request with the PKGs. With HIBC, the public key distribu-
tion can be greatly simplified in the cloud. Users and servers do not need to ask a
public key directory to get the public key of other users and servers as in traditional
public key schemes. If any user or server wants to encrypt the data that transmitted in
the cloud, the sender can acquire the identity of the receiver, then the sender can en-
crypt the data with receiver’s identity.

Currently, WS-Security (Web service Security) protocol which can provide end-to-
end message level security using SOAP messages is widely applied in cloud comput-
ing to protect the security of most cloud computing related web services. WS-Security
uses SOAP header element to carry security-related information. Since SOAP mes-
sage is a kind of XML message and ordinarily XML message representation is about
4 to 10 times large compared with their equivalent binary formats, adding security
information into SOAP header will greatly increase the costs of data communication
and data parsing. For example, if XML signature is used to protect data integrity or
authentication, the SOAP header will include the signature information about the
signature method, signature value, key info and some reference information like di-
gest method, transforms, and digest value. And the key info element may include keys
names certificates and some public key management information [16]. If RSA and
X.509 are chosen as the public key cryptography and certificate format in XML sig-
nature, the key info element in the SOAP header usually includes a public key certifi-
cate or a reference pointing to a remote location. While using HIBC in a cloud, any
user and server can get its own private key from its domain PKG and can calculate the
public key of any other party in the cloud knowing its identity. Then it is easy for a
sender to add a digital signature using its private key and for a receiver to verify a
digital signature using the sender’s public key. Then the key info may be not needed
in the SOAP header, and this will greatly reduce the SOAP messages need to be
transmitted in the cloud and thus save the cost.

4.4 Secret Session Key Exchange and Mutual Authentication

Identity-based cryptography is a public key cryptography scheme, it is much slower
when it is compared with symmetric key cryptography. In practice, public key cryp-
tography is not used for data encryption in most of the clouds. For example, in XML
encryption, XML data is encrypted using symmetric cryptography such as AES and
Triple-DES. This secret symmetric key is encrypted using the public key encryption
and added in the SOAP message and then transmitted to the receiver. While in the
cloud with HIBC, this secret symmetric key distribution can be avoided since iden-
tity-based cryptography can be used for secret session key exchange. According to
[9], for every two parties in the system using identity-based cryptography, it is easy
for each one of the two parties to calculate a secret session key between them using its
own private key and public key of other party, this is call identity-based non-
interactive key distribution. For example, two parties Alice and Bob in a cloud with
their public keys and private keys aliceP , aliceQ , bobP and bobQ can calculate their

shared secret session key by computing

176 L. Yan, C. Rong, and G. Zhao

ˆ ˆ(,) (,)s alice bob bob aliceK e Q P e Q P= = (1)

This means in a cloud using HIBC, each user or server can calculate a secret session
key between it and the other party it wants to communicate with without message
exchange. This advantage of identity-based cryptography can not only reduce mes-
sage transmission but also can avoid session key disclosure during transmission.

This secret session key can be used not only for data encryption, but also for mu-
tual authentication [8]. We assume if a user with identity Alice@UiS and a server with
identity Storage@google in the cloud want to authenticate each other. First, they can
calculate a secret session key

sK between them. Then Alice can send a message to

the server as:
: @ , , (, @ , @ ,)sA lice Server A lice U iS M f K A lice U iS S to ra ge go og le M→

Here M is a randomly selected message and f is a one way hash function. Here, to
compute the correct hash value, a correct secret session key

sK is needed. Since

sK computation requires Alice’s private key and this private key can only be allo-

cated from the PKG in the private cloud of University of Stavanger, thus Alice can be
verified that she is a legal user of this cloud. Also the server can authenticate itself to
Alice the same way. We can notice that this mutual authentication does not include
any certification form a third party.

4.5 Key Escrow

For a system using identity-based cryptography, key escrow problem is inherent and
can not be avoided since PKG knows the private keys of all the users. While in the
hierarchical identity-based cryptography system, only the PKG in the same domain as
the users can knows their private keys. PKGs in other domains or at other levels can
not know these private keys, such the key escrow problem can be restricted in a small
range.

5 Conclusion

The quick development of cloud computing bring some security problems as well as
many benefits to Internet users. Current solutions have some disadvantages in key
management and authentication especially in a hybrid cloud with several
public/private clouds. In this paper, we depicted the principles of identity-based
cryptography and hierarchical identity-based cryptography and find the properties of
HIBC fit well with the security demands of cloud. We proposed to use federated
identity management and HIBC in the cloud and depicted how can the system
generate and distribute the public and private keys to users and servers. Compared
with the current Ws-Security approach, we can see our approach has its advantages in
simplifying public key distribution and reducing SOAP header size. Also we showed
how the users and servers in the cloud can generate secret session key without
message exchange and authenticate each other with a simple way using identity-based
cryptography. Also we can see the key escrow problem of identity-based
cryptography can be restricted with HIBC approach.

 Strengthen Cloud Computing Security with Federal Identity Management 177

References

1. Beak, J., Newmarch, J., Safavi-Naini, R., Susilo, W.: A Survey of Identity-Based Cryptog-
raphy. In: Proc. of the 10th Annual Conference for Australian Unix User’s Group (AUUG
2004), pp. 95–102 (2004)

2. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 433–439. Springer, Heidelberg (2001)

3. Chappell, D.: A Short Introduction to Cloud Platforms,
 http://www.davidchappell.com/CloudPlatforms–Chappell.pdf

4. Cocks, C.: An Identity-based Encryption Scheme Based on Quadratic Residues. In: Pro-
ceeding of 8th IMA International Conference on Cryptography and Coding (2001)

5. Crampton, J., Lim, H.W., Paterson, K.G.: What Can Identity-Based Cryptography Offer to
Web Services? In: Proceedings of the 5th ACM Workshop on Secure Web Services (SWS
2007), Alexandria, Virginia, USA, pp. 26–36. ACM Press, New York (2007)

6. Gentry, C., Silverberg, A.: Hierarchical ID-Based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

7. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knudsen, L.R.
(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)

8. Mao, W.: An Identity-based Non-interactive Authentication Framework for Computational
Grids. HP Lab, Technical Report HPL-2004-96 (June 2004)

9. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Proceedings of
the 2000 Symposium on Cryptography and Information Security, Okinawa, Japan (January
2000)

10. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

11. Lim, H.W., Robshaw, M.J.B.: On identity-based cryptography and GRID computing. In:
Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS,
vol. 3036, pp. 474–477. Springer, Heidelberg (2004)

12. Lim, H.W., Paterson, K.G.: Identity-Based Cryptography for Grid Security. In: Proceed-
ings of the 1st IEEE International Conference on e-Science and Grid Computing (e-
Science 2005). IEEE Computer Society Press, Los Alamitos (2005)

13. Defining Cloud Services and Cloud Computing,
 http://blogs.idc.com/ie/?p=190

14. IBM Embraces Juniper For Its Smart Hybrid Cloud, Disses Cisco (IBM),
 http://www.businessinsider.com/2009/2/
 ibm-embraces-juniper-for-its-smart-hybrid-cloud-disses-cisco-ibm

15. http://en.wikipedia.org/wiki/Cloud_computing#cite_note-61
16. XML Signature Syntax and Processing (Second Edition) ,

 http://www.w3.org/TR/xmldsig-core/#sec-KeyInfo

Availability Analysis of a Scalable Intrusion Tolerant
Architecture with Two Detection Modes

Toshikazu Uemura1, Tadashi Dohi1, and Naoto Kaio2

1 Department of Information Engineering, Graduate School of Engineering
Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima, 739–8527 Japan

2 Department of Economic Informatics, Faculty of Economic Sciences
Hiroshima Shudo University, 1–1–1 Ohzukahigashi, Asaminami-ku, Hiroshima, 739–3195,

Japan
dohi@rel.hiroshima-u.ac.jp, kaio@shudo-u.ac.jp

Abstract. In this paper we consider a discrete-time availability model of an in-
trusion tolerant system with two detection modes; automatic detection mode and
manual detection mode. The stochastic behavior of the system is formulated by a
discrete-time semi-Markov process and analyzed through an embedded Markov
chain (EMC) approach. We derive the optimal switching time from an automatic
detection mode to a manual detection mode, which maximizes the steady-state
system availability. Numerical examples are presented for illustrating the optimal
switching of detection mode and its availability performance. availability, detec-
tion mode, EMC approach, Cloud computing environment.

Keywords: SITAR, availability, intrusion tolerance, discrete-time modeling, de-
tection mode, EMC approach, cloud computing circumstance.

1 Introduction

Cloud Computing is one of computing technologies in which dynamically scalable and
often virtualized resources are provided as a service over the Internet. Since users need
not have knowledge of expertise and the technology infrastructure in the network that
supports them, recently this low-cost computing paradigm is becoming popular as an
expected Internet-based computing in the next generation. Since the cloud computing is
highly vulnerable to the Internet epidemics, many attacking events compromise a huge
number of host computers rapidly and cause DoS around the Internet. Such epidemics
result in extensive widespread damage costing billions of dollars, and countering the
propagating worms in time becomes an increasingly emergency issue on the Internet
security. Although traditional security approaches which may be categorized into intru-
sion detection approaches establish proactive barriers like a firewall, unfortunately, the
efficiency of a single barrier is not still enough to prevent attack from sophisticated new
skills by malicious attackers. As the result, the number of network attack incidents is
tremendously increasing day by day. In contrast to pursue the nearly impossibility of
a perfect barrier unit, the concept of intrusion tolerance is becoming much popular in
recent years. An intrusion tolerant system can avoid severe security failures caused by
intrusion and/or attack and can provide the intended services to users in a timely man-
ner even under attack. This is inspired from traditional techniques commonly used for

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 178–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Availability Analysis of a Scalable Intrusion Tolerant Architecture 179

tolerating accidental faults in hardware and/or software systems, and can provide the
system dependability which is defined as a property of a computer-based system, such
that reliance can justifiably be placed on the service it delivers [1]. So far, most efforts
in security have been focused on specification, design and implementation issues. In
fact, several implementation techniques of intrusion tolerance at the architecture level
have been developed for real computer-based systems. For an excellent survey on this
research topic, see Deswarte and Powell [2].

In other words, since these methods can be categorized by a design diversity tech-
nique in secure systems and need much cost for the development, the effect on
implementation has to be evaluated carefully and quantitatively. To assess quantita-
tively security effects of computer-based systems, reliability/performance evaluation
with stochastic modeling is quite effective. Littlewood et al. [4] applied fundamental
techniques in reliability theory to assess the security of operational software systems and
proposed some quantitative security measures. Jonsson and Olovsson [3] also developed
a quantitative method to study attacker’s behavior with the empirical data observed in
experiments. Ortalo, Deswarte and Kaaniche [7] used both privilege graph and Markov
chain to evaluate system vulnerability, and derived the mean effort to security failure.
Uemura and Dohi [8] focused on the typical DoS attacks for a server system and formu-
lated an optimal patch management problem via continuous-time semi-Markov models
(CTSMM). Recently, the same authors [9] considered a secure design of an intrusion
tolerant database system [12] with a control parameter to switch an automatic detection
mode to a manual detection mode after receiving an attack, and described its stochastic
behavior by a CTSMM. In this way considerable attentions have been paid to stochastic
modeling in security evaluation of computer-based systems.

In this paper we consider an existing system architecture with intrusion tolerance,
called SITAR (Scalable Intrusion Tolerant Architecture). SITAR was developed in
MCNC Inc. and Duke University [11]. Madan et al. [5], [6] considered the security
evaluation of SITAR and described its stochastic behavior by a CTSMM. More pre-
cisely, they investigated effects of the intrusion tolerant architecture under some attack
patterns such as DoS attacks. In this paper we consider the similar but somewhat differ-
ent models from Madan et al. [5], [6]. By introducing an additional control parameter
[9], [12], called the switching time from an automatic detection mode to a manual de-
tection mode, we consider a discrete-time semi-Markov model (DTSMM). The authors
considered in their previous work [10] to control the patch release timing from a vul-
nerable state. In COTS (commercial-off-the-shelf) distributed servers like SITAR, on
the other hand, the intrusion-detection function equipped for a proactive security man-
agement is not perfect and is often switched to a manual detection mode, in order to
detect intrusions/vulnerable parts more speedy [9], [12]. Then the problem here is to
find the optimal switching time which maximizes the steady-state system availability.
We describe the stochastic behavior of the underlying SITAR with two detection modes
and develop an availability model based on a DTSMM.

The paper is organized as follows: In Section 2 we explain SITAR and describe
the stochastic behavior [5], [6]. Section 3 concerns the EMC approach and obtain the
representation of an embedded DTMC in a DTSMM. We derive the steady-state prob-
ability in the DTSMM by using the mean sojourn time and the steady-state probability

180 T. Uemura, T. Dohi, and N. Kaio

in the embedded DTMC. In Sections 4 and 5, we formulate the maximization prob-
lems of steady-state system availability in continuous-time and discrete-time cases, re-
spectively. Actually, we showed in a different context that the control scheme which
included auto patch would be useful to guarantee several security attributes [12], but
at the same time that the design of the optimal PPMT was quite effective to optimize
some quantitative measures [9]. We derive analytically the optimal PPMTs maximiz-
ing the system availability. It is worth mentioning in these optimization phases that
the treatment of DTSMM is rather complex. Numerical examples are presented in Sec-
tion 6 for illustrating the optimal preventive patch management policies and performing
sensitivity analysis of model parameters. It is illustrated that the preventive patch man-
agement policies can improve effectively the system availability in some cases, and that
the implementation of both preventive maintenance and intrusion tolerance may lead
to keeping the whole Internet availability/survivability. Finally the paper is concluded
with some remarks in Section 7.

2 SITAR

The SITAR is a COTS distributed server with an intrusion tolerant function [11] and
consists of five major components; proxy server, acceptance monitor, ballot monitor,
adaptive reconfiguration module, and audit control module. Since the usual COTS server
is vulnerable for an intrusion from outside, an additional intrusion tolerant structure is
introduced in SITAR. Madan et al. [5], [6] described the stochastic behavior of SITAR
by means of CTSMM and gave its embedded DTMC representation. Figure 1 depicts
the configuration of SITAR behavior under consideration. Let G be the normal state in
which the COTS server can protect itself from adversaries. However, if a vulnerable
part is detected by them, a state transition occurs from G to the vulnerable state V .

Good : G Vulnerable : V

Attack : A

Detection
Limit : DL

Detection
Completed : C

Masked
Compromised : MC

Triage : TR

Failure : F

Evaluation
Completed : C2

Graceful
Degradation : GD

Fail-Secure : FS

Probability p

Probability 1 - p

Probability q

Probability 1 - q

Fig. 1. Block diagram of SITAR behavior

Availability Analysis of a Scalable Intrusion Tolerant Architecture 181

Further if adversaries attack the vulnerable part, the state moves to A. On the other
hand, if the vulnerable part is detected by vulnerability identifiers such as benign users,
the vulnerable state V goes back to the normal state G again.

In the attack state A, two possible states can be taken. If the problem caused by the
attack cannot be resolved and the containment of the damaged part fails, the correspond-
ing event can be regarded as a security failure, and the initialization/reconfiguration of
the system is performed as a corrective maintenance (repair) at DL. After completing
it, the system state makes a transition to G again and becomes as good as new. While,
if the intrusion/attack is detected, then the state goes to C. In the state C, one of two
instantaneous transitions without time delay, which are denoted by dotted-lines in Fig.
1, can occur, i.e., if the damaged part by attacking is not so significant and does not lead
to a serious system failure directly, the system state makes a transition from C to MC
with probability 1 − p (0 ≤ p ≤ 1), and the damaged part can be contained by means
of the fail safe function. After the containment, the system state moves back to G by
masking the damaged part.

Otherwise, i.e. if the containment of the damaged part with serious effects to the
system fails, the state goes to TR with probability p. We call this probability the triage
probability in this paper. In the state TR, several corrective inspections are tried in par-
allel with services. If the system is diagnosed as failure, the state moves to F , the service
operation is stopped, and the recovery operation starts immediately. After completing
the recovery from the system failure, the system becomes as good as new in G. Other-
wise, it goes to the so-called non-failure state denoted by C2. Here, two states can be
taken; it may be switched to the gracefully service degradation in GD with probability
q (0 ≤ q ≤ 1), or the service operation is forced to stop and the corrective maintenance
starts immediately.

G V A

MC

TR

F

FS

GD

fGD,G (n)

fF,G (n)

fFS,G (n)fMC,G (n)

fG,V (n)

fV,A (n)

fA,UC (n)

fUC,G (n)

p fA,C (n)

(1 - p) fA,C (n)

q fTR,C2 (n)

(1 - q) fTR,C2 (n)

fTR,F (n)

fV,G (n)

UC

Fig. 2. Transition diagram of DTSMM

182 T. Uemura, T. Dohi, and N. Kaio

The main differences from Madan et al. [5], [6] are (i) an automatic intrusion-
detection can be switched to a manual detection mode at any timing in A, although
Madan et al. [5], [6] did not take account of switching of automatic detection mode,
(ii) In two states C and C2 instantaneous transitions are allowed in the present model,
although Madan et al. [5], [6] assumed random transitions with time delay. We define
the time interval from G to G as one cycle and suppose that the same cycle repeats
again and again over an infinite time horizon. For respective states, let Fi,j(n) (i, j ∈
{G, V, A, PM, UC, C, MC, TR, C2, FS, GD, F} denote the discrete transition prob-
ability distributions with p.m.f. fi,j(n) in the DTSMM, where fi,j(0) = 0 and mean
μi,j (> 0).

In Fig. 2, we give the trandition diagram of the DTSMM. It is assumed that the auto-
matic detection function in SITAR is switched just after n0 (≥ 0) time unit elapses in an
active attack state A in the DTSMM. More specifically, let FA,UC(n) be the transition
probability from A to UC which denotes the manual detection mode. When it is given
by the step function, i.e., FA,UC(n) = 1 (n ≥ n0) and FA,UC(n) = 0 (n < n0), the
switching time from an automatic detection mode to a manual detection model is given
by the (integer-valued) constant time n0. From the preliminary above, we formulate the
steady-state system availability as a function of the switching time n0.

3 Availability Analysis

3.1 EMC Approach

The embedded DTMC representation of the DTSMM is illustrated in Fig.3. Let pk, hk

and πk denote the steady-state probability of the DTSMM in Fig.2, the mean sojourn
time and the steady-state probability of the embedded DTMC in Fig. 3, respectively,
where k ∈ {G, V, A, DL, MC, TR, FS, GD, F}. From the definition, we can derive
the the steady-state probability πk of the DTSMM by

πG = hG/φ, (1)

πV = hV /φ, (2)

πA = pAhA/φ, (3)

πDL = pA(1 − pMC − pTR)hDL/φ, (4)

πMC = pApMChMC/φ, (5)

πTR = pApTRhTR/φ, (6)

πFS = pApTRpFShFS/φ, (7)

πGD = pApTRpGDhGD/φ, (8)

πF = pApTR(1 − pFS − pGD)hF /φ, (9)

where

φ = hG + hV + pA

[
hA + (1 − pMC − pTR)hDL + pMChMC

+pTR

{
hTR + pFShFS + pGDhGD + (1 − pFS − pGD)hF

}]
. (10)

Availability Analysis of a Scalable Intrusion Tolerant Architecture 183

G V A

MC

TR

F

FS

GD

pA

pTR
1 - pMC - pTR

pMC

pGD

pFS

1 - pA

1 - pFS - pGD

UC

Fig. 3. EMC representation

3.2 Semi-markov Model

From the transition diagram of the DTSMM in Fig.3, we obtain

pA =
∞∑

x=0

∞∑
w=x

fV,G(w)fV,A(x), (11)

pMC = pMC(n0) = (1 − p)FA,C(n0 − 1), (12)

pTR = pTR(n0) = pFA,C(n0 − 1), (13)

pFS = (1 − q)
∞∑

z=0

∞∑
y=z

fTR,F (y)fTR,C2(z), (14)

pGD = q
∞∑

z=0

∞∑
y=z

fTR,F (y)fTR,C2(z) (15)

and

hG = μG,V , (16)

hV =
∞∑

x=0

x−1∑
w=0

wfV,G(w)fV,A(x) +
∞∑

x=0

∞∑
w=x

xfV,G(w)fV,A(x), (17)

hA = hA(n0) =
n0−1∑
n=0

FA,C(n), (18)

184 T. Uemura, T. Dohi, and N. Kaio

hDL = μUC,G, (19)

hMC = μMC,G, (20)

hTR =
∞∑

z=0

z−1∑
y=0

yfTR,F (y)fTR,C2(z) +
∞∑

z=0

∞∑
y=z

zfTR,F (y)fTR,C2(z), (21)

hFS = μFS,G, (22)

hGD = μGD,G, (23)

hF = μF,G, (24)

where FA,C(n) = 1−FA,C(n). Then it is straightforward to get the steady-state system
availability as a function of n0 by

AV (n0) = πG + πV + πA + πMC + πTR + πGD = U(n0)/T (n0), (25)

where

U(n0) = HG,V +
∞∑

x=0

∞∑
w=x

fV,G(w)fV,A(x)
{ n0−1∑

n=0

FA,C(n) + αFA,C(n0 − 1)
}
,

(26)

T (n0) = HG,V +
∞∑

x=0

∞∑
w=x

fV,G(w)fV,A(x)
{ n0−1∑

n=0

FA,C(n)

+μDL,GFA,C(n0 − 1) + βFA,C(n0 − 1)
}
, (27)

FA,C(n) = 1 − FA,C(n − 1) =
∞∑

k=n

fA,C(k), (28)

hG,V = μG,V +
∞∑

n=0

nfV,A(n)FV,G(n) +
∞∑

n=0

nfV,G(n)F V,A(n), (29)

α = (1 − p)hMC + p(hTR + pGDhGD), (30)

β = α + p
{
pFShFS + (1 − pFS − pGD)hF

}
. (31)

In the above expressions, α and β mean that the mean up time and the total mean time
length from state C to G, respectively.

3.3 Optimal Switching Time

Taking the difference of AV (n0) with respect to n0, we define

q(n0) =
{
1 + (α − 1)rA,C(n0)

}
T (n0)

−U(n0)
{

1 + (β − μDL,G − 1)rA,C(n0)
}

, (32)

where rA,C(n0) = fA,C(n)/FA,C(n) is the discrete hazard rate. We make the follow-
ing two parametric assumptions:

Availability Analysis of a Scalable Intrusion Tolerant Architecture 185

Table 1. Dependence of steady-state system availability on parameter r in discrete-time operation

Case 1 Case 2
r n∗

0 AV (n∗
0) Δ (%) n∗

0 AV (n∗
0) Δ (%)

1 ∞ 1 0 1 0.9322 0.0788
2 ∞ 1 0 8 0.9328 0.0162
3 ∞ 1 0 17 0.9338 0.0071
4 ∞ 1 0 25 0.9348 0.0043
5 ∞ 1 0 32 0.9358 0.0031

Case 3 Case 4
r n∗

0 AV (n∗
0) Δ (%) n∗

0 AV (n∗
0) Δ (%)

1 1 0.9322 10.5087 1 0.9322 3.5860
2 1 0.9322 10.1917 1 0.9322 3.4108
3 1 0.9322 9.8861 1 0.9322 3.2414
4 2 0.9324 9.6078 3 0.9326 3.1157
5 3 0.9327 9.3587 5 0.9330 3.0072

(A-1) α + μDL,G < β,
(A-2) αμDL,G < hG,V (β − α − μDL,G).

From the definition it is evident that α < β. The assumption (A-1) implies that the sum
of mean up time after state C and the mean time overhead for switching to a manual
detection mode is strictly smaller than the total mean time length. On the other hand, the
assumption (A-2) seems to be somewhat technical but is needed to guarantee a unique
optimal switching time. These both assumptions were numerically checked and could
be validated in many parametric cases.

We characterize the optimal switching time from an automatic detection mode to a
manual detection mode maximizing the steady-state system availability as follows:

Proposition: (1) Suppose that FA,C(n) is strictly IHR (Increasing Failure rate), i.e., the
hazard rate rA,C(n) is strictly increasing in n, under (A-1) and (A-2). (i) If q(0) > 0 and
q(∞) < 0, then there exist (at least one, at most two) optimal switching time n∗

0 (0 <
n∗

0 < ∞) satisfying the simultaneous inequalities q(n∗
0 − 1) > 0 and q(n∗

0) ≤ 0. The
corresponding steady-state system availability AV (n∗

0) must satisfy

K(n∗
0 + 1) ≤ AV (n∗

0) < K(n∗
0), (33)

where

K(n) =
1 + (α − 1)rA,C(n)

1 + (β − μDL,G − 1)rA,C(n)
. (34)

(ii) If q(0) ≤ 0, then the optimal switching time is n∗
0 = 0, i.e., it is always optimal

to detect in only a manual mode, and the corresponding maximum steady-state system
availability is given by

AV (0) =
hG,V

HG,V + μDL,G

∑∞
x=0

∑∞
w=x fV,G(w)fV,A(x)

. (35)

186 T. Uemura, T. Dohi, and N. Kaio

Table 2. Dependence of steady-state system availability on parameter ξ in discrete-time operation

Case 1 Case 2
ξ n∗

0 AV (n∗
0) Δ (%) n∗

0 AV (n∗
0) Δ (%)

0.01 ∞ 1 0 ∞ 0.9692 0
0.05 ∞ 1 0 ∞ 0.9439 0
0.2 ∞ 1 0 17 0.9338 0.0071
0.5 ∞ 1 0 2 0.9323 0.1113

Case 3 Case 4
ξ n∗

0 AV (n∗
0) Δ (%) n∗

0 AV (n∗
0) Δ (%)

0.01 111 0.9470 2.1128 ∞ 0.9531 0
0.05 8 0.9335 7.2209 15 0.9346 1.9234
0.2 1 0.9322 9.8861 1 0.9322 3.2414
0.5 1 0.9322 10.5898 1 0.9322 3.6307

(iii) If q(∞) ≥ 0, then the optimal switching time is n∗
0 → ∞, i.e., it is always opti-

mal to detect in only an automatic mode, and the corresponding maximum steady-state
system availability is given by

AV (∞) =
hG,V + (μA,C + α)

∑∞
x=0

∑∞
w=x fV,G(w)fV,A(x)

HG,V + (μA,C + β)
∑∞

x=0
∑∞

w=x fV,G(w)fV,A(x)
. (36)

(2) Suppose that FA,C(n) is DHR (Decreasing hazard Rate), i.e., the hazard rate rA,C(n)
is decreasing in n, under (A-1) and (A-2). If AV (0) > AV (∞), then n∗

0 = 0, otherwise,
n∗

0 → ∞.

Proof: Taking the difference of Eq.(32), we obtain

q(n0 + 1) − q(n0) =
∞∑

x=0

∞∑
w=x

fV,G(w)fV,A(x)
[
{T (n0 + 1) − T (n0)} − {U(n0 + 1) − U(n0)}

+rA,C(n0 + 1)
{
(α − 1)T (n0 + 1) − (β − μDL,G − 1)U(n0 + 1)

}
+rA,C(n0)

{
(α − 1)T (n0) − (β − μDL,G − 1)U(n0)

}]
. (37)

If FA,C(n) is strictly IHR, the r.h.s. of Eq.(37) is strictly negative under (A-1) and (A-
2), and the function q(n0) is strictly decreasing in n0. Since the steady-state system
availability AV (n0) is a strictly quasi-concave in n0 in the sense of discrete, if q(0) >
0 and q(∞) < 0, then there exists at least one at most two optimal switching time
n∗

0 (0 < n∗
0 < ∞) so as to satisfy q(n∗

0 − 1) > 0 and q(n∗
0) ≤ 0 which lead to the

inequalities in Eq.(33). If q(0) ≤ 0 or q(∞) ≥ 0, then the function AV (n0) decreases
or increases, and the resulting optimal switching time becomes n∗

0 = 0 or n∗
0 → ∞.

On the other hand, if FA,C(n) is DHR, the function AV (n0) is a quasi-convex function
of n0 in the sense of discrete, and the optimal switching time is given by n∗

0 = 0 or
n∗

0 → ∞.

Availability Analysis of a Scalable Intrusion Tolerant Architecture 187

5 10 15 20 25 30

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0

AV(n0)

n0

Case 1

Case 2

Case 3

Case 4

Fig. 4. Behavior of system availability AV (n0)

4 Numerical Examples

In this section we derive the optimal switching time n∗
0 numerically and quantify the

steady-state system availability. Suppose the following parametric circumstance:
μG,V = 72CμV,G = 15C μV,A = 24CμDL,G = 15CμMC,G = 12CμTR,F =
6CμTR,C2 = 8CμFS,G = 30, μGD,G = 40 and μF,G = 48. Especially we concern
the following four cases:

(i) Case 1: p = 0, i.e., the system state makes a transition from C to MC with proba-
bility one.

(ii) Case 2: p = 0.5 and q = 0.5.

(iii) Case 3: p = 1 and q = 0, i.e., the service operation at C2 is forced to stop with
probability one.

(iv) Case 4: p = 1 and q = 1, i.e., the graceful degradation can be observed with
probability one.

Suppose that fA,C(n) is given by the negative binomial p.m.f.:

fA,C(n) =
(

n − 1
r − 1

)
ξr(1 − ξ)n−r, (38)

where ξ ∈ (0, 1) and r = 1, 2, · · · is the natural number. Figure 4 illustrates the behav-
ior of the steady-state system availability with respect to the switching time n0. From

188 T. Uemura, T. Dohi, and N. Kaio

this figure, it can be checked that each behavior of AV (n0) is rather different from each
other among four cases. Table 1 presents the dependence of optimal switching time and
its associated system availability for varying the parameter r under four different sce-
narios, where the increment Δ is calculated by {AV (n∗

0) − AV (∞)}×100/AV (n∗
0).

By switching from an automatic mode to a manual mode at the best timing, it is seen
that the steady-state system availability can be improved more than the case without
switching to the manual mode. Especially, in Case 3, it is worth noting that the system
availability could be improved up to Δ = 10.5%. Further, we execute the sensitivity
analysis of optimal switching time for varying ξ in Table 2. It could be observed that
the system availability monotonically decreased as ξ increased and that the increment
of system availability was remarkable in Case 3 and Case 4. From these quantitative
results it can be concluded that the control of the switching time would be useful to
improve the system availability.

5 Conclusion

In this paper we have considered an availability models of an intrusion tolerant system
by introducing a control parameter called the switching time from an automatic detec-
tion mode to a manual detection mode. We have derived the optimal time analytically
so as to maximize the steady-state system availability. We have also investigated quan-
titative effects of the optimal control of switching timing in numerical examples. The
lesson learned from the numerical examples was that the optimal switching could im-
prove the system availability effectively. Hence, it has been shown that the combination
between an intrusion tolerance architecture and a control of detection mode was quite
effective in some cases. In the future work, we will examine an effect of the optimal
switching policy on the mean time to security failure which is an alternative depend-
ability/security measure of intrusion tolerant systems.

Acknowledgments

This research was partially supported by the Ministry of Education, Science, Sports and
Culture, Grant-in-Aid for Scientific Research (C), Grant No. 21510167 (2009–2011)
and the Research Program 2008 under the Center for Academic Development and Co-
operation of the Hiroshima Shudo University, Japan.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Transactions on Dependable and Secure Comput-
ing 1(1), 11–33 (2004)

2. Deswarte, Y., Powell, D.: Internet security: an intrusion-torelance approach. Proceedings of
the IEEE 94(2), 432–441 (2006)

3. Jonsson, E., Olovsson, T.: A quantitative model of the security intrusion process based on
attacker behavior. IEEE Transactions on Software Engineering 23(4), 235–245 (1997)

Availability Analysis of a Scalable Intrusion Tolerant Architecture 189

4. Littlewood, B., Brocklehurst, S., Fenton, N., Mellor, P., Page, S., Wright, D., Doboson, J.,
McDermid, J., Gollmann, D.: Towards operational measures of computer security. Journal of
Computer Security 2(2/3), 211–229 (1993)

5. Madan, B.B., Goseva-Popstojanova, K., Vaidyanathan, K., Trivedi, K.S.: Modeling and
quantification of security attributes of software systems. In: Proceedings of 32nd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2002), pp.
505–514. IEEE CS Press, Los Alamitos (2002)

6. Madan, B.B., Goseva-Popstojanova, K., Vaidyanathan, K., Trivedi, K.S.: A method for mod-
eling and quantifying the security attributes of intrusion tolerant systems. Performance Eval-
uation 56(1/4), 167–186 (2004)

7. Ortalo, R., Deswarte, Y., Kaaniche, M.: Experimenting with quantitative evaluation tools for
monitoring operational security. IEEE Transactions on Software Engineering 25(5), 633–650
(1999)

8. Uemura, T., Dohi, T.: Quantitative evaluation of intrusion tolerant systems subject to DoS
attacks via semi-Markov cost models. In: Denko, M.K., Shih, C.-S., Li, K.-C., Tsao, S.-L.,
Zeng, Q.-A., Park, S.-H., Ko, Y.-B., Hung, S.-H., Park, J.-H. (eds.) EUC-WS 2007. LNCS,
vol. 4809, pp. 31–42. Springer, Heidelberg (2007)

9. Uemura, T., Dohi, T.: Optimizing security measures in an intrusion tolerant database system.
In: Nanya, T., Maruyama, F., Pataricza, A., Malek, M. (eds.) ISAS 2008. LNCS, vol. 5017,
pp. 26–42. Springer, Heidelberg (2008)

10. Uemura, T., Dohi, T., Kaio, N.: Availability modeling of an intrusion tolerant system with
preventive maintenance. In: Sheu, S.-H., Dohi, T. (eds.) Advanced Reliability Modeling III
– Global Aspect of Reliability and Maintainability, pp. 655–662. McGraw Hill, New York
(2008)

11. Wang, F., Gong, F., Sargor, C., Goseva-Popstojanova, K., Trivedi, K.S., Jou, F.: SITAR: A
scalable intrusion-tolerant architecture for distributed services. In: Proceedings of 2nd An-
nual IEEE Systems, Man and Cybernetics, Information Assurance Workshop, West Point,
NY (June 2001)

12. Wang, H., Liu, P.: Modeling and evaluating the survivability of an intrusion tolerant database
system. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 207–224. Springer, Heidelberg (2006)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 190–199, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Data Center Consolidation: A Step towards
Infrastructure Clouds

Markus Winter1,2

1 Otto-von-Guericke-University Magdeburg,
Department of Technical and Business Information Systems,

VLBA Lab, P.O. Box 4120, 39016 Magdeburg, Germany
2 Hosting Infrastructure Management, SAP AG,

Raiffeisenring 15, 68789 St. Leon-Rot, Germany
ma.winter@sap.com

Abstract. Application service providers face enormous challenges and rising
costs in managing and operating a growing number of heterogeneous system
and computing landscapes. Limitations of traditional computing environments
force IT decision-makers to reorganize computing resources within the data
center, as continuous growth leads to an inefficient utilization of the underlying
hardware infrastructure. This paper discusses a way for infrastructure providers
to improve data center operations based on the findings of a case study on re-
source utilization of very large business applications and presents an outlook
beyond server consolidation endeavors, transforming corporate data centers into
compute clouds.

Keywords: data center consolidation, virtualization, very large business appli-
cations, VLBA, virtual computing, adaptive computing, grid computing, IaaS,
SaaS.

1 Introduction

Today, application service providers (ASP) face a challenging dilemma. Looking back
at the old monolithic mainframe computing installations of the 1970s, one of the main
drivers to switch to x86 personal computers and the client/server architecture were
significant lower costs for hardware and operations. Now, more than 30 years later, the
x86-architecture has been mostly established as the “traditional” computing platform in
data centers around the world. However, the situation has changed over the years and
we see a different picture today [1]. Looking at corporate data centers, we see large
volumes of servers that were installed over the last years; their number still continues
to grow. In most landscapes it is almost impossible to keep an overview on and track of
the huge “server fleets”. Due to the increasing amount of heterogeneous software in-
stallations and required computing units in corporate environments, the costs for man-
agement and operations of data center infrastructure has been growing ever since.
Some data center operators wish the good old times of a few “giant computers” were
coming back, even though the costs associated with mainframe computing have always
been too high in the past. – Today, however, funding the operations of many small

 Data Center Consolidation: A Step towards Infrastructure Clouds 191

servers with complex software installations is also a significant part of corporate
spending. To make the situation even more difficult, limitations of the x86-architecture
and the increase in processing power1 lead to underutilized hardware usage. The intro-
duction of new software at a company usually requires new server units in the data
center – new applications result in more computing units (“server sprawl”). Sizing of
new physical servers is done with regard to peak situations, thus intensifying efficiency
problems in today’s data centers. Servers consume electric energy, require cooling and
occupy floor space – no matter whether they are highly utilized or underutilized. In
times of global warming, climate discussions, “Green IT” initiatives and intensive
efforts of the entire industry to lower costs, IT decision-makers face more and more
pressure to increase the efficiency of their IT infrastructure and operations [2].

This paper discusses ways to overcome the exposed dilemma, how to consolidate
corporate data center infrastructures and presents a transformation path towards cloud
computing variants. The focus lies on large corporate environments or hosting pro-
viders which act as application service providers (ASP) for very large business appli-
cations (VLBA). Data center operations are defined as the professional mass business
for IT infrastructure, characterized by high volume, specially designed building infra-
structure for high energy consumption, sufficient heat dissipation, access security and
redundancy of all critical components2 [3].

Additionally, this paper provides an excerpt of a case study analyzing data center
resource consumptions of VLBAs to identify potential room for consolidation.

2 New Computing for Data Centers

Given the challenging situation for IT infrastructure providers, new technologies and
concepts are developed to overcome the limitations of traditional physical computing
environments with regards to flexibility, resource management and data center opera-
tion costs. Virtualization is one of the key technologies to abstract computing re-
sources and to separate actual physical resources from their presentation and from
their way of consumption. In general, resources can refer to hardware, software or a
logical component such as an IP or other access address. Virtualization technology
applies to all levels of IT infrastructure, like the virtualization of networks (VLANs)
or the virtualization of computing resources into virtual machines (Virtual Comput-
ing) [4]. It affects the entire data center.

Virtual Computing provides flexible computing resources and the possibility to
consolidate operating system environments onto fewer physical computers. It enables
data center operators to assign computing resources as needed to virtual machines and
to react quickly on changing load situations. Adding new physical servers for each
new operating system environment is no longer necessary, as remaining free capaci-
ties on existing servers can be used for hosting multiple operating system environ-
ments on a single computing unit. Hence, sizing of new environments no longer
requires addressing the maximum peak of an entire application lifecycle but can be
done dynamically and as needed for each virtual server [5]. With this technology, the
traditional relationship between application and physical hardware is redefined to

1 See Moore’s law [6].
2 Office equipment and small departmental server rooms do not fall under that definition.

192 M. Winter

the need of computing resources. Now, IT administrators have the possibility to view
the entire data center as a virtual pool of aggregated resources instead of looking at
physical resource silos.

This view on resources is also known in the area of Grid Computing. The principle
of the interconnected use of computing resources grouped in logical resource clusters
plays an important role supporting capacity management in data centers. In combina-
tion with the flexible assignment of resources through Virtual Computing, data center
operators can deliver computing resources “on-demand” with the requested sizing [7].

Another concept to assign resources in the data center is known as Adaptive Com-
puting. Adaptive Computing focuses on applications and services and enables the
flexible assignment of IT infrastructure, consisting of network, computing nodes and
central storage systems. It can be defined as virtualization of entire complex applica-
tion landscapes – found, for example, in SAP® environments. There, a special
management software called Adaptive Computing Controller (ACC) is available to
manage entire landscapes and the central assignment of resources to SAP applications
[8, 9]. The perspective of Adaptive Computing is from application down to infrastruc-
ture, limited to the size of a single computing node. Virtual Computing, on the other
hand, looks bottom-up from IT infrastructure to applications, sizing and delivering the
most adequate computing node.

3 The Transformation of Data Centers

Due to the described situation and challenges for data center service providers, DC
infrastructure needs to change over the next years. Figure 1 highlights a possible
transformation path from a “traditional” silo operation mode, via a consolidation
phase with “hybrid” operations of internal “resource pool” infrastructures and exter-
nal compute cloud consumption towards a utility computing model, where infrastruc-
ture and entire application software is delivered as a utility service.

Fig. 1. The transformation path for corporate data centers

 Data Center Consolidation: A Step towards Infrastructure Clouds 193

With the technology and principles of Virtual-, Adaptive- and Grid Computing, in
combination with effective automation, IT decision-makers can find a way out of the
infrastructure dilemma. They can transform their data center from a “traditional” silo
operations mode into an internal “infrastructure cloud”. For example, instead of man-
aging 100 physical servers, each with 4 GB of main memory (RAM), as individual
hardware units, data center operators can invest in a resource pool model: Based on
larger computing nodes, they can run four servers, each with 128 GB of RAM, and
use virtualization technology to create 100 virtual machines utilizing resources from
this pool. This brings flexibility and allows them to adjust the resource situation for
each virtual machine (VM) individually. Of course, there are more criteria for sizing
than just RAM. In a real-life scenario, other parameters such as CPU utilization, data
throughput and economic reasons play an important role as well.

However, simply implementing these principles and technologies is not the solu-
tion. There are technical challenges to be overcome along the way. First of all, busi-
ness software in today’s corporate data center environments usually runs on dedicated
hardware. The resources required for a consolidated infrastructure need to be accu-
rately determined to ensure proper sizing and stable operations of “traditional”
VLBAs.

The second challenge is the proper management of the virtualized, consolidated IT
infrastructures described above. Moving away from physical resource silos into
shared resource pools (“internal clouds”) requires a diligent management of available
computing capacity. Where, in the traditional world, resources are basically sitting
and waiting to be consumed whenever the peak situation might occur, in the world of
a consolidated IT infrastructure, these unused resources may be consumed by or allo-
cated to other systems. This leads to a situation where systems compete for available
computing capacity; a set of rules needs to be created and implemented to operate this
competition, the basic necessity being adequate planning.

Looking further down the road at current trends and developments, it is likely that
computing resources will be consumed as a utility service – similar to electrical
power. Several providers already offer “Software as a Service” (SaaS) or “Infrastruc-
ture as a Service” (IaaS), for example Amazon on the cutting edge, making Cloud
Computing available to everyone in the first place. For data center decision-makers,
this is a new dimension of looking at IT resources. The transformation from physical
assets into virtualized corporate compute clouds is one step. However, dealing with
resources that are no longer part of internal IT processes, is a second and more diffi-
cult one. The external cloud brings new challenges, starting with corporate policies,
local as well as international legal matters and security concerns – let alone the tech-
nical difficulties. Therefore, this transition will likely be a phased approach, similar to
the proposal in Figure 1. In the long run, it will go beyond mere data center consolida-
tion – but rather go through a transformation from today’s “silo operations” towards
an IT resource consumption model. However, consolidation is an essential first step
of this journey.

4 Consolidation Study

In order to explore the possibilities for consolidation in server environments for
VLBAs, a case study was initiated to collect resource utilization data. The goal of this

194 M. Winter

study is to support the theory of traditional IT environments being oversized thus
offering significant room for consolidation. With the help of the data collected in this
case study, it should be possible to review the actual physical resource consumption
of VLBAs and to find possible sizing parameters for a consolidated IT infrastructure.

In this paper only an excerpt of the results of this study, including a limited view
on CPU and RAM, is discussed. Information beyond this status report is available in
other publications or will be made available once the project and ongoing analysis
have been completed.

For this case study, a set of approximately 700 physical servers had been selected.
The servers were a subset from a large data center provider containing multiple dif-
ferent customer environments of a global corporation, running mainly SAP database
applications of production, quality assurance and development systems. The servers
were monitored for several months and a three-month timeframe (full business quar-
ter) was selected for detailed analysis.

4.1 Data Collection

To determine the required data for this analysis, first a level of abstraction needed to
be defined. The actual physical capacity of IT resources could be calculated just by
the technical specifications of each system. But in order to gain more actual insight
into the amount of resources effectively consumed by the operated systems, periodic
resource utilization data was collected. The physical server was defined as the reading
point for data collection. This required an applicable choice of abstraction and meas-
urement units.

With regard to the focus of this study, four measurable dimensions were selected to
review server consolidation options: processor load (CPU), main memory consump-
tion (RAM), hard disk throughput (disk input/output (I/O)) and network throughput
(network I/O). All four make up characteristic criteria for the selection of servers and
their connections in a consolidated landscape. – Data stored on hard disks was not
considered, as data throughput is required to have sufficient bandwidth at each indi-
vidual server. Thus, total storage capacity in the backend was not relevant for this
analysis. The four specified dimensions were determined through available routines of
available operating systems and servers monitored over a longer period. The quality
and accuracy of the data was constantly supervised, the collection process monitored.

Nagios3 standard software collected the performance data samples every 1 to 5
minutes for CPU utilization, main memory consumption, network I/O and disk I/O.
To ensure high data quality, the collected raw data was transferred into a separate
database to avoid compression in Nagios built-in round-robin database files. As
preparation for data analysis, the required data was selected out of the available
Nagios measurements. For CPU, this is a percentage value indicating processor utili-
zation.4 For the main memory consumption, the total amount of available RAM and
used RAM was recorded in Gigabytes. Disk utilization was measured in Kilobytes of

3 http://www.nagios.org
4 Based on the hypothesis that there is a significant underutilization of resources, especially

CPU, and the fact that a consolidation target landscape would be built with new and much
more powerful hardware, the inaccuracy of looking at non-normalized CPU data was ac-
cepted for this analysis.

 Data Center Consolidation: A Step towards Infrastructure Clouds 195

read and write operations. Network throughput was measured in Kilobytes of incom-
ing and outgoing traffic. All data was collected in time intervals of 5 minutes. Data
that for technical reasons had to be collected in tighter or wider intervals was aggre-
gated into 5 minute average values to enable comparison.

4.2 Data Analysis

Timeframe for this analysis was the fourth quarter of 2008. Data is available for all 92
days in that period. Unfortunately, not all of the total 718 distinct servers were report-
ing correct data from day one and some of them did not report all four data dimen-
sions properly for the entire timeframe. While this slightly influenced data quality, it
did not significantly impact the analysis due to the high number of samples collected.
For the first eleven days, only 75 servers reported data; starting with day 12, the total
number of monitored servers was included into the collection. These initial difficul-
ties explain the visible interference in Figure 3 that shows the total and consumed
amount of main memory.

The collected data was partitioned into CPU utilization intervals to allow for a
statement regarding CPU utilization in general. The utilization scale ranges from 0%
to 100% CPU utilization, partitioned into 20 intervals of 5% increments. All collected
samples were assigned into one of the intervals. This made it possible to gain an
overview on the frequency in which the collected server data values appeared in
which part of the CPU utilization scale. The resulting CPU data samples per CPU
utilization interval are presented in Figure 2 and show the time servers spent per in-
terval per month. The total amount of data points is considered 100%; Figure 2 dis-
plays the data points in each interval.

An average 68,27% of all collected samples are in the interval between zero and
five percent CPU utilization. All monitored servers spend 93,35% of their online time
with up to a maximum of 30% CPU utilization. Looking at the values above 50%
CPU utilization, they still represent 360.224 data points or almost 67 hours of time
within the three month period when summarized. Percentage-wise this might not

Fig. 2. CPU data samples per CPU utilization interval

196 M. Winter

seem too important, however, it is vital for VLBA landscapes as these 67 hours, when
broken down into calendar days, represent almost 44 minutes per calendar day in
which the system is under load. Looking at the servers causing the load, a more de-
tailed analysis makes it evident that less than 1% of the total number of monitored
servers cause the CPU values of above 50%. This is a first confirmation of the under-
utilization hypothesis as it turns out that CPU utilization is not the bottleneck for the
large majority of monitored systems. Of course, peak situations for servers occur, but
for the summarized majority of system uptime CPU load is in fact rather low. This is
somewhat a contradiction to findings in previous studies, where CPU was assumed as
the bottleneck resource for applications and their consolidation onto fewer physical
hardware [10].

The analysis of main memory utilization followed a slightly different approach.
The available five-minute data points from all servers were summarized to obtain the
total amount of available and consumed memory per time slot. For each calendar day,
the maximum value was identified (peak of the day) and is shown in Figure 3 as the
total amount of available RAM (dashed red line) and as the amount of RAM used per
day (continuous blue line).

The total amount of memory results in a constant line with only slight fluctuations
because of the fluctuating number of servers delivering data. This is no surprise, as
physical servers in live production environments usually do not undergo change to
prevent downtimes.

The amount of memory actually in use results in a more fluctuating line, yet the
fluctuations are still within a very limited scope. This shows that main memory utili-
zation of the analyzed VLBAs was relatively constant. The reasons for this are likely
to be the same: configurations and settings of applications in production environments
do not change frequently; system utilization in the monitored environment was rather
constant.

Overall memory utilization turns out to be comparably low. On average, only
32,26% of the total amount of RAM is in use. This makes it clear that there is indeed

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 100

used RAM

Total RAM

GB RAM

day

Fig. 3. Main memory (RAM) utilization per day

 Data Center Consolidation: A Step towards Infrastructure Clouds 197

room for improvement and consolidation. Even though RAM is a significant cost
driver when purchasing new servers, the results show that a large amount is never
actually used. This makes it necessary to review initial sizing procedures of system
environments for applications.

These results are a second confirmation of the hypothesis that environments are
oversized and resources underutilized. The findings of this case study show that RAM
utilization is rather static and suggest to look at RAM as an initial sizing parameter for
consolidated VLBA environments.

5 Results and Outlook

In this time of global economic crisis, companies fight harder than ever for market
share, and margin pressure increases. Innovations are vital to “achieve more with
less”, companies look at creating more output through less input to be spearheading
the competition. This demand for an increase in efficiency is also seen in IT. IT
decision-makers are asked to streamline their operations and optimize their infrastruc-
tures. Consolidation of applications and hardware in corporate data center environ-
ments has already started and represents a first step into a new era of corporate
computing.

Looking only at the two utilization dimensions CPU load and RAM usage, this
case study has shown that there is significant room for consolidation of physical
server environments in corporate data centers, especially with regards to very large
business applications. It can be stated that CPU load is not a limiting factor for con-
solidation. Assuming that the systems in this case were sized according to the SAP
sizing guidelines5 [11], the utilization is within expected range and within the ven-
dor’s recommendations. As virtual machines can be moved between physical hosts
without downtime, CPU utilization can be load-balanced within an entire physical
resource pool. This is in line with the results of other studies and virtual machine
distribution models with regard to resource consumption [10]. For further sizing cal-
culations, a virtualization overhead should be taken into account.

RAM utilization in this case turned out to be rather constant and as the reconfigura-
tion of RAM usually requires (operating) system downtime. RAM load balancing is
only possible via online migration of VMs between physical hosts, but does not
change the actual consumption of RAM by the application. Due to the more static
resource consumption, RAM utilization was hence recommended as the primary siz-
ing parameter.

After reaching an (assumed) consolidation maximum in highly efficient corporate
data centers, the next step is to ask the question whether computing infrastructure will
after all need to remain in corporate data centers in the future.

The development of the electrical power grid about a hundred years ago comes to
mind where electrical power was initially generated by each factory in their own
power plant. After the power grid was in place, there was suddenly a way of consum-
ing electrical energy from a service provider – and the rest is history [12]. The

5 Sizing is recommended to target 30 - 50% CPU utilization in order to avoid negative impact

on system response times for transactions.

198 M. Winter

ongoing growth of the Internet creates new services and the possibility to consume IT
resources in a way similar to the power grid. Still, data centers are far from facing
extinction. In a next round of consolidation, according to thought leaders in the indus-
try, data centers will scale up to large service providers, and the industry is heading
towards utility computing [13, 14].

Technical challenges aside, there is a need to rethink the operation of VLBAs and
IT infrastructure in general. The transition from “self-produced” computing towards a
consumer role will take some time and require hybrid model architectures to manage
both worlds: local system operations in “home-grown” data center environments on
the one hand and the consumption of computing resources out of a giant compute
cloud on the other. For business applications, topics well-known and lessons learned
during many years of internal operations such as system availability, reliability, ser-
vice levels, interfaces and security need to be mapped onto external cloud providers.
In internal data centers, local access control over hardware, building security and
physical location of data convey a very tangible feeling of safety. This subjective
feeling of having everything under control needs to be developed for IT provided
through external computing resources as well. Where is my data located in the cloud?
Who can potentially access it? From which countries in the world do cloud providers
operate? Are there probably other legal terms of data security and governmental ac-
cess? These and many more questions will have to be answered and legal aspects to
be addressed. In the end, trust is something that requires time and can only partly be
built through technology.

30 years ago, the mainframe faced dramatic change, driven by the motivation to in-
crease efficiency and reduce costs. Today, it is still this same motivation that pushes
the industry forward. Consolidation remains key. Time will tell if the cloud mantra
will prove to be a sustainable model. For sure it offers tangible benefits today and the
promise of even more efficient IT tomorrow.

References

1. Ceruzzi, P.E.: A History of Modern Computing, 2nd edn. MIT Press, Cambridge (2003)
2. Bittman, T.J., Dawson, P.: Virtualization Changes Virtually Everything. Gartner Research,

ID G00156488 (03-28-2008)
3. Sartor, D., Stein, J., Tschudi, W., Xu, T.: High Performance Data Centers – a research

roadmap. Lawrence Berkeley National Laboratory, LBNL-53483, Berkeley, California,
USA (2004),

 http://hightech.lbl.gov/documents/
 DataCenters_Roadmap_Final.pdf (02-20-2009)

4. Nair, R., Smith, J.E.: Virtual Machines – Versatile Platforms for Systems and Processes.
Morgan Kaufmann Publishers/ Elsevier, Amsterdam (2005)

5. Osterburg, S., Pinnow, A., Rautenstrauch, C., Winter, M.: Neue Computing-Grundlagen
für das Rechenzentrum. In: Informatik Spektrum, vol. 32(2), pp. 118–126. Springer, Berlin
(2009), http://www.springerlink.com/content/38l31333342j5843 (12-
16-2008)

6. Tanenbaum, A.S.: Structured Computer Organization, 4th edn. Simon & Schuster, Upper
Saddle River (1999)

 Data Center Consolidation: A Step towards Infrastructure Clouds 199

7. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure, 2nd
edn. Morgan Kaufmann Publishers, San Francisco (2004)

8. Schmalzhaf, G.: SAP Adaptive Computing – Implementation and Operation. Galileo Press,
Bonn (2007)

9. Mißbach, M., Gibbels, P., Karnstädt, J., Stelzel, J., Wagenblast, T.: Adaptive Hardware In-
frastructures for SAP. Galileo Press, Bonn (2005)

10. Bichler, M., Speitkamp, B.: Allocation Problems in Large-Scale Server Consolidation,
TUM Working Paper, ISR-0001-1922.6 (2008)

11. Janssen, S., Marquard, U.: Sizing SAP Systems. Galileo Press, Bonn (2007)
12. Bryant, L., Hunter, L.C.: A History of Industrial Power in the United States. In: The

Transmission of Power, vol. 3, pp. 1780–1930. MIT Press, Cambridge (1991)
13. Carr, N.: The big switch: rewiring the world, from Edison to Google, 1st edn. W.W. Nor-

ton & Company, New York (2008)
14. Foster, I.: There’s Grid in them thar Clouds (2008),

 http://ianfoster.typepad.com/blog/2008/01/
 theres-grid-in.html (2008-03-18)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 200–211, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Decentralized Service Allocation in a Broker Overlay
Based Grid

Abdulrahman Azab and Hein Meling

Dept. of Electrical Engineering and Computer Science, University of Stavanger,
4036 Stavanger, Norway

{abdulrahman.azab,hein.meling}@uis.no

Abstract. Grid computing is based on coordinated resource sharing in a dy-
namic environment of multi-institutional virtual organizations. Data exchanges,
and service allocation, are challenging problems in the field of Grid computing.
This is due to the decentralization of Grid systems. Building decentralized Grid
systems with efficient resource management and software component mecha-
nisms is a need for achieving the required efficiency and usability of Grid sys-
tems. In this work, a decentralized Grid system model is presented in which, the
system is divided into virtual organizations each controlled by a broker. An
overlay network of brokers is responsible for global resource management and
managing allocation of services. Experimental results show that, the system
achieves dependable performance with various loads of services, and broker
failures.

Keywords: Grid computing, Peer-to-peer computing, Virtual organization
management.

1 Introduction

Grid computing is the computing paradigm which is concerned with “coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual organiza-
tions” [1]. A virtual organization (VO) can be defined as a collection of computing
nodes in which each participating node can acquire or provide services from/to other
nodes inside/outside the organization [2]. The main aspect in cloud computing is
transparency, while in Grid computing is coordinated resource sharing. The common
aim of both paradigms is to achieve decrease in the need for additional expensive
hardware and increase in computing power and storage capacities [3]. Building a
decentralized computing infrastructure which fulfills the requirements of both Grid
computing and Cloud computing, requires implementing a decentralized multi-VO
Grid model in which the complexity of the entire system is transparent to regular
participants. For a decentralized multi-VO Grid system, it is required to implement
both, local Resource Management, RM, within each VO, and global RM among the
grid. Two main issues are essential for both local and global RM: decentralized allo-
cation of tasks to suitable nodes to achieve local and global load balancing, and han-
dling of both regular node and broker [1] failures.

 Decentralized Service Allocation in a Broker Overlay Based Grid 201

This paper presents a decentralized multi-VO RM model based on hybrid peer- to-
peer communication [4]. The proposed model is implemented on HIMAN [5, 6] Grid
middleware. The Grid system is divided into a set of virtual organizations. Each VO
contains a set of regular nodes and one broker. Rules of resource sharing within a
virtual organization are well known by each node and controlled and managed by
brokers. A broker is responsible for receiving requests for resources, comparing the
requirements in each request with the resource specifications of the available nodes,
and direct requests to suitable nodes. Brokers from different VOs construct a coopera-
tive collection called, Broker Overlay. The idea is to provide each participating node
with the ability to offer and claim computational resources. In addition, the complex-
ity of the system is transparent to regular nodes in the broker overlay, as each node
interacts only with the attached broker. Both regular node and broker failures are
handled.

Machine organization [7] in most existing Grid systems is either flat [8, 12, 23, and
22] or hierarchical [9, 10, 11, and 17], in a single VO. Multi-VO model is imple-
mented in some Grid systems: EGEE [18] and D4Science [19] implements centralized
task allocation using a central broker. Grid3 [20], which is based on VOMS [16],
implements centralized RM through management servers. DEISA [21] uses a central
batch scheduler for task allocation. In GHOSTS [24], each VO implements local RM
model, and the framework implements centralized global RM. In NorduGrid [25],
information about available resources is stored on dedicated database servers, and
task allocation is carried out by local brokers on client nodes. None of these systems
provides an efficient failure handling for both regular nodes and brokers.

The paper is organized as follows: Section 2 gives an overview for the system ar-
chitecture. Section 3 describes the resource information exchange mechanism. Section
4 describes the service allocation model. Section 5 describes the failure handling
mechanism. Section 6 describes the simulation model and presents the performed
experiments and discussion of the results. Section 7 presents conclusions.

2 Architectural Overview

The proposed architecture is based on global resource sharing based on collaboration
of virtual organizations. Each virtual organization is set up as a domain. Each domain
consists of one domain controller (i.e. Broker), and a collection of regular nodes.
Fig. 1 shows the architecture of the Grid as a collection of virtual organizations.
Components of the grid system are:

A service, in this architecture refers to a computational task. It has five execution
parameters: 1) Required CPU, the computational power required for running the ser-
vice. 2) Required Memory, the memory size required for running the service. 3) Expi-
ration Time, the amount of time to wait before the allocation. 4) Creation Time, the
time at which the service is created for allocation. 5) Allocation attempts, the maxi-
mum number of attempts to deploy the service before it is expired.

A regular node, refers to each non-broker node in the Grid. Each regular node can
be a member of one virtual organization, and can submit and/or run a service. A regu-
lar node is also responsible for periodically sending information about the current
available resource state of the node to its broker. Each regular node has two resource

202 A. Azab and H. Meling

Broker OverlayBroker Overlay

VO VO -- 11

VO VO -- 22

VO VO -- 33

VO VO -- 44 VO VO -- 55

BB--11

BB--22

BB--33

BB--55

BB--44

Broker in the Broker Overlay Broker in the VO Reference to the same node

Fig. 1. Grid architecture

parameters: 1) Available CPU, which refers to the available computational power in
the node, and 2) Available Memory space. Regular is equivalent to Peer in HIMAN,
which contains two components: Worker (W), which is responsible for task execution,
and Client (C), which is responsible for task submission1 [6].

A broker, is a node which works as a virtual organization controller, can also work
as a regular node in case of lack of available regular nodes. It is responsible for: 1)
Allocating services to suitable nodes. A suitable node for a service is elected by per-
forming a matchmaking process between the service requirements and the available
resources of attached Grid nodes [13]. 2) Storing the current resource state for local
nodes (i.e. in the same virtual organization) as well as global nodes (i.e. in other vir-
tual organizations).

A virtual organization, is an overlay of nodes, which may be allocated in differ-
ent regions and members of different organizations. Each VO is composed of one
broker and regular nodes. Each VO is structured as a star logical topology, so that;
communication is between the broker and regular nodes. There is no communication
between regular nodes within the same virtual organization.

The broker overlay, is the overlay network between brokers through which com-
munication and data exchange between different virtual organizations is performed.
For the broker overlay, four different network topologies are assumed: Ring, hyper-
cube, wire-k-out, and fully connected. Based on the communication topology, each
broker will have a number of neighbor brokers, those brokers with which direct com-
munication can be established.

1 In HIMAN, the client component is responsible also for task allocation [6]. In this model, it is

carried out by the broker.

 Decentralized Service Allocation in a Broker Overlay Based Grid 203

3 Resource Information Exchange

Resource information for each participating node is stored in a three field Resource
Information Data Block, RIDB. The three fields represent: 1) Available CPU, 2)
Available Memory, and 3) Time of last read. The third field, time of last read, is in-
cluded to indicate if this read is too old so that it may not be dependable for allocation
actions.

Each broker maintains a set of RIDBs for all nodes in the system. Periodically,
each regular node in a virtual organization reads the local current resource state (i.e.
available CPU, and available Memory) in a data block and sends this block along with
the reading time to its broker. Each time a broker receives a resource information
block from a local node; it removes the previously stored reading, and replaces it with
the current. Brokers also periodically exchange resource information through the
broker overlay. Each broker performs one exchange operation with a single neighbor
broker2 each time unit. The exchange operation is done by updating each resource
information data set in each of the two brokers with the newest data blocks.

4 Service Allocation

Allocation of services to nodes is done through brokers. Submitting new services to
brokers for allocation can be implemented in two ways: centrally, through a service
allocation server connected to all brokers, or through the brokers by including a ser-
vice allocation portal in each broker. In this work, allocation through the brokers is
implemented. A service allocator component is included in each regular node for
forwarding services to the attached broker. The allocation model is depicted in Fig. 2.

Each broker has a service queue. When a service allocator sends a new service to a
broker, it is automatically appended to the end of the service queue. Each time unit a
broker picks the first service from the queue and starts a lookup process among the
RIDBs, in order to find a suitable node with matching resource state to the resource
requirements of the service. The Allocation algorithm is described in Fig. 3. The bro-
ker starts the lookup first among RIDBs of the local nodes. If no suitable resource
found, the broker repeats the operation among RIDBs of global nodes. If a global
node matches, the broker passes the service to that node’s broker with high priority,
so that it will be placed at the first position in the queue. The reason is to reduce the
allocation time since there has been already previous allocation attempt(s). If there is
no matching global node found, the service is passed to any neighbor broker, based on
the topology. The allocation attempts parameter of a service is decremented each time
the service is transferred to a new broker queue.

4.1 Service Validation Parameters

Each time unit, a broker checks the expiration time and allocation attempts values for
each service in the local service queue. For a service S:

2 Neighbor brokers for a broker are those which it has direct communication with, according to

the topology of the broker overlay.

204 A. Azab and H. Meling

If (S.ExpirationTime < (CurrentTime – S.CreationTime) OR
S.AllocationAttempts ==0)
 // Service S is expired

Remove(S); //from local service queue

q4

q3

q2
q1
q0

q4

q3

q2
q1
q0

q4

q3

q2

q1
q0

B2

B3
B1

VO VO -- 11

VO VO -- 22

VO VO -- 33

Fig. 2. Service Allocation model

5 Failure Handling

Two types of failure are considered: regular node failure and broker failure. Regular
node failures are managed in the same failure handling mechanism in HIMAN [6, 15].
In this paper, focus is on broker failure. In a virtual organization, it is assumed that
each regular node has direct communication only with its broker. In addition, each
node in the Grid holds a list of information about all existing brokers in the broker
overlay. This information is updated periodically in regular nodes through their local
brokers.

When a broker failure occurs, a regular node will detect the broker failure when
it attempts to send its resource information to the broker. In case of broker failure,
all regular nodes in the local virtual organization of the failed broker will be de-
tached from the Grid. Once a broker failure is detected, a regular node sends a
membership request to the first broker in the list. If the request is granted, the node
will set the new broker as the attached broker, and add it as a neighbor; otherwise
the request is repeated to the next broker in the list. Fig. 4 describes the failure han-
dling algorithm implemented in regular nodes. The algorithm is repeated each time
unit.

 Decentralized Service Allocation in a Broker Overlay Based Grid 205

Service S
Received

Matching
Local Node (Nx)

Matching
Global Node (Ny)

Pass S to
a neighbor Broker Bx

Pass S to
Broker(Ny)

Priority(S)
= High

Set S = Q(0),
Remove Q(0)

Start

Check
Service Queue

Empty

Deploy to Nx

End

yes

no

yes

no

no yes

yesno

Allocate in Q(0)Allocate in Q(n+1)

Service Allocator
Submits a service S

Periority(S) = Normal

Allocate from
local queue
(Broker)

Add new
service to the
local queue
(Broker)

Service Allocator
(regular node)

Priority(S) = High
S.DeplymentAttempts - = 1

Fig. 3. Service Allocation algorithm

Start

Rs = Current Resource State

End

Call
MyBroker.GetState(Rs, Me)

GetState(Rs,x,node)

Update Rs(node)

Regular NodeBroker

My Broker
Alive?

Request Membership
From another Broker B

Request
Granted?

Set MyBroker = B

yes

no

no

yes

Fig. 4. Failure handling, and resource information sending algorithm

206 A. Azab and H. Meling

6 Performance Evaluation

The simulation model is built using PeerSim [14]; a Java-based simulation-engine
designed to help protocol designers in simulating their P2P protocols. This work is
based on cycle-based simulation.
GridNode class is a reference for node objects. GridAllocator and Grid-

FailureControl classes are included as references for Control objects which
simulate service allocation and failure handling. Three cycle-driven Protocol classes
are also built: 1) Grid CD Protocol, included in each regular node and is re-
sponsible for communicating with the attached broker and sends the resource infor-
mation in each simulation cycle. 2) Allocation Protocol, included in each
regular node and is responsible for responding to the Allocation requests from the
broker. 3) Grid Broker Protocol, included in each broker node for performing
the tasks associated with the broker (described in the previous sections). The Idle
Protocol is in the main PeerSim package and is included in each node to be re-
sponsible for establishing communication with neighboring nodes. Fig. 5 describes
the Grid simulation model and the communication between different protocols.

To evaluate the performance of the proposed architecture, three performance met-
rics are used: Validity of stored resource information, Efficiency of service allocation,
and Impact of broker failure on resource information updating. Let N denote the total
Grid size, and M be the number of VOs.

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Broker Protocol

Broker

Service
Allocator

Broker Protocol

Broker

Broker
Overlay

Broker
Overlay

Idle ProtocolIdle Protocol

Fig. 5. Grid simulation model

 Decentralized Service Allocation in a Broker Overlay Based Grid 207

6.1 Validity of Stored Resource Information

This metric is implemented through measuring the efficiency of the resource informa-
tion exchange algorithm in keeping resource information up to date. The implemented
methodology is to depict the deviation of the reading time values of RIDBs stored in
the resource information data set, from the current cycle in a broker, with the simula-
tion cycles. The results are read from one broker. For this performance metric, to-
pologies for the broker overlay are ring and fully connected. A total of 120 simulation
cycles are used. Two experiments are performed with the following configuration: 1)
N = 100, K = 20. 2) N = 500, M = 100. The results are shown in fig 6.

0

1

2

3

4

5

6

1 10 19 28 37 46 55 64 73 82 91 100 109 118

Cycles

D
ev

ia
tio

n
 fr

o
m

 c
u

rr
en

t c
yc

le
 Fully connected Ring

a) N = 100, M = 20

0.1

1

10

100

1 10 19 28 37 46 55 64 73 82 91 100 109 118

Cycles

D
ev

ia
tio

n
 fr

o
m

 c
u

rr
en

t c
yc

le

Fully connected Ring

b) N = 500, M = 100

(log scale)

Fig. 6. Deviation of the resource information reading time from the current cycle among simu-
lation cycles

As expected Fig. 6 shows that the deviation is much more less for the fully con-
nected topology than for the ring topology. In addition, when the network size and the
number of brokers were increased, in experiment 2, the deviation remained at the
same level for fully connected topology, but increased for the ring topology. This can
be attributed to the fact that, in a fully connected topology, all brokers are neighbors
and can exchange resource information. This increases the probability of getting
fresher data. In the ring topology a broker has only two neighbors. Increasing the
number of brokers, the number of broker neighbors increases for the fully connected
topology, but remains two for the ring topology. This reduces the chance of reaching
data stored in far brokers (i.e. with large number of hops between) in ring topology,
so, the deviation increases.

6.2 Efficiency of Service Allocation

In this metric we measure the efficiency of the allocation algorithm for distributing
services among available suitable nodes, using different broker overlays. The network
size is fixed to 500 nodes, and 100 virtual organizations. The implemented methodol-
ogy is to depict the total number of waiting services, in broker queues, and the num-
ber of expired services with the simulation cycle. The results are collected from all
brokers.

208 A. Azab and H. Meling

1

10

100

1000

10000

1 113 225 337 449 561 673 785 897 1009 1121 1233 1345 1457

Cycles

W
ai

tin
g

se
rv

ic
es

10 services/ 10 cycles

20 services/ 10 cycles

Fig. 7. Number of waiting services plotted against simulation cycles for periodic allocation
using a fully connected broker overlay topology, for 10 and 20 services per 10 cycles

The main allocation method is: One broker periodical allocation. In this method,
nodes of one VO deploy a number of services to the broker each specific number of
cycles. The idea is to focus all the allocation traffic on one broker, as the worst case,
to measure the efficiency of service exchange. Only the fully connected topology is
tested with a total number of cycles of 1500. Two experiments are performed with the
following configuration: 1) Total of 1500 services deployed as 10 services per 10
cycles. 2) Total of 3000 services deployed as 20 services per 10 cycles. The results
are depicted for experiment 1 and experiment 2 in fig 7 using logarithmic scale.

In Fig. 7, it is clear that in case of allocating 10 services every 10th cycle; the sys-
tem can produce a dependable performance. It is noticed that some bottlenecks can
occur, but the system can recover. In case of allocating 20 services every 10th cycle, it
is clear that the system becomes overloaded with service allocation requests. This
occurs as a result of submitting all services to one broker. It can be concluded that, in
periodical allocation, the allocation ratio of 10 services every 10th cycle (i.e. 1 Ser-
vice/ cycle), is acceptable and can be handled in a Grid system of N >= 500, and
100 brokers with fully connected broker topology. If the ratio increased to 2 services/
cycle, the system, with the same network size will become overloaded.

6.3 Impact of Broker Failure on Resource Information Updating

The aim of the experiments in this section is to measure the impact of broker failures
on the validity of stored resource information. Experiment 2 in Sec 7.1, is repeated
with adding injected broker failures during the simulation. With the existence of
broker failures, it is expected that the deviation of the reading time values of RIDBs
from the current cycle will increase due to failure. The reason is that resource infor-
mation of the regular nodes which have been attached to the failed broker, will remain
old and not updated until they are attached to other brokers and start sending resource
information blocks. In the following experiments, a new parameter is taken into

 Decentralized Service Allocation in a Broker Overlay Based Grid 209

account: Data Age, the maximum age, in cycles, of resource information in a broker
resource data set. In each simulation cycle, the broker protocol checks the reading
time of each block in the resource information data set. If the reading time of a block
is < (Current time – Data Age), then, this block is removed from the data set. If a new
block for the same node is received later, in an exchange operation, it is added to the
data set. The following experiments are performed by varying the value of Data Age.

Four topologies are used: ring, fully connected, and Wire-k-Out (k = 60), and hy-
per-cube. The network size is fixed to N = 500, and M = 100. The number of simula-
tion cycles is 300. Two experiments are performed with varying the total number of
failures: 1) Data age of 10 cycles with 4 injected broker failures, and 2) Data age of
20 cycles with 8 injected broker failures. The results are depicted in fig 8.

0

2

4

6

8

10

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289

Cycles

D
ev

ia
ti

o
n

 f
ro

m
 c

u
rr

en
t

cy
cl

e Data age = 10, 4 Failures Data age = 20, 8 Failures

 a) Ring broker overlay topology

0

2

4

6

8

10

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290
Cycles

D
ev

ia
tio

n
 fr

o
m

 c
u

rr
en

t c
yc

le
Data age = 10, 4 Failures Data age = 20, 8 Failures

 b) Fully Connected broker overlay topology

0

2

4

6

8

10

1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286

Cycles

D
ev

ia
tio

n
 fr

o
m

 c
u

rr
en

t c
yc

le Data age = 10, 4 Failures Data age = 20, 8 Failures

 c) Wire-k-Out broker overlay topology, k = 60

0

2

4

6

8

10

1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286
Cycles

D
ev

ia
tio

n
 fr

o
m

 c
u

rr
en

t c
yc

le

Data age = 10, 4 Failures Data age = 20, 8 Failures

 d) Hyper-cube broker overlay topology

Fig. 8. Impact of failures on the deviation of the resource information for: data age of 10 cycles
with 4 injected broker failures, and data age of 20 cycles with 8 injected broker failures

In Fig. 8 it is clear that when the Data Age value decreases, the impact of failure
decreases. This is because old data associated with unreachable nodes is periodically
deleted from the resource information data sets. It is also clear that for fully con-
nected, wire-k-out, and hyper-cube topologies, the system can recover from failures
and return to stable state. In case of ring topology, the deviation has terrible variation
and unstable. This can be described that, because of the lack of possible direct com-
munications between brokers, it takes time for a broker to reach data stored in non-
neighbor brokers. It can also be noticed that the magnitude of deviation caused by
failure increases each time a new failure occurs, in fully connected, wire-k-out, and
hyper-cube topologies. This increase is not noticed in ring topology. This increase can

210 A. Azab and H. Meling

be described as follows: when a broker fails, all attached nodes attempt to join virtual
organizations of other brokers. As the number of failures increases, the number of
regular nodes attached to existing brokers also increases, So when a failure occurs
then, the number of detached nodes will be larger than those in the previous failures,
which causes increase in the number of old data blocks in brokers’ data sets.

It can be concluded that the ring topology which is implemented in many hybrid
peer-to-peer systems, is not applicable in case of assuming broker failures.

7 Conclusions

Grid simulation model which is built based on the concept of collaboration of virtual
organizations has been presented. Global data exchange between virtual organizations
has been implemented using the overlay network between brokers, based on different
topologies. Four topologies for the broker overlay has been discussed and imple-
mented. Two main algorithms have been described: resource information exchange,
and service allocation algorithm. Performed experiments aimed at evaluating the
performance of both algorithms with different broker overlay topologies and in the
presence of broker failures. Results show that, the system can adapt to some extent to
the service deploying load, and achieve required performance. Resource information
exchange algorithm is efficient for the tested topologies, but in case of ring topology,
it biases to instability in case of failures, and slow in updating resource information
data due to the lack of possible direct communications between brokers.

Broker overlay Grid management model retains the system decentralization and
increases the scalability. Ring broker overlay topology is not applicable in case of
broker failures. As a future work, other collaboration aspects in a multi-virtual or-
ganization environment (e.g. security and rules of sharing) will be considered.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J. Supercomputer Applications 15(3) (2001)

2. Foster, I.: What is the Grid? A Three Point Checklist. In: GRIDToday (July 20, 2002)
3. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree

Compared. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10 (2008)
4. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution

technologies. ACM Computing Surveys 36(4), 335–371 (2004)
5. Kholidy, H.A., Azab, A.A., Deif, S.H.: Enhanced “ULTRA GRIDSEC”: Enhancing High

Performance Symmetric Key Cryptography Schema Using Pure Peer To Peer Computa-
tional Grid Middleware (HIMAN). In: ICPCA 2008, vol. 1, pp. 26–31 (2008)

6. El-Desoky, A.E., Ali, H.A., Azab, A.A.: A Pure Peer-To-Peer Desktop Grid framework
with efficient fault tolerance. In: ICCES 2007, pp. 346–352 (2007)

7. Krauter, K., Buyya, R., Maheswaran, M.: A Taxonomy and Survey of Grid Resource
Management Systems. Software—Practice And Experience 32, 135–164 (2002)

8. Condor project, http://www.cs.wisc.edu/condor/
9. The Globus toolkit, http://www.globus.org/toolkit/

 Decentralized Service Allocation in a Broker Overlay Based Grid 211

10. Open-source software for volunteer computing and grid computing,
 http://boinc.berkeley.edu/

11. Kacsuk, P., Podhorszki, N., Kiss, T.: Scalable desktop Grid system. In: Daydé, M., Palma,
J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds.) VECPAR 2006. LNCS,
vol. 4395, pp. 27–38. Springer, Heidelberg (2007)

12. Luther, A., Buyya, R., Ranjan, R., Venugopal, S.: Peer-to-Peer Grid Computing and a.
NET-based Alchemi Framework. Wiley Press, New Jersey (2005)

13. Azab, A.A., Kholidy, H.A.: An adaptive decentralized scheduling mechanism for peer-to-
peer Desktop Grids. In: ICCES 2008, pp. 364–371 (2008)

14. Montresor, A., Jelasity, M.: PeerSim: A Scalable P2P Simulator,
 http://peersim.sourceforge.net/

15. El-Desoky, A.E., Ali, H.A., Azab, A.A.: Improving Fault Tolerance in Desktop Grids
Based on Incremental Checkpointing. In: ICCES 2006 (November 2006)

16. EU DataGrid Java Security Working Group. VOMS Architecture v1.1,
 http://grid-auth.infn.it/docs/VOMS-v1_1.pdf

17. Asia-Pacific Grid, http://www.apgrid.org/
18. EGEE: Enabling Grids for E-Science in Europe, http://public.eu-egee.org/
19. D4Science: DIstributed colLaboratories Infrastructure on Grid ENabled Technology 4

Science. http://www.d4science.eu/
20. Gardner, R.: Grid3: An Application Grid Laboratory for Science. In: Computing in High

Energy Physics and Nuclear Physics 2004, Interlaken, Switzerland, September 27-October
1, p. 18 (2004)

21. Lederer, H., Pringle, G.J., Girou, D., Hermanns, M.-A., Erbacci, G.: DEISA: Extreme
Computing in an Advanced Supercomputing Environment. NIC Series, vol. 38, pp. 687–
688 (2007)

22. Coulson, G., Clarke, M.: A Distributed Object Platform Infrastructure for Multimedia Ap-
plications. Computer Communications 21(9), 802–818 (1998)

23. Boloni, L., Jun, K., Palacz, K., Sion, R., Marinescu, D.C.: The Bond Agent System and
Applications. In: Kotz, D., Mattern, F. (eds.) MA 2000, ASA/MA 2000, and ASA 2000.
LNCS, vol. 1882, pp. 99–113. Springer, Heidelberg (2000)

24. Kooburat, T., Muangsin, V.: Centralized Grid Hosting System for Multiple Virtual Or-
ganizations, ANSCSE10 (March 22-24, 2006)

25. NorduGrid: Nordic Testbed for Wide Area Computing and Data Handling,
 http://www.nordugrid.org/

DisTec: Towards a Distributed System for
Telecom Computing�

Shengqi Yang, Bai Wang, Haizhou Zhao, Yuan Gao, and Bin Wu

Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia,
Beijing University of Posts and Telecommunications,

Beijing, China
sheng_qi.yang@yahoo.com.cn

Abstract. The continued exponential growth in both the volume and
the complexity of information, compared with the computing capacity
of the silicon-based devices restricted by Moore’s Law, is giving birth
to a new challenge to the specific requirements of analysts, researchers
and intelligence providers. With respect to this challenge, a new class of
techniques and computing platforms, such as Map-Reduce model, which
mainly focus on scalability and parallelism, has been emerging. In this
paper, to move the scientific prototype forward to practice, we elaborate
a prototype of our applied distributed system, DisTec, for knowledge
discovery from social network perspective in the field of telecommuni-
cations. The major infrastructure is constructed on Hadoop, an open-
source counterpart of Google’s Map-Reduce. We carefully devised our
system to undertake the mining tasks in terabytes call records. To illus-
trate its functionality, DisTec is applied to real-world large-scale telecom
dataset. The experiments range from initial raw data preprocessing to
final knowledge extraction. We demonstrate that our system has a good
performance in such cloud-scale data computing.

1 Introduction

Large-scale data interpreting, computing and analyzing have stimulated great
interests in recent years, while the emergence of modern communication facili-
ties has made these problems ubiquitous [1]. The resulted various applications
and methods have been widely implemented not only in research domains, such
as biology, climate modeling, energy systems, homeland security, and compu-
tational science [2, 3], but also in human daily lives, such as emails, calls and

� This work is supported by the National Natural Science Foundation of China under
Grant No.60402011, the National Key Technology R&D Program of China under
Grant No.2006BAH03B05. It is also supported by IBM China Research Laboratory,
the Specialized Research Fund for the Joint laboratory between Beijing Univer-
sity of Posts and Communications and IBM China Research Laboratory (Project
No.JTP200806014-3).

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 212–223, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

DisTec: Towards a Distributed System for Telecom Computing 213

increasing mature WWW-based applications [4,5,6]. While especially for the new
types of services enabled by Cloud Computing most recently, the sheer volume
of data has led these applications to parallelism or distribution on commodity
clusters [7,8].

In today’s extremely challenging business environment, telecom operators are
under intense pressure to manage customer relationships, process call logs and
make business-oriented solutions. Generally, all of these operations are tightly
relied on analysis of terabytes of Call Detail Records (CDRs). High-end data
warehouses and powerful Business Intelligence (BI) solutions are thus becom-
ing essential tools to help carriers meet profit goals [9, 10, 11]. Meanwhile, the
Map-Reduce [4] computational model, first popularized by Google for handling
extremely large-scale data, is widely applied both in specific research [12, 3, 8]
and public utilities [13,14,15]. This up-to-date technique and its related projects
[16,14] create particular opportunities for both telecom operators and high-level
service providers.

In response to these challenges and opportunities, in this work, we introduce
our on-going constructing system, DisTec, to provide access to huge telecom
datasets and business solutions for telecom marketing. Basing on a distributed
cluster infrastructure and Hadoop [5] platform built on it, a number of data min-
ing algorithms were re-implemented parallely. More importantly, we elaborate
several application scenarios as real-word requirements of telecom industry, with
the aid of methods of social network analysis (SNA). As a system, we also resolve
to provide an unified process of applications, ranging from data preprocessing
to result reports generating. By employing a large volume of CDRs obtained
from telecom operator, we validate our system from the view of scalability, ef-
fectiveness and efficiency. In summary, DisTec takes the following challenges as
its destination as well as the contribution to this work:

– Towards a comprehensive architecture, DisTec integrates legacy systems
and provides a layer of virtualization to overcome underlying variety and
complexity.

– DisTec stores large scale CDRs in a distributed manner and provides the
capability of data-intensive computing.

– DisTec provides timely and effective solutions for telecom operators regard-
less of the sheer volume of data.

– Based on call network, novel SNA methods are proposed to assist operator
marketing and CRM operations.

– APIs and user-end tools have been published for accessing the services of
DisTec conveniently and safely.

The rest of this paper is organized as follows: Section 2 presents a rough descrip-
tion of preliminary knowledge. Section 3 introduces an overview of our systems.
Implementation and critical features are discussed in section 4. In Section 5, we
are devoted to the exploration of a large volume of call records. Experimental
results are soundly presented. Section 6 briefly discusses our experience in using
Hadoop. Finally, we conclude our work in Section 7.

214 S. Yang et al.

2 Preliminary

2.1 Map-Reduce Model and Hadoop Implementation

Inspired by the map and reduce primitives present in functional programming
languages [4], Map-Reduce highly abstracts previous complex parallel compu-
tation into a fault-tolerant, data distribution and load balancing library. As a
open-source implementation, Hadoop [5] closely resembles Google’s [4] and re-
ceives numerous contributions from both enthusiastic developers and industrial
giants, such as Yahoo, Amazon, eBay, etc. After initially launched, a job auto-
matically partitions the input into a set of logical splits. Then Mappers will be
invoked to handle the splits that have been assigned to them by the Master.
These Mappers are geographically distributed in order to process the splits of
data locally. The output is temporarily stored in a local intermediate file, which
will be accessed further by the Reducer. Reducers will be invoked not until all
map tasks have finished. They will iterate all values that share the same key and
then output final results. Master plays the role of central commander, which
coordinates Mappers and Reducers. This deliberate device efficiently simplifies
the schedule task [17].

2.2 Social Network Analysis

A social network is generally represented as a graph-like structure made of nodes
(individuals or organizations, such as persons or web sites) and links (a specific
type of interdependency, such as kinship and friendship). Because network based
complex social structure can well capture the intricate connection properties of
individuals, social network analysis has gained a significance both in scientific
works [18, 19, 10, 9] and in industrial applications [20, 21] during the past few
years. For its inherent facility in revealing patterns of human communication,
retrieved call network from CDRs can well provide major business insights for
designing such strategies [9].

3 Constructing Methodology and Application Scenarios

We next briefly describe the overview architecture (also as a blueprint) of DisTec.
As Fig. 1 presents, DisTec has a hierarchical architecture consisting four main
layers: infrastructure, basic service, high layer service and public interface.

Infrastructure refers to the underlying architecture, including cluster envi-
ronment, layer of virtualization, distributed computing platform [15, 5, 13] and
data management utilities [22, 6, 23]. As one of enabling technologies, virtu-
alization multiplex hardware and thus provides flexible and transparent per-
spective [12,7]. Besides, the key benefits of Hadoop - simplicity, scalability and
fault-tolerance [3] - also facilitate platform managers and upper layer service
providers (SPs).

DisTec: Towards a Distributed System for Telecom Computing 215

Fig. 1. DisTec overview

Fig. 2. Application scenarios in DisTec

Basic service is built on top of the virtualization layer, intending to provide
both a general support of high layer applications and a channel for end-users to
access underlying utilities and metadata. Traditional Algorithms here have been
re-designed in a Map-Reduce form. Statistic and query are also implemented
efficiently to face large-scale datasets.

High layer service mainly provides four kinds of services: Preprocess, Anal-
ysis, Data Mining & SNA and Solutions. These four parts can be served as
undependent applications or be organized as a flow that can be executed one
pass. Service in this layer, such as complex algorithms of data mining and
SNA, involve several basic services and produce a number of intermediary
results.

216 S. Yang et al.

Table 1. Hardware Environment

Type Nnode CPU ROM Capacity OS DBMS
HPC 1 Xeon 2.60GHz ×4 6G 600G Win Server Win SQL
HPC 1 Xeon 2.00GHz ×4 4G 250G Red Hat 4
HPC 1 Xeon 2.40GHz ×4 6G 250G Red Hat 4 Oracle

Cluster 401 Xeon 3.20GHz ×2 2G 6T Red Hat 4 ∗2

Public Interface render end-users with services to conveniently access hard-
ware, software, and data resource. To achieve this destination, we publish three
kind of interfaces to users: Web Service, Remote Method Call and API.

Many activities use software services as their business basis [7]. Hence it is
essential to make services accessible to various users through local or Internet-
based interfaces. To provide flexible service as well as ensure the safety of our
system, we predefine several user roles, including developer, researcher, data
manager, domain expert, analyst and decision maker. Fig. 2 demonstrates the
possible application scenarios of DisTec associated with its potential users.

4 Implementation

4.1 Hardware Construction

Table 1 summarizes the hardware environment of DisTec. It can be seen that
different platforms have been incorporated in DisTec via virtualization tech-
nique. On top of cluster, HDFS (Hadoop Distributed File System) organizes
huge dataset into even sized blocks and provides high throughput access to data
blocks while hides its obscure construction from developers.

4.2 Data Model

Based on HDFS, a set of open-source data management software [22,23,24] have
been employed to satisfy high layer OLAP-like operations. Fig. 3 demonstrates
a row structure in the table that we store CDRs. Row key ”123” is an identity
number which represents a telecom service subscriber. The content of the row
is grouped by two column families. The first family (”cust info:”) contains the
basic registration information, such as customer identity, age, sex, city code, etc.
The second family (”call info:”) contains the detailed call information associated
to this subscriber. We organize cell values according to customer’s call partners.
Each cell contains all the call information between the customer (”123”) and a
specific partner (such as ”456” or ”789”). By using the timestamp mechanism
of HBase, each slice in a cell represents a call event between the customer and
his(her) call partner and the timestamp is set to be call’s time. HBase physically

1 Hadoop platform is deployed on cluster composed of 1 master and 32 slaves.
2 Under constructed using [5,22,23,24].

DisTec: Towards a Distributed System for Telecom Computing 217

Fig. 3. An example of row that stores CDRs in DisTec

distributes large-scale CDRs and is particular well adapted to data-intensive
operations [22].

4.3 Critical Requirements

There are still some vital requirements for constructing a comprehensive dis-
tributed system. Although some of them are beyond the scope of this work, we
list them as our possible future works:

– QoS: The services provided by DisTec should guarantee QoS for users, such
as CPU bandwidth and memory size.

– Security: As in [7], DisTec offers security services and credential delegation
to access available resources in a virtual organization.

– Service flow: Complicated demands of users are usually composed by a
number of inside services in DisTec. These basic services should be performed
coordinately.

– Control: DisTec provides a centralized control via the master node, which
schedule job tasks, report execution status and recover from mistakes.

5 Case Studies

We next validate DisTec by an analyzing procedure. The data employed here
comes from CDRs of a telecom operator, describing call behaviors of people in
a city in China. The raw data spans 5 months and is as large as 210 gigabytes
(0.72 billion call records). Each call record contains 40 detailed attributes, in-
cluding information of customers, calls and switches. Our experiments on this
huge dataset are inspected from the scalability and the performance.

5.1 Preprocessing

Raw data directly extracted from switch log may be extremely large, mixed with
abundant irrelevant attributes and missing values. Thus it is an important step
to smooth out noise, select proper attributes and correct inconsistence in the raw
data. Specifically, this step includes anonymous replacing, attribute selection and
records selection.

218 S. Yang et al.

0 2 4 6 8 10
40

45

50

55

60

Concurrent map tasks per node

T
im

e

(a) Concurrent maps performance

0 2 4 6 8 10
4

6

8

10

12

14

16

18

Concurrent maps per node

T
im

e

(b) Computing performance per map

0 1 2 3 4

x 10
8

100

200

300

400

500

Records

T
im

e

y = 1.2e−006*x + 96

test point
 best fit

(c) Transformation performance

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

P
r(

X
 ≥

 x
)

Degree

(d) Degree distribution

Fig. 4. Preprocess

For its extremely large scale, we can not have a complete performance ex-
periments. Hence we just employ a small section of data (12G) to introduce
our experience in using distributed computing platform. Fig. 4(a) shows that
the peak performance appears when there are 2 concurrent maps on each node.
When the concurrent map number is more than five per node, the performance
would decay even below that of one per node. Moreover, we also investigate
time consumed by one map. The result in Fig. 4(b) shows when map num-
ber increases, the average time consumed by each task decreases significantly.
At the same time, I/O overhead begins to dominate CPU time and thus the
integrated performance decays. Therefore it is an important task to make a
balance between number of map tasks and the efficiency to arrive at an
optimum result.

After preprocessing, raw data is reduced into 45 gigabytes (0.36 billion call
records). Before come into analysis, another task is to transform call records
into an appropriate format. Especially in SNA, data is generally constructed as
a network, represented as adjacency list. Fig. 4(c) depicts the time consumed in
this transformation with respect to different input records size. We find out that
the time spent is linearly correlated with the input size. It takes less than 10
minutes to transform 0.36 billion records into a network containing 1.5 million
customers and their detailed call info. The degree distribution is described in
Fig. 4(d).

DisTec: Towards a Distributed System for Telecom Computing 219

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of subscriber

P
er

ce
nt

ag
e

of
 c

hu
rn

degree
neighbor churn ratio
reference

(a) Simple churn prediction

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of subscriber

P
er

ce
nt

ag
e

of
 c

hu
rn

SPA
reference

(b) SPA churn prediction

Fig. 5. Churn prediction

5.2 Customer Churn

The problem of churn prediction has been addressed by academicians as well
as BI practitioners. In this subsection, we demonstrate an example of churn
prediction using DisTec. Compared with traditional solutions, such as Bayes
classification and Decision Tree, which mainly rely on customer attributes (pro-
files), however here we focus on the link properties of customers. In Fig. 5(a),
the red line shows that the customer who has low degree in the call network
would more likely churn. The green line shows that a user probably churns if
his(her) friends has a high churn ratio. Accordingly, these two line both demon-
strate the social ties effect on individual behaviors. Besides, we also implemented
the SPA method in [9] and the result is depicted in Fig. 5(b). For its spreading
process quite resembles PageRank, it is especially appropriate to implement this
algorithm in Map-Reduce model.

5.3 Network Evolution

From dynamic view, analysis on evolving trend of call network is essential to
help telecom operators make business strategies. Here, we propose an effective
algorithm that can generate an evolving timeline throughout the lifecycle of the
network. Our method is optimized for Map-Reduce model and thus guarantees
its efficiency. We calculate the distance between each two successive snapshots
of a network, δ(k, k + 1), as the accumulation of the distance between each
corresponding nodes pair d̃t,t+1(v) in these two snapshots, which is defined as:

d̃t,t+1(v) =

⎧⎪⎨
⎪⎩
| log dt(v)+1

1 | v ∈ Vd

| log 1
dt+1(v)+1 | v ∈ Vb

| log dt(v)
dt+1(v) | + | log adjt(v)

⋂
adjt+1(v)

adjt(v)
⋃

adjt+1(v) | v ∈ Vs

(1)

According to Formula 1, the skeleton of the algorithm is presented as Algorithm 1
and 2. By applying this algorithm, we eventually generate the evolving timeline

220 S. Yang et al.

0 14 28 42 56 70 84 98 112 126 140150
0.3

0.35

0.4

0.45

0.5

0.55

Day

D
is

ta
nc

e

10

20

30

40

50

60
Olympic
Games

week
long

weekend

Fig. 6. Network Evolution Timeline

Algorithm 1. TrackMapper(k, v)
1: construct adjt(k)
2: for all each change point t do
3: calculate d̃t,t+1(k) according to Formula 3
4: output < t, d̃t,t+1(k) >
5: end for

spending 101 seconds (as a comparison, the stand-alone version costs more than
3 hours). In Fig. 6, we can easily find out the maximum point which appears at
the Olympic Games period. Besides, we also locate the call pattern that shows
periodicity.

5.4 Public Services

In DisTec, we provide a set of useful interfaces to users. Here we introduce a
search service as an illustration.

Firstly, call network should be loaded into HBase as the table format discussed
above. Fig. 7(a) shows the load performance on different records size. This op-
eration is also a Map-Reduce process. We observe that the time spent is almost
linear to the input size. It costs less than 40 minutes to load the complete 0.36
billion CDRs. After that, we also perform a search test on the distributed data
table. With respect to the different size of table, the time spent on different num-
ber of search request are almost the same. It shows that the search performance
have little relationship with the table size. Fig. 7(c) demonstrates an application
that has subscribed our search service over Web Service. It costs only around
several seconds to extract an egocentric network consisting of several hundreds
nodes.

DisTec: Towards a Distributed System for Telecom Computing 221

Algorithm 2. TrackReducer(k, iter)
1: δ(k, k + 1) ⇐ 0
2: s ⇐ 0
3: for all value ∈ iter do
4: δ(k, k + 1) ⇐ δ(k, k + 1) + value
5: s ⇐ s + 1
6: end for
7: δ(k, k + 1) ⇐ δ(k, k + 1)/s
8: output < k, δ(k, k + 1) >

0 1 2 3 4

x 10
8

1000

1500

2000

Records

T
im

e

y = 4.6e−006*x + 6e+002

test point
 best fit

(a) Load performance

0 2 4 6 8 10

x 10
4

0

100

200

300

400

500

600

Search records

T
im

e

10m
 linear
100m
200m
300m

(b) Search performance

(c) Egocentric network

Fig. 7. Public service

222 S. Yang et al.

6 Discussion

In this section, we would like to amplify some critical points and share our ex-
perience in using the Map-Reduce computing model. Hadoop platform is tightly
related with the underlying hardware environment. Any deficiency of the clus-
ter hardware, such as the frequency of CPU, I/O rate and network bandwidth,
may influence the performance of high level applications. To achieve a desirable
performance, some parameters, such as the block size, map number and reduce
number, should be set appropriately. Increasing the number of tasks increases
the framework overhead, but also increases load balancing and lowers the cost
of failures. Block size generally defines the minimum number of maps (64MB as
default). This number is practically determined by the number of cluster nodes,
the number of CPU cores, the split size of input data and the complexity of the
map function. To our experience, we propose to set the map number as:

Nmap = Nnodes × Ncore × θfun × λ (2)

Here, θfun stands for the complexity of the algorithm. In practice, θfun is usually
less than 5. The factor λ is determined by block size, bandwidth of network and
user’s experience. We argue that this value would better be set between 0.5 to
1.5. Finally, the number of reduces is usually driven by the number of maps and
seems to be 1 to 2 times of it.

7 Conclusion and Future Work

Motivated by recently increasing request for the capability of data intensive
computing in telecommunications industy, in this paper, we introduce a novel
system prototype, DisTec, and demonstrate how to construct it using the widely
accepted distributed paradigm and service oriented architecture (SOA). From
the industrial view, we present our system from the aspects of underlying infras-
tructure, middle level service and user-end interface. To illustrate our system,
we employ large-scale call records and devise several real-world scenarios with
the aid of social network analysis. In these studies, we do not only show the
efficiency of our experiments but also resolve to discover particular insight in
CDRs that can really reflect people’s communication patterns.

Next we will continue to construct our system. Other applications, such as
MOLAP, workflow and practical public interfaces, are also to be resolved. Essen-
tially, we hope our work can serve as a direction and provide possible intelligent
solutions for telecom operators.

References

1. Gorton, I.: Software architecture challenges for data intensive computing. Software
Architecture, 4–6 (February 2008)

2. Kouzes, R.T., Anderson, G.A., Elbert, S.T., Gorton, I., Gracio, D.K.: The changing
paradigm of data-intensive computing. Computer 42(1), 26–34 (2009)

DisTec: Towards a Distributed System for Telecom Computing 223

3. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H., Stoica, I.: Improving mapre-
duce performance in heterogeneous environments (August 2008)

4. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: OSDI 2004, pp. 137–150 (2004)

5. Hadoop, http://hadoop.apache.org/
6. Hive, http://hadoop.apache.org/hive/
7. Vaquero, L.M., Merino, L.R., Caceres, J., Lindner, M.: A break in the clouds:

Towards a cloud definition. SIGCOMM 39(1), 50–55 (2009)
8. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley
view of cloud computing (February 2009)

9. Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nana-
vati, A.A., Joshi, A.: Social ties and their relevance to churn in mobile telecom
networks. In: EDBT 2008, pp. 668–677 (2008)

10. Nanavati, A.A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukher-
jea, S., Joshi, A.: On the structural properties of massive telecom call graphs:
findings and implications. In: CIKM 2006, pp. 435–444 (2006)

11. Onnela, J.P., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., Kaski, K., Kertesz,
J., Barabasi, A.L.: Structure and tie strengths in mobile communication networks.
PNAS 104, 7332–7336 (2007)

12. Wang, L., Tao, J., Kunze, M., Castellanos, A.C., Kramer, D., Karl, W.: Scientific
cloud computing: Early definition and experience. In: HPCC 2008, pp. 825–830
(2008)

13. Amazon web services, http://aws.amazon.com/
14. Google appengine, http://code.google.com/appengine/
15. Microsoft azure, http://www.microsoft.com/azure/default.mspx
16. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. In: OSDI 2006, pp. 205–218 (2006)

17. Papadimitriou, S., Sun, J.: Disco: Distributed co-clustering with map-reduce. In:
ICDM 2008, December 2008, pp. 512–521 (2008)

18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

19. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

20. kxen, http://www.kxen.com/index.php
21. xtract, http://www.xtract.com/
22. Hbase, http://hadoop.apache.org/hbase/
23. Pig, http://hadoop.apache.org/pig/
24. Zookeeper, http://hadoop.apache.org/zookeeper/

http://hadoop.apache.org/
http://hadoop.apache.org/hive/
http://aws.amazon.com/
http://code.google.com/appengine/
http://www.microsoft.com/azure/default.mspx
http://www.kxen.com/index.php
http://www.xtract.com/
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/pig/
http://hadoop.apache.org/zookeeper/

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 224–231, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Cloud Computing Boosts Business Intelligence of
Telecommunication Industry

Meng Xu, Dan Gao, Chao Deng, Zhiguo Luo, and Shaoling Sun

China Mobile Communications Corporation, China
{xumeng,gaodan,dengchao,luozhiguo,

shunshaoling}@chinamobile.com

Abstract. Business Intelligence becomes an attracting topic in today's data in-
tensive applications, especially in telecommunication industry. Meanwhile,
Cloud Computing providing IT supporting Infrastructure with excellent scal-
ability, large scale storage, and high performance becomes an effective way to
implement parallel data processing and data mining algorithms. BC-PDM (Big
Cloud based Parallel Data Miner) is a new MapReduce based parallel data min-
ing platform developed by CMRI (China Mobile Research Institute) to fit the
urgent requirements of business intelligence in telecommunication industry. In
this paper, the architecture, functionality and performance of BC-PDM are pre-
sented, together with the experimental evaluation and case studies of its appli-
cations. The evaluation result demonstrates both the usability and the cost-
effectiveness of Cloud Computing based Business Intelligence system in appli-
cations of telecommunication industry.

Keywords: Business Intelligence, Cloud Computing, BI application in tele-
communication Industry.

1 Introduction

1.1 Business Intelligence

Business intelligence (BI) refers to the use of company data to facilitate decision-
making by decision-makers, which means understanding current functioning and
anticipating actions for well-informed steering of the enterprise. Intelligence tools are
based on the use of an intelligence information system which is supplied with differ-
ent data extracted from production data, information concerning the company or its
environment and economic data. A tool called ETL (Extract, Transform and Load) is
therefore responsible for extracting data from different sources, cleaning them up and
loading them into a data warehouse. BI technologies provide historical, current, and
predictive views of business operations. Common functions of business intelligence
technologies are reporting, OLAP, analytics, data mining, business performance man-
agement, benchmarking, text mining, and predictive analytics.

Recently, BI applications at CMCC focus on the field of business analysis. While,
as the growing of user scale and the rising of service requirement, more and more

 Cloud Computing Boosts Business Intelligence of Telecommunication Industry 225

systems will need BI, such as Network Management Signaling Monitoring System
and so on. Specifically, China Mobile can use BI in the following fields:

Business Analysis includes multi-dimensions data analysis, data exploration, statis-
tic report form generation, data mining and so on, which are used to help decision-
makers to make decisions of production management and marketing strategy.

Network Management includes network management signaling analysis, statistics
and mining, which are used to support network optimization and failure analysis.

Mobile Internet includes the mobile internet accessing logs analysis, mining and so
on, which are used to support personalized recommendation, advertisement marketing
and so on.

1.2 New Challenges to the Business Intelligence System of CMCC

With the enlargement of user scale and the rising of complexity of business applica-
tion, the business intelligence system of CMCC faces new challenges.

Firstly, there’re mass data generated by large number of users’ activity and variety
of services waiting to be mined. The data scale of CMCC Service Support field
reaches 6000 TB at the beginning of 2009. For example, a middle level branch of
CMCC has more than 10 million users, and its CDR (calling detail records) will be
12-16TB in 12 months. For one simple application, the data after ETL process would
be at 10 GB level.

Secondly, with the increasing requirements of business intelligence applications,
the business intelligence system requires higher computing capability as well as larger
storage capacity to IT platform. In most situations, the decision-makers hope to get
result in short response time to lead them to make correct operational decision.

Traditional business intelligence platforms commonly provide data mining algo-
rithm in a centralized environment with a few UNIX servers. However, the central-
ized configurations of these platforms result in low scalability and high cost which
can further weaken an organization’s competitiveness and limit the development of
business intelligence systems. Using a mainstream commercial business intelligence
platform, for example, an application based clustering algorithm can only support 1
million user’s data for knowledge discovery processing, which keeps a gap with real
demand.

1.3 The Emerging Cloud Computing

With the increasing of the requirements of large scale data storage and computation,
cloud computing emerges at a historic moment. Cloud computing offers large scale
data storage and computation services delivered through huge data centers.

Cloud computing data centers provide IT supporting Infrastructure of parallel
computation through PC cluster servers. The combination of Google File System
(GFS) [1] and MapReduce programming frame, as is typical in their deployment,
represents the necessary confluence of data distribution and parallel computation.
Hadoop [2] is an open source implementing of MapReduce and GFS, which gives an
opportunity to everyone who are willing to adopt new technology. Data mining algo-
rithms based MapReduce are increasing concerned by researcher and engineer.

226 M. Xu et al.

Google built several data mining applications based on MapReduce [3][4]. Research-
ers of Stanford University developed some data mining algorithm based on MapRe-
duce to evaluate MapReduce performance on multi-core and multiprocessor system
[5][6], and some algorithms were open source to a project called Mahout [7]. But,
data mining application based MapReduce is not widely adopted by industry except
few Internet service providers, such as Google, Yahoo, etc. Therefore, further re-
search and development of BI system in telecommunication Industry based on cloud
computing platform is needed.

2 Cloud Computing Based Business Intelligence System

A new parallel data mining framework based on cloud computing, which is called
BC-PDM, is developed to solve problems mentioned above.

2.1 BC-PDM Architecture

BC-PDM is developed based on Cloud Computing platform of CMRI. The architec-
ture of BC-PDM is depicted in Figure 1 as follows:

… M 1
M 2
M i
R 1

R jblock1 block1block1
block2 block2

block2

block3

block3

block3

M 1

M 2

M iR 1
R 2

…R 2

…R j

…… M 1
M 2
M i
R 1

R jblock1 block1block1
block2 block2

block2

block3

block3

block3

M 1

M 2

M iR 1
R 2

…R 2

…R j

HyperDFSHyperDFS HugeTableHugeTable MapReduceMapReduce

Parallel
Data Process

Parallel
Data Mining

VisualizationData Load
module

Data
Management

Workflow
management•Large Scale Data Process

•Large Scale Data Mining

•Excellent scalability

•Easy accessible

•Large Scale Storage

•High performance

•High Availablity

•Low Price

Data mining App
Data Process App

Data Extract
module

Service
Optimization

Precision
marketing

NetWork
Optimization Log ProcessingLog Processing

Fig. 1. BC-PDM Architecture

The feature of each layer is introduced as follows:

1) Business application layer implements business applications of telecommunica-
tion industry for marketing department making decisions of marketing strategy,
such as service optimization, precision marketing, network optimization and log
processing.

2) BC-PDM layer implements functions comprising: Data Extract and Load mod-
ule supporting variety of data format, Data Management module for data man-
agement and remote access control, Parallel data processing module and Parallel

 Cloud Computing Boosts Business Intelligence of Telecommunication Industry 227

data mining module offering the ability of processing large scale datasets, Visu-
alization module presenting BI results to users.

3) Hadoop platform layer consists of DFS, MapReduce and HugeTable.

Google File System (GFS) typically underling the MapReduce system can provide an
efficient and reliable distributed data storage as well as file control service needed by
applications involving large databases.

MapReduce is an easy-using parallel programming paradigm suitable for large
scale, data intensive parallel computing applications, which at the same time offering
load balancing and fault tolerance.

HugeTable offers online ad hoc querying based on HBase with partial SQL support.

2.2 Features of BC-PDM

BC-PDM includes functions as following: remote data transmission, data extract, data
load, parallel data process, parallel data mining, data management, visualization,
workflow management and web workflow management, etc.

1) Remote data transmission: Allows user to upload and download data from re-
mote external system securely and conveniently;

2) Data extract: Extract data from DFS to BC-PDM;
3) Parallel data process: Provides 14 different parallel data process operations of

6 categories based on MapReduce, such as Statistic, attribute processing, data sam-
pling, join, redundancy data processing, etc.

4) Parallel data mining: Offers 9 algorithms of 3 categories based on MapReduce
including Clustering, Classifier and Association Analysis;

5) Data management: Provides remote access control and data management
which includes data and its meta data;

6) Visualization: Presents knowledge mined from huge amount of data to users;
7) Workflow management: Offers GUI for users to design BI application by drag

and drop operations;

An example of GUI of BC-PDM is shown in Figure 2, which can help users in designing
BI application with a graphical layout by allowing drag-and-drop of modules.

Fig. 2. GUI of BC-PDM

228 M. Xu et al.

2.3 Experiment Evaluation

According to data scale, a BC-PDM configuration of 16 PC nodes is selected
to compare with an UNIX server system. The experiment environments list as fol-
lows:

Table 1. Comparison of experiment environment between cloud computing platform and an
existing commercial BI tool

 BC-PDM an existing commercial BI tool
Hardware 16 PC nodes

Total CPU: 64 core,
Total Memory: 128GB, total Storage: 24T

UNIX server: P570_LP1
P570_LP1:PowerPC_POWER5 2198 MHz

CPU: 8 core, Memory: 32GB
Software BI software BC-PDM

operating system Linux
BI software SPSS Clementine v10.1
operating system Unix/Windows XP

Evaluation Method
The experiment evaluates BC-PDM at three aspects: correctness, performance and
scalability. In detail, it comprises testing and proving whether the correctness satisfies
industry standard; testing the performance of parallel data processing and parallel data
mining models compared with existing serial tool; and testing the scalability of paral-
lel functions with the number of nodes increased.

Evaluation Results of Correctness
The correctness of both parallel data processing and parallel data mining algorithms
satisfies application requirements. The result of parallel data processing is consistent
with serial data processing completely. Parallel data mining algorithm models are
correct when using UCI data. Moreover, the correctness of parallel data mining algo-
rithm satisfies industry standard when using real data. Classification accuracy
achieves 70%, clustering gets high similarity, and strong association rules are consis-
tency.

Evaluation Results of Performance
When there are 256 nodes, BC-PDM can store, process and mine the data at hundreds
TB level. Compared to the UNIX system, by using 16 nodes configuration of BC-
PDM, the performance of parallel data processing improves about 12 to 60 times;
meanwhile, the performance of data mining algorithm improves about 10 to 50 times.
As shown in Figure 3, the performance of parallel data processing of BC-PDM ex-
ceeds the UNIX server and tools, even the scale of data processed is 10 times than
that of the latter.

Compared to the UNIX server and tools shown in Figure 4, the performance of the
Paprior and PC45 algorithm in BC-PDM is better. Specifically, even the scale of data
used in BC-PDM is 10 times and 100 times than that used in UNIX server, the re-
sponse time is still shorter. Also shown in Figure 4, the Pkmeans algorithm in BC-
PDM is same excellent.

 Cloud Computing Boosts Business Intelligence of Telecommunication Industry 229

Fig. 3. Performance comparison of parallel data processing

Fig. 4. Performance comparison of parallel data mining algorithm

Evaluation Results of Scalability
The number of nodes is increased from 32 to 64 and 128 to test the scalability of par-
allel data processing and parallel data mining modules. The experiment results indi-
cate that the parallel data processing has excellent scalability; meanwhile, the parallel
data mining algorithm has acceptable scalability. As shown in Figure 5, it can be seen
that there are 11 parallel data process operations with good scalability, whose speedup
ratio increases nearly linearly with the number of nodes.

Fig. 5. Scalability of parallel data processing

230 M. Xu et al.

Fig. 6. Scalability of parallel data mining algorithm

Figure 6 indicates that some of the algorithms (i.e. FP-growth, PC45 and Pnaive-
Bayes) achieved desired scalability; other algorithms also have suitable scalability.

3 Advantages and Issues to Be Solved

BC-PDM supports high-performance, cost-effective BI application in Telecommuni-
cation Industry with huge amounts of data for accurate business marketing. Although
with some issues to be resolved, BC-PDM as a data mining framework has some
features which still can not be realized by commercial software.

3.1 Advantages

BC-PDM can process and mine data at hundreds TB level with high performance,
while commercial data mining software can not process such large scale data because
data to be processed of these software must be load in memory in advance.

The performance of parallel data processing and mining of BC-PDM is 10 times
better than that of current commercial systems for processing GB level data. For ex-
ample, the response time to process 1.2 TB data using BC-PDM is about 40 minutes.

The speedup ratio of BC-PDM grows nearly linearly with the increase of data node
numbers. The parallel data processing has excellent scalability, and the parallel data
mining algorithm has acceptable scalability.

BC-PDM uses commodity hardware and free software to archive cost-effectiveness
with higher processing capability. In contrast, the cost is much higher for UNIX serv-
ers and Storage Arrays. The cost advantage is more obvious with the growth of data
scale.

3.2 Issues to Be Solved

It is important to choose a better parallel strategy of data processing and data mining
algorithms to archive higher performance in the meantime to ensure the correctness
satisfies industry standard.

 Cloud Computing Boosts Business Intelligence of Telecommunication Industry 231

User-access authority and data-access authority are needed due to information se-
curity. Moreover, data privacy processing and encryption must be considered in order
to protect user privacy.

BC-PDM offers services through GUI and Web Service API, and HugeTable fur-
ther provides querying by SQL. On the other hand, there are still works to be done,
such as seamless transplant of current application system to BC-PDM.

4 Conclusions and Future Works

The BC-PDM framework which integrates data mining applications on MapReduce
and HDFS platform is a preliminary implementation of cloud computing based BI.
The above experiment results verified that data mining application on MapReduce
could process large scale data and speed up the response time effectively. Moreover,
BC-PDM has advantages which commercial BI software do not support, such as large
scale data, high performance, massive scalability, cost-effectiveness and customiza-
tion. Nonetheless, BC-PDM is an experimental framework at present. Further devel-
opment and improvement is needed at aspects such as functionality, performance and
reliability to meet requirements of CMCC’s business applications. To provide stan-
dard BI service based on cloud computing, which encourages user participation, is our
research direction in future.

Cloud computing platform for BI system can provide an IT support with high
availability, and offers huge amount of data analysis and mining capability, and there-
fore enables BI system to explore a broader stage. In the near future, cloud computing
platform can further assist Business Intelligent in variety area.

Acknowledgments. We thank Bill.Huang for his guide and inspiration, and thank the
following people for their contributions to this work: Wenhui Zhou, Zhihong Zhang,
Hongwei Sun, Xu Wang, and Leitao Guo.

References

1. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In: Proceedings of 19th
ACM Symposium on Operating Systems Principles (October 2003)

2. Hadoop, an open source implementing of MapReduce and GFS,
 http://hadoop.apache.org

3. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Pro-
ceedings of OSDI 2004: Sixth Symposium on Operating System Design and Implementa-
tion (December 2004)

4. Ramaswamy, S.: Extreming Data Mining, Google Keynote speech in SIGMOD (2008)
5. Ranger, C., et al.: Evaluating MapReduce for Multi-core and Multiprocessor Systems,

http://video.google.com/videoplay?docid=5795534100478091031
6. Chu, C.-T., et al.: MapReduce for Machine Learning on Multicore. In: NIPS 2006 (2006)
7. Mahout, open source project on data mining algorithms based MapReduce,
 http://lucene.apache.org/mahout/

Composable IO: A Novel Resource Sharing Platform in
Personal Clouds

Xiaoxin Wu, Wei Wang, Ben Lin, and Kai Miao

Intel China
(xiaoxin.wu,vince.wang,ben.lin,kai.miao)@intel.com

Abstract. A fundamental goal for Cloud computing is to group resources to ac-
complish tasks that may require strong computing or communication capability.
In this paper we design specific resource sharing technology under which IO pe-
ripherals can be shared among Cloud members. In particular, in a personal Cloud
that is built up by a number of personal devices, IO peripherals at any device
can be applied to support application running at another device. We call this
IO sharing composable IO because it is equivalent to composing IOs from dif-
ferent devices for an application. We design composable USB and achieve pro-
migration USB access, namely a migrated application running at the targeted host
can still access the USB IO peripherals at the source host. This is supplementary
to traditional VM migration under which application can only use resources from
the device where the application runs. Experimental results show that through
composable IO applications in personal Cloud can achieve much better user
experience.

1 Introduction

The primary goal for Cloud computing is to provide services that require resource ag-
gregation. Through good resource management/assignment scheme Cloud resources
for computation, storage, and IO/network can be efficiently grouped or packaged to ac-
complish jobs that can’t be handled by individual devices (e.g., server, client, mobile
device). Cloud may also help to accomplish tasks with a much better QoS in terms of,
e.g., job execution time at a much lower cost in terms of, e.g., hardware investment and
server management cost.

Most Cloud research focuses on data center, e.g., EC2 [3], where thousands of com-
puting devices are pooled together for Cloud service provision. The Cloud usage, how-
ever, may also be applied to personal environment, because today an individual may
have multiple computing or communication devices. For example, a person may have
a cellular phone or a Mobile Internet Device (MID) that he always carries with him.
He probably also has a laptop or a desktop that has a stronger CPU/GPU set, a larger
MEM/disk, a friendly input interface, and a larger display. This stronger device may
probably be left somewhere (e.g.,office or home) due to inconvenience of portability.
Once the owner carries a handheld and approaches to the stronger devices, e.g., when he
is set at the office or at home, he can jointly use smart phone/MID and laptop/desktop
through different network connections to form a personal Cloud. Under proper resource

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 232–242, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Composable IO: A Novel Resource Sharing Platform in Personal Clouds 233

Fig. 1. A Future Person-Centralized Cloud World

management scheme, resources in such a Cloud can be grouped or shared in the most
efficient way to serve this person for his best user experience.

Our vision for future person-centralized Cloud environment where a personal hand-
held device, e.g., MID, is probably the center of a person’s IT environment, is shown
in Figure 1. There are public Clouds that are managed by big data center providers. A
Cloud user can access such Clouds through Internet, and enjoy different services that
may take advantage of the super computing power and intensive information/data that
data centers provide. There are also personal Clouds that are built up by a personal hand-
held device and its surrounding computing or costumer electronic (CE) devices. The
inter-connection for the components in a personal Cloud may be, for example through
near field communication (NFC) technology, under which the underlying networks can
be direct cable connection or wireless networks (e.g., WLAN, WPAN, Bluetooth, etc.).

Efficient management for resource aggregation, clustering, and sharing is required
for both data center Cloud and personal Cloud. Virtualization has been so far the best
technology that may serve this goal. Based on virtualization, computing and storage re-
sources can be shared or allocated by generating and allocating virtual machines (VM)
that run part of or entire applications. In particular, when an application has been par-
titioned and run in a number of VMs and each of the VMs runs at different physical
machines, we can say that computing resources at these machines are aggregated to

234 X. Wu et al.

serve that application. With the live VM migration capability [1] [2], the pool of re-
sources can be adjusted by migrating VMs to different physical machines. In other
words, through virtualization resources at different devices can be aggregated for single
user in a flexible way without any extra hardware requirements.

Sharing or grouping CPU computing power by managing VMs for a large work, as
we described in the previous section, has been widely studied in typical virtualization
technologies including VMware Vsphere as well as open source technologies such as
Xen [4] and KVM [5]. VM allocation and migration are applied for, e.g., load balancing
and hot spot elimination. However, how to efficiently aggregate and share IO and its
peripherals, which is another important resource sharing issue in Cloud, has not been
thoroughly investigated so far.

The methodology of sharing CPU through migration implies IO sharing, because
an application migrated to a new host can use local IO resources at the target host
machine. However, a resource sharing case that a simple migration cannot handle is
that the required computing resource and IO resource are located at different physical
machines. This may happen, for example, when an application has to utilize a strong
CPU on a laptop while at the mean time, it relies on handheld IO functions such as 3G
access.

In this work we address the above IO peripheral sharing problem by enabling a pro-
cess running on a physical machine to access IO peripherals of any other physical ma-
chines that are networkly connected. In particular, we consider the highly dynamic
nature of personal Cloud where Cloud components and topology may change fre-
quently. We cover the case of IO sharing in the context of VM migration, under which
the physical IO that has been accessed by an application will be maintained during and
after this application has been migrated to different physical machines.

This remote IO access, or IO composition, is required when the target host for mi-
gration does not have the same IO environment as the original host, or the equivalent
IO part has been occupied by some other applications. Such a pro-migration IO access
also implies that a user can use aggregated IO peripherals from different devices, e.g.,
it can use IO from both original and target host. Although in this work we use personal
Cloud as our primary investigated scenario, the work can be extended to data center as
well. As a first step, we design software solution for sharing USB, because it is one of
the most commonly used IO peripherals.

In summary, our major contributions are as follows:

– We design the first software solution for seamless pro-migration USB IO peripheral
access. Such a virtual composable IO provides a much more convenient way for
applications to share Cloud resources especially IO peripherals.

– We implement composable IO into a real personal Cloud and carry on extensive
experiments for performance evaluation and bottleneck identification. We prove
that the concept works, and can greatly improve user experience.

The paper is organized as follows. In section 2 we present detailed design for compos-
able USB. In section 3 we show major performance measurements. Finally in
section 4 we conclude and list future works.

Composable IO: A Novel Resource Sharing Platform in Personal Clouds 235

2 Composable USB for IO Sharing

2.1 State of Arts for Resource Sharing

In a personal Cloud the resources may be shared or aggregated in different ways based
on how applications require. There is a need for computation resource sharing. More
than one device may collaborate and do the computing work together through, e.g.,
parallel computing that has been extensively studied for Grid Computing [7]. Another
scenario for computation resource sharing is that a weak device utilizes resources from
a stronger device. This has been shown in previous works [8][9]. Graphic applications
running at a small device can be rendered at a device with a stronger GPU and a larger
display, through capturing graphic commands at small device and sending them to the
larger one.

Resource within a Cloud can be shared through either direct physical resource alloca-
tion or virtual resource allocation. Physical sharing is straightforward. Cloud members
are connected together through networks and assign their disk or memory an uniform
address for access, as what has been done in [10]. The challenges are that existing net-
work bandwidth between any two Cloud members is much smaller than the intra-device
IO bandwidth, and the network protocol stack results in extra latency for data or mes-
sage move among devices. This dramatically degrades the application performance, in
particular for real-time services. Even if the new generation CPU chip architecture and
networks may mitigate such a problem by making the communication between devices
equally fast as within a device, due to the dynamic nature of personal Cloud caused
by mobility of the centralized user, the Cloud topology and membership may contin-
uously change. Since any change will cause a re-configuration for pooling the overall
resources in a Cloud and such a configuration not only takes time but also has to stop all
the active applications, hard resource allocation may not work well in personal Cloud
environment.

To address the above problem, virtualization [4][5] can be applied and the migration
based on virtualization can be used for resource sharing or re-allocation by migrating
applications among different devices. An application can be carried in a VM and mi-
grated to a different physical machine that best supports it, probably because that phys-
ical machine has the required computing, network, or storage resources. Virtualization
causes performance and management overhead. However, the flexibility it brings to re-
source management makes it by far the most promising technique for Cloud resource
management. More importantly, VM can be migrated while keeping applications alive
[11]. This advantage makes the resource sharing through VM allocation/migration even
more appealing in particular for applications that cannot be interrupted.

2.2 Composable IO: Virtual Platform for IO Sharing

Traditional migration enables a certain level of IO sharing between the origination and
destination of a migration. For example, a migrated process can still access the disk
image at its original host. Technology for pro-migration access for other IO peripherals
such as 3G interface and sensors, which are probably more pertinent to applications, has
not been provided. In personal Cloud, pro-migration access is highly desired because

236 X. Wu et al.

Fig. 2. Pro-migration IO access in personal Clouds

of large difference in computing capability and broad variety of IO peripherals among
personal devices.

The required IO peripheral remote access capability in a personal Cloud is illustrated
in Figure 2. An application running on laptop can access the IO peripherals on MID.
In this scenario, the application needs the joint utilization of computing resource on
the laptop and IO peripherals on the MID. In other words, the overall computing and
IO resources are aggregated and assigned to an application that requires. Note that the
application can also use IO peripherals at the laptop. As in this case all IO peripherals
at both devices are composed to serve the application, we call this IO sharing platform
composable IO. In the rest of the text, we use pro-migration IO access and composable
IO interchangeably.

Composable IO enables a much richer resource sharing usage, which helps to achieve
easy CPU and IO sharing in a virtualized Cloud environment. Through composable
IO an application should be able to switch among IO peripherals at different devices
without interrupting applications.

Below is a typical usage scenario that may happen in personal Cloud and will need
pro-migration IO access. A handheld device, i.e., MID, has a lot of personal IO pe-
ripherals such as wireless broadband interface (3G, WiMAX) or sensors that traditional
laptop and desktop don’t have. When the MID user is running an application on the
MID through, e.g., 3G interface and approaches another available device such as a lap-
top, a personal Cloud can be formed by connecting the two devices. The application can
then be migrated from MID to laptop to take hardware advantage (e.g., stronger CPU
or GPU) there. However, as the laptop does not have 3G interface, a live connection
between the migrated application and the original 3G interface should be kept.

2.3 Composable USB

USB is the most commonly used IO peripherals, in particular on handheld devices.
USB supports different IO usage such as 3G, WiMax, Camera, and sensors. In this sub-
section we give the detailed design for composable USB, which enables an application
to seamless switch between USB peripherals at different physical devices in personal
Cloud.

Composable IO: A Novel Resource Sharing Platform in Personal Clouds 237

Fig. 3. Composable USB

Composable USB Architecture. The general architecture of composable USB is
shown in Fig. 3. It consists of a Composable USB client and a Composable USB server.
The Composable USB client, located at migration target host, packages all the USB re-
quests from USB controller emulator in the hypervisor and then delivers the data to the
server that is located at migration source host, e.g., through standard network connec-
tions such as UDP/IP over a cable connection or wireless network. Composable USB
server processes all the requests from the client. It is responsible for processing incom-
ing USB requests and building connection between the remote application and local
USB peripherals. In our prototype USB command and data deliveries use the similar
technology as [6], where USB data flow runs on top of IP.

We use a basic data delivery workflow to further explain how composable USB
works. EHCI/UHCI block, working as I/O controller emulator, sends out USB device
DATA TRANSFER request to the USB redirect server. Composable USB server checks
the incoming request and dispatches it as following:

1. Check whether the message is valid by looking at its descriptor, and parse file
descriptor from incoming message.

2. If the message descriptor is available, build control, bulk or isochronous transfer
message according to the received message. Otherwise, return ”Non Existing” error
code.

238 X. Wu et al.

3. Call local USB bus driver to deliver the request.
4. Return status code and data if operations succeed and forward the data to the caller.

Seamless IO Switching. Live migration of OS has been adopted in our platform to
support resource sharing. Once OS (with application) has been migrated from MID to
the laptop, the USB client will keep the connection with the USB server by talking
with it using the same virtual IP address. This connection is supported by KVM VMM
so that the client on the migration target host can still access the server located at the
original host. To a user, the overall IO switching is both seamless and transparent.

3 Implementation and Testing Results

We build KVM composable USB in a mini personal Cloud and test its performance.
In personal Cloud two devices connected through cable network. One of the device is
MID and the other is laptop. For MID, it has Intel Menlow platform, with an Atom CPU
Z520 (1.33 GHz), a 512K L2 Cache, and a 533 MHz FSB. Memory size is 2G. In MID
host OS runs Linux Kernel 2.6.27, while Guest OS is Windows XP SP3. For laptop, it
is HP DC 7700 CPU, with a Core 2 Duo E6400 2.13GHz processor, a 2MB L2 Cache,
and a 1066MHz FSB. Memory size is 4G. In laptop host OS is Linux Kernel 2.6.27 and
Guest OS is Windows XP SP3.

The investigated application is video conference through a 3G wireless network.
USB is used for MID to receive video data from the 3G card carried on MID. The
evaluating usage case is as follows. Video conference originally runs on MID, then
is migrated to laptop. The application has continuous access to MID 3G card before,
during, and after migration through composable USB. Through the experiments we will
find out whether migration through virtualization works for MID, whether and why
composable USB improves video conference performance, and what are the key factors
for further improving application performance in Cloud with composable USB.

Fig. 4. Migration time under 100M network

Composable IO: A Novel Resource Sharing Platform in Personal Clouds 239

Fig. 5. Migration time under 1G network

KVM QEMU
0

5

10

15

20

25

30

VMM

F
P

S

MID

DESKTOP

Fig. 6. FPS under replay: MID vs. Cloud with composable IO

We first test feasibility and performance for migration from a MID to a laptop. The
memory assigned to MID VM is 512MB. As shown in Fig. 4, we migrate an empty OS,
an OS with MS office application, and an OS with Web browsing application through a
100Mb cable network. Live migration with a memory pre-copy is enabled and tested.
It has been observed that MID has no problem to proceed live migrations. The service
downtime is extremely low, and cannot be aware by users. The difference caused by
either using warm cache (continuous testing without system reboot) and cold cache
(continuous testing with system reboot) is not significant. In Fig 5 we increase the
cable network speed to 1Gb. The overall migration time can be greatly reduced because
a higher bandwidth helps to reduce the pre-copy time.

Fig. 6 compares the video replay frame rate when running video conference appli-
cation locally on MID’s virtual machine with the rate when running the application in
a personal Cloud with composable USB capability. The figure shows when migrating
such an application to a stronger device while fetching data through Composable USB,
significant performance (frame per second (FPS)) improvement has been made. The
main reasons are as follows. First, MID has limited power to efficiently support KVM,

240 X. Wu et al.

KVM QEMU
0

5

10

15

20

25

30

35

40

45

50

VMM

F
P

S

MID

DESKTOP

Fig. 7. FPS without replay: MID vs. Cloud with composable IO

128−QEMU 1024−QEMU 128−KVM 1024−KVM
0

5

10

15

20

25

30

Memory size (MiB)

F
P

S

MID

DESKTOP

Fig. 8. Impact of MID VM memory size

in particular when such an application require large number of IO emulations, which in
turn requires strong CPU power. When playing video in the VM running on the MID,
the CPU of MID is not strong enough to support video replay. Therefore, the achievable
frame rate is very low. On the other hand, when such an application runs in a personal
Cloud, the bottleneck on MID video replay emulator does no longer exist, as the replay
has been migrated to laptop that has a much stronger CPU. The achieved replay FPS
then is much higher. Second, USB client power somehow determines performance in
the client-server mode composable USB. Because the client on the laptop is stronger
than the client on the MID, when USB upper bound is not reached, a stronger client
results in a faster data delivery. The impact of client power has been shown in Fig. 7,
where we compare the USB data collection speed without video replay in the two cases.
The improvement contributed by the strong USB client, however, is not much, because
USB data delivery is not computing intensive.

In both of the experiments we compare the video conference performance when
using KVM and QUMU for virtualization. QEMU is a widely used emulator that does

Composable IO: A Novel Resource Sharing Platform in Personal Clouds 241

KVM QEMU
0

5

10

15

20

25

30

VMM

F
P

S

1000M

100M

Fig. 9. Impact of network bandwidth

not require any VT support and can be adopted by other architectures such as ARM. It
is observed that although KVM has a better performance, Qemu based composable IO
can also help the Cloud application to reach a reasonable quality of service. In this case
it reaches 30 FPS, the maximum FPS for video conference.

In Fig 8 we show the impact of changing MID VM memory size on application
performance. It is observed that for KVM the impact is trivial. However, for QUMU
that has to process a lot of computation for IO emulation, a larger memory size leads
to a better application performance. When running the application in Cloud, increas-
ing memory size does not lead to any performance improvement. In other words, in
Cloud environment a very small memory size 128Mb for MID VM is enough for video
conference running over composable USB.

In Fig. 9 we compare the video conference performance in personal Cloud when net-
work has different bandwidth. An obvious observation is that if the interconnected net-
work bandwidth is more than 100M (as most networks such as Ethernet, cable, 802.11n
can support), the network bandwidth will not be a performance bottleneck.

4 Conclusions and Future Works

In this work we design and evaluate composable USB for personal Cloud applications.
USB access is kept alive after live migration. Such a pro-migration IO sharing helps
Cloud to more flexibly arrange and allocate resources, in particular when an application
may require computing resources and IO peripherals at different physical machines.
Experimental results from testing video conference over a real Cloud system that con-
sists of a MID and a laptop shows that using composable USB the FPS can be greatly
improved. This means for existing devices with a limited hardware power through our
design user experience can be enhanced.

Future work will be designing a general composable IO function block that enables
sharings among IOs besides USB. In particular, when newly VT such as VT-d is pro-
vided, it will be challenging to share such IO because CPU may not be able to handle this
kind of IO redirections. We will investigate the possibility of providing software com-
posable IO solution considering VT-d support and recommend hardware composable IO
solutions if necessary.

242 X. Wu et al.

Acknowledgement

We thank Xuezhao Liu for his support in testing migration performance and collecting
data.

References

1. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and Gray-box Strategies
for Virtual Machine Migration. In: Proc. 4th Symposium on Networked Systems Design and
Implementation, NSDI (2007)

2. Sapuntzakis, C.P., Chandra, R., Pfaff, B., Chow, J., Lam, M.S., Rosenblum, M.: Optimizing
the Migration of Virtual Computers. In: Proc. 5th Symposium on Operating Systems Design
and Implementation, OSDI (2002)

3. EC2: Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Alex Ho, R.N., Pratt, I., Warfield,

A.: Xen and the Art of Virtualization. In: Proceedings of ACM Symposium on Operating
Systems Principles, SOSP 2003 (2003)

5. KVM Forum, http://www.linux-kvm.org/page/KVM_Forum
6. Hirofuchi, T., Kawai, E., Fujikawa, K., Sunahara, H.: USB/IP - a Peripheral Bus Extension

for Device Sharing over IP Network. In: Proc. of 2005 USENIX Annual Technical Confer-
ence (2005)

7. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource man-
agement systems for distributed computing. Software Ractice And Experience 32, 135–164
(2002)

8. Wu, X., Pei, G.: Collaborative Graphic Rendering for Improving Visual Experience. In: Proc.
of Collabratecomm (2008)

9. Yang, S.J., Nieh, J., Selsky, M., Tiwari, N.: The Performance of Remote Display Mechanisms
for Thin-Client Computing. In: Proceedings of the General Track of the Annual Conference
on USENIX Annual Technical Conference (2002)

10. Barak*, A., Braverman, A.: Memory ushering in a scalable computing cluster. Microproces-
sors and Microsystems 22(3-4), 175–182 (1998)

11. Clark, C., Fraser, K., Hand, S., Hanseny, J.G., July, E., Limpach, C., Pratt, I., Warfield, A.:
Live Migration of Virtual Machines. In: NSDI 2005 (2005)

http://aws.amazon.com/ec2/
http://www.linux-kvm.org/page/KVM_Forum

SLA-Driven Adaptive Resource Management for
Web Applications on a Heterogeneous Compute

Cloud

Waheed Iqbal1, Matthew Dailey1, and David Carrera2

1 Computer Science and Information Management, Asian Institute of Technology,
Thailand

2 Technical University of Catalonia (UPC) Barcelona Supercomputing Center (BSC)
Barcelona, Spain

Abstract. Current service-level agreements (SLAs) offered by cloud
providers make guarantees about quality attributes such as availability.
However, although one of the most important quality attributes from
the perspective of the users of a cloud-based Web application is its re-
sponse time, current SLAs do not guarantee response time. Satisfying a
maximum average response time guarantee for Web applications is dif-
ficult due to unpredictable traffic patterns, but in this paper we show
how it can be accomplished through dynamic resource allocation in a
virtual Web farm. We present the design and implementation of a work-
ing prototype built on a EUCALYPTUS-based heterogeneous compute
cloud that actively monitors the response time of each virtual machine
assigned to the farm and adaptively scales up the application to satisfy
a SLA promising a specific average response time. We demonstrate the
feasibility of the approach in an experimental evaluation with a testbed
cloud and a synthetic workload. Adaptive resource management has the
potential to increase the usability of Web applications while maximizing
resource utilization.

1 Introduction

Cloud providers such as Google and Amazon offer computational and storage re-
source rental services to consumers. Consumers of these services host applications
and store data for business or personal needs. The key features of these services,
on-demand resource provisioning and pay-per-use, mean that consumers only
need to pay for the resources they actually utilize. In this environment, cloud
service providers must maximize their profits by fulfilling their obligations to
consumers with minimal infrastructure and maximal resource utilization.

Although most cloud providers provide Service Level Agreements (SLAs) for
availability or other quality attributes, the most important quality attribute for
Web applications from the user’s point of view, response time, is not addressed
by current SLAs. The reason for this is obvious: Web application traffic is highly
unpredictable, and response time depends on many factors, so guaranteeing a
particular maximum response time for any traffic level would be suicide for the

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 243–253, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

244 W. Iqbal, M. Dailey, and D. Carrera

cloud provider unless it had the ability to dynamically and automatically allocate
additional resources to the application as traffic grows.

In this paper, we take steps toward eliminating this limitation of current
cloud-based Web application hosting SLAs. We present a working prototype
system running on a EUCALYPTUS-based [1] heterogeneous compute cloud that
actively monitors the response time of the compute resources assigned to a Web
application and dynamically allocates the resources required by the application
to maintain a SLA that guarantees specific response time requirements.

There have been several efforts to perform adaptive scaling of applications
based on workload monitoring. Amazon Auto Scaling [2] allows consumers to
scale up or down according to criteria such as average CPU utilization across a
group of compute instances. [3] presents the design of an auto scaling solution
based on incoming traffic analysis for Axis2 Web services running on Amazon
EC2. [4] demonstrate two software systems, Shirako [5] and NIMO [6]. Shirako
is a Java toolkit for dynamic resource allocation in the Xen virtualization en-
vironment that allocates virtual resources to guest applications from a pool of
available resources. NIMO creates an application performance model using ac-
tive learning techniques. The authors use NIMO to build performance models by
capturing resource requirements, data characteristics, and workload statistics for
a guest application. They then use Shirako to allocate the necessary resources to
the application. [7] use admission control and dynamic resource provisioning to
develop an overload control strategy for secure Web applications hosted on SMP
(Symmetric MultiProcessing) platforms. They implement and experiment with a
global resource manager for the Linux hosting platform that is responsible for al-
locating resources to application servers running on it and ensuring desired QoS
in terms of performance stability during extreme overload. The server machines
in their system are able to automatically adapt to changes in workload.

To the best of our knowledge, our system is the first SLA-driven resource
manager for compute clouds based on open source technology. Our working pro-
totype, built on top of a EUCALYPTUS-based compute cloud, provides adaptive
resource allocation and dynamic load balancing for Web applications in order
to satisfy a SLA that enforces specific response time requirements. We evaluate
the prototype on a heterogeneous testbed cloud and demonstrate that it is able
to detect SLA violations from individual computational resources and perform
adaptive resource management to satisfy the SLA.

There are a few limitations to this preliminary work. We only address the
application server tier, not the database tier or network. Our prototype is only
able to scale up, although it would also be easy to enable the system to scale down
by detecting the ends of traffic spikes. Finally, cloud providers using our approach
to response time-driven SLAs would need to protect themselves with a detailed
contract (imagine for example the rogue application owner who purposefully
inserts delays in order to force SLA violations). We plan to address some of
these limitations in future work.

In the rest of this paper, we describe our approach, the prototype
implementation, and an experimental evaluation of the prototype.

SLA-Driven Adaptive Resource Management for Web Applications 245

2 System Design and Implementation

To manage cloud resources dynamically based on response time requirements,
we developed two components, VLBCoordinator and VLBManager, in Java. We
use Nginx [8] as a load balancer because it offers detailed logging and allows
reloading of its configuration file without termination of existing client sessions.

VLBCoordinator interacts with the EUCALYPTUS cloud using Typica [9].
Typica is a simple API written in Java to access a variety of Amazon Web
services such as EC2, SQS, SimpleDB, and DevPay. Currently, Typica is not
able to interact with EUCALYPTUS-based clouds, so we patched it to al-
low interaction with EUCALYPTUS. The core functions of VLBCoordinator
are instantiateVirtualMachine and getVMIP, which are accessible through
XML-RPC.

VLBManager monitors the logs of the load balancer and detects violations of
response time requirements. It reads the load balancer logs in real time and
calculates the average response time for each virtual machine in a Web farm
over intervals of 60 seconds. Whenever it detects that the average response
time of any virtual machine exceeds the required response time, it invokes the
instantiateVirtualMachine method of VLBCoordinator with the required
parameters and obtains a new instance ID. After obtaining the instance ID,
VLBManager waits for 20 seconds (the maximum time it takes for a VM to boot
in our system) then obtains the new instance’s IP address using an XML-RPC
call to VLBCoordinator. After receiving the IP address of the newly instantiated
virtual machine, it updates the configuration file of the load balancer then sends
it a signal requesting it to reload the configuration file.

VLBManager executes as a system daemon. Nginx’s proxy log entries record
among other information the node that serves each specific request. VLBManager
reads these log entries for 60 seconds and calculates the average response time of
each node. If it finds that the average response time of any node is greater then
required response time, it makes an asynchronous call to VLBCoordinator that
adaptively launch a new virtual machine and add that virtual machine to the
Web farm controlled by the Nginx load balancer. Following is the pseudocode
for the main use case of VLBManager.

1: set SLArt = 2.0 {Maximum Response time (seconds) allowed in SLA}
2: set isScaling = false
3: while true do
4: vlbManager.ReadNginxLogEnteries(60)
5: for each node in nginxWebFarm do
6: vlbManager.calculateAvgRT (node)
7: end for
8: if Avgrt of any node > SLArt and isScaling == false then
9: isScaling = true

10: instanceId = V LBCoordinator.instantiateV irtualMachine()
11: vmip = vlbCoordinator.getV MIP (instanceId)
12: vlbManager.addV MtoNginxWebFarm(vmip)

246 W. Iqbal, M. Dailey, and D. Carrera

13: isScaling = false
14: end if
15: end while
The Boolean isScaling is used to prevent concurrent invocations of the scale-up
procedure. VLBManager creates a child thread to interact with VLBCoordinator
after detection of response time requirements violation at Line 8.

3 Experiments

In this section we describe the setup for an experimental evaluation of our pro-
totype based on a testbed cloud, a sample Web application, and a synthetic
workload generator.

3.1 Testbed Cloud

We built a small heterogeneous compute cloud using four physical machines.
Table 1 shows the hardware configuration of the machines.

Table 1. Hardware configuration of physical machines used for the experimental
compute cloud

Node Type CPU RAM
Front end Intel Pentium 2.80 GHz 2 GB
Node1 Intel Pentium 2.66 GHz 1.5 GB
Node2 Intel Celeron 2.4 GHz 2 GB
Node3 Intel Core 2 Duo 1.6 GHz 1 GB

We used EUCALYPTUS to establish a cloud architecture comprising one Cloud
Controller (CLC), one Cluster Controller (CC), and three Node Controllers (NCs).
We installed the CLC and CC on a front-end node attached to both our main LAN
and the cloud’s private network. We installed the NCs on three separate machines
(Node1, Node2, and Node3) connected to the private network.

3.2 Sample Web Application and Workload Generation

The CPU is normally the bottleneck in the generation of dynamic Web content
[10]. We therefore built a simple synthetic Web application consisting of one Java
servlet that emulates the real behavior of dynamic web applications by alternating
between a CPU intensive job and idle periods, simulating access to non-compute
resources such as network connections and local I/O. The servlet accepts two pa-
rameters, a baseline time and the number of iterations to perform, and performs a
matrix calculation up to the baseline time for the given number of iterations. We
used httperf to generate synthetic workload for our experiments. We generate
workload for a specific duration with a required number of user sessions per second.

SLA-Driven Adaptive Resource Management for Web Applications 247

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 4 8 12 16 20 24 28 32 36 40 44 48

Lo
ad

 le
ve

l

Time (minutes)

Load level over time

Fig. 1. Workload generation for both experiments. We linearly step the load level from
load level 1 through load level 12 every four minutes. Each load level represents the
number of user sessions per second, and each session involves 10 requests to the sample
Web application.

Fig. 2. Experimental setup for Experiment 1 (static resource allocation). The Nginx-
based Web farm consists of one virtual machine (VM1) running the Web application.
VLBManager is only used to obtain the average response time by actively monitoring
the Nginx logs.

Each user session makes 10 requests to the application including 4 pauses to simu-
late user think time. We performed two experiments based on this application.
Experiment 1 profiles the system’s behavior with static allocation of resources
to the application. Experiment 2 profiles the system’s behavior under adaptive

248 W. Iqbal, M. Dailey, and D. Carrera

Fig. 3. Experimental setup for Experiment 2 (dynamic resource allocation). The Web
farm is initialized with one virtual machine (VM1), while VM2 and VM3 are cached
using EUCALYPTUS. VLBManager monitors the Nginx logs and detects violations of
the SLA. VLBCoordinator adaptively invokes additional virtual machines as required
to satisfy the SLA.

allocation of resources to the application to satisfy specific response time require-
ments. The same workload, shown in Figure 1, is generated for both experiments.
We linearly step the load level from load level 1 through load level 12 every four
minutes. Each load level represents the number of user sessions created per second,
and each session involves 10 requests to the sample Web application.

3.3 Experiment 1: Static Allocation

In this experiment, we established the experimental setup shown in Figure 2, in
which only one virtual machine (VM1) hosts the Web application. We installed
the Nginx load balancer on our front-end node and the Apache Tomcat applica-
tion server on the virtual machine. The Nginx-based Web farm thus consists of
only one virtual machine (VM1). VLBManager is only used to obtain the average
response time by actively monitoring the Nginx logs.

SLA-Driven Adaptive Resource Management for Web Applications 249

3.4 Experiment 2: Adaptive Allocation

In this experiment, we used our proposed system to prevent response time in-
creases and rejection of requests by the Web server. Figure 3 shows the experi-
mental setup we established for this experiment. The Nginx-based Web farm is
initialized with one virtual machine (VM1), while VM2 and VM3 are cached
using EUCALYPTUS. In this experiment, we try to satisfy a Service Level
Agreement (SLA) that enforces a two-second maximum average response time
requirement for the sample Web application regardless of load level. We use
VLBManager to monitor the Nginx logs and detect violations of the SLA. We use
VLBCoordinator to adaptively invoke additional virtual machines as required to
satisfy the SLA.

4 Results

4.1 Experiment 1: Static Allocation

This section describes the results we obtained in Experiment 1. Figure 4 shows
the CPU utilization of VM1 during Experiment 1. After load level 5, the CPU
is almost fully utilized by the Tomcat application server. We observe downward
spike in the beginning of each load level because all user sessions are cleared
between load levels and it takes some time for the system to return to a steady
state.

Figure 5(a) shows the number of requests served by our system. After load
level 6, we do not observe any growth in the number of served requests because
the sole Web server reaches its saturation point. Although the load level increases
with time, the system is unable to serve all requests, and it either rejects or
queues the remaining requests. Figure 5(b) shows the number of requests rejected
by our system during Experiment 1.

Figure 6 shows the average response time we observed during each load level.
From load level 1 to load level 5, we observe a nearly constant response time, but

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12

C
P

U
 u

til
iz

at
io

n
(%

)

Load level

Average %CPU utilization of virtual machine

VM1 CPU utilization

Fig. 4. CPU utilization of VM1 during Experiment 1. The duration of each load level
is 4 minutes. The CPU is saturated at load level 5.

250 W. Iqbal, M. Dailey, and D. Carrera

 0

 1500

 3000

 4500

 6000

 7500

 9000

 10500

 12000

 13500

 15000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

of

 r
eq

ue
st

s
se

rv
ed

Load level

Number of requests served with each load level

(a) Number of requests served.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

of

 r
eq

ue
st

s
se

rv
ed

Load level

Number of requests rejected with each load level

(b) Number of requests rejected.

Fig. 5. Number of served and rejected requests during Experiment 1. The duration of
each load level is 4 minutes. After load level 6, we do not observe any growth in the
number of served requests, because the Web server reaches its saturation point. As the
load level increases with time, the system is increasingly unable to serve requests and
rejects more requests.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

A
vg

. R
es

po
ns

e
tim

e
in

 s
ec

on
ds

Load Level

Average Response time using one virtual machine

Avg. Response Time

Fig. 6. Average response time for each load level during Experiment 1. The duration
of each load level is 4 minutes. From load level 1 to load level 5, we observe a nearly
constant response time. After load level 5, we see rapid growth in the average response
time. When the Web server reaches the saturation point, requests spend more time in
the queue, and the system rejects some incoming requests. From load level 6 to load
level 10, some requests spend time in the queue and few requests get rejected. After
load level 10, the Web server queue is also saturated, and the system rejects most
requests.

after load level 5, the arrival rate exceeds the limit of the Web server’s processing
capability, so requests spend more time in the queue, and response time grows
rapidly. From load level 5 to load level 10, requests spend more time in the queue
and relatively few requests get rejected. After load level 10, however, the queue
also becomes saturated, and the system rejects most requests. Therefore we do
not observe further growth in the average response time.

Clearly, we cannot provide a SLA guaranteeing a specific response time with
an undefined load level for a Web application using static resource allocation.

SLA-Driven Adaptive Resource Management for Web Applications 251

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

of

 r
eq

ue
st

s
se

rv
ed

Load level

Number of requests serverd with each load level

(a) Number of requests served.

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

of

 r
eq

ue
st

s
se

rv
ed

Load level

Number of requests rejected with each load level

(b) Number of requests rejected.

Fig. 7. Number of served and rejected requests by system during Experiment 2 with
adaptive resource allocation. The number of requests served by system grows linearly
with the load level while only 120 requests are rejected during the first violation of
response time requirements.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

A
vg

. R
es

po
ns

e
tim

e
in

 s
ec

on
ds

Load level

Average Response time using adaptive resource allocation

VM1: Avg. Response Time
VM2: Avg. Response Time
VM3: Avg. Response Time

Fig. 8. Average response time for each virtual machine during Experiment 2. Whenever
the system detects a violation of response time requirements in any virtual node, it
dynamically creates another virtual machine and adds it to the Web farm.

4.2 Experiment 2: Adaptive Allocation

This section describes the results of Experiment 2. Figure 7(a) shows the number
of requests served by the system over time. We observe linear growth in the
number of requests served by the system with each load level. Figure 7(b) shows
the number of requests rejected during Experiment 2. Only 120 requests are
rejected during the first violation of response time requirements.

Figure 8 shows the average response time of each virtual machine as it is
adaptively added to the Web farm. Whenever the system detects a violation of
the response time requirement from any virtual machine, it dynamically invokes
another virtual machine and adds it to the Web farm. We observe continued
violation of the required response time for a period of time due to the latency
of virtual machine boot-up.

252 W. Iqbal, M. Dailey, and D. Carrera

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12

C
P

U
 u

til
iz

at
io

n
(%

)

Load level

Average CPU utilization of virtual machines

VM1 %CPU utilization
VM2 %CPU utilization
VM3 %CPU utilization

Fig. 9. CPU utilization of virtual machines during Experiment 2. The duration of each
load level is four minutes. After load level 6, VM2 is adaptively added to the Web farm
to satisfy the response time requirement. After load level 10, VM3 is adaptively added
to the Web farm. Different load levels for different VMs reflect the use of round robin
balancing and differing processor speeds for the physical nodes.

Figure 9 shows the CPU utilization of each virtual machine over the experi-
ment. After load level 6, VM2 is adaptively added to the Web farm to satisfy the
response time requirement. After load level 10, VM3 is adaptively added to the
Web farm. Different load levels for different VMs reflect the use of round-robin
balancing and differing processor speeds for the physical nodes.

The experiments show that adaptive management of resources on compute
clouds for Web applications would allow us to offer SLAs that enforce specific
response time requirements. To avoid continued violation of the SLA during
VM boot-up, it would be better to predict response time requirement violations
rather than waiting until the requirement is violated.

5 Conclusion and Future Work

In this paper, we have described a prototype system based on EUCALYPTUS
that actively monitors the response time of a Web application hosted on a cloud
and adaptively scales up the compute resources of the Web application to satisfy
a SLA enforcing specific response time requirements. Adaptive resource manage-
ment in clouds would allow cloud providers to manage resources more efficiently
and would allow consumers (owners of Web applications) to maintain the us-
ability of their applications.

We use the log-based approach to monitor Web applications and detect re-
sponse time violations on the basis of the actual time it takes to service requests.
The main benefit of this approach is that it does not require any modification
of the application or adding components to the user’s virtual machines. An
event-based approach such as CPU utilization monitoring could be used, but
this would not guarantee satisfaction of the SLA. CPU utilization or other event
based approaches, while not sufficient in isolation, could be used in tandem with

SLA-Driven Adaptive Resource Management for Web Applications 253

log-based response time monitoring to help predict future increases in response
time.

We are extending our system to scale down Web applications when appropri-
ate, and we are planning to predict VM response times in advance to overcome
the virtual machine boot-up latency problem. We also plan to use fair balanc-
ing instead of round robin balancing to eliminate the need to check each VM’s
response time. Finally, we plan to port our system to the Amazon Web Services
infrastructure.

Acknowledgments

This work was partly supported by a graduate fellowship from the Higher
Education Commission (HEC) of Pakistan to WI.

References

1. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The EUCALYPTUS Open-source Cloud-computing System. In:
CCA 2008: Proceedings of the Cloud Computing and Its Applications Workshop,
Chicago, IL, USA (2008)

2. Amazon Inc: Amazon web services auto scaling (2009),
http://aws.amazon.com/autoscaling/

3. Azeez, A.: Auto-scaling web services on amazon ec2 (2008),
http://people.apache.org/~azeez/autoscaling-web-services-azeez.pdf

4. Shivam, P., Demberel, A., Gunda, P., Irwin, D., Grit, L., Yumerefendi, A., Babu, S.,
Chase, J.: Automated and on-demand provisioning of virtual machines for database
applications. In: SIGMOD 2007: Proceedings of the 2007 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 1079–1081. ACM, New York (2007)

5. Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.G.: Sharing
networked resources with brokered leases. In: ATEC 2006: Proceedings of the An-
nual Conference on USENIX 2006 Annual Technical Conference, p. 18. USENIX
Association, Berkeley (2006)

6. Shivam, P., Babu, S., Chase, J.: Active and accelerated learning of cost models
for optimizing scientific applications. In: VLDB 2006: Proceedings of the 32nd
International Conference on Very Large Data Bases, VLDB Endowment, pp. 535–
546 (2006)

7. Guitart, J., Carrera, D., Beltran, V., Torres, J., Ayguadé, E.: Dynamic CPU provi-
sioning for self-managed secure Web applications in SMP hosting platforms. Com-
puter Network 52(7), 1390–1409 (2008)

8. Sysoev, I.: Nginx (2002), http://nginx.net/
9. Google Code: Typica: A Java client library for a variety of Amazon Web Services

(2008), http://code.google.com/p/typica/
10. Challenger, J.R., Dantzig, P., Iyengar, A., Squillante, M.S., Zhang, L.: Efficiently

serving dynamic data at highly accessed web sites. IEEE/ACM Transactions on
Networking 12, 233–246 (2004)

http://aws.amazon.com/autoscaling/
http://people.apache.org/~azeez/autoscaling-web-services-azeez.pdf
http://nginx.net/
http://code.google.com/p/typica/

Cost of Virtual Machine Live Migration in
Clouds: A Performance Evaluation

William Voorsluys1, James Broberg1, Srikumar Venugopal2,
and Rajkumar Buyya1

1 Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Australia
{williamv,brobergj,raj}@csse.unimelb.edu.au

http://www.cloudbus.org
2 School of Computer Science and Engineering,

The University of New South Wales, Sydney, Australia
srikumarv@cse.unsw.edu.au

Abstract. Virtualization has become commonplace in modern data cen-
ters, often referred as “computing clouds”. The capability of virtual
machine live migration brings benefits such as improved performance,
manageability and fault tolerance, while allowing workload movement
with a short service downtime. However, service levels of applications are
likely to be negatively affected during a live migration. For this reason, a
better understanding of its effects on system performance is desirable. In
this paper, we evaluate the effects of live migration of virtual machines on
the performance of applications running inside Xen VMs. Results show
that, in most cases, migration overhead is acceptable but cannot be dis-
regarded, especially in systems where availability and responsiveness are
governed by strict Service Level Agreements. Despite that, there is a high
potential for live migration applicability in data centers serving modern
Internet applications. Our results are based on a workload covering the
domain of multi-tier Web 2.0 applications.

Keywords: Virtual machines, performance evaluation, migration, Xen.

1 Introduction

Virtual machine (VM) technology has recently emerged as an essential building-
block of modern data centers, mainly due to its capabilities of isolating, consoli-
dating and migrating workload [1]. Altogether, these features allow a data center
to serve multiple users in a secure, flexible and efficient way. Consequently, these
virtualized infrastructures are consider a key component to drive the emerging
Cloud Computing paradigm [2].

Migration of virtual machines seeks to improve manageability, performance
and fault tolerance of systems. More specifically, the reasons that justify VM
migration in a production system include: the need to balance system load,
which can be accomplished by migrating VMs out of overloaded/overheated

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 254–265, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cloudbus.org

Cost of Virtual Machine Live Migration in Clouds 255

servers; and the need of selectively bringing servers down for maintenance after
migrating their workload to other servers.

The ability to migrate an entire operating system overcomes most difficul-
ties that traditionally have made process-level migration a complex operation
[3,4]. The applications themselves and their corresponding processes do not need
to be aware that a migration is occurring. Popular hypervisors, such as Xen
and VMWare, allow migrating an OS as it continues to run. Such procedure
is termed as “live” or “hot” migration, as opposed to “pure stop-and-copy” or
“cold” migration, which involves halting the VM, copying all its memory pages
to the destination host and then restarting the new VM. The main advantage of
live migration is the possibility to migrate an OS with near-zero downtime, an
important feature when live services are being served [3].

1.1 Background

On Xen, as described by Clark et al. [3], live migrating a VM basically consists
of transferring its memory image from a source server to a destination server.
To live migrate a VM, the hypervisor pre-copies memory pages of the VM to
the destination without interrupting the OS or any of its applications. The page
copying process is repeated in multiple rounds on which dirty pages are continu-
ously transferred. Normally, there is a set of pages that is modified so often that
the VM must be stopped for a period of time, until this set is fully transferred
to the destination. Subsequently, the VM can be resumed in the new server.

It has been observed that live migration of VMs allows workload movement
with near zero application downtime. Nevertheless, the performance of a running
application is likely to be negatively affected during the migration process due
to the overhead caused by successive iterations of memory pre-copying [3]. For
the duration of the pre-copying process extra CPU cycles are consumed on both
source and destination servers. An extra amount of network bandwidth is con-
sumed as well, potentially affecting the responsiveness of Internet applications.
In addition, as the VM resumes after migration, a slowdown is expected due to
cache warm-up at the destination [5].

Moreover, downtime and application performance are likely to be affected
in different ways for different applications due to varying memory usages and
access patterns. Previous studies have found that actual downtime may vary
considerably between applications, ranging from as low as 60 ms when migrating
a Quake game server [3] to up to 3 seconds in case of particular HPC benchmarks
[5]. Regarding the overhead due to migration activity, earlier studies have shown
that experienced slowdown ranged between 1% and 8% of wall-clock time for a
particular set of HPC benchmarks [5].

In other scenarios using Xen, a 12% to 20% slowdown on the transmission
rate of an Apache Web server running a VM with 800MB of memory and
serving static content was reported [3]. In the case of a complex Web work-
load (SPECWeb99) the system under test could maintain the conformity to the
benchmark metrics [3]. In all cases, it has been concluded that, for the particular
set of applications considered, the bad effects of migration were acceptable or
negligible in contrast to its potential benefits to system fault tolerance [5].

256 W. Voorsluys et al.

1.2 Our Contribution

The current literature lacks a practical investigation of live migration effects
in the performance of modern Internet applications, such as multi-tier Web 2.0
applications. However, such a study would aid researchers and practitioners cur-
rently evaluating the deployment of this class of application in clouds. Our con-
tribution is a case study that quantifies the effect of VM live migrations in the
performance of one example, yet representative, of a modern Internet applica-
tion. Our study will be potentially useful to environments where metrics, such as
service availability and responsiveness, are driven by Service Level Agreements
(SLAs). In such systems service providers and consumers agree upon a minimum
service level and non-compliance to such agreement may incur in penalties to
providers [6]. More importantly, an SLA directly reflects how end-users perceive
the quality of service being delivered.

The rest of this paper is organized as follows: Section 2 positions our study
among related work; Section 3 describes why modern Internet applications are
different than traditional workloads; Section 4 describes our objectives, exper-
imental testbed, workload and metrics; Section 5 presents the results of our
performance evaluation; finally, we conclude the paper in Section 6.

2 Related Work

The advent of innovative technologies, such as multicore [7], paravirtualization
[1], hardware-assisted virtualization [8] and live migration [3], have contributed
to an increasing adoption of virtualization on server systems. At the same time,
being able to quantify the pros and cons of adopting virtualization in face of such
advancements is a challenging task. The impact of virtualization in a variety of
scenarios has been the focus of considerable attention. A number of studies have
presented individual and side by side measurements of VM runtime overhead
imposed by hypervisors on a variety of workloads [1,9].

Apparao et al. [10] present a study on the impact of consolidating several
applications on a single server running Xen. As workload the authors employed
the vConsolidate benchmark [11] defined by Intel, which consists of a Web server
VM, a database server VM, a Java server VM and mail server VM. An idle VM
is also added to comply with real world scenarios, on which servers are hardly
fully utilized.

The studies presented by Zhao & Figueiredo [12] and Clark et al. [3] specif-
ically deal with VM migration. The former analyzes performance degradation
when migrating CPU and memory intensive workloads as well as migrating mul-
tiple VMs at the same time; however such study employs a pure stop-and-copy
migration approach rather than live migration. The later introduces Xen live
migration and quantifies its effects on a set of four applications common to
hosting environments, primarily focusing on quantifying downtime and total mi-
gration time and demonstrating the viability of live migration. However, these
works have not evaluated the effect of migration in the performance of modern
Internet workloads, such as multi-tier and social network oriented applications.

Cost of Virtual Machine Live Migration in Clouds 257

A few studies propose and evaluate the efficacy of migrating VMs across long
distances, such as over the Internet. For instance, Travostino et al. [13] have
demonstrated the effectiveness of VM live migration over an WAN connected
by dedicated 1Gbps links; application downtime has been quantified at 5-10
times greater than that experienced on an intra-LAN set-up, despite a 1000
times higher RTT. Besides its feasibility, the concept of WAN live migration is
still to be implemented in commercial hypervisors, which demands all involved
machines to be in the same subnet and share storage. Our work focuses only on
migrating VMs within a data center.

The Cloudstone benchmark [14] aims at computing the monetary cost, in dol-
lars/user/month, for hosting Web 2.0 applications in cloud computing platforms
such as Amazon EC2. From this work we borrow the idea of using Olio [15] and
Faban [16] to compose our target workload for Web 2.0 applications. However,
Cloudstone does not define a procedure to evaluate the cost of virtual machine
migration and, to the best of our knowledge, no previous work has considered
using this type of workload in migration experiments.

3 Characteristics of Modern Internet Applications

The domain of applications that can potentially take advantage of the Infrastruc-
ture as a Service paradigm is broad. For instance, Amazon [17] reports several case
studies that leverage their EC2 platform, including video processing, genetic simu-
lation and Web applications. In particular, such platforms are especially useful for
multi-tier Web applications, generally including a Web server (e.g. Apache), an ap-
plication server/dynamic content generation (e.g. PHP, Java EE), and a backend
database (e.g. MySQL, Oracle). Virtual machine technology adds extra flexibility
to scaling of Web applications, by allowing dynamic provisioning and replication
VMs to host additional instances for one the application tiers.

Social networking websites are perhaps the most notable example of highly
dynamic and interactive Web 2.0 applications which gained popularity over the
past few years. Their increasing popularity has spurred demand for a highly scal-
able and flexible solution for hosting applications. Many larger sites are growing
at 100% a year, and smaller sites are expanding at an even more rapid pace, dou-
bling every few months [18]. These web applications present additional features
that make them different from traditional static workloads [14]. For instance,
their social networking features make each users’ actions affect many other users,
which makes static load partitioning unsuitable as a scaling strategy. In addi-
tion, by means of blogs, photostreams and tagging, users now publish content
to one another rather than just consuming static content.

Altogether, these characteristics present a new type of workload with par-
ticular server/client communication patterns, write patterns and server load.
However, most available performance studies use extremely simple static file
retrieval tests to evaluate Web servers, often leading to erroneous conclusions
[18]. In this work we have this trend into account during the workload selection
process, resulting in the selection of Olio as a realistic workload.

258 W. Voorsluys et al.

4 Evaluation of Live Migration Cost

This study aims at achieving a better understanding of live migration effects on
modern Internet applications. We have designed benchmarking experiments to
evaluate the effect of live migration on a realistic Web 2.0 application hosted on
networked virtual machines.

4.1 Testbed Specifications

Our testbed is a group of 6 servers (1 head-node and 5 virtualized nodes). Each
node is equipped with Intel Xeon E5410 (a 2.33 GHz Quad-core processor with
2x6MB L2 cache and Intel VT technology), 4 GB of memory and a 7200 rpm
hard drive. The servers are connected through a Gigabit Ethernet switch.

The head-node runs Ubuntu Server 7.10 with no hypervisor. All other nodes
(VM hosts) run Citrix XenServer Enterprise Edition 5.0.0. Our choice for a
commercial hypervisor is based on the assurance of an enterprise class software
in accordance with the needs of target users, i.e. enterprise data centers and
public application hosting environments.

All VMs run 64-bit Ubuntu Linux 8.04 Server Edition, paravirtualized kernel
version 2.6.24-23. The installed web server is Apache 2.2.8 running in prefork
mode. PHP version is 5.2.4-2. MySQL, with Innodb engine, is version 5.1.32.

4.2 Workload

We use Olio [15] as a Web 2.0 application, combined with the Faban load gener-
ator [16] to represent an application and workload set. Olio is a Web 2.0 toolkit
that helps developers evaluate the suitability, functionality and performance of
various Web technologies, devised by Sun Microsystems from its understanding
of the challenges faced by Web 2.0 customers [18]. It has been successfully de-
ployed and evaluated in a reasonably sized high-end server infrastructure [18],
as well as in rented resources from Amazon EC2 [14].

The Olio Web application represents a social-events website that allows users
to perform actions such as loading the homepage, logging into the system, cre-
ating new events, attending events and searching for events by date or tag.
It currently provides implementations using three technologies: PHP, Ruby on
Rails and J2EE. For our experiments, we have chosen to use Olio’s PHP im-
plementation, thus employing the popular LAMP stack (Linux Apache MySQL
PHP).

Faban is an open-source Markov-chain load generator used to drive load
against Olio; it is composed by a master program which spawns one or more
load drivers, i.e. multi-threaded processes that simulate actual users. The mas-
ter presents a Web interface through which it is possible to submit customized
benchmark runs and monitor their results. This Olio/Faban combination was
originally proposed as part of the Cloudstone benchmark [14].

The load level driven against the application may be varied by changing the
number of concurrent users to be served by the application. Total time for each
run is configured by adjusting three different durations, namely ramp-up, steady

Cost of Virtual Machine Live Migration in Clouds 259

state and ramp-down. Resulting metrics reported by Faban only take into ac-
count the steady state period.

The main metric considered in our experiments is a Service Level Agreement
defined in Cloudstone. The SLA defines minimum response times for all relevant
user actions. Thus, at any 5-minute window, if a certain percentile of response
times exceeds the maximum, an SLA violation is recorded. The 90th and 99th
percentiles are considered in this study, representing a more relaxed and a stricter
SLA, respectively. Table 1 lists the details of the SLA.

Table 1. Cloudstone’s SLA: The 90th/99th percentile of response times measured in
any 5-minute window during steady state should not excess the following values (in
seconds):

User action SLA User action SLA
Home page loading 1 User login 1
Event tag search 2 Event detail 2
Person detail 2 Add person 3
Add event 4

4.3 Benchmarking Architecture

The architecture of our benchmarking setup is depicted in Figure 1. Based on
the observation that MySQL tends to be CPU-bound when serving the Olio
database, whereas Apache/PHP tends to be memory-bound [14], we have de-
signed our system under test (SUT) by splitting the workload into two net-
worked VMs, hosted in different servers, in order to better partition the available
physical resources.

All nodes share an NFS (Network File System) mounted storage device, which
resides in the head-node and stores VM images and virtual disks. In particular,
a local virtual disk is hosted in the server that hosts MySQL.

The load is driven from the head-node, where the multi-threaded workload
drivers run, along with Faban’s master component.

4.4 Experimental Design

The overall objective of our experiments is to quantify slowdown and down-
time experienced by the application when VM migrations are performed in the
middle of a run. Specifically, we quantify application slowdown based on values
generated by the above-mentioned SLA calculation.

In all experiments, the servers and their interconnection were dedicated to
the application under test. A migration experiment consisted of migrating a
single VM between two dedicated physical machines. In each run, the chosen
destination machine was different from the source machine in the previous run,
i.e. a series of runs did not consist of migrating a VM back and forth between
the same two machines.

260 W. Voorsluys et al.

Head node

Storage

Faban Master

Workload
Driver

XenServer Node

VM 1
Apache

PHP

XenServer Node

XenServer Node

VM 2
MySQL DB

Live migration

Fig. 1. Benchmarking architecture

Preliminary Experiments. Exact VM sizes were obtained by preliminary ex-
periments, in which we have run the application without performing any VM
migration. We have driven load against Olio and gradually increased the number
of concurrent users between runs, in 100 users increments, while using 2 identi-
cally sized VMs with 2 vCPUs and 2GB of memory. By analyzing the SLA (both
90th and 99th percentile of response times for all user actions), we have found
that 600 is the maximum number of concurrent users that can be served by our
SUT. We have observed memory and CPU usage to find the minimum VM sizes
capable of serving 600 users. We have then aimed at reducing the size (vCPUs
and memory) of the VMs to the minimum required to serve 600 users. Thus, in
the final configuration the first VM, which exclusively hosts Apache/PHP, has 1
vCPU and 2GB of memory; the second VM, which hosts MySQL, has 2 vCPUs
and 1GB of memory.

In the same preliminary experiments we have noticed performance issues when
hosting the MySQL server on NFS. The application would not scale to more
than 400 concurrent users, which has lead us to host MySQL in a local disk,
thus scaling up to 600 concurrent users. For this reason, our experiments do
not include migrating the VM that hosts the database server, since XenServer
requires all storage devices to be hosted in a network storage in order to perform
live migrations.

Migration Experiments. In our first set experiments with Olio we have per-
formed 10-minute and 20-minute benchmark runs with 600 concurrent users.
During these experiments, live migrations of the Web server VM were performed.
The goal of experimenting with this load level is to evaluate how the pre-defined
SLAs are violated when the system is nearly oversubscribed, but not overloaded.
Also, we aim at quantifying the duration of migration effects and the downtime
experienced by the application.

Subsequently, in a second round of experiments, we have run the benchmark
with smaller numbers of concurrent users, namely 100, 200, 300, 400 and 500,

Cost of Virtual Machine Live Migration in Clouds 261

aiming at finding a “safe” load level on which migrations can be performed at
lower risks of SLA violation, especially when considering the more stringent 99th
percentile SLA.

5 Results and Discussion

Overall, our experimental results show that overhead due to live migration is
acceptable but cannot be disregarded, especially in SLA-oriented environments
requiring more demanding service levels.

Figure 2 shows the effect of a single migration performed after five minutes in
steady state of one run. A downtime of 3 seconds is experienced near the end of
a 44 second migration. The highest peak observed in response times takes place
immediately after the VM resumes in the destination node; 5 seconds elapse until
the system can fully serve all requests that had initiated during downtime. In
spite of that, no requests were dropped or timed out due to application downtime.
The downtime experienced by Olio when serving 600 concurrent users is well
above the expected millisecond level, previously reported in the literature for a
range of workloads [3]. This result suggests that workload complexity imposes
a unusual memory access pattern, increasing the difficulty of live migrating the
virtual machine.

Figure 3 presents the effect of multiple migrations on the homepage loading
response times. These result corresponds to the average of 5 runs. We report the
90th and 99th percentile SLAs. We can observe that the more stringent 99th
percentile SLA is violated a short moment after the first migration is performed

0

1

2

3

4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Time

Duration of migration effects: 44 seconds

Downtime:
3 seconds

D i f i i ff 44 d

s

Fig. 2. Effects of a live migration on Olio’s homepage loading activity

262 W. Voorsluys et al.

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Re
sp

on
se

 T
im

e
(s

ec
on

ds
)

Time

Response Time 99th percentile SLA 90th percentile SLA

Fig. 3. 90th and 99th percentile SLA computed for the homepage loading response
time with 600 concurrent users. The maximum allowed response time is 1 second.

indicating that when 600 concurrent users are being served, a single VM migra-
tion is not acceptable. The 90th percentile SLA is not violated when a single
migration occurs, but is violated only when two migrations are performed in a
short period of time. This figure also indicates that more than one migration
might not cause violation of the 90th percentile SLA. A way of preventing such
violation is allowing sufficiently spacing between migrations in order to allow the
SLA formula to generate normal response time levels. Thus, it is paramount that
this information is employed by SLA-oriented VM-allocation mechanisms with
the objective of reducing the risk of SLA non-compliance in situations when VM
migrations are inevitable.

From the above mentioned results we can conclude that, in spite of a sig-
nificant slowdown and downtime caused by live migration of VMs, our SUT is
resilient to a single migration when the system responsiveness is governed by the
90th percentile SLA. In other words, provided that migrations are performed at
correct times, there is no cost associated with them. However, this is not the case
for the 99th percentile SLA. For this reason, we have performed a new series of
experiments with smaller number of concurrent users. The objective of such ex-
periments is to gauge a safe level on which a migration could be performed with
low risk of SLA violation.

Table 2 presents more detailed results listing maximum response times for all
user actions as computed by the 99th percentile SLA formula when one migration
was performed in the middle of a 10 minute run. In these runs the load varies
from 100 to 500 users. In all cases, our SUT was able to sustain an acceptable
performance even in the presence of a live migration of the Web server. For

Cost of Virtual Machine Live Migration in Clouds 263

Table 2. Maximum recorded 99th percentile SLA for all user actions when one migra-
tion is performed for 500, 400, 300, 200 and 100 concurrent users

Action 500 400 300 200 100
HomePage 0.32 0.18 0.25 0.25 0.13
Login 0.32 0.33 0.42 0.28 0.14
TagSearch 0.46 0.32 0.35 0.39 0.29
EventDetail 0.48 0.27 0.22 0.24 0.14
PersonDetail 1.53 0.62 0.69 0.61 0.32
AddPerson 2.28 1.00 1.51 1.73 0.66
AddEvent 2.26 1.02 1.30 1.81 0.98

instance, the maximum value observed for homepage loading is 0.32 seconds,
which corresponds to approximately 1/3 of the maximum value allowed, i.e. 1
second. The maximum value observed for the adding a new person to the system
(2.28 seconds), which is more than half of the maximum allowed, but still does
not indicate risk of SLA violation. These results indicate that a workload of 500
users is the load level at which a live migration of the Web server should be
carried out (e.g. to a least loaded server) in order to decrease the risk of SLA
violation.

6 Conclusions and Future Work

Live migration of virtual machines is a useful capability in data centers. It allows
more flexible management of available physical resources by making it possible to
load balance and do infrastructure maintenance without entirely compromising
application availability and responsiveness.

We have performed a series of experiments to evaluate the cost of live mi-
gration of virtual machines in a scenario where a modern Internet application
is hosted on a set of virtual machines. Live migration experiments were carried
out in scenarios where several levels of load were driven against the application.

Our results show that, in an instance of a nearly oversubscribed system (serv-
ing 600 concurrent users), live migration causes a significant downtime (up to 3
seconds), a larger value than expected (based on results previously reported in
the literature for simpler, non Web 2.0 workloads) Also, this service disruption
causes a pre-defined SLA to be violated in some situations, especially when two
migrations are performed in a short period of time. On the other hand, we have
found the most stringent SLA (99th percentile) can still be met when migrations
are performed when the system load is slightly decreased to less concurrent users
(500 in our case study).

In conclusion, we see a high potential of live migration applicability in data
centers serving modern Internet services. This performance evaluation study
is the first step towards the broader objective of studying the power of live
migration of virtual machines for the management of data centers. We plan to
use the insights of this study to develop smarter and more efficient SLA-based
resource allocation systems.

264 W. Voorsluys et al.

We are currently planning to conduct further migration experiments with
new scenarios based on different application configurations, such as: using Mem-
Cached to alleviate database server load and allow for its migration. Moreover,
we plan to expand our testbed to represent a large-scale clouds. As a conse-
quence we expect to obtain a better generalization of the results, resulting in a
performance model of live migration of virtual machines in clouds. This model
will aid our research of market-oriented resource allocation policies in clouds.

Acknowledgements. We would like to thank Marcos Assunção, Alexandre
di Constanzo, Mohsen Amini, Carlos Varela and the anonymous reviewers for
their comments and assistance in improving this paper. This work is partially
supported by grants from the Australian Research Council (ARC), the Aus-
tralian Department of Innovation, Industry, Science and Research (DIISR) and
the University of Melbourne Early Career Researcher (ECR) scheme.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Proceed-
ings of the 19th ACM Symposium on Operating Systems Principles, pp. 164–177.
ACM, New York (2003)

2. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the
5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

3. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: NSDI 2005: Proceedings of the
2nd Conference on Symposium on Networked Systems Design & Implementation,
pp. 273–286. USENIX Association, Berkeley (2005)

4. Milojicic, D., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S.: Process migration
survey. ACM Computing Surveys 32(3), 241–299 (2000)

5. Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive fault tolerance
for HPC with xen virtualization. In: ICS 2007: Proceedings of the 21st Annual
International Conference on Supercomputing, pp. 23–32. ACM, New York (2007)

6. Barbosa, A.C., Sauve, J., Cirne, W., Carelli, M.: Evaluating architectures for in-
dependently auditing service level agreements. Future Generation Computer Sys-
tems 22(7), 721–731 (2006)

7. Iyer, R., Illikkal, R., Zhao, L., Makineni, S., Newell, D., Moses, J., Apparao, P.:
Datacenter-on-chip architectures: Tera-scale opportunities and challenges. Intel.
Technology Journal 11(03) (2007)

8. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F.C.M., Anderson, A.V.,
Bennett, S.M., Kagi, A., Leung, F.H., Smith, L.: Intel. virtualization technology.
Computer 38(5), 48–56 (2005)

9. Cherkasova, L., Gardner, R.: Measuring CPU overhead for I/O processing in the
Xen virtual machine monitor. In: ATEC 2005: Proceedings of the USENIX Annual
Technical Conference, p. 24. USENIX Association, Berkeley (2005)

10. Apparao, P., Iyer, R., Zhang, X., Newell, D., Adelmeyer, T.: Characterization &
analysis of a server consolidation benchmark. In: VEE 2008: Proceedings of the
fourth ACM SIGPLAN/SIGOPS Iinternational Conference on Virtual Execution
Environments, pp. 21–30. ACM, New York (2008)

Cost of Virtual Machine Live Migration in Clouds 265

11. Casazza, J.P., Greenfield, M., Shi, K.: Redefining server performance characteri-
zation for virtualization benchmarking. Intel. Technology Journal 10(3), 243–251
(2006)

12. Zhao, M., Figueiredo, R.J.: Experimental study of virtual machine migration in
support of reservation of cluster resources. In: VTDC 2007: Proceedings of the 3rd
International Workshop on Virtualization Technology in Distributed Computing,
pp. 1–8. ACM, New York (2007)

13. Travostino, F., Daspit, P., Gommans, L., Jog, C., de Laat, C., Mambretti, J.,
Monga, I., van Oudenaarde, B., Raghunath, S., Wang, P.Y.: Seamless live migra-
tion of virtual machines over the man/wan. Future Generation Computer Sys-
tems 22(8), 901–907 (2006)

14. Sobel, W., Subramanyam, S., Sucharitakul, A., Nguyen, J., Wong, H., Patil, S.,
Fox, A., Patterson, D.: Cloudstone: Multi-platform, multi-language benchmark and
measurement tools for web 2.0. In: CCA 2008: Proceedings of the 1st Workshop
on Cloud Computing (2008)

15. Apache Software Foundation: Olio, http://incubator.apache.org/olio
16. Sun Microsystems: Project Faban, http://faban.sunsource.net
17. Amazon Web Services LLC: Amazon Web Services, http://aws.amazon.com
18. Subramanyam, S., Smith, R., van den Bogaard, P., Zhang, A.: Deploying web 2.0

applications on sun servers and the opensolaris operating system. Technical report,
Sun Microsystems (2009)

http://incubator.apache.org/olio
http://faban.sunsource.net
http://aws.amazon.com

Cloud-Oriented Virtual Machine Management
with MLN

Kyrre Begnum, Nii Apleh Lartey, and Lu Xing

Oslo University College, Norway
kyrre.begnum@iu.hio.no,

niial@ifi.uio.no,

lux@ifi.uio.no

Abstract. System administrators are faced with the challenge of mak-
ing their existing systems power-efficient and scalable. Although Cloud
Computing is offered as a solution to this challenge by many, we argue
that having multiple interfaces and cloud providers can result in more
complexity than before. This paper addresses cloud computing from a
user perspective. We show how complex scenarios, such as an on-demand
render farm and scaling web-service, can be achieved utilizing clouds but
at the same time keeping the same management interface as for local
virtual machines. Further, we demonstrate that by enabling the virtual
machine to have its policy locally instead of in the underlying framework,
it can move between otherwise incompatible cloud providers and sites in
order to achieve its goals more efficiently.

1 Introduction

Infrastructure as a service (IaaS) is becoming attractive for both researchers and
technicians with the emergence of products and tools surrounding on-demand
deployment of virtual machines. The main principle is that you can get comput-
ing resources (Xen-based virtual machines in the case of Amazon EC2) without
investing in or setting up hardware, thereby reducing cost and power.

Being a system administrator in this era means facing a new set of man-
agement challenges. Before, it was about simply keeping systems and services
running and getting enough permanent resources to survive a usage spike. To-
day, we are expected to program behavior into our systems so that they adapt
and behave according to complex policies. This new paradigm means having to
give our systems self-* properties, like self-configuration and self-scaling. A likely
scenario is to leverage an increase in distributed server resources for temporary
extra computing power or proximity to customers. One of the main challenges
in achieving this from a local perspective, is the lack of tools which address both
in-house virtual machine management and cloud computing through the same
management interface. This is not merely a problem of learning yet another
tool, but that of integrating the clouds instances into existing, local infrastruc-
ture systems, such as monitoring, user management and backup. We argue that
cloud computing should be integrated into the existing management tools and

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 266–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Cloud-Oriented Virtual Machine Management with MLN 267

practices at an organization and not having to split up management operations
to span multiple provider-centric interfaces.

Consider a small company producing CGI material which may not afford to
buy and maintain their own render farm. Hiring a render farm for fixed periods
of time would be the alternative albeit somewhat inflexible if they fail to utilize
the farm for the entire period they paid for. Cloud computing may offer a better
solution where the render farm exists in a cloud such as Amazon EC2 and can
be booted up only when needed. The local technicians can maintain a local
version of the cluster, running entirely as virtual machines on a moderately
powered computer, providing a testing ground for their software. Once they
need to render a large project, the cluster is pushed into the cloud and booted
up as a far more powerful version of itself. When the rendering is finished, it can
be taken down again and there are no more costs associated with it.

Another example is that of a company with local web services experiencing
a sudden heavy load due to increased attention from customers. Buying and
installing new hardware in order to cope with the pressure has numerous draw-
backs: The time to get them up will be too long and once they are up they
were a wasted expense if the traffic goes down to its normal level again. Further,
although they can expand their infrastructure, there might be little they can do
with the capacity of their internet connection. Again, with cloud computing they
could boot up web-server instances in different clouds and use load-balancing on
the DNS service to direct the customers. Once the traffic dies down again, the
instances can be taken down. If the load settles on a high level, the company
now has time to invest in more hardware and network equipment based on their
expected profits.

There are some observations to be made about these scenarios. The most im-
portant one is that the companies all have local infrastructure and the capability
to run virtual machines. Further, they are cloud-aware and have the means to
effectively manage instances both locally and in a cloud if necessary. As a result,
they have designed their service to work with support from cloud providers when
needed. Seeing cloud computing as an addition rather than only a replacement
for local infrastructure offers many more scenarios like these.

This paper describes an effort to address the problem of cloud-aware local
management by modifying the virtual machine management tool MLN to in-
tegrate cloud architectures and thereby enable seamless integration of cloud
instances into local management. We showcase its usefulness today through two
scenarios, an on-demand render cluster and a scaling web-scenario. Possibilities
for self-management are demonstrated in a third scenario to highlight the future
potential of virtualization and cloud computing.

2 Background

Amazon’s elastic computing cloud (EC2) is a Xen-based IaaS product which has
become a popular example of cloud computing. Users can upload custom virtual
machine images and boot instances of them according to five different hardware

268 K. Begnum, N.A. Lartey, and L. Xing

profiles. There are several cost-metrics involved in calculating the running costs
for a virtual machine, based on added services such as permanent storage parti-
tions and network traffic. However, the most important observation is that cost
is dominated by instance uptime and not CPU usage per se. The more powerful
the instance, the higher the cost associated with keeping it up and running. A
cost-effective utilization of Amazon’s product means making sure that the in-
stances only running when they are needed. This highlights the new paradigm
of system administration where behavior becomes the focus rather than uptime.

An open source alternative to Amazon EC2 is Eucalyptus, a project located at
the University Of California[1]. Eucalyptus is appealing because it supports the
same API as Amazon EC2 and can work as a plug-in replacement for Amazon’s
commercial offering. This may be more attractive to research institutions, where
sharing resources for experiments has been widespread. One example of such
practice is PlanetLab.

An example of IaaS being used in order to enhance local infrastructure can be
found in the VMplant project [9]. Here, virtual machines running on a remote
infrastructure could be connected to the local area network using tunneling. The
goal was the ability to dynamically expand the number of local servers.

2.1 MLN

MLN (Manage Large Networks) is an open source tool designed for management
of large numbers of virtual machines. A concept of groups of virtual machines
called ”projects”, enable atomic management operations such as building, start-
ing and stopping entire clusters and networks. An expandable plugin framework
to allow additions to MLNs configuration language and features.[10]

MLN uses a configuration language to specify how the virtual machines are
to be set up. In this language both VM properties such as memory and disk
size are specified along with internal system properties such as users, passwords
and startup parameters. MLN supports Xen, User-Mode Linux and VMware
Server and has previously been shown to work well in scenarios where large
numbers of virtual machines are deployed with complex network topologies and
system configurations, such as high-performance computing and virtual labs in
education. [8,5,6]

2.2 Integrating Amazon EC2 and Eucalyptus

Both Amazon EC2 and Eucalyptus support by-and-large the same API for vir-
tual machine management. For MLN, integrating support for these two cloud
providers is done through the development of a plugin, which can be maintained
apart from the main MLN codebase. This plugin seamlessly expands the syn-
tax of the MLN configuration language, allowing users to include Amazon EC2
or Eucalyptus properties in the virtual machines they design. The following is
a simple project consisting of only one virtual machine which is to run inside
the Amazon EC2 cloud. The ec2-block inside the host specification is what is
handled by the plugin and results in this virtual machine being built in the cloud.

Cloud-Oriented Virtual Machine Management with MLN 269

global {
project ec2example

}
host webserver {

xen
ec2 {

type c1.medium
volumes {

2G hda1 /var/log/apache ext3 defaults
}

}
network eth0 {

address dhcp
}
template web.ext3
free_space 2000M

}

Notice how volumes can be specified in an integrated manner, allowing MLN to
coordinate which volumes belong where, letting the virtual machine always be
associated with that particular volume. Associating volumes with virtual ma-
chines is of particular importance when projects of numerous virtual machines
are run, where each virtual machine has its own volume. Keeping track of the
volumes so that the same volume is always associated with the same virtual
machine is something which is not possible with even Amazon EC2’s own man-
agement console.

The management commands stay the same, which enables the user to keep
managing virtual machines the exact same way regardless if they are local or in
a cloud. It is even possible with projects containing both local virtual machines
and cloud instances and subsequent management (starting, stopping, building,
removing) of these as an atomic unit:

mln build -f projectfile.mln
mln < start |stop > -p projectname

In order to cope with long-term management of projects, MLN provides an
”upgrade” command which allows modifications to running virtual machines.
When upgrading, a new version of the project configuration file is submitted
and MLN will attempt to enact the changes based on the difference from the
previous version. The type of modification can be hardware-oriented, such as
increasing disk size or memory. It can also be used to migrate the virtual machine
from one server to another, so-called live migration, where it is supported. It is
this upgrade mechanism which allows system administrators to migrate virtual
machines which are running locally into Amazon EC2 or Eucalyptus. When
doing so, the new version of the project needs to have an ec2-block inside each
virtual machine which is to be migrated to a cloud. Another possibility is to add
virtual machines to a running project, which leads to the possibility of a scaling
site where the number of servers can be increased on demand.

3 Case: On-Demand Render Farm

In this scenario, we want to demonstrate how MLN can be used to create and
manage a large cluster of virtual machines which can reside either locally or in a

270 K. Begnum, N.A. Lartey, and L. Xing

cloud. The case, as highlighted above,is that of a company in need for a render
farm for short periods of time. The technicians maintain a local renderfarm
running on a moderately powered computer, such as a modern desktop machine.
The following project represents the design of the render farm in its local version:

global {
project render
autoenum {

numhosts 5
superclass rendernode
hostprefix rend

}
}
superclass common {

xen
memory 512
free_space 1000M
network eth0 {

address dhcp
}
template rendernode.ext3

}
superclass rendernode {

superclass common
startup {

/scripts/rendernode.pl start
}

}
host frontend {

superclass common
template manager.ext3
startup {

/scripts/frontnode.pl start
}

}

Note that some additional parameters which would have been useful, such as
users and passwords have been omitted for clarity. The project consists of a
frontend virtual machine and a number of render nodes which all inherit from
the rendernode superclass. The number of render nodes (in this example 5) is
defined in the autoenum block, which removes the complexity of adding more
nodes by acting as a for-loop at parse time[6]. The project file itself will not
grow based on the number of nodes, so it could just as well be 32 nodes without
changing any of the management steps. The virtual machines are built from
templates, which are ready-made filesystems containing the render software and
libraries. The frontend node contains queueing software in order to partition the
job and manage the nodes. Building and starting the cluster is done by issuing
management directives on the project-level:

mln build -f render.mln
mln start -p render

Until now the render farm has been running locally while the technicians have
adjusted the software to work properly with their local applications. With a low
memory setting per node, this could run as local virtual machines on a moderate
desktop computer using the Xen hypervisor[2]. When it is time to run the render
farm as a more powerful cluster, a cloud provider will act as extra infrastructure

Cloud-Oriented Virtual Machine Management with MLN 271

for the required period. The next step for the technician will be to move the
cluster into the cloud. This is achieved by using the MLN upgrade command.
First, a new version of the project file is written with the following addition to
the superclass common:

ec2 {
type c1.xlarge
volumes {

2G hda1 /var/log
}

}

By adding the ec2-block to the superclass, all virtual machines inheriting from
it will now be instances running in a cloud environment. This could be either
Amazon’s EC2 framework, as the name suggests, or an Eucalyptus cloud pro-
vided by another party. There are two directives in this block. The first is a type
assignment, which will boot this VM as the most powerful hardware allocation
in terms of CPU; 8 cores and 7GB of memory. The volumes block will assign
each instance a permanent partition which will be mounted on the /var/log
folder for logging. This is useful since the EC2 frameworks do not offer perma-
nent storage of changes made on the virtual machines while they are running.
The changes to the project are enacted using the following command:

mln upgrade -f render_ec2.mln

MLN will now bundle and transfer the images necessary to boot the project to
the cloud environment and automate the typical steps of registering the images,
creating the permanent volumes and assigning volumes to each instance. Note,
that EC2 frameworks can boot several virtual machines from the same image,
so in this case we only need to transfer two compressed images, one for a render
node and one for the frontend. This holds regardless of the size of the render
farm. Once the upgrade process is completed, the project can be started with
the same command as above on the same machine. Having 16 render nodes
of the largest type, would provide a 128 CPU cluster, which they in terms of
management can boot up and shut down as they like just like a group of local
virtual machines.

4 Case: Scaling Web Service

The ability to dynamically de- or increase it’s number of resources, be it for
performance objectives or power-management, has been the focus of many in the
wake of virtualization’s attention the last years. For most organizations today,
however, the technology is unavailable to them unless they invest heavily in
specialized products. Further, automatically scaling is not trivial, as it has the
potential to cost excessive amounts if the algorithm reacts to a false positives or
deliberate denial-of-service attacks.

In this scenario, MLN is used to add or remove nodes in a cloud belonging
to a web service. The service consists of a load balancer with the ability to

272 K. Begnum, N.A. Lartey, and L. Xing

500
1000

1500
2000

2500
3000

Requests (10 requests per connection)

0

50

100

150

200

250

300
R

ep
lie

s
pe

r
se

co
nd

1x Webserver Avg. reply rate
1x Webserver Max/Min reply rate
2x webservers Avg. reply rate
2x webservers Max/Min reply rate
4x webservers Avg. reply rate
4x webservers Max/Min reply rate

Performance of a scaling web service

Fig. 1. The performance of a scaling website when using 1, 2 and 4 webservers running
on the Amazon EC2 framework

dynamically add new nodes to be used as webservers. The system administrator
can decide how many webservers to use through MLN upgrade command to the
project.

Using a design similar to the render farm, a project consisting of the frontend
loadbalancer and a number of webservers is declared. Different versions of that
project would only differ in the number of webservers. Changing between them
could then be enacted using the MLN upgrade command. Each of these com-
mands would result in the specific number of webservers being set and can be
run in arbitrary order:

mln upgrade -S -f webservice_x1.mln
mln upgrade -S -f webservice_x2.mln
mln upgrade -S -f webservice_x4.mln

The figure 1 shows the performance of the website based on the number of
webservers running. The website was running on the Amazon EC2 cloud and
the loadbalancer used was perlbal. The performance data was gathered using
httperf. We see that the ability to withstand a high request rate increases with
the number of backend webservers.

One would ask why it would be desirable to keep the website running with
only one webserver when it could run with four. The answer is in essence what
cloud computing is about. A system administrator, with proper monitoring,
will be able to keep the site at a low-cost, low-power performance level during
periods of known inactivity, like night-time. During the day, a scheduled job
could increase the number of servers to two and four servers could be kept as
a short peak-hours remedy. What is important in this scenario, is that local
management commands can be used to manage cloud-based systems like we

Cloud-Oriented Virtual Machine Management with MLN 273

would traditionally script system behavior, and that the mechanism to control
cloud-based systems is separated from the policy (or algorithm), enabling local
solutions.

5 Self-management with Local Policies

This part demonstrates how cloud computing can play a role in development of
advanced system policies based on ideas from agent-based behavior. A virtual
machine, compared with a physical and conventional system, has the ability to be
modified in ways which resemble that of traditional agents. They can increase in
computing power and memory while powered on or even move between locations
either while running or powered off. Virtualization provides the flexibility for
agent behavior. What is needed is the individual VMs ability to enact behavior
based on its own local goals.

The traditional approach of managing virtual machines is to build a framework
which handles and monitors all the virtual machines combined with an algorithm
for balancing the virtual machines across the physical machines. However, this
approach has some drawbacks when seen from the perspective of the user:

– Cloud providers are unaware of each other, while the users more likely will
have virtual machines in multiple clouds in the future. It is difficult to get
homogeneous treatment of your virtual machine across the different clouds,
which complicates coordinated management of all resources.

– Load balancing algorithms are very basic and limited to typical services like
web applications. The customers can not decide which factors to prioritize,
like accepting poor performance in order to keep costs down.

– Interfacing with a cloud is often done through a graphical application in-
tended for humans. It is difficult to program your own algorithm on top
which would give your virtual machines a specialized policy across multiple
cloud providers.

The decoupling of high-level management algorithms from the infrastructure is
a necessary step in order to let the virtual machines manage them selves. We
will next show two examples where a virtual machine will be aware of multiple
infrastructure providers and make decisions locally as to where it should be
located based on its own policy. Further, we show that this can be achieved with
conventional tools common in the field of configuration management.

5.1 Service Optimization through User Proximity

In [3] we let the virtual machine run a web-service and monitor the origin of its
users. We introduced three location where the virtual machine could move freely
based on its own local decision. The location were one in the United States and
two in Norway. In order to achieve the best service to the majority of its current
users, the virtual machine decided where to stay based on a short history of
incoming user requests. By introducing curve-based behavior at each location

274 K. Begnum, N.A. Lartey, and L. Xing

00:00 09:00 18:00 03:00 12:00 21:00 06:00

Time (at Oslo)

0

20

40

60

80

100
P

er
ce

nt
ag

e
of

 th
e

la
rg

es
t g

ro
up

 o
f u

se
rs

Request from Oslo (hits/5mins)
Request from Gjovik (hits/5mins)
Highest Request Percentage (%)
Policy for Migration
Round Trip Time from Gjovik (ms)

Virtual Machine Migration based on the location of the majority of users
(24 hours period sine curve, 60% limit to form a majority)

= VM resides in Oslo

Fig. 2. The virtual machine monitors the activity from the two locations (two sine
curves) and decides to migrate to the location with a majority of clients

relative to local working hours, we observed that the virtual machine moved
back and forth between Norway and The United States.

The virtual machine was able to change its own location by having a local
version of its own MLN project and by the ability to communicate changes
down to the framework using the MLN client and issuing an upgrade with a
new version of its project. The framework itself is passive and does not do any
load balancing or optimization itself. The decision is made entirely inside of the
virtual machine, based on its own policy. The configuration management tool
Cfengine[7], was used to monitor the clients, analyze the usage and make the
decision to migrate. Dynamic DNS is used to offer the same address to the clients
regardless of the virtual machines current location.

The plot below shows the result from migrating a virtual machine between
two norwegian cities, Oslo and Gjøvik, with induced difference in time-zones.
The virtual machine uses a simple policy to decide where to stay: The desired
location has more than 60% of the total current clients and their trend is rising
in the last 15 minutes. The dotted line represents the threshold of 60% while
the line around it depicts the current percentage of the location with the most
users. The two sine curves show the activity from the two cities, normalized to
fit the plot. The round-trip time, as seen from Gjøvik, is shown in the bottom
line. The results show that the simple policy migrates the machine to Oslo at the
beginning of their working hours. The RTT-value is lowest as seen from Oslo.
Gradually, the activity increases at Gjøvik, and when Oslo is past its peak, the
majority shifts and the virtual machine moves to Gjøvik. We see then that the
RTT-value becomes low for Gjøvik for the remainder of their working day.

Cloud-Oriented Virtual Machine Management with MLN 275

It is important to note, that the input data is something only the virtual ma-
chine can see at all times. It would be possible to see the traffic from the frame-
work, but if Oslo and Gjøvik would represent two different providers, chances
are small they would share monitoring data.

The policy used to migrate is simple but demonstrates our point that policies
inside of the virtual machines can mimic those usually found in frameworks with
basic resource balancing. We see from the RTT value that at some migrations, it
takes time for the virtual machine to settle at its new location. This is because
we had a level of noise in our load generators, which could impact the majority
when it was still very even. However, more advanced policies with better trend
analysis can take advantage of the same mechanism to use MLN in order to
enforce its local policy.

5.2 Cloud-Assisted Queue Processing

In this example, we will also consider a virtual machine with a local policy. The
virtual machine reads jobs from a queue and processes them in order. The jobs
vary in size and could be mostly cpu-intensive, like mathematical computations
or graphical rendering. The virtual machine resides at the company which issues
the jobs. If the queue should become too long or a number of large jobs should
reach a threshold, the virtual machine will choose to migrate into the Amazon
EC2 cloud in order to become a more powerful virtual machine. The queue
processing will speed up and when the number of jobs is small again, the virtual
machine moves back to a physical machine at the company.

In our experiment[4], we assume a queue to be made up of different jobs of
a certain type, which takes about half the time it takes to run on a local setup
when processed in the cloud. It would be possible to find a length of queue for
which it is more time efficient to migrate and run in the cloud. If the average
time taken to migrate from the local installation to the cloud Mt, then there
exists a time Lt which is the time taken for the queue to be processed locally
for which Lt = Ct + Mt where Ct is the time to process the queue in the cloud.
For migration to be an incentive,

Lt >> Ct + Mt.

Eg. We have a queue contain units of jobs, which take 10 minutes each to com-
plete locally, but 5 minutes complete in the cloud. Our average migration time
from the local installation to the Amazon EC2 cloud was about 15 minutes, it
means that there would be equilibrium when the length of queue (n) is

n(10) = n(5) + 15

This means that for an incentive for migration, n > 3. If n = 10 for example, it
would take 10(10) = 100 minutes to process the queue locally, however it would
take 10(5) + 15 = 65 minutes to process the same queue by doing a migration
into the cloud first. This behavior was implemented on a virtual machine, using
MLN to migrate itself into the Amazon cloud every time the queue was longer

276 K. Begnum, N.A. Lartey, and L. Xing

than 3. In order to control the behavior further, we introduced a maximum 6
hour allowance to be in the cloud in one day. Interestingly, migration back from
Amazon is near instantaneous, since no changes are stored anyway in the cloud,
we can simply boot the filesystem we sent into the cloud when we migrated
last.

6 Discussion

MLN provides a familiar interface to multiple scenarios, spanning two important
cloud technologies in addition to provide local virtual machine management. We
believe that local, user-oriented management of virtual machines is more benefi-
cial than todays framework-oriented approach. It is unlikely that an organization
which utilizes clouds will only be a tenant at one provider, but will instead have
different providers in order to gain their individual pricing advantage. A famil-
iar tool for management will enable seamless adoption of new cloud providers
without learning their particular interface.

Another important factor, is that of monitoring and detecting phase changes
on services. Data centers are often criticized for having under-utilized servers
which waste power. This is true, but one fails to see that for one very important
moment, the servers can become fully utilized. Detecting such a change of phase
from idle to active, is a prerequisite for dynamically scaling services. We have
shown that such algorithms can be implemented inside of the virtual machines
themselves instead of having a resource-balancing infrastructure. The most ob-
vious case is when moving from one provider to another. It is unlikely that they
will offer the same algorithms or interface for resource management. Bundling
it inside of the virtual machines and moving them means keeping the opera-
tions logic across the providers. However, we do see problems with our approach
as well. If the virtual machine was to be ”ignorant” of other virtual machines,
how should they organize themselves? If, on the other hand, all virtual ma-
chines would know about all other virtual machines, we would in effect duplicate
what would be almost the same analysis on all the nodes, which could waste
resources.

The field of mobile agents comes to mind in our examples. The virtual ma-
chines behavior can be characterized as that of simple, reactive agents. We find
this idea intriguing, as this opens the door to use many of the established con-
cepts of group-consensus, trust, local belief and market-place dynamics. The
virtual machine as not simply an operating system instance, but rather a mobile
agent with the capabilities to move about and fulfill its (or their) mission is
interesting. At the same time, this agent’s mission is to do real work, such as
running an optimal service for its organization by being closest to its users. This
brings together the field of artificial intelligence and system administration in a
new way, which should be explored further. It is our concern, that over-focusing
on building algorithms for frameworks and leaving the virtual machines passive
may overshadow the potential of this agent-based behavior.

Cloud-Oriented Virtual Machine Management with MLN 277

7 Conclusion

This paper addresses the management of virtual machines from a local system
administrators perspective where IaaS-type frameworks such as Amazon EC2
and Eucalyptus are utilized for increased performance and flexibility. We show
that advanced management concepts can be achieved using MLN and familiar
tools in the system administration community without the need to use special
web-based management consoles. Our scenarios showcase cloud-oriented man-
agement which combines both local virtual machines and cloud instances. An
on-demand render farm and scaling website represent what companies would
be interested in realizing today. Lastly, we consider the effect of putting the
decision-making capabilities of a dynamic service inside of the virtual machine,
enabling it to behave in a manner more likely to mobile agents.

References

1. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The Eucalyptus Open-source Cloud-computing System. In: Pro-
ceedings of 9th IEEE International Symposium on Cluster Computing and the
Grid, Shanghai, China

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization: SOSP 2003. In: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, pp.
164–177. ACM Press, New York (2003)

3. Xing, L.: A Self-management Approach to Service Optimization and System In-
tegrity through Multi-agent Systems. Master Thesis, University of Oslo (2008)

4. Apleh Lartey, N.: Virtual Machine Initiated Operations Logic for Resource Man-
agement Master Thesis, University of Oslo (2009)

5. Begnum, K., Koymans, K., Krap, A., Sechrest, J.: Using virtual machines in system
and network administration education. In: Proceedings of the System Administra-
tion and Network Engineering Conference, SANE (2004)

6. Begnum, K., Disney, M.: Scalable Deployment and Configuration of High-
Performance Virtual Clusters. In: CISE/CGCS 2006: 3rd International Conference
on Cluster and Grid Computing Systems (2006)

7. Burgess, M.: Cfengine - a configuration engine. University of Oslo, Dept. of Physics
report (1993)

8. Begnum, K.: Manage Large Networks of virtual machines. In: Proceedings of the
20th Large installation system administration conference. USENIX (2006)

9. Krsul, I., Ganguly, A., Zhang, J., Fortes, J.A.B., Figueiredo, R.J.: VMPlants: Pro-
viding and Managing Virtual Machine Execution Environments for Grid Comput-
ing. In: SC 2004: Proceedings of the 2004 ACM/IEEE conference on Supercom-
puting, IEEE Computer Society, Los Alamitos (2004)

10. Begnum, K.: Towards Autonomic Management in System Administration. PhD
Thesis, University of Oslo, issn: 1501-7710, Unipup (2008)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 278–289, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Systematic Process for
Developing High Quality SaaS Cloud Services*

Hyun Jung La and Soo Dong Kim

Department of Computer Science
Soongsil University

1-1 Sangdo-Dong, Dongjak-Ku, Seoul, Korea 156-743
hjla@otlab.ssu.ac.kr, sdkim777@gmail.com

Abstract. Software-as-a-Service (SaaS) is a type of cloud service which pro-
vides software functionality through Internet. Its benefits are well received in
academia and industry. To fully utilize the benefits, there should be effective
methodologies to support the development of SaaS services which provide high
reusability and applicability. Conventional approaches such as object-oriented
methods do not effectively support SaaS-specific engineering activities such as
modeling common features, variability, and designing quality services. In this
paper, we present a systematic process for developing high quality SaaS and
highlight the essentiality of commonality and variability (C&V) modeling to
maximize the reusability. We first define criteria for designing the process
model and provide a theoretical foundation for SaaS; its meta-model and C&V
model. We clarify the notion of commonality and variability in SaaS, and pro-
pose a SaaS development process which is accompanied with engineering in-
structions. Using the proposed process, SaaS services with high quality can be
effectively developed.

Keywords: Cloud Computing, Software-as-a-Service, SaaS, Commonality and
Variability Analysis, Development Process.

1 Introduction

Cloud Computing (CC) is emerged as an effective reuse paradigm, where hardware
and software resources are delivered as a service through Internet [1]. Software-as-a-
Service (SaaS) is a type of cloud services, where the whole software functionality is
run on provider’ side and becomes available to consumers [2][3].

SaaS provides several benefits to consumers; no cost for purchasing, free of main-
tenance, accessibility through Internet, and high availability. To realize these benefits,
there should be systematic and effective processes and methods to support the devel-
opment of SaaS services. Conventional methods including object-oriented modeling
would be limited in developing services, mainly due to the difference between their
computing paradigms. That is, conventional development methods do not effectively

* This research was supported by the National IT Industry Promotion Agency (NIPA) under the

program of Software Engineering Technologies Development and Experts Education.

 A Systematic Process for Developing High Quality SaaS Cloud Services 279

support CC-specific engineering activities such as modeling common features and
designing services. Hence, there is a great demand for effective processes for devel-
oping SaaS cloud services.

In this paper, we present a process for developing high quality SaaS. We first de-
fine criteria for designing the process model in section 3. And, we present a theoreti-
cal foundation of our work in section 4; a meta-model of SaaS and a tailored view of
commonality and variability. In section 5, based on the criteria and foundation,
we propose a whole life-cycle process and its instructions to develop SaaS. Using the
proposed process, cloud services with high quality can be more effectively
developed.

2 Related Works

A little work is known in the area of developing SaaS. We survey two related works.
Javier and his colleagues present overall SaaS development process by tailoring tradi-
tional software development methodologies [4]. They first analyze how SaaS impacts
each phase in the software development methodologies. Based on the analysis results,
they redefine five-stage SaaS development process and a list of development artifacts.
Requirements stage focuses on deriving business opportunities from market require-
ments, Analysis stage is also performed from a business perspective, Design phase is
performed by using a set of technologies such as service-oriented architecture and
business process modeling, Implementation stage is performed by considering the
SaaS platform environment, and Testing stage focuses on validation of interaction
between application and the SaaS platform, performance, and usage-metering. This
work mentions a key development artifacts and essential techniques required in the
development process. However, they do not cover a key characteristic of cloud ser-
vices, reusability, in their process, and stepwise process and detailed instructions are
required.

Mietzner and his colleagues present a package format for composite configurable
SaaS application by considering requirements of different consumers [5]. They distin-
guish three key roles in SaaS environment; SaaS consumer using the SaaS software,
SaaS provider selling the software as a service, and SaaS application vendor develop-
ing applications tha are offered as a service by SaaS provider. To be easily used by
SaaS consumer, the package format contains a set of artifacts needed to provision the
SaaS and customized application by using variability descriptors. This paper utilizes
service component architecture (SCA) in customizing application template. This work
focuses on the reusability of SaaS application by using SCA. However, they need to
cover all the development process since the unique characteristics beyond the reus-
ability can affect other stages in the process.

3 Design Criteria

Software/Service engineering processes largely depend on computing paradigms. In
this section, we define two main design criteria for defining the development process
for SaaS cloud services.

280 H.J. La and S.D. Kim

One criterion is to reflect the intrinsic characteristics of SaaS in the process. Since
every well-defined development process should reflect key characteristics of its com-
puting paradigm, this is considered as the main criterion. The other criterion is to
promote developing SaaS with the desired properties, which are defined as the re-
quirements that any SaaS should embed in order to reach a high level of QoS.
Through our rigorous survey of literatures [4][6], we define key characteristics and
desired properties of SaaS in Table 1.

Table 1. Characteristics and Desired Properties of SaaS

Characteristics Desired Properties
 Supporting Commonality
 Accessible via Internet
 Providing Complete Functionality
 Supporting Multi-Tenants’ Access
 Thin Client Model

 High Reusability
 High Availability
 High Scalability

We give explanation and brief justification for each characteristic given in the ta-
ble. Supporting Commonality: As an extreme form of reuse approaches, an SaaS pro-
vides software functionality and feature which are common among and so reused by
potentially a number of service consumers. Services with high commonality would
yield high profits/return on the investment (ROI).

Accessible via Internet: All the current reference models of CC assume that cloud
services deployed are accessed by consumer through Internet.

Providing Complete Functionality: SaaS provides the whole functionality of certain
software in the form of service. This is in contrast to a mash-up service which pro-
vides only some portion of the whole software functionality.

Supporting Multi-Tenants’ Access: SaaS deployed on providers’ side is available to
the public. And, a number of service consumers may access the services at the given
time without advanced notices. Hence, SaaS should be designed in the way to support
concurrent accesses by multiple tenants and handle their sessions in isolation.

Thin Client Model: SaaS services run on providers’ side, while service consumers use
browsers to access the computed results. Moreover, consumer-specific datasets which
are produced by running SaaS are stored and maintained on providers’ side. Hence,
there will be nothing the browser-like user interaction tool installed and run on cli-
ent/consumer side.

We now give explanation and brief justification for each desired property given in
the table. High Reusability: Service providers develop and deploy cloud services and
expect that the services would be reused by a large number of consumers. Services
which are not much reusable by consumers would lose the justification for invest-
ment, while services that can be reused by many consumers would return high enough
on the investment. Therefore, it is highly desirable for cloud services to embed a high
level of reusability.

 A Systematic Process for Developing High Quality SaaS Cloud Services 281

High Availability: Cloud services are not just for specific users; rather they are for any
potential unknown consumers who may wish to use the services anytime and any-
where. Therefore, it is highly desirable for the service to be highly available if not al-
ways. Services with low availability would cause inconvenience and negative business
impacts to consumers, and, as the result, they will suffer on reliability and reputations.

High Scalability: In CC, the amount of service requests from consumers, i.e. service
load, is dynamic and hard to predict. Therefore, cloud services should be highly scal-
able even in the situation that an extremely high number of service invocations and so
their associated resource requests are requested. Services with low scalability would
suffer at the time of peak requests and so lose their reputations by consumers.

While typical web applications provide functionalities for sharing useful information
and/or carrying relatively less business-intrinsic operations, SaaS is meant to substitute
business-intrinsic or business logic-intensive functionality delivered by conventional
software with a notion of internet-based service. Due to this observation, characteristics
and properties presented above are more importantly considered in SaaS.

4 Theoretical Foundation for SaaS Services

4.1 Meta Model of SaaS

Before devising an effective SaaS development process, we need to define the key
elements of SaaS. By considering general consensus on SaaS, we define its meta
model in Fig. 1.

A SaaS-based system has two parties; Client Node is on the left, and Provider
Node is on the right. As thin-client model, client node has only a user interface tool,
typically a web browser. The provider node runs SaaS application which typically has
components of three layers; UI Component as view, Controller as control, and Entity
component as Model. Each component consists of common features and variable fea-
tures which vary according to consumer.

Controller runs business logics and transactions, and hence it maintains a Session
Log for multiple consumers. In CC, multiple consumers user the same SaaS and so
their application datasets must be well maintained in isolated manner. Hence, in the
figure, Data Set is maintained by Entity Component. Both Session Log and Data Set
are specific to each consumer in CC.

DataSet

«Web Browser»
User Interaction Tool

«invokes» «view»
UI Component

«control»
Controller

Component

«model»
Entity Component

Session Log

Common Feature

Variable Feature

«Depends on»

«Uses»

«Depends on»

Consumer

Provider NodeClient Node

«Maintains»

«Maintains»

«Associateswith»

«Varies in»

«Varies in»

«Varies in»
Fig. 1. Meta-Model of SaaS

282 H.J. La and S.D. Kim

SW Application

«consumer»

Organization

SRS
1 1

1

1…*

Domain
1 1…*

Fig. 2. Criteria on Commonality Determination

4.2 Commonality and Variability in SaaS

Reusability is a key criterion for cloud services, and commonalty is the main con-
tributor to reusability. That is, cloud services with high commonalty will yield higher
reusability. Variability is a minor difference among applications or consumers within
a common feature. C&V analysis is an essential activity in component-based devel-
opment (CBD) and product-line engineering (PLE). However, the some notions of
C&V in SaaS are different from conventional C&V, mainly due to unique characteris-
tics of SaaS. Hence, we provide its theoretical foundation in this section, so further
sections would refer to.

Commonality in SaaS: Commonality in general denotes the amount of potential ap-
plications which need a specified feature such as a component or a service. To derive
the common features which will be realized in SaaS, we define the relationships
among requirement-related elements, as shown in Fig. 2.

A domain such as finance and telecommunications consists of several organiza-
tions, and an organization needs one or more software applications. Each application
is associated with a SRS. Hence, a commonality of a feature can be computed as the
followings;

If every application in the domain needs the given feature, the value of Commonality
will be 1. It would be desirable to include features with high Commonality into the
target SaaS. The range of the metric is between 0 and 1.

Variability in SaaS: We present the notion of variability in SaaS using three aspects;
persistency, variability type, and variability scope. In a target system or SaaS, there
can be places where variability occurs, called Variation Point. Each variation point is
associated with a set of values which can fill in, called Variants.

 Persistency on Variants Settings
Variability-related elements can have three different persistencies; no persistency,
permanent persistency, and near-permanent persistency. A variable in a program can
hold a value at a given time, and its value can be change as a new value is assigned.
Hence, the value stored in a variable does not have an intended persistency, which is
illustrated as no persistency in the figure.

 A Systematic Process for Developing High Quality SaaS Cloud Services 283

A variation point in a component in CBD or core asset in PLE is a means for users
to set a valid variant, and a variant set in the variation point is persistent, i.e. ‘once set
not changed.’ We call this level of persistency permanent persistency.

A variation point in SaaS adds near-permanent persistency in addition to the per-
manent persistency, where the variant set in a variation point may be changed over
time but in limited way. SaaS is for potentially many consumers, and it has to con-
sider the consumer-specific context and environment in running SaaS application.
Consumer may change its context such as current location/time zone and various
units used such as currency. Once a variant is set, its value must be stored until a new
variant is set within a session or across multiple sessions. Hence, the persistency of
this variant is near-permanent. For example, SaaS consumers using mobile-internet
device (MID) often travel, and their locations get changed and noticed by SaaS appli-
cation. Then, SaaS may set new variants for the new locations, and provide services
with the right mobile network protocol and its associated services and contents. In
SaaS, we only consider the second and third type of variant persistency.

 Variability Types
The variability embedded in a variation point can be classified into several types; at-
tribute, logic, workflow, interface, and persistency in CBD and PLE [7]. In addition to
these, we define two additional types for SaaS; context and QoS. Variability can occur
on the consumer’s current context such as location and time zone, which is called con-
text variability type. For a same SaaS, different consumers may require different lev-
els of QoS attributes. Hence, variability can also occur on QoS required by each con-
sumer, which is called QoS type.

 Variability Scope
Variability scope is the range of variants which can be set into a variation point. Typi-
cally, there are three scopes; binary, selection, and open [7]. When a service con-
sumer wants to customize SaaS for their requirements, they can choose a variant in
binary or selection scopes. However, there is a different implication of open scope in
SaaS. Due to the thin-client characteristic, service consumers have a limitation on
implementing and containing plug-in objects as variant on their client device. To
overcome this limitation, we suggest two methods.

One is for service providers to implement and deploy capability to dynamically
configure the required plug-in object, and add this object to the pool of variants. The
other is for service consumer to implement his or her plug-in objects (may be on a
fully powered computer) and to submit the object to the service provider so that it can
be added to the pool.

In summary, we identify and distinguish SaaS variability from traditional variabil-
ity in terms of persistency, variability type and variability scope. Clear definitions of
SaaS variability will make the SaaS process and instructions more feasible, effective
in designing reusable services.

5 The Process and Instructions

We define a process for developing SaaS, which has eleven phases as shown in Fig. 3.
The five phases highlighted are SaaS development-specific, while other phases are

284 H.J. La and S.D. Kim

mostly generic and common among other development paradigms such as object-
oriented development.

Phase, ‘P1. Requirement Gathering’ is to acquire a set of requirement specifica-
tions from multiple stakeholders or to define the requirements by considering
marketability. Phase, ‘P2. Domain Analysis’ is to analyze commonality and vari-
ability in the target domain. Phase, ‘P3. Functional Modeling’ is to analyze the
functionality in terms of use cases or business processes. Phase, ‘P4. Structure
Modeling’ and Phase, ‘P5. Dynamic Modeling’ are to analyze structure and dy-
namic aspects of the SaaS. Phase, ‘P6. Architectural Design’ is to design architec-
ture of SaaS system by considering SaaS-specific QoS attributes. Phase, ‘P7. User
Interface Design’ is to design user interfaces of SaaS system so that the users can
easily use developed SaaS through web browsers. Phase, ‘P8. Database Design’ is
to design database schema of SaaS system including session information and data
handled by the users. Phase, ‘P9. Implementation’ is to write source programs
based on the all the design models. Phase, ‘P10. Testing’ is to test the developed
SaaS system. And Phase, ‘P11. Deployment’ is to deploy all the developed SaaS
onto server side.

From now, we provide detailed instructions only for SaaS-specific phases depicted
with pink rectangle in subsequent sections.

Requirement Gathering

Functional Modeling

Structural Modeling

Dynamic Modeling

Architectural Design

User Interface Design

Database Design

Implementation

Testing

• Commonality Model
• Variability Model

• Functional Model (Use Case Model or
Business Process (BP) Specification)

• Object Model

• System Architecture

• User Interface Design

• Database Schema

• Source Programs

• Test Results
• Refined SaaS System

• Deployed SaaS SystemDeployment

Domain Analysis

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

• Dynamic Model per BP

• SaaS Requirement Specification

Fig. 3. Overall Development Process of SaaS

 A Systematic Process for Developing High Quality SaaS Cloud Services 285

5.1 Domain Analysis

Overview: Domain Analysis is an activity to identify common and variable features
which will be used in scoping and modeling SaaS [8]. Domain analysis begins with a
set of acquired SRSs.

Instructions: This phase is carried out in three steps.
Step 1. Extract Commonality. A set of SRSs collected from different sources could

have inconsistency in styles and terms used. Hence, we need to normalize the SRSs
by defining standard terms in the domain, using techniques like [9] and [10]. Then,
we compare functional and non-functional features of them by using Commonality
Analysis Table shown in Table 2.

Table 2. Commonality Analysis Table

A set of SRSs Feature ID &
Feature Name

Feature
Description SRS1 SRS2 … SRSn

Degree of Common
ality

F01. Generate ID … √ √ √ 1

F02.CheckCredit … √ √ 0.3

Step 2. Define Scope of SaaS development. This step is to choose the features

which will be implemented as SaaS. We suggest the following criteria.

 A feature with a higher Commonality(FEAi) tends to recruit a larger number of
potential service consumers. The features with yellow color in Fig. 4 are the ones
with common activities.

 A feature, FEAi, on which other feature FEAj depends at a relatively strong level,
should be included in the SaaS scope if FEAj is in the SaaS scope. If such FEAi is
not included, FEAj would not fulfill its functionality. This is especially essential in
SaaS which provides the whole application-level functionality.

 In addition to the two criteria, there exist other criteria for choosing the features
such as ROI, marketability, degree of financial sponsorship in developing the SaaS,
other essential criteria as defined in the target domain.

Based on the criteria, we now define guidelines for step 2.

 Case 1) Commonality(FEAi) is zero or near-zero. If FEAi has no other features
which depend on FEAi,, exclude this feature. If there are other features which de-
pend on FEAi and those other features are in the SaaS scope, include this feature.
These features are shown with only red color in Fig. 4.

 Case 2) Commonality(FEAi) is one or near-one. Consider to include this feature
unless this feature is evaluated as ‘excluded’ regarding other conditions. These fea-
tures are shown with only yellow color in Fig. 4.

 Case 3) Commonality(FEAi) is between zero and one, i.e. medium range. When
this feature is evaluated as ‘inclusion’ regarding other conditions, include this fea-
ture. Otherwise, consider excluding this feature.

286 H.J. La and S.D. Kim

SW Req5

Total Set of SW Reqs

SaaS Req.

SW Req4

SW Req3

SW Req 2

SW Req 1

CommActivity

Fig. 4. Scoping the boundary of SaaS development

Table 3. Variability Analysis Table

Variants for each SRS Feature ID &
Feature Name

Variation
 Point

Var. T
ype

Var. S
cope SRS1 SRS2 … SRSn

Var.
Persistency

VP01 Attr. Sel. {a,b} {a} … {b,c} Permanent
F01. Generate ID

VP02 Logic Bin. … Permanent

… … … … … … … …

Step 3. Analyze Variability. For each feature in the scope of SaaS, identify its varia-
tion points and applicable variants using techniques like [11]. In addition to conven-
tional variability types, we also identify SaaS-specific variability types as defined in
section 4.2. Variability Analysis Table in Table 3 can be used in this step. The first
column in the table lists features included in SaaS, the second column lists variation
points found in the feature, and subsequent columns specify variability type, variabil-
ity scope, valid variants for each SRS, and variability persistency in order.

For variability analysis for SaaS, we consider the persistency of variants in addi-
tion to conventional variability types. Two kinds of persistency could occur;

 Permanent Persistency;
 Variants for most variability types such as workflow, logic, interface, and
 persistency are permanent, meaning the setting lasts forever once it is set.
 Near-permanent Persistency;

 Some types of variability types have near-permanent settings such as variants about
 user sessions, dataset recovered from service faults. Also, attribute and logic
 variabilities can have near-permanent variant settings.

Once variation points and variants are identified, subsequent phases should be carried
out by considering the variability analysis.

5.2 Functional Modeling

This phase is to model the functionality of SaaS by referring to C&V model. For each
feature in the model, we analyze detailed functionality in two use case modeling and
business process modeling. Use case modeling can be used when the target SaaS

 A Systematic Process for Developing High Quality SaaS Cloud Services 287

embeds characteristics of conventional software applications. Business process mod-
eling can be used when the functionality of the target SaaS largely consists of busi-
ness processes as referred in service-oriented architecture and CC. This phase can be
carried out by using well-established techniques such as [10]and [12].

5.3 Structural and Dynamic Modeling

These phases are to model structural and dynamic models of the SaaS based on the
C&V model. Well-established techniques to design class and sequence diagrams and
to define service WSDL interface can be utilized.

However, variability specified in C&V model should carefully be expressed on
these diagrams and the interface. We suggest using stereotypes and/or element tags to
express variability such as «variability», <variability>, and <variation point> [13].

Another consideration for this phase is to define public methods to set variants in
the diagrams and interface. These methods should be defined by considering variabil-
ity scopes.

5.4 Architecture Design

Architecture is an effective means for realizing non-functional requirements, i.e. qual-
ity requirements. SaaS applications also have strong requirements on QoS, representa-
tively scalability and availability [14]. Hence, we suggest a typical architecture design
practice as shown in Fig. 5.

1. Define Architecture
Driver

2. Identify Architectural
Styles

3. Define High level
Architecture for SaaS

4. Assign Components

5. Evaluate Arch. with
Stakeholders

6A. Rework
Architecture

6B. Revisit
Requirements

[not acceptable]

[acceptable]

Fig. 5. Architecture Design Process

When considering Scalability, we can realize the following techniques in the archi-
tecture design;

• Resource Pooling with Multi-Clouds
• Dynamic Load Balancing and Migration
• On-demand Deployment

288 H.J. La and S.D. Kim

When considering Availability, we can realize the following techniques in the archi-
tecture design;

• Using proxy to access SaaS on Mirroring Nodes
• Downloading Lightweight Version of SaaS

5.5 Database Design

Since SaaS provides a complete application-level functionality, it typically maintains
a database for strong consumer-specific data sets. Hence, in designing the database
schema, two essential information should be maintained; Session Log and Data Set.
Since a number of consumers may use the same SaaS, the service provider should
maintain the records of all the sessions run by consumers. This is especially important
for long-lasting transactions. Data Set is a collection of application-data specific to
each consumer. Hence, SaaS should maintain multiple separate databases for the
number of consumers.

6 Assessment and Conclusion

Our proposed process is evaluated by the design criterion defined in section 3, as
shown in Table 4. The table shows that criteria defined in section 3 are all addressed
in one or two phases. For example, High Reusability was addressed by Domain
Analysis phase.

Table 4. Evaluating the Proposed Process

Design Criteria Phase supporting Criteria Remarks
Supporting Commonality Domain Analysis Proposed C&V methods.
Accessible via Internet User Interface Design &

Deployment
UI design for Browsers &
Deployment for Internet Access

Providing Complete Functi
onality

Domain Analysis Method to scope SaaS

Supporting Multi-Tenants’
Access

Architecture Design
Database Design

Architectural Consideration for
this concern. DB schema design
including Session and Data Sets.

Thin Client Model Deployment Deployed and Managed on
Provider Side

High Reusability Domain Analysis Proposed C&V methods.
High Availability Architecture Design
High Scalability Architecture Design

Architectural Consideration for
these Quality concerns

SaaS provides several benefits to service consumers. To realize these benefits, it is

essential to make a well-defined engineering process available. Conventional meth-
odologies do not effectively support CC-specific engineering activities such as model-
ing common features, designing services and services components, and identifying
variability among consumers.

In this paper, we presented a systematic process for developing high quality SaaS,
and highlighted the essentiality of C&V modeling to maximize the reusability.
We first defined criteria for designing the process model, and provides theoretical
foundation for SaaS; its meta-model and C&V model. We clarified the notion of

 A Systematic Process for Developing High Quality SaaS Cloud Services 289

commonality in SaaS, and extended the conventional variability with SaaS-specific
consideration. Using the proposed SaaS development process, cloud services with
high quality can be more effectively developed.

As the future work, we try to define effective quality assurance guidelines for the
phases, and to define a traceability framework where all the artifacts can be cross-
related and the consistency can be verified.

References

[1] Weiss, A.: Computing in the Cloud. Net Worker 11(4), 16–26 (2007)
[2] Gillett, F.E.: Future View: New Tech Ecosystems of Cloud, Cloud Services, and Cloud C

omputing, Forrester Research Paper (2008)
[3] Turner, M., Budgen, D., Brereton, P.: Turning Software into a Service. IEEE Computer 3

6(10), 38–44 (2003)
[4] Javier, E., David, C., Arturo, M.: Application Development over Software-as-a-Service Pl

atforms. In: Proceedings of the 3rd International Conference on Software Engineering Ad
vances (ICESA 2008), pp. 97–104. IEEE Computer Society, Los Alamitos (2008)

[5] Mietzner, R., Leymann, F., Papazoglou, M.P.: Defining Composite Configurable SaaS A
pplication Packages Using SCA, Variability Descriptors and Multi-Tenancy Patterns. In:
Proceedings of the 3rd International Conference on Internet and Web Applications and Se
rvices (ICIW 2008), pp. 156–161. IEEE Computer Society, Los Alamitos (2008)

[6] Manford, C.: The Impact of the SaaS model of software delivery. In: Proceedings of the 2
1st Annual Conference of the National Advisory Committee on Computing Qualifications
 (NACCQ 2008), pp. 283–286 (2008)

[7] Kim, S.D., Her, J.S., Chang, S.H.: A Theoretical Foundation of Variability in Componen
t-Based Development. Information and Software Technology (IST) 47, 663–673 (2005)

[8] Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse-Based Software Engineering: Techniques,
 Organization, and Controls. Wiley Inter-Science, Chichester (2001)

[9] Choi, S.W., Chang, S.H., Kim, S.D.: A Systematic Methodology for Developing Compon
ent Frameworks. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vo
l. 2984, pp. 359–373. Springer, Heidelberg (2004)

[10] Her, J.S., La, H.J., Kim, S.D.: A Formal Approach to Devising a Practical Method for Mo
deling Reusable Services. In: Proceedings of 2008 IEEE International Conference on e-B
usiness Engineering (ICEBE 2008), pp. 221–228 (2008)

[11] Kim, S.D.: Software Reusability. Wiley Encyclopedia of Computer Science and Engineer
ing 4, 2679–2689 (2009)

[12] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manu
al, 2nd edn. Addison Wesley, Reading (2005)

[13] Chang, S.H., Kim, S.D.: A SOAD Approach to Developing Adaptable Services. In: IEEE
International Conference on Services Computing, SCC 2007, July 9-13, pp. 713–714
(2007)

[14] Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stakeholders Us
ing Viewpoints. Addison Wesley, Reading (2005)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 290–300, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Cloud Computing Service Composition and Search
Based on Semantic∗

Cheng Zeng, Xiao Guo, Weijie Ou, and Dong Han

State Key Lab of Software Engineering, Wuhan University, 430072, China
zengc@whu.edu.cn, gogogxxiao@126.com, oweijie@gmail.com,

handong0610@gmail.com

Abstract. In this paper, we put forward a matching algorithm SMA between
cloud computing services of multiple input/output parameters, which considers
the semantic similarity of concepts in parameters based on WordNet. Moreover,
a highly efficacious service composition algorithm Fast-EP and the improved
FastB+-EP are presented. Then QoS information is utilized to rank the search
results. At last, we show through experiment that our approach has better
efficiency of service composition than traditional approaches.

Keywords: Cloud computing, Web services, Service composition.

1 Introduction

At present, cloud computing services can be provided by various forms such as
public/utility computing, XaaS, MSP or others and hardwares can even been taken as
services to set up scalable virtual machine. However, they all have not a unified
standard and even different providers have their own patent-protected APIs, developing
tools, virtualization layer, governance characteristics and so on. Thus, customers
cannot easily extract their data and programs from one site to run on another. Concern
about the difficulty of extracting data from the cloud is preventing some organizations
from adopting cloud computing. This situation hinders the progress of cloud computing
or crossing cloud applications. Another reason is most of current cloud computing
services are limited to data-centered cloud storage and cloud search. These types of
services are simple and their requirements for unified management and crossing cloud
interaction are not urgent. However, in the near future, these requirements about how to
utilize data such as data processing, data analyzing, data mining and so on will be more
and more, and the complexity will be also higher. Single cloud computing service can
not satisfy them and service composition will become more important.

The precondition of cloud computing service composition is to have a service
description with unified standard to introduce its functionality and interface. Many
manufacturers have provided cloud computing services with Web Services description
language (WSDL), such as EC2, S3 of Amazon, Google Search, etc. But in cloud
computing era, the traditional WSDL could not fully meet the requirement of cloud

∗

 This work is supported by the National Basic Research 973 Program of China
No.2007CB310806, Doctor Subject Fund of Education Ministry No.20070486064 and Wuhan
ChenGuang Youth Sci.\&Tech. Project No. 200850731369.

 Cloud Computing Service Composition and Search Based on Semantic 291

computing services description. QoS and service price will be necessary and play more
important roles in service search and service composition for cloud computing services.
Most early research of web services studied how to store and search web services
efficiently [1, 2]. These efforts usually focus on only a single service. Recently, the
applications of web services are becoming more and more widespread, but it is often
that there is no single web service which satisfies the request. Thus, the research about
web service composition begins to emerge.

Ya-mei[3] adopts status evolution algorithm while LiLi[4] uses traditional
work-flow technology to web service composition. [5, 6] analyze the dependency
relationship between inputs and outputs extracted from operators of different services
to construct Service Dependency Graph (SDG), and then transform the web service
composition to related problems in graph theory. The above methods use in-memory
algorithms for web service composition which will have to load lots of web services
information into memory during computing service composition so that they are
limited by the amount of available physical memory. When the number of web services
is very large, the efficiency of these methods will greatly reduce.

Recently, many researchers begin to utilize some mature techniques in relational
database to solve the service composition problem. Utkarsh[10] builds virtual tables for
input/output parameters of web services to manage service interfaces, and uses
multi-thread pipeline executive mechanism to improve the efficiency of web services
search, so the service composition problem is transformed into query optimization in
database. In [7], the web service composition is computed in advance and stored in
tables of relational database system and pre-computing and searching are done by SQL
statements. But it only considers the simplest status which abstracts each service as
single operator and input/output parameter. The abstraction will limit the universality
and practicability. Florian[8] looks service composition as a problem of selecting query
plans where each service composition between any two services corresponds to a join
operator. Thus, the mechanism of physical accessing plan selecting in relational
database could be utilized to resolve the problem. These above methods can be applied
to a large number of web services and have not additional requirement for the available
amount of physical memory. However, both the efficiencies and the precision of
service composition with them are not high. Though similar concepts are considered in
[7], it needs to manually maintain an ontology table and the method only adapts to the
simplified web service but not even slightly complicated interfaces.

Despite the fact that both cloud computing service and traditional web service
currently are described with WSDL, there is risk that all systems built with the above
methods will have to be rebuilt when the description standard of cloud computing
service is updated. In this paper, we put forward a new storage strategy for web services
which will be adaptable to flexibly extend for future cloud computing service and can
greatly improve the efficiency of service composition. Moreover, we also present a
service matching algorithm SMA and a service composition algorithm Fast-EP for
those services of multiple input/output parameters. And SMA considers the similar
concepts based on WordNet in the process of service matching. For the search results,
we use QoS information to rank search results. At last, we show through experiment
that our approach has better efficiency of service composition than traditional
approaches. In addition, we further optimize our algorithms during the experiment to
achieve higher performance.

292 C. Zeng et al.

2 Cloud Computing Services Storage and Search Framework

Traditional web services are described with semi-structured WSDL which are stored
and managed in UDDI. The processing efficiency of semi-structured data is obviously
lower than structured data so that current services search and service composition
technology in UDDI can’t adapt to the requirement of large number of web services
operating. In this paper, we parse WSDL documents of web services which are
automatically crawled or manually wrapped from internet, and then decompose and
process main elements of WSDL to respectively store in different tables of relational
database, shown in Fig.1. The main elements include service name, function
description, operators and input/output parameters. This kind of storage strategy will be
able to flexibly extend to adapt to new web service description standard for future cloud
computing service, and improve the efficiency of service composition.

Fig. 1. Cloud Computing Services Storage and Search Framework

In fig.1, Service Main Table (SMT), Service Operator Table (SOT) and Service
Parameter Table (SPT) are used to store the main elements for each Web services.
Concept similarity relationships are pre-computed based on WordNet (Introduced in
section 3.1) and stored in Concept Similarity Table (CST) for improving the efficiency
in the process of service matching. We can calculate the matching relationship between
different web services based on their input/output parameters by using those data in the

 Cloud Computing Service Composition and Search Based on Semantic 293

above tables, and store all results with high matching degree into One-way Matching
Table (OMT). Automatic service composition module analyzes all data in OMT,
calculates all possible service composition and stores related results into Service
Composition Table (SCT) and Composition Path Table (CPT). When there is a new
service search request, where system supplies 2 kinds of search modes including
keywords, input/output definition and Intelligent Ranking Module will extend key
concepts in search condition based on CST and search matched single or composite
services in database. QoS Table will be used to filter or rank returned services in which
QoS considers the following three elements and is recorded every time interval for
long-term analysis.

 Response Time: the time interval between when a service is requested and when it
is delivered;

 Availability: the percentage of time that a service is available during some time
interval;

 Reliability: the probability that a request is correctly served.

3 Automatic Web Service Composition Based on Semantic

3.1 Web Service Matching Algorithm (SMA)

The matching process between any two web services is the base of service composition.
The matching results will be stored in OMT. The principle of service matching is that
output parameters of a service operator can match input parameters of another service
operator. In this paper, we transform service matching problem into semantic similarity
calculating between concepts of input and output parameters corresponding to different
service operators.

Each web service possibly contains several operators of different functions so that
the processed objects of service compositon actually are their operators. We measure
the matching degree , between different service operators op1 and op2 by
calculating semantic similarity between concept set in output parameters of operator
op1 and concept set in input parameters of operator op2. , , , ,, (1)

 , ,

In the above formula, KM denotes classical Kuhn-Munkres algorithm, and ,
denotes the semantic similarity between any two concepts , in and ,
respectively. , represents the amount of same concept between and while , represents the amount of all different concepts. is a constant between 0 to 1
when the intersection between and is null after deleting same concepts from
them, otherwise 0. Semantic similarity function [9] based on WordNet is utilized
to calculate the similarity between different concept sets.

294 C. Zeng et al.

, 1 2 , , , / ,

(2)

Where is the lowest common ancestors of concept and while is their
longest distance in WordNet. APS(C) and denote priori score and the descendant
number of concept C, respectively. Priori score is like the probability that a concept is
chosen. and respectively correspond different processes of concept generalization
and concept specialization. Detailed mathematical introduction of formula (2) can be
found in [9]. Because , is frequently invoked during the process of
calculating , , we pre-compute CST for avoiding repeatedly processing.

By the above way, we calculate semantic matching degree between any two web
services. Of course, the precondition is that the output parameters set of a service
operator must be the subset of input parameters set of another service operator.
Otherwise, the two services cannot be matched. As long as , is bigger than
a certain threshold, it will be stored into OMT. It means that OMT stores all web
services pairs with better semantic matching and their matching direction.

3.2 Service Composition Path Computing

We could look all data in OMT as a weighted directed graph where each node denotes a
web service and each edge denotes the semantic matching degree between two web
services. Thus, the service composition problem is simplified to find all reachable paths
of two nodes in the graph. Concern that we don’t only calculate the shortest path here,
because the least services for a composite service do not imply that the QoS is the best
or service price is the lowest.

In database domain, finding all reachable paths is a recursive query problem and the
time complexity is O(N3) where N is the amount of tuples in OMT. EP-JOIN
algorithm[7] reduces the time complexity to O(N2). In the paper, we present a Fast-EP
algorithm by improving EP-JOIN and the time complexity is further reduced to
O(N*log(N)). The pseudo code of Fast-EP algorithm is shown as follows:

Algorithm：Fast-EP

Input: {matched services pairs in OMT};
Output: {composite services in SCT, service composition paths in CPT, new operators
in SOT and new parameters in SPT}.

1. Sequentially scanning OMT, select a tuple E(i)=WS(m)→WS(n); //m, n are
operator ID

2. Insert E(i) into CPT;

 Cloud Computing Service Composition and Search Based on Semantic 295

3. Select all path from CPT where CP_END_OPID=m, the returned set is
represented as S1;

4. Select all path from CPT where CP_START_OPID=n, the returned set is
represented as S2;

5. If (count(S1)≧count(S2)) {
6. SN=0;
7. For each path S1(u)=WS(q)→WS(m){ //0<u≦count(S1); q is operator ID
8. insert WS(q)→WS(n) and SC_degree(q, n)= SC_degree(q, m)*

SC_degree(m, n) into SCT;
9. insert WS(q)→WS(n) into CPT;
10. Transform WS(q)→WS(n) as a new operator, and insert relevant

information into SOT, SPT, respectively
11. Flag=0;
12. For each path S2(v)=WS(n)→WS(p){ //0<v≦count(S2); p is operator ID
13. If (Flag==0 and SN<count(S2)+1){ //Sn controls the times of loop
14. insert WS(m)→WS(p) and SC_degree(m, p)= SC_degree(m, n)*

SC_degree(n, p) into SCT;
15. insert WS(m)→WS(p) into CPT;
16. Transform WS(m)→WS(p) as a new operator, and insert relevant

information into SOT, SPT, respectively
17. }
18. Flag=1;SN++;
19. insert WS(q)→WS(p) into SCT;
20. } }
21. } else {The inner and outer loop will exchange, the codes are omitted.
22. }

In Fast-EP algorithm, each composite service is taken as a new web service with only
one operator and its relevant information is stored into SOT and SPT. Thus, when users
search web services, the system can directly match input and output in SPT, but ignore
whether the web service is a composite service. This will improve search efficiency.

4 Web Service Search and Result Ranking

4.1 Web Service Search with SQL Statements

The simplest web service search method is to use full-text index technique in traditional
text search domain, where all concepts in each WSDL corresponding to a web service
are extracted and concentrated on a text. The method could fast find all web services
with same keywords and rank the results based on keywords matching degree.
However, it ignores the input/output constraint of web services and concept semantic
so that the precision ratio and the recall ratio are all very low. Thus, we present an
approach with higher accuracy to realize web service search in this section.

We provide structured service search mode, namely to import keywords for service
input/output, respectively. Then these keywords are extended based on concept
similarity. Each keyword gains the Top(k) most similar concepts in CST to construct a

296 C. Zeng et al.

set. We let , denote the similar concepts set of ith, jth keyword of service
input and output, respectively. The service search condition can be improved as
follows: input: a and output: b (3)

where I, J are the amounts of keywords corresponding to service input and output in
initial search condition, respectively. In order to be easily understood, we give a simple
example. Suppose k=1, the initial search condition is input=’A1, A2’ and output=’B’.
We get , ′ , , ′ and , based on CST
where , ′, is the most similar concept of A1, A2 and B, respectively. So the
improved search condition is: (input=’ ’ or input=’ ’) and (input=’ ’ or
input=’ ′’) and (output=’B’ or input=’ ’). Thus, we could use a single SQL
statement to realize service search. By this way, we could even enhance the service
search mode to SQL statement with more complicated relation in the future, such as
(input=’A’ or (input=’B’ and output=’E’)) and (output=’C’ and not output=’D’) where
all customized concepts will be automatically extended.

4.2 Ranking of Service Search Results

If the system has a large number of web services, how to fast rank the returned services
will be very significative. In this paper, we provide a ranking mode based on QoS. If the
results contain composite services, their matching degrees will also be considered.

With the algorithm in section 3.1, it is feasible in theory that search results are
ranked based on semantic similarity degree. But the response time do not satisfy the
search requirement in real time. It will be the goal of our future work. In this paper, we
provide the results ranking based on QoS. If the results contain composite services,
their matching degrees will also be considered.

Traditional methods considered QoS in the process of web services discovery or
composition [11, 12]. The reason is that they compute service composition in real time.
The dynamics of QoS and the changeability of user requirement will make the problem
more complicated. In fact, the possible service composition statuses are finite and static
which are pre-computed and stored in our system. The approach of separable
considering service composition, QoS will simplify the problem and improve the
efficiency of composite service search. Moreover, QoS and service price could even be
respectively stored in different tables because they play even greater roles for cloud
computing services. For example, it doesn’t matter for user that the QoS of invoked
cloud computing services is relatively poor as long as service price is the lowest in the
debug phase of web application developing. On the contrary, the importance of QoS
will be more than service price after web application is released. The separable storing
will increase the flexibility of web service search and returned results ranking
according to user requirement.

5 Experiments

The experiment aim is to verify the feasibility and efficiency of our approach and
contrast the performance of our algorithms with those in [5, 7]. We use the nearly same
hardware and software environment as [7]. e.g. We ran experiments on a 3.0 GHz

 Cloud Comput

Pentium IV machine with
algorithms are implemented
used database is the free Po

Because the amount of c
dataset uses traditional we
information by soapUI3 or
generated with random num

Fig. 3. The performa

At first, we test the perfo
is ignored in [7]. Moreover
and each operator has only
service descriptions come
input/output parameters in
complexity is higher. Fig.2
dataset where all concept sim
original SMA algorithm is

1 http://seekda.com/
2 http://www.webxml.com.cn
3 http://www.soapui.org/

ing Service Composition and Search Based on Semantic

1 GB memory running Windows XP Professional, and
d in C and compiled using the Visual C++ compiler. But
ostgreSQL 8.4.
current cloud computing services is small, our web servi
eb services from seekda1 and webxml2. We get the Q
crawling from seekda directly. And all service prices

mber between 1 and 100.

Fig. 2. The performance of SMA

ance comparing of three service composition algorithms

ormance of web services matching algorithm (SMA) wh
r, [7] suppose that each web service has only one opera
one input/output parameter. But in our experiment, all w
from real WSDL so that the number of operators
most of web services is more than 1 and the algorit

2 shows the performance of SMA in different scales
milarities in CMT have been pre-computed. We find that
time-consuming because the amount of web service p

297

d all
t the

ices
QoS

are

hich
ator,
web
and
thm
s of
t the
airs

298 C. Zeng et al.

matched is very big. Thus, we optimize SMA algorithm, called SMA-RD algorithm, by
removing those operators with same input/output parameters, storing concepts
similarity relation in memory and so on. At last, the algorithm performance is improved
more than doubled.

We compared the computing time of three web service composition algorithms: the
EP-Join [7] and our Fast-EP, FastB+-EP. The number of web services changes from
1,000 to 10,000. Because the algorithm complexity of EP-Join is O(N2) while that of
Fast-EP is O(N*logN), we can see in Fig.3 that Fast-EP algorithm results in better
performance than EP-Join algorithm, and this difference increases as the number of
web services increases. But we discover that Fast-EP needs to execute write-operator
from memory to database every time when it finds a service path meeting requirement.
This is actually a redundant I/O consuming. Thus, we use a heap in memory for storing
those service paths found every time and create a B+ tree index in memory on the heap.
When all service paths are found, the heap will be written to database one-time so that
the I/O consuming is greatly reduced and the performance of algorithm is increased
again. The new algorithm by improving Fast-EP is called FastB+-EP. Fig.3 shows the
performance comparing among the 3 algorithms. For facilitating the expression,
Fast-EP is used to replace FastB+-EP in the following introduction.

Fast-EP algorithm is invoked and the relevant results are stored in SOT and SPT
before web service searches. Therefore, it will not affect the response time of search in
real time. When a new service is registered, the system will firstly calculate the possible
one-way matching relation between new service and all services in database and store
them into OMT, and then invoke Fast-EP algorithm to supplement the new composite
service paths and relevant information in SCT and CPT. The time complexity is
O(K*logN) where K is the amount of new tuples in OMT and N is sizeof(SCT).

Fig.4 shows the search performance comparison among In-memory system [5], PSR
system [7] and our WSIS system when the numbers of web services and memory sizes
change but there is only one user query. It is necessary for in-memory system to
compute service composition in real time so that the execution time at large data set is
longer than PSR and WSIS. But in-memory system is faster when the numbers of web
services is small. And the performance gap of all systems is not big as long as the
available physical memory can load all web services information, though both PSR and
WSIS pre-compute the service composition, shown in Fig.4 (a). Here, we ignore the
time that in-memory system loads all required web services information into memory
because it needs to be executed only once. However, when the available physical
memory cannot hold all web services information, in-memory system has to frequently
switch data between memory and disk and the search performance will also greatly
reduce. Fig.4 (b) shows that the search performance of in-memory system sharply
reduces while the memory cannot hold more than about 8000 web service that leads to
lots of I/O consuming. But the performance reducing for PSR and WSIS is not obvious
because they only rely on SQL search speed in database. In Fig.4 (a)(b), PSR and WSIS
have almost the same search performance and the former is slightly faster than the
latter. The reason is both of them pre-compute the service composition so that it is
enough to search by SQL statements. However, WSIS needs an additional join operator
because it stores service operators and input/output parameters in different tables for
improving the efficiency of service compositing and the commonality for different web
service (even cloud computing service) description standards. e.g. When QoS and

 Cloud Comput

(a) 1G

Fig. 4. The comparison o

Fig. 5. The comparison

service price are added into
not affect those data in othe

Fig.5 shows the similar
number of web services to 1
10 to 1000. We observed
In-memory system does no
have almost same performa
introduced in the above par

6 Conclusion

In this paper, we put forwa
services which can be fle
standard and a high efficien
storage strategy. Moreover,
difference of SMA relative

ing Service Composition and Search Based on Semantic

G memory (b) 256M memory

of services search performance with different memory sizes

n of search performance with different numbers of queries

o our system, we only need to create two new tables but
er tables.

comparison among the three systems when we fixed
10000 and varied the number of different user queries fr
that the experiment result is similar as described in

ot adapt to larger number of user queries. PSR and W
ance but the latter is slightly low. The reason is the same
ragraph.

ard an unconsolidated storage strategy for cloud comput
exibly extended to adapt to any new service descript
ncy of service composition algorithm Fast-EP based on
, a web service matching algorithm SMA is presented. T
e to traditional service composition algorithm is that SM

299

t do

the
rom
[7].

WSIS
e as

ting
tion
the

The
MA

300 C. Zeng et al.

considers the semantic similarity between input/output parameters with multiple
concepts based on WordNet. QoS information is used to rank the result set. At last, we
compare the efficiency of service search, service composition between our approach
and traditional approaches.

References

1. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web services
capabilities. In: First International Semantic Web Conference, Sardinia, Italy, pp. 333–347
(2002)

2. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Simlarity search for web
services. In: VLDB 2004, Toronto, Canada, August 2004, pp. 372–383 (2004)

3. Xia, Y.-m., Chen, J.-l., Meng, X.-w.: On the Dynamic Ant Colony Algorithm Optimization
Based on Multi-pheromone. In: ICIS (2008)

4. Li, L., Chou, W., Guo, W.: Control Flow Analysis and Coverage Driven Testing for Web
Services. In: ICWS (2008)

5. Hashemian, S.V., Mavaddat, F.: A graph-Based Approach to Web Services Compositon. In:
SAINT (2005)

6. Gu, Z., Li, J., Xu, B.: Automatic Service Composition Based on Enhanced Service
Dependency Graph. In: ICWS (2008)

7. Kwon, J., Park, K., Lee, D., Lee, S.: PSR: Pre-computing Solutions in RDBMS for Fast Web
Service Composition Search. In: ICWS (2007)

8. Braga, D., Ceri, S., Danielsdf, f., Martinenghi, D.: Optimization of Multi-domain Queries on
the Web. In: VLDB (2008)

9. Schickel-Zuber, V., Faltings, B.: OSS: A Semantic Similarity Function based on
Hierarchical Ontologies. In: International Joint Conferences on Artificial Intelligence
(2007)

10. Srivastava, U.: Query Optimization over Web Services. In: VLDB (2006)
11. Yang, S.W., Shi, M.L.: A Model for Web Service Discovery with QoS Constraints. Chinese

Journal of Computer 28(04), 589–594 (2005)
12. Zeng, L., Benatallah, B., et al.: QoS-Aware Middleware for Web Services Composition.

IEEE Transactions on Software Engineering 30(5) (2004)

Deploying Mobile Computation in Cloud
Service�

Xuhui Li1, Hao Zhang1, and Yongfa Zhang2

1 State Key Lab of Software Engineering, Wuhan Univ.,
Wuhan, Hubei, China
lixuhui@whu.edu.cn,

haozhang@sklse.org
2 International School of Software, Wuhan Univ.

Wuhan, Hubei, China
yongfachang@hotmail.com

Abstract. Cloud computing advocates a service-oriented computing
par- adigm where various kinds of resources are organized in a virtual
way. How to specify and execute tasks to make use of the resources
efficiently thus becomes an important problem in cloud computing. Mo-
bile computation is often regarded as a good alternative to conventional
RPC-based technology for situations where resources can be dynamically
bound to computations. In this paper, we propose a middleware frame-
work for cloud computing to deploy mobile computation, especially mo-
bile agent technology, in cloud services. The major issues to enable mobile
agent-based services in the service-oriented computing are discussed and
the corresponding mechanisms in the framework are introduced.

1 Introduction

Recent years has witnessed the emergence of cloud computing[1], a new comput-
ing paradigm evolving from the concept of “network computer” once popular
in late 1990s. A “cloud” indicates a network with resources in it. A resource
in cloud can be a physical device, e.g., a storage disk or a CPU, or a software
service built on other resources. Under the control of cloud environment, the
resources are organized, encapsulated and managed in a virtual way. That is,
a transparent service encapsulating certain resources is provided for users, and
the users utilize them as a virtual resource and needn’t know which resources
they actually occupy. A cloud often deploys some fundamental services for or-
ganizing and utilizing the resources. For example, the infrastructure services
including virtual machines and associated infrastructures lay the foundation of
running cloud programs in a virtual way; the storage services including virtual
data stores organize the data nodes to provide a uniform access to the data in

� This research is partially supported by the Wuhan ChenGuang Youth Sci.&Tech.
Project under contract No. 200850731369.

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 301–311, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

302 X. Li, H. Zhang, and Y. Zhang

the cloud. Based on these fundamental services, a cloud becomes a virtual “net-
work computer” and the computers with which users access the cloud services
is thus just a terminal.

To be a virtual computer, a cloud needs more mechanisms than the ones
focusing on resource management. Above all, a cloud needs to accomplish com-
putation tasks assigned by users in a virtual way. That is, users specify their
tasks in cloud as if they do in a real computer and it is the cloud’s obligation to
carry out the task in concrete machines in the cloud. Simple implementation of
such a computation virtualization maps a task to a selected concrete machine to
accomplish it. However, this doesn’t comply with the original purpose of cloud
which is to make use of resources efficiently. For example, for a task processing a
large number of data located at computer node A, if the task is located at node
B other than A, it would lead to lots of data exchange. Therefore, an ideal imple-
mentation of computation virtualization would dynamically assign the task to
concrete machines for efficiency. Since a task usually involves multiple resources
located diversely, there is a natural requirement for the task execution to take
place here and there from time to time. This situation is similar to “mobile
computation”[2], another concept popular in late 1990s.

Mobile computation is a computing paradigm which enables code mobility
in network. Simple form of code mobility can be transferring codes to a re-
mote machine for evaluation and collecting the results. Common code mobility
is known as mobile agent[3], which is a software entity autonomously migrating
in network during its execution. Mobile computation, especially mobile agent
technology, was once treated promising in large-scale network computing. Code
mobility can greatly enhance the flexibility of load balancing and reduce com-
munication costs in network. However, security problem hinders its application
in practice because malice might exist within both codes and hosts in a public
area. In the cloud computing era, the security problem of mobile computation
can be effectively reduced because both mobile codes and hosts in cloud can be
restricted to be provided by trusted companies through certain authentication.
Therefore, deploying mobile computation, especially mobile agent technology, in
cloud computing environment is a promising and feasible approach to enhancing
the overall performance of cloud.

In this paper, we propose a framework of mobile agent-enabled cloud comput-
ing named MCF, and discuss the major issues of deploying mobile computation
in cloud services. The rest of the paper is arranged as follows: in Section 2, we
introduce the related works on mobile computation, service-oriented comput-
ing and grid computing. In Section 3 we describe the mobile cloud computing
framework MCF and address some key issues on designing cloud services based
on mobile computation. Section 4 concludes the paper.

2 Related Works

Studies on mobile computation started in early 1990s. Early studies tried to use
mobile codes for remote evaluation, and then researchers show much interest in

Deploying Mobile Computation in Cloud Service 303

developing software entity running in different hosts. The entity, often written
in interpretative languages like Tcl and executed by certain interpreters, can mi-
grate during execution and is known as mobile agent later. With the wide spread
of Java, many mobile agent systems, e.g., IBM Aglets [4], Mole, Voyager were
developed, and mobile agent technology was studied in many fields of distributed
computing.

Since the early of this century, service-oriented computing[5] has become
the representative direction of distributed computing and some service-oriented
computing products such as Jini and .NET were released. Lots of studies have
worked on establishing efficient and flexible service-oriented network computing
paradigm, e.g., grid computing[6] and ubiquitous computing. Grid computing
was proposed as an ideal computing paradigm which can transparently utilize the
resources with services in the network. After years of research on grid computing
in academic circles, cloud computing, an industrial adaption of grid computing,
was proposed and advocated as the next generation of network computing.

Recently some studies began to attempt introducing mobile agent technology
into grid computing. Among these studies, AgentTeamwork[7] and MAGDA[8]
are representatives. AgentTeamwork is a grid-computing middleware system that
dispatches a collection of mobile agents to coordinate a user job over remote
computing nodes in a decentralized manner. Its utmost focus is to maintain
high availability and dynamic balancing of distributed computing resources to
a parallel computing job. MAGDA is also a grid computing middleware with
an architecture designed according to the layered Grid model. The main pur-
pose of MAGDA is to support parallel programming over distributed platforms
through a middleware which implements the needed services of classical parallel
programming environment, revisited within the mobile agent based approach.
These studies concentrate on utilizing mobile agent technology in the grid to
solve distributed problems in a more flexible way, however, they don’t present
a thorough combination of mobile agent and grid since they seldom care about
the service provided by mobile agents, say, mobile services.

As to the services based on mobile agents, some studies have tried to ex-
plore the program language features of mobile agent-based services. For ex-
ample, Mob[9] is a service-oriented scripting language for programming mobile
agents in distributed systems. The main feature of Mob is the integration of the
service-oriented and the mobile agent paradigms. However, there is still a lack of
implementation of these languages in concrete mobile agent-based services.

3 MCF: A Mobile Cloud Framework

Cloud computing aims at providing services all over the Internet and thus adopts
a service-oriented paradigm. As mentioned above, mobile computation can bring
great efficiency to resource utilization in cloud. Therefore, building cloud ser-
vices on mobile computation is beneficial to both cloud and end-users with more
prompt and efficient request processing. A cloud service can deploy mobile com-
putation in two ways: a) enabling remote evaluation of code segment, or b) being

304 X. Li, H. Zhang, and Y. Zhang

implemented by mobile agents to itinerate in cloud. Here we focus on the latter
one because it is more powerful and more interesting. We name cloud service
deploying mobile agents as mobile cloud service or simply mobile service.

Enabling mobile service in cloud is an interesting and very challenging task.
It needs comprehensive extension to existing cloud environment for a thorough
support of mobility. As a primary attempt, we propose a middleware framework
named Mobile Cloud Framework (MCF) for the cloud supporting mobile service.
Other than existing studies in combining mobile agent technology and grid com-
puting, MCF focus on providing a cloud core to support mobile services rather
than utilizing mobile agent to accomplish certain tasks in cloud.

3.1 Architecture of MCF

The purpose of MCF is to provide a simple model for cloud services running
and migrating in the cloud as smoothly as in a machine. The general idea of
designing MCF is to establish an environment supporting global invocation and
addressing of mobile services, and to provide a set of mechanisms to manage
the services for transparent utilization. To minimize the framework structure, as
illustrated in Fig. 1, MCF is composed of 3 parts: resource services, backbone
services and mobile service engines.

Resource services are stationary services encapsulating infrastructural
resources, especially physical resources, in the cloud. For example, a low-level
storage service can be built specifically to use a local storage device like an
RAID. Typical resources include computation resources, storage resources, I/O
device resources, etc. In these resources, computation resources, e.g., physi-
cal computers, play a special role because they represent platforms on which
other services can execute. Computation unit services encapsulate computation

Fig. 1. Architecture of MCF

Deploying Mobile Computation in Cloud Service 305

resources and provide virtual machines for running other services and softwares.
Further, a computation unit service can be extended to be a host service which is
equipped with the functionalities of mobile computation environment and thus
allow mobile services and mobile agents executing on it. Since MCF is designed
specific to mobile services, we assume that the computation unit services all be
host services in MCF.

Backbone services are a set of basic services for service management and
utilization. Backbone services include discovery services, addressing services,
scheduling services, QoS services and manage services. Discovery services main-
tain a distributed service directory in cloud and take charge of service registra-
tion and lookup. Addressing services cooperate with discovery services to find
real-time reference of mobile services. Scheduling services coordinate with host
services, mobile services and addressing services to schedule the task to be ac-
complished by mobile services. QoS services consist of certain services such as
monitoring and evaluation services to provide service QoS information. Manage
services cooperate with QoS services to manage the cloud runtime environment.
Backbone services are often implemented as stationary services running on phys-
ical machines and computation services, but it can also implemented as mobile
services running on host services if necessary.

Mobile service engines enable mobile service invocation by cooperating with
backbone services and computation services. Mobile service engines in MCF are
implemented upon virtual machines provided by computation unit services or
host services.

3.2 Service Discovery in MCF

Service discovery is a fundamental mechanism in service-oriented computing to
find proper services to utilize. The mobility of service brings more problems to
looking for a service than before because we need to know not only which the
proper services are but also where they are and where they would be. Therefore
MCF should be equipped with additional mechanisms to find mobile services.

Usually a service would register itself in the service directory to be discovered.
The service registration contains service description and service reference. For
a mobile service, it is not easy to maintain valid reference in service directory.
On one hand, mobile service would migrate from one node to another during
its lifetime. The mobility leads to volatility of service locations, and thus the
reference in directory should be updated frequently. On the other hand, MCF
allows a service corresponding to several service instances in the cloud to in-
crease the concurrency of request processing. The service discovery mechanism
should transparently provide a service reference to users meanwhile mapping the
reference to an actual service instance.

In MCF, service discovery adopts a multi-level reference mechanism. In service
directory every service corresponds to an interface rather than a stable reference
to find a service instance. For a stationary service, the interface directly provides
the reference to the service instance; for a mobile service, the interface is related

306 X. Li, H. Zhang, and Y. Zhang

to addressing service which would fetch an actual reference from a volatile list
of references to the service instances.

To guarantee the validity of the references in addressing service, MCF adopts
a proxy-based relay mechanism originating from mobile agent communication.
Each mobile service instance in MCF is attached with a mobile proxy for com-
munication and service invocation, and the reference in addressing service points
to the proxy of the service instance. The proxy of a mobile service instance is in-
visible to users and would migrate only following the instance’s commands. That
means, the proxy of a service instance would not migrate without a command
even the instance migrates. Therefore, the references in addressing service would
not be updated frequently. Studies have shown that this relay communication
mechanism for mobile agents is fairly efficient[10].

Besides reference of mobile service, the service discovery mechanism also in-
volves the semantic description of mobile services. Common semantics in a ser-
vice description might involve purpose, usage and sometimes procedures. For a
mobile service, the semantics description can also concern service locations in a
static way, i.e., the information of service distribution and mobility. MCF makes
a primary attempt to describe service distribution and mobility. The service
description contains an itinerary policy indicating the possible locations of the
service. The content of the itinerary policy is extensible and its concrete syntax
and semantics can be defined by the service provider. Default itinerary policy in
MCF just records the possible regions of service instances, and we are now try-
ing to adopt a simple rule-based script to represent the service migration under
certain conditions.

3.3 Service Invocation in MCF

To process a service invocation involves establishing and maintaining the invo-
cation link, transferring the invocation requests and results, and executing the
service codes. For a mobile service invocation, since the invoker and the service
both can be mobile, it is fundamental to maintain the invocation link. In MCF,
the proxy-based communication mechanism facilitates the work. When a service
invocation begins, the link between the proxies of the invoker and the service
instance is established by addressing services. After that, the link is maintained
by the related service engines to forward invocation requests and results. When
a proxy migrates, the service engines would coordinate to reestablish the link
transparently. In comparison with conventional service invocation, mobile ser-
vice invocation request can have additional information about the locations to
process the request. That is, the invoker can ask the service to process the in-
vocation in preferred nodes. The scheduling services and the addressing services
will try to find a service instance or create a new instance in the node to carry
out the invocation.

Conventionally, service invocation is carried out by service engine, that is,
service engine loads the service codes in its address space and executes them.
For mobile service which is implemented by mobile agent, the service engine can-
not carry out service invocation alone because mobile agent is autonomous and

Deploying Mobile Computation in Cloud Service 307

has its own logical address space. Usually an agent only interacts with outside
through messages and thus responses requests and carries out tasks by asyn-
chronous message handling. Therefore, in MCF mobile service engines and host
services work together to carry out service invocation based on asynchronous
message-handling with the assistance of the proxies. A proxy not only handles
communication, but also provides a service interface which can be invoked by
local service engine. Once a service instance is determined to process an invoca-
tion, the service engine invokes its proxy which will encapsulate the invocation
request in a message and forward it to the service instance. The agent underlying
the service instance and the agent runtime system in the host service will carry
out the message and return the results to the proxy and further to the invoker.
Since the proxies are mobile, the invoker and the service can negotiate to place
the proxies in proper hosts to facilitate the invocation.

A practical service often processes the invocation requests concurrently with
certain multi-task mechanism. MCF enables two kinds of multi-task request pro-
cessing. Firstly, for a mobile service, the host service and the agent often deploy
a multi-threaded mechanism underlying the agent runtime system; therefore
the service can handle multiple messages concurrently. Secondly, MCF allows a
service correspond to multiple service instances, and thus the requests can be
transparently distributed to different service instances to deal with.

MCF adopts a flexible and powerful multi-instance mechanism to enhance the
performance of multi-task processing. As mentioned above, a service can be dis-
covered by discovery service, but its actual instances are managed by addressing
services. Homogeneous service entities, i.e., implemented with same programs,
can autonomously become instances of one service by registering itself in ad-
dressing services. Another kind of service instances is service clones. Usually a
mobile agent can autonomously clone itself, thus a mobile service can clone itself
and dispatch the clones to other nodes. MCF treats the clones of a mobile service
as new instances of the service and manages them with addressing services and
scheduling services. The mobile service instances would autonomously decease
or be killed by manage services or scheduling services. Since mobile agent-based
service can be dynamically created and deceased, the multi-instance mechanism
in MCF is more flexible and powerful than conventional multi-task ones.

When a service corresponds to multiple instances, its invocation requests can
be scheduled by scheduling services and addressing services to a service instance
to process. Besides the one-to-one request processing, MCF also allows a service
invocation request be processed by multiple instances in parallel. The general
idea is that the request can be split into multiple sub-requests and handled
by the instances in parallel, and the results would be collected and merged to
final result to return. In fact, in mobile agent computing, it is common for a
master agent to dispatch slave agents across the network to accomplish the task
in parallel. This master/slave model is not fit for service-oriented computing
because a) frequent creation and migration of slave agents would incur high
costs and b) the slaves are not properly defined services and only work for the
master. In MCF we prefer to use a P2P-like model undertaken by multiple

308 X. Li, H. Zhang, and Y. Zhang

instances of a service. That is, once a service instance is invoked for handling
the request, it can notify other instances in proper places to handle the request
together, meanwhile it may clone new instances in proper place for handling the
request if necessary. MCF currently defines some basic interfaces to specify the
requirements for splitting requests, and it is service provider’s duty to ensure the
soundness and consistency of the splitting and concurrency. Now we are trying
to introduce into MCF Google’s Map/Reduce mechanism as a standard style of
parallel request processing for multiple service instances.

3.4 Service Composition in MCF

Complicated services can be composed of simpler ones. Composition can be a
static one built on certain profile or programs invoking the underlying services,
or be a dynamic one based on model-driven or request-driven mechanisms. Since
MCF focuses on enabling mobile service in cloud computing, it only concerns
static composition which is well studied and easy to implement.

MCF concentrates on supporting service composition transparently rather
than providing an engine to resolve and execute composite services. For a com-
posite service which is hard coded as service programs, it is treated as a common
service and thus needs not special support from MCF. For the composite ser-
vice described in certain profile, e.g., a BPEL script, it is third party’s duty to
provide the engine for processing the profile. In MCF, an invoker service is pro-
vided specific to support processing the composition profile. The invoker service
is a mobile one whose purpose is to manage service invocations in a composite
service. It can migrate to a proper location to carry out a service invocation and
then collect the results. The processing engine can flexibly utilize the invoker
service to process the service invocations in the composite service profile. Gen-
erally, each service invocation in the profile is managed by an invoker service
instance. These instances ask the addressing services to find proper services to
be invoked, interact with those services to launch the invocation, and cooperate
with each other to process the composite service.

3.5 Service Programming and Execution in MCF

Mobile service programs are rather different from conventional service programs.
As previously mentioned, conventional services are driven by service engine and
thus the program seldom need care about the execution. As for mobile service,
it is mobile agent which carries out the service tasks. Therefore, a mobile service
program should concern the agent features such as reactivity, autonomy and
mobility as well as carry out the task.

MCF deploys a script language SMSL (Simple Mobile Service Language) for
programming mobile services. This language originates from a script language
named SMAL (Simple Mobile Agent Language) which aimed at describing mo-
bile agent-based algorithms [11], integrating service-oriented programming based
on our previous studies on mobile agent-based service language. In SMSL, a
service program is declared to implement a service interface and the program
body consists of implementation codes of service methods and message-handling

Deploying Mobile Computation in Cloud Service 309

codes. Besides common imperative statements such as assignment, loop, condi-
tional statements, several primitives are introduced into SMSL program. The
primitives include send message for asynchronous message sending, lock and
unlock for mutual exclusive locking, request migrate and migrate for migration,
create agent and clone for creating new agent or service instances, find sevice
and invoke service for service invocation, regain messages and remove messages
for internal message management, etc. The details of SMSL would be described
in another paper and thus omitted here. As previously mentioned, in MCF each
mobile service instance is associated with a proxy who behaves as an interface
for service engine to invoke and communicates with the service instance through
messages. That is, a proxy handles the service invocation action with the service
engine and the mobile service instance processes the invocation request with the
host service. Based on concrete host services, MCF transforms a mobile service
script in SMSL to a concrete mobile service program and instantiate it as a
service instance with a proxy.

Our previous studies have described that there might be ambiguity in mo-
bile agent programs if its execution is not clearly specified. We also proposed
a mobile agent execution model named SMA [11] which deploys a multi-thread
message-handling mechanism. In MCF we also assume that the host service de-
ploys this model for executing mobile agent codes. In the SMA model, each
message is handled by a single thread, and the agent has full control of their
message-handling. That means each mobile service invocation is handled within
a single thread. For mobile services in MCF, we have to restrict the behaviors
of service methods otherwise there might exist conflicts. For example, for a mo-
bile service processing two invocations concurrently, conflict exits if one invoker
prefers the service to execute in node A but the other prefers in node B. That
is because the invoker’s behaviors violate the principles of agent’s autonomy.
Therefore, MCF requires that in the mobile service program the implementa-
tion of service methods cannot directly use the primitives which would violate
agent’s autonomy. Instead, some primitives such as request migrate can be used
for service methods to send the migration request to agent for final decision.
Generally, when migration conflict exists, the service instance can clone itself
and split the conflicted requests.

3.6 Prototype of MCF

Now we are working on the implementation of MCF. A prototype named Cloud-
Drift is being built following the outlines listed above.

CloudDrift is a rudiment to present basic features of mobile services in cloud
computing. To simplify the implementation, CloudDrift directly deploys Jini
as the underlying SOA and extends it with the backbone services in MCF. In
our previous research in mobile agent simulation platform [12], we have already
modified the IBM Aglets runtime system to support SMA model. Therefore, in
CloudDrift we adopt the SMA Aglets runtime system as the host services.

A mobile service in CloudDrift is implemented as a pair of proxy and an
SMA Aglet, as indicated previously. The service is scripted in SMSL and a

310 X. Li, H. Zhang, and Y. Zhang

parser would transform the SMSL program into an SMA Aglet program and
a proxy program. A mobile service in CloudDrift is associated with a service
description indicating not only the service interface but also the distribution
policy of the service instances. When a service is deployed, the service engines
will instantiate the programs according to the original distribution. CloudDrift
deploys a federated discovery service and a federated addressing service to look
up service instances. The service description would be maintained and updated
by addressing service and discovery service during the service lifetime.

CloudDrift is built specifically for parallel processing. A parallelizable ser-
vice profile is provided in CloudDrift for specifying the parallelization policy of
the service. The profile contains the information on interface and deployment.
The former is used for service and the invokers to trigger and utilize the par-
allelization, and the latter is used for service engines and backbone services to
instantiate the service instances. A parallelizable service provide interface for
users to specify that how the request to be processed in parallel, and the request
can be automatically processed in parallel by the service instances in CloudDrift.
Once a parallelizable service is deployed, the service engines and the addressing
service would collect its distribution information and the interface information.
Service engines will cooperate with the host services to transfer the parallel re-
quest to other service instances and the new service instance would be created
dynamically if necessary. As previously mentioned, the parallelization policy spe-
cific to data processing like Map/Reduce is to be designed for a more flexible
data processing mechanism in CloudDrift.

The implementation of CloudDrift is still in progress. Currently we focus on
enabling mobile service invocation and basic functionalities to support service
parallelization and composition. Other services such as the QoS services and the
manage services are being implemented. We are improving the prototype to be
a full-fledged middleware for mobile cloud computing.

4 Conclusion

Cloud computing advocates a service-oriented computing paradigm where vari-
ous kinds of resources are organized in a virtual way. How to specify and execute
tasks to make use of the resources efficiently thus becomes an important problem
in cloud computing. Mobile computation is often regarded as a good alternative
to conventional RPC-based technology for situations where resources can be
dynamically bound to computations to enhance performance. Therefore, com-
bining the features of mobile computation, especially mobile agent technology,
and cloud computing is a promising and feasible approach to enhancing the
overall performance of cloud.

In this paper, we studied deploying mobile computation in cloud services and
proposed a middleware framework named MCF for mobile agent-enabled cloud
computing. The major issues of enabling mobile services in MCF, e.g., service
discovery, service invocation, service composition, are discussed and the service
programming in MCF is briefly introduced. The ongoing prototype of MCF is
also mentioned.

Deploying Mobile Computation in Cloud Service 311

This paper is just a very primary trial to study the features of mobile services.
As mentioned previously, MCF is just a simple model to enable mobile service in
cloud. We are working on many interesting issues to improve MCF. For example,
most mobile agent systems only support weak migration, i.e., the agent would
not retain current execution state when migrates. To guarantee the consistency
of service invocation, mobile services have to resort to mutual exclusive primitive
such as lock and unlock. However, this naive mechanism is far from enough for
designing services in practice. Therefore, we will explore more powerful trans-
action mechanisms in mobile service programming. Further, there is still much
work to do in multi-clones invocation processing and workflow engines for service
composition.

References

1. Hayes, B.: Cloud computing. Communications of ACM 51(7), 9–11 (2008)
2. Cardelli, L.: Mobile computation. In: Tschudin, C.F., Vitek, J. (eds.) MOS 1996.

LNCS, vol. 1222, pp. 3–6. Springer, Heidelberg (1997)
3. Kotz, D., Gray, R.S.: Mobile Agents and the Future of the Internet. ACM SIGOPS

Operating Systems Review 33(3), 7–13 (1999)
4. Lange, D.B., Mitsuru, O.: Programming and Deploying Java Mobile Agents Aglets.

Addison-Wesley Longman Publishing Co., Amsterdam (1998)
5. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Communica-

tions of the ACM 46(10), 25–28 (2003)
6. Berman, F., Fox, G., Hey, A.J.G.: Grid computing: making the global infrastructure

a reality. Wiley Press, Chichester (2003)
7. Fukuda, M., Kashiwagi, K., Kobayashi, S.: AgentTeamwork: Coordinating grid-

computing jobs with mobile agents. Applied Intelligence 25(2), 181–198 (2006)
8. Aversa, R., Di Martino, B., Mazzocca, N., Venticinque, S.: Magda: A mobile agent

based grid architecture. Journal of Grid Computing 4(4), 395–412 (2006)
9. Paulino, H., Lopes, L.: A mobile agent service-oriented scripting language encoded

on a process calculus. In: Lightfoot, D.E., Szyperski, C. (eds.) JMLC 2006. LNCS,
vol. 4228, pp. 383–402. Springer, Heidelberg (2006)

10. Cao, J., Feng, X., Lu, J., Chan, H., Das, S.K.: Reliable message delivery for mobile
agents: push or pull? IEEE Transactions on Systems, Man and Cybernetics 34(5),
577–587 (2004)

11. Li, X., Cao, J., He, Y.: A Language for Description and Verification of Mobile
Agent Algorithms. In: Proc. of CIT 2004, pp. 546–553 (2004)

12. Li, X., Cao, J., He, Y., Chen, Y.: MADESE: a simulation environment for mobile
agent. In: Proc. of CIT 2006, pp. 86–91 (2006)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 312–321, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Novel Method for Mining SaaS Software Tag via
Community Detection in Software Services Network

Li Qin1,2, Bing Li1,3,∗, Wei-Feng Pan1, and Tao Peng1

1 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, 430072, China
2 School of Science , Huazhong Agricultural University , Wuhan , 430070 , China

3 School of Computer , Wuhan University , Wuhan , 430072, China
qinli0606@sina.com, bingli@whu.edu.cn

Abstract. The number of online software services based on SaaS paradigm is
increasing. However, users usually find it hard to get the exact software ser-
vices they need. At present, tags are widely used to annotate specific software
services and also to facilitate the searching of them. Currently these tags are ar-
bitrary and ambiguous since mostly of them are generated manually by service
developers. This paper proposes a method for mining tags from the help docu-
ments of software services. By extracting terms from the help documents and
calculating the similarity between the terms, we construct a software similarity
network where nodes represent software services, edges denote the similarity
relationship between software services, and the weights of the edges are the
similarity degrees. The hierarchical clustering algorithm is used for community
detection in this software similarity network. At the final stage, tags are mined
for each of the communities and stored as ontology.

Keywords: software service tag; text parsing; software similarity network.

1 Introduction

As a new business model, cloud computing and SaaS (Software-as-a-Services) are
attracting more and more attention worldwide. In 1999, Salesforce.com was estab-
lished by Marc Benioff, Parker Harris, and their associates. This website was the first
to provide the concept of SaaS with real business and made a success in attracting
customers [1]. Nowadays there is a tendency of using SaaS. Many industry giants,
such as GM, AMD, have already adopted SaaS. In 2007, Google, IBM, and a number
of universities embarked on a large scale cloud computing research project [1]. The
industrial partners have a strong business interest in this new model, where computing
chores increasingly move off individual desktops and out of corporate computer cen-
ters as services over the Internet. Google, the Internet search giant, is one of the lead-
ers in this technology transformation. Companies like Yahoo, Amazon, eBay and
Microsoft have built Internet consumer services like search, social networking, Web
based e-mail and online commerce that are based on cloud computing. In the corpo-
rate market, IBM and others have built Internet services to predict market trends,

∗ Corresponding author. Tel.: +86-027-87653491, fax: +86-027-68754590.

 A Novel Method for Mining SaaS Software Tag via Community Detection 313

tailor pricing and optimize procurement and manufacturing, etc. [2]. Ranjit Nayak,
Founder and President of Marketing at eVapt, said that SaaS was a paradigm where
softwares were delivered using cloud computing infrastructure [3]. Jin Zhu, Item
CEO of IBM Cloud Labs & HiPODS, argued that SaaS was a part of cloud comput-
ing. she said, “cloud computing can be divided into three layers: 1) the bottom is the
infrastructures, including hardware, host, etc; 2) the second layer is the intermediate
platforms; 3) the upper layer is applications and services which are SaaS”. She also
pointed out that “through the flexible hardware allocation, cloud computing can
resolve the problem of shortage of hardware or bandwidth and also can reduce the
cost of SaaS” [4]. The IT customers simply regard SaaS as a form of cloud comput-
ing [5]. In brief, an upsurge in cloud computing will promote the employment of
SaaS. Meanwhile, SaaS will also provide more applications and resources to cloud
computing.

Many web sites, such as Google App Engine, Alisoft.com, Ophone SDN (Software
Developer Network), etc, have provided platforms, by which, new software services
can be developed, and developers can publish their software services as well. As a
result, the number of SaaS software services is increasing dramatically. This leads to
the difficulty of finding a required software service from the user’s perspective.
Nowadays, tags are widely used to annotate SaaS software services and are also used
to facilitate the searching of specific software services. Currently, most of tags are
generated by manual methods. For example, when submitting a new application to the
Google App Engine Gallery, developers are requested to provide several tags to anno-
tate the software service. In such way, the contents of these tags tend to be arbitrary
and ambiguous, even meaningless, and sometimes confusing for users. To resolve this
problem, this paper proposes a method for mining SaaS software service tags by pars-
ing text documents.

2 Approach

The approach proposed for mining tags from the help documents can be described in
the following six steps.

1. Term extraction: firstly, lexical analysis is performed to parse the help docu-
ments, after which terms (noun) are extracted from the documents.

2. Term similarity computation: the similarity between terms is calculated.
3. Document similarity computation: similarity of documents is calculated based

on the numbers of the similar terms shared in the documents.
4. Software similarity network construction: a software similarity network is con-

structed, where the nodes represent software services, edges denote similarity rela-
tionship between software services, and the weights of the edges are the similarity
degrees between software services.

5. Community Detection: a hierarchical clustering algorithm is used to cluster soft-
ware in the constructed software similarity network.

6. Tag mining: the characteristic terms in each of software communities are mined,
and the result is stored in the form of ontology. The process for mining tags is
shown in Fig1.

314 L. Qin et al.

Fig. 1. The process for mining tag knowledge

2.1 Term Extraction

Currently, there are many existing lexical analysis systems which can be used for
basic text parsing, such as ICTCLAS, IRLAS, etc. In this work, we use ICTCLAS3.0
[6] to parse the software help documents into words and tag POS (Part of Speech) for
the words. Single word cannot express domain terms since most of the noun terms in
the text are composed with multiple words. Related research also showed that 85% of
the terms in text were multi-word terms [7,8,9,10]. Therefore, our research mainly
focuses on multi-word terms extraction. Through the analysis of the text, we propose
four rules for terms extraction which are presented as follows (the abbreviations used
in the rules are: NP for noun phrase, N for noun, u for auxiliary).

1. Since each concept is a noun in the text, only words with the N tag are extracted.
2. In the case of s nouns Ni (i=1,2,…,s) linking to each other one by one in the form

of N1N2…Ns, we consider the s nouns together as a noun phrase.
3. In the case of two nouns linked by an auxiliary word, as N u N, we eliminate the

auxiliary word, and link the nouns together (i.e. NN) as a noun phrase.
4. In the case of a noun and a noun phrase are linked by an auxiliary word, as NP u N

or N u NP, we also eliminate the auxiliary word, and link the remaining words to-
gether as a noun phrase.

2.2 Term Similarity Computation

The objective of word similarity computation is to resolve the duplicated representa-
tion of synonym in the tags. There have been various approaches in the field of word
similarity computation. Tran and Smith proposed an information theoretic measure to

 A Novel Method for Mining SaaS Software Tag via Community Detection 315

assess the similarity of two concepts on the basis of exploring a lexical taxonomy
(e.g., WordNet) [11]; Liu proposed a method for Chinese word similarity computation
base on HowNet [12]; etc. But as we mentioned above, most of the multi-word terms,
which we have extracted as noun phrase, are OOV (Out-Of-Vocabulary) terms in
HowNet [13], thus the way of computing the similarity degree of each pair of them is
the key issue in this study. The following steps are the algorithm we proposed to cal-
culate the similarity degree between multi-word terms.

1. Take the noun phrase as a collection of nouns, like NP1(N11, N12,…,N1n),
NP2(N21, N22,…,N2n);

2. Extract the last noun in each collection, i.e., N1n, N2n and describe the similarity
between them as Sim1(NP1,NP2).

3. Calculate the similarity of the remaining part of two collections, and describe the
similarity between two collections as Sim2(NP1,NP2).

4. The overall similarity of two noun phrases can be defined as :

2

1 2 1 2
1

(,) (,)i i
i

sim NP NP sim NP NPβ
=

=∑ . (1)

whereâi is a constant, andâ1+â2 = 1,â1 > 0.5. â1 is used for the transferring of semantic
focus in Chinese language.

We use word similarity computation method proposed in [12] to calculate
Sim1(NP1,NP2). The steps for computing Sim2(NP1,NP2) is described as following.

1. Select a noun from one collection, and retrieve the corresponding noun, which has
the maximum similarity in the other collection;

2. Remove this pair of nouns selected in step 1 from the collections;
3. Repeat step 1 and step 2 until one of the collections is empty. The remaining

nouns in the other collection correspond to NULL and the similarity of them is
zero.

4. Finally, Sim2(NP1,NP2) is the average of the similarity of each pair of nouns.

2.3 Document Similarity Computation

The similarity degree between every pair of the help documents is the key data in a
software similarity network; therefore, how to compute the similarity between docu-
ments is another topic of our study. A considerable amount of research has been done
on the document similarity computation in the last decades. Salton proposed the
method to express text character by vector space model, in which document was
transformed into vector by TFIDF (Term-Frequency Inverse-Document-Frequency)
weights, and the similarity of documents was calculated in vector space. Salton and
Buckley used it in automatic text retrieval [14]. But this method didn’t take the term
similarity into account, which consequently decreases the accuracy of calculation.

Peng proposed a text similarity computation formula based on inner product space
model of semantic [15]. But this algorithm ignored similarity computation between
multi-word terms. Based on the analysis of these methods, we adopt the following
method to calculate the similarity between two documents.

1. Count the sum of terms for each document;

316 L. Qin et al.

2. Under a given threshold, we filter out some pairs of terms whose similarities are
greater than the threshold, and then count the sum of them without repetition;

3. The formula for the document similarity computation can be defined as:

Sim(SA , SB) = N / (NA + NB) . (2)

where SA and SB represent document A and B respectively; N is the number of similar
terms in SA and SB under the given threshold, NA and NB denote the sum of terms of SA
and SB. respectively.

2.4 Software Similarity Network Construction

In this subsection, we show the way of constructing a software similarity network.
First, we give the definition of Software Similarity Network as follows.

Definition 1: Software Similarity Network (S2N). In S2N nodes represent the soft-
ware services; edges between two nodes denote the similarity relationship between
two software services with the weight of each edge annotating the similarity value.
Therefore S2N can be described as:

2 (, ,)S N wNetwork Nodes Edges M= . (3)

where NetworkS2N is an undirected network denoting S2N; Nodes are software ser-
vices; Edges denote the similarity relationship between software services, and Mw is
the similarity value .

2.5 Community Detection

There are a lot of approaches that can be used to detect community structures in com-
plex networks. One of them is hierarchical clustering. Hierarchical clustering tech-
niques can be divided into two categories: agglomerative techniques and divisive
techniques. Our algorithm belongs to the general category of agglomerative hierarchi-
cal clustering methods. It starts with a state, in which each object is the sole member
of one of n communities, and proceeds with a series of fusions of the n objects into
groups according to their similarities. It can be represented by a two dimensional
diagram known as dendrogram which illustrates the fusions made at each successive
stage of analysis.

Similarity measurement is the key issue in controlling the iterative process of hier-
archical clustering. In the following sections, we define similarity measure between
sub-clusters, and presented the fast hierarchical clustering algorithm.

2.5.1 Similarity Measure
There are many different quality functions to test whether a particular division is
meaningful or not, such as MQ introduced by Mancoridis, EVM function by Tucker,
and modularity Q devised by Newman and Girvan. In this paper, we use the quantita-
tive definition proposed by Newman and Girvan. It is defined as below.

2()ii i
i

WQ We Wa= −∑ . (4)

 A Novel Method for Mining SaaS Software Tag via Community Detection 317

where WQ is the similarity of a particular division, Weii is the fraction of the total
weight of the edges that connect two nodes within community i, while Wai is the
fraction total weight of the edges that have at least one endpoint within community i.

The WQ is originally devised to evaluate the effectiveness of the whole clustering,
but not to evaluate the similarity of sub-clusters. To address this issue, we borrow the
basic idea from Newman’s fast algorithm. In this paper, we employ △WQ to measure
the similarly between two sub-clusters. The reason is that if two communities with the
maximum similarity are divided into two different communities, there will be a de-
crease in the modularity WQ, otherwise there will be an increase. The value of △WQ
denotes the similarity between two sub-clusters. Hence searching for the sub-clusters
with the maximum similarity means finding out the biggest △WQ. This strategy to
accelerate the speed of the algorithm is very similar to that proposed in Ref. [16] [17].
The change in WQ upon joining community i and j is defined as:

2 ,

0

ij ji i jWe We WaWa i j is connected
WQ

otherwise

+ −⎧
Δ = ⎨

⎩
 . (5)

In this paper, we iteratively search for the changes�WQ resulted from the amalgama-
tion of each pair of communities, and choose the biggest one among them, until there
is only one community left.

2.5.2 A Fast Hierarchical Clustering Algorithm
In this subsection, we present the algorithm flow of the fast hierarchical clustering
algorithm.

Input: S2N
Output: WQ and clustered results (software community)

1. Assign each node in S2N as a cluster
2. Calculate WQ according to formula (4), and calculate △WQij from the pairs of

communities according to formula (5), and store the △WQij in △WQ matrix
3. While the number of communities > 1 do
4. Select the largest △WQij from △WQ matrix
5. Merge the corresponding communities i and j, update △WQ matrix and increase

WQ by △WQij
6. End While

2.6 Tag Mining

The final purpose of this research is to retrieve tags from help documents for annotat-
ing software services. Regarding the eligibility of a term being a tag, we argue that
tags are the characteristic terms that are commonly shared in help documents of soft-
ware services, so we create a collection of terms from help documents of software
services in each software community, then count the number of each term’s appear-
ance in the help documents of the corresponding software community. The specific
algorithm is shown as follows.

Input: S (a collection of terms)
Output: tags

318 L. Qin et al.

1. Define each term in S with a triple (N, L, W), N is the term, L represents the docu-
ment where term locates, W denotes the number of term’s appearance in this group.

2. Compute the similarity between N, and filter out the pairs of terms whose similar-
ity values are greater than a given threshold α.

3. For each term, count the number of its similar terms in all pairs of terms we have
found, if two or more similar terms have the same L, they are only counted once
instead of twice, then store the counting result in W.

4. Sort the terms according to W, and count K which is the sum of software services
in this group.

5. Extract the terms, in which W is bigger than K/3.
In this algorithm, threshold α is a constant. In the following section, the effectiveness
of our method will be demonstrated in a concrete experiment.

3 Experiment

In this experiment, we collected 104 help documents from alisoft.com [18]. By text
parsing, we extracted 3400 terms from the help documents. Through term similarity
computation, we retrieved several groups of data of document similarity under differ-
ent thresholds which are presented in Table 1. Table 2 shows the software clustering
results we have detected in software similarity network under different thresholds.

By comparing the data in Table 2, we find that the number of categories is rela-
tively small when the threshold is equal or less than 0.35, and when the threshold is
equal or greater than 0.65, there are many isolated software services appeared. Part of
reason can be found in Table 1. When the threshold value is small, the similarity de-
gree of documents is generally big, and the software in the software network will
relatively concentrate, so the number of categories is limited. On the other hand, when
the threshold value is bigger, most of document similarities decrease to zero, which
results in a large number of isolated software services. Based on the analysis, it is
reasonable to set the threshold in the range of [0.45, 0.55]. In this experiment, we set
the threshold to 0.45.

Table 1. Document similarity under different threshold values(part of the data)

Threshold The document similarity between two software help documents

0.35 0.79 0.73 0.72 0.63 0.54 0.41 0.40 0.39 0.32 0.30 0.30 0.26 0.25 0.20 0.12

0.45 0.60 0.53 0.44 0.32 0.32 0.19 0.21 0.23 0.17 0.17 0.18 0.14 0.08 0.13 0.08

0.55 0.56 0.45 0.38 0.28 0.27 0.18 0.19 0.19 0.16 0.17 0.14 0.14 0.06 0.09 0.07

0.65 0.18 0.10 0.09 0.06 0.07 0.05 0.03 0.05 0.03 0.05 0.03 0.04 0.00 0.03 0.02

0.75 0.15 0.09 0.06 0.04 0.07 0.02 0.00 0.04 0.01 0.05 0.03 0.01 0.00 0.01 0.00

0.85 0.14 0.09 0.06 0.04 0.07 0.00 0.00 0.02 0.00 0.02 0.01 0.00 0.00 0.00 0.00

 A Novel Method for Mining SaaS Software Tag via Community Detection 319

Table 2. Software clustering results under different threshold values

Threshold Software clustering results

0.35 3 categories, the number of software services of each category: 40, 34, 30
0.45 4 categories, the number of software services of each category: 32, 27, 24, 21
0.55 4 categories, the number of software services of each category: 33, 29, 27, 15

0.65
15 categories, the number of software services of each category: 38, 33, 13, 9, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Figure 2 shows the software similarity network where the threshold is set to 0.45,

and the clustering result is also shown in Figure 2. Each concentrated software com-
munity denotes a category of software services with similar features.

In order to get the similar features of each category, we mined the tags from each
category of documents, and show them in Table 3. Through the analysis of these
retrieved tags, we find that the first category is about customer management and sales
management. The second mainly refers to information and knowledge management.
The third is concerned with user management and the fourth is about shop and prod-
uct management.

The experimental results partially demonstrate the effectiveness of software clus-
tering with our proposed method. Furthermore, the mined tags reveal the common
function of each category of software services. Compared with man-picked tags, the
retrieved tags can annotate the software services more effectively, reducing tag arbi-
trariness and ambiguity. Finally, those tags are stored in the form of ontology.

Fig. 2. The software similarity network (each node in this network represents a software ser-
vice, the text note behind the node is the name of software service)

[[

320 L. Qin et al.

Table 3. Tags of each category

Category Tag

First

Category Information; Demand Information; Customer Information; Sales Data;
Customer Management; Customer Relationship Management; Rights Management;
Business Management; Data Analysis; Sales Management; Order Information;
Revenue and Expenditure Information; Information Security; Product Information;
Product Management; Contact Information; Purchase Information; Edit Product;
Promotion Information; Quotation Information; Advertising Information;
Cost Information; Inventory Management; Goods Management; Data Backup;
Project Management; E-mail Management; Customer Return Management;

Second
Plan Management; Software Management; Knowledge Management;
Management Upgrade; Location Information; Altitude Information;
Expenses Information; Failure Information; Network Information;

Third
User Management; Upgrading User; Treasure payment User; User Interface;
User Role; User Experience; Wangwang Users; Office Users; User Requirement;
User Opinion; User Agreement; Consultation for user; Anonymous User

Fourth
Product Quality; Promotion for Product; Mail Services; Shop Notice;
Shop Template; Shop Location; Expenses; Overall Cost; Shop Type; Shop Address;
Shop Category; Introduction of shop; Description of goods

4 Conclusion and Future Work

In most of the cases, man-picked tags cannot annotate the SaaS software services
effectively. In this paper, we propose a novel method for mining tags from help
documents of software services, and achieve good results in our experiment. The tags
mined by this method do not only tag software services effectively, but also have the
potential of describing the function, even the requirements of software services. We
are planning to use the retrieved tags to construct domain knowledge model, which
can be employed to define software functions and requirements. Domain knowledge
model will provide more semantic information to software service tags. Furthermore,
we hope domain knowledge model can act as guidance to functional designs and
requirement analysis in software service development.

Acknowledgement

This work is supported by National Basic Research Program (973) of China under
grant No.2007CB310801, National High Technology Research and Development
Program (863) of China under grant No.2006AA04Z156, National Natural Science
Foundation of China under grant No.60873083, 60803025, 60703009, 60303018,
60970017 and 60903034. Natural Science Foundation of Hubei Province for Distin-
guished Young Scholars under grant No. 2008CDB351. We would like to thank Ye-
Yi Qin, Xiao-Yan Zhou, Kui Xiao and Ting-Ting Hou at State Key Laboratory of
Software Engineering, Wuhan University and for useful conversations and thank
Dr. Gan-Sen Zhao at School of Software, Sun Yat-sen University for valuable advice.

 A Novel Method for Mining SaaS Software Tag via Community Detection 321

References

1. Cloud Computing From Wikipedia,
 http://en.wikipedia.org/wiki/Cloud_computing

2. Google and IBM Join in Cloud Computing Research (2007),
 http://www.nytimes.com/

3. How Are SaaS and Cloud Computing Related? (2009), http://caas.tmcnet.com/
4. Two hot technologies: Saas and cloud computing (2008), http://dev.yesky.com/
5. What is cloud computing means? (2008), http://news.csdn.net/
6. ICTCLAS3.0, Website, http://ictclas.org/
7. Nakagawa, H., Mori, T.: A simple but powerful automatic term extraction method. In:

COMPUTERM 2002, pp. 1–7 (2002)
8. Jiang, X., Tan, A.-H.: Mining ontological knowledge from domain-specific text docu-

ments. In: Fifth IEEE ICDM, pp. 27–30 (2005)
9. Song, N.-R., Feng, Z.-W., Kit, C.-Y.: Automatic Chinese Multi-word Term Extraction. In:

ALPIT 2008, pp. 181–184. IEEE Press, Dalian (2008)
10. Li, W., Wang, C., Shi, D.-n.: Automatic Chinese Term Extraction based on Cognition

Theory. In: ICNSC 2008, pp. 170–174 (2008)
11. Hong-Minh, T., Smith, D.: Word Similarity In WordNet.: Modeling, Simulation and Op-

timization of Complex Processes. In: Proceedings of the Third International Conference on
High Performance Scientific Computing, 2006, Hanoi, Vietnam, pp. 293–302. Springer,
Heidelberg (2008)

12. Liu, Q., Li, S.-J.: A word similarity computing method based on HowNet. In: 3th Chinese
Lexical Semantics Workshop, Taipei (2002)

13. Dong, Z.-D., Dong, Q.: HowNet Website, http://www.keenage.com/
14. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Informa-

tion Processing and Management 24(5), 513–523 (1988)
15. Peng, J., Yang, D.-Q., Tang, S.-W.: A Novel Text Clustering Algorithm Based on Inner

Product Space Model of Semantic. Chinese Journal of Computers 30(8), 1354–1363
(2007)

16. Pan, W.-f., Li, B., Ma, Y.-t., Liu, J., Qin, Y.-y.: Class structure refactoring of object-
oriented softwares using community detection in dependency networks. Frontiers of Com-
puter Science in China 3(3), 396–404 (2009)

17. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Rev.
E 69, 066133 (2004)

18. alisoft.com, http://mall.alisoft.com/

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 322–331, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Retrieving and Indexing Spatial Data
in the Cloud Computing Environment

Yonggang Wang1,∗, Sheng Wang2, and Daliang Zhou2

1 Institute of Remote Sensing Applications, Chinese Academy of Sciences,
100101 Beijing, China

Phone: +86 10 64409914; Fax: +86 10 64409782
wangyg@bjgtj.gov.cn

2 Beijing Easymap Information Technology Co., Ltd, 100080 Beijing, China

Abstract. In order to solve the drawbacks of spatial data storage in common
Cloud Computing platform, we design and present a framework for retrieving,
indexing, accessing and managing spatial data in the Cloud environment. An in-
teroperable spatial data object model is provided based on the Simple Feature
Coding Rules from the OGC such as Well Known Binary (WKB) and Well
Known Text (WKT). And the classic spatial indexing algorithms like Quad-
Tree and R-Tree are re-designed in the Cloud Computing environment. In the
last we develop a prototype software based on Google App Engine to imple-
ment the proposed model.

Keywords: Spatial data; Geographic Information System; Retrieving and in-
dexing; Cloud Computing.

1 Introduction

Currently, Geographic Information System (GIS) is now playing an important role in
many areas of modern city. It is said that 80 to 90 percent of all information has a
geographic component, such as an address, an area reference like a sales district, or a
map coordinate [1]. Most of critical functions of modern city are relevant to geo-
graphic data such as environmental planning, disaster management, public administra-
tion and civic planning [2]. So spatial information sharing and integration service
construction are being carried out and a great success have been achieved. As the
development of geographic spatial information sharing service, we meet a number of
new challenges such as expensive maintenance and software costs, low system per-
formance and data, system security, which greatly hamper the deep development of
spatial information service.

Today, the latest paradigm and hot topic to emerge is that of Cloud Computing.
It is a new term for a long-held dream of computing as a utility, which has recently
emerged as a commercial reality. Cloud Computing promises reliable services deliv-
ered through next-generation data centers that are built on computing and storage
virtualization technologies [3]. Consumers will be able to access applications and
data from a “Cloud” anywhere in the world on demand, making software even more

∗ Yonggang Wang, PH.D, his main interest is on the theory and application of GIS.

 Retrieving and Indexing Spatial Data in the Cloud Computing Environment 323

attractive as a service and shaping the way IT hardware is designed and purchased.
Cloud Computing can supply a reliable IT infrastructure to GIS effectively. Through
calling those APIs of Cloud Computing platforms, GIS professionals can ignore basic
maintenance job and pay more attention to designing and developing special profes-
sional functions and service. Cloud Computing have many advantages such as flexi-
bility, scalability, security and low-cost. It neatly compliments spatial software as a
service and server approaches for interacting with spatial data. It also enables many
users to interact together, exchanging and collaborating with data pertaining to multi-
ple disciplines. This means a process orientation surrounding dynamic applications
can be realized. Besides we can store the spatial data in the Cloud without paying
attention to details of huge volume data storage and spatial data security. In a sense,
the Cloud is fertile ground for GIS and it will reach its highest potential there.

Achieving the storage and management of spatial data based on common Cloud
platform is the basis of application. But currently mainstream Cloud platform don't
support spatial data storage. This paper will develop and extend spatial data storage,
retrieving, indexing, accessing and management model based on common Cloud
Computing platform using OGC simple feature coding rules such as Well Known
Binary (WKB) and Well Known Text (WKT).

2 Related Work

Before exposing our approach and introducing our study, we briefly present some
studies for Cloud Computing and its application in geospatial industry. Recently,
several academic and industrial organizations have started investigating and develop-
ing technologies and infrastructure for Cloud Computing. Academic efforts include
Virtual Workspaces [4] and OpenNebula [5]. A lot of IT factory also put great effort
to the study of Cloud Computing and many Cloud platforms are emerging.

Amazon Elastic Compute Cloud (EC2) provides a virtual computing environment
that enables a user to run Linux-based applications [6]. Amazon SimpleDB is a web
service providing the core database functions of data indexing and querying. This
service works in close conjunction with Amazon Simple Storage Service (Amazon
S3) and Amazon Elastic Compute Cloud (Amazon EC2), collectively providing the
ability to store, process and query data sets except spatial data in the Cloud [7].

Google App Engine is a platform for developing and hosting web applications in
Google managed data centers. It allows a user to run Web applications written using
the Python programming language. Other than supporting the Python standard library,
Google App Engine also supports Application Programming Interfaces (APIs) for the
datastore, Google Accounts, URL fetch, image manipulation, and email services.
Many projects at Google store data in Bigtable, including web indexing, Google
Earth, and Google Finance [8]. BigTable is a distributed storage system for managing
structured data that is designed to scale to a very large size [9].

Azure Services Platform is an application platform in the Cloud that allows appli-
cations to be hosted and run at Microsoft datacenters. It provides a Cloud operating
system called Windows Azure that serves as a runtime for the applications and

324 Y. Wang, S. Wang, and D. Zhou

provides a set of services that allows development, management and hosting of man-
aged applications off-premises [10].

It is great to be part of the excitement as the geospatial industry turns their interest
to the Cloud. The Open GIS Consortium (OGC) is a not-for-profit membership or-
ganization with more than 210 Members. The goal of the OGC is the ubiquitous ac-
cess and use of spatial data and spatial processing in an open marketplace [11]. The
items for discussion and continuing work from OGC Web Service Phase 6 (OWS-6)
include Cloud computing. Potential OWS-7 topics and related OWS are focus on
emerging Cloud Computing.

The Global Earth Observation System of Systems (GEOSS) is an international
program aiming to integrate space-based and terrestrial sensors from over 70 coun-
tries [12]. It will explore and investigate Cloud Computing to support processing and
analysis of earth observation data in environmental scientific workflow.

WeoGeo is an innovative file management and exchange service built for the spa-
tial data industry. Initially, WeoGeo will introduce FME’s spatial ETL capabilities to
the Cloud. This is the first venture to bring spatial ETL to the Cloud’s infrastructure,
and it promises to make spatial data even more accessible for end users [13].

3 Spatial Information System Based on Cloud

Our study aim is to build a common spatial information system based on Cloud Com-
puting technology. At the present we are focus on the study of developing and extend-
ing spatial data storage, retrieving and indexing model based on common Cloud
Computing platform. We think this work will supply the core effect with a complete
spatial information system.

Fig. 1. Spatial information system based on the Cloud

 Retrieving and Indexing Spatial Data in the Cloud Computing Environment 325

We proposed a Cloud-based spatial information system model which is described
in Figure 1. Because Cloud Computing system can provide some standard API to
operate data, we can store the spatial data in Cloud. Utilizing its APIs, we can build
the spatial data index, then the spatial data retrieving and the spatial data operator
could be implemented. So we can achieve it like present spatial information system
which can provide the standard compliant service and can be constructed applications.

Though there may be no standard data APIs for the Cloud Computing system at
present, but some work has been on their way to solve this problem. The proprietary
API should be replaced by standard guidelines which will benefit the widespread of
the Cloud Computing technology.

4 Spatial Data Retrieving

4.1 Spatial Data Model

There are many different spatial data models which are subjected to specific applica-
tions and software such as GraphDB, Oracle Spatial, GEIS, GrassGIS, GeoOOA and
others. So it leads to a lot of interoperation problems between various systems. Since
late 1990s, a lot of efforts have been made to build standard spatial data model to
represent, exchange and store spatial data, and the most successful achievement is the
standard set by the OGC. The basic computer environments are unable to communi-
cate in the spatial domain, so the OGC try to build the ubiquitous access and use of
spatial data and spatial processing in an open marketplace. Now most of the software
vendors like ESRI, Mapinfo, Oracle and IBM are implementing these standards in
their products.

Because of the elegance and simplicity of the model, we have adopted the OGC
Simple Feature Model in this Cloud-based spatial information system. It is also the
most commonly adopted geospatial data model in the geospatial industry. The Sim-
ple Feature Model is an OpenGIS standard which specifies digital storage of geo-
graphical data with both spatial and non-spatial attributes. Simple Features are
based on 2D geometry with linear interpolation between vertices. In general, 2D
geometry is simple if it contains no self-intersection. The OpenGIS Simple Features
Specifications define various spatial operators, which can be used to generate new
geometries from existing geometries. OGC Simple Feature Coding Model is given
in Figure 2.

Except the logic mode of the spatial data object, the persistent coding rules of the
object have been regulated by the OGC and described in their Access and Coordinate
Transformation Service Specifications. It is Well Known Text (WKT) and Well
Known Binary (WKB). WKT is a text markup language for representing vector ge-
ometry objects on a map, spatial reference systems of geographic objects and trans-
formations between spatial reference systems. WKB is used to transfer and store the
same information in binary bytes. For example if we have a point object with the x
coordinate and y coordinate value is 1, then the equivalent WKT and WKB formats
are given in Table 1.

326 Y. Wang, S. Wang, and D. Zhou

Fig. 2. OGC Simple Feature Code Model

Table 1. WKT and WKB example

OGC Service Specifications Formats
WKT POINT(1 1)
WKB 0101000000000000000000F03F000000000000F03F

4.2 Spatial Data Retrieving

The Cloud Computing platforms always provide APIs for access its data object. Some
systems implement it with SQL-like language, and others provide functional APIs
with specific language such as Java, C++ or Python. Because of the constitutionally
virtualization features of Cloud Computing systems, the APIs functions interact with
a virtual object. So we don’t need to care about the details of the physical data
storage.

Up to now, all the Cloud Computing systems can implement CRUD operation with
their raw data type. Meanwhile most of them can support BLOB/CLOB data type.
The BLOB/CLOB data is a collection of binary data stored as a single entity in a
database, and now these data types have been moved to Cloud Computing environ-
ment. We can store the WKB object in Blob entity, and WKT object in CLOB entity.
Logically the primary thought of spatial data retrieving is searching the spatial data
object in a BLOB/CLOB virtual object in the Cloud, and implementing some spatial
operator to manipulate the data. We have developed a spatial data retrieval model
which is described as Figure 3.

 Retrieving and Indexing Spatial Data in the Cloud Computing Environment 327

Fig. 3. Spatial data retrieval model based on the Cloud

The high level data retrieval function is the Query/Add/Update/Delete Methods.
Compared to the database’s CRUD operation, it can work with the spatial data object
compliant with the OGC Simple Feature Specification.

All the work to access the spatial object is encapsulating in a persistent layer,
through that the spatial object is encoded into WKT or WKB format. Then using
common Cloud APIs to access the BLOB/CLOB virtual entity from the Cloud stor-
age, the properties of the spatial object is treated as ordinary raw data type such as
String, Number or others.

5 Spatial Data Indexing

Formerly spatial indexes are used by GIS software to optimize spatial queries. In-
dexes used by non-spatial models like B-Tree can't effectively handle features like
that how far two points differ and whether points fall within an interest spatial area.
So some specific algorithms have been developed to support the spatial indexing.

Even though we don’t need to care about the indexing of physical file pointer and
memory object position as before, we also need to build the index to optimize the
query and operation of the spatial data stored in the Cloud.

5.1 Spatial Index Algorithm

The Cloud Storage is a collection of the virtual object. Although we can’t locate its
physical position, we can identify the object with the logical mark. So the problem is
identical to index an object in the spatial database. And we can adopt the typical algo-
rithm like Quad-Tree and R-Tree methods in the Cloud Computing environment.

328 Y. Wang, S. Wang, and D. Zhou

A Quad-Tree is a tree data structure in which each internal node has up to four
children. It is commonly used to partition a two-dimensional geographical space by
recursively subdividing it into four quadrants or regions. The regions may be square
or rectangular, or may have arbitrary shapes. All forms of Quad-Tree divide space
into adaptable cells which has a maximum capacity. The tree directory follows the
spatial decomposition process.

R-Trees are tree data structures that are similar to B-Trees, but are used for spatial
access methods. The data structure splits space in the hierarchically nested way, and
possibly overlapping minimum bounding rectangles. Each node of R-Tree has a vari-
able number of entries which are up to some pre-defined maximum. Each entry within
a non-leaf node stores two pieces of data, which include a way of identifying a child
node and the bounding box of all entries within this child node.

The two methods have no significant difference in the Cloud Computing environ-
ment. So we can choose one method as for the practical situation.

5.2 Build Spatial Index in the Cloud

The implementation process of the spatial index operation is described as Figure 4.

Fig. 4. Spatial index operation in the Cloud

The index is accessed by the Cloud data APIs as well as the spatial data. When spa-
tial data has been saved into the Cloud, the index object of Quad-Tree or R-Tree can
be built by an index management object in a non-volatile manner with which indexed
nodes can be paged to memory if needed. So the operation of the index object could
be implemented. There are some key routines which can be executed to such an in-
dexed spatial dataset in the Cloud.

 Retrieving and Indexing Spatial Data in the Cloud Computing Environment 329

Searching includes other operations such as intersection and containment. In Quad-
Tree, we can use binary search algorithm to find the element. And for R-Tree, we can
use the bounding boxes to decide if searching inside a child node. In this way, most of
the nodes in the tree are never touched during a search. And Log (N) complexity
could be achieved.

In Quad-Tree algorithm, when a node is added or deleted, the tree should be rebal-
anced, but no other objects would be affected. As for R-Tree, we use the bounding
boxes from the nodes to ensure that nearby elements are placed in the same leaf node.
Different algorithms can be used to split nodes when they become too full, resulting
in the Sub-Quadratic and linear R-tree subtypes.

6 Experiment and Result

To facilitate its use and determine its effectiveness, the spatial retrieving and indexing
algorithm has been implemented based on Google App Engine. As a commercialized
Cloud Computing platform, Google App Engine adds Python and Java API for the
Cloud data access. The Google datastore provides persistent storage for App Engine
applications, used directly or via the provided JDO or JPA interfaces. And the BLOB
and Text data type which is equivalent to CLOB is completely supported. So the main
components supporting spatial information system suggested by us is available.

We choose some test dataset including points, lines and polygons, which stored as
ESRI shape file in the cloud. Then we upload and download the geometry object data
from the Cloud in an Internet connection with 512k speed. The statistical result is
given in Table 2.

Table 2. Test result of the data retrieving on the Google AppEngine

Name Type Record Number Upload time Download Time

City_PT Point 412 120ms 43ms

River_PL Line 25 87ms 32ms

Boundary_PY Polygon 39 232ms 84ms

Address_PT Point 8400 2023ms 712ms

To obtain the equivalent test results on the traditional spatial database, we employ a

entry level PC server as the hardware platform, and use the oracle spatial to store and
query the data. A program based on OCI interfaces has developed and executed. The
results are given in Table 3.

Table 3. Test result of the data query (download) and write (upload) on spatial database

Name Type Record Number Upload time Download Time

City_PT Point 412 92ms 50ms

River_PL Line 25 104ms 38ms

Boundary_PY Polygon 39 311ms 63ms

Address_PT Point 8400 3211ms 325ms

330 Y. Wang, S. Wang, and D. Zhou

The result shows a little difference between the two environments. And the cloud
have a more quickly speed when store (upload) the geometry data. But when the
number of data records increases, the spatial database has a better performance when
executing query (download) operation. Considering the network factor and scalability
of the cloud system, we still recognize the cloud system as a promising solution to
store the spatial data.

A simple map rendering program has been developed in order to display the map
image on java canvas object. We make the output result as png image file in a jsp
page, through which spatial data can be retrieved real-time from the Cloud platform.
The demo web page of map image is shown as Figure 5.

Fig. 5. The demo web page of map image

7 Conclusions and Future Work

It is expected that the original spatial retrieving and indexing scheme and software
based on the Cloud platform can help the application of Cloud Computing in the field
of geographic information system, which may contribute to the development of geo-
spatial service.

However, the research in this paper just provides a preliminary framework and pro-
totype software for spatial data storage and management. To reach the aim for geo-
graphic information Cloud service, a lot of work need be done such as problems of
mass remote sensing images storage, spatial data engine, spatial processing, 3D mod-
eling and spatial analysis. These are our future interested work.

References

1. chang, K.-t.: Introduction to Geographic Information Systems. McGraw-Hill Companies,
Inc., New York (2002)

2. Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W.: Geographic Information
Systems and Science. John Wiley & sons, New York (2001)

 Retrieving and Indexing Spatial Data in the Cloud Computing Environment 331

3. Weiss, A.: Computing in the Clouds. Net Worker 11(4), 16–25 (2007)
4. Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual workspaces-Achieving quality of

service and quality of life in the Grid. Scientific Programming 13(4), 265–275 (2005)
5. Llorente, I.: OpenNebula Project, http://www.opennebula.org
6. Amazon Elastic Compute Cloud (EC2), http://www.amazon.com/ec2
7. Amazon web service, http://aws.amazon.com
8. Google App Engine, http://appengine.google.com
9. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C.: Bigtable: A distributed storage system for

structured data. In: OSDI 2006: Seventh Symposium on Operating System Design and Im-
plementation, pp. 15–25 (2006)

10. Windows Azure FAQ, http://www.microsoft.com/azure
11. OGC, http://www.opengis.org/techno
12. GEOSS, http://earthobservations.org/
13. WeoGeo, http://www.weogeo.com

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 332–337, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Search Engine Prototype System Based on Cloud
Computing

Jinyu Han, Min Hu, and Hongwei Sun

China Mobile Research Institute, Beijing, P.R. China, 100053

Abstract. With the development of Internet, IT support systems need to provide
more storage space and faster computing power for Internet applications such as
search engine. The emergence of cloud computing can effectively solve these
problems. We present a search engine prototype system based on cloud comput-
ing platform in this paper.

Keywords: cloud computing, mobile internet, search engine.

1 Introduction

With the development of computer and communication technology, the number of
mobile phone users increases rapidly. According to statistics in [1], there are more
than 600 million mobile phone users in China by the end of 2008, and nearly 39.5
percent of overall Internet users use mobile phones to access Internet, the number of
which is about 117.6 million. At the same time, with the development of 3G and
mobile Internet, there is an urgent requirement for IT support systems to provide
more storage space and faster computing capacity. If we build the IT support sys-
tems based on Minicomputers in mobile Internet, there exists the following draw-
backs, (1) The Minicomputers are expensive and low-cost-effective, (2) Because of
the use of closed-specific computer systems, procurement and maintenance costs
are high, and the scalability is low. The emergence of cloud computing can effec-
tively solve these problems. Cloud computing, which has high-performance, low-
cost and high scalability features, provides processing, management and storage
capabilities for mass data. Therefore, the use of cloud computing platform as Inter-
net application infrastructure can provide a strong IT support system for the better
use of the Internet. Search engine is a typical Internet application, which can use
cloud computing platform.

In this paper, we present a search engine prototype system based on cloud comput-
ing platform. The organization of this paper is as follows. The advantages using cloud
computing are introduced in Section 2. In Section 3, we describe the architecture and
related techniques of the search engine prototype system, which is followed by a

 Search Engine Prototype System Based on Cloud Computing 333

presentation of the experimental results in Section 4. The discussion of this paper is
concluded in Section 5.

2 Advantages Using Cloud Computing

Search engines need to deal with mass content, and the high concurrent query
requests need to be handled with low-latency. The traditional centralized com-
puting platform is not only costly, but has become increasingly inadequate to
meet the demand for such applications. The cloud computing platform can be
used as the core business process infrastructure, which provides high-capacity
content storage, management and processing. The cloud computing platform in
Google, Yahoo, Baidu, Amazon or other Internet service providers composes of
hundreds or thousands or even tens of thousands of nodes, this large-scale com-
puting systems provide mass data storage, management and processing, and are
successfully used in some applications. Cloud computing has the following
advantages:

Firstly, the cost is low since cloud computing platform is based on industry-
standard PC. The open source software ecosystem for cloud computing platform has
been relatively mature, which provides complete solutions from the distributed data
storage to massive structure data management. For example, the famous Apache
Hadoop project has made a major breakthrough in function, performance and reliabil-
ity with the efforts of tens of thousands of open source developers. It is reasonable to
believe that the open-source cloud computing platform will become the mainstream in
the future.

Secondly, it is flexible. The cloud computing platform adopts distributed,
loosely coupled architecture. It has good scalability and the system management
cost is small. Since the cloud computing platform can be set up using heterogene-
ous nodes, enterprises and research institutions can reuse the existing hardware
devices, which facilitates the transition from the existing systems to cloud comput-
ing platform.

Finally, it is easy to expand new business. In the era of cloud computing,
multi-applications can share the cloud computing platform. For example, the e-
mail application can be combined with Ad push or Fetion applications, which can
improve the user stickiness and loyalty and enhance the value-added business
profits.

3 Search Engine Based on Cloud Computing

The function of Search Engine (SE) includes web pages’ parallel crawling, parsing,
indexing, distributed search and search results display. The architecture includes 3
layers: cloud computing layer, search engine layer, service layer. The architecture of
search engine is as follows.

334 J. Han, M. Hu, and H. Sun

Web
Pages

Display

Modula

Log Modula Management Modula

Search Engine

General SE Multimedia SE

Text Recommended Ad

Vertical SE Mobile SE

Multimedia Recommended Ad

Cloud Computing Platform

Parallel C
raw

l M
odula

P
arallel P

arse M
odula

P
aralle Index M

odula

D
istributed Search M

odula

Fig. 1. Service Layer: the Mobile Service Information Search Engine, the Vertical Search
Engine, the Mobile Search Engine, the Multimedia Search Engine, the (multimedia) advertise-
ment promotion. Above all, it’s necessary for the search engine abstract. Search Engine layer
includes 2 parts: core part and management part.

3.1 Core Part of Search Engine

Parallel Crawl Module
It’s multiple parallel computing, including the steps Injector (turn seed URL into
HyperDFS, then put it into a database called CrawlDb by crawl module), Generator
(scan CrawlDb database, generate a crawl list for new round), Fetcher (based on
cloud computing technology, put the crawl list to all nodes, each node use multi-
threading technology crawl), Updater (merge the content of original and new
CrawlDb).

Crawl module also has functions of regularly updated collection. The web pages
are classified according to their updating frequency. It includes 4 kinds: every hour,
daily, weekly, monthly updating. Therefore, the crawl module collects web pages by
their updating frequency all the time.

Parallel Parse Module
Responsible for dealing with the original page crawl data of parallel crawl module.
First of all, purify the original data page, get rid of the noise content in Web pages
(such as advertising, copyright information, etc.); Second, extract the theme pages and
related content, including the summary page, web text, page keywords, page title,

 Search Engine Prototype System Based on Cloud Computing 335

page language type, the type of website code, web pages out-links and the corre-
sponding text messages, and through access to web page URL to get in-links and the
corresponding text; Third, according to some algorithm to get the uniquely identifies
of page called DocID and web content identifies called ContentID, and in accordance
with the ContentID of the web pages to eliminate the duplication; Finally, put the
above information into its corresponding database, as the source data of follow-up
module of the index and search.

Parallel index module
After pretreatment with the links between pages and pages of information for the
input and output is inverted index file. The module achieved: with the establishment
of multi-column index page (the page with multiple fields means: the website is di-
vided into a title, text fields, etc by the pre-processing algorithm.); indexing speed
reach 250M per hour; supporting the compression of index data and index swelling
rate is less than 50%; loading index (compressed) time + decompression time <load-
ing index (before compression) time; support the Chinese multi-word segment. And:
the correct word segmentation rate of over 90%; part-of-speech analysis of the correct
rate of 90%.

This module can distribute the index data to the search servers, and backup the in-
dexes to ensure the reliability of the indexes data. The module also can merge the
number of small indexes into a larger index to carry out the real-index.

Distributed Search modules
Use the inverted index file and the user search requests as input, according to the type
of search request to generate search results. query speed at G-class data level, should
be able to achieve millisecond response (average response time less than 300ms,
Cache hit page response time less than 100ms).

This module provides three-tier cache. Module will cache the results of query in
some commonly used to Cache, when receiving a request query, first check the cache,
then query the index in the case of did not hit the cache . Thus the cache can greatly
speed up the query speed and reduce the same search bring the cost of query.

Distributed module provides the search function. When distributed query servers
receive a query ,first of all Web servers check the cache, if got a result of the return
cache; Otherwise, the request is sent to each search query server. Improve the re-
sponse query speed .

User interface modules
There are two main parts: the server side is responsible for UI features sub-module;
the user's client (page in browser). These two parts coordination the display of
search results.

This module get search results as the input, generate the user interface of search re-
sults; responsible for search engine users interactant: provide help document, accept
user's search request.

The functions of the modules : search help documents; search results page display;
multi-language support; Abstract generation; query time display; the scope of search
results filters; syntax coloring; the number of query results; search results clustering.

336 J. Han, M. Hu, and H. Sun

3.2 Management Part of Search Engine

The main task is business operation and management and maintenance (such as set-
ting permissions, data backup and disaster recovery, etc.), and record the operation of
each module have a log, the log based on user feedback for the system optimization
can be Parallel Data Mining using the corresponding interface.
Logging and analysis modules

The log records for log file output. Log file as a text file, each line entry, the entry
format of the decision by the log type. Log includes running logs, user logs and log
management.

Log analysis module, including: statistical analysis of query terms (using cloud com-
puting statistics, first of all to check words for the key word query is mapped to the
corresponding machine, the machine corresponding to the completion of the counting
statistics query and output the results of the Statistics.) ; new words found (using cloud
computing technology analysis the log of the user queries to determine whether word
frequency of occurrence greater than a threshold); ban the word processing (to use cloud
computing technology, to log every query term with the broad match ban If the query
log includes the word banned word banned in the table, the query log output section);
based on the log of the cache behavior analysis (based on the results of query statistics
and found that relatively high frequency query .To generate the URL link of the query
word through request URL realization the update of the cache.)

Maintenance and Management Module
This module includes user authority settings, data backup and disaster recovery.

4 Experimental Results

We evaluated the functionality, scalability, reliability, security, performance of the
search engine prototype system. The main performance indicators are as follows:

Criteria Test Results
Crawling web pages 300M (10-20M / day)
Crawling speed 101.3 M / node / hour
Correct content extraction rate 90.33%
Index speed 928M / node / hour
Correct word segmentation rate 90.13%
Correct part-of-speech rate 95.28%
Index Expansion Rate 0.28
Search Speed 212.48 ms (100M pages)
Correct retrieval rate 54.15% (Top20 compared with

Google)

5 Conclusions

The development of various Internet applications, such as search engine, demand
computing platform processing and increasing stringency of the application
infrastructure bring forward a higher demand, but the traditional IT support system is

 Search Engine Prototype System Based on Cloud Computing 337

cost-effective low and poor scalability, cloud computing technology with the massive
information processing, management and storage capabilities, as well as its high-
performance, low-cost and high scalability features, can effectively solve these prob-
lems. Cloud computing can not only support the typical application of mobile Internet
search engine, but also support the new mobile Internet applications in the future,
such as web disk storage and sharing, SNS, competitive intelligence analysis.

References

1. The 23rd China Internet development report. China Internet Network Information Center
(CNNIC) (January 2009)

2. Hadoop project, http://hadoop.apache.org
3. Nutch project, http://www.nutch.org/
4. Mapreduce project, http://hadoop.apache.org/mapreduce/
5. Sullivan, D.: Fifth Annual Search Engine Meeting Report, Boston, MA (April 2000)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 338–346, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Distributed Structured Database System HugeTable

Ji Qi, Ling Qian, and Zhiguo Luo

Department of Service Support Technology, China Mobile Research Institute,
100053 Beijing, China

{QiJi,QianLing,LuoZhiguo}@chinamobile.com

Abstract. The demand of analyzing and processing mass data is increasing in
recent years. Though several optimization versions developed, the traditional
RDBMS still met a lot of difficulties when facing so huge volume of data. A
newly designed distributed structured database HugeTable is proposed, which
have the advantage of supporting very large scale of data and fast query speed.
HugeTable also have a good compatibility with the standard SQL query lan-
guage. The basic functions, system architecture and critical techniques are dis-
cussed in detail. The usability and efficiency are proved by experiments.

Keywords: Database Distributed.

1 Introduction

RDBMS (Relational Database Management System) technology was firstly proposed
and used in practical project in the 1970’s by IBM. In the following tens of years, as a
result of its excellent OLTP (On-Line Transaction Processing) performance, RDBMS
evolved to be the top and unique main stream data base technique.

With the fast popularization of internet and the rapid development of information
technology, RDBMS met some difficulties because of the very big information scale.
Facebook is one of the top SNS (Social Network Service) providers in the world.
About tens of GB user data were generated every day in 2007. They use MySQL to
handle all these information then. But last year, the daily data size increased to 2TB,
which obviously exceeded the capacity of any RDBMS including MySQL. The latest
report says that Facebook produces 15TB user data everyday now. There are a lot of
similar cases, for example, phone bill data of telecommunication companies, web
accessing log of internet service providers, monitoring data of sensor networks and
transactional data of finance companies. All these kinds of large scale data listed
above have some features in common, and so they demand analogical functions from
data management tools:

1. Collecting large scale of timing related or streaming data.
2. The inner structure of data is not very flexible, and the content of historical data

will rarely be updated or deleted.
3. Data don’t have to be strictly available at real time, which means users don’t is-

sue queries for newly imported data.
4. The ability of querying, filtering, analyzing and aggregating data from massive data.
5. The support of simple data access interface.

 Distributed Structured Database System HugeTable 339

Many systems with newly designed architecture have been proposed to meet one or
more of the above requirements. Pig [1] is a parallel data processing system which is
contributed to Apache Hadoop [2] project by Yahoo, whose basic idea is transforming
the client side query to Map/Reduce procedures in cluster, which run on the lower level
Hadoop platform. Users can execute some kind of simple queries in a way similar to
SQL, however the functionality is relatively weak, and it only supports a few data types.
Hive [3] is a framework of data warehouse hosted by apache Hadoop project that do-
nated by Facebook. At the aspect of SQL supporting, Hive goes further than Pig and
provides richer SQL grammar and more data type support. Indexing is one of the short-
boards of hive, that simple query of small data scale often take minutes to get finished.
HBase [4] is one of the open source implementations of Google BigTable [5]. In short
words, HBase makes the key value mapping through multi-level indexing tables, and
gets excellent primary key query performance. But SQL style query language is not
supported by HBase, and the single Master design leads to poor availability.

HugeTable is a distributed structured database system which implements standard
SQL query interface and support high performance global indexing. Especially, single
point of failure is completely avoided from design. The critical techniques of Huge-
Table are presented in the 2nd section. The experiment results in the 3rd section
proved HugeTable has excellent performance and scalability. Finally, conclusion is
given in the 4th section.

2 HugeTable System

Figure 1 describes the basic architecture of HugeTable system, which is divided into 4
levels, namely Application Level, ODBC/JDBC Driver Level, SQL Service Level and

Hadoop DFS

ClientLib

MR
Executor

SQL Planner

SQL Parser
Thrift Server

Thrift Client
JDBC ODBC

Thrift
IDL

DFS
 API

HT-Client
 API

JDBC
 API

OLAP Apps, SQL Shell

Hadoop
Cloud Base

SQL Service

xDBC Driver

Applications

Map
Reduce

Search Engine, Email

HBase
API

ODBC
 API

Master
TabletServer

Zookeeper

HT-MR
API

ZK
 API

HBase
Executor ...

Fig. 1. HugeTable achitecture

340 J. Qi, L. Qian, and Z. Luo

Hadoop Cloud Base Level. HugeTable supports 2 kinds of application interfaces at
the “Application Level”. The first one is native application interface which enables
direct access of data using batch updates. The second one is standard SQL interface.
The “JDBC/ODBC Driver Level” lies right below the “Application Level”, which
provides JDBC/ODBC drivers to the on top SQL applications. The “SQL Service
Level” analyzes all incoming SQL statements and generates corresponding parallel
query procedures. The “Hadoop Cloud Base Level” includes some basic system
framework components, such as MapReduce [6], DFS, Zookeeper [7] and HBase that
HugeTable relies on.

2.1 ODBC/JDBC Drivers and SQL Service

The ODBC/JDBC Driver Level enables the users to INSERT, DELETE, UPDATE
and QUERY data with ODBC/JDBC interface like traditional databases.

Let’s take JDBC as an example to explain the overall work flow. Firstly, user Java
application loads the driver, and then connects to the database with the help of JDBC
Driver Manager. Query requests are sent to SQL Engine through Thrift, after which
query plan is made out by SQL Engine to generate parallel procedures that execute
the query on nodes inside the cluster.

The communication between JDBC/ODBC Driver and SQL Engine could not be
realized by function calls for that they would not be deployed on the same node in
most cases. By using Thrift as channel, part the driver code could be generated auto-
matically, and the JDBC/ODBC drivers are then much simplified. Besides, server side
code could be used by both JDBC and ODBC driver because that the two drivers use
the same communication protocol to connect to server.

2.2 Indexing

In some scenarios, the user demands query result for mass data to be returned in very
short time. For example, the total data scale is tens of TB, and the user wants to find
all target records which have some appointed number in one second. In the design

Row Time UserID SouceIP ObjectIP SignalType

1 20080909-12:00:00 13910001000 10.1.6.124 10.1.7.22 CreatePDP

2 20080909-12:00:00 13810001000 10.1.6.125 10.1.6.124 delPDP

3 20080909-12:00:01 13910001000 10.1.7.22 10.1.6.124 responsePDP

4 20080909-12:00:01 13910001000 10.1.7.22 10.1.6.124 CreatePDP

UserID Row

13910001000

13810001000

1,3,4

2

CDR

CDR-UserID-Index

Fig. 2. HugeTable indexing mechanism

 Distributed Structured Database System HugeTable 341

period of HugeTable, we found that there are no current system can satisfy the above
demand. Hive is among the best ones that provide mass data processing ability, but
minutes of time must be consumed for even the simplest query in TB scale of data at
least. So, the global indexing table is designed for HugeTable. HBase exploited a 3-
level indexing table to accelerate the look up speed for primary keys in user data ta-
bles, so HugeTable use HBase as global indexing tool for locating particular column
values. Figure 2 is a simple example in which CDR is the original HugeTable data
table, and CDR-UserID-Index is the assistant HBase indexing table.

The pseudo code below explains the establishing process of HugeTable global in-
dexing table:

Pseudo code to establish global indexing table

Scanner = data_table.get_scanner; /*Create scanner for
original data table*/

row = scanner.next(); /*Get the handle of the first re-
cord in original data table*/

while (row != null){ /*Get all the following data using
the scanner*/

value = row.get_column(target_column_name); /*Get
the value of target_column_name in this record*/

if(! index_table.has_row(value)){ /*If there are no
corresponding row for this value in the indexing table*/

 create_row(index_table, value); /*Create one row
for this value in the indexing table*/

}

append_to_row(index_table, value, row.get_rowkey());
/*Append the rowkey in the original data table for this
value in index table*/

row = scanner.next(); /*Go to process the next record*/

}

2.3 High Availability Design

High availability is one of the basic requirements for data base systems in the area of
telecommunications and finance. HugeTable have some special high availability con-
siderations from the very start of designing work, like the multi-Master mechanism,
guarantee of TabletServer durative service and the reliable Zookeeper system.

Master is the core module in HugeTable system, which mainly manages meta-data
with according interfaces. The management interfaces is called whenever user create,
delete tables, modify table properties, or at the time when the number of tablests
changes, or when there are new TabletServer added in. There should be only one pri-
mary master taking effect in HugeTable at anytime. Several secondary masters may
exist for backing up purpose. If the primary master fails, one secondary master will
take its job over and become primary master instead. Figure 3 explains how it works.

342 J. Qi, L. Qian, and Z. Luo

Fig. 3. Working model of HA related modules

The several secondary masters are interchangeable cold backups. If the current
primary master fails, failover process will be issued and new primary master
could be elected. The backup secondary masters don’t have to save latest status of
TabletServers. When primary master is switched, all status could be extracted
from META table, and no reassignment is needed for existing tablets. With the
informing mechanism of Zookeeper, all clients and TabletServers are notified
right away.

HugeTable has the ability to reschedule data at the granularity of tablet. Whenever
TabletServer fails, the current primary master will reassign its tablets to another
TabletServer automatically according to their work loads. Thus, all data hold in
HugeTable system stays available even if some of the TabletServers fail. Besides, the
TabletServers keep providing data accessing service as long as the Zookeeper server
could be connected, which means when masters are not in service, TabletServers can
still keep its durative of service.

3 Experiments

The development of HugeTable system is done recently, and then we did some ex-
periments to evaluate the performance and scalability.

3.1 Experiment Environment and Tools

There are 128 nodes in the experiment platform, and the total disk is 256TB totally.
We use open source management tool Rocks to administrate the cluster. Centos 5.0
operating system is installed on each node. The detailed hardware information is
listed below:

 Distributed Structured Database System HugeTable 343

Table 1. Hardware configuration of experiment platform

Hardware Functionality Configureation
Computing Node Master/NameNode/Tablet

Server/DataNode/TaskTracker
2way 2core XEON 2.5G
CPU/8G Memory/4*250G SATA
7.2K Hard Disk

Switch 3rd level routing fucntion GE entries

All test cases are implemented in Java language, and the JDK version is SUN

1.6.0. All testing data come from the GDR table of GPRS signal monitoring system,
each row of which have 21 columns and 200 bytes raw data.

3.2 Throughput

Throughput test is to evaluate the parallel access rate of HugeTable native API. There
are “RandomRead”, “SequentialRead”, “RandomWrite”, “SequentialWrite” and
“Scan” five kinds of cases totally. Particular number of testing threads will be issued
on each node in the testing cluster, and then certain test case will start executing the
corresponding parallel data accessing operation. The sequential and scan test cases
read or write continuous records from a selected position. The random test cases read
or write records from randomly generated positions every time, so that the adjacent
operations do not touch the same data block on hard disk.

We performed all the experiments on clusters with 8, 16, 32 nodes respectively,
and the data scale is 1.7TB which is about 1 billion rows of CDR records.

Figure 4 shows the throughput of whole cluster with 8, 16 and 32 nodes respec-
tively. The x-coordinate stands for the number nodes in cluster, and the y-coordinate
stands for data operating throughput (unit: records/second). The two write experiments
have an obviously higher throughput than the others. This is because that all writes
operations are performed in local memory of the corresponding node, except when the
memory occupation exceeds a certain threshold and disk flush happens. In all cases, we
got almost linear speed up, which proved that HugeTable has good scalability.

Fig. 4. Cluster throughpt contrast diagram

344 J. Qi, L. Qian, and Z. Luo

Figure 5 shows the throughput of each node under 3 different cluster scales. Single
node processing capacity drops when the scale of cluster extends, which is because
that there is only one Master node in cluster, and when the number of node increases
the Master becomes the bottle neck.

Fig. 5. Node throughput contrast diagram

3.3 Responding Time

SQL operation performance is evaluated by responding time experiments, and the
SQL statements are picked from frequently used statements in GPRS signal monitor-
ing system. Test results are the average respond time of all selected statements (every
statement is executed for 3 times each).

We performed all the experiments on clusters with 6, 8, 10, 16, 20, 32, 50, 62, 126
nodes respectively, and the data scale is 1.4 TB which is about 0.8 billion rows of
CDR records.

Figure 6 shows the average query responding time of all SQL statements without
global index under 9 kinds of node scale. The query responding time drops almost
linearly when the number of cluster nodes increases, which proved that HugeTable
have good scalability when SQL Engine executes the query in the manner of MapRe-
duce without global index.

Fig. 6. SQL query responding time without index

 Distributed Structured Database System HugeTable 345

Figure 7 shows the average query responding time of all SQL statements with
global index. The responding time does not vary a lot when altering the number of
nodes except the 6 nodes situation. We build up 3 column index of GDR table in
this case, so considerable memory is consumed by the newly generated indexing
tables. By examining the DFS NameNode portal, we found that the total
disk consumption increased from 4.1TB to 4.8TB after creating global column
indexes. The global indexing table of HugeTable is implemented by Hbase data
table, and HBase loads all primary key indexing data into memory when the index
tables are online. All memory is used up by HBase indexing data in the 6 nodes
situation, so we get a much longer responding time. However, if HugeTable still
have free memory, all SQL queries will be returned in stable responding time,
because they are all executed with looking up HBase primary keys in the
same way.

Fig. 7. SQL query responding time with index

4 Conclusions

This paper analyzed the defects of current distributed mass storage systems at first,
and then proposed HugeTable, which have 4 important features as follows: (1) Sup-
port of standard SQL statement; (2) No single point of failure; (3) High performance
global indexing mechanism; (4) Excellent scalability. The future work includes: (1)
Promote the overall stability of HugeTable system. Although designed with failure
control strategy such as multi-master and durative-TabletServer, HugeTable still do
not have satisfying stability, especially in application contexts of very long time and
very high load. (2) Deal with the bottle neck caused by HBase index hosted in main
memory for HugeTable global column index. HBase holds all primary key indexes in
memory indiscriminately which wasted a lot of memory resource, so HugeTable
might not process more data because of insufficient memory even when disk occupy-
ing rate is low.

346 J. Qi, L. Qian, and Z. Luo

References

1. Hadoop Pig project, http://hadoop.apache.org/pig
2. Hadoop project, http://hadoop.apache.org
3. Hadoop Hive project, http://hadoop.apache.org/hive
4. HBase project, http://hadoop.apache.org/hbase
5. Chang, F., Dean, J., Ghemawat, S., et al.: Bigtable: A Distributed Storage System for Struc-

tured Data. In: OSDI 2006: Seventh Symposium on Operating System Design and Imple-
mentation, Seattle, WA (November 2006)

6. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
OSDI 2004: Sixth Symposium on Operating System Design and Implementation, San Fran-
cisco, CA (December 2004)

7. Zookeeper project, http://hadoop.apache.org/zookeeper

Cloud Computing: A Statistics Aspect of Users

Gansen Zhao1,2, Jiale Liu2, Yong Tang1, Wei Sun2, Feng Zhang1,
Xiaoping Ye1, and Na Tang1

1 South China Normal University, China
2 Sun Yat-sen University, China

Abstract. Users see that cloud computing delivers elastic computing
services to users based on their needs. Cloud computing service providers
must make sure enough resources are provided to meet users’ demand,
by either the provision of more than enough resource, or the provision of
just-enough resource. This paper investigates the growth of the user set of
a cloud computing service from statistic’s point of view. The investigation
leads to a simply model on the growth of the system in terms of users.
This model provides a simple way to compute the scale of a system
at a given time, thus allowing a cloud computing service provider to
predict the system’s scale based on the number of users and plan for the
infrastructure deployment.

1 Introduction

Cloud computing delivers computing services over the Internet, mostly via Web
Services. Cloud computing technologies mitigate the conventional on-site com-
puting paradigm to the current remote computing paradigm, with all computing
resources be visualized as services and delivered over the Internet. This provides
the benefits of the follows.

– Services can be provided at a remote site.
– Computing can be used as in a utility style by resource virtualization.
– Elastic capability according to demand.

The potential scale that a cloud may need to support will be greater than those
supported by most of the conventional enterprise-wide IT systems. The large
scales supported by clouds bring in new system behaviors and properties that
may not be obvious in conventional IT systems with related much smaller scales.

While cloud computing is a great technology for users, which releases them
from infrastructure investment, planning, and maintenance, etc, cloud comput-
ing is a much demanding technology for service providers. Service providers must
invest enough infrastructure to accommodate all the users and their computing
needs. This, in fact, requires that a service provider must be able to estimate
approximately the amount of infrastructure needed. The amount of infrastruc-
ture needed relies on the number of users and each user’s consumption of the
resources at peak time.

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 347–358, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

348 G. Zhao et al.

The amount of infrastructure needed is hard to model and predict, but it
is relatively easy to model the growth of users. This paper presents a statistic
model on the growth of users of a cloud computing service, which provides a
simple and intuitive way of estimating the number of users that a service may
need to support, hence the amount of infrastructure needed if the resource con-
sumption of each user is given. The statistic model is also been compared with
another model to show the benefits of the proposed model. Analysis suggests
that the proposed model achieves the objective of estimating the growth of a
cloud computing service.

The rest of this paper is organized as follows. Section 2 identifies the challenges
of modeling user growth for cloud computing services. Section 3.2 presents a
statistic model of the user growth of cloud services in terms of possibility. Section
4 reviews related work and identify the advantages and limitations of existing
work. Section 5 presents the result of applying the proposed model on a set of
real world data to demonstrate the performance of the proposed model. Section
6 concludes this paper with the contributions and limitations of the model, and
also identifies potential future work.

2 Challenges

From a user’s point of view, a good cloud computing service is a service that
provides infinite amount of resource for computing. Thus a user can always
request more resource according to her need. The user can always reduce her
consumption of resource according to her need. The service is thus providing
an elastic and on-demand service, where resource consumption is adaptive to
business need.

From a service provider’s point of view, the provision of elastic service is
indeed a difficult target to implement for the following reasons.

– The service must provide enough resource to accommodate peak time re-
source consumption.

– The service must be able to grow according to the growth of the resource
consumption.

– The service provider must be able to predict the growth well in advance to
allow enough planning and deployment time for the change of infrastructure.

Service providers’ capability in the prediction of resource consumption growth
is in fact the most fundamental issue for the implementation of elastic service,
unless the cost of computing infrastructure is neglectable and the amount of re-
source is far over sufficient. Therefore, a service provider will, in an ideal scenario,
make every effort to deploy just enough amount of resource as the infrastruc-
ture to save cost and to meet users’ need. It can also argue that, the service
provider may trade off between the cost of infrastructure investment and the
satisfaction of users. This is certainly true in most of case, but the assumption
of this argument is still the same: a service provider must be able to predict the
consumption growth.

Cloud Computing: A Statistics Aspect of Users 349

The prediction of resource consumption growth is not a simple issue. Resource
consumption depends on the number of users, average amount of resource needed
by each user, etc. Thus predicting the resource consumption growth will involve
predicting the growth of users and the growth of resource consumption per user.

In general, the amount of resource needed has a strong mathematic relation-
ship with the number of users that a cloud service is serving. In most of the cases,
the amount of resource needed to support a specific number of users for some
specific tasks can be approximated if the number of users is given. Therefore,
modeling the dynamic of the user set of a cloud computing service is one of the
fundamental issues for the prediction of resource consumption growth.

To model the growth of users a cloud service is serving, it is necessary to
capture the dynamic of the user set, such as the leaving and the joining of users.
Based on the capture property, it is desirable to model the dynamic of the growth
of users served by a cloud service, allowing to identify the relationship between
the number of users and the time, as well as estimating the number of users
at a specific time, etc. The relationship and the estimation should be straight
forward and simple for practical usage.

3 Statistic Model of User Growth

Assuming there exist a strong mathematic relationship between the amount of
resource a cloud service needs and the number of users the cloud is serving, a
model of user growth can serve as building block to construct the model of re-
source consumption of a cloud. This section aims to develop a user growth model
of a cloud service, which enables the approximate estimation of the number of
users at any given time, as well as to illustrate the properties of user growth.

3.1 Assumptions

This paper assumes that 1, given a cloud with a large enough number of users,
the joining of new users to the cloud and the leaving of existing users from the
cloud both follow Poisson distribution. New joining users are independent to the
leaving users. Users’ joining is a Poisson process satisfying the conditions of 1,
3, and 4. Users’ leaving is also a Poisson distribution with the conditions of 2,
3, and 4 held.

1. During the period of [t, t + δt), the chance of having a new user joining the
cloud is λδt + o(δt), where λ > 0 and λ is independent of t.

2. During the period of [t, t + δt), the chance of having an existing user leave
the cloud is μδt + o(δt), where μ > 0 and μ is independent of t.

3. For any given small enough δt, in the period of [t, t+δt), the chance of having
more than one user join or leave the cloud is o(δt).

1 For the purpose of simplicity, it is also assumed that the number of users that are
not served by the cloud service is infinite.

350 G. Zhao et al.

4. Of any non-overlapped periods, the numbers of users joining are independent,
and the numbers of users leaving are also independent.

Let X be the number of joining users and Y be the number of leaving users. If
a cloud service satisfies all the above conditions, it is called a Double Poisson
(DP) system and is denoted as (X, Y) ∼ DP (λ, μ).

3.2 Statistic Model

With the assumptions specified in Section 3.1, the follows are obvious conclu-
sions.

1. The number of users having joined the cloud is pt(n) in the period of (0, t)
where

pt(n) =
(λt)n

n!
e−λt

pt(n) will be referred to as p(n) in the rest of this paper when no ambiguity
or misleading is caused.

2. The number of users having left the cloud is qt(n) in the period of (0, t)
where

qt(n) =
(μt)n

n!
e−μt

qt(n) will be denoted by q(n) in the rest of this paper when it does not cause
any ambiguity or misleading.

Let a cloud have M users initially, where M is a large enough number. As
the leaving and joining of users can be considered as independent, the relation
between the number of users of the cloud and the time can be simplified as
follows.

1. In the period (0, t), the possibility of the number of users of the cloud in-
creased from M to M + N (M � N) is A(N) where

A(N) ≈
M∑

k=0

(p(N + k)q(k))

2. In the period (0, t), the possibility of the number of users of the cloud de-
creased from M to M − N (M � N) is D(N) where

D(N) ≈
M∑

k=0

(p(k)q(N + k))

3. In the period (0, t), the possibility of having an increase of the number of
users, by no less than N , of the cloud can be computed as below.

GA(N) =
∞∑

m=N

A(m)

=
∞∑

m=N

M∑
k=0

(p(m + k)q(k))

Cloud Computing: A Statistics Aspect of Users 351

4. In the period (0, t), the possibility of having an decrease of the number of
users, by no more than N , of the cloud can be computed as below.

LD(N) = 1 −
∞∑

m=N+1

D(m)

= 1 −
∞∑

m=N+1

M∑
k=0

(p(k)q(m + k))

Hence, for a cloud with M users initially, the chance of having at least N users
remaining in the cloud at the time t is ϕ(M, N) can be computed as follows.

ϕ(M, N) =
{

GA(N − M) if N ≥ M
LD(M − N) if N ≤ M

3.3 Approximation

In order to make the statistic model more practical to use, it is better to simply
the statistic model into a simpler format so that it can be computed more effi-
ciently. The main issue for computing the statistic model presented in Section
3.2 is that the model contains infinity as the upper bound for the summation,
thus requiring the addition of infinite times. This subsection presents an ap-
proximation of the statistic model, which can be calculated in a more practical
way.

Let N1, N2 be large enough numbers, the approximation of GA(N) can be
computed as follows.

GA(N) =
∞∑

m=N

M∑
k=0

(p(m + k)q(k))

=
∞∑

m=0

M∑
k=0

(p(m + N + k)q(k))

≈
N1∑

m=0

N2∑
k=0

(p(m + N + k)q(k))

= e−(λ+μ)t
N1∑

m=0

N2∑
k=0

(μt)k(λt)m+N+k

(m + N + k)!k!

= GA′(N)

The absolute error between GA(N) and GA′(N) can be evaluated as follows.

δGA = GA(N) − GA′(N)

≤
∞∑

m=0

∞∑
k=0

(p(m + N + k)q(k)) − e−(λ+μ)t
N1∑

m=0

N2∑
k=0

(μt)k(λt)m+N+k

(m + N + k)!k!

≤ e−λt(μt)N2+1

(N2 + 1)!

N1∑
m=0

[
(λt)m+N+N2+1

(m + N + N2 + 1)!
] +

(λt)N1+1+N

(N1 + 1 + N)!

352 G. Zhao et al.

Similarly, it can be concluded that

LD(N) = 1 −
∞∑

m=N+1

N2∑
k=0

p(k)q(m + k)

≈ 1 −
N1∑

m=0

N2∑
k=0

p(k)q(m + N + 1 + k)

= LD′(N)

The difference between LD(N) and LD′(N) is

δLD <
e−μt(λt)N2+1

(N2 + 1)!

N1∑
m=0

[
(μt)m+N+N2+2

(m + N + N2 + 2)!
] +

(μt)N1+2+N

(N1 + 2 + N)!

3.4 Improvement of the DP Model

The application of DP model has lots of limitations. One of the most serious
limitations is the constant growth rate λ and the constant decay rate μ. The
approach we use to make DP model better adapt to real world is piecewise
function.

It’s not reasonable to evaluate a growth rate variable by a constant value
in real situation. But it is sufficiently accurate if assume that each time slice
has a different growth rate (or decay rate). But during a time slice, the rate is
constant. The piecewise function can be defined as follows.

λ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1 if t1 ≤ t < t2
λ2 if t2 ≤ t < t3
...
λn if tn−1 ≤ t ≤ tn

(1)

where λ1, λ2, · · · , λn and t1, t2, · · · , tn are constant numbers. And time sequence
{ti} is an arithmetic sequence. Its common Difference is length of time slice.

If the property of growth can be described by T continuous functions. let
1 < N1 < N2 < · · · < NT = n Growth rate can be defined as:

λt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(t) if 1 ≤ t < N1
f2(t) if N1 ≤ t < N2
...
fT (t) if NT−1 ≤ t ≤ NT

(2)

In short, the DP model can describe each constant growth rate period inde-
pendently. So Formula 1 and Formula 2 are applicable in DP model. But the
problem for DP model is that it’s not easy to predict the number of users at any
time.

Cloud Computing: A Statistics Aspect of Users 353

4 Related Work

4.1 M/M/1 Model

M/M/1 is a single server queue model that can be used for simulating a simple
system. It holds the conditions where [1]:

1. Arrivals are a Poisson process where is shown at Section 3.1.
2. There is one server.
3. Service time follows negative exponential distribution.
4. The population of joining users is infinite.
5. The length of the queue where users wait at can be infinite.

The probability of queue length’s (the number of waiting users) distribution
function Pn(t) (queue length n and time t) was found by Ledermann and Reuter
with spectral theory of birth and death processes [2]. Pn(t) can be described by
the formula [1]:

dPi(t)
dt

= (
μ

λ
)

x0−i
2 e−(λ+μ)t[−(λ + μ)Ix0−i(∗)

+ (λμ)
1
2 Ix0−i−1(∗) + (λμ)

1
2 Ix0−i+1(∗) + Ix0+i+2(∗)

+ 2(λ + μ)
1
2 Ix0+i+1(∗) + μIx0+i(∗)]

where Px0(0) = 1, In(∗) = In(2t(λμ)
1
2) is a n-th order bessel function.

The conclusion of M/M/1 is accurate. The advantages of M/M/1 are as fol-
lows:

1. M/M/1 model is such a simple model that it’s easy for us to understand the
construction of the model.

2. The transient solution of M/M/1 model is accurate. It means the conclusion
can be used with no errors.

M/M/1 has the following limitations.

1. Pn(t) is not an elementary function. It contains several bessel functions which
make it not intuitive.

2. Its complex expression should be simplified and the bessel functions in Pn(t)
must be approximated before it is in service.

3. From the application’s perspective, gain the accurate Pn(t) formula is not
complete.

The model presented in this paper is in fact an approximation and simplification
of the M/M/1 model by introducing a new assumption, where the joining and
the leaving of users are independent with each other.

The extra condition which is added to DP model is approximate. But if the
population of users in the DP system is large enough, the approximation is
acceptable. When the joining users and leaving users are far less than the users
in current system, the users join in the system or not doesn’t influence the
number of leaving users. For example, the number of leaving users in a N users’
system is much the same as that in a N + δ system, where N � δ.

354 G. Zhao et al.

4.2 Growth Models

A number of growth rate models have been developed for system modeling [3],
such as the power function model [4], the Bass model [5], and the modified Bass
model [6].

The power function model [4] is defined as

W (t) =
tk+1

k + 1

where W (t) is the number of users in the operational phase at time t. This model
is rarely used to describe the growth rate of a system. The reason for this is that
the parameters of the function are not amenable to interpretation [3].

The Bass model [5] is another model that is capable of modeling the growth
of users related to time. The Bass model is defined as

dW (t)
dt

= (α + β
W (t)

S
)[S − W (t)]

where S is the population of all potential users excluding the existing users.
The Bass model describes the process of how new products get adopted as an
interaction between users and potential users. The Bass model assumes a finite
set of potential users and models the user growth with respect to time.

Givon et al. [6] presents a modified version of the Bass model, which can be
use to estimate the number of licensed users as well as users of pirated copies of
the software.

The advantages of these models are that they are capable of modeling the
user growth with respect to time. In the case of the Bass model and the modified
version, they also take into account the number of potential users and the number
of existing users. These allow the above models to forecast the user growth at
a given time point. As some of the parameteters are environment dependent,
these models can model more complicated systems with better precision than
constant growth rate models.

However, One of the serious problems of these models is that they assume
the system will strictly follow the mathematical formula, which is a very strong
assumption. Most of the real world cases have their environments change along
with time. This will incur errors in the calculation and these errors will accumu-
late and increase as time goes by.

In practice, most things happen in the real world are not always absolute, thus
using probability to approximate the number of users is considered to be more
reasonable. So instead of giving an absolute growth number of users, DP model
only describe the probability of the number of users. Additionally, DP model
can not only describe the increasing property, but also adapt to analyze the
decreasing property. This characteristic is distinct different from power function
model and Bass model.

Cloud Computing: A Statistics Aspect of Users 355

5 Case Study

This section presents a case study on BTJunkie [7] using the DP model.
BTJunkie is one of the most popular BitTorrent search engine, using a web
crawler to collect information from other torrent sites. As of the time of this writ-
ing, BTJunkie has collected more than 3,000,000 torrent files, and the tracking
information of around 10,000,000 p2p file sharing users.

Assuming that the system is already in a dynamic equilibrium (implies λ =
μ), it can be concluded that the proportion of user increase approximates the
proportion of torrent file increase.

NewUsers

TotalUsers
≈ NewTorrents

TotalT orrents

Hence,

λ = μ = NewUsers ≈ NewTorrents × TotalUsers

TotalT orrents
= 77705Peers/day

Table 1. BTJunkie’s Statistic Data

Item Value Remark
NewTorrents 1,498 the number of new torrents each day
TotalTorrents 3.29 Mil the number of total of torrents
TotalUsers 170.66 Mil the number of total of users (Seeders + Leechers)

Fig. 1. Approximate User Growth Probability Distribution

356 G. Zhao et al.

Fig. 2. Approximation Precision

where NewTorrents, TotalUsers, TotalT orrents are quoted from Table 1 and
NewUsers is the joining rate (λ) of this system 2.

The units of μ and Peers are set with 10 M for conciseness purpose. It can be
concluded that Peers ≈ 17, μt = λt = 0.077705 × t ≈ 2.33, where t = 30 days.
And let N1 = N2 = 17 which are used for approximation.

Figure 1 shows the approximate probability distribution of the user growth.
The figure provides the probabilities of different proportion of users remaining in
the system after 30 days. Figure 2 shows the absolute errors of the approximation
of different percentage of users remaining in the system after 30 days.

Figure 2 indicates that given the above data, there is more than 97% prob-
ability to keep 95% users after 30 days. It’s obvious that the absolute errors of
using the approximation of LD(N).

6 Conclusions

This paper presents a model on user growth with respect to time for cloud com-
puting services. The model is capable of forecasting the approximate possibility
of having a specific number of users with respect to time with simple computa-
tion. This allows the service provider to estimate the possible number of users

2 NewUsers is the number of joining users. TotalUsers is the number of all users.
NewTorrents is the number of newly collected torrent files of a day. TotalTorrent
is the total number of torrent files.

Cloud Computing: A Statistics Aspect of Users 357

at a given time, thus to plan for the needed amount of resources to serve the
users. A case study is given, which suggests that the approximation has achieved
a high level of precision.

The contribution of this paper is as follows.

1. This paper identifies the need for user growth modeling in cloud computing.
Cloud service providers need such a model to estimate system scales and
the amount of resource needed. They also need such a a model to plan for
the deployment of the infrastructure based on the user growth in relation to
time.

2. This paper presents a user growth model that is capable to provide the
approximate possibility of a given number of users at a specific time. Thus
service providers can find out the possibilities of having different number
of users in the future. Hence service providers can plan for the amount of
resources needed and can also plan for the deployment of the infrastructure
in terms of time.

3. The model is formalized in an intuitive form, which is easy to interpet. The
model involves only limited computation as the benefit of approximation and
simplification in the modeling.

4. This paper shows that it is actually possible to model user growth in terms of
possibility in addition to modeling user growth in terms of absolute numbers.
It is also argued that modeling user growth in terms of possibility is superior
to modeling user growth in terms of absolute numbers.

5. This paper conducts related analysis and experiments to verify and test
the proposed model, which suggest that the proposed model is capable to
approximate the real world with high precision.

The model is not without its limitations. It assumes that there are infinite po-
tential users for a cloud service. This assumption is obviously not very realistic.
The model can only deal with variable growth rate systems using pairwise func-
tions by splitting the whole time period into several smaller periods of different
fixed growth rates. This introduces more complication in the modeling and more
complexity in the computation. While it is more flexible to model user growth
in terms of possibility, it is sometime desirable to be able to model user growth
in terms of numbers, such as the models discussed inSection 4.2.

Investigation on other modeling methods on user growth and resource con-
sumptions will be the main focus of the future work. Experiements will also be
conducted to verify and test the performance of the model.

References

1. Bharucha-Reid, A.T.: Elements of the theory of Markov processes and their appli-
cations. Dover Publications, New York (1997)

2. Ledermann, W., Reuter, G.: Spectral theory for the differential equations of simple
birth and death processes. Philos. Trans. Roy. Soc. London (1954)

3. Pham, H.: Springer Handbook of Engineering Statistics. Springer, London (2006)

358 G. Zhao et al.

4. Kenny, G.: Estimating defects in commercial software during operational use. IEEE
Trans. Reliability 42(1) (1993)

5. Bass, F.M.: A new product growth for model consumer durables. Manage.
Sci. 50(suppl. 12), 1825–1832 (2004)

6. Givon, M., Mahajan, V., Muller, E.: Software piracy: Estimation of lost sales and
the impact on software diffusion. Journal of Marketing 59(1), 29–37 (1995)

7. BTJunkie: Btjunkie bittorrent website (2009), http://btjunkie.org/

http://btjunkie.org/

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 359–368, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Efficient Cloud Computing-Based Architecture for
Freight System Application in China Railway

Baopeng Zhang1, Ning Zhang1, Honghui Li1, Feng Liu1,
and Kai Miao2

1 Beijing JiaoTong University, No.3 of Shangyuan Residence Haidian District in Beijing
{bpzhang,nzhang1,hhli,fliu}@bjtu.edu.cn

2 Intel Corporation
kai.miao@intel.com

Abstract. Cloud computing is a new network computing paradigm of distrib-
uted application environment. It utilizes the computing resource and storage re-
source to dynamically provide on-demand service for users. The distribution
and parallel characters of cloud computing can leverage the railway freight sys-
tem. We implement a cloud computing-based architecture for freight system
application, which explores the Tashi and Hadoop for virtual resource manage-
ment and MapReduce-based search technology. We propose the semantic
model and setup configuration parameter by experiment, and develop the proto-
type system for freight search and tracking.

Keywords: Cloud Computing, Batch Data Process, Data Management.

1 Introduction

Cloud computing is novel distributed computing paradigm. It integrates the over-
provisioning and under-provisioning computing environment for multi-user, abundant
computer resources and various network communication patterns. The broadband
networking and the virtualization of computing resources combined with new busi-
ness models for “pay-as-you-go” resource usage leverage the development of cloud
computing. Cloud computing application requirement delivers infrastructure, platform
and software function as services, and cloud computing environment provides the
scalable, reliable, secure and fault-tolerant supporting for user applications. China
railway includes the ministry of railway and eighteen railway bureaus. Those admini-
stration parts are physically distributed, and their information system is a complex
distributed system. Every railway bureau manages their computing resource and in-
formation resource individually.

The railway freight transportation system manages the freight ticket information of
china railway. It includes freight ticket sub-system, confirm report sub-system and
train dispatching sub-system. The freight ticket is created for describing the freight
ID, source place, destination place, detail information of freight once freight is regis-
tered for transportation. When the freight is grouping to specific wagon for next rail-
way station and the freight wagon arrive the new railway station, the confirm report
information is made for affirming the freight arrival. The freight information is a

360 B. Zhang et al.

distributed, mass, and dynamical information resource. For example, there are 120
thousands pieces freight ticket every day in china railway and every piece is 4k byte.
The tracking period is 45 days, and the storage life is one year. That means the
information to deal with is about 160G per day, and ready-search information is 1T,
meantime, every piece of information need keep four to six replica in relative railway
bureaus. So, the cloud computing technology can leverage the freight system of china
railway over resource sharing, freight search and business integration.

Our aim is to utilize the cloud computing technology to explore the railway appli-
cation mode for scalability, data backup, dynamic resource management of railway.
Based on those considerations, this paper discusses the cloud computing architecture,
service deployment, and data management in the distributed freight application envi-
ronment of China Ministry of Railway.

2 Related Work

As the evolution of on-demand information technology services and products, cloud
computing technology has been developed by industry and academic. According to
difference of service provision of cloud computing implement, cloud computing in-
corporates three kinds of service: software as a service(SaaS), platform as a ser-
vice(PaaS), and Infrastructure as a service(IaaS). Amazon(EC2)[6] played a key role
in the development of cloud computing by modernizing their data center. It provides
user to allocate entire virtual machines (VM) on demand, which referred to as IaaS.
Google’s App Engine[10] provides a language-specific APIs and libraries for user to
access to computational power, storage and massive amounts of data. Salesforce.com
[11] provides a number of high-level software packages for customer relationship
management. In addition, Intel Tashi[9], IBM BlueCloud[14], Microsoft Azure[13]
and EMC Daoli[15] explore the cloud computing technology in resource manage-
ment, service application and security.

Most cloud applications support data access and process of data center. MapRe-
duce[2] is originally proposed to optimize large batch jobs such as web index con-
struction. Its opensource implement Hadoop[8] implements the MapReduce based on
the Hadoop distributed file system(HDFS) similar to the Google File System[7].
Based on the distributed data process model, some research work is going on in job
scheduling[3] and relational data processing support[4], which deals with sharing a
MapReduce cluster between multiple users and related heterogeneous datasets.

3 Cloud Computing-Based Freight System Design

According to the MOR application characters and application requirement, some core
issues need to deeply discussion.

3.1 Cloud Computing-Based Architecture

Multi-level user: railway user have two categories: customer and administrator user,
customer is general user using the railway service. Administrator users manage the
application, data, resource and infrastructure of cloud computing environment, ac-
cording to different authorization in different level of MOR administration scope.

 An Efficient Cloud Computing-Based Architecture for Freight System Application 361

Fig. 1. Cloud Computing- based Freight System Architecture

User task parse and composition: user can utilize the application semantic model
and cloud services (provided by cloud computing environment) setup the user task.
Moreover, the result should conform to the semantic constraint of user task for im-
proving efficiency and application consistency.

Interoperation Interface: implement seamless interoperation between I-cloud and E-
cloud.

Infrastructure management: virtual machine management and image management.
It implements resource deployment and manage physical resource and virtual re-
source. Such as creation, deployment, closedown of virtual machine, instance crea-
tion, deployment of computing services image.

Resource management: resource includes the physical resource (computing, storage,
and network etc) and virtual resource (user-oriented resource utility management). It
implement monitoring, dynamic deploying, load balancing and usage optimization
with respect to cloud computing resources.

Data management: manage data storage, data access and data reliability. Data stor-
age includes data semantic description and data distribution. Data access includes
access scheduling, access control. Multi-level MOR users have different data access
right. Access scheduling leverages the efficiency of data access in different location.

362 B. Zhang et al.

Application management: implement the execution environment deployment, in-
cludes application semantic relation, execution of the cloud computing services, data
access operation and so on.

Task Assignment Mechanism: cloud computing application is a distributed service
composition task. Its task assignment must implement a cross-level optimization,
included semantic and performance requirements.

Security management: security technology is critical to cloud computing applica-
tion. It has different requirement in several level discussed above. Due to it is not
main content of this paper, no more deep discussion.

3.2 System Implementation

According to our architecture design, we implement the supporting system. We utilize
the Tashi cloud middleware to manage the virtual machine resource, including cpu,
memory and storage space of every physical machine within cluster management. The
hadoop distributed files system (HDFS) provides data management mechanism.
Based on the HDFS, MapReduce distributed programming model provides parallel
search mechanism for processing a large-scale data. Resource management integrates
the application semantic, infrastructure characters, and physical resource to imple-
ment resource allocation and deployment. With the help of those system supporting
technologies, application-oriented service can be developed for the different users.

Fig. 2. Cloud Computing- based Freight System Implement.

Hadoop: Hadoop is a open framework for running applications on large clusters built
of commodity hardware. The Hadoop framework transparently provides both reliabil-
ity and data motion for applications. Hadoop implements a computational paradigm
named MapReduce resembling the Google[2], where the application task is divided
into many small fragments of work job, each of which may be executed or reexecuted
on any node in the cluster. In addition, MapReduce runs on a distributed file system
(HDFS) that stores data on the compute nodes, providing very high aggregate

 An Efficient Cloud Computing-Based Architecture for Freight System Application 363

bandwidth across the cluster. Both MapReduce and the distributed file system are
designed so that node failures are automatically handled by the framework. Hadoop
have two kinds of node: name node and data node. Name node manages all the data
nodes. Our freight query & tracking service and virtual storage expansion service is
implemented on the HDFS and MapReduce mechanism.

Tashi Cloud Middleware: Tashi is a new cluster management system for cloud
computing on big data. Development of Tashi is hosted by the Apache Software
Foundation's (ASF) Incubator. The initial proposal and web site for this open-source
software project can be found at the ASF web site. Key initial contributors include
Intel Research Pittsburgh and the Parallel Data Laboratory at Carnegie Mellon Uni-
versity. Big Data applications, which draw from information sources such as web
crawls, digital media collections, virtual worlds, simulation traces, and data obtained

from scientific or medical instruments，now play a significant role in all aspects of
society - from scientific study to enterprise data mining to consumer web applications.
These applications, beyond simply operating on data that is big, are also typically data
hungry in that the quality of their results improves with the quantity of data available.
Consequently, a strong need exists for computing technologies that are scalable-to
accommodate the largest datasets possible.

Fortunately, these applications are typically disk bandwidth limited (rather than
seek-limited) and exhibit extremely good parallelism. Therefore, commodity cluster
hardware, when employed at scale, may be harnessed to support such large dataset
applications.

Tashi is designed to support cloud computing applications that operate on Big
Data, and it is a virtualization-based cluster management system that provides facili-
ties for managing virtual machines. Users of Tashi are able to create collections of
virtual machines that run on the cluster’s physical resources. These virtual machine
collections form “virtual clusters” that operate on the Big Data stored in the cluster,
and when distinctions are necessary, users who create virtual machines in Tashi are
called virtual cluster owners. Virtual clusters may host services that are then con-
sumed by clients, users that interact with, but do not own, the virtual machines man-
aged by Tashi.

In our cluster, the configuration of Tashi is as following:
• Start one node(host node) first as it hosts nfs server, then start other nodes later.
• Go to host node, run lvdisplay to check if logic volumn image exists. If not, then

install the hadoop image.
• Start Hadoop on the namenode.
• Start cluster manager on host node and input with Tashi hosts parameters.
• Start node manager on all nodes one by one.
• Create virtual machine in some physical machine according to resouce manage-

ment mechanism, and automatic setup hadoop datanode image.

3.3 MapReduce-Based Freight Search Mechanism

The freight search is important mechanism for freight system to find current informa-
tion of freight, analyze the freight transportation flow for optimizing the transporta-
tion scheduling. So, MapReduce-based freight search mechanism need take account

364 B. Zhang et al.

of several core issue for search performance, such as block size optimization, seman-
tic optimization and computing capability optimization.

Semantic Optimization. Freight transportation follows railway connection. Every
railway bureau administrates some railway, and manages complicated data informa-
tion included train, freight, scheduling and so on. According to freight application
requirement, the path from the source location to the destination location is specific or
limited. In this paper, two kinds of semantic relation are considered, connection rela-
tion (1) and subjection relation (2).

{ | }ij i jC C p p i j= → ≠ . (1)

Where, ijC defines the connection relation of railway station ip and jp .

{ | }ik i kA a p B= ∈ . (2)

Where, ika defines railway station ip belongs to railway bureau kB . So the semantic

mapping is shown as formula (3), which defines relative railway bureau from source

station sp to destination station dp within constraints of connection relation and sub-

jection relation.

{ | }C
i s dA

M B p p= ⎯⎯→ (3)

For freight search, its source and destination location can determine correlated rail-
way bureau involving the transportation flow in term of railway connection. Freight
search can improve search efficiency by avoiding irrespective data set access and
following locality optimization principle of MapReduce[2].

Based on shortest path principle in freight transportation, we construct semantic
mapping model to implement data source selection of freight information. The seman-
tic mapping model has two levels: file-level and block-level. Due to a file is divided
into multiple blocks to store in HDFS, the execution level of MapReduce is block. So,
the block-level is much finer mapping level. Once a query for freight comes, semantic
mapping model can decide the access data set in railway bureau level, which can
avoid extra network throughput and computing space. In the process of search, effi-
cient job scheduling algorithms can be utilized to improve throughput and response
time [3].

Block Size Optimization. The MapReduce expresses the computation as two func-
tions: Map and Reduce. Map takes an input pair and produces a set of intermediate
key/value pairs. Values with same key were passed to Reduce function for final result.
In this process, the input data is partitioned into a set of M splits. The input splits can
be processed in parallel by different machines. The MapReduce library first splits the
input files into M pieces of typically 16 megabytes to 64 megabytes(MB) per piece.
According to freight data character, we compare the response time in different data
block size and replica number through experiment (Fig.3.). In our experiment, every
search amount of data is 5G. Every data file size is 256M. It can see that 32M block
size achieves the shortest search response time when the replica number is 1. The

 An Efficient Cloud Computing-Based Architecture for Freight System Application 365

0

50

100

150

200

250

300

16 32 64

Block Size(M)

R
es

po
ns

e
Ti

m
es

(s
)

Replica Num = 1 Replica Num = 2 Replica Num = 3

Fig. 3. Search Average Response Time Comparison with Different Block Size and Replica
Number

64M block size achieves the shortest search response time when the replica number is
2. The block size of 32M and 64M achieves better response time improvement in the
condition of different replica number, while the block size of 16M is not sensible to
replica number. So the optimization is tradeoff of the response time and the storage
requirement. In freight application, 32M block size and two replicas is optimal choice.

3.4 Virtual Storage Expansion

A geographically distributed enterprise cloud allows resources to be shared among
servers at different locations. The server within the cloud can borrow storage space
from other servers when it has run out of storage space locally, thereby it can over-
come computing bottlenecks in a large enterprise like MOR at certain locations.

When specific railway bureau’s storage become shortage, the cloud computing en-
vironment can utilize instance of IaaS – Tashi to setup the VM with definite comput-
ing, storage capacity and run image instance of hadoop datanode. The current railway
bureau can transfer the some data files to the virtual space of new hadoop datanode,
or provide replica space for transferring computing service to this virtual space, which
lend itself to replica of dynamically increase of freight information in native bureau,
and guarantee the freight search all the time.

VM-based Utility Optimization. MapReduce is FIFO mode, search task execute in
sequence. In the process of freight search, multi-users and heterogeneous dataset
search have low efficiency. Hadoop On Demand (HOD)[12] provides private
MapReduce cluster over a large physical cluster using Torque. But HOD have poor
utilization problem. Because each private cluster has a static size, some nodes in the
physical cluster may be idle. Based on our architecture, we can utilize the Tashi-
supported VM management technology to refine the private cluster allocation, from
physical cluster to VM cluster. In the other way, the private cluster can achieve the
dynamic scheduling. We compare the VM-supported cluster and physical cluster,

366 B. Zhang et al.

same search can achieve similar response time, so those virtual machine can be used
to support other private cluster for more freight search.

4 Prototype System Implementation

More specifically, the prototype system first showed how Cloud Computing can sig-
nificantly improve business data access inside MOR, using a railway freight tracking
system with real data and applications running in the Cloud testbed. In contrast to the
centralized storage system currently in use today at MOR, distributed data storage in
an enterprise Cloud significantly reduces the time associated with a data search opera-
tion, as shown in Fig. 4.

Utilizing the distributed data of each railway bureau, it can in parallel search data
information conforming to specific semantic characters. Data sources that a new
freight search relies on can be determined according to business routine in the railway
and freight transportation. The distributed programming model – MapReduce was
used to map the search job to the multiple computers for data search, and reduce the
search result integrating the semantic features of freight system. Freight system in-
volves many railway subsystems, such as freight information sub-system, train sched-
uling sub-system, train confirm report sub-system and so on. Through integrating
those heterogeneous dataset, we can achieve more detailed freight transportation in-
formation. The freight search interface is shown as Fig.5.

Fig. 4. Freight Search Schematic of Prototype system

 An Efficient Cloud Computing-Based Architecture for Freight System Application 367

Fig. 5. Search Interface of Prototype system

5 Conclusion and Future Work

This paper introduces a novel cloud computing-based freight system application used
in China Ministry of Railway. We use Tashi and Hadoop to implement the application
system. Through the semantic and computing mobility optimization mechanism, the
system efficiency achieves better improvement. In a word, Cloud computing-based
system solution has many advantages, such as efficiency, scalability, reliability and
flexibility. Its usage in MOR application has widely application future. In the next
step, we will deeply research on image management, and multi-user access control to
support cloud computing utility in resource management and usage security.

References

1. Rajkumar, B., Chee, S.Y., Srikumar, V.: Market oriented cloud computing: Vision, hype,
and reality for delivering IT services as computing utilities. In: The 10th IEEE Interna-
tional Conference on High Performance Computing and Communications, Dalian, China,
September 25-27 (2008)

2. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Pro-
ceedings of Operating Systems Design and Implementation (OSDI), San Francisco, CA,
pp. 137–150 (2004)

3. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.: Job Sched-
uling for Multi-User MapReduce Clusters. Technical Report No. UCB/EECS-2009-55,
University of California at Berkley, USA (April 30, 2009)

4. Yang, H.-c., Dasdan, A., Hsiao, R.-L., Parker, D.S.: Map-Reduce-Merge: Simplified Rela-
tional Data Processing on Large Clusters. In: The 26th ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 2007), Beijing, China, June 12-14 (2007)

368 B. Zhang et al.

5. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of Cloud
computing. Technical Report No. UCB/EECS-2009-28, University of California at Berk-
ley, USA, February 10 (2009)

6. Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
7. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: The 19th ACM

Symposium on Operating Systems Principles (SOSP 2003), Lake George, NY, USA, Oc-
tober 2003, pp. 29–43 (2003)

8. Hadoop (2006), http://lucene.apache.org/hadoop/
9. Kozuch, M.A., Ryan, M.P., Gass, R., Schlosser, S.W., O’Hallaron, D., Cipar, J., Krevat,

E., López, J., Stroucken, M., Ganger, G.R.: Tashi: Location-aware Cluster Management.
In: First Workshop on Automated Control for Data centers and Clouds (ACDC 2009),
Barcelona, Spain (June 2009)

10. Google App Engine, http://code.google.com/appengine/
11. Salesforce Customer Relationships Management (CRM) system,

 http://www.saleforce.com/
12. Hadoop on Demand Documentation,

 http://hadoop.apache.org/core/docs/r0.17.2/hod.html
13. Microsoft Azure, http://www.microsoft.com/azure
14. IBM Blue Cloud, http://www.ibm.com/grid/
15. EMC Daoli, http://www.daoliproject.org/

Web Server Farm in the Cloud: Performance
Evaluation and Dynamic Architecture

Huan Liu and Sewook Wee

Accenture Technology Labs, San Jose, CA 95113, USA
huan.liu@accenture.com, sewook.wee@accenture.com

Abstract. Web applications’ traffic demand fluctuates widely and un-
predictably. The common practice of provisioning a fixed capacity would
either result in unsatisfied customers (underprovision) or waste valu-
able capital investment (overprovision). By leveraging an infrastructure
cloud’s on-demand, pay-per-use capabilities, we finally can match the
capacity with the demand in real time. This paper investigates how we
can build a web server farm in the cloud. We first present a benchmark
performance study on various cloud components, which not only shows
their performance results, but also reveals their limitations. Because of
the limitations, no single configuration of cloud components can excel in
all traffic scenarios. We then propose a dynamic switching architecture
which dynamically switches among several configurations depending on
the workload and traffic pattern.

1 Introduction

When architecting a web server farm, how much capacity to provision is one of
the hardest questions to answer because of the dynamic and uncertain nature of
web traffic. Many new web applications start with very little traffic since they are
hardly known. One day, they may become famous when they hit media (e.g., the
slash-dot effect), and visitors flock to the web site, greatly driving up the traffic.
Few days later, as the media effect wears off, traffic goes back to normal. Such
dramatic change in traffic is often hard, if not impossible, to forecast correctly,
both in terms of the timing and the peak capacity required. Thus, it is difficult
to determine when and how much capacity to provision.

Even if an amount can be determined, provisioning a fixed set of capacity is
not a satisfactory solution. Unfortunately, this is still a common practice today
due to the difficulties in forecasting and the long lead time to procure hardware.
If the capacity provisioned is less than the peak demand, some requests cannot be
served during the peak, resulting in unsatisfied customers. On the other hand, if
the capacity provisioned is more than the peak demand, large capacity is wasted
idling during non-peak time, especially when the peak never materializes.

Fig. 1 illustrates the degree of fluctuation a web application could experience
in reality. Animoto, a startup company, saw its infrastructure needs grow from
40 servers to 5000 servers in a matter of few days when it was widely publicized.
Few days following the peak, its infrastructure needs followed a similar degree of

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 369–380, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

370 H. Liu and S. Wee

Fig. 1. Animoto’s capacity change in response to fluctuation in traffic

shrinkage, eventually settling down at around 50 servers. Such a dramatic change
in the infrastructure requirement would mean either gross underprovisioning or
gross overprovisioning if a fixed set of capacity is provisioned.

An infrastructure cloud, such as Amazon’s EC2/S3 services [1], is a promising
technology that can address the inherent difficulty in matching the capacity with
the demand. First, it provides practically an unlimited infrastructure capacity
(e.g., computing servers, storage) on demand. Instead of grossly overprovision-
ing upfront due to uncertain demands, users can elastically provision their in-
frastructure resources from the provider’s pool only when needed. Second, the
pay-per-use model allows users to pay for the actual consumption instead of
for the peak capacity. Third, a cloud infrastructure is much larger than most
enterprise data centers. The economy of scale, both in terms of hardware pro-
curement and infrastructure management and maintenance, helps to drive down
the infrastructure cost further.

A cloud-based web server farm could dynamically adjust its size based on the
user demands. It starts with as little as one web server. During traffic peak, the
server farm automatically and instantaneously spawns up more web servers to
serve the demand. In comparison, in a traditional enterprise infrastructure, such
a scale up both takes a long time (months) and requires manual intervention.
Similarly, as traffic goes away, the server farm can automatically shrink down its
capacity. Again, scaling down (and stop paying for it) is very hard to achieve in
a traditional enterprise infrastructure.

This paper describes how to build this cloud-based web server farm. More
specifically, we present the following contributions.

1. Performance evaluation: Due to its business model, a cloud only pro-
vides commodity virtual servers. Compared to high-end specifically-designed
web servers, their base performance and performance bottleneck points are
different. We evaluate the performance of cloud components through the
SPECweb2005 benchmark [2]. Through the study, we identify several per-
formance limitations of the cloud: no hardware load balancer is available, a
software load balancer has limited capacity, web-services-based load balancer

Web Server Farm in the Cloud 371

has limited scalability, and traditional techniques to design high performance
web server farms do not apply in the cloud for security reasons. To the best
of our knowledge, this is the first performance study of cloud from an appli-
cation’s perspective.

2. Dynamic switching architecture: Through the performance study, we
identify several cloud configurations that can be used to host web applica-
tions; each has its own strength and weakness. Based on this evaluation,
we propose a dynamic switching architecture which dynamically switches
among the configurations based on the workload and traffic patterns. We
discuss the criteria for switching, and how to switch in real time.

2 Understanding Cloud Components

Unlike in a traditional infrastructure, where an application owner can choose
from any infrastructure component, a cloud only offers a limited number of com-
ponents to choose from. Understanding the capabilities and limitations of cloud
components is a prerequisite for migrating an existing application architecture
or designing a new one. In this section, using SPECweb [2], a web server bench-
mark, we study the performance of several cloud components: 1) Amazon EC2
instances (virtual machines), 2) Google App Engine, 3) Amazon Elastic Load
Balancing web services, and 4) Amazon S3. Then, we assess their performance
as either a web server or a load balancer.

2.1 Performance Assessment Setup

To assess the performance of cloud components, we use the SPECweb2005 bench-
mark [2], which is designed to simulate a real web application. It consists of three
workloads: banking, support, and ecommerce. As its name suggests, the banking
workload simulates the web server front-end of an online banking system. It is
the most CPU intensive workload amongst the three because it handles all com-
munications through SSL for security reasons and because most of the requests
and responses are short. On the other hand, the support workload simulates a
product support website where users download large files such as documentation
files and device drivers. It stresses the network bandwidth the most; all commu-
nications are through regular HTTP and the largest file to download is up to
40MB. The ecommerce workload simulates an E-commerce website where users
browse the site’s inventory (HTTP) and buy items (SSL). Therefore, in terms of
workload characteristics, it is a combination of the above two. For simple com-
parison purpose, hereafter we will only focus on banking and support because
they stress the CPU and the network bandwidth, respectively. Note that the
memory capacity is often the performance bottleneck in web servers. However,
through our extensive benchmark, we observe that EC2 instances have enough
memory compared to other resources; a standard instance (m1.small, m1.large,
or m1.xlarge) is usually bounded by the CPU because it has relatively more
memory than CPU (1.7 GB memory per 1 GHz computing power); a high-CPU

372 H. Liu and S. Wee

instance (c1.medium or c1.xlarge) is usually bounded by the network bandwidth
(800 Mbps).

The SPECweb benchmark consists of two components: the web application
and the traffic generator. The web application implements the backend appli-
cation logic. All pages are dynamically generated and a user can choose from
either a PHP implementation or a JSP implementation. The traffic generator
generates simulated user sessions to interact with the backend web application,
where each session simulates an individual browser. The traffic generator could
run on several servers in order to spread out the traffic generating workload.

The performance metric for the benchmark is the number of simultaneous
sessions that the web server can handle while meeting its QoS requirement.
For each test, the load generator generates a number of simultaneous sessions,
as specified by the user, and it collects the response time statistics for each
session. A test passes if 95 % of the pages return within TIME TOLERABLE
and 99 % of the pages return within TIME GOOD, where TIME TOLERABLE
and TIME GOOD are specified by the benchmark and they represent the QoS
requirement. To find the maximum number of sessions, we have to try a number
of choices of the number of user sessions until we find one that passes the QoS
requirement. The traffic generator is hosted in Amazon EC2 since our Labs’
WAN network is not fast enough to support high traffic simulation.

We focus only on the larger cloud platforms – Google and Amazon – because
they are currently widely used. Within Amazon, we choose to profile only a few
types of EC2 instances1 to illustrate the capabilities and limitations of these
cloud components. The instances we use include the smallest EC2 instance:
m1.small, which is the smallest and cheapest unit of scaling, thus it provides the
finest elastic provisioning granularity. We also evaluate c1.medium which has 5
times the computing power of m1.small, and c1.xlarge which has 20 times the
computing power of m1.small. All Amazon instances have a half-duplex Gigabit
network interface and they are able to transmit at around 800 Mbps (input and
output combined) according to our independent tests.

2.2 Amazon EC2 Instance as a Web Server

Table 1 shows the performance results for four different combinations of work-
loads and EC2 instances. The m1.small instance is CPU-bounded and it is not
able to saturate the network interface for both the support and banking work-
loads. Since support is not CPU intensive, we are able to saturate the network
with a slight increase in the CPU power by using c1.medium. Note that, with
linear projection, the largest instance would saturate the network bandwidth for
banking with 18,000 simultaneous sessions. However, due to a bug with the Rock
web server (which they are currently fixing), the c1.xlarge instance became sat-
urated with 7,000 simultaneous sessions because the requests from clients were
not evenly distributed to all eight CPUs.

1 Instance is Amazon’s term for a virtual server.

Web Server Farm in the Cloud 373

Table 1. Single EC2 instance performance as a web server

CPU Network # of
load bandwidth sessions
(%) (Mbps)

Banking on m1.small 90 60 1,350
Banking on c1.xlarge 20 310 7,000
Support on m1.small 90 500 1,190
Support on c1.medium 20 800 1,800

2.3 Amazon EC2 Instance as a Load Balancer

There are two reasons to use a load balancer for high traffic sites. First, one
may want to use m1.small as the unit of auto-scaling to minimize the cost.
As shown in the last section, m1.small is not able to fully utilize the network
bandwidth for either workload. Second, a web application may be more CPU-
hungry compared to the SPECweb benchmarks and thus may need to scale
beyond a single instance’s computation capacity.

Since Amazon does not offer a hardware load balancer as a building block, we
have to use a software load balancer hosted on a virtual server. Beyond a virtual
server’s capacity limit, the cloud can further limit the scalability of a software
load balancer because of security requirements. For example, for security reasons,
Amazon EC2 disabled many layer 2 capabilities, such as promiscuous mode and
IP spoofing. Traditional techniques used to scale software load balancers, such
as TCP handoff [3] and direct web server return [4], do not work because they
assume the web servers could take the same IP address as the load balancer.

There are many software load balancer implementations. Some, such as the
Linux Virtual Server [5], do not work in the Amazon environment because they
require the ability to spoof their IP address. We profiled several that work well
in the Amazon environment including HaProxy [6], Nginx [7] and Rock [8]. Both
HaProxy and Nginx forward traffic at layer 7, so they are less scalable because
of SSL termination and SSL renegotiation. In comparison, Rock forwards traffic
at layer 4 without the SSL processing overhead.

For brevity, we only report the performance of the Rock load balancer running
on an m1.small instance. For the banking workload, an m1.small instance is able
to process 400 Mbps traffic. Although we are not yet able to run the Rock load
balancer on a bigger instance due to a bug in the software, we believe running
on a c1.medium instance can easily saturate the full network interface speed. For
the support workload, the requests are mostly for long file transfers. Therefore,
the load balancer needs to do less work since each packet is big and there are
fewer packets to relay. As a result, an m1.small instance is able to handle the
full 800 Mbps bandwidth. Because the load balancer does not process the traffic,
but rather, only forwards the packets, we expect the results to hold for other
web applications.

For each incoming (outgoing) packet, the load balancer must first receive the
packet from the client (web server) and then send it to the web server (client).

374 H. Liu and S. Wee

Therefore, the effective client throughput is only half of the network interface
throughput, i.e., even if we saturate the load balancer’s network interface, the
client throughput is only 400 Mbps.

We must take into account the tradeoff when deciding between running a
single web server versus running a load balancer with several web servers. A load
balancer can only handle half the traffic because of cloud limitations; however,
we can scale the number of web servers in the back end especially if the web
application is CPU intensive. A single web server can handle a larger amount of
traffic; however, care must be taken to ensure that the CPU does not become
the bottleneck before the network interface.

2.4 Google App Engine as a Load Balancer

Because running a web presence is a common usage case for a cloud, there are
dedicated cloud offerings specifically targeted at hosting web applications. For
example, Google App Engine [9] promises to transparently scale a web applica-
tion without limit. Although possible in theory, we found that it is not as easy
to scale a web application in reality.

Again, we use SPECweb to profile App Engine’s performance. Google App
Engine is currently limited to the Python and Java programming languages.
Java support is still in beta, where many java packages are not allowed to run
for security reasons. Since the SPECweb benchmark has only PHP and JSP
implementations, it is not straightforward to port to App Engine. Instead, we
implemented a load balancer in App Engine. Both the load generators and the
web servers run in Amazon EC2, but all web requests are first sent to the load
balancer front end. Then, they are forwarded to the web servers in EC2.

Initially when we tested App Engine, even a test with 30 simultaneous sessions
fails because we are exceeding the burst quota. Over the course of 5 months
(since early Feb. 2009), we have been working with the App Engine team trying
to increase our quota limit to enable testing. However, getting around the quota
limit seems to require significant re-engineering. As of the date of the submission,
we are only able to pass a banking test at 100 simultaneous sessions.

Beyond the performance limits, App Engine has a number of other limitations.
It currently only supports the Python and Java programming languages. In
addition, incoming and outgoing requests are limited to 10 MB per request (it
was 1 MB until Mar. 2009), so the SPECweb support workload will fail. However,
App Engine does have a rich programming library and an integrated persistent
data store. When considering App Engine as a possible cloud component for
hosting a web site, we must consider the tradeoffs. For example, we choose to
design the server farm monitoring capabilities in App Engine to benefit from
its rich graphic library and the persistent store for our monitoring data. Since
the monitoring engine is only collecting data from a handful of servers, instead
of responding to thousands of user queries, App Engine can easily handle the
workload.

Web Server Farm in the Cloud 375

2.5 Amazon Elastic Load Balancing

Recently, Amazon Web Services announced the dedicated load balancing service:
Elastic Load Balancing (ELB) [10]. It provides a virtual load balancer with a
DNS name and the capability to add or remove backend web servers and check
their health. Because the ELB interface is not inherently tied to a single server,
we believe it has the potential to scale and address the performance bottlenecks
of software load balancers discussed in Section 2.3. However, our evaluation
shows that it currently does not scale better than a single instance Rock load
balancer.

Again, we use SPECweb to evaluate the Amazon ELB service. To stress the
bandwidth limit, we use the support workload. Recall that 1800 sessions saturate
the network bandwidth of a single web server running on a c1.medium instance
and 900 sessions saturate the network bandwidth of a Rock load balancer. Ama-
zon ELB fails to meet the QoS requirement above 850 sessions and refuses to
serve more than 950 sessions complaining that the server is too busy. Therefore,
we conclude that Amazon ELB’s current scalability is about the same as a single
instance Rock load balancer.

Interestingly, Amazon ELB is an expensive alternative to the Rock load bal-
ancer. Rock load balancer costs $0.10 per hour (the instance cost), whereas
Amazon ELB costs $0.025 per hour plus $0.008 per GB of the traffic it pro-
cesses. Hence, with more than 22 Mbps of traffic, Rock load balancer is cheaper.
Moreover, we do not need a load balancer with traffic smaller than 22 Mbps,
unless the web application is very CPU intensive, which is not the case for all
three workloads in the SPECweb benchmark.

2.6 Amazon S3 as a Web Server for Static Content

Another cloud component that can be used for hosting a web presence is Ama-
zon S3. Although designed for data storage through a SOAP or REST API, it
can additionally host static web contents. To enable domain hosting in S3, we
have to perform two steps. First, we have to change the DNS record so that
the domain name’s (e.g., www.testing.com) CNAME record points to S3 (i.e.,
s3.amazonaws.com). Second, we have to create a S3 bucket with the same name
as the domain (i.e., www.testing.com) and store all static web pages under the
bucket. When a client requests a web page, the request is sent to S3. S3 first
uses the “Host” header (a required header in HTTP 1.1) to determine the bucket
name, then uses the path in the URI as the key to look up the file to return.

Since the SPECweb benchmark dynamically generates the web pages, we can-
not evaluate S3 directly using the benchmark. Instead, we host a large number
of static files on S3, and we launch a number of EC2 m1.small instances, each
has 10 simultaneous TCP sessions sequentially requesting these files one by one
as fast as it is able to. Figure 2 shows the aggregate throughput as a function
of the number of m1.small instances. As shown in the graph, S3 throughput
increases linearly. At 100 instances, we achieved 16 Gbps throughput. Since
we are accessing S3 from EC2, the latency is all below the TIME GOOD and
TIME TOLERABLE parameters in SPECweb.

376 H. Liu and S. Wee

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100
num of EC2 instances

ag
gr

eg
at

e
th

ro
ug

hp
ut

 (
G

bp
s)

Fig. 2. Aggregate S3 throughput as a function of the number of EC2 instances who
simultaneously query S3

The Amazon CloudFront offering enables S3 to be used as geographically
distributed content distribution servers. One can simply enable CloudFront on
a bucket by issuing a web service API call, and the content is automatically
cached in geographically distributed servers. Since we do not have access to a
geographically distributed set of servers, we are not able to evaluate CloudFront’s
performance from the end-users’ perspective. But, in theory, it should offer the
same scale as S3 with the additional benefits of reduced latency when accessing
from remote locations.

Although highly scalable, S3 has two limitations. First, it can only host static
content. Second, in order to use S3 as a web hosting platform, a client can only
access the non-SSL end point. This is because S3 needs the “Host” header to
determine the bucket, and SSL would hide this information.

3 Dynamic Switching Architecture

As we have seen, there is not a single cloud configuration that is able to satisfy
requirements of all web applications. For CPU intensive web applications, it is
beneficial to use a load balancer so that the computation could be spread across
many instances. However, for network intensive applications, it is better to run
them on a standalone instance, possibly one with high CPU computation capac-
ity, to maximize the network throughput. Yet, for even more network intensive
applications, it may be necessary to use DNS load balancing to get around a
single instance’s bandwidth limitation.

If an application’s workload is mostly static or if the application cannot tol-
erate the slightest disruption, the performance study we performed in the last
section can help to pick the best static configuration. One can pick a cloud
configuration based on the peak demand, assuming the peak demand can be ac-
curately forecasted, but the application cannot enjoy the full economical benefits
of a cloud when the demand goes away.

Web Server Farm in the Cloud 377

Unfortunately, most applications’ usage fluctuates over time. It is conjectured
[11] that the diurnal pattern of network activity is one of the few invariant
properties in Internet, which is mostly due to human-related daily activities.
Many web applications exhibit even greater fluctuation, for example, during
flash crowd. Moreover, web applications’ workload characteristic itself is not
static, but rather a mix of many. The overall workload characteristic could shift
as the usage pattern shifts. Consider a sample website that hosts entertainment
contents. During daytime, a majority of the traffic may be for CPU intensive con-
tent search. However, during night time, network intensive multi-media content
streaming may dominate.

In this paper, we propose a dynamic switching architecture which chooses the
most appropriate cloud configuration based on the application workload. This is
enabled by the dynamic capabilities offered by a cloud.

3.1 Cloud Configurations

The dynamic switching architecture may employ one of the following four cloud
configurations.

1. Small instance: A single web server running on an m1.small instance.
This is the cheapest way to run a web presence and it is used when the web
application is least loaded, such as during the night.

2. Load balancer: A single software load balancer running on a c1.medium
instance. It balances traffic to a number of web servers running on m1.small
instances (the number of them is automatically adjusted based on the traffic
volume) in the backend. Having them as the smallest unit of auto-scaling
means that we incur the least cost. As our performance result shows, a single
c1.medium instance is able to load balance traffic up to its network interface
speed, even when the packet size is small.

3. Large instance: A single web server running on a c1.xlarge instance.
A c1.xlarge instance has the highest CPU power (20 times greater than
m1.small) and it can saturate the network interface even for applications
that are more CPU intensive than the banking workload,

4. DNS: For applications that may require more than 800 Mbps bandwidth or
more computation capacity than a c1.xlarge can provide, there is currently
not a single cloud component from Google and Amazon that can handle the
workload. We have to resort to DNS level load balancing. In this configura-
tion, we run several web servers on c1.xlarge instances (the number of them
is automatically adjusted based on the traffic volume). Then, we program
the DNS to point to a list of IP addresses, each one corresponding to one
instance.

3.2 Switching Mechanism and Criteria

To switch between the different configurations without affecting customers’ expe-
rience, we leverage a cloud’s dynamic capability. Specifically, we use Amazon’s

378 H. Liu and S. Wee

Elastic IP feature to reassign the same IP address to different configurations.
When we determine that there is a need to switch, we first launch the new
configuration, program the Elastic IP to point to the new configuration, then
shut down the old configuration. In our experiments, re-programming Elastic
IP takes less than 5 seconds to complete, thus it has a minimal impact on the
application. For example, we ran SPECweb support workload with 100 sessions
and it finished with no error even though we re-programmed elastic IP from one
configuration to another. New requests during the re-programming period will
be buffered, thus they may experience a longer latency than usual, and existing
requests may be terminated. Although some requests may be terminated, a sim-
ple retry will fix the problem if we have the session management mechanism in
place as described in Section 3.3.

We actively monitor the CPU and bandwidth usage on each instance in order
to determine whether we need to switch between the different configurations. The
rules for switching are shown in Fig. 3. For clarity, we only show the transition to
scale up. The logic to scale down when workload reduces is exactly the opposite.

Each configuration has its own performance limit as follows.

– Small instance: CPU capacity is one EC2 Compute Unit, where one EC2
Compute Unit (ECU) provides the equivalent CPU capacity of a 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor. Network capacity is roughly
800 Mbps.

– Load balancer: CPU capacity is unlimited because we can scale an ar-
bitrary number of web servers in the backend. Network capacity is roughly
400 Mbps client traffic. The load balancer network interface will still expe-
rience 800 Mbps traffic because it relays traffic to the backend.

– Large instance: CPU capacity is 20 ECU. Network capacity is roughly
800 Mbps.

– DNS: Unlimited CPU and network capacity. In reality, the network speed
is limited by the overall bandwidth into the Amazon cloud. Unfortunately,
we are not able to test this limit because we do not have access to hosts
outside Amazon that are able to generate a high load.

We make the switching decision when the workload approaches the capacity of a
configuration. The configuration we switch to depends on the projection whether
the current workload will overload the new configuration. Note that, depending
on the application characteristics, we may not switch from one configuration to
the immediate next configuration. For example, let us consider a web applica-
tion that is very CPU intensive. It would run fine under the load balancer
configuration since we can unlimitedly scale the number of web servers sitting
behind the load balancer. However, when the aggregate traffic exceeds 400 Mbps,
we may not be able to switch to a large instance configuration as a c1.xlarge
instance may not be able to handle the CPU workload. Instead, we will switch
to the DNS configuration directly when traffic increases. We make this decision
automatically based on the measured traffic consumption and CPU load, and
then project the workload on the target configuration.

Web Server Farm in the Cloud 379

Fig. 3. Switching decision logic when switching to a higher configuration

3.3 Session Management

To avoid state replication, the dynamic switching architecture requires the ses-
sion states to be stored in the client, typically in the form of a browser cookie.
If the server state can be captured compactly, the server can set the entire state
in a browser cookie. When the client browser makes the next request, the state
is returned in the cookie in the request, so that the server (which can be dif-
ferent from the original server after configuration switching) can decipher the
last state. If the server state is large, it can be captured in a central database
and the server only needs to return a token. Since the central database will
remain the same across configuration changes, a new server can still look up
the complete previous state. Since the central database only captures state in-
formation, it is easier to make it sufficient scalable to handle the whole web
application.

380 H. Liu and S. Wee

4 Conclusions

In this paper, we investigate how to build a web server farm in a cloud. We
present a benchmark performance study of the various existing cloud compo-
nents, which not only shows their performance results, but also reveals their
limitations. First, a single web server’s performance is an order of magnitude
lower than the state-of-art web server hardware solutions. Second, the perfor-
mance of a software load balancer based approach is limited by both a single net-
work interface and traffic relaying, which halves its effective throughput. Third,
both Google App Engine and Amazon’s Elastic Load balancing fall short of their
promise of unlimited scalability. Finally, Amazon S3 scales the best, but it is only
a viable option for static content.

Due to these limitations, there is not a single configuration that can satisfy all
traffic scenarios. We propose a dynamic switching architecture which can switch
between different configurations based on detected workload and traffic charac-
teristics. We discuss the switching criteria and how we use the cloud’s dynamic
capability to implement the architecture. The dynamic switching architecture
achieves the highest scalability while incurring the least cost.

References

1. Amazon Web Services: Amazon Web Services (AWS), http://aws.amazon.com
2. SPEC: Specweb2005 benchmark, http://spec.org/web2005/
3. Hunt, G., Nahum, E., Tracey, J.: Enabling content-based load distribution for

scalable services. Technical report (1997)
4. Cherkasova, L.: Flex: Load balancing and management strategy for scalable web

hosting service. In: Proceedings of the Fifth International Symposium on Comput-
ers and Communications, ISCC 2000, pp. 8–13 (2000)

5. LVS: Linux virtual server project, http://www.linuxvirtualserver.org/
6. HaProxy: HaProxy load balancer, http://haproxy.1wt.eu/
7. Nginx: Nginx web server and load balancer, http://nginx.net/
8. Accoria: Rock web server and load balancer, http://www.accoria.com
9. Google Inc: Google App Engine, http://code.google.com/appengine/

10. Amazon Web Services: Elastic Load Balancing,
http://aws.amazon.com/elasticloadbalancing/

11. Floyd, S., Paxson, V.: Difficulties in simulating the internet. IEEE/ACM Trans.
on Networking 9(4), 392–403 (2001)

http://aws.amazon.com
http://spec.org/web2005/
http://www.linuxvirtualserver.org/
http://haproxy.1wt.eu/
http://nginx.net/
http://www.accoria.com
http://code.google.com/appengine/
http://aws.amazon.com/elasticloadbalancing/

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 381–392, 2009.
© Springer-Verlag Berlin Heidelberg 2009

SPECI, a Simulation Tool Exploring Cloud-Scale Data
Centres

Ilango Sriram

University of Bristol, Department of Computer Science,
Merchant Venturers Building, Woodland Road, Bristol BS81UB, United Kingdom

isriram@cs.bris.ac.uk

Abstract. There is a rapid increase in the size of data centres (DCs) used to
provide cloud computing services. It is commonly agreed that not all properties
in the middleware that manages DCs will scale linearly with the number of
components. Further, “normal failure” complicates the assessment of the per-
formance of a DC. However, unlike in other engineering domains, there are no
well established tools that allow the prediction of the performance and behav-
iour of future generations of DCs. SPECI, Simulation Program for Elastic
Cloud Infrastructures, is a simulation tool which allows exploration of aspects
of scaling as well as performance properties of future DCs.

Keywords: Cloud computing, data centre, middleware, scaling of performance,
simulation tools.

1 Introduction

The current trend towards cloud computing drives the demand for IT resources provi-
sioned from data centres (DCs). Economies of scale accelerate the growth in the size
of DCs, and over the coming decades are very likely to lead to DCs several orders of
magnitude larger than the biggest ones today. IBM’s project Kittyhawk already has
the vision of one day building a DC for high performance computing that is big
enough to host a single application as big and powerful as today’s entire internet [1].

However, not all properties are expected to scale linearly when adding more com-
ponents and increasing the scale of DCs. Further, the number of components will be
so large as to impose “normal failure”. For example with 500,000 servers in the DC,
if the average life expectancy of a server is three years and the time to a temporary
failure a few months [2], then on average 650 servers will need to be replaced every
day with multiple temporary failures every minute. The state of near permanent hard-
ware failures has to be taken into account by the DC’s resilience mechanisms. Fur-
thermore, load-balancing of virtual machines will cause continuous dynamics in the
system. These constant changes have to be taken into consideration when assessing
the overall performance capabilities of a data centre.

In most engineering fields there are predictive tools that allow simulation of
engineered products that are not yet built. While in other domains these can model the
following generations of technology with high precision given the computing

382 I. Sriram

resources, such as SPICE for circuits on microchips [3], there is only limited under-
standing, and there are no well-established predictive tools for data centres. We pro-
pose SPECI, Simulation Program for Elastic Cloud Infrastructures, a simulation tool
that enables exploration of scaling properties of large data centres. The aim of this
project is to simulate the performance and behaviour of data centres, given the size
and middleware design policy as input.

The rest of this paper is organised as follows. Section 2 discusses cloud computing
and its current state which forms the motivation for this work and introduces middle-
ware of data centres. Section 3 introduces the related work in the field of cloud com-
puting, and introduces Simkit, the simulation framework that was used. Section 4
explains how scalable middleware will be executed at the node level, and that the
method used to communicate with the nodes will partially determine the performance
overhead of the data centre: in this section a simplified problem of communicating
aliveness of components for the resilience component is introduced; this builds the
basis for SPECI. Section 5 explains the current architecture of SPECI. A case study
with SPECI was conducted and is presented in Section 6, before Section 7 closes with
discussion of planned future work and conclusion.

2 Background

2.1 Cloud Computing

Cloud computing is a growing form of IT provision, where resources are delivered as
a service from data centres. The advent of large-scale, commodity-computer data
centres built at low-cost locations is a driver of this technology.

There has been a long debate about what cloud computing stands for. This is com-
ing to an end, and analysts’ position papers have converging definitions, such as
Gartner [4], Forrester Research [5], and The 451Group [6]. Recently, further, a widely
accepted working definition of Cloud Computing has been published by the American
NIST institute [7]. In general an IT provision is cloud computing, if it is (1) delivered
as a service (2) using Internet technologies from (3) massively scalable (elastic) re-
sources which are generally (4) shared with other customers (multi-tenancy), where
(5) resources are distributed dynamically and redistributed on demand. In addition to
this, cloud computing is an economic model of billing resources (6) by consumption
in metered quality and quantity (pay-as-you-go).

There is a differentiation between public clouds and private clouds. While public
clouds are run by utility providers, private clouds are owned, operated, and under
control of the company that uses them. Private clouds nevertheless use the same ser-
vice technology and offer interoperability. This allows elasticity into the public cloud
which is called cloudbursting, so that consumers can use public clouds if they need
additional resources.

In practice, cloud computing is delivered in three forms: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). IaaS provides
bare resources or Virtual Machines (VMs). PaaS goes beyond the bare provision of
resources, and gives consumers a preconfigured platform for their work. With PaaS,
developers can develop the software they are working on, but do not have to care

 SPECI, a Simulation Tool Exploring Cloud-Scale Data Centres 383

about requirements such as an SDK or a database, or a framework for scaling the
application to use further resources. These requirements are provided by the platform.
Finally with SaaS, ready to use hosted software solutions are provided to consumers.

Industry analysts are in consent that the development of mature cloud computing is
well underway. Although cloud computing is not likely to completely replace tradi-
tional IT in the near future, for some application areas it is set to replace current IT
delivery from in-house DCs [9]. However precise the figures are, the turn towards
cloud computing is obvious, and it will accelerate the demand for DCs of increasing
scale. The more cloud computing gets adopted and standardised, the less qualitative
differences between offers will exist, and the more provisions will be differentiated
purely on cost. To further cut costs, economies of scale will bring in a demand for
even larger DCs. As mentioned above, however, not all properties in DCs and its
middleware will scale linearly and it is not known how the behaviours of following
generations of DCs are going to be. There is lack of predictive simulation tools; this is
something SPECI is addressing.

2.2 Normal Failure and Middleware Scalability

Cloud data centres are built using commodity hardware, and can be divided into
racks, blades, and VMs. Unlike in high performance computing (HPC) where DCs are
often custom-built for the purpose of the computations and a significant part of com-
puting power is gained from graphical processing units (GPUs), cloud DCs rely on
inexpensive traditional architecture with the key components being CPUs, memory,
discs, and network. As economies of scale are driving the growth of these DCs, the
sheer number of off-the-shelf components used in coming decades in combination
with each component’s average life cycle will imply that failure will occur continu-
ally and not just in exceptional or unusual cases. This expected near-permanent failing
of components is called “normal failure”. For cost reasons, the DC operator will leave
the failed components in place and from time to time replace the blades on which
failure occurred or even entire racks on which several blades have failed. The impact
of failure and resilience or recovery needs to be taken into account in the overall per-
formance assessment of the system.

The components of the DCs are tethered by a software layer called middleware,
which takes care of job scheduling, load-balancing, security, virtual networks, and
resilience. It combines the parts of the DC together and is the management layer of
the DC. When the numbers of components in the DC increases, the middleware has to
handle it. It is unlikely that all properties in middleware will scale linearly when scal-
ing up the size of DCs. Currently, there is a lack of predictive tools or methods to
estimate the performance of the middleware and thus of the DC before building it.

Therefore, there is a need for simulation tools that can help us evaluate the behav-
iour and performance with reproducible results, prior to designing and building such
DCs. In the absence of such simulation tools one has to rely on theoretical simplified
models or build the system and simply hope it performs well. The latter is undesirable
and imposes financial drawbacks, if systems can’t be tuned before developing and
deploying.

384 I. Sriram

3 Related Work

3.1 Cloud Computing

So far there are only a few scientific publications on technologies that are enabled by
cloud computing, such as CloneCloud [10] which enables resource intensive compu-
tations like face recognition on smartphones by automatically and transparently clon-
ing the context of the computations into the cloud. We expect to see an increase in
academic publications describing new technologies, but at the moment the majority of
publications in cloud computing are either management articles or come from practi-
tioners of utility computing and grid computing.

In the area of performance assessment of cloud DCs, there is some preliminary
work going on within the Open Cirrus project [11]. They have built a cloud research
test bed running Eucalyptus [12], which is an open source implementation of the EC2
interface. However, so far they are only looking at the performance of individual
virtual machines in cloud environments at Amazon EC2 in comparison to execution
in local DCs, and not at the performance capabilities of the entire DCs.

Vishwanath et al. [18] have looked into performance and cost for datacenters that
consist of modularized shipping containers which are not serviced for hardware faults
until the entire container gets replaced. Further, the HP Cells as a Service project [13]
is developing a prototype middleware and management system for cloud infrastruc-
tures that is scalable, reliable and secure. While it achieves security using virtual ma-
chines, virtual storage volumes and virtual networks, details of how they solve reli-
ability and tolerate the continuous failures that occur in large-scale DCs, and how
they solve scalability performance issues, are not yet public.

There is no known work so far on predicting scaling issues for future generations
of commodity-computer DCs. However, there is CloudSim [14], a simulation frame-
work to evaluate the performance of cloud computing infrastructure. The simulator is
built on top of a grid computing simulator (GridSim) and looks at the scheduling of
the execution application, and the impact of virtualisation on the application’s per-
formance. However, in this project our interest is more on the DC provider side. We
assume that the cloud elasticity is big enough to not reach bottlenecks in the execution
of applications, but we do want to know how the overall DC and in particular the
middleware that tethers the network of virtual services can perform with increasing
numbers of components. Further, we believe that grid architecture and virtualisation
technique used for cloud computing are two competing technologies that will not be
used in combination. Running a grid under the virtualisation layer adds significant
complexity without offering any obvious advantage.

3.2 Simulation Method: Simkit

In the absence of real test beds, of alternative physical representations, or of precise
formal models, simulation helps in exploring assumptions about models before build-
ing the systems. Discrete event simulations (DES) [15] are a type of simulation where
events are ordered in time, maintained in a queue of events by the simulator, and each
processed at given simulation time. This means the model is time based, and takes
into account resources, constraints and interactions between the events as time passes.

 SPECI, a Simulation Tool Exploring Cloud-Scale Data Centres 385

Central to DES are a clock and an event list that tells what steps have to be executed.
In order not to re-implement common features of DES, SPECI uses an existing pack-
age for DES in Java. There exist several such packages and toolkits, and we chose
SimKit [16] which was one of few Java packages that were updated recently. It im-
plements the clock using a queue of events, each of which is associated with a start
time. The computation of the event then takes place with duration of zero time inter-
val. When the computation of the event has finished, the clock advances to the time of
the next event in the schedule. Simkit also offers many distributions for random-
number generation.

Simulation tools are common in other domains: For example in the microelectron-
ics industry there is the circuit simulator SPICE [3], that allows one to simulate the
behaviour of future designs of chips with high precision before actually building
them, given the computing resources. With the help of this simulation tool better chip
designs can be found, and verified quicker and at lower cost. Similarly, SPECI is
intended to give us insights into the expected performance of DCs when they are
designed, and well before they are built.

4 SPECI Example: Scalable Middleware

DCs are managed by middleware which provides functionality such as job schedul-
ing, load-balancing, security, virtual networks, and resilience. Because many of these
settings change very frequently, it needs to continuously communicate new policies to
the nodes. Scalable middleware can either manage its constituent nodes using central
control nodes, which is a poorly scaling hierarchical design, or it can manage the DC
using policies, which are broken into components that can be distributed using peer-
to-peer (P2P) communication channels and executed locally at each node. This better
scalable solution can cause a problem of timeliness of how quickly updated policies
will be available at every node, and of consistency whether the same policies are
available and in place everywhere. A certain overhead load for the management will
be generated in either case, which will determine the performance loss when scaling
the DC by adding more components. [17]

As a first step, we have built a simulator to observe the behaviour of part of the
middleware that recognises failed components across the network of systems. This
failure communication mechanism can be seen as a simplified substitution for the
policy distribution problem.

We were interested in the behaviour of a system with a large number of compo-
nents, where each component can be working correctly or exhibiting a temporary or
permanent failure. Failures occur frequently in large DCs given the number of com-
ponents and the expected lifetime of each of them. Any one component cooperates
with some of the other components, is thus interested in the aliveness of these and
performs queries to find this out. As the number of components increases, the number
of states that have to be communicated over the network increases. We need to know
what happens with our system in terms of how well in time can the states be commu-
nicated and at the cost of what load. This setup is of interest to any computing facility
with such a large number of components where some will be near permanently failing
or other changes need to be communicated frequently. To find out how various

386 I. Sriram

protocols may scale, and how quickly or whether at all a consistent view of the state
of cooperating nodes can be achieved under certain conditions, a set of simulation
experiments was set up, as described in the following paragraphs.

There is a number (n) of nodes or services connected through a network. Each of
these nodes can be functioning (alive) or not (dead). To discover the aliveness of
other nodes, each node provides an arbitrary state to which other nodes can listen.
When the state can be retrieved the node is alive, otherwise it is dead. The retrieval of
aliveness of other components is called “heartbeat”. Every node is interested in the
aliveness of some of the other nodes, the amount of “some” being configurable. Each
node maintains a subscription list of nodes in whose aliveness it is interested. We are
interested in how the implementation of the heartbeat retrieval affects the system
under given configurations, when the total number of nodes n increases.

Several architectures of heartbeat retrieval could be possible. First, there could be
central nodes that collect the aliveness of all other nodes and then inform any node
interested in any particular state. Second, there could be a hierarchical design where
depending on the number of hierarchy levels certain nodes would gather the informa-
tion of some other nodes, and make them available to their members and to the node
next higher in the hierarchy. Third, there could be a simple P2P mechanism where
any node simply contacts the node of interest directly. Then, there could be a smarter
P2P protocol where a contacted node would automatically reply with all aliveness
information it has available of other relevant nodes.

The investigation reported here was set up to observe the behaviour of the overall
system under these protocols and various change rates when the number of nodes
involved scales up. The simulations address a number of questions. The first question
of interest is, what the overall network load is for each of the above protocols under
given settings and size, and how much data has to be sent over the network in a given
time period. Second, there is significant interest in how the “time-for-consistency”
curve of the system looks like. This means, after simultaneous failure or recovery of a
number of nodes, after how many time-steps changes are propagated through the
entire system, and if there are continuous failures appearing, how many nodes have a
consistent view of the system over time? It is of further interest to see how many
time-steps and how much load it takes until new or recovered nodes have a consistent
view of the system, and how many time-steps it takes to recover after failure of a
large number n of nodes, or for recovery of the entire network. There is also interest
in the trade-off between timeliness and load for each of the protocols in the sense of
how much extra load will be required to retrieve a better or more consistent view. In
other words, for how much load can one get what degree of timeliness?

5 Simulator Architecture

The implementation of SPECI is split in two packages, one represents the data centre
layout and topology, and the other one contains the components for experiment exe-
cution and measuring.

The experiment part of the simulator builds upon SimKit, which offers event
scheduling as well as random distribution drawing. SimKit has preconfigured pseudo
random classes for common distributions, which return the same value for repeated

 SPECI, a Simulation Tool Exploring Cloud-Scale Data Centres 387

executions. This makes it possible to execute repeated runs with modified settings,
and in each run to receive the same random draws, and thus the same scheduling
sequence and scheduling times for events.

The simulation entry class is a wrapper class that contains the configurations of all
runs. It triggers the Simkit engine to start the simulations and handles the statistical
analysis of the output once the runs have terminated. The Simkit engine always starts
simulations by calling the method doRun() of all existing objects in the project where
implemented. These are used to start the experiments, and need to trigger accordingly
configured parameter change listeners or place new events on the scheduling engine.
In this simulator, there is only one doRun() method in the singleton handler. This
method creates the DC setup from the data centre layout package with the specifica-
tions provided. It then adds three types of events to the event scheduler: probing
events, update events, and failure events. The first probing event is generated at 2.0
seconds simulation time to allow instantiation before measuring potential inconsisten-
cies in the system. When this event is triggered, all subscriptions are tested for incon-
sistencies against the real state and the total number passed on to a class for collecting
tally statistics of the simulation model. Before the probing event terminates, it re-
schedules itself for the next execution 1.0 seconds later than the current simulation
time. Thus, every second a monitoring probe is passed on for an evaluation after ter-
mination of the simulation. Further, the handler generates one update event for every
node in the data centre. This event triggers the node to update the list of its subscrip-
tions. These heartbeat retrieval events are drawn from a uniform distribution with a
delay between 0.8 and 1.2 seconds and reschedule themselves with a delay from the
same distribution. Similarly, the handler schedules the occurrence of the first failure.
The time to the next failure is variable in our experiments and has to be specified in
form of a parameterised random function. When the failure event is triggered, it picks
a node at random which it will set to have failed. If the failure function picks a node
that is already failed, it will act as repair event and bring the component back alive.
Alternatively, failed components are not repaired, and kept until the entire shipping
container is replaced, as proposed in Vishwanath’s [18] DC model.

The data centre layout package contains classes for each type of component in the
data centre, such as nodes and network links. These components mimic the operations
of interest in the observed data centre, such as the transfer of network packets, main-
taining subscriptions to other nodes, and keeping subscriptions up to date using the
policy chosen for the experiment. The components have monitoring points that can be
activated as required by the experiment. As simplification the network topology as-
sumes a one hop switch, as this work is not interested in routing and the load on parts
of the network, but rather on individual network links associated to a node and the
entire network. The data centre package further contains a component that maintains a
global view of the data centre to deal with the connection and referral logic, which is
only used when the topology chosen is a centralised heartbeat retrieval or policy dis-
tribution, such as the central or hierarchical one. In the central case this is a list of
providers, which pass on information to all other nodes. In the hierarchical case, the
global view knows of the hierarchy levels, and which node ought to request informa-
tion from which other node, as described in Section 4. If the setup configuration uses
the simple P2P or transitive P2P communication channel, then the communication
logic is dealt by the nodes, as in this case only a local view of the system is required.

388 I. Sriram

Depending on the used policy, some, none or all nodes can act as providers and pass
on information they have about other nodes. In reality this passing on can cause de-
layed information, as the information stored and passed on is not necessarily real
time. In this simulator there is a configurable threshold of say one second, which is
the maximum permitted age information can have to still be passed on. If the informa-
tion is older, the providing node will not pass on this data, but instead retrieve newer
data by the respective mechanism. If nodes are provider nodes, they have the option
to only accept a maximum number of requests per time interval.

In the initialisation phase at runtime, the simulator creates an object for each node
and network link in the data centre, subscribes all nodes to some other ones with a
distribution as specified in the configuration, and loads the communication policy for
the setup. The rest of the runtime is entirely driven by the event queue. The model
terminates when the specified simulation time has expired. The simulator will then
calculate statistics collected by tally statistics classes. Further more detailed monitor-
ing data is written to files. Therefore, while each object is retrieving the heartbeat of
its subscriptions, the load generated is monitored, and aggregated access counts per
component over a configurable duration stored to a file. Similarly, when a failure
occurs, the time and the number of nodes which have become inconsistent with the
actual state of the landscape gets saved to another file. After the simulations are exe-
cuted these data files can be visualised independent of the simulator.

6 Case Study

In this section, we present a case study made using SPECI in which we observe the
number of nodes that have an inconsistent view of the system. This is the case if any
of the subscriptions a node has contains incorrect aliveness information. We measure
the number of inconsistencies by probing the count every second. After an individual
failure occurs, there are as many inconsistencies as there are nodes subscribed to the
failed node. Some of these will regain a consistent view before the following observa-
tion, and the remaining ones will be counted as inconsistent at this observation point.
If the recovery is quicker than the time to the next failure at the following observa-
tions less nodes will be inconsistent until the curve drops to zero, and the inconsis-
tency curve could look like Figure 1. This probing was carried out while running
SPECI with increasing failure rates and scale. Runs were carried out for DC sizes of
102, 103, 104, and 105 nodes. Assuming the number of subscriptions grow slower than
the number of nodes in a DC, we set the number of subscriptions fixed to the square
root of the number of nodes.

For each of these sizes a failure distribution was chosen such that on average in
every minute 0.01%, 0.1%, 1%, and 10% of the nodes would fail. Because this work
is essentially exploratory, a gamma distribution and a pair of coefficients that would
result in the desired number of failures were picked. For each pair of configurations
10 runs, each lasting 3600 simulation time seconds, were carried out and the average
number of inconsistencies along with its standard deviation, maximum, and minimum
number were observed. The half width of the 95% confidence intervals (95% CI) was
then calculated using the Student's t-distribution for small or incomplete data sets.

 SPECI, a Simulation Tool Exploring Cloud-Scale Data Centres 389

Figure 2 shows that the average number of inconsistencies increases when the fail-
ure rate increases, and also when the number of nodes increases. Figure 3 shows the
same data as Figure 2, but the first few data points are plotted on a linear scale. This
makes the confidence intervals visible, and one can see for small DCs or small failure
rates the two protocols differ insignificantly. But as these numbers increase, the mean
of one protocol moves out of the other protocol’s confidence interval, and when the
sizes get bigger the confidence intervals get distinct as can be seen for 1000 nodes and
1% failure rate. This shows that with growing size and failure rates, the choice of the
protocol becomes more significant, and also that the P2P protocol scales better for the
objective of low inconsistencies under the given simplifications. The surprising result
here is, given there were identical polling intervals, that the transitive P2P was ex-
pected to be the protocol with the biggest delay due to the fact that delays would ac-
cumulate with forwarding. However, for such an accumulating of age for aliveness
data to be observable it is necessary to have larger numbers of subscriptions or to
generate the subscriptions with a structure so that the chance of subscribing to a node
is higher if the node has similar subscriptions, because only then enough transitive
subscription sharing is available. Figure 4 shows inconsistencies grouped by failure
rates. To compare the values of different DC sizes, the number of inconsistencies is
normalised by the number of nodes. At the same time, the number of inconsistencies
still grows with the size of the DC. This suggests that none of the protocols scale
linearly. On the other hand, when grouping by DC sizes, these normalised values
increase by one order of magnitude when the failure rate increases by such. This sug-
gests that the failure tolerance of both protocols appears robust.

Fig. 1. Inconsistency probes during recovery from failures

Fig. 2. The mean of Inconsistencies increases with the failure rate

390 I. Sriram

Fig. 3. Mean of Inconsistencies and their confidence intervals, linear vertical scale for smaller
and logarithmic scale for larger values. With increasing size differences become significant.

Fig. 4. Inconsistencies normalized by number of nodes. Both protocols scale linearly with the
failure rates, but not with the number of nodes.

The careful reader might have noticed that we were interested in performance
drawbacks when the size of the data centre increases, but in this paper we focussed on
the inconsistencies under each of the protocols. The number of inconsistencies can be
reduced by reducing the polling interval of each of the nodes at the cost of additional
load. Analysing the performance of the protocols shall be left for future work.

7 Future Work

Imminently, further case studies with SPECI are planned. First, we are interested in
using other failure and recovery mechanisms. This includes matching failure rates to
those in literature and using recovery mechanisms where failed nodes are not replaced
until the entire building unit gets replaced. Second, runs for larger DC sizes are to be

 SPECI, a Simulation Tool Exploring Cloud-Scale Data Centres 391

carried out. In addition it should be observed how the system behaves when using
different numbers of subscriptions. In combination with the transitive P2P this could
show whether any benefits or differences from node cliques can be found. Further,
correlated failure and conditions where a huge amount of nodes or the entire DC fail
at the same time need to be simulated. Then, it is necessary to combine the simula-
tion’s load measurements with measurements of inconsistencies during varying
failure rates. This can show what the failure and load thresholds which prevent the
system from ever reaching a consistent status are, and what settings make it impossi-
ble for the system to recover. These simulations can also be used to suggest a load and
consistency trade-off for middleware mechanisms.

The following step is to look for alternative models to verify the findings. These
could be mathematical or formal models, and for smaller DCs comparison with values
that can be measured. For medium term future work, it is necessary to expand SPECI.
At the moment it looks at one dimensional state communication problems. Real mid-
dleware has to distribute several policies over the network. It needs to account for
VMs and load-balancing, security, and job scheduling. SPECI must become capable
of modelling such multidimensional problems that middleware is facing in order to
access the scaling properties of future cloud-scale DCs.

8 Conclusion

When designing scalable middleware, centralised orchestration will not be feasible;
instead it will be necessary to have the system orchestrate itself with just the given
local view and without knowledge of the entire system. Even then, it is expected that
DCs do not scale linearly when they get larger and contain more components. Practi-
tioners need to know about the scaling properties before building these DCs. In this
paper we have presented SPECI, a simulation tool which allows exploration of as-
pects of scaling as well as performance properties of future DCs. SPECI was then
used to look at inconsistencies that arise after failures occur, and it could be shown at
the example of the communication of failures, that when the size and failure rate of
the DC increases, a distributed DC management becomes favourable.

Acknowledgements

This project is part of a PhD funded by Hewlett-Packard Labs’ Automated Infrastruc-
ture Lab. We thank Hewlett-Packard for the interest in this topic and support.

References

1. Appavoo, J., Volkmar, U., Waterland, A.: Project Kittyhawk: building a global-scale com-
puter: Blue Gene/P as a generic computing platform. SIGOPS Oper. Syst. Rev. 42(1), 77–
84 (2008)

2. Failure Rates in Google Data Centers,
 http://www.datacenterknowledge.com/archives/2008/05/30/
 failure-rates-in-google-data-centers/

392 I. Sriram

3. Nagel, L.W.: SPICE2: A Computer Program to Simulate Semiconductor Circuits. Techni-
cal Report No. ERL-M520, University of California, Berkeley (1975)

4. Cloud, SaaS, Hosting, and Other Off-Premises Computing Models. Gartner Research
(2008)

5. Gillett, F.E.: The New Tech Ecosystems of Cloud, Cloud Services, and Cloud Computing.
Forrester Research (2008)

6. The 451 Group: Partly Cloudy: Blue Sky Thinking about Cloud Computing (2008)
7. Mell, P., Grance, T.: Draft NIST Working Definition of Cloud Computing. National Insti-

tute of Standards and Technology, Information Technology Laboratory (2009)
8. Clearwater, S.H., Huberman, B.A.: Swing Options: a Mechanism for Pricing IT Peak De-

mand. In: International Conference on Computing in Economics (2005)
9. Gillett, F.E.: There are Three IT Architectures, Not One. Forrester Research (2007)

10. Chun, B., Maniatis, P.: Augmented Smart Phone Applications Through Cloud Clone Exe-
cution. In: HotOS XII (2009)

11. Baun, C., et al.: Elastic Cloud Computing Infrastructures in the Open Cirrus Testbed Im-
plemented via Eucalyptus. In: ISGC 2009 (forthcoming 2009),

 http://bit.ly/2Ck3tv
12. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorod-

nov, D.: The eucalyptus open-source cloud-computing system. In: CCGrid, 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 124–131
(2009)

13. HP Labs: Cells as a Service,
 http://www.hpl.hp.com/open_innovation/cloud_collaboration/
 projects.html

14. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and Simulation of Scalable Cloud Com-
puting Environments and the CloudSim Toolkit: Challenges and Opportunities. In: Pro-
ceedings of the 7th High Performance Computing and Simulation (HPCS 2009) Confer-
ence, Leipzig, Germany (2009)

15. Ferscha, A.: Parallel and Distributed Simulation of Discrete Event Systems. In: Zomaya,
A.Y. (ed.) Parallel and Distributed Computing Handbook, pp. 1003–1041. McGraw-Hill,
New York (1996)

16. Buss, A.: Simkit: Component based simulation modeling with Simkit. In: 34th Conference
on Winter Simulation, pp. 243–249 (2002)

17. Isard, M.: Autopilot: automatic data center management. SIGOPS Oper. Syst. Rev. 41(2)
(2007)

18. Vishwanath, K.V., Greenberg, A., Reed, D.: Modular data centers: how to design them?
In: Proceedings of the 1st ACM Workshop on LSAP (2009)

CloudWF: A Computational Workflow System
for Clouds Based on Hadoop

Chen Zhang1 and Hans De Sterck2

1 David R. Cheriton School of Computer Science, University of Waterloo, Canada
2 Department of Applied Mathematics, University of Waterloo, Canada

Abstract. This paper describes CloudWF, a scalable and lightweight
computational workflow system for clouds on top of Hadoop. CloudWF
can run workflow jobs composed of multiple Hadoop MapReduce or
legacy programs. Its novelty lies in several aspects: a simple workflow
description language that encodes workflow blocks and block-to-block
dependencies separately as standalone executable components; a new
workflow storage method that uses Hadoop HBase sparse tables to store
workflow information internally and reconstruct workflow block depen-
dencies implicitly for efficient workflow execution; transparent file staging
with Hadoop DFS; and decentralized workflow execution management
relying on the MapReduce framework for task scheduling and fault tol-
erance. This paper describes the design and implementation of CloudWF.

1 Introduction

Cloud computing is receiving more and more attention in both the commer-
cial and academic arenas. Cloud resource services provide on-demand hardware
availability for dedicated usage. Cloud computing software frameworks manage
cloud resources and provide scalable and fault tolerant computing utilities with
globally uniform and hardware-transparent user interfaces. Hadoop [5] is a pop-
ular open source cloud computing framework that has shown to perform well in
various usage scenarios (e.g., see [10]). Its MapReduce framework offers trans-
parent distribution of compute tasks and data with optimized data locality and
task level fault tolerance; its distributed file system (DFS) offers a single global
interface to access data from anywhere with data replication for fault tolerance;
its HBase sparse data store allows to manage structured metadata on top of
DFS. Due to the scalability, fault tolerance, transparency and easy deployability
inherent in the cloud computing concept, Hadoop and other cloud computing
frameworks have proven highly successful in the context of the processing of very
large data sets that can be divided easily in parts that can be processed with
limited inter-task communication. However, Hadoop does not support workflow
jobs and there exist no well-established computational workflow systems on top
of Hadoop for automatic execution of complex workflows with large data sets in
a cloud environment.

CloudWF is a computational workflow system for clouds based on Hadoop.
The main objective of computational workflows is to streamline and automate

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 393–404, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

394 C. Zhang and H. De Sterck

complex computational processes that require multiple interdependent comput-
ing steps and data staging in between the steps. CloudWF accepts from the
user workflow description XML files having workflow blocks and connectors as
workflow components, stores the component information in Hadoop HBase, and
processes the components using the Hadoop MapReduce framework with work-
flow data and processing programs stored in DFS.

CloudWF can run workflows composed of both MapReduce and legacy pro-
grams (existing programs not built by using the MapReduce API). In CloudWF,
each workflow block contains either a MapReduce or a legacy program; each
workflow connector contains a block-to-block dependency which may involve file
copies between connected blocks. DFS is used as an intermediary for staging
files between blocks that may execute on different cloud nodes. Both blocks and
connectors can be executed independently with no concern of which workflow
they belong to, while each of the workflow-wise block dependency trees is main-
tained and reconstructed implicitly based on the HBase records of the workflow
components. As a result, the workflow executions are decentralized, in the sense
that there is no separate execution control for each workflow instance to keep
track of dependencies: blocks and connectors of all workflows that are being
executed at a given time are scheduled by the CloudWF system in a uniform
way. This allows for highly parallel and scalable execution of multiple workflows
at the same time. With CloudWF and a Hadoop cloud environment, users can
easily connect MapReduce or general unix command-line program invocations
into workflows with almost no need to rewrite any commands to adapt to the
workflow description language used. The details of file staging between blocks
are hidden for the user: files used in the workflow command descriptions can be
assumed to have already been staged to the local machine with no worries about
file path and access protocol heterogeneity.

Compared with other scientific workflow systems on grids [6,7,8] and dataflow
systems such as cascading [3] that have recently emerged, CloudWF is easy to
use and highly scalable with fault tolerance: it directly inherits the scalability
and fault tolerance provided by Hadoop.

The novelty of CloudWF mainly lies in the following aspects.

A

C

Connector AC

B

Conn
ec

tor
 A

B

D

FConnector EFE

Con
ne

cto
r D

E

Parser in
CloudWF

Input as XML Desc.

Input as XML Desc.
FED

CBA

Connector EF

Connector DE

Connector AC

Connector AB

Internally stored in HBase

Fig. 1. Breaking up the components of two workflows into independent blocks and
connectors. The HBase tables store the dependencies between components implicitly.

CloudWF: A Computational Workflow System for Clouds Based on Hadoop 395

1. It adopts a simple prototype workflow description language that encodes
workflow blocks and block-to-block dependencies separately as standalone
executable components, as illustrated in Figure 1. As a result, there is no
need for centralized execution control per workflow instance to explicitly
direct the dataflow, which enhances scalability.

2. It adopts a new workflow storage method that uses HBase sparse tables to
store workflow information internally and reconstruct workflow block depen-
dencies. The directed acyclic graphs (DAGs) of the workflows are encoded
in the sparse HBase tables, which are a natural data structure for encoding
graphs and allow for efficient querying of the graph connections.

3. It adopts DFS for transparent file staging between connected blocks. Because
of employing DFS, users and the workflow system have a globally accessible
file repository. Using DFS to store and relay files is convenient and reduces
the complexity of handling files in a distributed environment: the uniformity
of the cloud environment allows for simple file handling solutions.

4. It uses Hadoop’s MapReduce framework for simple scheduling and task level
fault tolerance. This avoids conflicting schedules as described in [9].

5. It enables easy step-by-step execution steering as well as real-time dataflow
change with little influence on existing workflow components. These features
are important for scientists to perform multiple trial-and-error experiments.

The remaining sections of the paper are organized as follows. Section 2 describes
the design and implementation of the CloudWF system in detail. Section 3 briefly
introduces proposed advanced features of CloudWF. Related work is discussed
in Section 4, and Section 5 gives conclusions and describes future work.

2 System Design and Implementation

2.1 Overview

As show in Figure 2, CloudWF puts all essential functionalities inside a cloud,
while leaving the user with a very simple interface for submitting workflow XML
description files for specification of workflows, and commands to start workflows
and monitor their execution. The user also has to place any input and program
files into the user area of the cloud DFS, and can retrieve workflow output from
the DFS as well. (Note that the DFS is divided into two parts, a system part
that is used by CloudWF to relay files between workflow blocks, and a user part
that users employ for workflow input and output.)

When the cloud Front End receives a user workflow description file, it parses
the file into independent workflow components and stores the components into
three HBase tables. In the workflow table (“WF”), we store workflow meta-
data, such as workflow IDs. In the workflow block table (“WFBlock”), we store
block metadata such as ID and execution status. In the workflow connector ta-
ble (“WFConnector”), we store block-to-block dependency information, includ-
ing any file transfers that are required from the origin block to the destination

396 C. Zhang and H. De Sterck

 CloudWF System

Connector
Broker

User

Block
Broker

Monitor

WF Description, Exec cmd

WF Connector

Stores WF Connector Metadata
Such as ID, origin, destination, connected files, status

WF

Stores WF Metadata
Such as ID, status, etc.

WF Block

Stores WF Block Metadata
Such as ID, type, and status, etc.

Submit Wrapper
Execute Block

Check
status

Frond End
WF Status

exWF.xml

A

zB

exWF.xml
A

cB

A B C
A B C

Hbase Tables

Report
status

Pool of MapReduce Worker Nodes

Submit Wrapper
Execute Connector

A

Wrapper

Wrapper

A

Wrapper

poll

poll
poll poll

Fig. 2. CloudWF system overview

block. The Block Broker polls the “WFBlock” table at small time intervals, sub-
mits Wrappers to execute ready-for-execution blocks, and manages some block
status changes. The Connector Broker polls the “WFConnector” table, submits
Wrappers to execute ready-for-execution connectors, and manages connector sta-
tus changes. The pool of MapReduce worker nodes executes submitted blocks
and connectors using the MapReduce framework and updates the correspond-
ing block/connector status in the “WFBlock” and “WFConnector” tables so
that Block Broker and Connector Broker can easily detect the results of the
Wrappers’ execution by HBase queries. Real-time workflow execution status is
obtained by the Monitor. When the Front End receives commands to retrieve
workflow status, it calls the Monitor which in turn obtains information from the
three HBase tables and sends back the results through the Frond End to users.

2.2 Expressing Workflows: CloudWF Description Language

CloudWF uses its own prototype workflow description language. The design ob-
jective of the language is to allow users to easily and quickly construct cloud
workflows from existing MapReduce and legacy unix command line program
invocations with minimum changes. The motivation for creating this new lan-
guage is threefold. First, we find that there exist few very lightweight languages
that are straightforward to use and not much more complicated than scripting
languages like bash scripts. Second, we want to develop a language to deal specif-
ically with both legacy and MapReduce program invocations. Third, we want to
design a language that describes workflows in a scalable way so that no extra
overhead resulting from processing the language would be added when workflow
executions are to be massively scaled up in Hadoop cloud environments.

CloudWF: A Computational Workflow System for Clouds Based on Hadoop 397

To make the discussion specific, we consider two example command line in-
vocations, one each of the two types of commands (MapReduce and legacy unix
command line) that we want to embed in our workflows:

1. legacy unix command line: cat inC1 inC2 > outC
2. MapReduce command line:

/HadoopHome/bin/hadoop jar wordcount.jar org.myorg.WordCount
/user/c15zhang/wordcount/input /user/c15zhang/wordcount/output

The first example is a simple unix cat with two input files and one output file
that are stored in the working directory on the unix local file system (LFS) of the
cloud node on which it executes, and the second is a simple Hadoop wordcount
with one DFS input file and one DFS output file (DFS files are always referenced
by their absolute DFS path, since there is no concept of ‘working directory’ in
DFS or Hadoop.). Note that, in the second example, the “hadoop” executable
resides on the LFS of the cloud node on which it executes, and “wordcount.jar”
(which contains org.myorg.WordCount) resides in the unix current working di-
rectory on the LFS of the cloud node on which the hadoop invocation executes.

In the rest of this paper, we will explain CloudWF based on two simple
example workflows, presented in Figures 3 and 4. The first example workflow
(Figure 3) is composed of legacy blocks (type “legacy” in the XML file). Blocks
A, B and C perform simple unix commands, and output files from blocks A and
B are used as input for block C. CloudWF automatically stages these files from
the cloud nodes on which A and B are executed, to the cloud node on which C
executes, using DFS as an intermediary. To this end, the user designates these
files as outputs in their origin blocks in the XML file (blocks A and B), and as
inputs in the XML description of block C. The user then describes connector

1

ls > outA

LFS:WF1.xml is staged in from DFS:/user/c15zhang/tmpls

2

wc WF1.xml > outB

cat inC1 inC2 > outC

LFS:outA LFS:inC1

LFS:outB LFS:inC2

LFS:outC is staged out to
DFS:/user/c15zhang/outC

<WF ID="exWF">

<block name="A" type="legacy">

 <command>ls > outA</command>

 <output1>LFS:outA</output1>

</block>

<block name="B" type="legacy">

 <command>wc WF1.xml > outB</command>

 <input1 from="DFS:/user/c15zhang/tmpls">LFS:WF1.xml</input1>

 <output1>LFS:outB</output1>

</block>

<block name="C" type="legacy">

 <command>cat inC1 inC2 > outC</command>

 <input1>LFS:inC1</input1>

 <input2>LFS:inC2</input2>

 <output1 to="DFS:/user/c15zhang/outC">LFS:outC</output1>

</block>

<connector name="connector1" origin="A" dest="C">

 <connect from="output1" to="input1"/>

</connector>

<connector name="connector2" origin="B" dest="C">

 <connect from="output1" to="input2"/>

</connector>

</WF>

Fig. 3. First example workflow and XML file (legacy blocks)

398 C. Zhang and H. De Sterck

1

wordcount.jar org.myorg.WordCount
/user/c15zhang/wordcount/input

$outA1

wordcount.jar org.myorg.WordCount
$inB1

/user/c15zhang/wordcount/final

DFS:$outA1 DFS:$inB1

DFS:$outA1 is staged out to
DFS:/user/c15zhang/wordcount/output

<WF ID="exMR">

<block name="A" type="mapreduce">

<command>wordcount.jar org.myorg.WordCount /user/c15zhang/wordcount/input $outA1

</command>

<programFile1 from="DFS:/user/c15zhang/wordcount.jar">

LFS:wordcount.jar

</programFile1>

<output1 to="DFS:/user/c15zhang/wordcount/output"> DFS:$outA1 </output1>

</block>

<block name="B" type="mapreduce">

<command>wordcount.jar org.myorg.WordCount $inB1 /user/c15zhang/wordcount/final

</command>

<programFile1 from="DFS:/user/c15zhang/wordcount.jar">LFS:wordcount.jar

</programFile1>

 <input1>DFS:$inB1</input1>

</block>

<connector name="connector1" origin="A" dest="B">

 <connect from="output1" to="input1"/>

</connector>

</WF>

Fig. 4. Second example workflow and XML file (MapReduce blocks)

components in the XML file that describe the order of execution in the workflow
(C depends on A and C depends on B) and the files that have to be ‘connected’
between the blocks. The input file of block B is staged into the workflow system
from the user DFS area, and the output file of block C is staged out from
the workflow system to the user DFS area. The precise mechanisms by which
file staging is accomplished are described in Section 2.4, together with a more
detailed explanation of the entries in the XML description file. For now we can
just point out that the workflow ID of the first example workflow is “exWF”, and
that blocks and connectors in this workflow will be referred to as, for example,
“exWF.A” and “exWF.connector1” in the HBase tables.

The second example workflow (Figure 4) is similar, but has blocks of MapRe-
duce type. In block A a simple MapReduce wordcount is executed on a file
that resides in the DFS user directory (/user/c15zhang/wordcount/input), and
the result is stored in a DFS file in a system location (referred to by $outA1
in block A). This result file is also staged out to a file in the user DFS area
(/user/c15zhang/wordcount/output). Note that the first part of the full Hadoop
command is omitted in the XML command description such that the CloudWF
user does not need to know the details about where Hadoop is installed on the
cloud nodes. The user specifies in a connector in the XML file that $outA1
will also serve as input to block B, and CloudWF then makes the files acces-
sible to block B (by a mechanism to be explained in Section 2.4). Block B

CloudWF: A Computational Workflow System for Clouds Based on Hadoop 399

performs a wordcount on the output file of block A, and puts the result in file
/user/c15zhang/wordcount/final in the DFS user area. Note that the DFS files
that have to be passed from block A to block B in Figure 4 are parametrized
by placeholders $outA1 and $inB1, and CloudWF replaces these placeholders
by absolute DFS paths at execution time. It is explained in Section 2.4 why and
how this is done, and why this is not necessary when files are passed between
legacy blocks.

2.3 Storing Workflows: HBase Tables

CloudWF uses HBase to store workflow component information. There are three
main reasons to use HBase. First, we need a database-like reliable metadata
store to manage various types of workflow information that is important for
workflow execution control, as well as to save intermediate results for fault tol-
erance and future reuse. Second, we have designed a set of sparse tables and find
them very suitable for easily expressing and searching for workflow information
and connectivity, which results in efficient processing without invoking complex
database-like queries, thus voiding the need for specialized relational database
systems. Finally, HBase is tightly coupled with the Hadoop framework and can
be scaled and deployed more easily than mainstream database systems.

In HBase, we use three tables: the “WF” table, the “WFBlock” table and the
“WFConnector” table (Figure 5). CloudWF relies on these tables to store work-
flow metadata and control execution. Additionally, the block dependency tree
of a workflow is implicitly stored within the “WFBlock” and “WFConnector”
tables and is used for fast discovery of the next block/connector ready for exe-
cution. The following explains how we achieve that.

Figure 5 shows the HBase tables that correspond to the first example work-
flow (Figure 3) before execution is started. In WFBlock, every block has one
entry. There are three HBase column families: ID, Program and Status. The
first column in the ID column family, ID:blockID, gives the block ID. The sec-
ond column indicates that the blocks belong to workflow exWF. Note that, every
time a workflow is added, an additional sparse column is created for that work-
flow (for example, ID:exWF2): the sparse columns ID:exWF and ID:exWF2 can
be used for fast querying of the columns of workflows exWF and exWF2, re-
spectively. The third column lists the dependency count of the blocks. Block C
depends on A and B, so its count is 2. The dependency count will be reduced
as blocks finish (see Section 2.5), and when it reaches 0 the block is detected
as being ready for execution. The first column in the Program column family
gives the commands, and the next two contain the lists of input and output files
that have to be passed between blocks (specified by the <input> and <output>
blocks in the XML file in Figure 3.) The Status column family is used during
execution (see Section 2.5).

Similarly, the WFConnector table has one entry per connector in the workflow,
with ID, Link, Origin and Status column families. The ID and Status families
function as above. The Link family lists the origin and destination block of
each connector, and the descriptors for the files that need to be connected. The

400 C. Zhang and H. De Sterck

WFBlock Table
ID:

blockID

ID:

exWF

ID:

blockType

ID:

dependencyCount

Program:

command

Program:

input

Program:

output

exWF.A Y legacy 0 ls > outA (output1,LFS:outA)

exWF.B Y Legacy 0 wc WF1.xml > outB (input1,DFS:

/user/c15zhang/tmpls)

(output1,LFS: outB)

exWF.C Y legacy 2 cat inC1 inC2 > outC (input1,LFS:inC1)

(input2,LFS:inC2)

(output1,LFS:outC)

Status:

readyForExecution

Status:

inExecution

Status:

readyForConnectors

Status:

done

WFConnector Table
ID:connectorID ID:exWF Link:origin Link:destination Link:fromToList

exWF.connector1 Y exWF.A exWF.C (output1, input1)

exWF.connector2 Y exWF.B exWF.C (output1, input2)

Origin:

exWF.A

Origin:

exWF.B

Status:

readyForExecution

Status:

inExecution

Status:

readyForBlock

Status:

done

Y

Y

WF Table
ID:WFID ID:exWF Status:

readyForExecution

Status:

inExecution

Status:

done

exWF Y

Fig. 5. HBase tables for the example workflow of Figure 3

Origin column family appears redundant but is crucial for good performance:
every workflow block that has a connector originating from it has its own (sparse)
column in this family, thus allowing for very fast searching of which connectors
have to be activated when a given workflow block finishes. This is important
for performance when very large amounts of blocks and connectors are stored in
the tables. Indeed, the sparse table concept of HBase allows us to create sparse
columns for every block without much storage overhead (each column will only
have one “Y” entry), and HBase provides a very fast mechanism to return all
records in a table that are non-null in a given column. These features of HBase
sparse tables allow us to store and query the connectivity of the workflow DAG
in a natural and efficient way.

The third Table, WFTable, is used to store workflow information.

2.4 Staging Files Transparently with DFS

File staging is a major issue in workflow management. CloudWF makes this easy
by using DFS as a globally accessible file repository so that files that appear
on workflow component commandlines can be staged between any two cloud
machines by relaying through DFS. In CloudWF, we consider two types of file

CloudWF: A Computational Workflow System for Clouds Based on Hadoop 401

staging. The first type of file staging is between blocks, as described by the
connector components in Figures 3, 4 and 5. The second type is staging files
in from the user DFS area into the workflow, and staging files out from the
workflow to the user DFS area. As already discussed before, the DFS is divided
into a user area and a CloudWF system area, and similarly, a CloudWF system
area is also created on the local file system (LFS) of each cloud node.

During workflow execution, CloudWF creates two working directories for each
block that is executed: one DFS working directory in the system part of the glob-
ally accessible DFS, and one LFS working directory in the system part of the
LFS of the cloud node on which the block executes. The MapReduce Wrapper
and its command line invocation (which itself is legacy or MapReduce) are ex-
ecuted from the LFS working directory. The DFS working directory is used for
staging files between blocks, and for staging files in or out. For example, the DFS
and LFS paths to the DFS and LFS working directories for block A in workflow
exWF are given by

• DFS working directory: /DFSHomePrefix/exWF/exWF.A/
• LFS working directory: /LFSHomePrefix/exWF/exWF.A/

The file staging for the workflows in Figures 3 and 4 then works as follows. As we
said before, files that appear on command lines and have to be staged between
blocks have to be specified in <input> and <output> blocks in the XML file,
and are tagged as LFS files or DFS files depending on their nature (consistent
with their use in the command line). Inside the <input> and <output> blocks,
only relative paths can be used. These relative paths refer to the working di-
rectory of the block for which the <input> or <output> is specified. For unix
legacy command lines, the file names in the command lines can simply be given
relative to the unix working directory of the block, and command lines need no
change.

Let us consider the connector from block A to C in Figure 3. The block-
to-block staging works as follows: after the commandline execution of block A,
the CloudWF Wrapper copies outA to the DFS working directory of block A.
When connector 1 is executed, it copies outA from the DFS working directory
of block A to the DFS working directory of block C. When block B starts, the
CloudWF Wrapper copies the file from the DFS working directory of block C to
the LFS working directory of block C (with name inC1), and then C’s command
line can be invoked. This mechanism is transparent to the user, who only has
to provide the ‘connectors’ in the XML file. The use of this connector mecha-
nism allows highly parallel execution of multiple workflows at the same time, see
Section 2.5.

For workflows with MapReduce blocks (see Figure 4) the situation is some-
what more complicated. Let us consider the connector from blocks A to B, which
connects the DFS output file from A to the DFS input file of B. CloudWF again
uses the DFS working directory of block A and the DFS working directory of
block B to relay the file, but the problem is now that the MapReduce com-
mand line requires absolute paths for DFS files (because MapReduce does not
have a DFS working directory concept). We want to hide the system absolute

402 C. Zhang and H. De Sterck

paths to the DFS working directories of blocks A and B from the user (be-
cause in practice they may not be known in advance, and it is not desirable
that the user would have to know the details of paths used by the system),
and to this end we provide placeholders like $outA1, which are to be used for
DFS files on command lines and in <input> and <output> blocks, and which
CloudWF replaces by absolute DFS paths to the block’s DFS working direc-
tory at runtime. In this way, the user can stage DFS files block-to-block in a
way that is similar to staging LFS files: the only difference is that DFS files
are referred to using placeholders. Note also that the overhead in copying mul-
tiple DFS files in order to get them from one block to another is small, since
Hadoop DFS uses copy-on-write, and most large DFS input files are not writ-
ten to. Note that users can also relay files themselves via the user section of
DFS, but then the user has to do all the bookkeeping and has to make sure
that all necessary directories are available at runtime, which is cumbersome, so
the transparent block-to-block file staging mechanism that CloudWF provides
is attractive.

The mechanism for staging files into and out of the workflow is the same for
Figures 3 and 4: the ‘from’ and ‘to’ fields in <input> and <output> blocks
can contain absolute DFS or LFS paths, and inside the <input> and <output>
blocks the files are tagged as DFS or LFS depending on their use on the com-
mandline, and placeholders are used for DFS files.

In short, CloudWF uses DFS to achieve transparent file staging in the back-
ground. For large and frequently used files, users can choose to populate the files
to all cloud nodes beforehand to optimize system performance.

2.5 Executing Workflows

CloudWF executes blocks and connectors whenever they are ready for execution.
For example, for the workflow of Figures 3 and 4, the user initiates execution
through the Front End, after which blocks A and B (which have dependency
count 0) are set to ‘readyForExecution’ in the WFBlock table. Upon polling,
the Block broker (Figure 2) finds the blocks that are ready for execution and
submits Wrappers to the cloud pool. When block A finishes, the connectors that
originate from A (obtained by a fast query of WFConnector) are set as ‘ready-
ForExecution’, and are then picked up by the Connection broker and submitted
for execution. Upon completion of the connector from A to C, the dependency
count of C is decreased by one. When both connectors have executed, C then
becomes ready for execution. If any Wrapper fails, it is restarted by the MapRe-
duce framework automatically for six times by default. If all retries fail, the
task (block or connector) fails and thus the entire workflow fails. If the Wrap-
per is alive and the submitted component execution fails, the Wrapper detects
this failure and restarts the failed component command once. If the command
fails again, the Wrapper marks the component status to fail and thus the entire
workflow fails. In the future, more advanced failure handling mechanisms will
be introduced to better cope with workflow failures.

CloudWF: A Computational Workflow System for Clouds Based on Hadoop 403

3 Advanced Features

The CloudWF design supports several advanced features. Prototype implemen-
tations of these features already exist, but will be described in future work.

1. Virtual start and end blocks: CloudWF creates one virtual start and one
virtual end block for each workflow instance, which are connected to all
blocks without incoming or outgoing connectors, respectively. The workflow
is started by setting the virtual start block to ‘readyForExecution’, and
workflow completion is easily detected when the virtual end block completes.

2. Workflow templates and nested workflows: CloudWF supports workflow
composition by reusing existing workflows or workflow components as tem-
plates to avoid duplicated coding. Nested workflows are also supported.

3. Steering and runtime workflow structure change: Workflow steering enables
step-by-step interactive workflow execution, which is very useful for perform-
ing experiments, and can be done easily because blocks and connectors are
decoupled. Runtime structural change is also necessary for modifying parts
of large complex workflows while other parts are already in execution.

4 Related Work

Many scientific workflow systems on clusters and grids exist for various usage
needs such as [2,6,7,8], see also the review paper [11]. Use of public clouds for
scientific computing has been explored in [4]. A major concern with workflow
systems is always the complexity of usage. With the advent of clouds, it is pos-
sible to develop easy-to-use lightweight systems that can take advantage of the
desirable properties clouds can provide, such as scalability, fault tolerance, trans-
parency and easy deployment. Our CloudWF system tries to achieve this goal.
We are only aware of one other effort in this direction, namely Cascading [3]
which also makes use of cloud features. However, it serves a different purpose:
it is intended for expert programmers and lets them build workflows as mono-
lithic programs (each workflow instance gets executed separately). This makes it
more complicated for users to reuse existing programs directly and it is harder
to parallelize the execution of multiple workflows (each workflow instance needs
its own scheduler). In comparison, CloudWF is intended for application users
who are not programming specialists: it provides a simple way to run workflows
composed of existing MapReduce or legacy programs. In terms of general work-
flow organization, our system is different from existing workflow systems in that
it encodes workflow blocks and block-to-block dependencies separately as stan-
dalone executable components which enables decentralized workflow execution
management, in a way that is naturally suitable for cloud environments.

5 Conclusions and Future Work

CloudWF is a computational workflow system specifically targeted at cloud en-
vironments where Hadoop is installed. It uses Hadoop components to perform

404 C. Zhang and H. De Sterck

job execution, file staging and workflow information storage. The novelty of the
system lies in its ability to take full advantage of what the underlying cloud
computing framework can provide, and in its new workflow description method
that separates out workflow component dependencies as standalone executable
components. Decentralization in space and time is achieved in workflow execu-
tion. Thus the system is highly scalable compared to existing workflow solutions.
Future work includes designing and implementing advanced policy management
to better handle workflow faults automatically, as well as adding a web-based
graphical user interface for better user interaction. The system is also being used
for large-scale biological image processing workflows [12].

References

1. Ailamaki, A., Ioannidis, Y.E., Livny, M.: Scientific Workflow Management by
Database Management. In: 10th Intl. Conf. on Scientific and Statistical Database
Management (SSDBM), Capri, Italy (1998)

2. Bowers, S., Ludaescher, B.: Actor-Oriented Design of Scientific Workflows. In: Del-
cambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005.
LNCS, vol. 3716, pp. 369–384. Springer, Heidelberg (2005)

3. Cascading, http://www.cascading.org/ (retrieval date: September 25, 2009)
4. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing

science on the cloud: the Montage example. In: Proceedings of the ACM/IEEE
conference on Supercomputing (SC), Austin, USA (2008)

5. Hadoop, http://hadoop.apache.org/ (retrieval date: September 25, 2009)
6. Ludscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.,

Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. In:
Concurrency and Computation: Practice and Experience, vol. 18, pp. 1039–1065
(2006)

7. Majithia, S., Shields, M., Taylor, I., Wang, I.: Triana: A Graphical Web Ser-
vice Composition and Execution Toolkit. In: Proc. IEEE Intl. Conf. Web Services
(ICWS), pp. 514–524 (2004)

8. Oinn, T., Greenwood, M., Addis, M.J., Alpdemir, M.N., Ferris, J., Glover, K.,
Goble, C., Goderis, A., Hull, D., Marvin, D.J., Li, P., Lord, P., Pocock, M.R.,
Senger, M., Stevens, R., Wipat, A., Wroe, C.: Taverna: Lessons in Creating a
Workflow Environment for the Life Sciences. J. Concurrency and Computation:
Practice and Experience 18, 1067–1100 (2002)

9. Ranjan, R., Rehman, M., Buyya, R.: A Decentralized and Cooperative Workflow
Scheduling Algorithm. In: Proc. 8th Intl. Conf. on Cluster Computing and the Grid
(CCGrid). IEEE Computer Society Press, Los Alamitos (2008)

10. TeraByte Sort on Apache Hadoop,
http://www.hpl.hp.com/hosted/sortbenchmark/YahooHadoop.pdf

(retrieval date: September 25, 2009)
11. Yu, J., Buyya, R.: A Taxonomy of Scientific Workflow Systems for Grid Computing.

SIGMOD Record 34, 44–49 (2005)
12. Zhang, C., De Sterck, H., Djambazian, H., Sladek, R.: Case Study of Scientific Data

Processing on a Cloud Using Hadoop. In: High Performance Computing Sympo-
sium (HPCS), Kingston, Canada (2009)

http://www.cascading.org/
http://hadoop.apache.org/
http://www.hpl.hp.com/hosted/sortbenchmark/YahooHadoop.pdf

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 405–412, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Novel Multipath Load Balancing Algorithm
in Fat-Tree Data Center

Laiquan Han, Jinkuan Wang, and Cuirong Wang

Information Science and Engineering, Northeastern University,
110004 Shenyang, China

likesea@163.com, {wjk,wangcr}@mail.neuq.edu.cn

Abstract. The rapid development of CPU technology, storage technology and
bandwidth improvement have given rise to a strong research interest in cloud
computing technology. As a basic infrastructure component of cloud comput-
ing, data center becomes more and more important. Based on the analysis of
transmission efficiency, a novel hierarchical flow multipath forward (HFMF)
algorithm is proposed. HFMF can use adaptive flow-splitting schemes accord-
ing to the corresponding level in the three-tier fat-tree topology. NS2 simula-
tions prove that HFMF reduces the packet disorder arrival and achieves a better
performance of load balancing in the data center.

Keywords: fat tree, load balancing, data center, multipath forwarding.

1 Introduction

Cloud computing is a new computing model and the computing is based on the
Internet. Cloud computing also has the name of on-demand computing, software as a
service, distributed computing or utility computing, etc. Cloud computing fuses dis-
tributed computing, parallel computing and grid computing with Internet computing.
Computing is very important in this technology, traditional expensive computing
resources become relatively cheap commodity resources today. Every one can use the
computing resources for their own just with a cheaper price.

Cloud computing can be viewed from two different aspects [1]. One is the cloud
infrastructure and the other is cloud application. GFS (Goggle File System) and
MapReduce are applications of cloud computing in Goggle company. BlueCloud have
been used in IBM. Elastic compute cloud is a platform of Amazon. Determining how to
migrate the application is an important issue when an enterprise wants to deploy these
technologies. However, how much maintenance cost will be reduced with the use of
cloud computing is not clear to the budget of an enterprise.

Besides the deployment problems, however, there are a lot of technology problems
required to be addressed, such as requirements of storage, security of information,
upgrade of hardware and installment of numerous softwares. Cloud computing is a
new merging technology to address these questions.

In cloud computing, the partition function of server and client will be migrated into
the data center which provides the support for hardware maintenance, software
upgrade, and system security and so on. With the rapid development of virtual

406 L. Han, J. Wang, and C. Wang

technology, and distribution technology, the packets which want to transmit in the
data center become more and more. As a basic infrastructure component of cloud
computing, data center becomes more and more important.

The rest of the paper is organized as follows. In section 2, related work is de-
scribed briefly for the related research of load balancing and multipath transmission.
Fat tree data center and HFMF (hierarchical flow multipath forward) algorithm im-
plement are discussed in section 3. In section 4, the scenarios setting and performance
analysis are presented. Finally the conclusion is described in section 5.

2 Related Work

According to the categories of aggressive traffic and the normal traffic and applying
different scheduling schemes, Shi [2] proposed adaptive methods to balance the traf-
fic and obtained both the load balancing and resources utilization. Kencl [3] proposed
a novel load sharing algorithm by a feedback control mechanism that minimizes the
probability of flow reordering. Kandula [4] proposed a new approach FLARE that
operated on bursts of packets (flowlets) carefully chosen to avoid reordering, and
allowed a finer forwarding granularity.

Appropriate use of CMP will improve throughput, reduce packet-loss and delay, and
obtain a better system performance [5] [6]. In order to send the packets to the available
path, forwarding overhead of data-plane will be higher for traditional schemes. Kvalbein
[7] and Feamster [8] used multiple implementations of the same protocol to obtain dif-
ferent forwarding table. A random perturbation will be set to the weight of different
link. The perturbation makes the forwarding tables converge to different states, so these
schemes can obtain different forwarding results for different applications.

Some previous work about CMP done by us is presented in literature [9-11]. Using
dynamic list to increase certain connection-oriented function, connection oriented
CMP forwarding algorithm [9] can classify different flows and forward those flows to
different available paths. For CMP forwarding in multi-homed host, we proposed a
novel Single-hop Delay Probe algorithm [10], which can avoid the performance deg-
radation of different paths. Based on the analysis of flow relation and forwarding
granularity, CCRF [11] can forward packets in the same categories path concurrently
but it will cause certain overhead for router CPU.

3 Fat Tree Model and Algorithm Implementation

3.1 Fat Tree Model

Typical architectures today consist of three-level trees of switches or routers. As illus-
trated in Figure 1, a three-tiered design has a core tier in the root of the tree, an aggrega-
tion tier in the middle and an edge tier at the third level of the tree [12]. In the edge level
or aggregation level, every device has two outlets for the connection of high level de-
vices. Traditional, one outlet is for the purpose of data transmission and the other one is
for the purpose of backup. The backup link is also called duplicate link or alternative
link.

 A Novel Multipath Load Balancing Algorithm in Fat-Tree Data Center 407

Fig. 1. Fat tree topology is a common architecture model for a large number of enterprise net-
works

How to utilize these alternative paths to transmit traffic, how to obtain higher
transmission efficient and how to optimize the relation of different available paths,
these interests become more and more important, which have been the research hot-
spots of a lot of literatures. Recently, two novel data center schemes, DCell [13] and
FiConn [14], are proposed to obtain more available expanded features, a lower cost
and higher performance.

With the rapid development in links upgrade and reliability improvement
for these years, link failure becomes fewer and fewer. Furthermore, with the toler-
ance development for both hardware and software, the backup link has become a
left unused link almost all the time. So in order to use the idle link and obtain a
better performance of link utilization, we use the backup link to transmit data
concurrently.

3.2 Algorithm Implementation

The pseudo code of HFMF algorithm is shown in algorithm 1. The algorithm consists
of two parts. One is the flow forwarding in aggregation level; the other is multipath
forwarding in core level.

The SET E-A in line 2 stands for the link from edge link to aggregation link (not
the reverse direction). The SET A-C in line 7 stands for the link from aggregation
link to core link. In the implementation of line 5, the next-hop will be obtained
from the destination address (DA) and source address (SA). This is different from
the traditional routing technology. If the link is towards the core link, however, the
next-hop will be obtain from different available paths depending on whether the
link is used or not in the previous time. The function ‘lookup’ , which occurs in
line 5, line 9 and line 13, is most important in this algorithm. It is an overload
function. In line 8 and line 9, next-path belongs to one of the unused available
paths. It is another parameter for this overload function. At last, the lookup func-
tion in line 13, which uses the parameter DA, is the traditional implementation of
general router.

408 L. Han, J. Wang, and C. Wang

Algorithm1. hierarchical flow multipath forward
1: IF packet arrived THEN

2: IF link ∈ SET E-A THEN

3: DA := Destination Address
4: SA := Source Address
5: Next-hop := Lookup(DA,SA)
6: ELSE

7: IF link ∈ SET A-C THEN

8: Next-path := unused available path
9: Next-hop := Lookup (Next-path)

10: Set-Used-Path(Next-path)
11: ELSE
12: DA := Destination Address
13: Next-hop := Lookup (DA)
14: END IF
15: END IF
16: END IF

4 Simulation and Performance Analysis

NS2 simulation tool is used in algorithm implement. Because the support for concur-
rent multipath is fewer in NS2.31, we modify and add some source codes correspond-
ing to concurrent multipath, and then NS2 is recompiled for these changing. Only in
this way can NS2 forward the packet as HFMF algorithm.

4.1 Scenarios Introduction

We design five scenarios, which have the same topology, just like the topology of Fig.
1.There are three level in the simulation scripts and each level has the same band-
width and delay parameters. With the same topology, the traffic request is also the
same in every scenario. Node 0 (H0) connects node 4 (H4) for data transmission. For
ease of exposition, we denote this transmission as red flow. Node 1 (H1) connects
node 5 (H5) for another data transmission, and we denote this transmission as blue
flow. These two flows have the same network address (prefix).

The specific simulation implement of these five scenarios elaborates in subsection
4.2, 4.3 and 4.4. Subsection 4.2 depicts single path forwarding with different queue
types. Subsection 4.3 analyzes flow-based forwarding and subsection 4.4 describes
the ECMP forwarding. Finally, HFMF scheme is simulated in subsection 4.5.

4.2 Single Path Forwarding

As illustrated in figure 2, H0 establishes data transmission with H4 in red flow, while
H1 has data transmission with H5 in blue flow. Analyzing the simulation phenome-
non, we can see that when using traditional OSPF routing with drop-tail queue, blue
flow has severe packet loss and almost all packet loss happens with blue flow. As
illustrated in figure 3, after using the RED (Random Early Detection) queue, we can

 A Novel Multipath Load Balancing Algorithm in Fat-Tree Data Center 409

16

C1

15

E4

14

E3

13

E2

12

E1

11

A4

10

A3

9

A2

8

A1

7

H7

6

H6

5

H5

4

H4

3

H3

2

H2

1

H1

0

H0

17

C2

16

C1

15

E4

14

E3

13

E2

12

E1

11

A4

10

A3

9

A2

8

A1

7

H7

6

H6

5

H5

4

H4

3

H3

2

H2

1

H1

0

H0

17

C2

Fig. 2. Drop-tail queue Fig. 3. RED queue

find that red and blue flow both have a reasonable packets loss. Due to the concerning
on the unfair characteristics of drop-tail, RED queue has obtained better queue per-
formance. Furthermore, from the simulation results, we can see that both the blue
flow and the total packet loss have been reduced because of the using of RED queue.

4.3 Flow-Based Forwarding

Under the same scenario of topology and traffic requirements, without conflicting and
colliding for the same path of 12-8-18-10-14 in previous implementation, red flow use
the path of 12-8-16-11-14 and blue flow use the path of 12-9-17-10-14. As illustrated
in figure 4, there is no packet loss during these two transmissions when employing
flow-based scheme [11]. However, because of the lower utilization rate of the core
link, for example, link 8-17 and 9-16 are not used, the data packet transmission rate in
flow-based scheme is relatively low.

16

C1

15

E4

14

E3

13

E2

12

E1

11

A4

10

A3

9

A2

8

A1

7

H7

6

H6

5

H5

4

H4

3

H3

2

H2

1

H1

0

H0

17

C2

16

C1

15

E4

14

E3

13

E2

12

E1

11

A4

10

A3

9

A2

8

A1

7

H7

6

H6

5

H5

4

H4

3

H3

2

H2

1

H1

0

H0

17

C2

 Fig. 4. Flow-based multipath forwarding Fig. 5. ECMP forwarding

4.4 ECMP Forwarding

For the same traffic request just like the scenario above, when we use the ECMP
(Equal Cost Multi-Path) scheme to implement multipath transmission, nodes in

410 L. Han, J. Wang, and C. Wang

different levels (including the Edge level, the Aggregation level and the Core level)
can split and transmit both red and blue flow. Compared with flow-based forwarding
in figure 4, the forwarding efficiency has been increased with the use of core links
such as 8-17, 9-16, 16-10 and 17-11. Furthermore, there is no packet loss occurred in
the simulation implementation of ECMP forwarding.

4.5 HFMF Forwarding

When adopting HFMF scheme described as algorithm 1, the simulation phenomenon
can be found in figure 6. Under the same scenario of topology and traffic require-
ments, however, HFMF has something different from figure 4 and figure 5.

Packets in ECMP will appear the disorder problems for the random transmission over
multiple different level link, such as core level and aggregation level link, which has
different bandwidth and delay. Compared with figure 5, HFMF is not disordered in ag-
gregation level. However, the flow-splitting for HFMF will cause almost no delay devia-
tion for the same performance of bandwidth and delay characteristics in core level link.

Although there is no disorder problem, flow-based forwarding also has poor link
utilization in core level. Compared with figure 4, HFMF scheme makes more use of
core link, so that the utilization rate of core level has been enhanced. After being split,
blue flow and red flow are transmitted in different link in core level. Therefore, we
can come to the conclusion that using the HFMF scheme can relieve packet loss and
achieve a higher data transmission rate.

16

C1

15

E4

14

E3

13

E2
12

E1

11

A4

10

A3

9

A2

8

A1

7

H7

6

H6

5

H5

4

H4

3

H3

2

H2

1

H1

0

H0

17

C2

Fig. 6. HFMF forwarding

4.6 Performance Analysis

Though the five specific simulation implements, the throughput and delay perform-
ance comparison is illustrated in figure 7 and figure 8 respectively.

Figure 7 shows the throughput performance of the five algorithms. Because only
one path is used, OSPF (both drop-tail queue and RED queue) has the lowest
throughput. Because these links transmit traffic at almost full bandwidth utilization,
these two routing technologies achieve almost the same throughput. Flow-based strat-
egy is in the middle of the throughput. By making full use of available bandwidth of
core link, ECMP and HFMF have the best throughput because of more paths in
transmission than flow-based and OSPF scheme.

 A Novel Multipath Load Balancing Algorithm in Fat-Tree Data Center 411

Fig. 7. Throughput comparison

Fig. 8. Delay comparison

Figure 8 shows the delay comparison of the five algorithms; OSPF has the largest
end-to-end delay because the forwarding paths have been in a state of congestion and
a large amount of packets wait in the queue for sending. Flow-based strategy has the
best performance of delay. Through the using of hierarchical and flow-splitting for-
warding, HFMF reduces the delay greatly than OSPF and obtain almost the same
performance with Flow-based scheme.

In summary, considering throughput and delay as the performance measures, the
traditional single-path has the worst performance, the performance of flow-based
strategy is in the middle, and HFMF has the best performance among the five.

412 L. Han, J. Wang, and C. Wang

5 Conclusion

Study on the disorder problem and backbone forwarding efficiency of fat-tree topol-
ogy, this paper proposed a novel hierarchical flow multipath forward algorithm.
HFMF can use different flow-splitting strategy due to different level of data center.
The source address forwarding in first-tier of fat-tree is for the problem of disorder
packets. The hierarchical multipath forwarding in second-tier is for the problem of
higher forwarding efficiency. NS2 simulations prove that HFMF reduces the disorder
packets arrival and can make full use of the core bandwidth of data center.

References

1. Chen, K., Zheng, W.: Cloud Computing: System Instances and Current Research. Journal
of Software 20(5), 1337–1348 (2009)

2. Shi, W., MacGregor, M., Gburzynski, P.: Load Balancing for Parallel Forwarding.
IEEE/ACM Transactions on Networking 13(4), 790–801 (2005)

3. Kencl, L., Boudec, J.: Adaptive Load Sharing for Network Processors. IEEE/ACM Trans-
actions on Networking 16(2), 293–306 (2008)

4. Kandula, S., Katabi, D., Sinha, S., Berger, A.: Dynamic load balancing without packet re-
ordering. SIGCOMM Comput. Commun. Rev. 37(2), 51–62 (2007)

5. Li, Y., Zhang, Y., Qiu, L., Lam, S.: Smarttunnel: Achieving Reliability in the Internet. In:
26th IEEE International Conference on Computer Communications (INFOCOM 2007), pp.
830–838. IEEE Press, Los Alamitos (2007)

6. He, J., Rexford, J.: Toward internet-wide multipath routing. IEEE Network 22(2), 16–21
(2008)

7. Kvalbein, A., Cicic, T., Gjessing, S.: Post-failure routing performance with multiple rout-
ing configurations. In: 26th IEEE International Conference on Computer Communications
(INFOCOM 2007), pp. 98–106. IEEE Press, Los Alamitos (2007)

8. Motiwala, M., Elmore, M., Feamster, N., Vempala, S.: Path splicing. In: ACM SIGCOMM
2008 conference on Data communication, pp. 27–38. ACM, New York (2008)

9. Han, L., Wang, J., Wang, C.: Connection-oriented concurrent multipath forward algorithm.
Journal of Southeast University (Natural Science Edition) 38, 12–16 (2008)

10. Han, L., Wang, J., Wang, C.: A novel single-hop delay probe algorithm in multi-homed
host. In: First International Conference on Intelligent Networks and Intelligent Systems,
Wuhan, China, pp. 217–220. IEEE Press, Los Alamitos (2008)

11. Han, L., Wang, J., Wang, C.: A crosslayer concurrent multipath random forward algo-
rithm. In: 9th International Conference for Young Computer Scientists, Zhangjiajie, China,
pp. 270–275. IEEE Press, Los Alamitos (2008)

12. Al-Fares, M., Loukissas, A., Vahdat, A.: A Scalable, Commodity Data Center Network
Architecture. In: ACM SIGCOMM 2008 conference on Data communication, pp. 63–74.
ACM, New York (2008)

13. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: DCell: A Scalable and Fault-Tolerant
Network Structure for Data Centers. In: ACM SIGCOMM 2008 conference on Data com-
munication, pp. 75–86. ACM, New York (2008)

14. Li, D., Guo, C., Wu, H., Tan, K., Zhang, Y., Lu, S.: FiConn: Using Backup Port for Server
Interconnection in Data Centers. In: 28th IEEE International Conference on Computer
Communications (INFOCOM 2009), pp. 2276–2285. IEEE Press, Los Alamitos (2009)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 413–422, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Scheduling Active Services in Clustered JBI Environment

Xiangyang Jia1, Shi Ying1, Luokai Hu1, and Chunlin Chen2

1 State Key Lab of Software Engineering , Wuhan University, Hubei, China
2 Yuanguang Software Co.,Ltd, Guangdong, China

jiaxiangyang@163.com, yingshi@whu.edu.cn, luokaihu@gmail.com,
ccl@ygsoft.com

Abstract. Active services may cause business or runtime errors in clustered JBI
environment. To cope with this problem, a scheduling mechanism is proposed.
The overall scheduling framework and scheduling algorithm is given, to guar-
antee the conflict-free and load balance of active services. The scheduling
mechanism is implemented in SOAWARE, a SOA-based application integration
platform for electric enterprises, and the experiment proves the effectiveness of
scheduling algorithm.

Keywords: Active services, scheduling framework, load balancing, JBI.

1 Introduction

Java Business Integration (JBI)[1,2] is an java-based, service-oriented enterprise ap-
plication integration standard. It is developed under the Java Community Process (JCP)
as an approach to implementing a service-oriented architecture for enterprise applica-
tion integration. JBI defines a plug-in architecture that enables dynamically installing
and uninstalling components. The components in JBI play the role of service provider,
consumer or both, and allow publishing heterogeneous applications as services.
Therefore JBI is able to be utilized as SOA-based SaaS technology to support cloud
computing.

In most cases, the services in JBI environment work in passive mode, i.e. the service’s
job is to answer the requests from client side, and without request, no work. However, in
JBI environment, the active services are also allowed. The active services can do jobs by
themselves without outside request. For example, there could be an “ftp service” which
can download or upload files from ftp servers every 5 minutes, or a “report service”
which generates daily business report at 6 o’clock PM every day. The “publish/subscribe
service” based on WSN (Web Services Notification) is another typical example of active
service. Active service is an important design pattern of SOA [3, 4], and is useful to
develop software based on event-driven or publish/subscribe modes.

Since the active services do jobs by themselves rather than be activated by outside
requests, they may cause some problems in clustered environment. For example, when
the “ftp service” mentioned above is deployed to multiple nodes of cluster and run as
multiple instances, error will happen when they upload same files concurrently. Simi-
larly, the “report service” mentioned above in clustered environment may cause du-
plicate reports of the day.

414 X. Jia et al.

The JBI environments we have known, like Apache Servicemix[5] or SUN
OpenESB[6], still have no good solutions for this problem, and they push this problem
to JBI components. For example, the Servicemix-file and Servicemix-ftp components
allow developers to write lock manager to avoid concurrency conflict. However, lock
manager is not the best solutions either. They can avoid runtime error, but is useless for
business error. For example, the “report service” mentioned above will generate same
report twice when they run on two nodes of a cluster, this is not what the developer
expects.

The reason of this problem is that most (not all) active services must run as single
instance in cluster, otherwise, they will do duplicate jobs, either concurrently or in an
uncertain order. This paper proposes a new approach for this issue: the active services ,
if they has to run in singleton mode, are scheduled from a global view in clustered JBI
environments, and each of them are arranged on one single node to execute, so as to
avoid the runtime and business errors.

2 JBI Components, Service Unit and Service Assembly

The JBI components are software units designed to provide or consume specific kinds
of services. They are divided into two distinct groups: service engine and binding
component. Service engines provide business logic and transformation services to other
components, as well as consume services of other components. Binding components
provide connectivity to services which is external to a JBI environment.

Each type of JBI component needs specific application artifacts to configure how the
component provides and consumes services. These application artifacts are called
service units (SU). Service units are component-related. It is deployed into specific
component, and defines services the component provides and consumes.

The artifact package that includes a collection of related service units is called a
service assembly (SA). A service assembly can be deployed or un-deployed in JBI
environment. When it is deployed, the service units it includes will be automatically
deployed into corresponding components.

The services units and service assemblies can be started or stopped in JBI envi-
ronment to enable or disable the related services the components provide.

3 Scheduling Mechanism

We propose a scheduling mechanism for active services in clustered JBI environment.
The scheduling mechanism schedule the active services by controls the lifecycle of
services units (SUs) which define these services. We called these services units sin-
gleton SUs. Each singleton SU is arranged to be executed upon one node in cluster, so
as to guarantee active service only has one single running instance in cluster.

3.1 Overview of Scheduling Framework

Figure 1 shows the overview of scheduling framework for active services.

 Scheduling Active Services in Clustered JBI Environment 415

Fig. 1. Scheduling framework for active services in clustered JBI environment

The Schedule Node. In our approach, there exists a schedule node in cluster, which
monitors the cluster and schedules the singleton SUs. The schedule node is not
pre-defined. It is automatically chosen at runtime. If the schedule node is down, one of
other nodes will replace its role immediately. Every node in cluster has cluster monitor
and active service scheduler, but only the schedule node activate them.

Monitors and Events. The cluster monitor on schedule node continuously listens the
events from cluster, and start the service scheduler when specific events happen. The
event may be a request for starting or stopping service unit from administrator, or a
runtime error from one node’s JBI environment monitor when exception happens, or a
notification from cluster when one node is down.

The JBI environment monitor is responsible for monitoring the running state of JBI
environment. When the JBI container is started and stopped, or a SU is started and
stopped, it will send the event to schedule node. Table 1 shows the main events in our
scheduling framework.

Scheduler and Job Manager. Active service scheduler is responsible for scheduling the
singleton SUs according to nodes’ load. The scheduling algorithm is detailed in section
3.2. The scheduling result is schedule map, a hash-map which use singleton SUs’ names
as key set, and use nodes’ identities as value set. The key-value pair <singleton SU’
name, node’s identity> indicates which node is responsible for starting the singleton SU.

416 X. Jia et al.

Table 1. The events in scheduling framework. The event source could be JBI enviorment
monitor, Client , or Cluster itself. Event are handled based on its type.

Event Event Source Notes Handle Action

JBI_CONTAINER
_STARTED

JBI environment
monitor

The JBI container on one
node is started

mark node as schedulable
node

JBI_CONTAINER
_SHUTDOWN

JBI environment
monitor

The JBI container on one
node is shutdown

Re-schedule the active
service unit the node used to
start.

SU_START_ERROR
JBI environment
monitor

One singleton service unit
is not started successfully.

Try another node to start this
service unit.

SU_STOP_ERROR
JBI environment
monitor

One singleton service unit
is not stopped
successfully.

Retry to stop the service unit.

USER_SCHEDULE
_ALL

Client
User’s request for
schedule all active service
units

Schedule all the singleton
SUs

USER_START_SA Client
User’s request for starting
a service assembly

Schedule the singleton SUs
included by SA.

USER_STOP_SA Client
User’s request for
stopping a service assem-
bly

Stop the singleton SUs
included by SA

NODE_ONLINE Cluster
One node is added to
cluster

Mark node as online node.

NODE_OFFLINE Cluster
One node is down and
removed from cluster

Re-schedule the singleton
SUs the node used to start.

The schedule map will be multicast to every node in cluster. After the node receives

the schedule map, the job manager on the node will be put into work, which checks the
local state of singleton SUs, and compares them with schedule map, so as to decide
which SU in JBI container should be started and which one should be stopped. Then, a
list of “start SU” or “stop SU” jobs is created to start or stop the SUs in JBI environment.
If error accrues in the process of starting or stopping SU, the JBI environment monitor
will sends “SU_START_ERROR” or “SU_STOP_ERROR” event to the schedule node.

3.2 Scheduling Algorithm

The aim of scheduling algorithm is to guarantee that each singleton SU only run on
exactly one node, as well as keep the load balance between nodes. The outline of
scheduling algorithm is as following.

Algorithm 1. scheduling algorithm for singleton SUs in clustered JBI environment
The Schedule Node:
1. Gets load information of every node from cluster;
2. Creates a load-table.
3. For each singleton SU that is to be scheduled
4. Calculates and choose the least-load node;
5. Sets the node as the executing node of SU

 Scheduling Active Services in Clustered JBI Environment 417

6. in schedule-map;
7. Adds the SU’s weight to the node’s load
8. in load-table.
9. End For
10. Multicasts schedule-map to every node in cluster;

Every node in cluster:
1. Receives the schedule-map;
2. Gets running state of all SUs in local JBI container;
3. For each SU
4. If SU is expected to be started on this node in
5. schedule-map, but is not started,
6. then creates “start SU” job;
7. If SU is not expected to be started in schedule-map,
8. but is started,
9. then creates “stop SU” job;
10. End For
11. If error accrues while starting or stopping SU,
12. then sends SU_START_ERROR or SU_STOP_ERROR event
13. to Schedule node

Calculate Nodes’ Load. The algorithm is not complex, but the central problem is how
to calculate and evaluate the load of every node. We propose an approach based on the
singleton SUs’ load weights.

Different singleton SU may have different influence on the load of node. Some SU
may occupy more CPU time, while other SUs may need a wider network bandwidth. In
our approach, every singleton SU has three pre-defined load weights: CPU weight,
memory weight and network weight. The weight is an integer number between 0 and
100, indicating the relative resource occupied degree for CPU, memory and network.

For the SU need more CPU time, we should choose the node which has the less CPU
load. Similarly, for the SU that need a wider network bandwidth, we should choose the
node that has the less network load. Therefore, the load of every node should be cal-
culated considering the current SU’s requirement. We call it relative load.

Given an active service unit su, let its CPU weight as Csu，memory weight as Msu
and network weight as Nsu. If one node is executing n active service units, then the
relative load of this node for su is:

() () ()
n n n

su su su
node su i i i

i i i i i isu su su su su su su su su

C M N
L C M N

C M N C M N C M N−
= = =

= × + × + ×
+ + + + + +∑ ∑ ∑

(1)

In the formula,

n

i
i i

C
=
∑

 is the sum of CPU weight of executing active SUs on the node,

indicating the CPU load of the node. Similarly,

n

i
i i

M
=
∑

and

n

i
i i

N
=
∑

 are memory load and
network load of the node.

The relative load takes current SU’s requirement into consideration, so it is a rea-
sonable method to calculate the load for singleton SUs on nodes. After calculate the

418 X. Jia et al.

relative load of every node, the node that has the least relative load will be the most
suitable one to be scheduled for current SU.

4 Case Study

We implement our scheduling mechanism recently in SOAWARE, a SOA-based ap-
plication integration platform for electric enterprises. The SOAWARE project is initi-
ated by Wuhan University and Yuanguang Software Co., Ltd in Januuary, 2009 and is
ongoing by now.

SOAWARE adopts JBI as application integration standard to enable heterogeneous
applications connecting and interoperating with each other, and adopts BPEL as
business process standard to (re)construct enterprises’ business process, which coor-
dinates the enterprises’ applications, and makes them work together for given business
goals.

SOAWARE is build based on open-source software. Its JBI enviornment is based on
Apache Servicemix, and its BPEL engine is based on Apache ODE. SOAWARE pro-
vides the extended features like cluster, security, system monitor and administration,
improving the reliablity, scalbility, performance of the platform to support the complex
requirement of application integration for electric enterprises.

4.1 Cluster and Load Balancing of SOAWARE Platform

SOAWARE platform is developed as a web application, and is able to be deployed into
application servers, like tomcat, jboss, websphere, weblogic. Therefore it is possible to
utilize the cluster feature of application servers, e.g. load balancing and failover. The
load-balancing of HTTP message can be done by clustered application servers. Also,
SOAWARE platform use Apache ActiveMQ as its reliable messaging transport infra-
structure, and load-balancing of JMS message can be done by clustered activeMQ
servers. SOAWARE platform has an administration system to monitor and manage the
cluster. The administration system adopts JGroup to support the communication be-
tween nodes in cluster.

4.2 Active Services Scheduling Mechanism in SOAWARE Platform

Active services are very common requirements in application integration practice of
electric enterprises. For example, the service that automatically provides business
report to higher-up department every day, the service periodically transports fi-
nance-related data from business management system to financial system or the service
continuously monitors the device data, and notifies the administrator when error hap-
pens.

SOAWARE platform manage the cluster based on JGroup[7]. Every node in cluster
can send or receive messages with each other on JGroup channel. When one node is
started or halted, other nodes can receive the notification from the channel.

The channel has a view object which records the sequence of cluster members. The
first member in the view plays the schedule node in our scheduling mechanism. When
the schedule node is down, one of the other nodes will become the first member;
therefore become the new schedule node.

 Scheduling Active Services in Clustered JBI Environment 419

The cluster monitor of schedule node will receive schedule event messages from
JGroup channel. Once the event message arrives, the cluster monitor will start the
corresponding handling process. If it is need to schedule the active services, the
scheduler will be put into action. The JBI environment monitor can query runtime
information from ServiceMix, the JBI environment of SOAWARE, through admini-
stration API, and sends event message when error happens.

The scheduler enacts the scheduling process according the scheduling algorithm. It
can multicast request and receive response message through channel to query current
state of singleton SUs on every nodes, and multicast schedule map to every node
through channel after scheduled.

The job manager is implemented based on Quartz[8], a job scheduling tools. The
commands to start or stop a SU will be implemented as jobs. When a job is created, it
will put into job pool, and scheduled by Quartz scheduler.

5 Experiment and Discussion

5.1 Experiment

We use an experiment to test whether our scheduling algorithm works well. The ex-
periment simulates such a situation: a cluster that has 5 nodes, and 300 active service
units to be scheduled. The aim of experiment is to check whether the algorithm can
keep the load balance of cluster after scheduled.

The CPU weight, memory weight and network weight of these service units are as-
signed random values between 0 and 100. The test program gets the service unit one by
one, and schedules it to the node which has the least relative load. We record the nodes’
loads when every service unit is scheduled. The result is as shown in table 2.

Table 2. The experiment’s result of scheduling algorithm. The five numbers within square
brackets is the loads of five nodes after certain number of SU is scheduled.

Amount
of SU

CPU load Memory load Network load

5 [43 36 62 67 24] [77 98 35 85 64] [56 33 24 95 51]

10 [95 120 105 138 89] [140 105 89 174 148] [132 127 44 122 150]

20 [250 171 216 232 204] [247 191 219 267 253] [245 204 202 187 233]

50 [518 534 457 518 462] [527 522 495 533 495] [602 514 579 509 579]

80 [798 818 829 824 758] [824 885 904 949 898] [841 805 915 894 811]

100 [1040 1014 1034 1007 1066] [1088 1060 1099 1098 1104] [1096 1020 1118 1047 1009]

150 [1511 1486 1466 1461 1486] [1623 1674 1574 1654 1653] [1485 1573 1529 1554 1465]

200 [2001 1973 2018 1993 1994] [2221 2112 2172 2131 2224] [1996 2017 1942 2072 2099]

300 [2955 3027 2989 3082 2985] [3245 3197 3186 3216 3222] [3041 2947 2988 3069 3025]

420 X. Jia et al.

The result shows that the CPU load, memory load and network load of five nodes
will increase proportionately as the amount of scheduled SU increases. Especially
when the load is heavy, the five nodes keep load balance quit well.

5.2 Discussion

JBI is a new thing in SOA community. Improved by SUN, Apache and other companies
and open source organizations, it makes great progress in the past two years. The JBI
platform Apache Servicemix and SUN openESB has attracted much attention from the
industrial and academic circles.

However, the software infrastructure of JBI is still far from maturity. For example,
the cluster feature of Servicemix is still incomplete [5], and openESB relies on its
application server Glassfish to support clustering [6]. In addition, many JBI compo-
nents are not cluster aware, and will results errors in clustered environment, especially
the one which can provides active services, e.g. the Servicemix-quartz component,
Servicemix-file component, Servicemix-wsn2005 component , etc.

The common solution for active services problem of clustered JBI component is lock
mechanism, which controls the access right of resource, to avoid the access error while
multiple nodes running same active service concurrently. However, the lock mecha-
nism cannot avoid business errors of duplicate works, which results from multiple
instances of same service.

Our approach resolves this problem from a new perspective. By scheduling the ac-
tive services from a global view, it makes sure every active service only has one run-
ning instance in cluster, therefore avoids the runtime and business errors. The approach
is suitable for all the JBI components which have active services problems, without
writing complex lock managers for specific components.

We propose a load balancing algorithm for active services, which is different from
that of passive services. The passive services are invoked by outside HTTP, JMS re-
quests, and the load balancing algorithm is always based on the current state of cluster
node, e.g. Round Robin algorithm, least connection algorithm, least loaded algo-
rithm[9,10]. The active service’s load press on node is uncertain, they may very busy in
this second, but very idle in another second. Load balancing algorithm based on the
current state of cluster is unsuitable. So, we provide an algorithm based on the load
weight of SUs. The load weights of SU are experiential values, indicating SU’s overall
load press on nodes.

In our scheduling algorithm, the accuracy of load weights of SU is very important. In
present time, this value is pre-defined by developer. In the next step, we will develop
tool that monitors and records the load press of SU, and dynamically adjust the value to
enable more accurate load distribution. In addition, the developer of active service
should follow one best practice: let the passive services do heavy works and the active
service invoke it. In this way, the heavy work will not always be done on one node,
avoiding the potential overload problems.

In fact, the “singleton service” problem also exists in middlewares. Weblogic
and Jboss application server all provide mechanism for singleton service in cluster

 Scheduling Active Services in Clustered JBI Environment 421

environment. For example, In Jboss, every singleton service (as MBean) has a
Controller named HASingletonController to control its lifecycle, On each node in
the cluster where these MBeans are deployed, the controller will work with all of
the other controllers with the same MBean name deployed in the same cluster
partition to oversee the lifecycle of the singleton. The controllers are responsible
for tracking the cluster topology. Their job is to elect the master node of the sin-
gleton upon startup, as well as to elect a new master should the current one fail or
shut down. In the latter case, when the master node shuts down gracefully, the
controllers will wait for the singleton to stop before starting another instance on the
new master node [11].

The differences between our approach and Jboss’ includes: (1) though active ser-
vices in JBI environment and the singleton service in application server have some
similarity, they are inherently different things with different execution and lifecycle
management mechanism. (2)our approach has only one “controller”, the active service
scheduler, for all the singleton services in cluster. The merit is obviously. The active
service scheduler knows all the allocation information of singleton services, and this
makes it possible to keep the load balance of all the active services.

6 Conclusion

JBI environment allows developer to define and publish active services. However these
active services may lead to business or runtime error in clustered environment. Aimed
at this problem, a scheduling mechanism for active services in cluster environment is
proposed. We give the overall framework of scheduling mechanism, along with the
scheduling mechanism for load balancing of active services. The approach is
implemented in SOAWARE, a SOA-based application integration platform for electric
enterprises, and an experiment is done to check the effectiveness of scheduling
mechanism.

In the next step, we will try this approach in cloud computing environment, where
cluster is the inherent feature and the active service problems inevitablely exist.

References

1. Vinoski, S.: Java Business Integration. IEEE Internet Computing 9(4), 89–91 (2005)
2. Java Community Process: JSR 208: Java Business Integration (JBI),

 http://www.jcp.org/en/jsr/detail?id=208
3. Rotem-Gal-Oz, A.: SOA Patterns. Manning Publications, MEAP Release (June 2007)
4. Haldor, S., Rolv, B.: Describing Active Services for Publication and Discovery. In: Soft-

ware Engineering Research, Management and Applications, vol. 150, pp. 173–187.
Springer, Heidelberg (2001)

5. Apache Software Foundation: Apache Servicemix Project Home,
 http://servicemix.apache.org

6. SUN : OpenESB: the open enterprise service bus,
 https://open-esb.dev.java.net/

422 X. Jia et al.

7. Montresor, A.: Jgroup Tutorial and Programmer’s Manual. Technical report:
BOLOGNA#UBLCS-2000-13, University of Bologna (2000)

8. Cavaness, C.: Quartz Job Scheduling Framework: Building Open Source Enterprise Ap-
plications. Prentice Hall PTR, Englewood Cliffs (2006)

9. Cardellini, V., Colajanni, M., Yu, P.S.: Dynamic load balancing on web-server systems.
IEEE Internet Computing 3(3), 28–39 (1999)

10. Teo, Y.M., Ayani, R.: Comparison of load balancing strategies on cluster-based web serv-
ers, Simulation. The Journal of the Society for Modeling and Simulation Interna-
tional 77(5-6), 185–195 (2001)

11. Ivanov, I.: J2EE Clustering with JBoss,
 http://onjava.com/pub/a/onjava/2003/08/20/
 jboss_clustering.html?page=1

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 423–434, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Task Parallel Scheduling over Multi-core System∗

Bo Wang

Department of Computer Science and Technology,
Tsinghua National Laboratory for Information Science and Technology

Tsinghua University Beijing 100084, China
bo-wang06@mails.tsinghua.edu.cn

Abstract. Parallel scheduling research based on multi-core system become
more and more popular due to its super computing capacity. Scheduling fair-
ness and load balance is the key performance indicator for current scheduling
algorithm. The action of scheduler can be modeled as this: accepting the task
state graph, task scheduling analyzing and putting the produced task into sched-
uling queue. Current algorithms involve in the action prediction according to
the history record of task scheduling. One disadvantage is that it becomes little
efficient when task cost keeps great difference. Our devotion is to rearrange one
long task into small subtasks, then form another task state graph and parallel
schedule them into task queue. The final experiments show that 20% perform-
ance booster has been reached by comparison with the traditional method.

Keywords: task, parallel scheduling, multi-core.

1 Introduction

Multi-core system becomes more and more popular with the CPU frequency reaching
the summit. In future, common desktop CPU can possess more than 8 cores and some
server can reach from 64 to 128 cores. Hardware has provided so powerful computing
capacity that more research work is currently focusing on the parallel application such
as parallel scheduling, parallel task partition, parallel communication and parallel
accessing policies. As far as the parallel scheduling is concerned, this question is NP-
Hard. First, our target is to reduce the whole task running time to minimum duration;
second, the difficulties are how to optimally partition the task into different processors
the incoming tasks which have different parameters such as beginning time, executing
time and ending time. The common way to solve this is to adopt some approximate
algorithm such as Fixed Parameter Algorithm.

One whole process of task scheduling can be described likes this: first, program-
mers write one parallel program using the parallel programming language such as

∗ This Work is co-sponsored by Natural Science Foundation of China (60673152,60773145,

60803121), National High-Tech R&D (863) Program of China (2006AA01A101,
2006AA01A106, 2006AA01A108, 2006AA01A111, 2006AA01A117), National Basic Re-
search (973) Program of China (2004CB318000), and Tsinghua National Laboratory for In-
formation Science and Technology (TNLIST) Cross-discipline Foundation.

424 B. Wang

Fig. 1. This shows the relation between task parallel scheduler and operating system scheduler

OpenMP or TBB. Through the controlling over the task partition using the special
marking, programmers tell the scheduling which parts can be executed parallel and
which parts must be executed serial. Second, based on the initial task logical partition
proposed by programmers, the scheduling will take the bridge role between the logi-
cal tasks and real processors. One way, it accepts the input tasks and strands some of
them to form one string of pearls which means that these must be scheduled serial,
meanwhile, it also it can organize them to form the independent subtasks which
means that they can be scheduled parallel.

We simple decompose the action of parallel task scheduler as follows: acquiring
the task state graph, analyzing it with certain algorithm, producing the executing order
and putting them into the tasks queue. Based on multi-core system, our work is
exploiting some parallel running on each step. And our proposed algorithm is trying
to partition one task into many subtasks which some of them can be parallel executed,
and immediately put them into the task queue without predicating the future
conditions.

2 Related Work

Much research work assumes that some tasks need more execution time. The algo-
rithm GFB, RHS, Dhall shows bad performance when at least one task with large
execution requirements. [1][2].James H. Anderson proposes one scheduling method for
real-time systems implemented on multi-core architecture that encourages certain
groups of tasks to be scheduled together while ensuring real-time constraints [3][4]. The
current Linux scheduler is Completely Fair Scheduler (CFS) scheduler which was
introduced into the Linux kernel in version 2.6.23[6]. Some research imposes certain
requirements that may limit its practical implementation and address such limitation

 Task Parallel Scheduling over Multi-core System 425

which requires processor time to always be allocated in units of fixed-sized quanta
that are synchronized across processors and determine the impact of relaxing it [5].
Finding a schedule of minimal length is in general a so difficult problem that people
begin to realize that optimal schedule is a trade-off between high parallelism and low
processor communication. In fact, the general decision problem associated with the
scheduling problem is NP-complete [8]. The parallel iterator allows the structure of the
program to remain unchanged, it may be used with any collection type and it supports
several scheduling schemes which may even be decided dynamically at run-time.
Along with the ease of use, the results reveal negligible overhead and the expected
inherent speedup [9].

The paper is organized as follows: section 3 includes a detailed account of multi-
processor parallel scheduling; section 4 evaluates the system performance and ex-
perimental results. Section 5 and 6 are future work and conclusion.

3 Task Scheduling

Task scheduling can be separated into static and dynamic scheduling. Static schedul-
ing usually means that the scheduling will run at compile time, as opposed to dynamic
scheduling, which is scheduled during the execution of the program. Fig.2 shows
current Linux scheduler and fig.3 shows the common task state graph which can be
decomposed into several subtasks and executed parallel.

Fig. 2. the hierarchy scheduler in Linux 2.6
based on multi-core system

Fig. 3. This figure shows one special task
graph. It includes in the node whose value
shows the computation cost and the edge
whose value stands for communication cost.

3.1 Task Scheduling Definition

Processor Allocation: A processor allocation A of the task graph G= (V,E,w,c) on a
finite set P of processors is the processor allocation function proc: V→P of nodes of
G to the processor of P.

426 B. Wang

Scheduling: A schedule S of the task graph G= (V,E,w,c) on a finite set P of proces-
sor is the function pair (ts,proc), WHERE

w: is the computation cost function of the edge n ∈V. The communication cost w(n) of
node n is the time the task represented by n occupies a processor of P for its execution.

c: is the communication cost function of the edge e∈E. The communication cost c(e)
Ts: is the start time function of the nodes of G.
Proc: V→P is the processor allocation function of the nodes of G to the processor of P.
The two functions ts and proc describe the spatial and temporal assignment of tasks

which reflect the feature of the task graph.

3.2 Concurrent Model Definitions for Scheduling

In Figure 4: the incoming task is submitted to the scheduler which decides which sub-
scheduler can acquire it; during this process, there exists one basic principle: try to
allocate the dependent tasks into the same physical package unit in order to reducing
the communication overhead and saving the processor power consumption. Different
processors can access the task queue at the same time.

Fig. 4. in this figure, 1, 2, 3 represent the execution order for one application, two 2 means two
tasks can be executed parallel

4 Parallel Algorithm Implements in the Multi-core System

In figure 5, it shows several algorithms to access the concurrent queue; different algo-
rithms need the support of certain protocols for data consistency [11]. Using some
locks and doing some traverse are required to ensure they are deadlock-free and star-
vation-free. One method is deadlock-free if this phenomenon is not happened in any
case that two or more threads are waiting each other to release their locked resources.
One method is starvation-free if in the finite steps each call will finish executing.

 Task Parallel Scheduling over Multi-core System 427

Fig. 5. five different synchronization algorithms. In (a) shows one coarse-grained algorithm and
others show fine-grained or improved fine-grained algorithm. In (e) shows the non-blocked
algorithm and others show blocked algorithm.

Below are some introducing about these algorithms. As far as the performance as a
whole is concerned, more factors should be considered such as the fairness principle,
asymmetry architecture, thread migration and repeatability, etc [12]. Fairness means
that threads with the same priority should receive about the same share of core proc-
essing power [13].

4.1 Synchronization Algorithm Introduction

4.1.1 Coarse-Grained Synchronization
Each method locks the object to avoid contention happening on the different threads.
The disadvantage is when many threads access it at the same time, it will reduce the
throughput.

4.1.2 Fine-Grained Synchronization
This method splits object into pieces and each of them has its own lock; more than
one thread can access the disjoint pieces not damaging the queue integrity and consis-
tency. In figure 5, b is the operation for removing node a. To be safe, remove function
must lock both previous node and current node until finding the correct location to
remove. Comparing current key value with node’s hash value, deciding if find the
right place.

4.1.3 Optimistic Synchronization
This method tries to reduce synchronization costs. Take an example for remove op-
eration. When it traverses the queue and does not find the correct node, it does not
lock previous and current node; and when it find the correct node, it will lock the
current and previous nodes and then it need to validate that these two nodes are in the

428 B. Wang

Fig. 6. One node is removed by another
thread, but if current thread does not traverse
the queue and verify that current node is
reachable, then this bad scenario will happen

Fig. 7. (a) Shows one thread wants to remove
node a; another wants to add node b, in the
end node a is correctly added while b is not
added into the queue. (b) Shows one wants to
remove a; another wants to remove b. In the
end, a is removed and b not.

current queue by traversing from the head until the current node is reachable. If cur-
rent is unreachable, this operation will be failed. The main reason for validating is that
traversing any dynamically changing lock-based queue, sometimes if the nodes what
you are operating are removed by other threads, still you think these nodes are well
keeping in the queue. For a clear description, fig.6 is the figure for this scenario:

4.1.4 Lazy Synchronization
During the end of optimistic method operation such as add, remove, one thing must
be done that the current node must be reachable from the head node. This is acquired
by traversing the whole queue. So this method works better if the cost of traversing
the queue twice (first finding the correct node) without locking is evidently less than
the cost of traversing the queue once with locking.

4.1.5 Non-blocking Synchronization
It is one good idea to mark nodes as logically removed before physically removing
them from the queue. It will bring about the some disadvantages we speak of above.
The main reason resulting in it lies in not atomic for logical and physical operations.
In this method, we use one operation to verify that they are atomically executed. In
Figure 7, the scenario (a) and (b) are not successful for all operations. If so, it will
need more re-traversing and make the call delayed.

4.1.6 Dual-Accessing Synchronization
All the above methods illustrate the parallel accessing the queue without destroying
the data consistency. One disadvantage for them is that when the data length becomes
long, more work will be done on the traversing the queue and one replaceable parallel
structure is parallel hash table and another application scenario for above parallel
algorithm is data sorting. Our proposed applied parallel accessing method is dual-
accessing and dynamic changeable length of queue structure whose operation is push-
ing data into the front of the queue and popping data from the tail of the queue when
data length is dynamic changing with the operation keeping.

 Task Parallel Scheduling over Multi-core System 429

4.2 Several Algorithm Implementations for Parallel Adding Operation

input:A:one value;Q:one queue which will
be inserted by A

ouput:Q
begin
 {initialize pred,curr,key;}
 Lock Q;/** it can be blocked**/
 while curr.key<key

 do { pred=curr;curr=curr.next;}
 if key==curr.key then
 return false
 else then
 {initialize node ;}
 node.next=curr;
 pred.next=node;
 return true;
 end if
 Unlock Q;
end begin

 (a)Coarse-Grained Synchronization

input:A:one value;Q:one queue which will
be inserted by A

ouput:Q
begin
 {initialize head,pred,curr,key;}
 lock head; curr=pred.next;lock curr;

/*lock can be blocked*/
 while curr.key<key do

{unlock pred;pred=curr;
curr=curr.next;unlock curr;}

 if key==curr.key then
 return false
 else then
 {Initialize node ;}
 node.next=curr;
 pred.next=node;
 return true;
 end if
 Unlock curr;Unlock pred;
end begin;

 (b) Fine-Grained Synchronization

Fig. 8. code description for add function in these parallel algorithms. The lazy, non-blocking
and dual-accessing algorithms are not list here.

5 Experiment Evaluation

To demonstrate the multi-core architecture, serials of case studies are performed to
evaluate the multi-core effectiveness of system. Some instances in task scheduling
will run between 10s and several hours, depending on the type of application and
allocation of resources. Here we simulate the action of the task scheduler and design
the experiments under the multi-core system.

The scheduler handle the tasks in multi-core system like this way: when it queues
the tasks in the order they arrive it schedules one of them into optimal nodes accord-
ing to the dependency of tasks. So the common action is this: the queue of tasks is
changing dynamically with the tasks’ increment and decrement. Several processors
can concurrently access the tasks and under with different load of task number, these
algorithms show different performance. Below are the details about them.

First experiment reflects the algorithm execution time under different data size
from 1024 to 262144, keeping 8 threads accessing these data during thread is alive.
From (a), fine-grained algorithm has the longest running time and steep variation
trend, on the other side, coarse-grained algorithm keep the lowest running time and
good performance. One main reason why the result is so is that during sequential
operations, including add, contain and remove, thread number is small, meanwhile
operation does not frequently acquire the lock. So coarse-grained can get the best
performance in this scenario. By comparison, parallel algorithm in (d) shows the lazy

430 B. Wang

acquires best performance, meanwhile, fine-grained get worst. In sequential and par-
allel algorithm, fine-grained always keep worst performance. From the algorithm,
even if it can let more threads concurrently access the queue, it must lock the two
other objects from the head until it finds the correct object. So during this it spends
more time locking and releasing useless object. With the data size bigger and bigger,
the overhead on this becomes more obvious. One serious result is its memory over-
flow when the data size reaches 128*64.

When data size is kept constant at the value of 128*256, thread number is changed
from 128 to 128*1024. (b) and (d) reflect the execution time of 5 algorithms. During
sequential operation (add, contain, and remove), even if thread number become big-
ger, each of them can finish all operations without waiting for anytime. All 5 algo-
rithms spent same time on different thread number; by comparison, parallel operation
does not keep level and show certain increment with the growing of thread number.
The lazy algorithm acquires best performance, while fine-grained does worst.

In another group experiment, we simulate the action of LSF which is used to
analysis the off-instrument SOLiD data. SOLiD belongs to one of next-generation
sequencing technologies. It expands the boundaries of traditional genetic analysis and
enables applications such as whole genome and targeted resequencing, whole tran-
scriptome analysis, de novo sequencing, ChIP-Seq, and methylation analysis. The
action of LSF in the application of SOLiD can be reduced to this: extract the com-
mand and corresponding parameters from the input file and schedule it to one of node.
After the execution of the command, the other node will return the result to the initial
node. In traditional task scheduling, one task for job manager is to deciding which

0 0.5 1 1.5 2 2.5 3

x 10
5

0

500

1000

1500

2000

2500

3000

3500

data size

ex
ec

ut
io

n
tim

e(
s)

sequential execution for add and remove

Coarse-Grained

Fine-Grained

Optimistic
Lazy

Non-Blocking

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

10

20

30

40

50

thread number

ex
ec

ut
io

n
tim

e(
s)

parallel execution for add and remove

Coarse-Grained

Fine-Grained

Optimistic
Lazy

Non-Blocking

0 2 4 6 8 10 12 14

x 10
4

0

100

200

300

400

500

600

data size

ex
ec

ut
io

n
tim

e(
s)

Coarse-Grained

Fine-Grained

Optimistic
Lazy

Non-Blocking

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

5

10

15

20
parallel execution for add and remove

thread number

ex
ec

ut
io

n
tim

e(
s)

Coarse-Grained

Fine-Grained

Optimistic
Lazy

Non-Blocking

parallel execution for add and remove

Memory
Overflow

Fig. 9. Algorithms execution efficiency in different data size or thread number. In (a) and (c),
keeping thread number is one constant value for 128*256, meanwhile, in (b) and (d), constant
value is data size. This experiments show that using different algorithm, execution performance
exist evident difference.

 Task Parallel Scheduling over Multi-core System 431

node is optional for scheduling according to the certain algorithm. In future multi-
core system will possess more cores such as 64,128 or more. Letting each core
positive acquires tasks will save more time and resource. In traditional method,
maybe scheduler produces many tasks which can not be removed timely because
others nodes can not finish related job. But it still keeps many connections with
different nodes. The main reason is that scheduler greedily works and does not care
if so many threads can congestion the system and take up lots of resources. In our
experiments, if each thread needs much space to save arrays or other objects, too
many threads will result in the heap overflows. The main reason for this is that
thread takes up some memory space but CPU has not chances to handle it timely.
Even if multi-threads will cover up some waiting time during threads interrupt, too
many threads will result in the improvement of the thread switching load and sacri-
fice the time of real execution of thread.

 The experiments are done like this: one file keeps the list of gene data and match-
ing parameters which are used as one sub-string to find if it is existed in the gene data.
The scheduler will one by one dispatch the task and run it as one thread. As far as OS
is concerned, the object of its managing is process or thread according to different
concrete operating system.

Experiment Environment
Operating system: Linux el5xen
CPU: SMP Intel(R) Xeon(R) 8CPU E5310 @ 1.60GHz
Cache size on each core: 4096KB
Memory size: 8GB

In figure 10 and 11, we compare the sequential and multi-thread based on multi-core
system. In figure 10, sequential method is better than latter. The main reason is that
each thread is allocated with less time which improves the overhead in managing and
switching threads. Here we give the function:

auxiliaryttt realworktotal +=

The total execution is partitioned into two parts: one is real work and another is auxil-
iary. If each thread works less time, the auxiliary work will improve accordingly. So
we should give appropriate execution time for each thread. From the experience, each
thread should execute the instruction from 10,000 to 100,000. In Figure 11, with the
increase of execution time, parallel algorithm shows better than sequential.

In figure 12 and 13, we compare the traditional and our method, even if the tra-
ditional scheduling allocates one task which will be executed as one thread, the
main disadvantage is that in one internal thread, opening file and data computing
are executed together. Between them, there need some interruption invoke instruc-
tion and thread switching which will result in cache flush and thread waiting. The
result illustrates that given certain workload (source code available through our
email), 20% performance booster has been reached by comparison with the initial
method.

432 B. Wang

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12
test program execution on multi-core system

program repeat

ex
ec

ut
io

n
tim

e
(s

)

thread execution as multi-thread

thread execution as sequential order

1 2 3 4 5 6 7 8 9 10

15

20

25

30

35

40

45

50

55
test program execution on multi-core system

program repeat

ex
ec

ut
io

n
tim

e
(s

)

thread execution as multi-thread

thread execution as sequential order

Fig. 10. The number is 2000 files, 5000
strings and 100 sub-strings. Each file includes
one string and sub-string. The operation is
looking for sub-string in one string.

Fig. 11. The number is 2000 files, 5000
strings and 100 sub-strings. Each file includes
one string and sub-string.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

task scheduling on multi-core system

file number

ex
ec

ut
io

n
tim

e
 (s

)

task parallel decomposition method

traditional scheduling method

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140
task scheduling on multi-core system

data length

ex
ec

ut
io

n
tim

e
(s

)

task parallel decomposition method

traditional scheduling method

Fig. 12. In this figure, two scheduling meth-
ods are executed on multi-cores (8)

Fig. 13. we compare the traditional method
with our proposed method when the data
length changes

6 Future Work

Our future work will focus on the performance research given different length of task
not subtask in order to fulfill more fairness policy and shorten the penalty time wasted
by the small subtask execution time. Another puts forward requirement specification
method based on a sliding constraint, which model the problem as an extension of the
multiple-choice knapsack problem [15]. Batch mode methods provide fast planning by
exploring characteristics of distributed and highly heterogeneous systems [16]. Most of
parallel scientific applications have demand on simultaneous exploitation of tasks and
data parallelism for efficient and effective utilization of system and other resources
[17]. Some mixed-parallel applications arise for instance in image processing applica-
tions that consist of the scheduling of image filters, where some of these filters can be
themselves implemented as data-parallel applications [18]. To acquire the maximal

 Task Parallel Scheduling over Multi-core System 433

throughput for accessing the computer resources, batch scheduler is used as a com-
mon resources management system in some production [19].

7 Conclusion

In this paper, one rearranging task method is presented based on the gene matching
application. Comparing with traditional method, more work should be done to de-
compose the task into equal length of subtasks rather than predict the future task char-
acteristic. Another work that we have done is to design one concurrent queue which
can be parallel accessed by multi-core system. Comparing with the traditional design
method, our method is more pragmatic and more close to the real application which
shows good efficiency in different conditions.

References

[1] Baruah, S.K., et al.: Proportionate progress: a notion of fairness in resource allocation. In:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing. ACM,
San Diego (1993)

[2] Bertogna, M., Cirinei, M., Lipari, G.: Schedulability Analysis of Global Scheduling Al-
gorithms on Multiprocessor Platforms. IEEE Trans. Parallel Distrib. Syst. 20(4), 553–566
(2009)

[3] Anderson, J.H., Calandrino, J.M.: Parallel task scheduling on multicore platforms.
SIGBED Rev. 3(1), 1–6 (2006)

[4] Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J., Baruah, S.: A categori-
zation of real-time multiprocessor scheduling problems and algorithms. In: Leung, J.Y.
(ed.) Handbook on Scheduling Algorithms, Methods, and Models, pp. 30.1–30.19.
Chapman Hall/CRC, Boca Raton (2004)

[5] Devi, U.C., Anderson, J.H.: Desynchronized Pfair Scheduling on Multiprocessors. In:
Proceedings of the 19th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS 2005) - Papers, vol. 01. IEEE Computer Society, Los Alamitos (2005)

[6] Kumar, A., http://www.ibm.com/developerworks/linux/library/l-cfs/
index.html

[7] Anderson, J.H., Calandrino, J.M.: Parallel Real-Time Task Scheduling on Multicore Plat-
forms. In: Proceedings of the 27th IEEE International Real-Time Systems Symposium.
IEEE Computer Society, Los Alamitos (2006)

[8] Sinnen, O.: Task Scheduling for Parallel Systems. Wiley Series on Parallel and Distrib-
uted Computing. Wiley-Interscience, Hoboken (2007)

[9] Giacaman, N., Sinnen, O.: Parallel iterator for parallelising object oriented applications.
In: Proceedings of the 7th WSEAS International Conference on Software Engineering,
Parallel and Distributed Systems. World Scientific and Engineering Academy and Society
(WSEAS), Cambridge (2008)

[10] Ali, A., Johnsson, L., Subhlok, J.: Scheduling FFT computation on SMP and multicore
systems. In: Proceedings of the 21st annual international conference on Supercomputing.
ACM, Washington (2007)

[11] Herlihy, M.: The art of multiprocessor programming. In: Proceedings of the twenty-fifth
annual ACM symposium on Principles of distributed computing. ACM, Denver (2006)

434 B. Wang

[12] Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel Job Scheduling — a Status
Report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS,
vol. 3277, pp. 1–16. Springer, Heidelberg (2005)

[13] Li, T., Baumberge, D., et al.: Efficient and scalable multiprocessor fair scheduling using
distributed weighted round-robin. In: Proceedings of the 14th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming, ACM, Raleigh (2008)

[14] Chatzigiannaki, I., Giannouli, G., et al.: Scheduling tasks with dependencies on asymmet-
ric multiprocessors. In: Proceedings of the twenty-seventh ACM symposium on Princi-
ples of distributed computing. ACM, Toronto (2008)

[15] Sonnta, R., et al.: An Efficient Weighted-Round-Robin Algorithm for Multiprocessor Ar-
chitectures. In: Proceedings of the 41st Annual Simulation Symposium (ANSS-41 2008).
IEEE Computer Society, Los Alamitos (2008)

[16] Wieczore, M., Podlipni, S., et al.: Bi-criteria Scheduling of Scientific Workflows for the
Grid. In: Proceedings of the 2008 Eighth IEEE International Symposium on Cluster
Computing and the Grid. IEEE Computer Society, Los Alamitos (2008)

[17] Xhaf, F., Baroll, L., et al.: Batch mode scheduling in grid systems. Int. J. Web Grid
Serv. 3(1), 19–37 (2007)

[18] Bansa, S., Kuma, P., et al.: An improved two-step algorithm for task and data parallel
scheduling in distributed memory machines. Parallel Comput. 32(10), 759–774 (2006)

[19] Aid, K., Casanova, H.: Scheduling mixed-parallel applications with advance reservations.
In: Proceedings of the 17th international symposium on High performance distributed
computing. ACM, Boston (2008)

Cost-Minimizing Scheduling of Workflows on a
Cloud of Memory Managed Multicore Machines

Nicolas G. Grounds1, John K. Antonio2, and Jeff Muehring1

1 RiskMetrics Group, 201 David L. Boren Blvd, Suite 300, Norman, OK, USA
2 School of Computer Science, University of Oklahoma, Norman, OK, USA

Abstract. Workflows are modeled as hierarchically structured directed
acyclic graphs in which vertices represent computational tasks, referred
to as requests, and edges represent precedent constraints among requests.
Associated with each workflow is a deadline that defines the time by
which all computations of a workflow should be complete. Workflows are
submitted by numerous clients to a scheduler that assigns workflow re-
quests to a cloud of memory managed multicore machines for execution.
A cost function is assumed to be associated with each workflow, which
maps values of relative workflow tardiness to corresponding cost function
values. A novel cost-minimizing scheduling framework is introduced to
schedule requests of workflows so as to minimize the sum of cost func-
tion values for all workflows. The utility of the proposed scheduler is
compared to another previously known scheduling policy.

1 Introduction

The service-oriented architecture (SOA) framework is a viable approach to cloud
computing in which computational requirements of a user are represented by
basic service requests. In this framework, the computational requirements of a
user are modeled as a workflow graph (WFG), which is a directed and acyclic
graph that defines precedence constraints among service requests required by
the user. WFGs can vary greatly in size and structure. For example, a small
WFG may contain just a few requests (i.e., vertices) while a large WFG may
contain thousands of requests. Regarding structure, at one extreme a WFG may
represent a single chain of requests in which no two requests may be executed
in parallel. At another extreme, the structure of a WFG may contain numerous
independent chains of requests in which requests belonging to distinct chains
may be executed in parallel.

For the purposes of this paper, the SOA is supported by a collection of
memory-managed multicore machines. Each machine supports one or more ser-
vices, and associated with each service are a number of supporting operations. A
service request involves the execution of an operation provided by a service. Each
multicore machine in the assumed platform can concurrently execute multiple
service requests because each request is executed as an independent thread on the
machine. The instantaneous performance efficiency of each machine is assumed
to depend on an aggregate measure of CPU loading and heap memory loading

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 435–450, 2009.
� Springer-Verlag Berlin Heidelberg 2009

436 N.G. Grounds, J.K. Antonio, and J. Muehring

of all requests executing on the machine. An efficiency-based performance model
for memory-managed multicore machines is adopted in this paper.

In the framework considered here, WFGs are assumed to be submitted by mul-
tiple clients to a scheduler. Associated with each submitted WFG is a deadline
that defines the time by which all requests of the WFG should complete execu-
tion. A cost function is assumed to be associated with each workflow, which maps
values of workflow tardiness to corresponding cost function values. A novel cost-
minimizing scheduling approach is introduced to schedule requests of workflows
so as to minimize the sum of cost function values for all workflows.

The remainder of the paper is organized in the following manner. Section
2 includes an overview of related work. Section 3 describes the assumed cloud
environment, including models and descriptions for the workflow graphs and
the machines that support the cloud’s SOA. Section 4 describes the new cost-
minimizing scheduler. Section 5 provides the results of simulation studies, fol-
lowed by concluding remarks in the final section.

2 Background and Related Work

Previous related work is reviewed in three broad areas: (1) machine modeling and
simulation environments; (2) automatic memory management; and (3) schedul-
ing and load balancing.

Considerable work has been published related to modeling of machines in
distributed environments. Much of the past research in this area has focused
on modeling and predicting CPU performance, e.g., [1, 2]. The machine model
described in the present paper (refer to Section 3.3) relies on assumed knowledge
of the characteristics of the requests (i.e., computational tasks); it is similar in
a sense to the SPAP approach proposed in [1].

In memory managed systems, the effect of long and/or frequent garbage col-
lections can lead to undesirable – and difficult to predict – degradations in system
performance. Garbage collection tuning, and predicting the impact of garbage
collections on system performance, are important and growing areas of research,
e.g., [3, 4, 5, 6, 7]. To estimate the overhead associated with various garbage col-
lectors, experiments were designed and conducted in [4, 5] to compare the per-
formance associated with executing an application assuming automatic memory
management versus explicit memory management. The machine model proposed
here accounts for the overhead associated with automatic memory management.

Formulations of realistic scheduling problems are typically found to be NP-
complete, hence heuristic scheduling policies are generally employed to provide
acceptable scheduling solutions, e.g., refer to [7, 8, 9, 10, 11, 12]. The scheduling
evaluations conducted in the present paper account for the impact that garbage
collection has on a machine’s performance. Examples of other memory-aware
scheduling approaches are described in [7, 13].

Load balancing involves techniques for allocating workload to available ma-
chine(s) in a distributed system as a means of improving overall system perfor-
mance. Examples of both centralized and distributed load balancing approaches

Cost-Minimizing Scheduling of Workflows on a Cloud 437

are described in [8]. The scheduling framework developed in the present paper
incorporates load balancing in the sense that the scheduler only assigns requests
to machines if doing so is beneficial relative to minimizing a desired cost function.
For simplicity the algorithm assumes every machine can service any request al-
though relaxing this assumption is a straight-forward extension to the approach
described here.

3 Cloud Environment

3.1 Overview

Fig. 1 illustrates the major components of the assumed system in which clients
submit workflow graphs (WFGs) to a cloud environment for execution. Clients
purchase computing services from the cloud, which implements a service-oriented
architecture. Associated with each WFG is a service-level agreement (SLA) [9]
that defines a deadline for finishing all computations of the WFG. An SLA
generally defines cost penalties in the event that the terms of an SLA are not
met, e.g., a deadline is missed. For instance, a cost penalty value increases as a
function of increasing WFG tardiness. The precise terms of an SLA are carefully
constructed for business applications in which timely delivery of computational
results are a critical component of a client process — and not having these results
delivered to the client by the deadline incurs costs.

The next two subsections provide descriptions and models for the WFG and
machine components shown in Fig. 1. Variants of the material presented in
Subsections 3.2 and 3.3 were originally introduced in [14]. A primary contribution
of the present paper is the introduction of the new cost-minimizing scheduler,
which is described in Section 4 and evaluated through simulation studies in
Section 5.

3.2 Workflow Graph (WFG) Model

A WFG is a directed acyclic graph with a hierarchical structure composed of par-
allel and sequential combinations of request chains (RCs). An example WFG is
shown in Fig. 2(a). The vertices of the graph represent requests and the directed
arcs denote precedence constraints that exist between requests, e.g., request 2
in Fig. 2(a) cannot begin executing until request 1 finishes executing.

The hierarchical nature of the WFG of Fig. 2(a) is illustrated by the tree
structure in Fig. 2(b). The leaf nodes of the tree represent the requests of the
WFG. Traversing the tree in a depth-first order defines the structure of the asso-
ciated WFG; non-leaf tree nodes are labeled “S” or “P,” which defines whether
that node’s children must be executed sequentially (S) or may be executed in
parallel (P). The children nodes (sub-trees) of a node labeled P are assumed
to represent independent and identical computational structures executed with
distinct input data. Although all of the children sub-trees of a P node could
potentially be executed in parallel, it may not be possible (or effective) to fully

438 N.G. Grounds, J.K. Antonio, and J. Muehring

WFG
Generation

(Client)

Scheduler

Request
Service

(Machine)

request completion;
machine efficiencies

request-to-machine
assignments

WFG
Generation

(Client)

WFG
Generation

(Client)

Request
Service

(Machine)

Request
Service

(Machine)

WFGs

Fig. 1. Major components of the system model

1

2

3

4

5

6

4’

5’

6’

7

8

9

(a)

S

PS

1 2 3

S

7 8 9S

4 5 6

S

4’ 5’ 6’

S

4” 5” 6”

(b)

4”

5”

6”

Fig. 2. (a) Sample WFG with one of five RCs encircled. (b) Hierarchical structure of
the WFG shown in (a).

Cost-Minimizing Scheduling of Workflows on a Cloud 439

exploit all available parallelism associated with all currently executing WFGs
due to resource limitations and/or loading.

When a WFG arrives at the scheduler, it is placed in a pool that holds all
WFGs that have not yet finished execution. Once all requests of a WFG have
finished execution, the entire WFG is defined as finished and removed from the
scheduling pool. The scheduler tracks the status of individual requests according
to the following states: “blocked,” “ready,” “executing,” or “finished.”

The time instant that the state of a request r transitions from “blocked” to
“ready” is defined as r’s birth time and is denoted by br. The finish time of a
request is denoted by fr. The birth time of a request r is defined as the maxi-
mum of all finish times of r’s precedence requests. For example, in Fig. 2(a), b7 =
max{f6, f6′ , f6′′}. The time instant that the state of a request transitions from
“ready” to “executing” is defined as the request’s start time and is denoted by sr.
The start time of a request must be greater than or equal to its birth time, i.e.,
sr ≥ br. The function of the scheduler is to determine the start time sr for each
request r as well as determine r’s machine assignment, denoted by Mr.

The time instant when WFG w arrives at the scheduling pool is defined as
w’s birth time, denoted by bw. The birth time of a WFG is also the birth time of
all requests in the WFG that have no precedence constraints, e.g., the birth time
of the WFG in Fig. 2(a) equals the birth time of request 1. The start time of a
WFG is defined as the minimum start time value of all requests associated with
the WFG. Thus, the start time of w is defined by sw = minr∈w{sr}. The finish
time of w, denoted fw, is defined as the maximum finish time of all requests in
w, i.e., fw = maxr∈w{fr}.

Associated with each WFG w is a known deadline dw, which defines the
point in time by which w should finish execution. If fw ≤ dw, then w is not
tardy; otherwise (if fw > dw) w is declared to be tardy. By making judicious
choices for request start times and machine assignments, the scheduler attempts
to minimize the cost associated with workflow tardiness. Because each machine
has a finite capacity, assigning too many concurrent requests to the same machine
can degrade the efficiency of that machine, thus extending the finish times of all
requests assigned to that machine. Extending the finish times of requests can
ultimately extend the finish time of the corresponding WFGs, possibly leading
to one or more being tardy.

3.3 Efficiency-Based Machine Model

Each request is assumed to require a fraction of two basic resources available on
each machine of the cloud: CPU cycles and heap memory. Table 1 summarizes the
notation and definitions of basic computational and heap memory requirements
for request r.

The CPU utilization factor of r, Ur, can be no greater than unity and no
less than zero. A request having a CPU utilization factor of unity is typically
referred to as a CPU-bound request, e.g., refer to [1].

The efficiency value for a machine depends on the aggregate CPU and heap
memory loading due to all requests executing on the machine. The CPU and heap

440 N.G. Grounds, J.K. Antonio, and J. Muehring

Table 1. Definitions of CPU and heap memory requirements for request r

Cr > 0 Cr is the number of CPU cycles required to complete r.
Ir ≥ Cr Ir is the execution time duration of r on an ideal machine.

Ur = Cr/Ir Ur is the CPU utilization factor of r.
Hr > 0 Hr is the maximum reachable heap memory requirement of r.

memory loading of a given machine changes with time only when new requests
are assigned and start executing on the machine, or when existing requests finish
execution on the machine. Generally, The efficiency value of a machine generally
decreases when new requests begin executing on the machine, and increases when
request(s) complete execution on that machine.

The machine to which request r is assigned is denoted by Mr. The efficiency
of machine Mr from time instance ti to time instance ti+1, denoted by e(Mr, ti),
has a value between zero and unity. The number of CPU cycles remaining to
complete execution of request r at time instance ti is denoted by cr(ti). The value
of cr(ti+1) is calculated based on cr(ti) according to the following equation:

cr(ti+1) =
{

Cr, ti+1 < sr

max {0, cr(ti) − (ti+1 − ti)e(Mr, ti)Ur} , ti+1 ≥ sr
(1)

For time instants less than r’s start time, the value of cr(t) remains constant
at Cr (see Table 1) because the request has not yet started executing. For time
instants greater than the request’s start time, the value of cr(t) decreases ac-
cording to the difference equation defined by the second case of Eq. 1. The value
deducted from the CPU cycles remaining to complete execution of request r is
proportional to the product of the efficiency of the machine on which the re-
quest is assigned and that request’s CPU utilization factor. Thus, the maximum
possible deduction is ti+1 − ti, which corresponds to a situation in which the re-
quest is executing on a machine with an efficiency of unity and the request has a
CPU utilization factor of unity. The application of the max function in the equa-
tion ensures that the number of CPU cycles remaining to complete execution of
request r is non-negative.

Fig. 3 illustrates how changes in a machine’s efficiency value affects the time
required to execute a request on that machine. From the figure, notice that re-
quest r starts executing on the assigned machine at t = sr. Near the beginning
of the request’s execution, note that the efficiency of the machine is relatively
high, and the slope of the curve for cr(t) is correspondingly steep (refer to Eq. 1).
Throughout the execution of request r, other requests start executing on the ma-
chine (corresponding to decreases in the machine’s efficiency value) and complete
execution on the machine (corresponding to increases in the machine’s efficiency
value). The finish time of r is defined as the first point in time when cr(t) = 0,
indicated by fr in Fig. 3.

The following discussion describes how the value of a machine’s efficiency is
modeled. Throughout this discussion, it is understood that the efficiency value
is related to a particular machine for a particular time instant. Thus, the value

Cost-Minimizing Scheduling of Workflows on a Cloud 441

e(Mr , t)

1

t0

cr(t)

t0

Cr

tsr

0
frti ti+1

Fig. 3. Illustration of how a machine’s efficiency value affects the time required to
execute a request on the machine

of efficiency is often referred to as simply e, instead of e(M, t), to ease notational
burden.

CPU loading and heap memory loading are the two primary factors used to
characterize a machine’s relative efficiency. In the machine model, the overall
efficiency of a machine is defined by the product of two terms:

e = eceh. (2)

The terms on the right hand side of Eq. 2 are defined as the CPU efficiency
and heap efficiency, respectively. The values of ec and eh represent the relative
impact on a machine’s overall efficiency due to loading of the machine’s CPU
and heap resources, respectively. The specific functions assumed in the present
paper are given by Eq. 3 and Eq. 4.

ec =
{

1, �c < 4
(4/�c), �c ≥ 4 (3)

eh =
10

10 + 1
(1/�h)−1

(4)

Derivations of these two functions are provided in [14]. The CPU efficiency func-
tion of Eq. 3 models a quad-core machine with a CPU loading factor of �c ≥ 0.
The value of �c is assumed to equal the sum of the Ur’s (CPU utilization factors)
of all requests executing on the machine. The heap efficiency function of Eq. 4
models the efficiency of the machine’s memory managed system as a function
of a normalized heap loading factor, 0 < �h < 1. The specific function of Eq. 4
assumes the time required for a single (full) garbage collection is 10 times less
than the execution time of the typical request execution time.

442 N.G. Grounds, J.K. Antonio, and J. Muehring

memory loading

C PU loading

machine efficiency

Fig. 4. Derived machine efficiency surface based on the functions for ec in Eq. 3 and
eh in Eq. 4

Fig. 4 shows a two-dimensional surface plot of e = eceh, which is the product
of the formulas given in Eqs. 3 and 4. This efficiency function surface is assumed
for each machine for the simulations conducted in Section 5.

4 Cost-Minimizing Scheduler

4.1 Notation

Let W denote the set of all WFGs to be scheduled for execution. For each w ∈ W
there is assumed to be a cost function, �w(τw), which maps a normalized measure
of w’s tardiness, τw, to a cost value. The total cost of the system, denoted by
�(τ), is defined by summing the costs of all WFGs:

�(τ) =
∑
w∈W

�w(τw), (5)

where τ = [τw]w∈W .
The normalized tardiness of WFG w is defined by the follow equation:

τw =
fw − dw

dw − bw
. (6)

The numerator of the expression, fw − dw, represents the actual tardiness of w.
The denominator of the expression, dw − bw, represents the maximum desired
amount of time allocated for executing w, and is by definition positive. The
numerator can be either positive or negative. Thus, τw ≤ 0 indicates that w is
not tardy and τw > 0 indicates w is tardy.

Because τw is normalized, it is straightforward to compare the relative tardi-
ness values of WFGs of different sizes and/or expected durations. For instance,

Cost-Minimizing Scheduling of Workflows on a Cloud 443

an actual tardiness of fw− dw = 10 seconds is relatively insignificant if the over-
all allocated duration is dw − bw = 1 hour, i.e., τw = 10

3600 = 0.0028. However, a
tardiness of 10 seconds could be quite significant if the overall allocated duration
is defined to be 40 seconds, i.e., τw = 10

40 = 0.25.
In order to derive an effective cost-minimizing scheduler, it is convenient to

assume that the WFG functions �w(τw) are non-decreasing functions. This is
a reasonable assumption in practice because a sensible SLA should not allow
greater tardiness to be less costly than any lesser tardiness.

4.2 Cost-Minimizing Scheduling Algorithm (CMSA)

The function of CMSA is to decide which, if any, of the “ready” requests present
in the scheduling pool should be assigned to a machine to begin execution.
Scheduling decisions are implemented only at discrete points in time defined as
scheduling instances. Two events can trigger a scheduling instance: (1) when a
request finishes execution or (2) when a new WFG arrives in the scheduling
pool. During the time period between two consecutive scheduling instances, the
currently executing requests continue executing and the states of the requests in
the scheduling pool do not change. Also, based on the machine model described
in the previous section, the efficiency value, e, of each machine does not change
during the time period between consecutive scheduling instances.

At each scheduling instance, and for each ready request in the scheduling
pool, CMSA decides whether to start a request on a machine, based on the
outcome of cost function analysis. Specifically, the scheduler estimates the cost
associated with starting a ready request now (at the current scheduling instance)
or holding the request in the pool until a future scheduling instance. Central
to the algorithm’s decision-making process is the ability to estimate the costs
associated with competing scheduling options. A primary source of uncertainty
in estimating a WFG’s cost, �w(τw), is estimating the finish time, fw, of the
WFG. Recall from Eq. 6 that τw is directly proportional to fw.

Predicting the exact value of fw (before w has finished execution) is generally
not possible because all scheduling decisions, including those yet to be made,
ultimately affect the values of fw for all WFGs. As is apparent from Fig. 3,
the issue of how to best estimate the finish time of even a single request is not
obvious because the value of fr depends on factors in addition to the request’s
start time sr, including how the efficiency of the machine on which it is executing
varies with time.

For the purposes of the present discussion, an estimate is assumed to be
available for w’s finish time at scheduling instance ti, and this estimate is denoted
by f̃w(ti). A description of the particular method used to calculate f̃w(ti) in the
simulation studies is provided in Section 5.

Let M denote the set of machines and M(ti) denote the set of requests cur-
rently executing on machine M ∈ M at scheduling instance ti. Let R(ti) denote
the set of ready requests in the scheduling pool at scheduling instance ti, and
let w(r) denote the WFG associated with request r.

444 N.G. Grounds, J.K. Antonio, and J. Muehring

Basic Scheduling Decision: A basic decision made by the scheduling algo-
rithm involves deciding whether to start executing a ready request at a current
scheduling instance or to wait until a future scheduling instance. This basic de-
cision assumes a candidate ready request and a candidate machine are specified.

For ready request r ∈ R(ti) and machine M ∈ M, determine whether
it is less costly to start r on M at the current scheduling instance ti or
wait until a future scheduling instance tM > ti.

The value of tM is defined to be the next scheduling instance generated by
machine M due to the completion of one of M ’s executing requests. The value
of tM is itself dependant upon whether a particular ready request r∗ is started
at instance ti. The formulas for the two possible values of tM , denoted twait

M and
tstartM , are given by:

twait
M = ti + min

r∈M

{
cr(ti)
Ur

1
ewait

}
(7)

tstartM = ti + min
r∈M∪{r∗}

{
cr(ti)
Ur

1
estart

}
, (8)

where ewait = e(M(ti), ti) and estart = e(M(ti) ∪ {r∗}, ti).
For convenience, define Δtwait = twait

M − ti and Δtstart = tstartM − ti. The cost
associated with waiting until twait

M to begin executing r∗ on M is defined by:

�
wait
r∗,M = �w(r∗)

(
f̃w(r∗) + Δtwait − dw(r∗)

dw(r∗) − bw(r∗)

)
+

∑
r∈M

�w(r)

(
f̃w(r) − dw(r)

dw(r) − bw(r)

)
. (9)

The cost associated with starting r∗ on M at time ti is defined by:

�
start
r∗,M =

∑
r∈M∪{r∗}

�w(r)

(
f̃w(r) + Δtstart

(1
estart − 1

ewait

) − dw(r)

dw(r) − bw(r)

)
. (10)

For each ready request r ∈ R(ti) and each machine M ∈ M, the cost-minimizing
algorithm computes the difference in costs Δ�r,M = �

start
r,M −�

wait
r,M . If Δ�r,M > 0

for all r ∈ R(ti) and for all M ∈ M, then the scheduler will not start any
request now (at scheduling instance ti). However, if there exists one or more
combinations of requests and machines for which Δ�r,M ≤ 0, then the scheduler
will start the request on the machine having the smallest starting penalty, defined
as follows:

�
penalty
r,M = Δ�r,M + �w(r)

(
f̃w(r) + Δtwait − dw(r)

dw(r) − bw(r)

)
. (11)

Cost-Minimizing Scheduling of Workflows on a Cloud 445

Fig. 5 provides the precise description of CMSA. For a given scheduling instance
ti, CMSA first performs computations for all combinations of ready requests and
machines, refer to lines 3 through 11. After completing this phase of computa-
tion, CMSA then determines whether there exists a request that can be started
on a machine. If the answer is no, then the algorithm exits, refer to lines 12
and 13. However, if the answer is yes, then the selected request is assigned to
the selected machine (line 14), the selected request is removed from the set of
ready requests (line 15), and the algorithm again performs computations for all
combinations of ready requests and machines (line 16). The complexity associ-
ated with performing computations for all combinations of ready requests and
machines is O(|R(ti)||M|). Because it is possible that these computations may
be performed up to |R(ti)| times, the worst case computational complexity of
CMSA is O(|R(ti)|2|M|).

Note that if the system is highly loaded, then |R(ti)| will tend to be large. This
is because a highly loaded system implies there are limited machine resources
available to assign ready requests, thus ready requests will tend to accumulate in
the scheduling pool. Because of this, it is likely that CMSA will exit soon under
the highly loaded assumption, meaning that while |R(ti)| is large, the actual
complexity of CMSA may be closer to O(|R(ti)||M|) than O(|R(ti)|2|M|). On
the other hand, if the system is lightly loaded, then |R(ti)| will tend to be
small. This is because a lightly loaded system implies there are ample machine
resources available to assign ready requests, thus ready requests will tend to
be removed quickly from the scheduling pool. Thus, in the lightly loaded case,
the complexity of CMSA tends to be characterized by O(|R(ti)|2|M|). However,
because |R(ti)| is relatively small, the actual complexity for the lightly loaded
case may be comparable to, or even less than, the complexity of CMSA under
high loading.

1 for scheduling instance ti

2 minPenalty ← ∞, rmin ← ∞, Mmin ← ∞
3 for each r ∈ R(ti)
4 for each M ∈ M
5 compute Δ�r,M = �

start
r,M − �

wait
r,M

6 compute �
penalty
r,M

7 if Δ�r,M ≤ 0
8 if �

penalty
r,M < minPenalty

9 minPenalty ← �
penalty
r,M

10 rmin ← r
11 Mmin ← M
12 if minPenalty = ∞
13 exit
14 assign request rmin to machine Mmin

15 R(ti) ← R(ti) − {rmin}
16 goto line 2

Fig. 5. Pseudocode for CMSA

446 N.G. Grounds, J.K. Antonio, and J. Muehring

5 Simulation Studies

CMSA is evaluated through simulation studies for a realistic scenario in which
different types of WFGs are submitted to the cloud (refer to Fig. 1) by clients
from three primary regions: Americas; Europe; and Asia. Furthermore, WFGs of
three different types are submitted by clients: Batch, Webservice, and Interac-
tive. Batch WFGs generally have a larger number of requests and requests with
greater CPU and memory heap requirements compared to the other two WFG
types. The Webservice WFGs generally have more requests than and requests
with more requirements than Interactive WFGs.

In addition to differences in number and sizes of requests, the different WFG
types are characterized by different arrival rates. The studies conducted were
modeled from a typical 24 hour period observed in a live system. Webservice
WFGs arrive uniformly over the 24 hours. Interactive WFGs arrive at constant
rates only during three 8 hour periods that are partially overlapping. These
periods represent interactive use by clients during normal working hours for the
three client regions. The bulk of Batch WFGs arrive at hour seven and the arrival
rate exponentially decays afterward. The arrival rates over a 24 hour period for
the three types of WFGs are illustrated graphically in Fig. 6.

The parameter value ranges and distributions associated with the simulation
studies are summarized in Table 2. The table defines parameters related to the
structural characteristics for each type of WFG, which are all assumed to have a
level of depth as the example in Fig. 2. Also provided in the table are CPU and
heap memory characteristics of the requests associated with each WFG type. In
all cases, a parallelization factor of two is used in determining a base deadline for
each generated WFG; it defines the degree of parallelism assumed for executing
parallel RCs from a common WFG. Once a base deadline is determined for a
WFG, it is multiplied by the Deadline Factor (last row in the table) to define
actual deadline for the WFG.

In making assignment decisions, the Scheduler can make use of computa-
tional and heap memory requirements assumed to be known and available for
each request. Having access to such information is realistic in the assumed envi-
ronment in which off-line profiling and/or historical logging can be performed to
collect/estimate these data. Also associated with each WFG is a single timing
deadline, and the Scheduler can also make use of WFG deadline requirements
in making request scheduling decisions.

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour

Interactive Webservice Batch

Fig. 6. Arrival rate of WFGs by type over a 24-hour period

Cost-Minimizing Scheduling of Workflows on a Cloud 447

Table 2. WFG parameter value ranges, [Min, Max], taken from uniform distributions
for simulation studies

Parameter Interactive Webservice Batch
WFG WFG WFG

Compound Nodes [1, 1] [1, 3] [3, 5]
Parallel RCs [1, 2] [2, 3] [5, 20]
Requests in RCs [5, 8] [5, 8] [3, 8]
Request Ideal Duration (secs), Ir [1, 5] [10, 30] [50, 250]
Request CPU Utilization, Ur [0.5, 1.0] [0.5, 1.0] [0.5, 1.0]
Request Heap Memory, Hr [0.05, 0.1] [0.05, 0.1] [0.05, 0.15]
WFG Deadline Factor [1.1, 1.2] [1.3, 1.5] [1.3, 1.5]

As described in Section 4, an estimate of each WFG’s finish time, denoted
as f̃w(ti), is necessary for the CMSA. The following formula is used to estimate
WFG finish time in the simulation studies:

f̃w(ti) = ti + (ti − sw)

⎛
⎜⎝∑

r∈w

Cr −
∑
r∈w

fr<ti

Cr

⎞
⎟⎠

/⎛
⎜⎝ ∑

r∈w
fr<ti

Cr

⎞
⎟⎠ . (12)

The CMSA is evaluated against a previously known algorithm, proportional least
laxity first (PLLF) [14], which prioritizes scheduling requests with the least esti-
mated proportional laxity, which is equivalent to the greatestnormalized tardiness
defined in Eq. 6. PLLF does not make use of any cost function, but only defines
the order in which requests are considered for scheduling and relies on a separate
policy to decide what machine to start the request on or when to forego schedul-
ing ready requests. In the studies presented PLLF is combined with an algorithm
that selects the machine based on the one that will have the largest values of estart,
which is defined as the efficiency that results if the request is started on that ma-
chine at the current time instance. PLLF elects to forego scheduling requests if all
machines’ values of estart are below a prescribed threshold value.

Two sets of simulation studies were conducted, one with a sigmoid cost func-
tion and the other with a quadratic cost function. Fig. 7 shows the percentage of
workflows whose normalized tardiness is at or below the given value of normalized
tardiness. For example, only about 30% of workflows scheduled using PLLF had a
normalized tardiness of zero or less (met their deadline or were early). In contrast,
over 90% of the workflows scheduled by CMSA (using the sigmoid cost function)
met their deadline. Also illustrated for reference are the sigmoid and quadratic
cost functions. Fig. 8 shows the cumulative running cost of workflows by born time
across the 24 hour simulated study period for both cost functions. Although PLLF
does not explicitly use a cost function, it was evaluated using the same cost func-
tion used by CMSA. The cumulative running cost of both algorithms coincide dur-
ing the zero to seven hour period, which represented a period when the system is
lightly loaded. However, after this point the PLLF algorithm makes very different
scheduling decisions than CMSA.

448 N.G. Grounds, J.K. Antonio, and J. Muehring

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1 -0.5 0 0.5 1 1.5 2

 0

 20

 40

 60

 80

 100
R

e
fe

re
n

c
e
 C

o
s
t

F
u

n
c
ti

o
n

 V
a
lu

e

P
e
rc

e
n

ta
g

e
 o

f
W

o
rk

fl
o

w
s

Normalized Tardiness

PLLF

CMSA

(sigmoid)

CMSA

(quadratic)

Quadratic Cost

Sigmoid Cost

Fig. 7. Percentage of workflows as a function of normalized tardiness for PLLF and
CMSA. Also shown are the reference sigmoid and quadratic cost functions.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 2 4 6 8 10 12 14 16 18 20 22 24

C
u
m

u
la

ti
v
e
 C

o
s
t

Born Time (hours)

PLLF

CMSA
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0 2 4 6 8 10 12 14 16 18 20 22 24

C
u
m

u
la

ti
v
e
 C

o
s
t

Born Time (hours)

PLLF

CMSA

(a) (b)

Fig. 8. The cumulative running cost of all WFGs by born time for PLLF and CMSA
assuming: (a) sigmoid and (b) quadratic cost functions

Table 3. Summary of results of simulation studies

Measure Sigmoid Quadratic
PLLF CMSA PLLF CMSA

Cumulative Cost 3,121.7 135.8 13,935.7 3,432.5
% Workflows Late 70.7 8.4 70.7 22.2
% Interactive WFGs Late 74.9 14.0 74.9 37.6
% Batch WFGS Late 96.6 41.5 96.6 57.6
% Webservice WFGs Late 64.3 0.1 64.3 2.3

Normalized Tardiness 95th percentile 1.45 0.10 1.45 0.35
Normalized Tardiness 99th percentile 1.73 0.61 1.73 0.75
Maximum Normalized Tardiness 2.09 5.10 2.09 1.85

Cost-Minimizing Scheduling of Workflows on a Cloud 449

Table 3 gives a quantitative summary of all results. From the table, the
scheduling produced by PLLF is relatively closer to CMSA for the case of a
quadratic cost function (13, 935.7/3, 432.5 ≈ 4 < 3, 121.7/135.8 ≈ 23). This is
because PLLF elects to work on WFGs that are estimated to be most tardy and
CMSA ultimately does as well due to the unbounded increasing nature of the
quadratic cost function.

In the case study using the sigmoid cost function the CMSA achieves lower
normalized tardinesses for the vast majority of WFGs due to the fact that the
sigmoid cost function limits the cost of WFGs with normalized tardiness values
greater than 0.5. Refer to the table data for the normalized tardiness values of
the 95th and 99th percentiles, as well as the maximum normalized tardiness for
each policy.

6 Conclusions

A new cost-minimizing scheduling algorithm (CMSA) is introduced for schedul-
ing requests of multi-level workflows of various types and degrees of complex-
ity. The algorithm assumes a cost function is provided, and operates by making
scheduling decisions in order to minimize the estimated value of cumulative cost.
The performance of the new algorithm is evaluated through realistic simulation
studies and compared to a previously best-known scheduling heuristic named
PLLF, which is a priority-based scheduler that attempts to minimize maximum
normalized tardiness. The simulation studies show that for both sigmoid and
quadratic cost functions, CMSA results in maximum normalized tardiness val-
ues less than those for PLLF for over 99% of the workflows. Using the sigmoid
cost function with CMSA, only about 8% of the workflows were tardy; in con-
trast, for the same scenario, over 70% of the workflows were tardy using the
PLLF policy.

References

[1] Beltrán, M., Guzmán, A., Bosque, J.L.: A new cpu availability prediction model
for time-shared systems. IEEE Transactions on Computers 57(7), 865–875 (2008)

[2] Zhang, Y., Sun, W., Inoguchi, Y.: Predicting running time of grid tasks on cpu
load predictions. Proceedings of the 7th IEEE/ACM International Conference on
Grid Computing, 286–292 (September 2006)

[3] Appel, A.W.: Garbage collection can be faster than stack allocation. Information
Processing Letters 25(4), 275–279 (1987)

[4] Hertz, M.: Quantifying and Improving the Performance of Garbage Collection.
Ph.D. Dissertation, University of Massachusetts, Amherst (2006)

[5] Hertz, M., Berger, E.D.: Quantifying the performance of garbage collection vs. ex-
plicit memory management. In: Proceedings of the Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2005) (October 2005)

[6] Jones, R., Lins, R.: Garbage Collection: Algorithms for Automatic Dynamic Mem-
ory Management. John Wiley & Sons, New York (1996)

450 N.G. Grounds, J.K. Antonio, and J. Muehring

[7] Koide, H., Oie, Y.: A new task scheduling method for distributed programs that
require memory management. Concurrency and Computation: Practice and Ex-
perience 18, 941–945 (2006)

[8] Dhakal, S., Hayat, M.M., Pezoa, J.E., Yang, C., Bader, D.A.: Dynamic load bal-
ancing in distributed systems in the presence of delays: A regeneration-theory
approach. IEEE Transactions on Parallel & Distributed Systems 18(4), 485–497
(2007)

[9] Dyachuk, D., Deters, R.: Using sla context to ensure quality of service for com-
posite services. IEEE Transactions on Computers 57(7), 865–875 (2008)

[10] Kim, J.K., Shivle, S., Siegel, H.J., Maciejewski, A.A., Braun, T., Schneider, M.,
Tideman, S., Chitta, R., Dilmaghani, R.B., Joshi, R., Kaul, A., Sharma, A., Sri-
pada, S., Vangari, P., Yellampalli, S.S.: Dynamic mapping in a heterogeneous
environment with tasks having priorities and multiple deadlines. In: 12th Hetero-
geneous Computing Workshop (HCW 2003), Proceedings of the 17th International
Parallel and Distributed Processing Symposium (IPDPS 2003) (April 2003)

[11] Oh, S.H., Yang, S.M.: A modified least-laxity-first scheduling algorithm for real-
time tasks. In: Proceedings of the 5th International Workshop on Real-Time Com-
puting Systems and Applications (RTCSA 1998), October 1998, pp. 31–36 (1998)

[12] Salmani, V., Naghibzadeh, M., Habibi, A., Deldari, H.: Quantitative comparison of
job-level dynamic scheduling policies in parallel real-time systems. In: Proceedings
TENCON, 2006 IEEE Region 10 Conference (November 2006)

[13] Feizabadi, Y., Back, G.: Garbage collection-aware utility accrual scheduling. Real-
Time Systems 36(1-2), 3–22 (2007)

[14] Shrestha, H.K., Grounds, N., Madden, J., Martin, M., Antonio, J.K., Sachs, J.,
Zuech, J., Sanchez, C.: Scheduling workflows on a cluster of memory managed
multicore machines. In: Proceedings of the International Conference on Paral-
lel and Distributed Processing Techniques and Applications, PDPTA 2009 (July
2009)

[15] Dertouzos, M.L., Mok, A.K.-l.: Multiprocessor on-line scheduling of hard-real-time
tasks. IEEE Transactions on Software Engineering 15(12), 1497–1506 (1989)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 451–459, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Green Cloud on the Horizon

Mufajjul Ali

Orange Labs, Chiswick, London
Mufajjul.ali@orange-ftgroup.com

Abstract. This paper proposes a Green Cloud model for mobile Cloud comput-
ing. The proposed model leverage on the current trend of IaaS (Infrastructure
as a Service), PaaS (Platform as a Service) and SaaS (Software as a Service),
and look at new paradigm called "Network as a Service" (NaaS). The Green
Cloud model proposes various Telco's revenue generating streams and services
with the CaaS (Cloud as a Service) for the near future.

Keywords: Telco, Virtualization, Architecture, NaaS, CaaS, Web Services.

1 Introduction

Cloud computing is deemed to be the next era of the Internet evolution. It adheres to
the principle from service computing [1, 2], utility computing [4] and grid computing
[5]. Cloud computing relies on running/managing service/application remotely, allow-
ing the scope of dynamic scaling, remote management and diversity.

The current high speed broadband connectivity on wired network and faster 3G [3]
network data transfer on the mobile devices forms a hybrid network topology of inter-
connected devices, which can deliver on demand services on the move. The ever
growing service market for mobile devices such as the iPhone's service catalogue
store has generated a great deal of interest from the network operators.

Mobile Cloud computing can be seen as the launching pad for the ever demanding
resource intensive and computationally high mobile service to become a reality. The
network operator's existing pricing model can be seen as complementary to the Cloud
computing model for next generation of mobile services.

Currently, there is a limited presence of major mobile network operators providing
Cloud services, but there is a general interest leaping toward the Cloud computing.

2 Background

Cloud computing is defined as "A large-scale distributed computing paradigm that is
driven by economies of scale, in which a pool of abstracted, virtualized, dynamically-
scalable, managed computing power, storage, platforms, and services are delivered on
demand to external customers over the Internet" [6]. There are three main models of
Cloud computing paradigm in existence today, these are: Infrastructure as a Service
(IaaS)[13], Platform as a Service (PaaS)[12] Software as a Service (SaaS)[11]. IaaS
allows a customer to host the complete IT infrastructure remotely, on the virtual network

452 M. Ali

of the provider. The PaaS allow organizations to develop and deploy application/service
remotely, and SaaS are the services provided by the Cloud host. At present, the leading
Cloud service providers are the likes of Google [12], Amazon, and IBM [14].

3 Green Cloud

The current trend for Telco is to embrace the service market with the promise of an all
encompassing IP based network, (IMS [15]) has attracted greater interest in the field
of Cloud computing. Telco such as Orange, not only provide voice and messaging
service but they also have a large presence in the Broadband sector, with a broader
vision of converged services. In order for this vision to become a fruitful venture, a
new innovative architectural model is required to support computational/storage
needs, being more economical and environmentally friendly.

The core principle of the Green Cloud is to bring new business opportunities to Telco
and in the same time be as economically/ energy efficient as possible.

Energy efficiency can be achieved by adhering to energy reduction principles such
as replacing the high powered terminal with using low powered devices since most of
the processing will be done by the Cloud.

The virtualized servers will ensure that only the required servers are operational.
Using optimal cooling system and applying other energy saving techniques, which
can ultimately reduce the operational and maintenance cost.

Green Cloud can be seen as a massive IT infrastructure with the mobile and physi-
cal line as the core interconnected network, partitioned logically, physically and geo-
graphically. This enables the Green Cloud to model other sub-Clouds (see fig 1)
which can be seen as Cloud as a Service (CaaS). Each Cloud encapsulates a particular
business need in order to meet the requirement of the end users/businesses. Each of
the Cloud can interface with each other based on a trust model.

Fig. 1. Green Cloud Interaction Business Model

 Green Cloud on the Horizon 453

3.1 Ad-Hoc Cloud

It was estimated that there are more than 2.6 billion mobile devices in existence glob-
ally [16] and the handset sales for first quarter of 2009 was 515.5m [17]. The wide
use of mobile broadband from a particular network operator can be grouped and con-
sidered as a larger cluster of resources, with each device seen as a resource node in
the inter-connected network. This essentially forms the base of the Ad-hoc Cloud.
Each device acts as a spare resource provider to the resource pool. The control of the
availability of resources on the devices is handled and monitored by the network op-
erator. High computational and resource intensive applications such as games and
multimedia can acquire additional resources via the Ad-hoc Cloud.

A dynamic pricing structure can be applied where credit is gained and deducted
based on the resource usage and shared, in essence, a form of a machine to machine
(M2M) pricing model can be established. Telco operators can generate revenue by
increase data packet usage. It may also be possible that devices do not belong to the
particular mobile network to be part of an Ad-hoc Cloud, but the pricing model may
vary based on the device contribution.

3.2 So-Hosted Cloud

The So-Hosted Cloud differs from the traditional Cloud to an extent that a 3rd party
company can lease part of the Green Cloud as having their own; this can be seen as a
traditional franchise model. This model provides agility and flexibility, as it is based on
an on-demand hiring of segment of the Cloud. The revenue model for Telco operator
can be based on a franchise license, and a total share of the net revenue generated.

The trust model amongst the Clouds restricts the So-hosted access; it can only in-
terface with the Public and Community Cloud.

3.3 Community Cloud

Community groups such as the Glassfish Community [7]) and other open source
community have contributed tremendously in recent years for proving innovative
product and services. Community Cloud can be seen as a resource pool that is con-
fined in space to allow Telco based communities collaborate to achieve common
goals, such as enhancing the mobile Cloud services, advance converged Cloud appli-
cations, etc. Revenues can be generated from shared ownership of the final innova-
tion/product released from the community. This model has slightly higher restricted
trust model, this is due to possible 3rd party collaboration.

3.4 Private Cloud

The large presence of mobile operators such as Orange with over 180,000 employees
requires high level of content sharing and resource management between divisions.
Each division can deploy a private Cloud.

This model can reduce the overall operational cost and management cost of a Telco
operator's internal projects by rapid allocation of resources, on-demand platform

454 M. Ali

set-up, quick development and test deployment environment. Once the project has
terminated, the resources can be released back to the Cloud, reducing the long term
maintenance cost. The model can increase the time to market time, this can be
achieved by migrating the test deployment platform to the commercial production
environment on the public Cloud.

The private Cloud conceals any outside exposure to its data. The trust model is
purely unidirectional, only private Cloud can access the other Clouds.

3.5 Public Cloud

Public Cloud is the main gateway of Telco exposing their APIs and services. It is
publicly accessible and can be seen as the main dominant Cloud. This model pro-
vides a unified deployment platform for common service development. Highest level
of security is required to ensure the SLA (Service Level Agreement) is fulfilled, and
QoS (Quality of Service) is maintained for normal and converged Telco services.

4 Green Cloud Architecture

The architecture of the Green Cloud consists of a total of seven layers as opposed to
the six (see fig 2 below) layers provided by the traditional Cloud model. The advan-
tage of this model is that there is a separate of concerns amongst the layers; each of
the layers provides certain level of functionality that is complimentary to the layer
below. There is also a degree of flexibility amongst layers and in some cases it may
not need to directly interface with the layer below. It also models the Telco's biggest
asset which is the physical network topology as the core superset layer of the architec-
ture. This enables the Telco operators to guarantee the QoS and adhere to SLA,
which may not be possible with the existing Cloud architecture. The functionalities of
each layer as follows:

Traditional Cloud Stack Green Cloud Stack

Fig. 2. Extended Cloud Stack

 Green Cloud on the Horizon 455

4.1 Layer 1 – Telco Network (NaaS)

Telco operator Orange is currently the number one Broadband provider in France, and
has a large presence globally. The Network as a Service (NaaS) is the concept of
dynamic bandwidth consumption and quality of server based on the applica-
tion/service requirement.

The operator allocates and de-allocates bandwidth at close to real-time as required
by the application/services. This ensures that consumer will only pay for their actual
usage of the bandwidth, rather than a fixed amount monthly. NaaS is the corner stone
for the Cloud as a Service (CaaS). At present the SLA (Service Level Agreement)
cannot be guaranteed since Cloud provides little or no control of the network traffic.
The NaaS can ensure that a certain level of SLA can be met with adequate QoS
(Quality of Service).

4.2 Layer 2 – Firmware/Hardware

The actual physical hardware is located in this layer. Through virtualization the
hardware can also be considered as a service. The on-demand resource can be ac-
commodated by merely allowing the hypervisor [10] to access larger capacities of the
existing hardware. Additional hardware can be added with minimal impact on the
overall stack.

4.3 Layer 3 – Software Kernel

The Software kernel is the host Operating system, where the software environment
will reside. The kernel will utilise the virtual resources to optimize the performance.
Typically, the most common kernel is used in such architecture as Linux based.

4.4 Layer 4 – App Grid

This layer is essential for providing highly scalable and on-demand services with high
availability. It allows the parallel process of executing tasks for computationally high
applications.

4.5 Layer 5 – Computational Resource/ Storage and Communication

Computational resources and storage is referred to as Infrastructure as a Service.
These are the virtualized nodes in the Cloud. It ensures that the hardware is logically
separated from the OS, making it more portable and easier to manage. The VM (Vir-
tual Machine) can dynamically allocate and de-allocate resources required for devel-
oping/running of applications. The storage can be an integrated part of the computa-
tional resource or as a separate entity.

4.6 Layer 6 – Cloud Software Environment

The Cloud software environment is based on SOA [18] architecture. It provides the
backbone for developing services, it can be seen as a Platform as a Service (PaaS).

456 M. Ali

The traditional model of Cloud is typically based on Web service architecture;
this restricts availability of the many services provided by Telco. The SOA stack
extends the Cloud communication stack to enable session protocol such as SIP,
and other protocols, which are fundamental to telephony/Telco services. This
is to ensure that there are certain levels of quality of service and reliability
maintained.

4.7 Layer 7 – Cloud Application/Services

The Cloud application/service layer can be seen as Software as a Service (SaaS). This
is this main layer of user interfacing with the Cloud. This layer exposes the services
and applications that can be used by the users.

Any internet enabled device supporting Web runtime environment should be able
to access this layer. The physical representation of the content of the service may
vary based on the Web runtime engine running on the device.

5 Green Cloud Benefits

Green Cloud can bring several benefits to Telco operator, their enterprise businesses
and end users. Telco operators primarily focus is on providing service based solutions
to the consumer. This is based on the Software as a Service model (SaaS). The ser-
vice may range from typical general purpose Web based services to more specialized
Telco based converged services. The enterprise generally requires an IT infrastructure
for delivering their business contents; this can be achieved by Telco providing the
IaaS model. It may also use the Platform as a Service (PaaS) model to offer addi-
tional services to their customer.

Fig 3 below represents possible trend for the service demand and revenue growth
for Green Cloud. There is a potential growth for the service market using Telco as-
sets by businesses, in turn Telco making larger revenue.

It is predicted that by 2015, the Cloud computing revenue projection is about
200bn [19]. As the service growth increases, it is likely to generate more revenue for
Telco. Telco being the resource supplier may be able to maintain a sustainable reve-
nue growth.

Fig. 3. Green Cloud Service & Revenue Model

 Green Cloud on the Horizon 457

5.1 Benefits for Telco

• Sustainable revenue –Public, So-hosted and Ad-hoc Clouds are potentially
new revenue generating model for Telco.

• Simplistic model – The various types of sub-Clouds provides the agility re-
quired by business to meet their day to day demand.

• Cost reduction – This can be achieved from to lower to higher granularity, it
may include from small to large project, R&D to commercial, local to re-
gional to global unit.

• Extensibility – Can provide additional resource with minimal impact.

5.2 Benefits for Businesses

• Cost reduction – Can reduce the overall OPEX (operational expenditure) and
CAPEX (capital expenditure) cost by adapting to the required sub-Green
Cloud model.

• Highly automated – Technical complexity is handled by the Cloud.
• Ease of use – Based on Web interface, minimal technical expertise/training

required to operate
• High availability – Dynamic resource availability to meet the customer's

demand
• Simplified operation – Icon based operations simplifies HCI with the system.
• More mobility – Can operate from any location

5.3 Benefits for Consumer

• Potential revenue – The Ad-hoc model could potentially generate revenue for
the consumers if the resource allocation sustained competitively.

• QoS – Likely to receive uninterrupted service, and always available.

6 Conclusion

The proposed Green Cloud tries to model the needs for different types of consumers,
communities and organizations, with the vision of being "Greener" on the environ-
ment and being simple and agile. However, the Network as a Service (NaaS) model
has several challenging factors that require addressing, the likes of: interaction be-
tween the Clouds, physical network/operation required to enabler dynamic NaaS
model, and appropriate pricing model.

The interface between different Clouds has not been fully defined and may be a
stumbling point for inter-operability between different Clouds. The lack of defined
standardization for Cloud computing is a major concern as each vendor providing
their custom Cloud solution may restrict the flexibility of the consumer and danger of
vendor lock-in.

The NaaS model may require major upgrade on the network in order to provide
dynamic bandwidth, and other challenges lie in providing unified end to end broad-
band speed at a constant rate, network congestion and security threats such as denial
of service are also a concern.

458 M. Ali

The existing Telco's pricing structure may not be sufficient to model the needs for
Green Cloud as it is mainly static. A flexible pricing model is required that is not
only beneficial to the customers, but a good return in revenue is generated. There is
also a greater need for a balance between competitiveness and a quality of service
provided.

To conclude, the Green Cloud model offers a new viable revenue generating model
that can be sustainable over a long period; it is agile enough to provide the right level
of service required by the customer, and simple enough to attract a broad range of
consumer for various sectors. However, in-depth research is required for investigat-
ing the challenges stated above to lay the building blocks of the Green Cloud.

These views and opinions are solely of the writer, and do not necessarily reflect any
way or form of the organization.

References

[1] Yan, Y.: When Service Computing Meets Software Engineering, services. IEEE Con-
gress on Services - Part I, 49–52 (2008)

[2] Zhang, L.-J., Li, H., Lam, H.: Services Computing: Grid Applications for Today. IT Pro-
fessional 6(4), 5–7 (2004)

[3] Hoikkanen, A.: Economics of 3G Long-Term Evolution: the Business Case for the Mo-
bile Operator. In: 2007 IFIP International Conference on Wireless and Optical Communi-
cations Networks, WOCN 2007 (2007)

[4] Llorente, I.M., Montero, R.S., Huedo, E., Leal, K.: A Grid Infrastructure for Utility Com-
puting. In: Proceedings of the 15th IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, pp. 163–168 (2006)

[5] Leong, P., Miao, C., Lee, B.-S.: Agent Oriented Software Engineering for Grid Comput-
ing. In: Proceedings of the Sixth IEEE International Symposium on Cluster Computing
and the Grid, p. 2 (2006)

[6] Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree
Compared. In: IEEE Grid Computing Environments (GCE 2008) 2008, co-located with
IEEE/ACM Supercomputing (2008) (to appear)

[7] http://java.sun.com/javaee/community/glassfish/
[8] Newport-Networks Sip Security and the Ims Core,
 http://www.newport-networks.co.uk/cust-docs/
 88-Security-and-IMS.pdf

[9] Aymerich, F.M., Fenu, G., Surcis, S.: An Approach to a Cloud Computing Network. In:
Applications of Digital Information and Web Technologies, ICADIWT 2008, pp. 113–
118 (2008)

[10] Vouk, M.A.: Cloud Computing – Issues, Research and Implementations. In: ITI 2008
30th Int. Conf. on Information Technology Interfaces (June 23-26, 2008)

[11] Erdogmus, H.: Cloud Computing: Does Nirvana Hide behind the Nebula? IEEE Soft-
ware 26(2), 4–6 (2009)

[12] Google (2009),
 http://code.google.com/appengine/docs/python/gettingstarted/
 uploading.html

[13] Grossman, R.L.: The Case for Cloud Computing. IT Professional 11(2), 23–27 (2009)
[14] IBM (2008), http://www.ibm.com/ibm/cloud/

 Green Cloud on the Horizon 459

[15] Panwar, B., Singh, K.: IMS Sip core server test bed: IP Multimedia Subsystem Architec-
ture and Applications. In: 2007 International Conference, December 6-8, pp. 1–5 (2007)

[16] 2.6 Billion Mobile Phone Users in the World (2006),
 http://www.esato.com/news/article.php/id=1365

[17] mobileisgood.com (2009),
 http://www.mobileisgood.com/statistics.php#current

[18] Castro-Leon, E., He, J., Chang, M.: Scaling Down SOA to Small Businesses. In: IEEE
International Conference on Service-Oriented Computing and Applications, SOCA 2007
(2007)

[19] Coda Research Consultancy Ltd., Cloud computing: An assessment (2009),
 http://www.codarc.co.uk/cc2009/
 Cloud%20Computing%20An%20assessment%20-%20opening%20pages.pdf

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 460–471, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Industrial Cloud:
Toward Inter-enterprise Integration

Tomasz Wiktor Wlodarczyk, Chunming Rong, and Kari Anne Haaland Thorsen

Department of Electrical Engineering and Computer Science, University of Stavanger,
N-4036 Stavanger, Norway

{tomasz.w.wlodarczyk,chunming.rong,kari.a.thorsen}@uis.no

Abstract. Industrial cloud is introduced as a new inter-enterprise integration
concept in cloud computing. The characteristics of an industrial cloud are given
by its definition and architecture and compared with other general cloud con-
cepts. The concept is then demonstrated by a practical use case, based on Inte-
grated Operations (IO) in the Norwegian Continental Shelf (NCS), showing
how industrial digital information integration platform gives competitive advan-
tage to the companies involved. Further research and development challenges
are also discussed.

Keywords: cloud computing, integrated operations.

1 Introduction

The increasing amount of industrial digital information requires an integrated indus-
trial information platform to exchange, process and analyze the incoming data, and to
consult related information, e.g. historic or from other connected components, in
order to obtain an accurate overview of the current operation status for a consequent
decision. Collected information may often cross disciplines where it originated from.
The challenge is to handle it in an integrated, cost effective, secure and reliable way.
An enterprise may use the existing organizational structure for their information clas-
sification. However, as collaborations often exist across enterprises, information flow
that crosses enterprise boundaries must be facilitated. Earlier attempts have been
made within one enterprise. An industry wide collaboration poses more challenges.
Existing general solution such as information grid [1] are not adequate to deal with
the complexity in the challenges.

Recently, there have been many discussions on what cloud is and is not [2-14]. Po-
tential adopters were also discussed [4, 7]. However, most solutions mainly focus on
small and medium size companies that adopt what is called a public cloud. Adoption
of public cloud by large companies was discussed, but there were significant obstacles
in it, mainly related with security. Some of them were answered by what is called a
private cloud. In this paper, industrial cloud is introduced as a new inter-enterprise
integration concept in cloud computing to solve the stated problem. Both definition
and architecture of an industrial cloud are given and compared with the general cloud
characteristics. By extending existing cloud computing concepts, we propose a solu-
tion that may provide convenient, integrated and cost effective adaptation. These

 Industrial Cloud: Toward Inter-enterprise Integration 461

advantages are recognized in a large scale industrial collaboration project Integrated
Operations (IO) [16], where a central element is to establish an inter-enterprise digital
information integration platform for members of OLF in Norwegian Continental Shelf
(NCS) [15].

The paper consists of five sections. After a short introduction in Section 1, a brief
survey of the recent efforts on cloud computing is given in the Section 2. A categori-
zation of cloud is proposed to reflect actual business models and to facilitate more
precise definition.

In Section 3 the concept of industrial cloud is precisely defined. Generic architec-
ture is proposed and explained. Further, a practical use case, based on Integrated
Operations in NCS, is provided to show how this industrial digital information inte-
gration platform gives a competitive advantage to companies involved. Existing tech-
nologies that are essential parts of industrial cloud are named and described. In the
end of this section further research and development challenges are also discussed. In
Section 4 compact comparison of the three types of clouds: public, enterprise and
industrial, is provided. Paper concludes with summary of main points.

2 Categories of Clouds

The general goals of cloud computing are to obtain better resource utilization and
availability. The concept of cloud computing is presented sometimes as a grouping of
other various concepts, especially SaaS, IaaS and HaaS [17], but the concept has also
been defined differently from paper to paper in [2-14], indicating different models of
cloud. The differences in organization and architecture of a cloud are often influenced
by different business models cloud computing concept is applied to. Division between
public and private (also hybrid between them) can be seen in several publications [8].
In this paper, public and enterprise cloud are identified by business models they are
applied to, viewed from a global perspective.

2.1 Public Cloud

Public cloud is the most common model of cloud, with popular examples such as
Amazon Web Services [18] and Google App Engine [19]. One definition of public
cloud, given by McKinsey [3], states that:

Clouds are hardware-based services offering compute, network
and storage capacity where:

1. Hardware management is highly abstracted from the buyer
2. Buyers incur infrastructure costs as variable OPEX
3. Infrastructure capacity if highly elastic (up or down)

Public cloud is used mainly by small and medium size companies, very often start-
ups. That is because it offers effortless hardware management and flexibility without
any significant entrance costs. Access to public cloud is realized through internet.
Hardware is owned and managed by an external company. Hardware issues are of no
interest for companies using it. High degree of hardware utilization is achieved by
means of virtualization (other examples also exist [20]). Platform is generic, usually
providing one of application frameworks or access to standard computing resources.

462 T.W. Wlodarczyk, C. Rong, and K.A.H. Thorsen

There is no particular focus on collaboration between applications and no facilitation
of reusing data between them. Public cloud features OpEx (Operational Expenditure)
type of billing based on actual usage or on per month fee. There is small to usually
none CapEx (Captial Expenditure).

Security and privacy might be an issue as data is stored by en external entity. On
the other hand, cloud providers might have better focus and bigger resources to ad-
dress those issues than a small company [21]. Companies have no control over cloud
provider. Therefore, it is important that there are clear policies on data handling and
possibly external audit [22]. Public cloud also might raise geopolitical issues because
of physical data placement. That is currently solved by separate data centers in differ-
ent parts of the world [18]. However, it is a questionable solution in longer term.
There is vendor lock-in threat, resulting in problems with data transfer between cloud
vendors. However, that is a bigger issue for users of cloud-based applications than for
companies providing services over the cloud.

2.2 Enterprise Cloud

Enterprise cloud focuses not only on better utilization of computer resources, but also
on integrating services crucial to company’s operations and thereof their optimization.
Good example here is Cisco vision [17].

Access to enterprise cloud is realized mainly through intranet, but internet might
also be used. Hardware is owned and managed by the enterprise itself. Therefore,
hardware issues are still present, however, to lesser extent. Hardware utilization can
be improved by means of virtualization; however it might cover only some parts of
company’s datacenter. Platform is designed for the specific purpose and capable of
supporting company’s key operations. There is strong focus on collaboration between
applications and facilitation of reusing and integrating data between them. Enterprise
cloud can be economically beneficial to the company however it requires up-front
investment and does not offer OpEx-type of billing.

Control, security and privacy is not an issue (beyond what is required currently) as
data are stored by the company itself. What is more, thanks to centralization security
level might significantly increase [23]. There might be some geopolitical issues in
case of centralization of international operations. There is no significant vendor lock-
in threat. Dependence on software vendors providing cloud functionalities is more or
less the same as on currently used software.

Adoption of public cloud by large companies or enterprises was also discussed [3].
There are already some examples of such adoptions [24]. At the same time many
companies do not even consider such step. In their case benefits of public cloud are
too small to counterbalance security, privacy and control risks.

2.3 Beyond Enterprise Cloud

Enterprise cloud seems to be a good solution for integration inside a large company.
However nowadays, enterprises face additional challenges which result from collabo-
ration with other enterprises in the industry. Such collaboration is necessary to stay
competitive, but it requires introduction of new technological solutions.

 Industrial Cloud: Toward Inter-enterprise Integration 463

Some of integration and provisioning challenges have already been discussed in
the concept of Information Grid. Notably, Semantic Web solutions were proposed to
unify all the data in the company and to view them in a “smooth continuum from the
Internet to the Intranet” [1]. Some authors proposed also integrating resources provi-
sioning [25]. However, Information Grid model, that focuses on one enterprise only,
did not offer convenient, seamless and integrated approach to practically solve inter-
enterprise challenges. It is not only information data that are involved, but also work
processes, and definition, operation and service models that need to be reconciled and
collaborated in a seamless way. Hence, information grid is only a beginning. Finally,
Information Grid model does not lead to new opportunities in the industry in the way
cloud computing does e.g. lowering entrance costs for start-ups that leads to increased
competition and innovation level.

Therefore, in the next section industrial cloud is introduced as a new inter-
enterprise integration concept in cloud computing. A precise definition is given and
then explained by a practical use case.

3 Industrial Cloud

3.1 Definition and Architecture

Industrial cloud is a platform for industrial digital information integration and col-
laboration. It connects unified data standards and common ontologies with open and
shared architecture in order to facilitate data exchange and service composition be-
tween several companies. It should be controlled by an organization in form of e.g.
special interest group (SIG) consisting of industry representatives to ensure develop-
ment, evolution and adoption of standards. SIG should cooperate with international
standardization body.

In Fig. 1. industrial cloud is presented. It binds together enterprises in the industry
and also service companies. Enterprises are the core of the industry. Service compa-
nies usually provide services to those enterprises and very often participate in more
than industry.

In traditional business-to-business (B2B) systems metadata and semantics are agreed
upon in advance and are encapsulated in the systems. However, the trend is moving
towards more open environment where communicating partners are not given at prior.
This demands solutions where the semantics are explicit and standardized [26]. Infor-
mation management, information integration and application integration require that the
underlying data and processes can be described and managed semantically.

Collaboration and communication within an industrial cloud depend on a shared
understanding of concepts. Therefore, the basic elements of industrial cloud are uni-
fied data standards, common ontolgies, open and shared architecture and secure and
reliable infrastructure. Unified data standards allow easy data exchange between
companies. Common ontologies ensure shared point of view on meaning of data.
Metadata need to be shared among applications, and it should be possible to semanti-
cally describe applications within the cloud. Open and shared architecture is a way to
efficiently interconnect participants in industrial cloud.

464 T.W. Wlodarczyk, C. Rong, and K.A.H. Thorsen

Industrial Cloud

Enterprise Cloud

Enterprise Cloud

Enterprise Cloud

Service Company
Cloud

Service Company
Cloud

Fig. 1. Industrial Cloud

An ontology is a structure capturing semantic knowledge about a certain domain,
by describing relevant concepts and the relations between these concepts [27, 28].
With a shared ontology it is possible to communicate information across domains and
systems, independent of local names and structuring. This enables an automatic and
seamless flow of data, where information can be accessed from its original location in
the same way as if it was stored locally. In [29] Noy et al point out several reasons to
construct and deploy ontologies, e.g.: ease of information exchange, easier for a third
party to extract and aggregate information from diverse systems, easier to change
assumptions of the world and analyze domain knowledge.

The ontology creation should be mainly industry focused process. There is current
and stable trend of moving construction of meta-data from enterprise to industrial
level. Cross-industry approach might be useful; however, it is not probably on larger
scale. In our current work we see that those ontologies have to be hierarchically or-
ganized depending on their detail level. The more general ones will be common in the
industry. More detailed ones might stay specific to a particular company or consor-
tium. However, they will still have reference to the more general ontologies.

Data standards together with ontologies acting on open and shared architecture al-
low for easy service composition from multiple providers. Secure and reliable infra-
structure builds trust for the platform and between all participants.

It should be easy to add new applications to the cloud and applications should be
easy to be found based on the services and they provide. By providing applications as
semantically described web services [30], based on the commonly agreed ontology, it
would be easy to search for particular service within them. Domain-knowledge is
extracted from the applications; not hard-coded within the systems. It is then easier to
provide new services, and automatically interpret the operations provided by these
services.

Industry can form an industrial cloud in order to enable on-the-fly and automatic
outsourcing and subcontracting, lower operation costs, increase innovation level and
create new opportunities for the industry. Cloud approach can be used as a way to
ensure abstraction layer over all underlying technological solutions and integration
patterns. Industrial cloud is the lacking element that binds and structures existing

 Industrial Cloud: Toward Inter-enterprise Integration 465

Data formats, Ontologies, Architecture and Infrastructure

Service company

Service company

Enterprises

Enterprises

Enterprises

Information exchange

Service composition

Decision support

Industrial Cloud

Agent

Fig. 2. Integration, collaboration and composition in industrial cloud

technologies on the way to practical implementation. Fig. 2. summarizes main goals
of industrial cloud, that is: information exchange, decision support and service com-
position.

As for now, industrial cloud was defined in terms of its general purpose and tech-
nologies used. Further, it is important to place it in comparison with already existing
types of clouds. In Fig. 3. all three types of cloud are presented in a form of a stack of
functionalities they provide.

Looking at current providers of public cloud like Google Apps Engine[19] or
AWS[18] one can see that they offer two basic functions: provisioning (mainly of
processing time and storage space), and metering and billing systems for re-
sources they provide. Public cloud is realized through hardware virtualization (or
similar technologies). Cloud provider supplies an API that is later utilized by
cloud adopters.

Enterprise cloud builds on fundament of public cloud. Further, it adds possibility of
administrating workflows in the cloud, managing workload and monitoring which
goes further than simple metering in public cloud. In this way enterprise cloud is less
general but at the same time provides better support of large business users.

Industrial cloud is created on the base of public and enterprise cloud. It features
easier hardware provisioning by virtualization, it offers workflows administration,
workload management and monitoring. However, it further facilitates integrational
tasks like policies, reliability management, security and trust, outsourcing and subcon-
tracting. It adds support for semantic interpretation of data, mapping, data fusion and
service discovery and composition.

Fig. 3. visualizes why the inter-enterprise integration concept introduced in this
paper forms part of cloud computing. It builds on already existing cloud models and
introduces extensions to them based on actual needs of industries. With time some of
new functions in industrial cloud may migrate into the lower level clouds.

466 T.W. Wlodarczyk, C. Rong, and K.A.H. Thorsen

Industrial Cloud Management Services

Enterprises SIGAuthorities
Service

Companies

Outsourcing
&

Subcontracting

Semantic
interpretation

Mapping
&

Integration

Security
&

Trust

Reliability
management

Service
Discovery &
Composition

Data fusionPolicy

Administration
workflows

Monitoring
Workload

management

Provisioning
Billing,

Metering, etc.
Public Cloud

Enterprise Cloud

Industrial Cloud

Fig. 3. Industrial Cloud stacked on Enterprise and Public Cloud

3.2 Example from the Integrated Operations in Oil and Gas

The oil and gas industry on NCS has for some years now been working on the con-
cept of Integrated Operations (IO). Integrated operations aim at supporting the indus-
try in “reaching better, faster and more reliable decisions”, and is expected to have a
great impact on information flow between different sub-domains. IO is planed to be
implemented in two steps: Generation 1 and Generation 2 (G1 and G2). G1 focuses
on integration of offshore and onshore, real-time simulation and optimizing of key
work processes. G2 integrates operation centers of operators (enterprises) and vendors
(service providers), focuses on heavy automation of processes and optimization of
processes across domains. There are several ongoing research project related to IO.
The biggest, Integrated Operations in the High North (IOHN) [16], embraces several
sub-projects focusing on different aspects of IO G2. The suggested technologies rely
on an underlying architecture to build upon. The industrial cloud may provide such
architecture solution

The oil and gas industry is an information and knowledge industry. Data exist for
decades and needs to be shared across different businesses, domains and applications.
By combining data from several sources it is possible to gain more information than if
the information was separated. This relies on the ability to semantically recognize the
content of data. At present, data are isolated in information silos. Communicating and
sharing information often result in man-hours and expenses on mapping data from
one structure to another. By example, within the sub-domain of drilling and comple-
tion alone there are more than five different communication standards to relate to e.g.
WITSML or OPC-UA. Much of the knowledge and logic is hard-coded within the
different applications. It is difficult to share and transfer data to new or other systems

 Industrial Cloud: Toward Inter-enterprise Integration 467

without information loss. In the recent years, ISO15926 was being developed as an
upper-level data integration standard and ontology that could enable data sharing
among several companies. It proved to be successful in initial tests. With the use of a
shared ontology metadata are extracted from the applications and presented in a way
that can be more easily shared among partners.

Data are often stored in several places and over time these data tend to be inconsis-
tent. Barriers between isolated information domains need to be broken down. There is
a need for solutions where data can be accessed directly from the source. The indus-
trial cloud focuses on cross-company application collaboration, and will ease commu-
nication and access of data across company and application boundaries.

The oil and gas industry has already developed SOIL, an industrial communication
network that provides high reliability and independence of other solution like internet.
However, SOIL does not offer any kind of collaboration and integration facilities
apart from secure network connection. The industry consists of many, both small and
large, companies. Service companies providing services to several operators spend
much time on integration with operators’ systems. With an underlying cloud architec-
ture service provides can offer new services to the cloud as a whole, without the need
for tailored integration with all the different operators.

Industrial cloud could serve as a platform for actual delivery of Integrated Operations
on NCS. Industrial cloud is capable of providing easy, abstracted access to all aforemen-
tioned technological solution integrating them in one efficient and simple product.

3.3 Challenges and Further Work

Industrial cloud can be the solution to the problem of inter-enterprise digital informa-
tion integration and collaboration. However, there are a few challenges that should be
a subject of research and industrial effort while practically implementing the indus-
trial cloud concept.

Integration and collaboration requires inter-enterprise standardization. To do that
different definitions or names on the same concept, different data formats, different
work procedures have to be reconciled. This is usually easier said than done. For
example, the ISO15926 is still far from completion after over ten years effort with
participation of major actors in the domain.

The biggest challenge is security. How to secure each companies data, but at the
same time do not impede collaboration? Multi-level authentication could be a solution
to this. However, more development in this field has to done as proper security solu-
tions will be a key element of industrial cloud.

Other challenges consist of dealing with many versions of truth for reasoning pur-
poses, what is result of shared environment and integration of data in many formats.
This topics are subject of current research in Semantic Web field [31].

Enabling old data to be used in the new environment is also a challenge. It is im-
portant as companies want to use all the data they already have. There already have be
interesting attempts to do that [32].

Communication and possibly synchronization between industrial cloud and enter-
prise clouds is not yet solved. Similar but not exactly the same problems are already
investigated in form of synchronization between private and public cloud [8].

As outsourcing can be automatic there is a need for automated contracting solu-
tions, which have been topic of recent research [33].

468 T.W. Wlodarczyk, C. Rong, and K.A.H. Thorsen

4 Cloud Categories Comparison

Industrial cloud should also be compared with other types of cloud in terms of: how it
is implemented, who is using it and what are problematic issues. This is summarized
in Table. 1. In contrast with public cloud, industrial cloud is used by large companies
together with smaller companies and in contrast with enterprise cloud it focuses on
collaboration between several companies. Access to industrial cloud is realized

Table 1. Cloud categories comparison

 Public Enterprise Industrial

Who and why Small and medium
companies; to lower
hardware maintenance
costs

Large companies; to
integrate internal
services

Large and other
companies in one
industry; to integrate
inter-enterprice
collaboration

Network Internet Intranet (and internet) Extranet (and internet)

Hardware External owner;
aggressive
virtualization

Owned by the
enterprise; some
virtualization

Many owners; some
individual
virtualization; cross
company virtualization
not probable

Platform programming and
resources access

supporting integration
of operations

focused on integration
and collaboration

Applications Various; no
collaboration

Company specific;
collaboration

Enterprise specific;
collaboration and
composition

Economics OpEx CapEx CapEx, some OpEx
possible

Security and
privacy

Might be higher in
some aspects; but
privacy is a significant
problem

Security will increase as
a result of central
enforcing of policies

Crucial issue; need of
top-level security while
preserving collaboration

Control Problem; need of open
policies and external
audits

Not an issue; everything
controlled by one
company

Not an issue; controlled
by SIG (collaborating
with international
standard authority)

Geopolitics Problem;
geographically
dependent data
centers only a tempo-
rary solution

Some issues; but
company should be
ready to deal with them

Some issues; but
industry should be
ready to deal with them

Vendor lock-in Problem; open
standards should help

Not a problem;
everything owned by
the company

Not a significant
problem; issue
controlled by SIG

 Industrial Cloud: Toward Inter-enterprise Integration 469

through extranet or internet. Hardware is owned and managed independently by many
companies, though, some part of hardware in each company will follow shared stan-
dard of open architecture. Basing on that, some companies can provide access to its
data centers to other companies. This will improve hardware utilization and also fa-
cilitate agent mobility.

Platform is designed for the specific purpose and capable of supporting industry’s
key operations. There is strong focus on collaboration between applications and facili-
tation of reusing and integrating data between them. Security and privacy are crucial
issue as data must be shared and protected at the same time. Because of security and
reliability needs extranet implementation might be very often advised. Some geopo-
litical issues might appear, however, industries are probably already aware of them.
Vendor lock-in threat is not a significant issue as long as industrial cloud is wisely
managed by SIG. Actually, it might be much smaller than currently. SIG should be
organized on industrial level. Cross-industrial approach would most probably create
many SIGs that would jeopardize standardization process. It should possible to
avoided on industrial level, even though, that is definitely a challenge.

5 Summary

In this paper, industrial cloud is introduced as a new inter-enterprise integration con-
cept in cloud computing. Both definition and architecture of industrial cloud are given
in comparison with the general cloud characteristics. The concept is then demon-
strated by a practical use case, based on IO in the NCS, showing how industrial digital
information integration platform gives competitive advantage to the companies in-
volved. The oil and gas industry in NCS recognizes the great potential value in full
implementation and deployment of industrial cloud, where integration and collabora-
tion are the key.

References

1. Alonso, O., Banerjee, S., Drake, M.: The Information Grid: A Practical Approach to the
Semantic Web,

 http://www.oracle.com/technology/tech/semantic_technologies/
 pdf/informationgrid_oracle.pdf

2. Mitra, S.: Deconstructing The Cloud (2008),
 http://www.forbes.com/2008/09/18/
 mitra-cloud-computing-tech-enter-cx_sm_0919mitra.html

3. Forrest, W.: McKinsey & Co. Report: Clearing the Air on Cloud Computing (2009),
 http://uptimeinstitute.org/images/stories/
 McKinsey_Report_Cloud_Computing/
 clearing_the_air_on_cloud_computing.pdf

4. Buyya, R., Chee Shin, Y., Venugopal, S.: Market-Oriented Cloud Computing: Vision,
Hype, and Reality.... In: 10th IEEE International Conference on High Performance Com-
puting and Communications, HPCC 2008 (2008)

5. Douglis, F.: Staring at Clouds. IEEE Internet Computing 13(3), 4–6 (2009)
6. Grossman, R.L.: The Case for Cloud Computing. IT Professional 11(2) (2009)

470 T.W. Wlodarczyk, C. Rong, and K.A.H. Thorsen

7. Hutchinson, C., Ward, J., Castilon, K.: Navigating the Next-Generation Application Archi-
tecture. IT Professional 11(2), 18–22 (2009)

8. IBM. IBM Perspective on Cloud Computing (2008),
 http://ftp.software.ibm.com/software/tivoli/brochures/
 IBM_Perspective_on_Cloud_Computing.pdf

9. Lijun, M., Chan, W.K., Tse, T.H.: A Tale of Clouds: Paradigm Comparisons and Some
Thoughts on Research Issues. In: Asia-Pacific Services Computing Conference 2008,
APSCC 2008, IEEE, Los Alamitos (2008)

10. Lizhe, W., et al.: Scientific Cloud Computing: Early Definition and Experience. In: 10th
IEEE International Conference on HPCC 2008 (2008)

11. Youseff, L., Butrico, M., Da Silva, D.: Toward a Unified Ontology of Cloud Computing.
In: Grid Computing Environments Workshop, GCE 2008 (2008)

12. Rayport, J.F., Heyward, A.: Envisioning the Cloud: The Next Computing Paradigm
(2009),

 http://www.marketspaceadvisory.com/cloud/
 Envisioning_the_Cloud_PresentationDeck.pdf

13. Weinhardt, C., et al.: Business Models in the Service World. IT Professional 11(2), 28–33
(2009)

14. Open Cloud Manifesto (2009), http://www.opencloudmanifesto.org/
15. Map of the Norwegian continental shelf (2004),

 http://www.npd.no/English/Produkter+og+tjenester/
 Publikasjoner/map2003.htm

16. Integrated Operations in the High North,
 http://www.posccaesar.org/wiki/IOHN

17. Gore, R.: The experience of Web 2.0 Communications and collaboration tools in a global
enterprise - The road to 3.0 (2009),

 http://www.posccaesar.org/svn/pub/SemanticDays/2009/
 Session_1_Rich_Gore.pdf

18. Amazon Web Services, http://aws.amazon.com
19. Google App Engine, http://code.google.com/appengine/
20. Perilli, A.: Google fires back at VMware about virtualization for cloud computing (2009),

http://www.virtualization.info/2009/04/
google-fires-back-at-vmware-about.html

21. Have You Adopted Small Business Cloud Computing? (2009),
 http://www.smallbusinessnewz.com/topnews/2009/02/04/
have-you-adopted-small-business-cloud-computing

22. Gartner: Seven cloud-computing security risks (2008),
 http://www.infoworld.com/d/security-central/
 gartner-seven-cloud-computing-security-risks-853

23. Should an organization centralize its information security division? (2006),
 http://searchsecurity.techtarget.com/expert/
 KnowledgebaseAnswer/0,289625,sid14_gci1228539,00.html

24. Google Apps makes its way into big business (2009),
 http://www.computerweekly.com/Articles/2008/06/24/231178/
 google-apps-makes-its-way-into-big-business.htm

25. Taylor, S., Surridge, M., Marvin, D.: Grid Resources for Industrial Applications. In: IEEE
International Conference on Web Services (2004)

26. Aassve, Ø., et al.: The SIM Report - A comparative Study of Semantic Technologies
(2007)

 Industrial Cloud: Toward Inter-enterprise Integration 471

27. Antoniou, G., Harmelen, F.v.: A Semantic Web Primer, 2nd edn. MIT Press, Cambridge
(2008)

28. Grobelnik, M., Mladeni, D.: Knowledge Discovery for Ontology Construction. In: John
Davies, R.S.P.W. (ed.) Semantic Web Technologies, pp. 9–27 (2006)

29. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A guide to.., in Stanford
Knowledge Systems Laboratory Technical Report, p. 25 (2001)

30. Roman, D., et al.: Semantic Web Services - Approaches and Perspectives. In: Davies, J.,
Studer, R., Warren, P. (eds.) Semantic Web Technologies: Trends and Research in Ontol-
ogy-based Systems, pp. 191–236. John Wiley & Sons, Chichester (2006)

31. W3C Semantic Web Activity (2009), http://www.w3.org/2001/sw/
32. Calvanese, D., Giacomo, G.d.: Ontology based data integration (2009),

 http://www.posccaesar.org/svn/pub/SemanticDays/2009/
 Tutorials_Ontology_based_data_integration.pdf

33. Baumann, C.: Contracting and Copyright Issues for Composite Semantic Services. In:
Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 895–900. Springer, Heidelberg (2008)

Community Cloud Computing

Alexandros Marinos1 and Gerard Briscoe2

1 Department of Computing, University of Surrey, United Kingdom
a.marinos@surrey.ac.uk

2 Department of Media and Communications, London School of Economics and
Political Science, United Kingdom

g.briscoe@lse.ac.uk

Abstract. Cloud Computing is rising fast, with its data centres grow-
ing at an unprecedented rate. However, this has come with concerns over
privacy, efficiency at the expense of resilience, and environmental sus-
tainability, because of the dependence on Cloud vendors such as Google,
Amazon and Microsoft. Our response is an alternative model for the
Cloud conceptualisation, providing a paradigm for Clouds in the com-
munity, utilising networked personal computers for liberation from the
centralised vendor model. Community Cloud Computing (C3) offers an
alternative architecture, created by combing the Cloud with paradigms
from Grid Computing, principles from Digital Ecosystems, and sustain-
ability from Green Computing, while remaining true to the original
vision of the Internet. It is more technically challenging than Cloud
Computing, having to deal with distributed computing issues, including
heterogeneous nodes, varying quality of service, and additional security
constraints. However, these are not insurmountable challenges, and with
the need to retain control over our digital lives and the potential envi-
ronmental consequences, it is a challenge we must pursue.

Keywords: Cloud Computing, Community Cloud, Community Cloud
Computing, Green Computing, Sustainability.

1 Introduction

The recent development of Cloud Computing provides a compelling value propo-
sition for organisations to outsource their Information and Communications
Technology (ICT) infrastructure [1]. However, there are growing concerns over
the control ceded to large Cloud vendors, especially the lack of information
privacy [2]. Also, the data centres required for Cloud Computing are growing
exponentially [3], creating an ever-increasing carbon footprint [4].

The distributed resource provision from Grid Computing, distributed control
from Digital Ecosystems, and sustainability from Green Computing, can remedy
these concerns. Cloud Computing combined with these approaches would pro-
vide a compelling socio-technical conceptualisation for sustainable distributed
computing, utilising the spare resources of networked personal computers col-
lectively to provide the facilities of a virtual data centre and form a Community
Cloud.

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 472–484, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Community Cloud Computing 473

2 Cloud Computing

Cloud Computing is the use of Internet-based technologies for the provision of
services [1], originating from the cloud as a metaphor for the Internet, based on
depictions in computer network diagrams to abstract the complex infrastructure
it conceals. It offers the illusion of infinite computing resources available on de-
mand, with the elimination of upfront commitment from users, and payment for
the use of computing resources on a short-term basis as needed [2]. Furthermore,
it does not require the node providing a service to be present once its service is
deployed [2]. It is being promoted as the cutting-edge of scalable web application
development [2], in which dynamically scalable and often virtualised resources
are provided as a service over the Internet [5], with users having no knowledge
of, expertise in, or control over the technology infrastructure of the Cloud sup-
porting them. It currently has significant momentum in two extremes of the web
development industry [2]: the consumer web technology incumbents who have
resource surpluses in their vast data centres and various consumers and start-
ups that do not have access to such computational resources. Cloud Computing
conceptually incorporates Software-as-a-Service (SaaS), Web 2.0 and other tech-
nologies with reliance on the Internet, providing common business applications
online through web browsers to satisfy the computing needs of users, while the
software and data are stored on the servers.

Fig. 1. Cloud Computing

Figure 1 shows the typical configuration of Cloud Computing at run-time
when consumers visit an application served by the central Cloud, which is housed
in one or more data centres [6]. Green symbolises resource consumption, and
yellow resource provision. The role of coordinator for resource provision is des-
ignated by red, and is centrally controlled. Providers, who are the controllers,
are usually companies with other web activities that require large computing
resources, and in their efforts to scale their primary businesses have gained con-
siderable expertise and hardware. For them, Cloud Computing is a way to resell
these as a new product while expanding into a new market. Consumers include
everyday users, Small and Medium sized Enterprises (SMEs), and ambitious
start-ups whose innovation potentially threatens the incumbent providers.

2.1 Layers of Abstraction

While there is a significant buzz around Cloud Computing, there is little clar-
ity over which offerings qualify or their interrelation. The key to resolving this

474 A. Marinos and G. Briscoe

PaaS
(Platform as a Service)

IaaS
(Infrastructure as a Service)

SaaS
(Software as a Service)

Vendor Developers

End Users

Provide

Provide

Provide

Consume

Consume

Provide

Support

Support

Consume

Fig. 2. Abstractions of Cloud Computing

confusion is the realisation that the various offerings fall into different levels of
abstraction, as shown in Figure 2, aimed at different market segments.

Infrastructure-as-a-Service (IaaS). At the most basic level of Cloud Com-
puting offerings, there are providers such as Amazon and Mosso, who provide
machine instances to developers. These instances essentially behave like ded-
icated servers that are controlled by the developers, who therefore have full
responsibility for their operation. So, once a machine reaches its performance
limits, the developers have to manually instantiate another machine and scale
their application out to it.

Platform-as-a-Service (PaaS). One level of abstraction above, services like
Google App Engine provide a programming environment that abstracts machine
instances and other technical details from developers. The programs are executed
over data centres, not concerning the developers with matters of allocation.
In exchange for this, the developers have to handle some constraints that the
environment imposes on their application design, for example the use of key-value
stores instead of relational databases.

Software-as-a-Service (SaaS). At the consumer-facing level are the most
popular examples of Cloud Computing, with well-defined applications offering
users online resources and storage. This differentiates SaaS from traditional web-
sites or web applications which do not interface with user information (e.g. doc-
uments) or do so in a limited manner.

To better understand Cloud Computing we can categorise the roles of the
various actors. The vendor as resource provider has already been discussed.
The application developers utilise the resources provided, building services for
the end users. This separation of roles helps define the stakeholders and their

Community Cloud Computing 475

differing interests. However, actors can take on multiple roles, with vendors also
developing services for the end users, or developers utilising the services of others
to build their own services. Yet, within each Cloud the role of provider, and
therefore controller, can only be occupied by the vendor providing the Cloud.

2.2 Concerns

The Cloud Computing model is not without concerns, as others have noted [2],
and we consider the following as primary:

Failure of Monocultures. The uptime of Cloud Computing based solutions
is an advantage, when compared to businesses running their own infrastruc-
ture, but often overlooked is the co-occurrence of downtime in vendor-driven
monocultures. The use of globally decentralised data centres for vendor Clouds
minimises failure, aiding its adoption. However, when a Cloud fails, there is a
cascade effect crippling all organisations dependent on that Cloud, and all those
dependent upon them. So, failures are now system-wide, instead of being partial
or localised. Therefore, the efficiencies gained from centralising infrastructure for
Cloud Computing are increasingly at the expense of the Internet’s resilience.

Convenience vs Control. The growing popularity of Cloud Computing comes
from its convenience, but also brings vendor control, an issue of ever-increasing
concern. The even greater concern is the loss of information privacy, with ven-
dors having full access to the resources stored on their Clouds. In particularly
sensitive cases of SMEs and start-ups, the provider-consumer relationship that
Cloud Computing fosters between the owners of resources and their users could
potentially be detrimental, as there is a potential conflict of interest for the
providers. They profit by providing resources to up-and-coming players, but also
wish to maintain dominant positions in their consumer-facing industries.

Environmental Impact. The other major concern is the ever-increasing car-
bon footprint from the exponential growth [3] of the data centres required for
Cloud Computing. The industry is being motivated to address the problem by
legislation [7], the operational limit of power grids [8], and the potential financial
benefits of increased efficiency [4]. Their primary solution is the use of virtuali-
sation to maximise resource utilisation, but the problem remains [9].

While these issues are endemic to Cloud Computing, they are not flaws in
the Cloud conceptualisation, but the vendor provision and implementation of
Clouds. There are attempts to address some of these concerns, such as a porta-
bility layer between vendor Clouds to avoid lock-in. However, this will not al-
leviate issues such as inter-Cloud latency. An open source implementation of
the Amazon (EC2) Cloud, called Eucalyptus, allows a data centre to execute
code compatible with Amazon’s Cloud. Allowing for the creation of private in-
ternal Clouds, avoiding vendor lock-in and providing information privacy, but
only for those with their own data centre and so is not really Cloud Comput-
ing. Therefore, vendor Clouds remain synonymous with Cloud Computing [5].

476 A. Marinos and G. Briscoe

Our response is an alternative model for the Cloud conceptualisation, created
by combining the Cloud with paradigms from Grid Computing, principles from
Digital Ecosystems, and sustainability from Green Computing, while remaining
true to the original vision of the Internet.

3 Grid Computing: Distributing Provision

Grid Computing is a form of distributed computing in which a virtual super
computer is composed from a cluster of networked, loosely coupled computers,
acting in concert to perform very large tasks [10].

Fig. 3. Grid Computing

What distinguishes Grid Computing from cluster computing is being more
loosely coupled, heterogeneous, and geographically dispersed [10]. Also, grids
are often constructed with general-purpose grid software libraries and middle-
ware, dividing and apportioning pieces of a program to potentially thousands of
computers [10]. However, what distinguishes Cloud Computing from Grid Com-
puting is being web-centric, despite some of its definitions being conceptually
similar [11].

4 Digital Ecosystems: Distributing Control

Digital Ecosystems are distributed adaptive open socio-technical systems, with
properties of self-organisation, scalability and sustainability, inspired by natu-
ral ecosystems [12, 13]. Emerging as a novel approach to the catalysis of sus-
tainable regional development driven by SMEs. The community focused on
the deployment of Digital Ecosystems, REgions for Digital Ecosystems Net-
work (REDEN), is supported by projects such as the Digital Ecosystems Net-
work of regions for (4) DissEmination and Knowledge Deployment (DEN4DEK).
This thematic network that aims to share experiences and disseminate knowl-
edge to let regions effectively deploy of Digital Ecosystems at all levels (eco-
nomic, social, technical and political) to produce real impacts in the economic
activities of European regions through the improvement of SME business
environments.

Digital Ecosystems aim to support network-based economies reliant on
next-generation ICT that will extend the Service-Oriented Architecture (SOA)
concept with the automatic combining of available and applicable services in

Community Cloud Computing 477

a scalable architecture, to meet business user requests for applications that fa-
cilitate business processes. So, the realisation of their vision requires a form of
Cloud Computing, but with their principle of community-based infrastructure
where individual users share ownership [12].

5 Green Computing: Growing Sustainably

Green Computing is the efficient use of computing resources, with the primary
objective being to account for the triple bottom line (people, planet, profit), an
expanded spectrum of values and criteria for measuring organisational (and soci-
etal) success [14]. It is systemic in nature, because ever-increasingly sophisticated
modern computer systems rely upon people, networks and hardware.

One of the greatest environmental concerns of the industry is their data cen-
tres [15], which have increased in number over time as business demands have
increased, with facilities housing a rising amount of evermore powerful equipment
[16]. To the extent that data centre efficiency has become an important global
issue, leading to the creation of the Green Grid, an international non-profit or-
ganisation mandating an increase in the energy efficiency of data centres. Their
approach, virtualisation, has improved efficiency [9], but is optimising a flawed
model that does not consider the whole system, where resource provision is dis-
connected from resource consumption. So, we would argue that an alternative
more systemic approach is required, where resource consumption and provi-
sion are connected, to minimise the environmental impact and allow sustainable
growth.

6 Community Cloud

C3 arises from concerns over Cloud Computing, specifically control by vendors
and lack of environmental sustainability. Replacing vendor Clouds by shaping
the under-utilised resources of user machines to form a Community Cloud, with
nodes potentially fulfilling all roles, consumer, producer, and most importantly
coordinator , as shown in Figure 4.

Fig. 4. Community Cloud

478 A. Marinos and G. Briscoe

6.1 Conceptualisation

The conceptualisation of the Community Cloud draws upon Cloud Computing
[6], Grid Computing [11], Digital Ecosystems [12], Green Computing and Au-
tonomic Computing [17]. A paradigm for Cloud Computing in the community,
without dependence on Cloud vendors, such as Google, Amazon, or Microsoft.

Openness. Removing dependence on vendors makes the Community Cloud the
open equivalent to vendor Clouds, and therefore identifies a new dimension in
the open versus proprietary struggle that has emerged in code, standards and
data, but has yet to be expressed in the realm of hosted services.

Community. The Community Cloud is as much a social structure as a technol-
ogy paradigm [18], because of the community ownership of the infrastructure.
Carrying with it a degree of economic scalability, without which there would be
diminished competition and potential stifling of innovation as risked in vendor
Clouds.

Individual Autonomy. In the Community Cloud, nodes have their own utility
functions in contrast with data centres, in which dedicated machines execute
software as instructed. So, with nodes expected to act in their own self-interest,
centralised control would be impractical, as with consumer electronics like game
consoles [19]. In the Community Cloud, where no concrete vendors exist, it is
even more important to avoid antagonising the users, instead embracing their
self interest and harnessing it for the benefit of the community with measures
such as a community currency.

Graceful Failures. The Community Cloud is not owned or controlled by any
one organisation, and therefore not dependent on the lifespan or failure of any
one organisation. It therefore ought be robust and resilient to failure, and im-
mune to the system-wide cascade failures of vendor Clouds, because of the di-
versity of its supporting nodes. When occasionally failing doing so gracefully,
non-destructively, and with minimal downtime, as the unaffected nodes mobilise
to compensate for the failure.

Convenience and Control. The Community Cloud, unlike vendor Clouds, has
no inherent conflict between convenience and control, resulting from its commu-
nity ownership providing distributed control, which would be more democratic.
However, whether the Community Cloud can provide technical quality equiva-
lent or superior to its centralised counterparts is an issue that will require further
research.

Community Currency. The Community Cloud would require its own currency
to support the sharing of resources, a community currency, which in economics
is a medium (currency), not backed by a central authority (e.g. national govern-
ment), for exchanging goods and services within a community. It does not need
to be restricted geographically, despite sometimes being a local currency [20].

Community Cloud Computing 479

Quality of Service. Ensuring acceptable quality of service (QoS) in a hetero-
geneous system will be a challenge. Not least because achieving and maintaining
the different aspects of QoS will require reaching critical mass in participating
nodes and available services. Thankfully, the community currency could support
long-term promises by resource providers and allow the higher quality providers,
through market forces, to command a higher price for their service provision.
Interestingly, the Community Cloud could provide a better QoS than vendor
Clouds, utilising time-based and geographical variations advantageously in the
dynamic scaling of resource provision.

Environmental Sustainability. We expect the Community Cloud to have a
smaller carbon footprint than vendor Clouds, on the assumption that making use
of under-utilised user machines will require less energy than the dedicated data
centres required for vendor Clouds. The server farms within data centres are an
intensive form of computing resource provision, while the Community Cloud is
more organic, growing and shrinking in a symbiotic relationship to support the
demands of the community, which in turn supports it.

6.2 Architecture

The method of materialising the Community Cloud is the distribution of its server
functionality amongst a population of nodes provided by user machines, shaping
their under-utilised resources into a virtual data centre. While straightforward in
principle, it poses challenges on many different levels. So, an architecture for C3
can be divided into three layers, dealing with these challenges iteratively. The most
fundamental layer deals with distributing coordination, which is taken for granted
in homogeneous data centres where good connectivity, constant presence and cen-
tralised infrastructure can be assumed. One layer above, resource provision and
consumption are arranged on top of the coordination framework. Easy in the ho-
mogeneous grid of a data centre where all nodes have the same interests, but more
challenging in a distributed heterogeneous environment. Finally, the service layer
is where resources are combined into end-user accessible services, to then them-
selves be composed into higher-level services.

Service Layer
Repository, Composition, Execution

Resource Layer
Computation, Persistence, Bandwidth, Currency

Coordination Layer
Virtual Machine, Identity, Networking, Transactions

Fig. 5. Community Cloud Computing

480 A. Marinos and G. Briscoe

Coordination Layer. To achieve coordination, the nodes need to be deployed
as isolated virtual machines, forming a fully distributed P2P network that can
provide support for distributed identity, trust, and transactions.

Virtual Machines (VMs): Executing arbitrary code in the machine of a
resource-providing user would require a sandbox for the guest code, a VM to
protect the host. The role of the VM is to make system resources safely avail-
able to the Community Cloud, upon which Cloud processes could be run safely
(without danger to the host machine). Regarding deployment, users would be
required to maintain an active browser window or tab, or install a dedicated
application. While the first would not require installation privileges, the later
would with the benefit of greater functionality.

Distributed Identity: In distributed systems with variable node reliability,
historical context is logically required to have certainty of node interactions. Fun-
damental to this context is the ability to identify nodes and therefore reference pre-
vious interactions. However, current identification schemes have identity providers
controlling provision. Identity in the Community Cloud has to arise naturally from
the structure of the network, based on the relation of nodes to each other, so that it
can scale and expand without centralised control. We can utilise the property that
a large enough identifier-space is unlikely to suffer collisions. So, assuming each
node independently produces a private-public key pair, the probability of pub-
lic key collision is negligible. Also, from the human identification of nodes we can
utilise the property that each node, despite formal identity, possesses a unique po-
sition in the network, i.e. set of connections to other nodes. Therefore, combining
these two properties provides reasonable certainty for a distributed identity model
where universal identification can be accomplished without centralised mediation,
but this is still an active area of research.

Networking: At this level, nodes should be interconnected to form a P2P
network. Engineered to provide high resilience while avoiding single points of
control and failure, which would make decentralised super-peer based control
mechanisms insufficient. Newer P2P designs [21] offer sufficient guarantees of
distribution, immunity to super-peer failure, and resistance to enforced control.

Distributed Transactions: A key element of distributed coordination is the
ability of nodes to jointly participate in transactions that influence their indi-
vidual state. Appropriately annotated business processes can be executed over a
distributed network with a transactional model maintaining the ACID properties
on behalf of the initiator. Newer transaction models maintain these properties
while increasing efficiency and concurrency. Other directions of research include
relaxing these properties to maximise concurrency [22].

Resource layer. With the networking infrastructure now in place, we can con-
sider the first consumer-facing uses for the virtual data centre of the Community
Cloud. Offering the usage experience of Cloud Computing on the PaaS layer and
above, because Cloud Computing is about using resources from the Cloud. So,
Utility Computing scenarios, such as access to raw storage and computation,
should be available at the PaaS layer. Access to these abstract resources for
service deployment would then provide the SaaS layer.

Community Cloud Computing 481

Distributed Computation: The field has a successful history of centrally con-
trolled incarnations. However, C3 should also take inspiration from Grid Com-
puting and Digital Ecosystems to provide distributed coordination of the com-
putational capabilities that nodes offer to the Community Cloud.

Distributed Persistence: The Community Cloud would naturally require stor-
age on its participating nodes, taking advantage of the ever-increasing surplus
on most personal computers. However, the method of information storage in the
Community Cloud is an issue with multiple aspects. First, information can be
file-based or structured. Second, while constant and instant availability can be
crucial, there are scenarios in which recall times can be relaxed. Such varying
requirements call for a combination of approaches, including distributed storage,
distributed databases and key-value stores [23]. Information privacy in the Com-
munity Cloud should be provided by the encryption of user information when
on remote nodes, only being unencrypted when accessed by the user, allowing
for the secure and distributed storage of information.

Bandwidth Management: The Community Cloud would probably require more
bandwidth at the user nodes than vendor Clouds, but can take advantage of the
ever-increasing bandwidth and deployment of broadband. Also, P2P protocols
such as BitTorrent make the distribution of information over networks much
less bandwidth-intensive for content providers, accomplished by using the down-
loading peers as repeaters of the information they receive. C3 should adopt such
approaches to ensure the efficient use of available network bandwidth, avoiding
fluctuations and sudden rises in demand burdening parts of the network.

Community Currency: An important theme in the Community Cloud is that
of nodes being contributors as well as consumers, which would require a commu-
nity currency (redeemable against resources in the community) to reward users
for offering resources [24]. This would also allow traditional Cloud vendors to
participate by offering their resources to the Community Cloud to gather consid-
erable community currency, which they can then monetise against participants
running a community currency deficit (i.e. contributing less then they consume).
The relative cost of resources (storage, computation, bandwidth) should fluctu-
ate based on market demand, not least because of the impracticality of predicting
or hard-coding such ratios. So, a node of the network would gather community
currency by performing tasks for the community, which its user could then use
to access resources of the Community Cloud.

Resource Repository: Given that each node providing resources has a different
location in the network and quality characteristics, a distributed resource repos-
itory would be required that could respond to queries for resources according
to desired performance profiles. Such a query would have to consider historical
performance, current availability, projected cost and geographical distribution
of the nodes to be returned. A constraint optimisation problem, the results re-
turned would be a set of nodes that fit the required profile, proportionally to
the availability of suitable nodes.

Service Layer. Cloud Computing represents anew era forSOAs, making services
explicitly dependent on other resource providers instead of building on

482 A. Marinos and G. Briscoe

self-sufficient resource locations. C3 makes this more explicit, breaking down the
stand-alone service paradigm, with any service by default being composed of re-
sources contributed by multiple participants. So, the following sections define the
core infrastructural services that the Community Cloud would need to provide.

Distributed Service Repository (DSR): The service repository of the Commu-
nity Cloud must provide persistence, as with traditional service repositories, for
the pointers to services and their semantic descriptions. To support the absence
of service-producing nodes during service execution, there must also be per-
sistence of the executable code of services. Naturally, the implementation of a
distributed service repository is made easier by the availability of the distributed
storage infrastructure of the Community Cloud.

Service Deployment and Execution: When a service is required, but is not
currently instantiated on a suitable node, a copy should be retrieved from the
DSR and instantiated as necessary, allowing for flexible responsiveness and re-
silience to unpredictable traffic spikes. As nodes are opportunistically interested
in executing services to gather community currency for their users, so develop-
ers should note the resource cost of their services in their descriptions, allowing
for pre-execution resource budgeting, and post-execution community currency
payments. Being in a developer’s own interest to mark resource costs correctly,
because over-budgeting would burden their users and under-budgeting would
cause premature service termination. Remote service execution would need to
be secured against potentially compromised nodes, perhaps through encrypted
processing schemes [25]. Since delivering a service over large distances in the
network comes at a potentially high cost, the lack of a central well-connected
server calls for a fundamental paradigm shift, from pull -oriented approaches to
hybrid push/pull -oriented approaches [13].

7 In the Community Cloud

While we have covered the fundamental motivations and architecture of the
Community Cloud, its practical application may still be unclear. So, this section
discusses the case of YouTube, where the application of C3 would yield significant
benefits, because it has an unstable funding model, requires increasing scalability,
and is community oriented.

YouTube requires significant bandwidth for content distribution, significant
computational resources for video transcoding, and is yet to settle on a profitable
business model. In the Community Cloud, websites like YouTube would have a
self-sustaining scalable resource provision model, which would significantly re-
duce the income required for them to turn a profit. Were YouTube to adopt C3,
it would also be distributed throughout the Community Cloud alongside other
services. Updates such as commenting on a YouTube video, would similarly need
to propagate through the distributed persistence layer. So, the community would
provide the bandwidth for content distribution, and the computational resources
for video transcoding, required for YouTube’s service. Also, YouTube’s stream-
ing of live events has necessitated the services of bespoke content distribution

Community Cloud Computing 483

networks, a type of service for which the Community Cloud would naturally
excel.

We have discussed YouTube in the Community Cloud, but other sites such as
Wikipedia, arXiv and Facebook would equally benefit. As C3’s organisational
model for resource provision moves the cost of service provision to the user base,
effectively creating a micro-payment scheme, which would dramatically lower
the barrier of entry for innovative start-ups.

8 Conclusions

We have presented the Community Cloud as an alternative to Cloud Computing,
created from blending its usage scenarios with paradigms from Grid Computing,
principles from Digital Ecosystems, self-management from Autonomic Comput-
ing, and sustainability from Green Computing. So, C3 utilises the spare resources
of networked personal computers to provide the facilities of data centres, such
that the community provides the computing power for the Cloud they wish to
use. A socio-technical conceptualisation for sustainable distributed computing.

References

1. Haynie, M.: Enterprise cloud services: Deriving business value from Cloud Com-
puting. Technical report, Micro Focus (2009)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley
view of Cloud Computing. University of California, Berkeley (2009)

3. Hayes, J.: Cred - or croak? Technical report, IET Knowledge Network (2008)
4. Kaplan, J., Forrest, W., Kindler, N.: Revolutionizing data center energy efficiency.

Technical report, McKinsey & Company (2008)
5. Gruman, G., Knorr, E.: What Cloud Computing really means. Technical report,

Info World Inc. (2008)
6. Buyya, R., Yeo, C., Venugopal, S.: Market-oriented cloud computing: Vision, hype,

and reality for delivering it services as computing utilities. In: Conference on High
Performance Computing and Communications. IEEE, Los Alamitos (2008)

7. Environmental Protection Agency: EPA report to congress on server and data
center energy efficiency. Technical report, US Congress (2007)

8. Miller, R.: NSA maxes out Baltimore power grid. Technical report, Data Center
Knowledge (2006)

9. Brill, K.: The invisible crisis in the data center: The economic meltdown of Moore’s
law. Technical report, Uptime Institute (2007)

10. Foster, I., Kesselman, C.: The grid: blueprint for a new computing infrastructure.
Morgan Kaufmann, San Francisco (2004)

11. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-
degree compared. In: Grid Computing Environments Workshop, pp. 1–10 (2008)

12. Briscoe, G., De Wilde, P.: Digital Ecosystems: Evolving service-oriented architec-
tures. In: Conference on Bio Inspired Models of Network, Information and Com-
puting Systems. IEEE Press, Los Alamitos (2006)

13. Briscoe, G.: Digital Ecosystems. PhD thesis, Imperial College London (2009)

484 A. Marinos and G. Briscoe

14. Williams, J., Curtis, L.: Green: The new computing coat of arms? IT Professional,
12–16 (2008)

15. Brodkin, J.: Gartner in ‘green’ data centre warning. Techworld (2008)
16. Arregoces, M., Portolani, M.: Data center fundamentals. Cisco Press (2003)
17. Kephart, J., Chess, D., Center, I., Hawthorne, N.: The vision of autonomic com-

puting. Computer 36(1), 41–50 (2003)
18. Benkler, Y.: Sharing nicely: on shareable goods and the emergence of sharing as a

modality of economic production. The Yale Law Journal 114(2), 273–359 (2004)
19. Grand, J., Thornton, F., Yarusso, A., Baer, R.: Game Console Hacking: Have Fun

While Voiding You Warranty. Syngress Press (2004)
20. Doteuchi, A.: Community currency and NPOs- A model for solving social issues

in the 21st century. Social Development Research Group, NLI Research (2002)
21. Razavi, A., Moschoyiannis, S., Krause, P.: A scale-free business network for digital

ecosystems. In: IEEE Conf. on Digital Ecosystems and Technologies (2008)
22. Vogels, W.: Eventually consistent. ACM Queue 6 (2008)
23. Bain, T.: Is the relational database doomed? (2008), http://ReadWriteWeb.com
24. Turner, D., Ross, K.: A lightweight currency paradigm for the p2p resource market.

In: International Conference on Electronic Commerce Research (2004)
25. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on

Theory of computing, pp. 169–178. ACM, New York (2009)

http://ReadWriteWeb.com

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 485–496, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Semantic Grid Oriented to E-Tourism

Xiao Ming Zhang

College of Computer and Communication, Hunan University, 410082 Changsha, China
School of Hospitality & Tourism Management, Florida International University,

33181 Miami, USA
zhangxm19712003@yahoo.com.cn

Abstract. With increasing complexity of tourism business models and tasks,
there is a clear need of the next generation e-Tourism infrastructure to support
flexible automation, integration, computation, storage, and collaboration. Cur-
rently several enabling technologies such as semantic Web, Web service, agent
and grid computing have been applied in the different e-Tourism applications,
however there is no a unified framework to be able to integrate all of them. So
this paper presents a promising e-Tourism framework based on emerging se-
mantic grid, in which a number of key design issues are discussed including ar-
chitecture, ontologies structure, semantic reconciliation, service and resource
discovery, role based authorization and intelligent agent. The paper finally pro-
vides the implementation of the framework.

Keywords: e-Tourism; Semantic Grid; Semantic Web; Web service; Agent

1 Introduction

Tourism has become the world's largest industry, composing of numerous enterprises
such as airlines, hoteliers, car rentals, leisure suppliers, and travel agencies. The World
Tourism Organization predicts that by 2020 tourist arrivals around the world would
increase over 200% [1]. In this huge industry, e-Tourism representing almost 40% of
all global e-Commerce [2] is facing a need of the next generation infrastructure to
support more innovative and sophisticated tasks like dynamic packaging, travel plan-
ning, price comparison, travel route design, and multimedia based marketing and pro-
motion. Fig. 1 shows an e-Tourism task scenario which can illustrate several use cases
and aid in capturing feature requirements for the future e-Tourism infrastructure.

 Use case 1: A travel agency receives a tourist’s request of travel plan for the
holiday (step 1), so it enters a VO (Virtual Organization) which is able to organ-
ize necessary, rich and authorized tourism services and resources in a cross-
institutional way. Then the travel agency forwards tourists’ travel plan task to an
agent (step 2). Next, the agent coordinates other agents and assigns them smaller
branch tasks (step 3). In fig. 1, one branch task is to design travel route which
performs complex calculations based on GIS and Traffic database, and the other
two branch tasks are queries of related air fare and hotel room rates through
GDS (Global Distribution Framework) and CRM (Central Reservation Man-
agement). Finally the first agent processes the results from its partners and re-
turns travel plans to the travel agency (step 4) and the tourist (step 5).

486 X.M. Zhang

Agents

GDS

Travel Agency

CRM
Last Minute

Deal
Auction
Online

Tourist

Airline Car Rental Hotel Cruise line Resort Restaurant

Real time
Stream

Archived
Multimedia

Revenue
Management

Travel
Plans

Travel Route Design

GIS
Traffic

Database

(1)

(2)

(3)(3) (3)

(4)

(5)

(6)

(7) (7)

(8)

(8)

(9)

Fig. 1. An e-Tourism Task Scenario

 Use case 2: The authorized tourist directly enters the VO and search required
services. In this situation, the system needs to trace and analyze user’s prefer-
ences and requirements, then compare them with services’ functionalities. In fig.
1, the system discovers and returns Last Minute Deal and Auction Online ser-
vices to the tourist who interests in the best room rates of hotel (step 6, 7).

 Use case 3: To promote the products or services, some services providers con-
duct a multimedia marketing, allowing tourists watch large amount of archived
photos and live streaming video on line (step 8).

 Use case 4: The services are able to access other services and resources owned
by different service providers seamlessly. For example, some advanced service
providers prefer to use Revenue Management service (step 9), which is able to
interact with other sales online systems (e.g. GDS) and maximize business profit
through differentiating the prices of different products in those online systems.

From the above use cases, several feature requirements for the future e-Tourism infra-
structure can be identified:

 Personalization and intelligent agent. The individual intention and tasks should
be able to be personalized and represented in intelligent agents who can interact
with other agents and objects, perform various tasks, deal with events timely and
seek solutions to the targets autonomously.

 Knowledge service. It includes discovering resource and services through infer-
ence, annotating the contributed resource, combining content from multiple
sources, and scheduling the agents and workflow to the tasks.

 High degree of automation. It refers to describe the services, resources and even
workflow in a machine understandable manner, and thus different tasks like

 A Semantic Grid Oriented to E-Tourism 487

travel planning could be performed in an automatic way with a good perform-
ance, without or with very limited human support.

 Seamless integration. Various resources, services and relevant users should be
integrated in a uniform and seamless manner, realizing the dynamically and se-
mantically enhanced information processing.

 Computations. The distributed, extensible and transparent computation resource
is required by the computing intensive services like travel route design.

 Storages. The system should be able to store and process potentially huge vol-
umes of multimedia content, user information and business data in a timely and
efficient fashion.

 VO and collaborations. VO is required to make users share resources, access
services and collaborate in a cross-institutional way.

To meet the above requirements, currently several enabling technologies like seman-
tic Web [3], Web services, grid and agent have been adopted in the different e-
Tourism applications, however there is no an unified framework to be able to seam-
lessly integrate all of them. Inspired by UK e-Science program, the paper focuses on
the solution from a promising infrastructure, semantic grid [4][5]. Semantic grid is
able to provide an Internet centered interconnection environment that effectively
organize, share, cluster, fuse, and manage globally distributed versatile resources
based on the interconnection semantics [6]. In this paper, we research an e-Tourism
framework based on semantic grid, which conforms to the S-OGSA architecture [7]
and enhanced by several customizations and extensions such as the ontologies, intel-
ligent agent, unified service and resource discovery, etc.

The remainder of this paper is structured in the following manner. Section 2 pro-
vides framework overview. Section 3 discusses several design issues including archi-
tecture, ontologies structure, agent, etc. Section 4 presents the implementation. Sec-
tion 5 introduces the related work and section 6 gives out the conclusion.

2 Framework Overview

The e-Tourism framework proposed in this paper is designed based on semantic grid,
which conforms to three layered views: service view, content view and technological
view (fig. 2).

Firstly, from the service view, the framework takes the notion of service-oriented,
in which any users including tourist, travel agency, hotel, restaurant, airline and resort
should be considered as either service consumer or service provider. VOs organize
services and relevant resources and users in a virtual administrative domain, allowing
the access of services in a cross-institutional way.

Secondly, content view refers to the objects that the framework can process from
simple data to meaningful information, then to higher abstract knowledge. This view
has been widely accepted since it is presented by David, Nicholas and Nigel [8]. In
this view, the data is concerned with the way how it is obtained, shipped, processed
and transmitted by services, resources and even some special equipments like camera;
then, the information is the data equipped with meaning, which is related to the way
how it is represented, annotated, achieved, shared and maintained. For example, the
number can be annotated as distance between a hotel and an airport; finally, the

488 X.M. Zhang

knowledge is the information aiding users to achieve their particular goals, which is
concerned with the way how it is acquired, inferred, retrieved, published and main-
tained. For instance, a piece of knowledge can be stated like this: 20 minutes driving
is needed from the airport to a
hotel if the distance is about 20
miles.

Thirdly, technological view
considers the state of the art tech-
nological components which
implement the e-Tourism seman-
tic grid. For instance, grid sup-
ports VO, computation, storage
and collaboration management;
agent and workflow facilities
provide personalization and intel-
ligent automation; semantic Web
and Web services enable the
seamless integration and knowl-
edge inferring.

 Fig. 2. Overview of E-Tourism Framework

3 Design Issues

In this section, some detailed design issues are discussed mainly focusing on e-
Tourism specific requirements, which include framework architecture, ontologies
structure, semantic reconciliation, service and resource discovery, role based authori-
zation and intelligent agent.

3.1 Architecture

To avoid the reinvention of the wheel, our framework takes S-OGSA as the start point
for architecture design, which is widely considered as the first reference architecture
for semantic grid by extending the current OGSA (Open Grid Services Architecture)
[9] with semantics. S-OGSA integrates the grid, semantic Web and semantic Services
together, supports many important knowledge services. For example, ontology and
reasoning services are designed for the conceptual models of representing knowledge,
while metadata and annotation services are invented to implement semantic binding
for different types of information sources, like documents, databases, provenance
information, credentials, etc. However, as a basic and common architecture, S-OGSA
can’t be directly applied to all different applications, so according to the specific re-
quirements of e-Tourism, we extend or enhance S-OGSA as followings:

 Extending ontologies structure with tourism domain requirements
 Introducing semantic reconciliation to solve the interoperability of ontologies
 Unifying the service and resource discovery
 Establishing role based authorization
 Integrating intelligent agent facility.

e-Tourism Environment

Service View

Tourist
Travel

Agency Hotel, Airline, Resort, Cruise line, ...

Content View

Data Information

Technological View

Intelligent
Agent

Grid

Knowledge

Semantic Web
&Web Service

Consumer Provider

Virtual
Organization

 A Semantic Grid Oriented to E-Tourism 489

3.2 Ontologies Structure

In the e-Tourism semantic grid, ontologies are the fundamental blocks to capture the
expressive power of modeling and reasoning with knowledge [8].

From the ontologies structure illustrated
in Fig. 3, e-Tourism ontology is obtained
through extending the S-OGSA ontology
and using part of the Globus [10] ontology.
To meet the specific requirements in tour-
ism domain, e-Tourism ontology is com-
posed of four parts: Concepts ontology
provides basic definitions and standard
terms based on WTO (World Tourism Or-
ganization) Thesaurus [11], which is an
international standardization and normaliza-
tion guide to tourism terminology;

 Fig. 3. Ontologies Structure

Roles ontology contains descriptions of user roles like tourist, travel agency and
service provider; Resources ontology states the capability of the hardware, software
and communication resources which support the services, for example, CPU perform-
ance and network bandwidth; Services ontology defines the uniform service interfaces
and functionalities conforming to the OTA specification [11], which includes air
services, cruise services, destination services, dynamic package services, golf ser-
vices, hotel services, insurance service, loyalty services, tour services and vehicle
services. Fig. 4 gives out hierarchical structure of OTA-Compliant services ontology
and an example interface description of TourSearchRQService.

 TravelService

AirService

CruiseService

HotelService

TourService

TourSearchRQService

TourAvailService

 SearchCriteriaType

PosType

SearchDateRangeType

MinimumDuration

MaxmumDuration

DestinationPerType

StateCodeList

Placemark

Hierarchy structure of
services ontology

Ontology for Tour Search
Request Service

Fig. 4. OTA-Compliant E-Tourism Services Ontology

3.3 Semantic Reconciliation

Although e-Tourism ontology is helpful in establishing the new semantically interop-
erable services, it‘s impractical to reinvent all legend services and make them
complaint to a global ontology in the tourism domain. Some different ontologies
mentioned at the related work of this document have been adopted by several legend

 Base Grid Ontology

OGSA Ontology

Globus Ontology S-OGSA Ontology

E-Tourism Ontology

Concepts Services

extends

extends extends

extends uses

RolesResources

490 X.M. Zhang

tourism systems or services, so there is a need of semantic reconciliation which typi-
cally implemented through ontology mediation or mapping in some projects
[12][13][14].

In this framework, semantic reconciliation is solved mainly by stub service
[15][16] and ontology service. Stub service encapsulates the details of translating
between OTA-Compliant messages and Provider-Specific messages. In translation,
stub services collaborate with ontology service which supports ontologies mapping
besides the storage capability. Upon completing transformation of messages, stub
services forward them to the target Provider-Specific services. In fig. 5, an OTA-
Compliant request to TourSearchRQService is converted into Amadeus-specific and
Sabre-specific requests in the different stub services through the ontology mapping.

/*Amadeus-specific service*/
Amadeus-TourSearchRQService(...)
{
...
} /* Sabre-specific service*/

Sabre-TourSearchRQService(...)
{
...
}

/*Amadeus-stub service*/
TourSearchRQService(...)
{

 ...
}

/*OTA-Compliant request*/
...
TourSearchRQService(...);
...

Client Agent

Service Provider
/* Sabre-stub service*/
TourSearchRQService(...)
{

 ...
}

OTA-Compliant

Provider-Specific

Stub Service

Ontology Service

OTA

Sabre
... ...

Amadeus

OTA

Fig. 5. Semantic Reconciliation

3.4 Unified Service and Resource Discovery

Service and resource discovery is critical to the dynamic and heterogeneous e-
Tourism, however current discovery approaches such as UDDI and MDS [17] can’t
provide sufficient expressiveness and efficient matchmaking, so several researches
focus on extending the existed discovery mechanism by semantic technologies [18].
For example, myGrid [19][20] implements the service discovery by attaching the
semantic information to entities in the UDDI and WSDL models [21], and S-MDS
(Semantic Monitoring and Discovery system) conducts discovery of grid resource
through extending the Globus MDS with enhancement of semantics [18].

Based on the above achievements, our discovery solution strives to unify semantic
discovery of service and resource together, because the service discovery in the grid is
not only relied on the requirements of functionalities and features, but also the avail-
ability and performance of associated underlying resources [22]. As illustrated in fig.
6, the information of service and its respective stub service is stored in UDDI; the
relied resource information with property of related service name and UDDI index is
stored in MDS; the association among capability, service and its stub service is

 A Semantic Grid Oriented to E-Tourism 491

 :Tourist
Agent

:Metadata
Service

:Ontology
Service

:RouteDesign
Service

:Authorization
Service

Step1

Step2

Step4

Step3

Step9

Step5

:Reasoning
Service

Step7

Step8

Step6

Step11

Step10

Fig. 7. Authorization Process Based on Roles

described in OWL-SR language [22] and stored in Mediator. At runtime clients or
agents send semantic query to Mediator, for example “find a tour search service on a
resource with CPU utilization less than 10%”. Then Mediator infers a list of services
which meet the service capability description through contacting ontology service and
reasoning service. Next, Mediator infers and sends a query to the MDS based on this
service list and the resource requirement. Upon receipt of resources from MDS,
Mediator is able to narrow down the service list by kicking out the services without
required resources. Finally Mediator forms a list composing of the stub services cor-
responding to the previously narrowed service list, and returns it to the clients or
agents. This last step is
critical to the system
integration in the hetero-
geneous e-Tourism,
because the OTA-
Compliant interfaces
provided by stub services
are able to hide the inter-
face difference of spe-
cific providers, which in
turn simplifies and uni-
fies the client and agent
programming.

 Fig. 6. Unified Service and Resource Discovery

3.5 Role Based Authorization

VO provides an effective way for cross-institutional services and resources accessing
in the e-Tourism system. However, the authorization of the users from the different
administrative domain cannot be pre-determined statically until at runtime. So we
make a role based
access control policy
that conforms to the
OGSA-AuthZ frame-
work and is able to
determine the users’
eligibility dynamically
[23] [24]. Under this
policy, users’ roles can
be inferred from their
properties during
runtime. For example,
EcnomicTourist role is
assigned to a tourist
whose consuming
points in the past 12
months are below
5000, and he can be

 UDDI

MDS

Reasoning
Service

/*Provider-Specific services info*/

Sabre-TourSearchRQService (...)

/*Stub Services Info*/

TourSearchRQService (...)

Mediator

Client

Agent

/*resources info used by the services*/
{CPU, storage, network bandwidth ...}

Stub Service

Resource

Ontology
Service

Service

492 X.M. Zhang

upgrades to VipTourist role when his consuming points in the past 12 months reach
5000 or above.

The fig. 7 illustrates the authorization process for a tourist to access RouteDesign
service which is only authorized to VipTourist users. Initially Authorization service
maintains an access control list based on roles. In step 1, a tourist entering the VO
requests the RouteDesign service through his agent. Then the RouteDesign service
collects the properties of the tourist through Metadata service in step 2, 3. Next, in
step 4 RouteDesign service generates an Authorization request which contains the
RDF based property regarding consuming points. In step 5 and 6, Authorization ser-
vice gets VO ontology containing the role definitions from the ontology service. And
in step 7 and 8, Authorization service invokes the Reasoning service to infer the role
of the tourist by passing the VO ontology and the tourist property as parameters. Then
Authorization service compares the inferred tourist’s roles and the role based access
control list to evaluate the eligibility of the tourist in step 9. Finally, if the access is
allowed, the RouteDesign service is invoked in step 10 and returns the travel route to
tourist agent in step 11. If denied, no route computing is executed and the deny infor-
mation is returned to the tourist agent in step 11.

3.6 Intelligent Agent

From the scenario in fig. 1, there is a clear need of agents to perform some flexible,
autonomous actions to accomplish e-Tourism tasks [25]. Some agents act as the rep-
resentative of the tourists or travel agencies to forward the requests, monitor the status
and receive the responses. While some other agents are capable of mining preference,
which aids in precise and timely targeting, and personalization of tourism products.
To achieve this, the agent need to trace the user’s requests, analyze his preferences,
and continually refresh the dynamic part of user profile like interests. In the following
example, an Interests-Value array IVij (i=1...n items of interests, j=0, 1) is used by the
agent to represent relevant tourist’s interests.

when j=0, IVij={items of interests};
when j=1, IVij={1,2,3,4,5}. /*value of interests:

1, invokes of service in a month <5;
2, invokes of service in a month <10 and >=5;
3, invokes of service in a month <15 and >=10;
4, invokes of service in a month <20 and >=15;
5, invokes of service in a month >=20 */

From the above definition, items of interests is a set of requests invoked by the tourist
in the past month. Value of interests reflects the frequency of requests invokes by the
tourist in the past month. More frequently a request is invoked by a user, the higher
the value of interests is. If the value of interests of a request, for example “Request
(op: airFare, source: Beijing, destination: Newyork)”, is greater than a threshold, then
this request will be added to a preference list and invoked by the agent periodically,
thus the updated air fare from Beijing to Newyork will be automatically returned to
the tourist.

For complex e-Tourism business, the agent need to be enhanced by workflow and
rule based reasoning engine. Workflow engine enables multiple agents to collaborate
in a customizable way, while reasoning engine can assign agents the capacity to infer

 A Semantic Grid Oriented to E-Tourism 493

knowledge through declarative rules. There have been lots of discussions on reason-
ing and workflow of agents[26] [27] [28] [29].

4 Implementation

The framework is implemented on two layers: application and infrastructure. Applica-
tion layer contains semantic aware e-Tourism grid services (e.g. RouteDesign ser-
vice), which solve the business problems in e-Tourism domain and are deployed in
the containers supported by the lower semantic grid infrastructure. The infrastructure
layer conforms to the S-OGSA and is implemented by OntoGrid framework [30]. It
deploys Globus Toolkit 4 as basic grid platform, integrates Jena [31] to support se-
mantic Web functionalities (for example, RDF based metadata storage and reason-
ing), and uses Apache Axis [32] and WSRF [33] to declare Web services and execute
SOAP requests. Moreover, several customizations and enhancements like ontologies,
Mediator and intelligent agent have been applied on OntoGrid framework to better
serve the e-Tourism requirements. Specially, the agent facilities are set up through
JADE (Java Agent Development Evnironment) [34] with extensions of reasoning and
workflow engines: JESS (Java Expert System Shell) [29] and Wade (Workflow and
Agent Development Environment) [26]. Additionally, integration between agent fa-
cilities and S-OGSA framework is completed through a service oriented manner in
which the communication is realized via Web services.

5 Related Work

The semantic Web and semantic Web service has substantial effects on next genera-
tion e-Tourism infrastructure, which enhances existing tourism Web resources and
services through semantic way, makes them “smarter” and capable of carrying out
intelligent reasoning behind the scenes. Some typical projects include:

 Harmonise [35] is an EU Tourism Harmonisation Network established by
eCTRL, IFITT and others. It creates an electronic space for tourism stakeholders
to exchange information in a seamless, semiautomatic manner, independent from
geographical, linguistic and technological boundaries. It defines an Interopera-
bility Minimum Harmonisation Ontology for modeling and saving concepts of
transaction data.

 Hi-Touch project [36] is to develop semantic Web methodologies and tools for
intra-European sustainable tourism. It makes use of the WTO Thesaurus on
Tourism and Leisure Activities as an authoritative source for its ontology.

 OnTour project [37] developed by e-Tourism Working Group at Digital Enter-
prise Research Institute, designs an advanced e-Tourism semantic Web portal
connecting the customers and virtual travel agents, and an e-Tourism ontology
using OWL and WTO Thesaurus.

 SATINE project [13] realizes a semantic based infrastructure which allows the
Web services on well-established service registries like UDDI or ebXML to
seamlessly interoperate with Web services on P2P Networks. The travel

494 X.M. Zhang

ontologies are developed based on standard specifications of Open Travel Alli-
ance (OTA).

Despite contributing a lot for the e-Tourism infrastructure, semantic Web and seman-
tic Web services have the weakness in flexible computation, storage, VO and collabo-
ration which are critical to next generation e-Tourism. Semantic grid, however, is able
to compensate these lacks by seamlessly integrating grid facilities with semantic Web
and Web services. Currently several pioneering applications based on semantic grid
have been developed in the following:

 GRISINO project aims to develop an experimental test-bed combining advanced
prototypes of each of the three technologies: Knowledge Content Objects as a
model for the unit of value, WSMO/L/X as a framework for the description and
execution of semantic Web services and Globus as the grid infrastructure for
managing resources and hosting services.

 UK e-Science program has reinforced the practical need for the semantic grid,
and funded many e-Science projects based on various semantic grid solutions,
like CombeChem/eBank, CoAKTinG, MIAKT and Medical Devices.

 There are still more significant efforts to provide an architecture like S-OGSA
for the development of semantic grid applications or simply semantic aware grid
Services, such as projects InteliGrid [38] and myGrid, showing how explicit
metadata can be used in the context of existing grid applications.

6 Conclusion

This paper has discussed the semantic grid as the next generation e-Tourism infra-
structure, which supports high degree automation, seamless integration, knowledge
services, intelligent agent, flexible collaboration, and sharing of computation and
storage resources on a global scale. It’s not difficult to imagine a lot of innovative e-
Tourism applications on this promising infrastructure. However, the semantic grid is
still in its early experimentation phase of pioneering applications and far away from
the mature [23]. To make it a reality, there are still many research challenges, for
example, performance, scalability, reliability and security problems.

References

1. Cardoso, J.: E-Tourism: Creating Dynamic Packages using Semantic Web Processes. In:
W3C Workshop on Frameworks for Semantics in Web Services. Innsbruck (2005)

2. Keun, H.K., Jeong, S.H., Pilsoo, S.K.: Modeling for Intelligent Tourism E-Marketplace
Based on Ontology. In: Proc. of the 2007 International Conference on Recreation, Tour-
ism, and Hospitality Industry Trends, Taiwan, pp. 56–65 (2007)

3. Berners-Lee, T., Hendler, J., Lassila, O.: Semantic Web. J. Scientific American 284(5),
34–43 (2001)

4. Murphy, M.J., Dick, M., Fischer, T.: Towards the Semantic Grid. J. Communications of
the IIMA 8(3), 11–24 (2008)

5. Roure, D.D.: Future for European Grids: GRIDs and Service Oriented Knowledge Utili-
ties. In: Vision and Research Directions 2010 and Beyond,

 http://www.semanticgrid.org/documents/ngg3/ngg3.html

 A Semantic Grid Oriented to E-Tourism 495

6. Zhuge, H.: Semantic Grid: Scientific Issues, Infrastructure, and Methodology. J. Commu-
nications of The ACM 48(4), 117–119 (2005)

7. Corcho, O., Alper, P., Kotsiopoulos, I., Missier, P., Bechhofer, S., Goble, C.: An overview
of S-OGSA: A Reference Semantic Grid Architecture. J. Web Semantics 4, 102–115
(2006)

8. Roure, D.D., Jennings, N.R., Shadbolt, N.R.: The Semantic Grid: A Future e-Science In-
frastructure. In: Grid Computing - Making the Global Infrastructure a Reality, pp. 437–
470. John Wiley and Sons Ltd., Chichester (2003)

9. Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn, B., Ma-
ciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J., Reich, J.V.: The Open Grid Ser-
vices Architecture, Version 1.0. Technical report, Global Grid Forum (2005)

10. Foster, I.: A Globus Toolkit Primer (2005), http://www.globus.org/primer
11. Prantner, K., Ding, Y., Luger, M., Yan, Z., Herzog, C.: Tourism Ontology and Semantic

Management System: State-of-the-arts Analysis. In: IADIS International Conference
WWW/Internet 2007. Vila Real, Portugal (2007)

12. Maedche, A., Motik, D., Silva, N., Volz, R.: MAFRA-A MApping FRAmework for Dis-
tributed Ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS
(LNAI), vol. 2473, pp. 235–250. Springer, Heidelberg (2002)

13. Dogac, A., Kabak, Y., Laleci, G., Sinir, S., Yildiz, A., Tumer, A.: SATINE Project: Ex-
ploiting Web Services in the Travel Industry. In: eChallenges 2004, Vienna (2004)

14. Dogac, A., Kabak, Y., Laleci, G., Sinir, S., Yildiz, A., Kirbas, S., Gurcan, Y.: Semantically
Enriched Web Services for the Travel Industry. J. ACM Sigmod Record 33(3) (2004)

15. Zhang, X.M.: High performance virtual distributed object. J. Journal of Computer Re-
search and Development suppl., 102–107 (2000)

16. Zhang, X.M.: A Dynamic Scalable Asynchronous Message Model Based on Distributed
Objects. J. Computer Engineering and Science 3, 48–50 (2002)

17. GT 4.0 WS MDS Index Service: System Administrator’s Guide,
 http://www-unix.globus.org/toolkit/docs/development/
 4.0-drafts/info/index/admin/

18. S-MDS: semantic monitoring and discovery system for the Grid. J. Grid Computing 7,
205–224 (2009)

19. Sharman, N., Alpdemir, N., Ferris, J., Greenwood, M., Li, P., Wroe, C.: The myGrid In-
formation Model. In: UK e-Science programme All Hands Conference (2004)

20. myGrid: The myGrid project (2008), http://www.mygrid.org.uk/
21. Miles, S., Papay, J., Payne, T.R., Decker, K., Moreau, L.: Towards a protocol for the at-

tachment of semantic descriptions to Grid services. In: European Across Grids Conference,
pp. 230–239 (2004)

22. Lee, F., Garg, S., Garg, S.: OWL-SR: Unified Semantic Service and Resource Discovery
for Grids. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519.
Springer, Heidelberg (2007)

23. Alper, P., Corcho, O., Parkin, M., Kotsiopoulos, I., Missier, P., Bechhofer, S., Goble, C.:
An authorisation scenario for S-OGSA. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.
LNCS, vol. 4011, pp. 7–8. Springer, Heidelberg (2006)

24. Brooke, J.M., Parkin, M.S.: Enabling scientific collaboration on the Grid. J. Future Gen-
eration Computer Systems (2008)

25. Wooldridge, M.: Agent-based software engineering. IEE Proc. on Software Engineer-
ing 144(1), 26–37 (1997)

496 X.M. Zhang

26. Caire, G., Gotta, D., Banzi, M.: WADE: a software platform to develop mission critical
applications exploiting agents and workflows. In: Proc. of the 7th international joint con-
ference on Autonomous agents and multiagent systems, Estoril, pp. 29–36 (2008)

27. Buhler, P.A., Vidal, J.M.: Towards Adaptive Workflow Enactment Using Multiagent Sys-
tems. J. Information Technology and Management 6(1), 61–87 (2005)

28. Negri, A., Poggi, A., Tomaiuolo, M.: Dynamic Grid Tasks Composition and Distribution
through Agents. J. Concurrency and Computation 18(8), 875–885 (2006)

29. JESS: the Rule Engine for the JavaTM Platform (2009),
 http://herzberg.ca.sandia.gov/jess/

30. Goble, C., Kotsiopoulos, I., Corcho, O., Missier, P., Alper, P., Bechhofer, S.: S-OGSA as a
Reference Architecture for OntoGrid and for the Semantic Grid. In: GGF16 Semantic Grid
Workshop (2006)

31. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena:
implementing the semantic web recommendations. In: Proc. of the 13th international
World Wide Web conference, New York (2004)

32. Axis Architecture Guide,
 http://ws.apache.org/axis/java/architecture-guide.html

33. Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling, D.,
Tuecke, S., Vambenepe, W.: Web Services Resource Framework (WSRF). Technical re-
port, Globus Alliance and IBM (2005)

34. Bellifemine, F., Poggi, A., Rimassa, G.: Jade: a fipa2000 compliant agent development en-
vironment. In: Proceedings of the fifth international conference on Autonomous agents, pp.
216–217. ACM Press, New York (2001)

35. Missikoff, M., Werthner, H., Hopken, W., et al.: Harmonise-Towards Interoperability in
the Tourism Domain. In: Proc. of the 10th International Conference on the Information and
Communication Technologies in Travel & Tourism, Helsinki, Finland (2003)

36. Hi-Touch project,
 http://icadc.cordis.lu/fepcgi/
 srchidadb?CALLER=PROJ_IST&ACTION=D&RCN=63604&DOC=20&QUERY=3

37. Bachlechner, D.: OnTour - The Semantic Web and its Benefits for the Tourism Industry
(2005), http://e-tourism.deri.at/ont

38. Dolenc, M., Turk, Ž., Katranuschkov, P., Krzysztof, K.: D93.2 Final report of the Inteli-
Grid. Technical report, The InteliGrid Consortium and University of Ljubljana (2007)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 497–509, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Irregular Community Discovery for Social CRM in Cloud
Computing

Jin Liu1,2, Fei Liu1, Jing Zhou3, and ChengWan He4

1 State Key Lab. Of Software Engineering, Wuhan University, China 430072
2 State Key Lab. for Novel Software Technology, Nanjing University, China 210093

3 School of Computer, Communication University of China, 100024
4 School of Computer Science and Engineering, Wuhan Institute of Technology, 430073

mailjinliu@yahoo.com

Abstract. Social CRM is critical in utilities services provided by cloud com-
puting. These services rely on virtual customer communities forming sponta-
neously and evolving continuously. Thus clarifying the explicit boundaries of
these communities is quite essential to the quality of utilities services in cloud
computing. Communities with overlapping feature or projecting vertexes are
usually typical irregular communities. Traditional community identification al-
gorithms are limited in discovering irregular topological structures from a CR
networks. These uneven shapes usually play a prominent role in finding promi-
nent customer which is usually ignored in social CRM. A novel method of dis-
covering irregular community based on density threshold and similarity degree.
It finds and merges primitive maximal cliques from the first. Irregular features of
overlapping and prominent sparse vertex are further considered. An empirical
case and a method comparison test indicates its efficiency and feasibility

Keywords: Cloud computing; Irregular community discovery; Social CRM.

1 Introduction

The distinctive traits of cloud computing are its efforts on providing value-added
trustee services, maximizing flexible integration of computing resource, as well as
advancing cost-saving IT service. To provide value-added trustee services, the “cloud”
should be capable of identifying the customer relationship communities and answering
for users’ innovation strategy. To maximize flexible integration of computing resource,
the “cloud” should integrate both human computing resources and electronic comput-
ing resources. Many computing tasks are usually more suitable for human to process
than for electronic computing machines. Integrating the Human computing ability or
crowd computing ability into the “cloud” can enhance its processing capabilities with
the help of vast human brains dispersed on the Internet [22, 23]. This means that the
“cloud” should be competent for tracking customer information and understanding the
interaction way of its users.

Accordingly, customer relationship management CRM is critical in utilities services
provided by cloud computing. Fig 1 illustrates that social CRM plays an important role
in supporting value-added trustee service and exploiting human computing resources in

498 J. Liu et al.

Fig. 1. Social CRM as an important components in cloud computing

cloud computing. CRM involves in attracting new profitable customers and forming
tighter bonds with existing ones [1, 3]. Since online social communities and
conversations carry heavy consequences for companies, social CRM integrates social
network into the traditional CRM capabilities [4]. Information gained through social
CRM initiatives can support the development of marketing strategy by developing the
organization's knowledge in areas such as identifying customer relationship commu-
nity, improving customer retention, improving product offerings by better under-
standing customer needs [4, 8]. Customer relationship network as a kind of social
network, with CR network for short, uses a vertex for a customer and a link for the
relationship between two vertexes. Many online cloud computing services rely on
virtual communities that spontaneously emerge and continuously evolve. Thus clari-
fying the explicit boundaries of these communities is quite essential to ensure service
qualification.

Communities with overlapping feature or projecting vertexes are usually typical
irregular communities. Traditional community identification algorithms are limited in
discovering irregular topological CR network that is very important in CRM [1, 7, 9,
12, 13, 14, 16, 17, 18, 19]. With an uneven shape, these communities usually play a
prominent role in finding prominent customer which is usually ignored in social CRM
[20]. For this reason, this paper proposes a novel approach of irregular community
identification based on density threshold and similarity degree. With a polymerization
approach, maximal complete cliques in a CR network are identified from the begin-
ning. These primitives are further assembled into larger combinations. For overlapping
cases, processes of merging these combinations or repartitioning them are executed
according to corresponding rules. And communities with prominent parts are also
considered in irregular identification.

 Irregular Community Discovery for Social CRM in Cloud Computing 499

2 Essential Elements

A CR community is a special sub-graph in a CR network (a graph), where vertexes
within community are densely connected to each other while links are sparse between
communities. An irregular community as a kind of special community with some bi-
zarre vertexes contains the general community characteristics. Several concepts and
knowledge are introduced to explain irregular community in CR network.

A clique is a complete sub-graph. A maximal clique is a set of vertices that induces a
complete sub-graph, and that is not a subset of the vertices of any larger complete
sub-graph [5, 10, 11]. Let G=(V, E) be a CR network with |V(G)|=n vertexes and
|E(G)|=m links, C be a community of CR network, the density of C is defined as :

2)1|)((||)(|
|)(|

2

|)(|
|)(|)(

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

CVCV

CECV
CECdensity (1)

where |V(C)| is the number of vertexes in C and |E(C)| is the number of links in C.
The density of a graph reflects the interaction degree among vertexes within the

graph. As a community, there are high interactions among vertexes in the community.
Therefore, the graph with high density usually can be regarded as a community.

Graph H is a sub-graph of CR network G. Let be a vertex Hv ∈ and the degree of v
be D(v), then D(v) comes from two parts such that

D(v)= Din(v)+ Dout (v) (2)

In equation (2), Din(v)is the number of links where v is adjacent to vertexes in H and
Dout (v) is the number of links where v is adjacent to vertexes in V(G)-V(H).

The close degree between two sub-graphs H1 and H2 in G is defined as follows, with
CD for short. CD relies on the number of relation links between H1 and H2.

∑
∈∈

=
21,

21),(),(
HvHv

ji

ji

vvCHHCD (3)

where
⎩
⎨
⎧

∉
∈

=
)(),(,0

)(),(,1
),(

GEvv

GEvv
vvC

ji

ji
ji

.

The following intermediate theorem can be deduced from the definition of density.

Lemma 1. Considering CR network G, let H⊂G, v1, v1,…, vn ∈V(G)-V(H), denote
link(vi) as the number of links that vj connect to the H vertexes and vi with the maximal
link value as v. H can maximally increase the density or minimally decrease the density
if v is added to the graph.

Proof. Suppose that the graph H=(V, E) is extended into a new graph H′ after a vertex v
adds to the graph.

H′=({V∪v},{E∪E′}) (4)

where E′ contains the all links which v is adjacent to V(H).

500 J. Liu et al.

The number of links is represented as link(v). We denote

2/|)1)((||)(|
|)(|

2/|)(|)1|)((|
)(|)(|

)()(
−⋅

−
⋅+

+=−′=Δ
HVHV

HE

HVHV

vlinkVE
HdensityHdensityd

(5)

where link(v) = max{ link(v1), link(v2),…, link(vn)}, link(vi)∉H, i =1,2,…, n.
It is apparent that the density of the graph H increases maximally when Δd > 0 and

decreases minimally when Δd <0. ■

Lemma 2. For a graph H with its density greater than threshold α, if the density of
newly formed graph H′ keeps steady or increase after a vertex v adds to H, it holds that:

 link(v) ≥ α|V(H)|2-2|E(H)| (6)

Proof. It is known that

()

| () |
| () | (| () | 1) 2

density H
E H

V H V H
α= ≥

−
 (7)

and

 | () | ()
()

(| () | 1) | () | /2
α

+′ = ≥
+ ⋅

E H link v
density H

V H V H
 (8)

Hence

0.5*α|V(H)| ≥ 0.5α|V(H)|2−|E(H)| (9)

and

link(v) ≥ 0.5α|V(H)|2+0.5α|V(H)| −|E(H)| (10)

It can deduce that link(v) ≥ α|V(H)|2-2|E(H)|. ■

3 Irregular Community Identification

Since irregular community construction is different from traditional community and
cannot be identified with traditional methods, a new approach denoted as the graph
extension algorithm is proposed. The basic idea of graph extension algorithm is as
follows. Firstly, all maximal cliques are identified from an initial CR network. Then all
maximal cliques are merged or extended into a new structure by adding several special
vertexes to these maximal cliques. Finally, the combined graph is processed to produce
irregular communities in accordance with rational criterions.

3.1 Maximal Clique Combination

Identification of irregular community is premised on maximal cliques. Process 1 rec-
ognizes maximal cliques from a CR network to the DFS algorithm in graph theory.
With a recursive manner, function fcg in process 1 explores a vertex v in CR network
and checks whether it and its adjacent vertexes could constitute a clique until all cliques
that include v are identified.

 Irregular Community Discovery for Social CRM in Cloud Computing 501

Process 1. idenfiticationMaximalClique()

1: put graph data into vertexHouse;

2: for(int I = 0;i<vertexHouse.size(); i++){

3: Vertex n = vertexHouse.get(i);

4: fcg(“”, -1 , n , n.neighnorList);

5: }

6: Function fcg(String cg,int degree,Vertex n,List<Vertex>list)

7: cg += n.ID;

8: degree ++;

9: if(list.size() = = 0){

10: if(degree < = 1) return;

11: cgList.add(cg);

12: return;

13: }

14: while(list.size()>0){

15: Vertex n1 = list.get(0);

16: list.remove(0);

17: List<Vertex> L = new List<Vertex>();

18: for(int i = 0; i<list.size(); i++){

19: Vertex n2 = list.get(i);

20: if(n1.neighborHash.containsKey(n2.getId()))L.add(n2);

22: }

23: }

24: fcg(cg , degree, n1, L);

25: }

To merge overlapping maximal cliques, similarity is introduced to estimate the
similar degree among sub-graphs. It takes account for the mutual vertexes among
cliques and the size of cliques.

1 2

1 2 1

1 2

| (...) |
(, , ...,)

min{| () |, | () |, ..., | () |}
λ

∩ ∩
=

∩
t

t

t

V H H H
similarity H H H

V H V H V H

 1 2

2

1 2

min{| () |, | () |, ..., | () |}

max{| () |, | () |, ..., | () |}
λ+ t

t

V H V H V H

V H V H V H

(11)

where
1 2

1λ λ+ = , tHHH ,...,, 21 are compete graphs and | () | 3,≥
i

V H i = 1,2,…,t.

The combination condition of overlapping maximal cliques can be as follows.

similarity(H1, H2,…,Ht) ≥ β ≥ α (12)

where β is a threshold that can be determined later in the light of the specific case. If

the similarity of H1, H2,…,Ht satisfies the restriction of formula (12), then the graphs
H1, H2,…,Ht can be merged, denoted as H = H1∪H2∪ H3∪…Ht.

502 J. Liu et al.

Fig 2. illustrates a combination example of maximal cliques. The maximal cliques
H1, H2, H3and H4 share a common vertex “ahfylxy”. The maximal cliques H1, H2 and H3
share a common vertex set {“ahfylxy”, “aimee6”, “akhanjiang”, “andydiana”}.
Without loss of generality, if the value of λ1 is taken as 0.5 and β as empirical threshold
value 0.6, similarity (H1, H2, H3) is 0.9, with max{|V(H1)|, V(H2)|,V(H3)|} 5,
min{|V(H1)|,V(H2)|, V(H3)|} 5 and |V(H1∩H2∩H3)| 4. Since similarity (H1, H2, H3)
exceeds β, H1, H2 and H3 are merged into a new combination, or M-graph for short. In
another case, similarity (H1,H2,H3, H4) is 0.5, with max{|V(H1)|,V(H2)|, V(H3) ,V(H4)|}
5, min{|V(H1)|,V(H2)|, V(H3) , V(H4)|} 4 and |V(H1∩H2∩H3∩H4)| 1. Due to the lower
similarity (H1, H2, H3, H4) value than β, H4 can not be absorbed into M-graph. The
merge process of maximal cliques can be rendered as follows.

Fig. 2. A combination demonstration of maximal cliques

Process 2. mergeMaximalClique()

1: If the similarity of the maximal cliques Hi and Hj satisfy the

empirical combination threshold β,attaching a label combi-
nation marker between Hi and Hj (i,j=1,2,…,t, and i≠j);

2: Repeat this remarking operation on any two the maximal cliques,

it gets a mark network G’ =(V’, E’).
3: Scan G’ and identify all connected components in G’;

4: Merge each connected component into the M-graph and form the

initial community.

 Irregular Community Discovery for Social CRM in Cloud Computing 503

For sub-graphs that are not maximal cliques in a CR network, the k-degree graph
approach may be used to identify the maximal k-degree (k>2) graph. In a graph H at
least contains three vertexes, if each vertex is adjacent to at least other k vertexes in H,
H is a k-degree graph. Further, a maximal k-degree graph H is a k-degree graph where
each vertex belongs to the k-degree graph rather than to a (k+1)-degree graph. A clique
C with |V(C)|= n is a maximal (n-1)-degree graph.

3.2 Irregular Overlapping Community

Several communities may be overlapped with several vertexes located in multiple
communities. Since each community is adhesive graph, the combination of these
communities may more often than not result in a newly formed community with ir-
regular shape, where several vertexes are located in the multiple original communities.
To combine two communities or repartition them into disjoint components, the opera-
tion should comply with the following rules, as illustrated in Fig. 3. Before perform
these rules, vertexes with “multiple roles” should be identified from the first.

Fig. 3. Processing rules of irregular overlapping community

For two community H1 and H2 with common vertexes,

Rule 1. If 2 2 1 2

1 2 1 2

(,)

| () | | () |

CD H H H H

V H V H H H

−

⋅ −

I

I
≥ α and 1 1 1 2

2 1 1 2

(,)

| () | | () |

CD H H H H

V H V H H H

−

⋅ −

I

I
≥ α,

1H and 2H are merged into one community, denoted as H1 ∪ H2;

Rule 2. If it does not hold the condition of Rule 1 and similarity(H1, H1− H1 ∩ H2) ≥
similarity(H2, H2- H1 ∩ H2), H1′ ← H1 and H2′ ← H2 −H1 ∩ H2;

504 J. Liu et al.

Rule 3. If it does not hold the condition of Rule 1 and similarity(H2, H2- H1 ∩ H2) ≥
similarity(H1, H1− H1 ∩ H2), H1 ← H1 −H1 ∩ H2 and H2 ← H2.

3.3 Community with Sparse Vertex

Considering two type vertex in a CR network, one is the vertex that can not combine
with its adjacent neighbor vertexes to form a clique; the other is the vertex with low link
value so that it can not be merged into a cohesive sub-graph. These vertexes are usually
sparse. If these sparse vertexes are merged into a cohesive sub-graph in a CR network,
the density of the newly formed sub-graph will decrease and even less than the
thresholdα in formula (6). But there are some vertexes in reality very important to the
community by analyzing the actual interaction between a user vertex and this com-
munity. This vertex cannot be arbitrarily excluded from this community. If there are
sparse vertexes exist around cohesive communities H1, H2,…, Hn, these vertexes should
be examined the possibility of merging into a community.

Suppose community Hi′ is the result of combination of Hi and sparse vertexes, where
i = 1,2,…, n. Denote ∪Hi as H1∪H2∪…∪Hn, Hi′=Hi∪{v|v∉∪Hi and link(v) ≥ λ⋅D(v)},

where link(v) = (),
∈
∑
k

k
v H

C v v and λ is an empirical threshold filtering sparse vertex

v, i = 1,2,…,n. For (),
k

C v v , (),
k

C v v =
()
()

1, if , ()
,

0, if , ()

∈⎧⎪ ∈⎨ ∉⎪⎩

k
k i

k

v v E G
v H

v v E G
.

(a) (b)

Fig. 4. A on-line selling community with prominent sparse vertexes

Fig.4 demonstrates a community with sparse vertexes. It is an information slice
drawn from a tea store in TaoBao e-commence market, which is the biggest online
auction market in China. The highlighted circles in Fig.4(a) are connected sparse ver-
texes, in five different positions around the cohesive main body with a high graph
density. These connected sparse vertexes compose projecting parts of this community
and form an uneven shape. Fig.4(b) indicates that the main body of this community is
almost a clique. In this community, 23 out of total 30 vertexes are with vertex degree
19, 6 vertexes with degree 6, 4 vertexes with degree 4 and 1 vertex with degree 25. The
percentage of projecting vertexes in the whole community is 20%.

 Irregular Community Discovery for Social CRM in Cloud Computing 505

4 Empirical Case

4.1 Co-buying CR Network

A CR community identification for an online book selling service is discussed herein.
The CR network G = (V, E) denotes the customer network of online shop with V for
customers and E for selling relationship among these customers. If any two customers A
and B buy the same product, there may be a product-buying relationship between them.
The products bought by a customer is purchase {purchase1, purchase2, …, purchasen},
with the price and quantities of purchase as {P1, P2,…, Pn} and { C1, C2,…, Cn } re-

spectively. The count-price strength two customers is
1

t

i
i iC P W P C

=

= ⋅∑ , where t is the

number of the same product bought by both customers. When CPW is more than the

Fig. 5. The process of identifying customer relationships and constructing CR network

(a) (b)

Fig. 6. The co-buy CR network of the on-line selling service in Taobao and its Pareto chart that
indicates the vertex number with each degree value and the percentage accumulation trend

506 J. Liu et al.

noise-reduce threshold k, the co-buying relationship between two customers is identified.
A link between customer A and B is added into the CR network, as illustrated in Fig.5.

The CR network of the online shop is established by iterating this identification
operation between any two customers. In the e-commence case, 1975 customers and 35
types of products are involved in constructing a CR network according to live business
records of the online shop. Fig. 6 indicates that the result of noise reduce process is a
CR network G with 490 vertexes and 7807 co-buying links.

4.2 Community Identification and Evaluation

The process idenfiticationMaximalClique() recovers 241 maximal cliques from the
co-buying CR network. The process mergeMaximalClique() further unifies intersecting
maximal cliques into bigger cohesive combinations with high graph density. The quality
of these combinations is examined with Q value that is introduced by [18, 21] to estimate
rationalization of community modularity. Fig. 7 is the analysis result of the relationship
of Q value and division threshold β under the circumstance of the co-buy CR network.
The modularity Q value takes ideal value above 0.5 with β ranging from 0.55 to 0.64.
Especially, Q value takes it maximal value 6.4 when β is 0.578.

Fig. 7. The relationship carve between the threshold β and modularity Q value

12 initial communities, that are the combinations of maximal cliques, are discovered
in this process. Further process overlapping and sparse features, it gets 10 overlapping
communities and 3 communities with projecting sparse vertexes in Table 1. For 3
communities with projecting sparse vertexes, one takes the spare percentage 3.12% in
the whole community, another 17.39% and the last 12.5%.

To evaluate the proposed community discovery approach, it is compared with two
well known community discovery approach under exponent the modularity Q value on
the foregoing co-buying CR network. The result comparing our polymerization ap-
proach with the hierarchical agglomeration method [2] and the clustering method [24]
is represented in Fig. 8, where the CR network size is intended regulated from a small
size to the full one. In most situations, our proposed approach takes a higher modularity
Q value than its contrasts.

 Irregular Community Discovery for Social CRM in Cloud Computing 507

Table 1. Community discovered in the co-buying CR network

Community Irregular Feature
NO Vertex Number Density Overlapping Sparse Sparse percentage
1 11 1.0000 √
2 321 0.1344 √ √ 3.12%
3 18 0.4575 √
4 13 1.0000 √
5 19 1.0000
6 23 0.3126 √ √ 17.39%
7 9 1.0000 √
8 21 0.4286 √
9 10 0.6667

10 8 0.6786 √ √ 12.5%
11 30 0.5977
12 7 0.8571 √

Fig. 8. A comparative test of our proposed polymerization approach, the hierarchical agglom-
eration method and the clustering method

5 Conclusions

Many communities with irregular topology exist in social CRM service under cloud
computing environment. Irregular community identification can be transferred into the
research issuer of irregular topological sub-graph identification from a CR network
graph. Most well known algorithm of community discovery ignore this truth and impair
the service quality ground on CR analysis.

The proposed approach serves to discover irregular community from the CR net-
works with essential knowledge and techniques such as maximal clique, graph simi-
larity, combination of maximal clique and close degree, which makes for enhancing the
quality of utilities services in cloud computing. More positive analysis should be car-
ried out to perceive the application characteristics of social CR networks and improve
the suggested method.

508 J. Liu et al.

Acknowledgments

The authors would like to thank Hainan Zhou for his selfless programming work.
This work was under the financial support of National Natural Science Foundation of
China (60703018; 60873024), 973 Program (2007CB310800), 863 Program
(2008AA01Z208; 2006AA04Z156) and Open Fund Project of State Key Lab. for
Novel Software Technology, Nanjing University.

References

1. Capocci, A., Servedio, V.D.P., Caldarelli, G.: Detecting communities in large networks.
Physica A 352, 669–676 (2005)

2. Clauset, A., Newman, M.E.J.: Finding community structure in very large networks. Physical
Review. E 70 (2004)

3. Cloud Computing, Wikipedia (2009),
 http://en.wikipedia.org/wiki/Cloud_Computing

4. Social CRM, Wikipedia (2009),
 http://en.wikipedia.org/wiki/Oracle_CRM#Social_CRM

5. Cazals, F., Karande, C.: An algorithm for reporting maximal c-cliques. Theoretical Com-
puter Science 349(3), 484–490 (2005)

6. Cazals, F., Karande, C.: Reporting maximal cliques: new insights. Rapport de recherché.
5615, INRIA (2007)

7. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying
communities in networks. In: Proceedings of the National Academy of Science of the United
State of America, vol. 101, pp. 2658–2663 (2004)

8. Avlonitis, G.J., Panagopoulos, N.G.: Antecedents and consequences of CRM technology
acceptance in the sales force. Industrial Marketing Management 34, 355–368 (2005)

9. Zhou, H.: Distance, dissimilarity index and network community structure. Physical Review.
E 67 (2003)

10. Koch, I.: Fundamental study: Enumerating all connected maximal common sub-graphs in
two graphs. Theoretical Computer Science 250, 1–30 (2001)

11. Koch, I., Wanke, E., Lengauer, T.: An algorithm for finding maximal common subtopolo-
gies in a set of protein structures. Journal of Computational Biology 3(2) (1996)

12. Pujol, J.M., Béjar, J., Delgado, J.: Clustering algorithm for determining community struc-
ture in large networks. Physical Review. E 74 (2006)

13. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimiza-
tion. Physical Review E 72 (2005)

14. Kumpula, J.M., Saramäki, J., Kaski, K., Kertész, J.: Limited resolution in complex network
community detection with Potts model approach. The European Physical Journal B 56,
41–45 (2007)

15. Liu, J., Liu, B., Li, D.: Discovering Protein Complexes from Protein-Protein Interaction
Data by Local Cluster Detecting Algorithm, pp. 280–284. IEEE Computer Society, Los
Alamitos (2007)

16. Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identi-
fication. Journal of Statistical Mechanics (2005)

17. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of ma-
trices. Physical Review E 74 (2006)

 Irregular Community Discovery for Social CRM in Cloud Computing 509

18. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Physical Review E 69 (2004)

19. Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving commu-
nity structure in complex networks. In: Proceedings of the National Academy of Science of
the United State of America, vol. 18, pp. 7327–7331 (2007)

20. Zhang, S.H., Wang, R.S., Zhang, X.S.: Identification of overlapping community structure in
complex networks. Physical A 374, 483–490 (2007)

21. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003)
22. reCAPTCHA, Wikipedia (2009), http://en.wikipedia.org/wiki/ReCAPTCHA
23. Crowd computing, Wikipedia (2009),

 http://en.wikipedia.org/wiki/Crowd_computing
24. Pujol, J.M., Béjar, J., Delgado, J.: Clustering algorithm for determining community struc-

ture in large networks. Phys. Rev. E 74, 016107 (2006)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 510–518, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Contextual Information Acquisition Approach Based
on Semantics and Mashup Technology

Yangfan He1, Lu Li2, Keqing He1, and Xiuhong Chen1

1 State Key Lab of Software Engineering, Wuhan University, 430072, Wuhan, Hubei, China
heyangfan927@163.com

2 International School of Software, Wuhan University, 430072, Wuhan, Hubei, China
lulu.li1989@gmail.com

Abstract. Pay per use is an essential feature of cloud computing. Users can
make use of some parts of a large scale service to satisfy their requirements,
merely at the cost of a little payment. A good understanding of the users’ re-
quirement is a prerequisite for choosing the service in need precisely. Context
implies users’ potential requirements, which can be a complement to the re-
quirements delivered explicitly. However, traditional context-aware computing
research always demands some specific kinds of sensors to acquire contextual
information, which renders a threshold too high for an application to become
context-aware. This paper comes up with an approach which combines contex-
tual information obtained directly and indirectly from the cloud services. Se-
mantic relationship between different kinds of contexts lays foundation for the
searching of the cloud services. And mashup technology is adopted to compose
the heterogonous services. Abundant contextual information may lend strong
support to a comprehensive understanding of users’ context and a bettered ab-
straction of contextual requirements.

Keywords: context acquisition, mashup, context ontology.

1 Introduction

Pay per use is an important feature of cloud computing[1]. Users wouldn’t bother to
install a bunch of software which have complicated functions. They can enjoy cloud
services selected from the Internet according to their personal needs. Salesforce repre-
sents a trend of cloud service, which means providing a fairly complete solution per-
tinent to a specific problem[2]. For a specific user, some parts of the service would
suffice, making it necessary to tailor the large scale service like Salesforce according
to the user’s personal requirements. Therefore, precisely capturing user’s require-
ments from various aspects is key to the success of “on-demand service provision”
and “pay per use”.

Users’ requirements can be divided into two categories: those expressed explicitly
and those expressed implicitly. Users’ context conveys their potential requirements
[3]. In the past, contextual requirements research was usually carried out in some
fixed contexts and under the presumption that these contexts could be attained
directly by sensors[4]. In cloud computing, capturing and analyzing contextual

 A Contextual Information Acquisition Approach Based on Semantics 511

information will be a common practice. So context awareness realized by means of
deploying all kinds of sensors will be too expensive to be adopted. Methods are
needed to obtain users’ context in a cheaper way and thus lower the threshold of con-
text awareness.

Among the plentiful contextual information, time and space, which can be easily
acquired with the aid of services like GPS, are two most fundamental types. Via the
dependency between different kinds of context and the services reside in the cloud,
we can also get some other contextual information, such as temperature, illumination,
and feasibility for exercises etc, based on time and space. There may be difference in
the types of the contextual information provision services. So some methods should
be taken to fuse these heterogonous services.

Mashup is a new technology for information fusion[5]. It takes the calls of differ-
ent services’ API to mix up the services. Well-known mashups include applications
based on Google and those based on Amazon, etc[6][7]. With the information sharing
spirit of mashup, users can enjoy bundles of services within one site. This gives a ray
of hope to resolve the problem of contextual provision services fusion.

This paper presents a semantics and mashup technology based approach to estab-
lish context space. In this approach, a context ontology is employed to express the
dependency between different kinds of context. Then a context mining algorithm
could be used to obtain context provision services from the cloud based on context
ontology. Those services take available context as input and produce other contextual
information as output. The two kinds of context services , already available ones and
those reside in the cloud are then combined by mashup technology to enrich the con-
text categories in the context space. This searching and mashup process continues
until all the available services have been collected or the context space has reached
the preset utmost. Thus, a refined context space, which can provide rich contextual
information for contextual requirements acquisition, can be set up. Compared with
methods in use, the most conspicuous characteristics of this approach are the analysis
of the dependency between different kinds of context in context ontology and the
application of mashup technology.

The content of this paper is organized as follows. Section 2 provides an introduc-
tion of the approach. Section 3 discusses the construction and management of context
ontology. Section 4 is an analysis of the algorithm for context mining. Section 5 in-
troduces a tool named “Context Box” which is used to set up the context space. Sec-
tion 6 is related works and finally is the conclusion.

2 The Approach

Figure 1 illustrates a typical application scenario of this approach. Users can get their
location information from GPS service of mobile phone, and mobile phone can also
provide current time. Knowledge of context ontology tells that contexts like tempera-
ture and ultraviolet intensity depend on time and location. However, the surrounding
has no sensors besides mobile phone, to provide information about temperature and
ultraviolet intensity directly.

512 Y. He et al.

Time
Service

Location
Service

Weather
Forecast
Service

News
Service

Shopping
Service

Tour
Agent

Service

Context
Ontology

Context
Miner

Rules lib of
Context

Reasoning

Contextual
Requirement

Generator

Contextual

Requirement

Time
Service

Location
Service

Weather
Forecast
Service

News
Service

Shopping
Service

Tour
Agent

Service

Context
Ontology

Context
Miner

Rules lib of
Context

Reasoning

Rules lib of
Context

Reasoning

Contextual
Requirement

Generator

Contextual

Requirement

Fig. 1. A Typical Application Scenario

At the same time, there are many kinds of services, including various weather fore-
cast services, in the cloud. These services take time and location of mobile phone
service as input and output temperature and ultraviolet intensity information at speci-
fied time and location. Context miner can check the available cloud services to get
context which directly or indirectly depends on location and time. With the help of
context miner, a context space can be set up gradually. The time and location service
and services from cloud may differ in many aspects. At run time, mashup technology
can be employed to connect the heterogonous context provision services.

Context requirement generator may reason out users' contextual requirement based
on the contextual information provided by context mashup and the rules set for con-
text reasoning. The content of the rules set will be changed when different application
scenarios are considered.

3 Building and Managing Context Ontology

The context mining process explained in section 2 implies that context ontology acts as
the basis for context provision service searching, and provides foundation for the
gradually formed context space. Figure 2 shows a simple example of context ontology.

Context ontology can be divided into two levels: low level context and high level
context. Low level context can be expressed in fundamental physical parameters. For
instance, temperature, humidity and illumination belong to low level context. High
level context is an integration of low level contexts. For example, “ It is a fine day” is
a high level context.

So far, there have been a lot of literature discussing context modeling. From a gen-
eral perspective, there can hardly be any general context ontology which fits all appli-
cations. It is the need of the application that decides the most relevant contextual
information.

 A Contextual Information Acquisition Approach Based on Semantics 513

Time

Location Temperature

Ultraviolet
Intensity

Feasibility
for Outing

High Level Context

Low Level Context

Legend
Dependency between context information

Relationship between upper level context
and lower level context

Time

Location Temperature

Ultraviolet
Intensity

Feasibility
for Outing

High Level Context

Low Level Context

Legend
Dependency between context information

Relationship between upper level context
and lower level context

Legend
Dependency between context information

Relationship between upper level context
and lower level context

Fig. 2. An Example of Context Ontology

According to the long term vision of cloud computing, cloud service will become
an infrastructure just like water, electricity and telecommunication[8]. Contextual
information conveys user’s potential requirement. Effective capturing and analysis
of contextual information contributes to a better understanding of user’s require-
ment, and thus paves way for “on-demand service provision” and “pay per use”.
Therefore, contextual information will hopefully be a first class factor for cloud
computing. Reuse of high-quality context ontology will streamline the process of
context ontology construction and service fusing based on common context. So
effective management of context ontology will be of great importance.

ISO/IEC 19763-3 suggests tailoring and composing elements from reference on-
tology, which fits for general utilization, to form local ontology which is more quali-
fied for specific applications[9]. Figure 3 illustrates how to employ ISO/IEC 19763-3
to manage context ontology. ISO/IEC 19763-3 helps to retain the association between
context ontology, facilitating service fusion based on context.

Reference Context
Ontology

Localized
Context
Ontology

Ontology
Registry Based

on ISO/IEC
19763-3

Ontology
Registry Based

on OWL

Information
About Ontology

Reuse

Concrete Content of
Ontology

Concrete Content of
Ontology

Basic Structure
of Ontology

Basic Structure
of Ontology

Reference Context
Ontology

Localized
Context
Ontology

Localized
Context
Ontology

Ontology
Registry Based

on ISO/IEC
19763-3

Ontology
Registry Based

on OWL

Information
About Ontology

Reuse

Concrete Content of
Ontology

Concrete Content of
Ontology

Basic Structure
of Ontology

Basic Structure
of Ontology

Fig. 3. Context Ontology Management Based on ISO/IEC 19763-3

514 Y. He et al.

4 Context Mining

Context Mining is the core of the context acquisition approach proposed in this paper.
Figure 4 is the flow chart of the context mining algorithm. The inputs of the algorithm
include: (1) simplified context ontology, in which concepts’ relationships are simpli-
fied into directed graphs, (2) sets of available context types, (3) sets of cloud services
to be searched, (4) sets of available context services. Outputs include: (1) sets of
available context types; (2) sets of available context services.

Output ACS,ACCS

Simplified Context Ontology (SCO)

Cloud Services Set (CSS)

Search CSS for services,
which input elements of ACS
and output elements of ECS

Modify ACS ACCS

Available Contexts Set (ACS)
Input

According to SCO and
ACS, compute Expected
Contexts Set (ECS)

Is ECS Empty? Yes
No

Does this service exist? No
Yes

Available Context Services Set (ACSS)

Algorithm
End

Algorithm
Begin

Output ACS,ACCS

Simplified Context Ontology (SCO)

Cloud Services Set (CSS)

Search CSS for services,
which input elements of ACS
and output elements of ECS

Modify ACS ACCS

Available Contexts Set (ACS)
Input

According to SCO and
ACS, compute Expected
Contexts Set (ECS)

Is ECS Empty? Yes
No

Does this service exist? No
Yes

Available Context Services Set (ACSS)

Algorithm
End

Algorithm
Begin Simplified Context Ontology (SCO)

Cloud Services Set (CSS)

Search CSS for services,
which input elements of ACS
and output elements of ECS

Modify ACS ACCS

Available Contexts Set (ACS)
Input

According to SCO and
ACS, compute Expected
Contexts Set (ECS)

Is ECS Empty? Yes
No

Does this service exist? No
Yes

Available Context Services Set (ACSS)

Algorithm
End

Algorithm
Begin

Fig. 4. Flow Chart of Context Mining Algorithm

The central idea of the algorithm is to obtain the sets of expected context types
from the sets available context types and the simplified context ontology, and then
searched the cloud services sets for the expected context types sets. When a certain
service takes available context types as input and output context types in expectation,
it can be put into the set of accessible context services. This process is repeated until
context ontology is traversed over or the cloud service lib cannot satisfy the expected
context types any longer.

5 Context Box

According to the context mining algorithm, we developed a tool named “Context
Box” which can be used to collect context provision services from the cloud. Figure 5
takes an example to show the information produced after each step of the algorithm.

 A Contextual Information Acquisition Approach Based on Semantics 515

Based on the time and GPS services in mobile phones, temporal and spatial infor-
mation will be available. Then with the guidance of context ontology, there will be a
chain of searches for more context going on. The first round of search can be carried
out with time and location as input. Output includes information about weather and
the famous places around, which will be provided by some web services. The infor-
mation produced after the first run of search is illustrated in figure(a).

(a) Information produced after the first round of search

(b) Information produced after the
second round of search

(c) Information produced after the
third round of search

Fig. 5. Interface of Context Box

All the information above can be integrated as the input for the second round. The
context space after the second round is illustrated in figure (b). According to the cur-
rent location and the location of a place nearby, we can know the real time traffic
information in these places and available transportation back and forth. The location
information of places around can also be combined with current time to have big
events happening there found out by services like news service. If a shopping mall is
around, it is possible to have some information about sales in some store at present.
Films on show recent days will also be attained in case there is a cinema nearby.
Since the context provision services may differ in the way they are accessed, mashup
technology will be employed in the service fuse process.

516 Y. He et al.

Similarly, all the contexts obtained in the second round may help to invoke the
third one. The available transportation in the last search can be used to search for the
running condition of a certain bus or subway, like whether it is crowded. The
available seats for a certain film can also be queried based on the film information
acquired in the second round. The information produced after the third search is
illustrated in figure (c).

6 Related Work

In context aware computing research, contextual information is usually supposed to
be acquired through sensors. Hence, most literature focus on how to get information
from specific sensors, how to guarantee the compatibility of contextual information
from different sensors, and how to implement context aware web services[10][11].

[12][13][14][15] have done some research work similar with ours. [12] refers to
the concept of software sensor, but lacks in a detailed explanation of it. [12] suggests
to implement communication interface between sensors and information gathered
with sensor widget. These widgets register in sensor yellow page service to enable the
interaction between sensor and different subsystems. So the idea of reusing sensors’
information in [12] is similar with the idea of contextual information sharing in our
approach. However, our approach distinguishes contextual information acquired di-
rectly from physical sensors from that obtained from cloud services. By comparison,
[12] doesn’t cover any content about the association between contextual information.

[13][14] suggest using common objects in our daily life as a source for contextual
information. In their experiment, they get information, such as object’s location and
events happening on the objects from gravity information, according to the theory that
gravity is the inherent property of all objects. [13][14] share with our approach the
emphasis on making use of relationship between contextual information. But the
difference is that we adopt context ontology as a means to express the relationship
between contextual information and use mashup technology to combine various sens-
ing services, including the physical ones and those obtained from the cloud.

[15]’s discussion about context acquisition concentrates on how to take advantages
of sensors. As for the relationship between the contextual information and Internet,
[15] emphasizes that context acquisition services should comply with some criteria,
which is a guarantee for the interoperation between context-aware services. Compared
to [15], our approach considers contextual provision services from the cloud as well.
Moreover, we adopt web service to express context acquisition services, laying a
consolidated foundation for the interoperation with the other types of services in the
cloud.

7 Conclusion

In cloud computing, capturing user's requirements as completely as possible is a
premise for on-demand service provision. Efficient methods to obtain user’s context,
an important source for potential requirements, contribute to a better understanding of
user’s requirement. Most of the current context acquisition methods emphasize the

 A Contextual Information Acquisition Approach Based on Semantics 517

physical deployment of sensors to acquire users' contexts, which costs dearly and
hence proves impractical for cloud computing.

This paper provides a novel approach to acquire user’s context. Context ontology
is employed to express the relationship between different kinds of context, which acts
as basis for searching context provision services in the cloud. In order to handle the
differences of these services, mashup technology is adopted to ease the context fusion
process. Detailed explanation of the approach and an example to show its usage are
provided in the paper.

Future work includes the refinement of context ontology and the enhancement of
the context mining tool. Besides, some effort will be devoted to integrating the tool
with mobile computing platform. Some complex real world scenarios will be tried to
test the efficiency of the approach introduced in this paper.

Acknowledgement

The Project ISO/IEC 19763-3 Second Edition was approved by ISO/IEC JTC1 SC32.
The Project number is 1.32.22.02.03.00.

This work was supported by the National Basic Research Program of China (973)
under Grant 2007CB310801, the National Natural Science Foundation of China under
Grant No.60970017 and 60903034, the National High Technology Research and
Development Program of China (863) under Grant No.2006AA04Z156 and the Elev-
enth Five-Year Plan for National Key Technology R&D Program under grant
2006BAK04A20-7.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinsi, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of
Cloud Computing, http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.html

2. Boujena, O., Johnston, W.J., Merunka, D.R.: The Benefits of Sales Force Automation: A
Customer’s Perspective. Journal of Personal Selling and Sales Management 29(2), 137–
150 (spring 2009)

3. He, Y., He, K., Wang, J., Wang, C.: Toward a context driven approach for semantic web
service evolution. In: Proceedings of the 3rd International Conference on Convergence and
Hybrid Information Technology, Korea, pp. 1089–1094 (2008)

4. Fujii, K., Suda, T.: Semantics-based Context-aware Dynamic Service Composition. ACM
Transactions on Autonomous and Adaptive Systems 4(2), article 12, 1–31

5. Fischer, T., Bakalov, F., Nauerz, A.: An Overview of Current Approaches to Mashup Gen-
eration. Wissensmanagement, 254–259 (2009)

6. Ennals, R., Gay, D.: User Friendly Functional Programming for Web Mashups. In: ACM
ICFP (2007)

7. Tuchinda, R., Szekely, P.A., Knoblock, C.A.: Building Mashups by example. IUI 2008,
139–148 (2008)

8. Erdogmus, H.: Cloud Computing: Does Nirvana Hide behind the Nebula? IEEE Software
(SOFTWARE) 26(2), 4–6 (2009)

9. ISO/IEC 19763-3 Metamodel for Ontology Registration (2007)

518 Y. He et al.

10. Li, Y., Fang, J., Xiong, J.: A Context-aware Services Mash-up System. In: Proceedings of
2008 Seventh International Conference on Grid and Cooperative Computing, pp. 707–712.
IEEE Press, Los Alamitos (2008)

11. Daniel, F., Matera, M.: Mashing Up Context-Aware Web Applications: A Component-
Based Development Approach. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B.,
Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 250–263. Springer, Heidelberg
(2008)

12. Costa, P., Botelho, L.: Generic Context Acquisition and Management Framework. In: First
European Young Researchers Workshop on Service Oriented Computing (2005)

13. Matthews, T., Gellersen, H.-W., Van Laerhoven, K., Dey, A.K.: Augmenting Collections
of Everyday Objects: A Case Study of Clothes Hangers As an Information Display. In:
Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 340–344.
Springer, Heidelberg (2004)

14. Schmidt, A., Strohbach, M., Van Laerhoven, K., Friday, A., Gellersen, H.-W.: Context
Acquisition Based on Load Sensing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp
2002. LNCS, vol. 2498, pp. 333–350. Springer, Heidelberg (2002)

15. Zhdanova, A.V., Zoric, J., Marengo, M., van Kranenburg, H., Snoeck, N., Sutterer, M.,
Rack, C., Droegehorn, O., Arbanowski, S.: Context Acquisition, Representation and Em-
ployment in Mobile Service Platforms. In: Proceedings of Mobile IST Summit 2006
Workshop on Capturing Context and Context Aware Systems and Platforms (June 2006)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 519–528, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Evaluating MapReduce on Virtual Machines: The
Hadoop Case*

Shadi Ibrahim1, Hai Jin1, Lu Lu1, Li Qi2, Song Wu1, and Xuanhua Shi1

1 Cluster and Grid Computing Lab
Services Computing Technology and System Lab

Huazhong University of Science & Technology, Wuhan, 430074, China
{shadi,hjin}@hust.edu.cn

2 Operation Center
China Development Bank, Beijing, China

quick.qi@gmail.com

Abstract. MapReduce is emerging as an important programming model for
large scale parallel application. Meanwhile, Hadoop is an open source imple-
mentation of MapReduce enjoying wide popularity for developing data inten-
sive applications in the cloud. As, in the cloud, the computing unit is virtual
machine (VM) based; it is feasible to demonstrate the applicability of MapRe-
duce on virtualized data center. Although the potential for poor performance
and heavy load no doubt exists, virtual machines can instead be used to fully
utilize the system resources, ease the management of such systems, improve the
reliability, and save the power. In this paper, a series of experiments are con-
ducted to measure and analyze the performance of Hadoop on VMs. Our ex-
periments are used as a basis for outlining several issues that will need to be
considered when implementing MapReduce to fit completely in the cloud.

Keywords: Cloud Computing, Data Intensive, MapReduce, Hadoop, Distrib-
uted File System, Virtual Machine.

1 Introduction

The computing world is undergoing a significant transformation from traditional non-
centralized distributed system architecture, typified by distribute data and computa-
tion on different geographic areas to a centralized cloud computing architecture,
where the computations and data are operated somewhere in the cloud, data centers
owned and maintained by third party. However, in term of resources, the three main
characteristics of cloud are: (1) On-demand unlimited data storage, (2) on-demand
computation power with no lock, mainly represented as VMs, and (3) using internet,
limited bandwidth connection, to access, use and process these resources.

* This work is supported by National 973 Key Basic Research Program under grant

No.2007CB310900, Information Technology Foundation of MOE and Intel under grant MOE-
INTEL-09-03, and National High-Tech 863 R&D Plan of China under grant 2006AA01A115.

520 S. Ibrahim et al.

The new surge and interest of cloud computing in accompanied with exponentially
growing of data size generated from digital media (images/audio/video), web author-
ing, scientific instruments, and physical simulations. Thus, how to effectively process
these immense data sets is becoming a challenging issue in the cloud. While, the tra-
ditional data intensive system, typified by moving data to computing, design and
programming models are, due to the bottleneck of the internet when transferring large
amount of data to the computing nodes, to be not efficient for cloud [1]. Data-aware
approach is proven to be efficient and robust, where data and computation are collo-
cated. This approach has been widely used and studied, especially after the great suc-
cess of Google version, namely Google File System (GFS) [2] and MapReduce [3]
(e.g. Google uses its MapReduec framework to process 20 petabytes of data per day
[3]). Recently, many projects are exploring ways to support MapReduce on various
types of distributed architecture (e.g. Hadoop [4] for data intensive applications,
Phoenix [5] for multi-core programming), and for wider applications [6, 7].

Hadoop [4] is an open source implementation of MapReduce sponsored by Yahoo.
It has been widely used and experienced for large scale data applications in the clouds
[6, 7]. Furthermore, Hadoop is advocated by industry's premier web players - Google,
Yahoo, Microsoft, and Facebook - as the engine to power the cloud [8]. As in the
cloud, the computing unit is mostly VM-based (Amazon Elastic Cloud Computing [9]
and GoGrid [10] are providing VM-based computing infrastructure as a service), it is
feasible to demonstrate the applicability of MapReduce in virtualized data center.
Although the potential for poor performance and heavy load undoubtedly exists, vir-
tual machine can instead be used to help to fully utilize the system resources, ease the
management of such systems as well as improve the reliability, and power saving (i.e.
virtual machines have been a promising approach for various distributed systems [11-
14]). More recently, Amazon added a new service, called Amazon Elastic MapRe-
duce [15], enables customers easily and cost-effectively process vast amounts of data.
It utilizes a hosted Hadoop framework running on the web-scale infrastructure of
Amazon Elastic Compute Cloud (EC2) and Simple Storage Service (S3) [16].

To practically introduce the challenges and the opportunities of combining
MapReduce and VM technologies, in this paper, a series of experiments are con-
ducted to measure the performance of Hadoop on VMs in different scenarios. First,
we comparatively evaluate the performance of Hadoop Distributed File System
(HDFS) on both physical and virtual cluster. Then we analyze the performance of the
Hadoop MapReduce framework in virtualized cluster. In summary, the main contribu-
tions of our work are:

• We are first in the cloud community to carry out detail performance evaluations
when deploying Hadoop on virtualized cluster.

• We elaborate several issues that can be used for better fit of MapReduce in the
cloud.

The rest of this paper is organized as follows. Section 2 provides the background
knowledge related to this work including an overview of the MapReduce program-
ming model and why deploying MapReduce on virtual machines. In section 3, we
take an overview on our experimental methodology, platform and benchmarks. We
then present our results in section 4. While section 5 discusses some open issues and
the lessons learned from our experiments. Finally, we conclude the paper and propose
our future work in section 6.

 Evaluating MapReduce on Virtual Machines: The Hadoop Case 521

2 Background and Motivations

In this section, we briefly introduce MapReduce model and its widely used implemen-
tation, Hadoop. Then we propose some aspects when using VMs with MapReduce.

2.1 MapReduce

MapReduce [3] is a programming model for data intensive computing inspired by the
functional programming. It is simply represented in two functions:
• The map function, written by the user, processes a key/value pair to generate a set

of intermediate key/value pairs.

map (key1, value1) list (key2, value2)

• The reduce function, also written by the user, merges all intermediate values asso-
ciated with the same intermediate key.

reduce (key2, list (value2)) list (value2)

The MapReduce model allows programmers to easily design parallel and distributed
applications, simply by writing Map/Reduce components, while the MapReduce run-
time is responsible for parallelization, concurrency control and fault tolerance.

2.2 Hadoop

Hadoop [4] is java open source implementation of MapReduce sponsored by Yahoo.
The Hadoop project is a collection of various subprojects for reliable, scalable distrib-
uted computing [4]. The two fundamental subprojects are the Hadoop MapReduce
framework and the HDFS.

HDFS is a distributed file system that provides high throughput access to applica-
tion data [4]. It is inspired by the GFS. HDFS has master/slave architecture. The mas-
ter server, called NameNode, splits files into blocks and distributes them across the
cluster with replication for fault tolerance. It holds all metadata information about
stored files. The HDFS slaves, the actual store of the data blocks called DataNodes,
serve read/write requests from clients and propagate replication tasks as directed by
the NameNode.

The Hadoop MapReduce is a software framework for distributed processing of
large data sets on compute clusters [4]. It runs on top of HDFS. Thus data processing
is collocated with data storage. It also has master/slave architecture. The master,
called Job Tracker (JT), is responsible for : (a) querying the NameNode for the block
locations, (b) considering the information retrieved by the NameNode, JT schedules
the tasks on the slaves, called Task Trackers (TT), and (c) monitoring the success and
failures of the tasks.

2.3 Why MapReduce on VMs

Currently, driven by the increasing maturity of virtualization technology in general,
virtual machine in particular, VMs have been experienced in various distributed
systems such as grid [11], HPC application [12-14]. To this end, in this section we

522 S. Ibrahim et al.

discuss the main factors contributing to the interests of MapReduce on virtual ma-
chines:
1. Driven by the increasing popularity of cloud computing in which VMs are the

main computation units, and the widely adoption of MapReduce, due to its mag-
nificent features, as the programming model for data intensive applications. Con-
sequently, combining theses two technologies is promising approach for large scale
data cloud computing. Moreover, VMs can be effectively used to utilize the cluster
resources; especially those equipped with multi-core processors and can greatly
benefit cluster computing from aspects of ease of management, customized OS and
security [11].

2. Recently, MapReduce is using speculative tasks approach to provide reliable per-
formance. Speculative tasks are normally performed by re-execute the task on dif-
ferent DataNodes. Executing two copies of the same tasks can cause waste of the
cluster resources. Thus, benefiting of the recent advances of VM checkpointing
and live migration [17, 18], it is feasible to use these techniques to improve the re-
liability of MapReduce performance. Moreover, VM checkpointing and migration
can be used to improve the reliability of the MapReduce master node as it is single
point of failure.

3 Methodology and Hardware Platform

Our experimental hardware consists of seven nodes cluster. Each node in the cluster is
equipped with two quad-core 2.33GHz Xeon processors, 8GB of memory and 1TB of
disk, runs RHEL5 with kernel 2.6.22, and is connected with 1 Gigabit Ethernet. In
VM-based environments, we use Xen 3.2 [19]. The VMs are running with RHEL5
with kernel 2.6.22. VM is configured with 1 VCPU and 1GB memory. The same
cluster is used to obtain performance results for both the VM-based environment and
the native, non-virtualized environment. All results described in this paper are ob-
tained using Hadoop version 0.18.0, while the data is stored with 2 replicas per block
in HDFS. We perform five jobs per experiment and compute the average across jobs.

3.1 Experiments Design and Motivations

This section reports on several experiments designed to evaluate the MapReduce
performance on virtual machines. First, as the HDFS playing a big role during the
MapReduce process, we comparatively evaluate the performance of the HDFS when
writing/reading data in both physical and virtual cluster. Second, we report on the
feasibility of using VM to enhance the performance of MapReduce by increasing
the resource utilization as CPU cycles. Third, we conduct the experiments to evaluate
the execution time and the number of the lunched speculative tasks with different
VMs load per physical machine.

3.2 Benchmarks

In all our experiments, we use two different and widely used benchmarks, sort and
wordcount benchmarks, which are sample programs in the Hadoop distribution.

 Evaluating MapReduce on Virtual Machines: The Hadoop Case 523

• Sort Benchmark. The sort benchmark [20] simply uses the map/reduce framework
to sort the input directory into output directory (two replica by default), both the
input and output must be sequence files. The map function extracts the key from
each record and emits a <key, record> pair, the reduce function emits all pairs un-
changed. All the input data are generated using the Random Writer sample applica-
tion in the Hadoop distribution.

• WordCount Benchmark. The wordcount [20] counts the number of occurrences of
each word in a file and writes the output to local disk. The map function emits each
word plus an associated count of occurrences. The reduce function sums together all
counts emitted for a particular word. In addition, a combiner function is used to fold
redundant <word, _> pairs into a single one, which magnificently reduces the network
I/O. All the input data are generated by duplicating the text file used by Phoenix [5].

4 Experiment Results

In this section, we evaluate the performance impact of using virtualization for the two
specific benchmarks on our cluster system.

4.1 Hadoop Distributed File System

MapReduce programming model strongly depends on the underlying storage system,
namely GFS for Google MapReduce and HDFS in Hadoop. We evaluate the HDFS per-
formance in both physical cluster (PH-HDFS for short) and virtual cluster (VM-HDFS for
short) when transferring data to and from the DFS, using the put and get command respec-
tively. In particular, we conduct our experiments using three different scenarios (different
data size, different cluster size, and different throughput when multi requests). In all our
experiments one VM has been uniquely deployed on each physical node.

First, we evaluate the performance when transferring different data size (1.5GB,
3GB, 6GB, and 12 GB). As shown in Fig. 1, the PH-HDFS performs better than VM-
HDFS in terms of reading and writing capacities. Moreover, the performance gap is
markedly increases as the data size is increasing in both cases writing data to or read-
ing data from the DFS.

1.5GB 3GB 6GB 12GB
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Data Size

 HDFS Write

 Physical Machine
 Virtual Machine

1.5GB 3GB 6GB 12GB

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 HDFS Read

 Physical Machine
 Virtual Machine

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Data Size

Fig. 1. PH-HDFS vs VM-HDFS with different data scale and 7 nodes cluster

524 S. Ibrahim et al.

Second, we fix the data distribution per node to 512MB. Accordingly, if there are
2, 4 and 6 DataNodes, 1, 2 and 3GB of data are transferring respectively. The PH-
HDFS also performs better than the VM-HDFS as the number of data node increases
as shown in Fig. 2.

2 DataNode 4 DataNode 6 DataNode
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

 HDFS Write

 Physical Machine
 Virtual Machine

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Cluster Scale
2 DataNode 4 DataNode 6 DataNode

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60 HDFS Read

 Physical Machine
 Virtual Machine

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Cluster Scale

Fig. 2. PH-HDFS vs VM-HDFS with different cluster scale, with the same data distribution
(512MB per DataNode)

Third, we evaluate different throughputs by starting 1, 2, and 3 requests simultane-
ously and measuring the time needed for data transfer, the average in the case of two
and three requests. As shown in Fig. 3, the PH-HDFS performs better than VH-
HDFS. In addition the performance gap is markedly increasing when writing data in,
while it is slightly increasing in case of reading data from the DFS.

4.2 VMs Feasibility

Driven by the advent of multi-core, it is feasible to study the opportunities of utilizing
the multi-core processor and memory management of the cluster while processing
large scale data using Hadoop.

1 Request 2 Requests 3 Requests

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

 HDFS Write

 Physical Machine
 Virtual Machine

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Throughput

1 Request 2 Requests 3 Requests

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 HDFS Read

 Physical Machine
 Virtual Machine

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Throughput

Fig. 3. PH-HDFS vs VM-HDFS with different throughput (requests/s) and 7 nodes cluster

 Evaluating MapReduce on Virtual Machines: The Hadoop Case 525

In our experiment, we choose the wordcount benchmark because the data transfer
during the copy phase is small and this will reduce the effects of data transfer in our
experimental results. We evaluate the performance among four homogenous clusters
as shown in Table 1, physical cluster (Ph-Cluster) and three virtual clusters (V-
Cluster, V2-Cluster, and V4-Cluster with one, two, and four VMs running on each
physical machine, respectively).

Table 1. Four Homogeneous Testbed Clusters

 Ph-Cluster V-Cluster V2-Cluster V4-Cluster
VM Load - 1 VM/Node 2 VM/Node 4 VM/Node
Cluster Size 7 Physical nodes 7 VM nodes 13 VM nodes 25 VM nodes

As shown in Fig. 4, the wordcount job in Ph-Cluster costs less time than in V-

Cluster. In particular, when computing 1GB, the performance gap is small. While for
data set of 8GB, this gap is obviously big. This is because: (1) HDFS performing better
in physical cluster than in virtual one as shown in section 4.1, and (2) the increasing
number of speculative tasks causing inefficient utilize of the resources. On the other
hand, as expected, V2-Cluster and V4-Cluster are performing faster than the Ph-
Cluster. This is because more computing cycles are available and more slots are free.

4.3 MapReduce on Virtual Machines Performance Analyze

In this section we report on different experiments with different VM load per physical
node as shown in Table 1, and different data distribution on each data node.

As shown in Fig. 5, when running the sort benchmark, the execution time of the
jobs for the same data distribution increases with the increment of VMs deployed on
each physical node. Moreover, the performance gaps among these three different

Ph-Cluster V-Cluster V2-Cluster V4-Cluster

1

2

3

4

5

6

7

8

Speculative Tasks
M 10, R 2 <--> (Maps, Reduces)

M 25, R 12

M 10, R 2

M 6, R 1

M 2, R 6
M 0, R 17

M 1, R 5

M 3, R 0

WordCount Benchmark
 1 GB Data Size
 8 GB Data Size

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Cluster Size

Fig. 4. Wordcount execution: physical cluster vs virtual clusters with different VM load per
node (1, 2, and 4), and two data sets (1GB and 8 GB)

526 S. Ibrahim et al.

V-Cluster V2-Cluster V4-Cluster
0

5

10

15

20

25

30

35

40
N

or
m

al
iz

ed
 R

un
ni

ng
 T

im
e

Cluster Size

 Sort Benchmark
 512 MB per DataNode
 1 GB per DataNode
 2 GB per DataNode

V-Cluster V2-Cluster V4-Cluster

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

WordCount Benchmark
 1/6 GB per DataNode
 1/3 GB per DataNode
 2/3 GB per DataNode

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Cluster Size

Fig. 5. Sort and wordcount execution with different VM load per node, and different data size

clusters markedly increase as the size of data distribution increases. This is due to
three reasons: (a) the bad performance of HDFS on VMs when reading/writing the
data blocks from/to the HDFS; (2) the increasing number of speculative tasks as
shown in Fig. 6, and (3) more importantly, the large amount of data transferred during
the copy of the intermediate data, especially that VMs are competing for the node I/O
resources.

For the wordcount benchmark this gap is slightly increasing for different data dis-
tribution, caused by the same aforementioned reasons with less emphasize on the third
reason as the data transfer is small.

5 Discussion and Open Issues

Based on the experience and the above experiments with MapReduce on VMs, we
draw several open issues:

512MB 1GB 2GB
0

5

10

15

20

25

30

 Sort Benchmark
 Maps (V-Cluster) Reduces (V-Cluster)
 Maps (V2-Cluster) Reduces (V2-Cluster)
 Maps (V4-Cluster) Reduces (V4-Cluster)

N
un

m
be

r
of

 S
pe

cu
al

ti
ve

 T
as

ks

Data Distribution Per DataNode
1/6GB 1/3GB 2/3GB

0

5

10

15

20

25

 Wordcount Benchmark
 Maps (V-Cluster) Reduces (V-Cluster)
 Maps (V2-Cluster) Reduces (V2-Cluster)
 Maps (V4-Cluster) Reduces (V4-Cluster)

N
um

be
r

of
 S

pe
cu

la
ti

ve
 T

as
ks

Data Distribution per DataNode

Fig. 6. Sort and wordcount launched speculative tasks with different VM load per node, and
different data distribution

 Evaluating MapReduce on Virtual Machines: The Hadoop Case 527

• Motivated by our experiments results in section 4.1, as well as VM being highly
prone to error, it is useful to separate the permanent data storage (DFS) from the
virtual storage associated with VM. In addition, using VM as execution unit only
will allow us to study the possibilities of using VM migration as a replacement of
the existing fault tolerance mechanism represented as speculative tasks, resulting
with better performance and reduce the wasted resources caused by the increased
number of speculative tasks in VM-based cluster [21] as shown in section 4.3.

• As shown is section 4.2, it is feasible to use VM in data intensive computing sys-
tems to fully utilize the physical node resources, using VM only as a computation
unit for the data located on its physical node. More importantly, VM should be
configured to perfectly suit the running data intensive applications.

• VMs within the same physical node are competing for the node I/O, causing poor
performance. Therefore, many possibilities could be studied to improve it such as
starting reduce tasks after all the map tasks are successfully finished and make the
data transfer physical machine-based by collecting all the maps output within one
physical node, from different VMs, and check new scheduling algorithms to reduce
the data transferred.

• Finally, as the master node is a single point of failure for the Map/Reduce infra-
structure, if it goes down, all running jobs are lost. Therefore, VM being highly
prone to failure, it is not highly recommended to keep the master node physical
based or use the VM checkpointing to implement more reliable master.

6 Conclusion and Future Work

Driven by the new trend in distributed system towards cloud computing and the in-
creasing popularity and adoption of cloud storage services, processing this large data
has become big challenge. Data-aware based data intensive approach is proven to be
efficient and robust, where data and computation are collocated. This approach has
been widely used and studied, especially after the huge success of Google version,
namely GFS and MapReduce. Meanwhile, through the recent improvement and ma-
turity of virtual machine, cloud community is strongly adopting VMs as the computa-
tion units in the cloud. Lots of research have been carried out about VM-based HPC
application, while up to date, no paper has introduced and evaluated the integration of
VM and MapReduce based data intensive application, mainly the challenges and the
opportunities.

Based on our experiments with MapReduce, Hadoop in particular, we have
elaborated a number of issues when running data intensive applications using Hadoop
in virtual cluster. This is intended as an invitation to cloud researchers to influence
these important technologies in a constructive manner by drawing on research and
experience.

Current and future research efforts include developing MapReduce framework on
VMs, namely Cloudlet [22], and experimenting with scheduling and migrating the
VMs within a cluster to improve high performance, reliability, manageability, and
power management.

528 S. Ibrahim et al.

References

1. Szalay, A., Bunn, A., Gray, J., Foster, I., Raicu, I.: The Importance of Data Locality in Distrib-
uted Computing Applications. In: Proceedings of the NSF Workflow Workshop (2006)

2. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: Proceedings of 19th ACM
Symposium on Operating Systems Principles, pp. 29–43. ACM Press, New York (2003)

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Pro-
ceedings of 6th Conference on Operating Systems Design & Implementation (2004)

4. Hadoop, http://lucene.apache.org/hadoop
5. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating

MapReduce for Multi-core and Multiprocessor Systems. In: Proceedings of 13th Interna-
tional Symposium on High Performance Computer Architecture, pp. 13–24. ACM Press,
New York (2007)

6. Bryant, R.E.: Data-Intensive Supercomputing: The Case for DISC. CMU-CS-07-128, Technical
Report, Department of Computer Science, Carnegie Mellon University (May 2007)

7. Chen, S., Schlosser, S.W.: Map-Reduce Meets Wider Varieties of Applications, IRP-TR-
08-05, Technical Report, Intel. Research Pittsburgh (May 2008)

8. CNET news, http://news.cnet.com/8301-13505_3-10196871-16.html
(accessed September 2009)

9. Amazon Elastic Cloud Computing, http://aws.amazon.com/ec2/
10. GoGrid Cloud Hosting, http://www.gogrid.com/
11. Figueiredo, R., Dinda, P., Fortes, J.: A Case for Grid Computing on Virtual Machines. In:

Proceedings of 23rd International Conference on Distributed Computing Systems, pp.
550–559. IEEE CS Press, Los Alamitos (2003)

12. Mergen, M.F., Uhlig, V., Krieger, O., Xenidis, J.: Virtualization for High Performance
Computing. ACM SIGOPS Oper. Syst. Rev. 40(2), 8–11 (2006)

13. Huang, W., Liu, J., Abali, B., Panda, D.K.: A Case for High Performance Computing with
Virtual Machines. In: Proceedings of 20th ACM International Conference on Supercom-
puting, pp. 125–134. ACM Press, New York (2006)

14. Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive Fault Tolerance for
HPC with Xen Virtualization. In: Proceedings of 21st ACM International Conference on
Supercomputing, pp. 23–32. ACM Press, New York (2007)

15. Amazon Elastic MapReduce, http://aws.amazon.com/elasticmapreduce/
16. Amazon Simple Storage Service, http://aws.amazon.com/s3/
17. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.:

Live Migration of Virtual Machines. In: Proceedings of USENIX Symposium on Net-
worked Systems Design and Implementation (2005)

18. Zhao, M., Figueiredo, R.J.: Experimental Study of Virtual Machine Migration in Support
of Reservation of Cluster Resources. In: Proceedings of 2nd International Workshop on
Virtualization Technology in Distributed Computing (2007)

19. XenSource (2008), http://www.xensource.com/
20. Hadoop Wiki (2008), http://wiki.apache.org/hadoop/
21. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving mapreduce per-

formance in heterogeneous environments. In: Proceedings of 8th USENIX Symposium on
Operating Systems Design and Implementation (2008)

22. Ibrahim, S., Jin, H., Cheng, B., Cao, H., Wu, S., Qi, L.: Cloudlet: Towards MapReduce imple-
mentation on Virtual machines. In: Proceedings of 18th ACM International Symposium on
High Performance Distributed Computing, pp. 65–66. ACM Press, New York (2009)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 529–540, 2009.
© Springer-Verlag Berlin Heidelberg 2009

APFA: Asynchronous Parallel Finite Automaton for
Deep Packet Inspection in Cloud Computing

Yang Li, Zheng Li, Nenghai Yu, and Ke Ma

MOE-Microsoft Key Laboratory of Multimedia Computing and Communication,
University of Science and Technology of China

{Yang Li,Zheng Li,Nenghai Yu,Ke Ma}liyangwj@mail.ustc.edu.cn

Abstract. Security in cloud computing is getting more and more important re-
cently. Besides passive defense such as encryption, it is necessary to implement
real-time active monitoring, detection and defense in the cloud. According to
the published researches, DPI (deep packet inspection) is the most effective
technology to realize active inspection and defense. However, most recent
works of DPI aim at space reduction but could not meet the demands of high
speed and stability in the cloud. So, it is important to improve regular methods
of DPI, making it more suitable for cloud computing. In this paper, an asyn-
chronous parallel finite automaton named APFA is proposed, by introducing the
asynchronous parallelization and the heuristically forecast mechanism, which
significantly decreases the time consumed in matching while still keeps reduc-
ing the memory required. What is more, APFA is immune to the overlapping
problem so that the stability is also enhanced. The evaluation results show that
APFA achieves higher stability, better performance on time and memory. In
short, APFA is more suitable for cloud computing.

Keywords: Cloud computing, Deep packet inspection, Asynchronous parallel
finite automaton.

1 Introduction

Cloud computing is becoming more and more popular in IT industry and academe
recently. Vendors such as Amazon, IBM, HP, Google, and Microsoft are starting to
create and deploy Clouds in various locations around the world to realize cloud com-
puting [1]. Although there are many cloud computing definitions, none of them are
widely accepted [2]. Generally, it delivers infrastructure, platform, and software as
services, which are available to customers in a pay-per-use model. In this way, cloud
computing gains many advantages, such as cost savings, high availability, and easy
scalability, which really attract customers [3], [4].

Nonetheless, the technology is still immature and has not yet been widely adopted.
Cloud can be seen as a huge Internet data center, in which all the customers store their
private data and perform their tasks. However, relinquishing physical control of the
datacenter infrastructure and information increases the risk of data compromise con-
siderably [5]. [3] shows a recent survey of chief information officers and IT execu-
tives, and they rated security as their main cloud-computing concern.

530 Y. Li et al.

As a public data center, the cloud is very sensitive to intrusion, virus, attacks and
malicious application-layer data, so it requires total situational awareness of the
threats to the network, infrastructure and information [6]. Ordinary passive defense
like encryption is not adequate, so it is necessary to actively monitor, detect and de-
fense the traffic flow in real time. As described in many research [11]-[21], DPI is the
most effective mechanism to realize active monitoring, inspection and defense. None-
theless, as a technology that detects the payload by regular expression matching, DPI
is implemented by either DFA (Deterministic Finite Automata) with infeasible huge
memory or NFA (Nondeterministic Finite Automata) with low speed. Many recent
works reduced the memory usage of DFA, but at the cost of much additional time.
Moreover, they are not stable enough while encountering overlapping problem. As a
result, most of recent improvements of DPI are insufficient for the requirements of
high speed and stability, which originate from huge numbers of customers and high
concurrence in cloud computing.

In order to speed up and enhance the stability of the DPI in cloud computing, an
asynchronous parallel finite automaton named APFA is proposed in this paper. By
introducing the asynchronous parallelism and heuristically forecast mechanism, it
decreases the time effectively, even much less than DFA in some occasions. What is
more, it also reduces memory to much less than XFA (extended FA) and DFA, while
solving the overlapping problem for enhancing stability in the mean time. The evalua-
tion results show that APFA could implement DPI with much less memory, higher
speed and stability, and it is more suitable for cloud computing.

This paper is organized as follows: after related works, motivation of our proposal
is described in section 3. Section 4 presents main concept of APFA and section 5
analyzes the time and memory performance, as well as the overlapping problem.
Evaluation results are given in section 6, and finally section 7 is the conclusion.

2 Related Works

Cloud computing is relatively new to academe, and most of the published works re-
search about the description, advantages, challenges, and future of it [1]-[5]. So far
there has been little research published on cloud computing security, and they almost
investigate the security infrastructure, such as the Private Virtual Infrastructure in [6]
and the architecture that cryptographically secures each virtual machine in [7]. Be-
sides these, it is necessary to use DPI for defense against intrusions and virus in cloud
computing, but few of the existing literatures focus on this. In fact, DPI is popularly
researched recently while regular expression matching is widely adopted by well
known tools and devices, such as Snort [8], Bro [9] and Cisco [10]. DFA is typically
used for regular expression matching with a deterministic line speed, but state explo-
sion emerges when complex regular expressions are met. In order to reduce the mem-
ory of states in DFA, many improvements are proposed.

The most typical proposal to optimize the constructed DFA is D2FA (Delayed In-
put DFA) [11], which reduced the states’ identical edges and obtained a 95% reduc-
tion in space at the expense of additional time consumed in searching through the
default path. Some improvements were proposed to reduce the additional time, such
as work [12], [13]. Research [14] proposed a technique that allows nonequivalent

 APFA for Deep Packet Inspection in Cloud Computing 531

states to be merged. Instead of optimizing the constructed DFA, Kumar et al. pro-
posed H-cFA (History-based counting Finite Automata) [15] to construct optimized
DFA by using signs to record matched closures and counters to keep track of counts.
Similarly, R.Smith brought forth XFA (extended FA) [16] which retrieved the idea of
adding some auxiliary variables to remember past partial matched information [17],
[18]. They achieved better space performance than other proposals; however, the
additional time and vulnerability make them unsuitable for cloud. Beyond that, the
pattern rewriting idea [20], Hybrid Finite Automata [19] and δFA [21] also proposed
some methods to reduce the memory cost.

The improvements described above all reduced the memory of finite automata to
some extent, however, the expense of much additional time and the vulnerability to
overlapping problems restricted their applications in cloud computing.

3 Motivation

It can be seen from above that the problem is how to keep high speed and stability
while eliminating the state explosion. In this section, state explosion is analyzed
firstly, and then the solution of XFA and main observations of APFA are described.

3.1 State Explosion

As recent research described, state explosion emerges not only from transforming
regular expressions to single DFA, but also from combining numbers of DFA into a
synthesized DFA. The different number of states from different k-characters patterns
is showed in Fig.1A, which is summarized in [20]. In addition, Fig.1B described an
example of synthesized DFA which also introduced state explosion [16].

Fig. 1. State explosion in DFA

It can be concluded from the figure that length restriction in regular expressions,
such as the “.{j}” in the regular expression “.*AB.{j}CD”, is the most influential ele-
ment for the state explosion. It could even induce state explosions of exponential size
while combining with closures, which is also named “dot-stars” conditions.

532 Y. Li et al.

3.2 Handle the Length Restriction

Objectively, length restriction is the most serious problem for state explosion. And
subjectively, there is also the Amnesia problem in DFA. It only remembers a single
state of parsing and ignores everything about the earlier parse. The intuitional method
is to count the occurrences of certain sub-expressions, such as in H-CFA and XFA,
some variables are used to record matched closures and count for length restriction.

Fig. 2. An example of XFA

As can be seen in Fig.2, XFA uses sign b1 to notify whether the prefix “re” has
been matched or not, and employs the counters {c1,c2} to count the occurrence of
“not \n” character. As a result, XFA reduces the states to 18 while encountering
length restrictions of 100 and 200. However, the time and memory consumed in main-
taining variables is considerable. What is more, if the flow “AUTH\sAUTH\s….” is
input, counters explosion would also arise and not stable enough.

3.3 Observations

Three observations are proposed as follows, and our mechanism is based on that.

Observation 1: Preliminary treatment is possible before matching.
Generally, DPI is applied to detect the application layer data of the received pack-

ets in router, gateway or host machines, so DFA’s input is not a real character stream
but a segment of data packet. The packets are buffered in off-chip memory and it is
possible to do some pretreatment works before matching.

Observation 2: If we could forecast the following characters, the instable and bur-
densome work to maintain the counters can be avoided.

If the string “AUTH\sAUTH\s…..” is input, XFA would activate lots of counters to
count after every “AUTH\s”. However, if we could foresee and check the following
characters when the counter should be initialized, the matching result could be heuris-
tically predicted without maintaining counters.

Observation 3: The length restrictions in Snort rules are predominantly concerned
with the character ‘\n’.

 APFA for Deep Packet Inspection in Cloud Computing 533

It is not difficult to discover that most of the length restrictions in Snort rules are
associated with the character ‘\n’, and this simplifies the pretreatment and the match-
ing mechanism by only considering the occurrence of character ‘\n’.

4 Main concept of APFA

As can be seen from the observations above, the essential part of our mechanism is to
predict whether the following characters match the length restriction or not, and this
goal is accomplished by the preprocessing and asynchronous parallelism.

4.1 Preprocessing Module

The preprocessing module is the foundation of asynchronous parallel mechanism. As
shown in Fig.3, the first N-1 characters of the packet are put into a circular array
firstly, which is located in on-chip cache. In order to adapt to every length restriction,
the number N, which means the size of the array, must be bigger than the maximum
number of length restriction. By considering the cost, number N can be formulized as:

}}{},,{},{|,max{2 rulesetbbaabaN ∈+= (1)

The first N-1 characters must also be compared to character ‘\n’ one after another, and
locations of the character ‘\n’ are recorded in a queue. After all the characters are
checked, the counter in which the value means the distance to next ‘\n’ is initialized.
The pseudo code of the pretreatment process is also showed in Fig.3.

Fig. 3. The preprocessing module of APFA

4.2 Asynchronous Parallelism

After the preprocessing works, APFA upgrades the original matching process to two
parallel processes: pre-count and FA matching, which is showed in Fig.4. The FA
matching process is responsible for pre-storing the packet contents left by preprocess-
ing in the circular array, as well as getting and matching characters from the array. On
the other hand, the pre-count process prejudges the new-stored characters and updates

534 Y. Li et al.

the counter. The pre-count process must run N characters ahead of the FA matching
process to realize the prediction, so the parallelism is asynchronous. The pseudo code
of the two processes is also listed.

As the pre-count process does not write any data into the circular array and the two
processes access the array in a clockwise direction, the management of the circular
array is not difficult. By carefully managing two access pointers: old and new, which
can be seen in Fig.4, the two threads can run in parallel without collision. The main-
taining of the counter is similar to this, and the asynchronous parallelism can be exe-
cuted successfully in multi-core or multi-processor environments.

Fig. 4. Asynchronous parallel mechanism

4.3 Heuristically Forecast Mechanism

While pre-count process is maintaining a counter in which the value means the length
of the explored longest “no \n suffix” of the current character, FA matching process is
also reading the counter’s value to match the length restriction, and this is done in
function instruct by using the heuristically forecast mechanism. A detailed description
of the mechanism is given in Fig.5.

When APFA transferred to a new state, it took out all the patterns for which the
new state is one of the final states. After that, the corresponding number in length
restriction of the pattern is compared with the counter’s value. If the value is bigger
than the number in length restriction, APFA can heuristically ascertain that the pattern
is matched without considering the following characters could meet the requirements
of the length restriction or not, and the result is equivalent to forecasting.

 APFA for Deep Packet Inspection in Cloud Computing 535

Program instruct (int state)
{Assuming strUct pattern has two elements: paTTern_id(int) and
next(point)};

var ptr: pattern *;
r_number: int;

begin
if ptr := get_pattern(state)

then repeat
r_number :=restrict_number_array[ptr->pattern_id];
if counter > r_number
then Output(ptr->pattern_id);

ptr := ptr->next;
until ptr = NULL

end.

Fig. 5. Heuristically forecast mechanism

For instance, suppose that state i is one of the final states for pattern
“/AUTH\s[^\n]{100}/”. When APFA gets into state i, which means that string
“AUTH\s” is matched. Without delay for considering the following 100 characters,
APFA compares the counter’s value with the number 100 immediately, if the value is
bigger than 100, then APFA can heuristically forecast that the pattern is matched.

5 Analysis and Optimization

In this section, the time and memory performance of APFA is analyzed, as well as the
overlapping problem. Optimizations are proposed at last.

5.1 Time and Memory Performance

As described above, preprocess is the foundation of our APFA, however, the time
consumed in it is pivotal to the efficiency of APFA. According to the procedure of
preprocess, the whole preprocess-time t_preprocess and each character’s preprocess-
time t_precheck can be formalized as follows.

prechecktNpreprocesst _*)1(_ −= (2)

enqueuetcomparetwritetoffreadtprecheckt _____ +++= (3)

The variable t_precheck consists of the time to read from off-chip memory, the time
to write in the circular array, the time to compare with character ‘\n’ and the time to
update the queue if it is exactly character ‘\n’. As known, the time to compare is much
less than the time to write or read, if we suppose the distribution of characters is en-
tirely uniform, then the variable t_preprocess can be denoted as:

)256/___(*)1(_ writetwritetoffreadtNpreprocesst ++−≈ (4)

Work [25] demonstrated that one access to the on-chip memory takes t_on = 4T and
to an external memory t_off = 10T. So t_preprocess can be expressed as:

TNTTTNpreprocesst 14*)1()256/4410(*)1(_ −≈++−≈ (5)

536 Y. Li et al.

It seems that APFA consumes much time in preprocess works; however, the time
spent in matching is largely reduced in APFA due to its higher cache-hit rate, as DFA
is so huge that it is not practical to store the whole DFA into on-chip cache. Further-
more, APFA needn’t run the pre-process twice. The pre-count process can pre-check
the following packet when current packet is checked yet but still in matching.

On the other hand, APFA and XFA both construct the simple finite automaton
which is much smaller than DFA. However, as APFA needs stable memory due to the
deterministic length of queue and circular cache, it has better actual memory perform-
ance than XFA in which variables are dynamically increased.

Consequently, if asynchronous parallelism is implemented well in multi-core envi-
ronment instead of running by turns, APFA need not much more time than DFA and
even much less in some occasions. In addition, APFA has better actual memory per-
formance than XFA. The experiments in section 6 also prove this.

5.2 Optimizations

As can be seen from section 4, the counter’s maintaining work is pivotal to the suc-
cess of heuristically forecast mechanism. However, if the flow “\n\n\n…” is input, the
update operation in the queue and the counter would be repeated again and again,
affecting the stability and speed of APFA. In order to solve this problem, we use the
minimum of the numbers in length restrictions as the threshold for updating the
counter, and the value can be described as:

}},{},,{},{|,min{ rulesetbbaaban ∈= (6)

When the counter decreased to zero, if the new value is smaller than n, APFA needn’t
update the counter as it wouldn’t satisfy the length restriction. It would be at the cost
of some additional variables or defining special value of the counter.

Besides the semantic problem, APFA is proposed on the observation that most
length restrictions in Snort rules are concerning the character ‘\n’. However, it is still
possible to meet other length restrictions which are related with other characters, like
‘\s’. In that case, APFA is not efficient to cope with the situation. Actually, it is easy
for APFA to accommodate the new situation by adding a queue and a counter to re-
cord and update the key character’s information.

5.3 Overlapping Problem

Ordinarily, the overlapping problem is that current matching overlaps with the subse-
quent matching, and it is not easy to eliminate performance degradation resulted from
semantic assaults. Take the pattern“/AUTH\s[^\n]{100}/” for example, if the flow
“AUTH/sAUTH/s…” is input, numbers of matching against the same pattern would
overlaps with each other and many counters would be updated simultaneously in XFA.
Pattern rewriting idea [20] eliminates the redundancy by simplifying the patterns,
which is only suitable for some occasions. Moreover, it is not valid for a more complex
overlapping problem, while most informed researches ignore it. The problem can be
illustrated with the pattern “.*A[^\n]{20}B”, in which the length restriction is restricted
both by prefix and suffix. If the string “AAA….” is put in, we must consider every
prefix ‘A’ met due to the uncertainty of the suffix ‘B’, then overlapping emerges again.

 APFA for Deep Packet Inspection in Cloud Computing 537

It is encouraging that APFA can solve the problem, because the asynchronous par-
allel mechanism can realize the prediction to a certain degree. When a prefix is
matched, APFA can access to the circular array to judge whether the corresponding
characters equal to the suffix or not. It only needs a simple offset calculation and
comparison. As a result, APFA can immediately confirm whether the rule is matched
or not, then the current matching is over and would not overlaps with the others.

6 Experiment Evaluation

We evaluate APFA on the patterns from the open source Snort, which has rule sets
consist of more than a thousand regular expressions for deep packet inspection. It is
not necessary to match the rules in Snort simultaneously, as the packets would be
classified before they are parsed. Therefore, we select four subsets from Snort rules
by their default applications and evaluate APFA on them separately. In the evalua-
tions, not only the stable memory performance comparison is carried out, but also the
real runtime and memory performance contrast is realized.

6.1 Stable Space Performance

First of all, we evaluated APFA on the required memory of the finite automata. Four
simplified Finite Automatons were constructed from the Snort rule sets on different
protocols, such as ftp, imap, pop and web, with the regex tools [22].

Table 1. Memory required of the finite automata

Total # states # memory(KB) Snort
Rule set

#of
rules

#of
closures

#of length
restriction

#of
automata DFA APFA DFA APFA

FTP 20 2 7 1 585 147 13,900 11
IMAP 26 2 15 1 97,765 3739 121,893 375
POP 13 0 10 1 48,603 79 66,080 4
WEB 12 4 5 1 12862 229 16,222 17

As shown in Table 1, by comparing to DFA, the total states numbers of the

automatons are largely reduced by 97.8% averagely, and the memory reduction could
reach 99.85% averagely as well. What is more, the numbers in the length restrictions
had been reduced in order to drop the complexity to construct the original DFA,
which already reduced the space that is not considered.

Table 2. The static memory size of XFA and APFA

#of states
(re)set sign

states’
average

instructions

additional
memory (B)

Program
size (KB)

Snort
Rule set

Total
#of

states

#of
final
states

Set Reset XFA APFA XFA APFA XFA APFA
FTP 147 49 17 20 11.66 2.45 ≥208 =188 277 326

IMAP 3739 310 80 78 18.67 2.10 ≥356 =204 291 339
POP 79 23 20 14 13.32 2.54 ≥212 =144 227 326
WEB 229 46 12 4 10.41 2.25 ≥160 =172 299 347

538 Y. Li et al.

As APFA is build on the basis of XFA, both of them acquire the similar simplified
automaton by segmenting the regular expressions with closures and length restric-
tions. The key difference is the operations in states. As shown in Table 2, APFA de-
creases the states’ average instructions by 81.7% averagely. Of course, the program
size of APFA is a bit larger than XFA, as we need to maintain the parallel threads
carefully.

6.2 Real Space and Runtime Performance

In order to compare the real memory and runtime performance between XFA
and APFA, we first construct the pseudo-random semantic assaults flow which is
against the regular expression in the rule sets. The actual space occupied in run-
ning and time cost of each automaton are recorded in Table 3, and the preload
time in the table means the time to load the finite automata into the system
memory.

Table 3. Runtime performance against artificial flows

Space occupied(KB)
 Burst

variables
Preload time(ms) Match time(s)

Snort
Rule
set

DFA XFA APFA XFA DFA XFA APFA DFA XFA APFA
FTP 14,126 30,756 1,808 540,965 1,703 15.8 8.0 5.1 10.1 3.4

IMAP 124,832 96,108 5,620 1,675,592 15,296 242.6 264.2 3.6 9.6 3.7
POP 75,480 39,488 1,736 769,656 8,904 9.4 4.2 3.6 4.2 2.4
WEB 17,612 132,732 1,892 2,646,038 2,391 10.5 12.3 4.2 197.3 4.8

As can be seen in Table 3, DFA takes up large mounts of memory due to the huge

size of the automata, and XFA also occupies huge size of memory due to the huge
numbers of burst variables when the special flow is met, which is even 6.5 times more
than DFA in Snort WEB. By contrast, the space required in APFA is much less than
DFA and XFA, which only needs 17.5% of the space required by XFA averagely.
Besides the preload time, the time cost in match comparison can be also found in the
table. Our mechanism costs much less time than XFA in this evaluation, the maxi-
mum reduction rate is 97.6%, and the average timesaving can also reach 67.1%. What
is more, the time cost in POP and FTP are even much less than DFA, it results from
the low cache-hit rate of the big-size DFA, and our parallelism in multi-core envi-
ronments is also crucial.

After the semantic assaults evaluation, we also test the three automatons on the real
internet traffic traces which is provided by shmoo group [23]. As the packet traces
downloaded consist of more than twenty cap files, we choose 5 packet traces of dif-
ferent size. We test the Snort FTP and WEB on the traces, and the space and time cost
can be found in Table 4.

 APFA for Deep Packet Inspection in Cloud Computing 539

Table 4. The space and time performance against real traffic traces

Snort FTP Snort WEB
Space occupied(KB) time cost(ms) Space occupied(KB) time cost(ms)

DFA XFA APFA DFA XFA APFA DFA XFA APFA DFA XFA APFA
1 15,568 3,200 3,112 47 63 46 15,244 3,324 3,140 62 47 47
2 15,140 3,500 3,112 141 156 78 11,724 3,556 3,140 109 141 78
3 15,548 7,116 3,112 782 1,422 796 15,628 4,236 3,140 782 1,219 828
4 15,548 5,668 3,112 2,532 4,656 2,656 17,044 6,572 3,304 2,532 4,407 2,672
5 15,548 9,408 3,112 8,703 15,750 8,922 17,044 14,316 3,304 8,625 13,213 9,016

As shown in Table 4, XFA’s space performance is comparatively improved to be
much better than DFA; however, our APFA still reduces the memory of XFA aver-
agely by 36.4% in FTP and 34.0% in WEB. Besides the space performance improve-
ments, APFA also improves the time performance, the time cost in match of APFA is
equal to DFA on the whole, while it only accounts for 58.5% of the time in XFA with
Snort FTP and 70.4% of the time with Snort WEB.

It can be concluded from the evaluations above that our APFA acquires better time
and memory performance than XFA and DFA indeed, and has higher stability for
semantic assaults. In a word, it is more suitable for cloud computing.

7 Conclusion

It is necessary to use DPI for actively monitoring and defense in cloud computing
security, but most recent research of DPI can not satisfy the requirements of high
speed and stability in the cloud. In this paper, an asynchronous parallel finite automa-
ton named APFA is proposed to solve the problem. While inheriting the ideology of
using variables to record the past partial matched information, APFA introduces the
asynchronous parallelism and heuristically forecast mechanism in multi-core envi-
ronment. From the theoretical analysis and evaluation, the results all indicate that
APFA is more suitable for cloud computing, as it acquires less and stable memory
cost, better runtime performance and higher stability.

We are confident in cloud computing, which is a new technology trend and is ex-
pected to change the IT processes and market in the future. The key would be whether
cloud computing can overcome the challenges, such as security, reliability, and so on.
This paper is expected to make a further step to address the security in the cloud.

References

1. Buyya, R.: Market-Oriented Cloud Computing: Vision, Hype, and Reality of Delivering
Computing as the 5th Utility. In: 2009 9th IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (2009)

2. Vaquero, L.M., et al.: A Break in the Clouds: Towards a Cloud Definition. ACM SIG-
COMM 39(1) (January 2009)

3. Leavitt, N.: Is cloud computing really ready for prime time? IEEE Computer Society, Los
Alamitos (2009)

540 Y. Li et al.

4. Armbrust, M., Fox, A., Griffith, R., et al.: Above the Clouds: A Berkeley View of Cloud
Computing. University of California, Berkeley (2009)

5. Heiser, J., Nicolett, M.: Accessing the Security Risks of Cloud Computing. Gartner Inc.,
Stamford (2008)

6. Krautheim, F.J.: Private Virtual Infrastructure for Cloud Computing. University of Mary-
land, hotcloud (2009), http://usenix.org

7. Krautheim, F.J., Phatak, D.S.: LoBot: Locator Bot for Securing Cloud Computing Envi-
ronments. In: ACM Cloud Computing Security Workshop, Chicago, IL (submitted 2009)

8. Snort: Lightweight Intrusion Detection for Networks, http://www.Snort.org/
9. Bro, http://www.bro-ids.org/

10. Cisco Systems, http://www.cisco.com/
11. Kumar, S., et al.: Algorithms to Accelerate Multiple Regular Expressions Matching for

Deep Packet Inspection. In: ACM SIGCOMM 2006, Pisa, Italy (September 2006)
12. Kumar, S., et al.: Advanced Algorithms for Fast and Scalable Deep Packet Inspection. In:

ACM ANCS 2006, San Jose, California, USA (December 2006)
13. Becchi, M., Crowley, P.: An improved algorithm to accelerate regular expression evalua-

tion. In: Proc. of ANCS 2007, pp. 145–154 (2007)
14. Becchi, M., Cadambi, S.: Memory-efficient regular expression search using state merging.

In: Proc. of INFOCOM 2007 (May 2007)
15. Kumar, S., et al.: Curing Regular Expressions Matching Algorithms from Insomnia, Am-

nesia, and Acalculia. In: ACM ANCS 2007, Orlando, Florida, USA (December 2007)
16. Smith, R., Estan, C., Jha, S., Kong, S.: Deflating the Big Bang: Fast and Scalable Deep

Packet Inspection with Extended Finite Automata. In: ACM SIGCOMM 2008, Seattle,
Washington, USA (August 2008)

17. Smith, R., Estan, C., Jha, S.: Xfa: Faster signature matching with extended automata. In:
IEEE Symposium on Security and Privacy (May 2008)

18. Smith, R., Estan, C., Jha, S.: Xfas: Fast and compact signature matching. Technical report,
University of Wisconsin, Madison (August 2007)

19. Becchi, M., Crowley, P.: A Hybrid Finite Automaton for Practical Deep Packet Inspection.
In: ACM CoNEXT 2007, New York, NY, USA (December 2007)

20. Yu, F., Chen, Z., Diao, Y.: Fast and Memory-Efficient Regular Expression Matching for
Deep Packet Inspection. In: ACM ANCS 2006, San Jose, California, USA (December
2006)

21. Ficara, D., Giordano, S., Procissi, G., et al.: An Improved DFA for Fast Regular Expres-
sion Matching. ACM SIGCOMM Computer Communication Review 38(5), 29–40 (2008)

22. Becchi, M.: regex tool, http://regex.wustl.edu/
23. Internet traffic traces, http://cctf.shmoo.com/
24. Eatherton, W., Dittia, Z., Varghese, G.: Tree bitmap: Hardware/software ip lookups with

incremental updates. ACM SIGCOMM Computer Communications Review 34 (2004)
25. Varghese, G.: Network Algorithmics: An Interdisciplinary Approach to Designing Fast

Networked Devices. Morgan Kaufmann Publishers Inc., San Francisco (2004)

Secure Document Service for Cloud Computing�

Jin-Song Xu1,2, Ru-Cheng Huang2, Wan-Ming Huang1, and Geng Yang1

1 College of Computer Science,
Nanjing University of Posts and Telecommunications, Nanjing, 210003, China

2 TongDa College,
Nanjing University of Posts and Telecommunications, Nanjing, 210003, China

xujs@njupt.edu.cn, rafa.huang@gmail.com, huangwm999@gmail.com,

yangg@njupt.edu.cn

Abstract. The development of cloud computing is still in its initial
stage, and the biggest obstacle is data security. How to guarantee the
privacy of user data is a worthwhile study. This paper has proposed a
secure document service mechanism based on cloud computing. Out of
consideration of security, in this mechanism, the content and the format
of documents were separated prior to handling and storing. In addition,
documents could be accessed safely within an optimized method of au-
thorization. This mechanism would protect documents stored in cloud
environment from leakage and provide an infrastructure for establishing
reliable cloud services.

1 Introduction

Cloud computing is a new variation of traditional distributed computing and
grid computing. The development of cloud computing is still facing enormous
challenges. A major concern is about data security, that is, how to protect data
from unauthorized users and leakage. In order to reduce operation costs on client-
end and boost the efficiency of collaboration, the cloud undertook the majority of
jobs. From the view of users, losing control of the executions of jobs may increase
the risk of being hacked especially when the security of entire task highly depend
on the trustworthiness of the cloud.

As can be seen, for both individual user and large-scale enterprises, it is an
important issue to protect key data within cloud pattern. This issue, to some
extent, has a great impact on the development of cloud computing. This paper
has designed a secure document service mechanism for the document service
based on cloud environment. We highlight that the major threats against the
safety of document service and the privacy of user documents focus on two con-
cept: 1)documents would be intercepted and captured during transferring from
client-end to the cloud and 2)access control for documents stored in the cloud.

� This work has been partially funded by National Natural Science Foundation Project
(60873231), Natural Science Foundation for Colleges and Universities in Jiangsu
Province (08KJB520006) and ”The Six Major Peak Talent” Foundation Project in
Jiangsu Province (06-E-044)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 541–546, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

542 J.-S. Xu et al.

To guarantee the privacy of document, on the one hand, the content and the
format of document were separated prior to handling and storing, because most
of private information was stored in the content of documents. An optimized
authorization method was proposed to assign access right for authorized users
on the other hand.

2 Related Work

Cloud computing derived from traditional distributed computing where existed
two main methods to satisfy the requirements of reliable data storage service. The
first one heavily relied on a trusted third-party. A successful example in business is
eBay [1], in which all of users’ transaction information were stored at official cen-
ter server. In this pattern, the most important component for data access control–
authorization was deployed in the center server. The second one often used in P2P
context. IndecentralizedP2P environment, authoritydidnot exist and reputation-
based trust relation were emphasized [2][3][4]. The weak point of their works was
that they could not give full privacy just a part of it, which determined that the
above methods cannot be directly applied in cloud environment. Within another
distributedpatterngrid computing community, there isno consensus that howdata
authentication should be done within virtual organizations [5].

Thus, cloud environment needs new models to handle potential security prob-
lems. This new model should allow an information owner to protect their data
while not interfering with the privacy of other information owners within the
cloud [6]. From the view of client, the remote service deployed in cloud was
hardly to be regarded as trustworthy in default situation. In recent studies, [7]
focused on the lower layer IaaS cloud providers where securing a customers vir-
tual machines is more manageable. Their work provided a closed box execution
environment. [6] proposed Private Virtual Infrastructure that shares the respon-
sibility of security in cloud computing between the service provider and client,
reducing the risk of them both. Our aim is to provide an efficient methodology
to guarantee privacy of user data in cloud computing environment.

3 Secure Document Service Mechanism

Guaranteeing full privacy of user’s document was an important concept for se-
curity document service. For ideal distributed document service based on cloud
computing, document handling and storing were not executed by local system
in client-end but by remote cloud server that provide document service. Since
the work on remote cloud server cannot be considered as trustworthy in default
setting, we propose a novel mechanism to protect the privacy of user’s document,
which correspond with cloud computing fashion.

3.1 Separation of Content and Format

This paper has focused on document service in cloud and the term “data” refer
to document file in general.

Secure Document Service for Cloud Computing 543

Document. A data stream that consist of content and format. The content of
document can be browsed and handled in a specified manner that determined
by its format.

For example,

 hello
 world !

In this fragment of an HTML file, the strings “hello” and “world !” are con-
tent which can be browsed in browser. The tags like “<***>” are format, while
the couple “” and “” make the strings “hello” and “world !” bold
and “
” gives a line break between the two words. We identify any docu-
ments with content-format combinations. For example, above HTML file can be
seen as B(hello)BR()B(world !).Therefore, document handling could be seen as
combination of content handling and format handling.

Actually, most of private information was not stored in format but content.
Making the procedure of content handling secure was essential for guaranteeing
document privacy. In our design, we separated content from document and then
content should be encrypted (by several sophisticated cryptographic algorithms,
e.g., RSA [8], DES [9], etc.) before document being propagated and stored in
remote server.

3.2 Document Partition

Usually, document handling often did not cover the whole content and format
but a part of them. It is not necessary to re-store the whole document, but just
its partition that were handled. It is believed that partitioning the document
prior to handling and only updating the modified partition could reduce the
overhead of document service and the possibility of the whole document being
damaged and hacked.

If the size of document partition were rather large, the possibility of this par-
tition being updating were somewhat high than of a smaller partition. Because
Because it was more possible that handling happened in a larger partition. Un-
fortunately, if the handling that only changed punctuation or a letter happened
in a very large partition, the efficiency of transferring and storing document
would be affected.

3.3 Document Authorization

Data authorization can be implemented by public-key cryptography in tradi-
tional network environment. Correspondingly, cloud computing environment was
lacking in nature pre-trusted party that was responsible for authentication and
authorization.

1. General Authorization Method (Method 1). In general practice, the
document owner had charge of authorizing other users for accessing

544 J.-S. Xu et al.

documents. We denoted the public and private key of OwnerI as BI , PI

and the public and private key of UserJ as BJ , PJ , respectively. BI(c)
depicted that content c was encrypted with OwnerI ’s public key and the
procedure of decryption could be written as PI(BI(c)). If OwnerI wanted
to authorize UserJ for accessing document, OwnerI required encrypt the
content by UserJ ’s public key, namely BJ (PI(c)). This method could be
implemented relatively easily. Document owners overhead of encrypting con-
tent, however, would be in conformity with the number of users who were
authorized.

2. Optimized Authorization Method (Method 2)
(a) Construct two encryption functions f(x), g(x), both of them have the

following properties:
i. It is hard to find inverse functions for both functions.
ii. For any M , when f(M) = N , there must be g(N) = M . Also, for

any M , when g(M) = N , there must be f(N) = M . As summarize,
g(f(M)) = f(g(M)) = M .

iii. It is hard to find inverse function for f(g(x)) and to decompose
f(g(x)) as the combination of f(x) and g(x). Denote f(g(x)) as
H(x).

iv. It is hard to find inverse function for f(g(g(x))) and to decompose
f(g(g(x))) as the combination of f(x) and g(x). Denote f(g(g(x)))
as I(x).

v. For any M , when f(M) = N , there is H(N) = f(M).
vi. For any M , when f(M) = N , there is I(N) = f(g(M)).

(b) Suppose H(x) existed and encrypted document BI(c) stored in cloud
server, when OwnerI authorized UserJ for access to BI(c), H(x) would
be submitted to cloud server. Cloud server would then automatically
compute H(BI(c)) and send it to UserJ . H(BI(c)) could be generated
as BJ(c) by UserJ . It is easy for UserJ to decrypted BJ(c) by using
PJ .

(c) Suppose I(x) existed, when UserJ obtained encrypted content BJ(PI(c)),
content c could be generated by computing BI(PJ ((BJ (PI(c))))).

4 Secure Document Service Archetype

We provided the model of our mechanism, as follows:
As Fig.1 depicted, Documents were stored in ”Cloud Document Warehouse”.

The handling involved document format was completely done by ”Document
Service”, while owner in client-end was responsible for encryption and decryp-
tion of document content. To save document, client must re-encrypt partitioned
content and then send it to ”Document Service”.

There were two kinds of authorization procedures (Fig.2). For Method 1, by
decryption, client can get the access to documents from ”Document Service”.
There was a pre-requirement, for Method 2, of the existence of H(x) and I(x).
Using Method 2 can significantly reduce the overhead of authorization of Client
H and the complexity of procedure of sharing documents among clients.

Secure Document Service for Cloud Computing 545

Fig. 1. Separation of Content and Format

Fig. 2. Procedure of Authorization

5 Conclusion and Future Work

The mechanism of security document service for cloud computing environment
has been proposed and an archetype has been given. In this mechanism, con-
tent and format were separated from document to keep their privacy. Also, an
optimized authorization method has been proposed for assigning access right of
document to authorized users.

546 J.-S. Xu et al.

In the near future, we will highlight several fields where new approaches for
implementing secure document service are required, particularly in constructing
appropriate functions of H(x) and I(x) for authorization. Also, the authors will
explore sophisticated partition strategies suitable for files in different formats.
In this direction, the most significant result would be a novel file format that
can perfectly keep privacy of content.

References

[1] Resnick, P., Zeckhauser, R.: Trust among strangers in Internet transactions: Em-
pirical analysis of eBay’s reputation system. Advances in Applied Microeconomics:
A Research Annual 11, 127–157 (2002)

[2] Kamvar, S., Schlosser, M., Garcia-Molina, H.: The eigentrust algorithm for rep-
utation management in p2p networks. In: Proceedings of the 12th international
conference on World Wide Web, pp. 640–651. ACM, New York (2003)

[3] Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer
electronic communities. IEEE transactions on Knowledge and Data Engineer-
ing 16(7), 843–857 (2004)

[4] Rahbar, A., Yang, O.: Powertrust: A robust and scalable reputation system for
trusted peer-to-peer computing. IEEE Transactions on Parallel and Distributed
Systems 18(4), 460–473 (2007)

[5] Antonioletti, M., Atkinson, M., Baxter, R., Borley, A., Hong, N., Collins, B., Hard-
man, N., Hume, A., Knox, A., Jackson, M., et al.: The design and implementation
of Grid database services in OGSA-DAI. Concurrency and Computation: Practice
& Experience 17(2), 357–376 (2005)

[6] Krautheim, F.J.: Private virtual infrastructure for cloud computing. In: HotCloud,
USNIX (2009)

[7] Nuno Santos, K.P.G., Rodrigues, R.: Towards trusted cloud computing. In: Hot-
Cloud, USNIX (2009)

[8] Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems (1978)

[9] Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 547–552, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Privacy of Value-Added Context-Aware Service Cloud

Xin Huang1, Yin He2, Yifan Hou2, Lisi Li2, Lan Sun2, Sina Zhang2, Yang Jiang2,
and Tingting Zhang1

1 ITM, Mid Sweden University, Sundsvall, SE 85170, Sweden
{xin.huang,tingting.zhang}@miun.se

2 School of Electronics and Information Engineering, Beijing Jiaotong University,
Beijing, CN 100044, P. R. China

{yihe0800,yiho0800,lili0807,lasu0801,sizh0800,
yaji0800}@student.miun.se

Abstract. In the cloud computing era, service provider cloud and context ser-
vice cloud store all your personal context data. This is a positive aspect for
value-added context-aware service cloud as it makes that context information
collection are easier than was the case previously. However, this computing en-
vironment does add a series of threats in relation to privacy protection. Who-
ever receives the context information is able to deduce the status of the owners
and, generally owners are not happy to share this information. In this paper, we
propose a privacy preserved framework which can be utilized by value-added
context-aware service cloud. Context data and related services access privileges
are determined by context-aware role-based access control (CRAC) extended
from role-based access control (RAC). Privacy preserved context service proto-
col (PPCS) is designed to protect user privacy from exposed context informa-
tion. Additionally, user network and information diffusion is combined to
evaluate the privacy protection effect.

Keywords: Cloud computing, Privacy.

1 Introduction

Gartner defines cloud computing as "a style of computing where massively scalable
IT-enabled capabilities are delivered 'as a service' to external customers using Internet
technologies." [1] In the cloud computing era, all your personal context data are
stored in service provider cloud and context service cloud. This is a positive aspect for
value-added context-aware service cloud as it makes that context information collec-
tion are easier than was the case previously. In our project, context information is
mainly collected from a system using distributed context exchange protocol (DCXP)
[2, 3]. Users in DCXP system can capture, process, and store a variety of context
information, e.g., location information, temperature.

However, a value-added context-aware cloud does add a series of threats to privacy
protection. The manner in which context information is handled then becomes a criti-
cal question. The information may be sensitive and users are not prepared to share this
with others. However, the user context information is always collected and analyzed
when this user is engaged in a service in value-added context-aware service cloud. In

548 X. Huang et al.

addition, the service provider is able to use user data without the user being aware of
this situation [4, 5]. Increasingly, a simple service may be involved in a chain of ser-
vice clouds; each cloud is able to access data in its cloud without the control of any
technology [1]. So, access control is definitely necessary and another important issue
involves how to protect user privacy from exposed context information.

In this paper, a privacy protection framework for value-added context-aware ser-
vice cloud is described. There are two fundamental construction parts: Context-aware
Role-based Access Control (CRAC) and Privacy Preserved Context Service Protocol
(PPCS). CRAC is for protecting personal context information and related services
from unauthorized persons. CRAC is more reasonable and has better privacy protec-
tion than the role-based access control model (RAC) [6, 7, 8]. Meanwhile, PPCS
protocol is used to protect user privacy from exposed context information. PPCS is
based on the K-anonymity model [9-14].

To evaluate the effect, information diffusion models are developed. In these mod-
els, information is diffused in a user network which is scale-free [15, 16, 17]. A scale-
free network is a network whose fraction of nodes with connections k follows a power
law degree distribution P(k)~k^(-r). The parameter r is a constant and this value typi-
cally falls within the range 2 < r < 3. The implication of this is that a few nodes show
high connectivity while the others are poorly connected.

Our paper is organized as follows. Section 2 describes the framework, the scenario
and message flow; Section 3 shows the privacy protection elements; Section 4 con-
tains the results. Finally some important conclusions are made in Section 5.

2 Framework

The framework for value-added context-aware service cloud is shown in Fig. 1. There
is a context service cloud which supplies the context information, e.g., location in-
formation. The service provider cloud provides services, for example, Google Calen-
dar. The value-added context-aware service cloud is the core of this framework. It
contains context-aware service, privacy service and security service.

The standard scenario is as follow. The first page is the login page. Then Tom re-
quests service in a service request page. After both the PPCS and CRAC procedures,
a permission decision page is displayed. Tom can then choose any permitted way to
communicate with Jerry in order to make an appointment.

Security service supplies basic security functionalities, e.g., authentication, mes-
sage encryption, key management and message authentication code (MAC).

The core modules for protecting privacy are CRAC and PPCS and the effect that
they have is tested in user networks in which information diffusion is considered.

2.1 CRAC

CRAC is a combination of RAC and the context aware role. A context aware role is a
job function selected and based on the changing context of communication parties
with some associated semantics regarding the authority and responsibility conferred
on the user assigned to the role. In CRAC, a value-added service cloud is treated as an
agent user.

 Privacy of Value-Added Context-Aware Service Cloud 549

Fig. 1. System Topology

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Time t

M
es

sa
ge

 N
um

be
r

RAC

CRAC

Fig. 2. Message number in CRAC and RAC

An information diffusion model is used to verify the effect. In this simulation, a
100 nodes scale-free network is used to model the behavior of the users. Each user is
viewed as a node. Each node has several friends with whom the node may communi-
cate and the number of friends follows a power-law distribution. Two messages are
generated in the source node and are diffused to others in this network. All the nodes

550 X. Huang et al.

may diffuse received messages to their neighboring nodes; and these nodes may de-
lete received messages and stop diffusing at each time step.

In RAC, links are assigned roles statically, which are used to make decisions re-
garding the rights in relation to the transfer of certain messages. However, in CRAC,
in addition to a static role, context information must also be checked in order to de-
cide whether or not particular message can be transferred by a certain link. The simu-
lation results are displayed in Fig. 2 and it illustrates that CRAC is a better choice for
protecting user privacy.

2.2 PPCS and Evaluation

PPCS is designed in order to protect user privacy from exposed context information.
In the main, it uses K-anonymity model to generate blur context information. When
there are insufficient message sources, L-diversity is activated. L-diversity means that
the replied area should have L different terrain characteristics, which also makes it
difficult for the attacker to determine the actual source. Additionally, there is a K
adjustment algorithm. K is increased if one requester sends requests with a high fre-
quency for no clear reasons.

Now, combining the idea of information relation with the diffusion in a user social
network, a multi-message diffusion model is built in order to simulate the effect of
PPCS. In this simulation, the same scale-free network is used. The hop distance is
used to represent the relations between the nodes and the source. 10 messages are
generated in the source node and are diffused to others in this network. All these mes-
sages are related to private data of the source to some degree R. After a time, some
nodes may accumulate enough messages to deduce the private information. This

1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Hop distance

Li

Larger R

1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Hop distance

Li

Smaller R

Fig. 3. Message leakage degrees for different R and hop distance

 Privacy of Value-Added Context-Aware Service Cloud 551

chance is measured by the leakage degree Li, which is the sum of all the relation de-
grees of messages accumulated in node i. PPCS blurs the context information and K
adjustment increases K in order to decrease the R of the messages for one requester
with a high request frequency.

The averaged results of the 100 independent simulations are shown in Fig. 3: a
smaller R makes Li smaller. This means that PPCS can reduce a person’s privacy
leakage.

3 Conclusion

A privacy preserved framework of value-added context-aware service cloud is pro-
posed. CRAC and PPCS protocol are the two main elements which are used in order
to support privacy protection. CRAC is used to protect personal context data and
related services from parties without proper privileges. It is more flexible than the
traditional RAC; it can provide a better privacy protection. PPCS is designed to pro-
tect user privacy from exposed context information. Additionally, user network and
information diffusion model are used together to evaluate the privacy protection ef-
fect. To our best knowledge, this is the first method which has simulated the privacy
protection effect.

In future, we intend to delve more deeply into the information diffusion model.
This model is useful to design privacy preserved cloud computing services.

Acknowledgement

We would like to thank Sensible Things That Communicate (STC) research, regional
EU target 2, regional public sector, and industries such as Ericsson Research and
Telia for their funding.

References

[1] Heiser, J., Nicolett, M.: Assessing the security risks of cloud computing. Technical report,
Gartner (2008)

[2] Angeles, C.: Distribution of context information using the session initiation protocol
(SIP). Master Thesis, Royal Institute of Technology, Stockholm, Sweden (2008)

[3] Vidal, S.Q.: Context-aware Networks Design, Implementation and Evaluation of an Ar-
chitecture and a Protocol for the Ambient Networks Project. Master Thesis, Linköping
University, Linköping, Sweden (2006)

[4] Horrigan, J.B.: Use of cloud computing applications and services. Pew Internet & Ameri-
can Life project memo (2008)

[5] Greenberg, A.: Cloud Computing’s Stormy Side. Forbes Magazine (2008)
[6] Hakkila, J., Kansala, I.: Role based privacy applied to context-aware mobile applications.

In: IEEE International Conference on Systems, Man and Cybernetics, vol. 6, pp. 5467–
5472. IEEE Press, New York (2004)

552 X. Huang et al.

[7] Damiani, M.L., Bertino, E.: Access Control and Privacy in Location-Aware Services for
Mobile Organizations. In: 7th International Conference on Mobile Data Management,
MDM 2006, p. 11. IEEE Computer Society, Los Alamitos (2006)

[8] Ardagna, C.A., Cremonini, M., De Capitani di Vimercati, S., Samarati, P.: A Privacy-
Aware Access Control System. Journal of Computer Security (JCS) 16(4), 369–392
(2008)

[9] Ghinita, G., Kalnis, P., Skiadopoulos, S.: PRIVE: Anonymous Location-based Queries in
Distributed Mobile Systems. In: Proc. 16th Int’l World Wide Web Conf (WWW 2007),
pp. 371–380. ACM, New York (2007)

[10] Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries in mobile
environments with privacygrid. In: Proceedings of 17th International World Wide Web
Conference (WWW 2008), pp. 237–248. ACM, New York (2008)

[11] Chow, C., Mokbel, M.F., Liu, X.: A peer-to-peer spatial cloaking algorithm for anony-
mous location-based service. In: Proceedings of the 14th annual ACM international sym-
posium on Advances in geographic information systems, pp. 171–178. ACM, New York
(2006)

[12] Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transactions
on Knowledge and Data Engineering 13, 1010–1027 (2001)

[13] Sweeney, L.: K-anonymity: a model for protecting privacy. International Journal on Un-
certainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)

[14] Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: L-diversity: Pri-
vacy beyond k-anonymity. In: 22nd IEEE International Conference on Data Engineering
(2006)

[15] Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45,
167–256 (2003)

[16] Albert, R., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Rev. Mod.
Phys. 74, 47–97 (2005)

[17] Huang, X., Zhang, T.: Information Diffusion and Privacy. Unpublished, Mid Sweden
University, Sundsvall, Sweden (2009)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 553–558, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Simple Technique for Securing Data at Rest Stored in a
Computing Cloud

Jeff Sedayao, Steven Su, Xiaohao Ma, Minghao Jiang, and Kai Miao

Intel Corporation
999 YingLun Rd,

Shanghai 200131, China
{jeff.sedayao,steven.su,xiaohao.ma,minghao.jiang,

kai.miao}@intel.com

Abstract. “Cloud Computing” offers many potential benefits, including cost
savings, the ability to deploy applications and services quickly, and the ease of
scaling those application and services once they are deployed. A key barrier for
enterprise adoption is the confidentiality of data stored on Cloud Computing In-
frastructure. Our simple technique implemented with Open Source software
solves this problem by using public key encryption to render stored data at rest
unreadable by unauthorized personnel, including system administrators of the
cloud computing service on which the data is stored. We validate our approach
on a network measurement system implemented on PlanetLab. We then use it
on a service where confidentiality is critical – a scanning application that vali-
dates external firewall implementations.

Keywords: Cloud Computing, PlanetLab, Security, Encryption, Data at Rest
Storage.

1 Introduction

“Cloud Computing” offers many potential benefits, including cost savings, the ability
to deploy and scale applications and services quickly. We define “Cloud Computing”
as Computing infrastructure that is highly scalable, managed, and abstracted as a
service available through the Internet. Cloud Computing services are billed by con-
sumption and are used by multiple customers. Well known examples like Amazon’s
Elastic Computing Cloud (EC2) [1] and Scalable Storage Service (S3) [2] allow users
to buy virtual machines and storage accessed over the Internet. Infrastructure shared
by multiple customers allows Cloud service providers to spread out costs over many
users. When combined with consumption based billing, service abstraction, and scal-
ability, Cloud Computing can offers compelling value to organizations deploying
services.

While sharing infrastructure lowers costs, it is a major barrier blocking enterprise
adoption of Cloud Computing, as organizations are concerned about retaining
the confidentiality of their data. The administrators of a Cloud Computing service
could read data stored at the service. In this paper, we describe how we solved this
problem by using open source and public key encryption to render stored data at rest

554 J. Sedayao et al.

unreadable by unauthorized parties. The first section of this paper outlines the prob-
lem that we are trying to solve. The second section talks about our solution architec-
ture, and the third talks about our implementation experiences. The next section cover
related work, and the last discusses our conclusions and plans for future work.

2 Problem Scope

Our goal is to ensure the confidentiality of data at rest. By “data at rest”, we mean that
the data that is stored in a readable form on a Cloud Computing service, whether in a
storage product like S3 or in a virtual machine instance as in EC2. Figure 1 illustrates
this definition. In a cloud computing service instantiation, be it a virtual machine
instance or an instance of virtual storage, some process generates data to be stored on
disk. To protect data at rest, we want to prevent other users in the cloud infrastructure
who might have access to the same storage from reading the data our process has
stored. We also want to prevent system administrators who run the cloud computing
service from reading the data.

Fig. 1. Process in a Cloud Computing Infrastructure producing Data at Rest

We assume that it is unlikely for an adversary to snoop on the contents of memory.
If the adversary had that capability, it is unlikely that we could trust the confidential-
ity of any of the data that we generated there. While the administrative staff of the
cloud computing service could theoretically monitor the data moving in memory
before it is stored in disk, we believe that administrative and legal controls should
prevent this from happening. We also do not guard against the modification of the
data at rest, although we are likely to be able to detect this.

3 Solution Design

Our approach is to use public key encryption to insure the confidentiality of our data
at rest. The process producing data also encrypts the data with the public key of a
separate collection agent, as shown in Figure 2.

 A Simple Technique for Securing Data at Rest Stored in a Computing Cloud 555

Fig. 2. Process in a Cloud Computing Infrastructure producing Encrypted Data at Rest

On a trusted host, we collect the encrypted data, as shown in Figure 3, and decrypt
it with the collection agent’s private key which stays on that host. Note that in this
case, we are in exclusive control of the private key, which the cloud service provider
has no view or control over. We will discuss this feature of our solution later.

Fig. 3. Process in a Cloud Computing Infrastructure producing Encrypted Data at Rest

4 Implementation Experiences

In this section, we describe our implementation experiences and use cases for our tech-
nique. Our first implementation encrypted data from web site performance monitoring.
Our second implementation involves encrypting data from doing security scans.

4.1 Web Performance Measurement Implementation

Intel needed a service that could give us an idea of end users’ experiences with the
corporate website from different regions of the globe and contrast that experience to
other comparable websites. We wanted to compare the end-user experiences using
different services for providing web content from a global perspective – how the dif-
ferent providers would do in different regions of the world. Intel is a member of the
PlanetLab consortium [3] and has access over 1039 systems at more than 485 sites

556 J. Sedayao et al.

Fig. 4. Web performance data gathering and display methodology

Fig. 5. Secured Web Performance Monitoring Application with Data Encryption and Decryption

across the globe. While we could have purchased a similar service, we decided to
implement our monitor on PlanetLab. Figure 4 shows how the first implementation of
the monitoring service [4] functioned. Each PlanetLab node in the appropriate geog-
raphy took samples of the URLs we specified and made the data available through
PlanetLab’s sensor interface [5]. The display service grabbed the data from the sensor
via HTTP, and shows the data to users of the display server as web pages.

Some departments within Intel preferred that the performance information gathered
on the PlanetLab nodes not be widely available. PlanetLab nodes have many of the

 A Simple Technique for Securing Data at Rest Stored in a Computing Cloud 557

characteristics of Cloud Computing hosts, with multiple users’ virtual machines shar-
ing individual hosts. We decided to encrypt the data on the PlanetLab nodes that
gather the data. We designated a trusted host as a collection agent, and encrypted the
performance data that was stored on the nodes with the public key. The corresponding
private key was put on the trusted host and used to decrypt incoming data. The correc-
tion is depicted as Figure 5.

The availability of public key open source implementations made this simple and
convenient to implement. Using OpenSSL [6], the encryption process can take place
in a filter in a single shell command line. Also, only the public key is resident on the
cloud storage. If someone, including a cloud service administrator, looks at the files
and finds the keys, they will only have the public key, which will not give them ac-
cess to the encrypted content.

4.2 Scanner Implementation

Intel invests significant resources in creating a security perimeter around Intel but has
trouble verifying that the policies created are implemented correctly. With PlanetLab,
we could scan Intel’s firewalls from multiple external points and compare the results
to the policies. These external points can also scan the public services of Intel which
are not behind the firewall or servers from other companies.

The scanner is much like the web performance monitor as they work under the
same model of result data generation and collection. We set up NMAP [7] on the
external Planet-Lab nodes and defined scan scenario there. Output was periodically
generated and saved as encrypted file available for pickup with HTTP. Later, a col-
lecting server inside Intel downloads the data and decrypted it for subsequent applica-
tion to get it analyzed. As with the web performance monitor, we used OpenSSL to
quickly and conveniently implement public key encryption.

5 Related Work

There are a number of efforts to make storage of data in clouds more secure. Amazon
Virtual Private Cloud (VPC) [8] creates a VPN between virtual machines in the Ama-
zon cloud and an organization’s network. Amazon VPC protects data in transit, but
does nothing for data at rest. Piworx [9] and Mozy [10] are services that offer data
storage. Piworx uses its own proprietary public key implementation, and apparently
can access user data, although they promise that will only be done with user permis-
sion. Piworx is implemented on top of Amazon EC2. Mozy uses public key encryp-
tion, but typically handles both generating and storing the public and private keys.
Mozy also warns their users that if they forget their own custom generated private
key, they will not be able to access their own data. Our solution differs from these
two public cloud storage implementations in that we are always in charge of our own
private keys. Our use of open source enables anyone to quickly and easily implement
it on any cloud infrastructure. Tahoe [11] is a distributed file system that also incor-
porates public key encryption to provide confidentiality. It adds many other features
that may or may not be of interest, such as being a true file system and been fault
tolerant. Tahoe is currently used in the Allmydata [12] backup service.

558 J. Sedayao et al.

6 Conclusions

Our technique protects data at rest while being easy and cheap to implement. It does
have some notable limitations. As mentioned previously, this model works only for a
process that produces data on a host (virtual or real) that is collected for use by some
other host. No other process on that real or virtual host that produced the data can use
it without somehow exposing the private key. Still, our model can be used for a num-
ber of applications of which we have presented two. While we guard against casual
browsing of files by system administrators and others, we need to ensure that the
programs that produce data don’t leave around key data in any temporary files. A
process might leave copies of data in some temporary storage directory before writing
encrypting the final output. Finally, we found that PlanetLab has been a very useful
testbed for trying out Cloud Computing concepts. Advertising this capability may
lead more enterprises to join PlanetLab.

References

1. Amazon. Elastic Computing Cloud, http://aws.amazon.com/ec2
2. Amazon. Simple Storage Service, http://aws.amazon.com/s3
3. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing disruptive

technology into the Internet. SIGCOMM Comput. Commun. Rev. 33(1), 59–64 (2003)
4. Sedayao, J.: Implementing and operating an internet scale distributed application using

service oriented architecture principles and cloud computing infrastructure. In: Kotsis, G.,
Taniar, D., Pardede, E., Khalil, I. (eds.) Proceedings of the 10th international Conference
on information integration and Web-Based Applications & Services, iiWAS 2008, Linz,
Austria, November 24 - 26, pp. 417–421. ACM, New York (2008)

5. Roscoe, T., Peterson, L., Karlin, S., Wawrzoniak, M.: A Simple Common Sensor Interface
for PlanetLab. PlanetLab Design Note PDN 03-010 (2003)

6. OpenSSL, http://www.openssl.org/
7. NMAP, http://nmap.org/
8. Amazon Virtual Private Cloud, http://aws.amazon.com/vpc/
9. Piworx, http://www.piworx.com/

10. Mozy, http://mozy.com/
11. Wilcox-O’Hearn, Z., Warner, B.: Tahoe: the least-authority filesystem. In: Proceedings of

the 4th ACM international Workshop on Storage Security and Survivability, StorageSS
2008, Alexandria, Virginia, USA, October 31 - 31, pp. 21–26. ACM, New York (2008)

12. Allmydata, http://www.allmydata.com/

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 559–564, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Access Control of Cloud Service Based on UCON

Chen Danwei, Huang Xiuli, and Ren Xunyi

Nanjing University of posts & Telecommunications, New Model Street No.66,
210003, Nanjing, China

chendw@njupt.edu.cn, juliehxl@163.com, renxy@njupt.edu.cn

Abstract. Cloud computing is an emerging computing paradigm, and cloud
service is also becoming increasingly relevant. Most research communities have
recently embarked in the area, and research challenges in every aspect. This pa-
per mainly discusses cloud service security. Cloud service is based on Web
Services, and it will face all kinds of security problems including what Web
Services face. The development of cloud service closely relates to its security,
so the research of cloud service security is a very important theme. This paper
introduces cloud computing and cloud service firstly, and then gives cloud ser-
vices access control model based on UCON and negotiation technologies, and
also designs the negotiation module.

Keyword: Cloud Service, Access Control, UCON, Negotiation.

1 Introduction

Cloud Computing is a large-scale distributed computing paradigm that is driven by
economies of scale, in which a pool of abstracted, virtualized, dynamically-scalable,
managed computing power, storage, platforms, and services are delivered on demand
to external customers over the Internet[1]. Cloud is the network which is constructed
through cloud computing model, and cloud service is the service provided in cloud.
Now, Cloud Computing has become the hottest technology in IT, and is also the re-
search focus in academic.

The goal of cloud computing is to realize "the network is a high performance com-
puter", that is to allow users to put all data and services into cloud and get all kinds of
services from cloud only by their Internet terminal equipment. What users see is a
virtual view when they use cloud service, and the data and services are actually dis-
tributed at different locations in cloud. The tendency that services and data will be
transferred to web is inevitable, and more and more services and data will be in cloud.

Cloud service is based on Web Services [2], and Web Services are based on Inter-
net. Internet has many its own inherent security flaws because of its openness, and it
also has many other attacks and threats. Therefore, cloud services will face a wide
range of security issues. At present, there are already many security specifications and
technologies about Web Services, so it is of great significance for us to resolve secu-
rity issues of cloud service using these existed security knowledge.

560 C. Danwei, H. Xiuli, and R. Xunyi

Access control is one of the most important security mechanisms in cloud service,
and Cloud service can not apply the traditional access control model to achieve access
control because of its characteristics. But cloud services need to face the same secu-
rity problems and Security requirements; and we also can’t be divorced from the tra-
ditional access control model ideas.

For Unauthorized Access problems, it often built on fragile ID authentication and
authorization. The mainly causes include: ①No authentication or fragile authentica-
tion; ②To send the password and authentication information in plaintext. The system
should adopt a strong authentication system and make encryption transmission to
prevent unauthorized access.

2 Cloud Services Access Control Based UCON

2.1 UCON Model

The usual traditional access control models include DAC, MAC and RBAC. New
access control models have TBAC [3], ABAC [4], and UCON [5]. Cloud service usu-
ally has the following features: large amounts of resources, highly dynamic and flexi-
ble construction, lots of dynamic users, and so on. UCON can easily implement the
security strategy of DAC, MAC and RBAC, and also includes security strategy of trust
and DRM management covering security and privacy which are two important issues
in the demand of Modern business information systems. As the next generation access
control technology, besides taking ABC conception, UCON also inherits all the merits
of traditional access control technologies, and can be established various access control
model under every kinds of complex situation, and among them UCONABC is the most
integrated model.. UCON provides very superior decision-making ability, and will be a
better choice to be used to establish cloud service access control model.

UCON is just a conceptual model, and no concrete realization specification, so
there is still much work to do for establishing access control model based on UCON.
UCON model is composed of six parts: Subjects, Rights, Objects, Authorization,
oBligation, Conditions.

Fig. 1. UCON model

 Access Control of Cloud Service Based on UCON 561

(l)Subject and Subject Attribute
Subject is an entity which has some rights of using object, marked as S. Subject
means widely, it may be the user group, the user himself, or may also be a computer
terminal, card machine, hand-held terminal (wireless), and even may be a program or
process application.

Subject Attribute identifies the main capabilities and features of subject, and is the
important parameter in the decision-making process, marked as ATT (S). The com-
mon subject attributes include: identity, user group, role, membership, and capacity
list and security level.
(2)Object and Object Attribute
Object is an entity which accepts the visit of Subject, marked as O. Object also has a
wide meanings, and it may be information, documents and records used in workflow
system, or may be hardware on the network and wireless communication terminals.

Object Attribute identifies the important information of object, marked as ATT
(O). Object attributes include security label, relations, type and access control lists
and so on.
(3) Rights
Rights are a set of actions that subject visits object, marked as R. And the set also
defines some conditions restriction that object request of subject. There are many
types of rights.
(4) Authorization the principal,
Authorization is the only decision-making factor in the traditional access control
model, and also is also an important part in UCON model, marked as A. Authoriza-
tion is based on subject attributes, object attributes, as well as the right to request (for
example: read or write privileges, etc.) and in accordance with the permission rules
set to determine the operation of the authority. Implementation of authorization may
lead to some changes to subject attribute or object attribute value, which will also
impact on the decision-making process of this visit and the next.
(5) Obligation
Obligation is the function that must be implemented before visiting or during visiting,
marked as B. What obligation should be fulfilled will be not statically set up by the
system administrator in advance, and it is dynamically selected according to subject
attributes and object attributes. The implementation of obligation may also update the
variable attributes of the entities, which will also impact on the decision-making proc-
ess of this visit and the next.
(6) Condition
Condition is the decision-making factor objected-condition and system, marked as C.
Condition assesses the current hardware environment or relevant system limitations to
decide whether or not to meet the user request. Conditions assessment doesn’t change
any subject attributes or object attributes.

2.2 Cloud Services Access Control Based UCON

2.2.1 Nego-UCONABC Model
In UCONABC, authorization bases on attributes, obligations and conditions. Attributes
are often provided in form of the digital certificate by which issuer declares the

562 C. Danwei, H. Xiuli, and R. Xunyi

Fig. 2. Nego-UCONABC model

attributes that an entity has. Obligations are storage in policy DB as rules in XACML
[6]. Conditions will be obtained through the operating environment and be storied in
policy DB as rules in XACML.

Besides, negotiation module is applied in model in order to enhance flexibility of
cloud service access control. When access request mismatches with access rules, it
allows user to get a second access choice through negotiation in certain circum-
stances, in stead of refusing access directly. That is, user can get chance to access
through changing certain parameters and attributes in the negotiation process.

Authorization of UCON model bases on entity’s attributes and access policies, but
sometimes these attributes and policies are sensitive and need to be protected. And we
need consider the protection of these sensitive attributes and policies in negotiation.
Figure 2 is Nego-UCONABC model bases on UCONABC and negotiation.

Figure 2 includes three parts: Cloud user, SAML server and Cloud service. Cloud
user is the initiator in service request. And SAML Server part includes three modules:
SAML assertion module, sensitive attributes protection module and negotiation mod-
ule. SAML assertion module mainly issues assertions and responses to assertions
requests. Sensitive attributes protection module used to protect user’s sensitive attrib-
utes and will be called when SAML issues assertion, and then attributes will be ex-
posed according to the privacy polices. Negotiation module is used to negotiate with
cloud server for attributes, obligations and conditions.

Cloud service part includes seven modules: Cloud service, PEP, PDP, PIP, PAP,
XACML policy DB and negotiation module. Cloud service is the service provider.
PEP is the policy enforcement point, and it accepts user’s requests, and then executes
decision of PDP. PDP is the policy decision point, it make authorization decision

 Access Control of Cloud Service Based on UCON 563

based on ABC policies according to the entity attributes, obligations, conditions. PIP
is the policy information point, it get entity attributes and conditions and provides
them to PDP for making decision. PAP is policy administration point, and it makes
and manages polices. XACML policy DB stores ABC polices, and polices are ex-
pressed in extensible access control markup Language in it. Negotiation module is
used to negotiate with cloud user for attributes, obligations and conditions.

2.2.2 Nego Module
Nego module is added for enhancing flexibility of access control model. When user
attributes are insufficient or condition parameters are inconsistent, the negotiation
module will run. Nego module is shown in Figure 3. The whole module running proc-
ess is divided into three negotiation levels: attributes query, attributes automatic nego-
tiation [7] and artificial negotiation. Attribute query will start querying user’s attribute
when attributes are insufficient, and negotiation will end if getting the wanted attrib-
utes. Otherwise attribute automatic negotiation will run, this negotiation level will
help get the wanted attributes according to attributes privacy polices of both sides,
and negotiation will end if getting the wanted attributes. And if attribute automatic
negotiation even has no result, cloud service will want user to participate in artificial
negotiation, and cloud service will send negotiation suggestions to user firstly, then
user will adjust his privacy policy for providing his attributes or change his conditions
requests to meet demand of visit cloud service.

Cloud service n

SAML Server

Cloud service 1(1..n)

Access
Control

Privacy
Policy

User
Attibute

SAML
Affirmation

Negotiati
on

Service
Attribute

Request
Attibute

Attribute ATN

Negotiati
on

Privacy
Policy

Request Attribute

Attribute
Protect

Attribute
Protect

Negoti
ation

Policy

Negotia
tion

Suggest

Negoti
ation

Policy

Negotia
tion

Suggest

Policy
Protect

Privacy
Policy

Artificial negotiationArtificial negotiation User

Fig. 3. Nego module

564 C. Danwei, H. Xiuli, and R. Xunyi

Nego module mainly includes two parts: SAML server and Cloud service.
SAML server part has three modules: SAML assertion, attribute protect and nego-

tiation. SAML module response the requests of user attribute from cloud service, and
attribute protect module protects privacy attribute during attributes automatic negotia-
tion, and negotiation module provides the third way to visit cloud service by artificial
negotiation.

Correspondingly, Cloud service part has three modules: Policy Protect, Attribute
Protect and negotiation. Policy protect module protects privacy policy which decides
the safe query sequence of attribute, and attribute protect module and negotiation
modules have the same function to those of SAML server part.

3 Summary

This paper gives the cloud service security solution, and makes a research on cloud
service access control model based UCON and negotiation. The next work that we
will do is to realize the cloud service security prototype system.

References

1. Foster, I., Zhao, Y.: Cloud Computing and Grid Computing 360-Degree Compared. In: Grid
Computing Environments Workshop (2008)

2. ning, G., jiamao, L., xiaolu, C.: Theory and Practice R & D of Web Services, January 2006,
p. 10. Machinery Industry Press (2006)

3. Thomas, R.K., Sandhu, R.S.: Task-based Authorization Controls(TBAC): A Family of
Models for Active and Enterprise-oriented Authorization Management. In: Proceedings of
the IFIP WG11.3 Workshop on Database Security, Lake Tahoe, California, August 11-13
(1997)

4. Yuan, E., Tong, J.: Attribute Based Access Control (ABAC) for Web Services. In: Proceed-
ings of the IEEE Conference on Web Services (ICWS 2005). Orlando Florid (2005)

5. Sandhu, R., Park, J.: Usage Control: A Vision for Next Generation Access Control. In:
Gorodetsky, V., Popyack, L.J., Skormin, V.A. (eds.) MMM-ACNS 2003. LNCS, vol. 2776,
pp. 17–31. Springer, Heidelberg (2003)

6. OASIS Standard. eXtensible Access Control Markup Language(XACML) Version 2.0[OL],
 http://docs.oasis-open.org/xacml/2.0/
 access_control-xacml-2.0-core-spec-os.pdf,2005-02

7. Yu, T., Winslett, M., Seamons, K.E.: Interoperable Strategies in Automated Trust Negotia-
tion. In: 8th ACM Conference on Computer and Communications Security (2001)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 565–570, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Replica Replacement Strategy Evaluation Based on Grid
Locality

Lihua Ai and Siwei Luo

School of Computer and Information Technology, Beijing Jiaotong University, China
{lhai,swluo}@bjtu.edu.cn

Abstract. It is highly needed on grid environment to have a high degree of data
reuse to increase the performance of grid computing. We present a measure of
grid locality to identify the degree of data reuse. The measure of grid locality
unifies composite factors such as hit ratio, storage buffer size, and network
transmission rate. The measure is applied to the evaluation of replica replace-
ment strategy utilized in grid environment. Experiments show that the grid lo-
cality measure can evaluate the influence conducted by replica replacement
strategy effectively.

Keywords: data grid, grid locality, evaluation, replica replacement strategy,
data reuse.

1 Introduction

With the increasing performance of network infrastructures, high performance
computing and distributed resources sharing have obtained a promising develop-
ment prospects. Grid computing [1] is trying to combine all above to solve the re-
lated internet ranges of services, computing, and data share. Data grids have been
adopted as the next generation platform by many scientific communities that need
to share, access, transport, process, and manage large data collections distributed
worldwide [2].

In data grids application, the degree of data reuse could affect grids performance
significantly. The higher degree of data reuse, the less network traffic is consumed.
And the better assurance is to performance enhancement. Besides the potential data
reusability of applications specific, replica replacement strategies also play a great
role in affecting the degree of data reusability. Therefore, it is necessary to find a
measure appropriate for grid environment to evaluate the degree of data reuse, and
apply it to evaluate replica replacement strategy in further.

In this paper, we focus on the degree of data reuse and present a concept of grid
locality to characterize that degree. We use grid locality to reflect the mixed impact
invoked by buffer size, network bandwidth, file size, replica replacement strategy
and job scheduling rule. In further, we propose a metric of grid locality to quantify
the degree of data reuse. To our best knowledge, no such measure has been pre-
sented yet.

566 L. Ai and S. Luo

2 Related Works

Locality of reference has long been observed that each time a page is referenced by a
program, the next page to be referenced is very likely to come from some small set of
pages. P.J. Denning [3] proposes a working set idea to assist in exploiting the locality
degree of a program. This enables operating system to decide which information is in
use by processes and which is not. Such knowledge is vital for dynamic management
of paged memories. Further, P.J. Denning points that the chief problem in memory
management of computers is deciding which pages ought to be removed or replaced.
It is known that LRU (Least Recently Used) has been historically utilized as replace-
ment algorithm because it exploits the property of locality in references.

As we can see that locality is exploited on program level involving in instructions
and operands. Recently, researchers are trying to construct a virtual computing plat-
form based on grid. The computing platform is migrating from host to grid environ-
ment. However, the properties of grid environment are much different from those of
host environment. Therefore, it needs new solutions to exploit the locality and the
metric evaluating the locality degree appropriate the changed environment.

Funded under the European DataGrid and UK GridPP projects, Bell W.H. et al. [4]
propose a replacement algorithm based on economic model (referred to as Eco) for
grid environment. They use a prediction function for estimating the future revenue of
data files. That value predicts the number of times the data file will be requested in a
time window in future. It is assumed that the file access history can be represented by
a random walk in the space of files. In the random walk, the identifier of the next
requested file is obtained from the current identifier by the addition of a step, the
value of which is given by a binomial distribution. This Eco model defines a rule for
data files replacement and is compared with traditional LRU (Least Recently Used)
algorithm by OptorSim (Bell W.H. et al [5]).

To some extent, Bell W.H. et al. propose a strategy to exploit the locality among
data files required by a grid job, which represents the locality degree of data files
level. And that is a part of the grid locality we define in this article.

As for the program locality measure research, Richard B. Bunt et al. [6] consider
the mean number of consecutive references to a page and a derived value from the
Bradford-Zipf distribution as the program locality metric. Where, the two parameters
reflect the persistence and concentration aspect of locality respectively.

Cherkasova.L et al. [7] introduce a measure of temporal locality, the scaled stack
distance, which captures the impact of short-term correlation in web requests. They
combine this quantity with file frequency and size to generate synthetic web traces for
web server performance analysis studies.

Our contribution is to present a measure of locality in grid environment so that the
intrinsic locality can be quantitative. It is important to evaluate the replica replace-
ment strategy and job scheduling rule. Even though the grid locality is impacted by
synthesized factors such as buffer size, network bandwidth, file size, replica replace-
ment strategy and job scheduling rule. In this paper, we focus on the evaluation of the
replica replacement strategy.

 Replica Replacement Strategy Evaluation Based on Grid Locality 567

3 Grid Locality and Measure

Grid locality is different from program locality explored in both instruction and data
level. Grid locality is explored among job, file, and network level.

3.1 Grid locality Concept and Influence Analysis

Definition 1. Grid locality consists of grid jobs assignment locality, files access
locality and network locality.

In grid environment, each grid job may require some data files labeled as {f1, f2, …,
fn}. During execution, job X generates a file reference stream of r1, r2, ... , rt-1, rt, rt+1

,... where rt=fi, t is the start time. And {ri; i=1, 2,…} could be assumed as i.i.d. ran-
dom variables sequence. Further,

() ∑
=

===
n

iiit andfr
1i

1Pr ββ

Here, βi is the probability value of accessed file fi.

Definition 2. A job j assigned to grid node q occurred at time t, which qualifies as
grid job assignment locality if there is a job j assignment to the same grid node q
again at time t’, where t’≤ t+δ, and δ is a preset small time value.

The job level locality should be highly considerate during job schedule.

Definition 3. A file f referenced occurred at time t, which qualifies as files access
locality if there is a reference to f again at time t’, where t’≤ t+ε, and ε is a preset
small time value.

The file locality should be cared for when replica is replaced.

Definition 4. The fact that files are always fetched from the alternative grid node with
the maximum network bandwidth is called network locality.

When there is a miss fault invoked by a file requirement of a grid job, network
level locality should be considered of fetching a replica from alternative grid nodes.

Data grids would be benefit at good grid locality. With good grid locality, there
would be lower data files miss ratio, less network traffic to get data replica, even
approximate to zero time of local file accessed. Grid locality is influenced by compos-
ite factors including the application specific intrinsic locality, storage buffer size,
network bandwidth, file size, replica replacement strategy and job scheduling rule.
Next, the hit probability analysis will be given.

The storage files set S of a grid node is made up of recently used files set U and po-
tentially replaced files set R, where S=U∪R. The number of files in set U is k=|fi∈U|,
while the number of files in set R is m=|fi∈R|. The probability of file access hit for
grid job j at time t is:

() () ()1

))((|
11

jX
m

m
jXjtXrP i

mk

ki
i

ki

i
k

i
ith ⊕⋅⎟

⎠
⎞

⎜
⎝
⎛ −+⊕⋅== ∑

+

+=

−
∑
=

ββ (1)

568 L. Ai and S. Luo

Here βi=Pr(fi) and fi is one of data files required by job Xi. Both the storage buffer
size and file size impact the value of k and m. If having good file access locality, job
X could get the hit probability during execution as follow:

() ()1

))(())1((|
11

jX
m

m
jtXjtXrP i

mk

ki
i

kik

i
ith ⊕⋅⎟

⎠
⎞

⎜
⎝
⎛ −+==∧=− ∑

+

+=

−
∑
=

ββ (2)

Both the intrinsic locality of application specific and replica replacement strategy will
contribute to this higher hit probability. At the shift of grid job for a grid node, such as
from job j to job j’, file access locality could be significantly affected if files set Fj

required by job j is wholly different from files set Fj’ required by job j’, that is
Fj∩Fj’=∅. In such case, the hit probability could be:

 () ()'1
)')(())1((|

1
jX

m

m
jtXjtXrP i

mk

ki
i

ki

th ⊕⋅⎟
⎠
⎞

⎜
⎝
⎛ −==∧=− ∑

+

+=

−
β (3)

In order to avoid penalty time of files loaded at grid job shift as possible, job schedule
should be designed carefully. At the same time network bandwidth should be consid-
ered in fetching of the miss file from alternative grid nodes.

3.2 Measure of Grid Locality

We use the degree of grid locality (DoGL) as a metric of grid locality. DoGL is ex-
pressed as the product of hitRatio and averageTransRate, which are file hit ratio and
average transmission rate for fetching the miss file, respectively. That is:

 nsRateaverageTrahitRatioDoGL ×= (4)

The hitRatio results from the interaction among the application specific intrinsic lo-
cality, storage buffer size, replica replacement algorithm, file size and job schedule.
The higher hitRatio, the more local access instead of remote access is. On the other
hand, the averageTransRate for fetching the miss file relates to available network
bandwidth. The bigger network bandwidth, the less miss penalty spends. Therefore,
the better DoGL is.

We can further replace averageTransRate with average miss file size, marked as
averageMissFileSize, divided by the correspondent miss penalty, written as missPe-
nalty. We then transform the above (4) to (5):

 ymissPenalt

sFileSizeaverageMis
hitRatioDoGL ×= (5)

As the averageMissFileSize is proportional to miss ratio, we can obtain the ratio of
grid locality for the same application in two synthetic environments as follow:

 1

2

2

1

2

1

2

1

ymissPenalt

ymissPenalt

hitRatio

hitRatio

missRatio

missRatio

DoGL

DoGL
××= (6)

The measure of grid locality is very important for evaluation of the impact by strate-
gies such as replica replacement.

 Replica Replacement Strategy Evaluation Based on Grid Locality 569

4 Experiment and Conclusion

We evaluate replica replacement strategy based on grid locality. Two parameters,
Mean Job Time of all Jobs and data files miss ratio, can be obtained by Optorsim.

4.1 Simulation Configuration and Results

The grid topology is that of the CMS testbed which consists of 8 routers and 20 grid
nodes. In the CMS configuration, each grid site is allocated a computing element and
a storage element with capacity of 50GB. In our test, CERN acts as storage reposito-
ries: a master copy of each file is stored. Each job process time is 100000ms. The
categories of users available are CMS DC04 users.

As we focus on replica replacement strategy, the scheduling algorithm affecting on job
locality is fixed on the access cost plus queue cost scheduler. However, the files access
patterns affecting on file locality intrinsically is alternative in sequential(SEQ), random
walk unitary(WALK), and random walk Gaussian(GAUSS) access generator. The choice
of file replacement rule influencing grid locality is alternative in LRU and Eco.

As 1000 jobs are submitted to grid nodes and the size of each accessed file is 1GB,
we get Mean Job Time of all Jobs on Grid and file miss ratio as figure1, including
both (a) and (b). The missPenalty can be calculated from the difference between
Mean Job Time and job process time. According to (6), DoGLLRU/DoGLEco can be
obtained as table1. If the DoGLLRU/DoGLEco =1, that means the compared replica
replacement strategy have the same performance. The higher it is, the better LRU is.

Fig. 1. For 1000 jobs (a) Mean Job Time of all jobs on Grid (Time (s)); (b) File miss ratio

Table 1. DoGLLRU/DoGLEco (for 1000 jobs)

 SEQ WALK GAUSS

DoGLLRU/DoGLEco 1.0156 1.2266 0.7833

4.2 Performance Evaluation

An ordinary grid user would want the fastest possible turnaround time for his jobs and
thus consider Mean Job Execution Time the most important evaluation metric. How-
ever, the file miss ratio, defined as the ratio of the number of remote file accesses to
the number of total file access, may be a puzzle to evaluation. As the miss ratio is not

570 L. Ai and S. Luo

always proportional to the Mean Job Execution Time. Luckily enough, the grid local-
ity measure DoGLLRU/DoGLEco can unify them and give a reasonable rank for LRU
and Eco.

As table1 shows, Eco has a better performance when the application specific file
reference trends to random walk Gaussian distribution. Both LRU and Eco have simi-
lar performance as the application file access sequentially. And when the application
specific locality is good enough, as it conforms to random walk unitary, LRU per-
forms better than Eco.

4.3 Conclusion

Grid locality affects the performance of grid computing. File access pattern embodies
the potential locality of application specific. Either LRU or Eco exploits files level
locality. The measure of grid locality can evaluate replica replacement strategies, thus
an appropriate replica replacement strategy could be adopted corresponding to the
environment. Although we only focus on the replica replacement strategy evaluation
in the paper, the impact to grid locality invoked by job schedule can be also be evalu-
ated.

References

[1] Foster, I., Kesselman, C., Nicl, J., et al.: The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integration (January 2002),

 http://www.globus.org/research/papers/ogsa.pdf
[2] Srikumar, V., Rajkumar, B., Kotagiri, R.: A Taxonomy of Data Grids for Distributed Data

Sharing, Management, and Processing. ACM Computing Surveys 38, article 3 (March
2006)

[3] Denning, P.J.: The Working Set Model for Program Behavior. Communications of the
ACM 11(5), 323–333 (1968)

[4] Bell, W.H., Cameron, D.G., Carvajal-Schiaffino, R., et al.: Evaluation of an Economy-
Based File Replication Strategy for a Data Grid. In: IEEE/ACM International Symposium
on Cluster Computing and the Grid, pp. 661–668 (2003)

[5] Bell, W.H., Cameron, D.G., Capozza, L., et al.: Optorsim: A Grid Simulator for Studying
Dynamic Data Replication Strategy. International Journal of High Performance Computing
Applications 17(4), 403–416 (2003)

[6] Bunt, R.B., Murphy, J.M., Majumdar, S.: A Measure of Program Locality and Its Applica-
tion. In: Proceedings of the 1984 ACM SIGMETRIC Conference on Measurement and
Modeling of Computer Systems, January 1984, pp. 28–40 (1984)

[7] Cherkasova, L., Ciardo, G.: Characterizing Temporal Locality and its Impact on Web
Server Performance. In: Proceedings of ICCCN (October 2000)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 571–576, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Performance Evaluation of Cloud Service Considering
Fault Recovery

Bo Yang1, Feng Tan2, Yuan-Shun Dai3, and Suchang Guo2

1 Collaborative Autonomic Computing Laboratory, University of Electronic Science and
Technology of China, Chengdu, China

yangbo@uestc.edu.cn
2 Department of Industrial Engineering, University of Electronic Science and Technology of

China, Chengdu, China
tf.uestc@gmail.com, schguo@uestc.edu.cn

3 Innovative Computing Laboratory, Department of Electrical Engineering & Computer
Science, University of Tennessee, Knoxville, USA

ydai1@eecs.utk.edu

Abstract. In cloud computing, cloud service performance is an important issue.
To improve cloud service reliability, fault recovery may be used. However, the
use of fault recovery could have impact on the performance of cloud service. In
this paper, we conduct a preliminary study on this issue. Cloud service per-
formance is quantified by service response time, whose probability density
function as well as the mean is derived.

Keywords: Cloud service, performance evaluation, fault recovery.

1 Introduction

In recent years, new computing paradigms have been proposed and adopted such as
cloud computing. Cloud computing refers to both the applications delivered as ser-
vices over the Internet and the hardware and systems software in the datacenters that
provide those services [1].

For cloud service, two issues are of great importance, the reliability and the per-
formance of cloud service. Cloud service reliability is concerned with how probable
that the cloud can successfully provide the service requested by users. Cloud service
performance, on the other hand, is concerned with how fast the cloud can provide the
requested service.

In cloud computing, fault recovery, one of the fault tolerance techniques, may be
used to improve cloud service reliability [2]. Nevertheless, the use of fault recovery
could have impact on the performance of cloud service. In this paper, we study this
issue in detail, and we consider only the situation where the cloud can successfully
provide the requested service, because research on cloud service reliability is out of
the scope of this paper.

572 B. Yang et al.

2 Service Response Time Modeling

When a user submits a service request to the cloud, the request will first arrive at the
cloud management system (CMS) which maintains a request queue. If the queue is not
full, the request will enter the queue; otherwise it will be dropped and the requested
service fails. A request that successfully enters the queue will then reach a scheduler
which will divide the request into several subtasks and assign the subtasks to different
processing nodes (nodes). Generally there are multiple schedulers which are homoge-
neous with similar structures, schemes and equipments, to serve the requests.

After all subtasks are assigned to corresponding nodes, they will be executed on
the nodes. During the execution of subtasks, there may be exchange of data through
communication channels. After all subtasks are completed, the results are returned
and integrated into a final output, which is sent to the user.

It is thus clear that the service response time, SRTT , is given by

RESWSUBSRT TTTTTT ++++= , (1)

where SUBT is the submission time (the time period from the user’s initiating a service

request until the request arrives at the CMS); WT is the waiting time (the time period

from a request’s arrival at the CMS until it begins to be served); ST is the service

time; ET is the total execution time of the service (which will be explained in detail

later); and RT is the return time (the time spent in obtaining results from subtasks,

integrating them, and sending the final output to the user).
In this paper, we assume that SUBT and RT are negligible. Thus (1) can be rewritten as

ESWSRT TTTT ++= . (2)

We further assume WT , ST and ET are statistically independent (s-independent).

2.1 Waiting Time and Service Time

Assume that the service requests arrive at the CMS according a Poisson process with
arrival rate aλ , and the service times of the requests are identical independently dis-

tributed (i.i.d.) random variables (r.v.’s) following exponential distribution with pa-
rameter rμ (service rate). Assume that there are S (1≥S) homogeneous schedulers.

Denote by N (SN ≥) the system capacity, i.e., the maximum allowed number of
requests in the queueing system (including the ones waiting in the queue).

Denote by jp (Nj ,,1,0 L=) the steady-state probability that there are j requests

in the system, then from standard queueing theory we have

)(
!

);1(
!

);0(
!! 00

11

0

NjSp
SS

Sjp
j

j
SSi

p
Sj

jjN

Si
Si

iS

i

i

j ≤≤<≤=⎥
⎦

⎤
⎢
⎣

⎡
+= −

−

=
−

−

=
∑∑ ρρρρ

, (3)

where
r

a

μ
λρ ≡ .

 Performance Evaluation of Cloud Service Considering Fault Recovery 573

When a new request arrives, it may or may not enter the queue. For those requests
which actually enter the queue, the steady-state probability that a request finds j re-
quests (excluding itself) in the system, denoted by jq , is

N

j
j p

p
q

−
=

1
, 1,,1,0 −= Nj L . (4)

When a request enters the system, if there are j (10 −≤≤ Sj) requests in the system,

then it will be served immediately, thus the waiting time 0=WT . If there are j

(1−≤≤ NjS) requests in the system, then the waiting time WT follows gamma

distribution of order 1+− Sj with scale parameter Srμ . Therefore, the cumulative

distribution function (c.d.f.) of WT is

)0(
)1(

),1(
);0();0(0}Pr{)(

11

0

1

0

>
+−Γ

+−Γ+=<=≤≡ ∑∑∑
−

=

−

=

−

=

t
Sj

StSj
qqtqttTtF

N

Sj

r
j

S

j
j

S

j
jWTW

μ
, (5)

where)!1()(−≡Γ ηη for any positive integer η ; and ∫ −≡Γ −u
dxxxu

0

1)exp(),(ηη .

The probability density function (p.d.f.) of WT is

0,)exp(
)1(

)(
)(

1

≥−
+−Γ

=∑
−

=

−

tSt
Sj

StS
qtf

N

Sj
r

Sj
rr

jTW
μμμ

. (6)

The mean of WT is

∑
−

=

+−=
1 1

][
N

Sj r
jW S

Sj
qTE

μ
. (7)

The service time, ST , follows exponential distribution with parameter Srμ .

2.2 Total Execution Time

Suppose a service request is divided into M (1≥M) subtasks, which are assigned to
N (1≥N) nodes for execution. Suppose the i:th subtask is assigned to the j:th node.
Denote by iwp the workload of the i:th subtask, and denote by jps the processing

speed of the j:th node, then the required execution time, denoted by ijτ , is

NjMi
ps

wp

j

i
ij ,,2,1 ,,,2,1 , LL ===τ . (10)

However, when fault recovery is adopted, the actual execution time, denoted by ijT ,

is different from ijτ . When the subtask fails during execution, if the failure is recov-

erable, then after some time (recovery time), the node will resume the execution of
this subtask. In this paper, we only consider the case in which all the failures are re-
coverable, since if there occurs any unrecoverable failure, the subtask will fail and
thus the service fails, which is out of the scope of this paper.

574 B. Yang et al.

Assume that the j:th node has a constant failure rate of jλ . Denote by)(tN j the

total number of failures that occurs on the j:th node during time interval (0, t], then

)exp(
!

)(
})(Pr{ t

n

t
ntN j

n
j

j λ
λ

−== , L,1,0=n . (11)

Denote by)(k
jTR the k:th recovery time on node j, and we assume that)(k

jTR ’s are

i.i.d. exponential r.v.’s with parameter jμ . The total recovery time,)(tTR j , is

∑
=

=
)(

1

)()(
tN

k

k
jj

j

TRtTR . (12)

It can be seen that)(tTR j is a compound Poisson Process, whose mean is:

j

jk
jjj

t
TREttTRE

μ
λ

λ =⋅=][)]([)(. (13)

Since the required execution time is ijτ , we have

⎩
⎨
⎧

=+
=

=
L,2,1)()(

0)(

ijjijjij

ijjij
ij NTR

N
T τττ

ττ
 (14)

To derive the distribution of ijT , we need first obtain the distribution of)(ijjTR τ . If

nN ijj =)(τ (L,2,1=n), then from (12) we know that)(ijjTR τ follows gamma

distribution of order n with scale parameter jμ . Thus the c.d.f. of)(ijjTR τ is

0,
)(

),(
})(Pr{})(Pr{)(

1
)(≥

Γ
Γ

==≤≡ ∑
∞

=

t
n

tn
nNtTRtF

n

j
ijjijjTR ijj

μ
τττ . (15)

From (11), we have

0,
)()1(

),(
)()exp()(

1
)(≥

Γ+Γ
Γ

−= ∑
∞

=

t
nn

tn
tF

n

jn
ijjijjTR ijj

μ
τλτλτ . (16)

Therefore, from (14), the c.d.f. of ijT is

ij
n

ijjn
ijjijjijijijijT t

nn

n
TtTtF

ij
τ

κμ
τλτλκτ ≥⎥

⎦

⎤
⎢
⎣

⎡
Γ+Γ

Γ
+−=≤−=≤≡ ∑

∞

=

,
)()1(

),(
)(1)exp(}Pr{}Pr{)(

1

(17)

where ijij t τκ −≡ . The p.d.f. of ijT is

ij
n

n
ijijjj

ij

ijjijj
T t

nn
tf

ij
τ

κτμλ
κ

κμτλ
≥

Γ+Γ
−−

= ∑
∞

=

,
)()1(

)()exp(
)(

1

. (18)

 Performance Evaluation of Cloud Service Considering Fault Recovery 575

From (13) and (14) we can obtain the mean of ijT , which is

)exp(1][ijj
j

j
ij

j

j
ijijTE τλ

μ
λ

τ
μ
λ

τ −−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= . (19)

During subtasks’ execution, a subtask may need to exchange data with other subtasks
being executed on remote nodes, thus communication time is involved. We assume
that during the execution of a subtask, if the subtask needs to exchange data with
another node for further execution, the subtask has to be paused and wait for the com-
pletion of data exchange. During the communication with the remote node, the sub-
task is idle. After data exchange is completed, the subtask resumes its execution.

Denote by)(iD the set of communication channels that the i:th subtask uses to ex-

change data with remote nodes. Denote by ikc the amount of data that the i:th subtask

exchanges through the k:th communication channel which has a bandwidth of kbw .
Assume that during data exchange, communication channels will not fail, then the
communication time of the i:th subtask through the k:th communication channel is

k

ik
ik bw

c
s = , Mi ,,2,1 L= ,)(iDk ∈ . (20)

The total communication time of the i:th subtask, denoted by iy , is

∑
∈

=
)(iDk

iki sy . (21)

The total execution time of the i:th subtask, denoted by ijZ , is thus given by

iijij yTZ += . (22)

From (17), the c.d.f. of ijZ , denoted by)(tF
ijZ , can be easily derived. Its mean can

also be easily derived from (19)
Since all subtasks are executed in parallel, the total execution time of the service,

ET , is the maximum of ijZ ’s. Assume that ijZ ’s are s-independent, then ET has a

maximum extreme-value distribution, whose c.d.f. and p.d.f. are respectively

∏
=

=
M

i
ZT tFtF

ijE

1

)()(, ∑ ∏
= ≠≤≤

=
M

k kiMi
ZZT tFtftf

ijkjE

1 ,1

)()()(. (23)

The mean of ET is

∫ ∏∫
∞

=
⎥
⎦

⎤
⎢
⎣

⎡
−=

0
1

0
)(1][dxdttfTE

M

i

x

ZE ij
. (24)

2.3 Service Response Time

From (2), the mean of the service response time, SRTT , is

][
1

][][E
r

WSRT TE
S

TETE ++=
μ

, (25)

where][WTE and][ETE are given by (7) and (24), respectively.

576 B. Yang et al.

By the assumption that WT , ST and ET are s-independent, the p.d.f. of SRTT is

)()()()(tftftftf
ESWSRT TTTT ⊗⊗= . (26)

3 Conclusion

In this paper, we conduct a preliminary study on cloud service performance consider-
ing fault recovery. Cloud service performance is quantified by the service response
time, whose probability density function as well as the mean is derived.

However, we have made several assumptions which may not be realistic, e.g., the
s-independence. Moreover, fault recovery may be adopted for communication chan-
nels as well. We shall address these issues in our future work.

Acknowledgments. This work is supported by National Natural Science Foundation
of China (No. 50805018) and Key Project of Chinese Ministry of Education (No.
109138).

References

1. Armbrust, M., Fox, A., Griffith, R., et al.: Above the clouds: A Berkeley view of cloud
computing. Technical Report No. UCB/EECS-2009-28, University of California at Berke-
ley (2009)

2. Guo, S., Yang, B., Huang, H.Z.: Grid service reliability modeling on fault recovery and op-
timal task scheduling. In: Proceedings of the 55th Annual Reliability & Maintainability
Symposium (RAMS 2009), Fort Worth, Texas, USA, January 2009, pp. 471–476 (2009)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 577–582, 2009.
© Springer-Verlag Berlin Heidelberg 2009

BlueSky Cloud Framework: An E-Learning Framework
Embracing Cloud Computing

Bo Dong1,2, Qinghua Zheng1,2, Mu Qiao1,2, Jian Shu3, and Jie Yang1,2

1 MOE KLINNS Lab and SKLMS Lab, Xi’an Jiaotong University, China
2 Department of Computer Science and Technology, Xi’an Jiaotong University, China

3 IBM China Software Development Lab, China
dong.bo@mail.xjtu.edu.cn, qhzheng@mail.xjtu.edu.cn,

qiaomuf@gmail.com, shujian@cn.ibm.com, xtyangjie@gmail.com

Abstract. Currently, E-Learning has grown into a widely accepted way of
learning. With the huge growth of users, services, education contents and re-
sources, E-Learning systems are facing challenges of optimizing resource allo-
cations, dealing with dynamic concurrency demands, handling rapid storage
growth requirements and cost controlling. In this paper, an E-Learning frame-
work based on cloud computing is presented, namely BlueSky cloud frame-
work. Particularly, the architecture and core components of BlueSky cloud
framework are introduced. In BlueSky cloud framework, physical machines are
virtualized, and allocated on demand for E-Learning systems. Moreover,
BlueSky cloud framework combines with traditional middleware functions
(such as load balancing and data caching) to serve for E-Learning systems as a
general architecture. It delivers reliable, scalable and cost-efficient services to
E-Learning systems, and E-Learning organizations can establish systems
through these services in a simple way. BlueSky cloud framework solves the
challenges faced by E-Learning, and improves the performance, availability and
scalability of E-Learning systems.

Keywords: cloud computing, E-Learning framework, virtualization, service
orientation, automatic provision, data fabric.

1 Introduction

E-Learning is the acquisition and use of knowledge distributed and facilitated primar-
ily by electronic means [1]. It is an innovative approach for delivering well-designed,
learner-centered, interactive and facilitated learning environments to anyone, anyplace
and anytime [2]. In recent years, E-Learning has grown into a widely accepted way of
learning.

With the huge growth of users, services, education contents and resources, E-
Learning systems become more and more large-scale. Massive machines are de-
manded to deal with the computation, storage and communication requirements. As a
typical Internet application, an E-Learning system is facing challenges of optimizing
resource management and provisioning, dealing with dynamic concurrency requests,
meeting scalable storage demands and cost controlling.

578 B. Dong et al

Cloud computing has attracted significant attention over the past years. Cloud
computing is a style of computing where massively scalable IT-related capabilities are
provided “as a service” [3]. It reduces the coupling between resources and applica-
tions, improves resource utilization and enhances the availability and scalability of
applications.

The main contribution of this paper is to introduce BlueSky cloud framework - a
generic E-Learning framework based on cloud computing. In BlueSky cloud frame-
work, technologies of cloud computing, load balancing and data caching are
integrated to dynamically delivery massively reliable, scalable and cost-efficient IT
enabled services for education purposes. This makes it realized to solve the troubles
of low resource utilization and lack of scalability of E-Learning systems.

This paper is organized as follows. Section 2 describes the challenges of current E-
Learning systems. Section 3 demonstrates the architecture and core components of
BlueSky cloud framework, and Section 4 is the summary.

2 Challenges of Current E-Learning Systems

Currently, E-Learning systems are still weak on scalability at the infrastructure level.
Most resources are deployed and assigned for some specific tasks or applications, and
physical machines are usually stacked simply and exclusively. When receiving high
workloads, an E-Learning system mainly deals with them by adding new resources.
With the growth of resources, the overhead of resource management becomes a key
issue with unacceptable increasing costs.

Moreover, the utilization of those resources is another problem. E-Learning sys-
tems often hold resources as many as those at their peak hours, even when some of
them are idle. Meanwhile, education contents are various and grow rapidly in amount,
requiring scalable storage capacity. Specifically, the requests to education contents
follow highly dynamic rule. These issues affect the resource utilization to a great
extent. Today servers typically achieve only 20%-40% processor utilization on a daily
basis [4], and in the E-Learning domain the utilization is even worse.

Cloud computing has been a hot topic of computing paradigm. Cloud computing
provides dynamically scalable infrastructure supplying computation, storage and
communication capabilities as services. It renders users/applications with service
interfaces to access those resources without knowing the detailed information. Cloud
computing is the promising infrastructure which can provide tremendous values to E-
Learning [5]. E-Learning organizations do not have to establish their own IT infra-
structures, but build E-Learning systems through cloud services in a simple way.

3 BlueSky Cloud Framework

The aim of BlueSky cloud is to provide an E-Learning platform based on cloud
computing for basic education throughout China. It combines cloud computing with
traditional middleware features, and delivers reliable, scalable IT services, so as to
enhance the performance, availability and scalability of E-Learning systems.

 BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing 579

3.1 Design of BlueSky Cloud Framework

BlueSky cloud framework orients its aims at the following designs.

1. Virtualization of hardware and middleware
Virtualization technology is used to dispose hardware resources in fine granularity.
Resources are virtualized as a resource pool, and are managed and maintained as a
whole. Furthermore, uniform interfaces are supplied. Middleware are also virtualized.

2. Automatic deployment and resource provisioning
Resources are allocated to E-Learning systems according to the real-time demands.
BlueSky cloud framework provides rapid and efficient resource provisioning auto-
matically in response to the demand changes both up and down.

3. Dynamic cluster of runtime
E-Learning applications are deployed into dynamic clusters. At the runtime level,
BlueSky cloud framework monitors the real-time workloads of applications, accord-
ing to which, applications automatically obtain the required runtime environment
(such as J2EE container and database) from BlueSky cloud.

4. Smart load balancing
Load balancing is introduced into cloud computing platform in BlueSky cloud
framework. Load balancing routes the requests according to the real-time workloads.
Different form traditional load balancing, when the load balancing component itself
makes full use of its resources, it will apply more resources from the infrastructure
smartly and automatically to ensure the efficiency of load balancing.

5. Data fabric
BlueSky cloud framework provides scalable and flexible data fabric. Data fabric dis-
poses various data and provides effective management. When disposing structured
data, data fabric constructs distributed data caching on the basis of cloud distributed
environment to boost accesses. For unstructured data, it deals with storage tasks with
distributed file systems. The data management policy is easy to extend.

3.2 Architecture of BlueSky Cloud Framework

BlueSky cloud framework is designed following the principles of SOA, and functions
are encapsulated in the form of services. In detail, BlueSky cloud framework is com-
posed of six layers, as is shown in Fig. 1.

User interface layer is the entry-point into BlueSky cloud. It provides function in-
terfaces and interaction interfaces, including Web UIs and clients.

Application layer focuses on the logical presentation of education processes, and
supplies a set of available E-Learning applications serving particular functional needs.

Common service layer provides reusable common services for higher layers, such
as provision services, monitoring services, information services, account management
services, and log management services. Services are encapsulated from the compo-
nents of the capability layer.

580 B. Dong et al

Fig. 1. The architecture of BlueSky cloud framework

Capability layer is made up of core components that provide specific types of ca-
pabilities. Those components include provision manager, monitoring, trigger and so
on. They jointly manage and maintain the resource pool in the virtual infrastructure
layer. Traditional middleware are also provided in this layer, including load balancing
component and data caching component.

Data information layer provides functions of data fabric for persistence. It man-
ages the storage of VM images and education contents (education content entities,
metadata and so on).

Virtual infrastructure layer enhances the transparency of hardware by virtualiza-
tion, and realizes fine-grained management of resources. There are two sub-layers in
this layer. Physical machines are in the lower and virtualized as a resource pool in the
upper. This layer eliminates the differences among physical machines and offers a
basis to provision resources dynamically.

3.3 Core Components of BlueSky Cloud Framework

Capability layer, data information layer and virtual infrastructure layer are the core
layers of BlueSky cloud framework. The relations between the constituent parts of the
three layers are shown in Fig. 2.

Virtual resource pool is the core component in the virtual infrastructure layer.
There are large numbers of physical machines, such as blades, storage equipments
and network equipments in BlueSky cloud. Hypervisors [6] are deployed onto each
physical node, and those machines are virtualized as a resource pool. Virtual resource
pool supplies uniform management method and interfaces, supporting the of computa-
tion, storage and communication capabilities.

 BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing 581

Fig. 2. The relations of the constituent parts in the three core layers

Image repository is one core component in the data information layer. There are
various VM (virtual machine) images in the “requirement list” of E-Learning systems.
Those images are stored and managed in the image repository.

Monitoring takes charge of monitoring the runtime status of E-Learning systems
and setting up the thresholds of scheduling policy. Those thresholds are configured by
specified response times, parameters of the runtime environment (CPU, memory
percent utilization and so on). Once the thresholds are reached, monitoring will call
trigger to start specified operations.

Trigger is one core component in the capability layer. On some specified condi-
tions, E-Learning systems should be triggered to take certain operations. For example,
once reaching its threshold of response time, an E-Learning system claims that more
resources are needed, and certain operation should be triggered to apply for new re-
sources. The operations are initiated by trigger in BlueSky cloud.

Provision manager takes charge of resource provisioning. E-Learning systems are
deployed into servers of dynamic clusters. BlueSky cloud dynamically allocates re-
sources for dynamic clusters in the form of VM image from image repository. Provi-
sion manager maintains the configuration, deployment information and runtime envi-
ronment of images, and is invoked to apply or give back images. For instance, when
allocating new VMs, provision manager chooses the right VM image according to the
required configuration and deployment environment. Then the image is deployed to
one or multiple hypervisors and configured as servers. After VMs join into the dy-
namic cluster as servers, systems will be deployed onto them. The whole progress
takes place automatically, as shown in Fig.3. Furthermore, provision manager also
provisions software and applications.

Router is the load balancing component in the capability layer. According to the
features in the E-Learning domain, administrators institute service priorities and
strategies for E-Learning systems on the router. On the basis of these strategies, router

582 B. Dong et al

Fig. 3. The sequence relations in the resource provision process

carries out specified operations such as classification, sort, caching and forwarding.
Based on the workloads on each server of dynamic clusters, it routes the requests to
get the balance of workloads.

Data caching is the core component of data caching function in the capability
layer. It provides scalable data caching services for E-Learning systems. Data caching
component is implemented in a dynamic cluster, and the dynamic cluster expand or
shrink according to real-time workloads.

4 Conclusion

In this paper, BlueSky cloud framework is proposed. It offers reliable and scalable IT
services for E-Learning systems. E-Learning organizations can build systems through
those services, and don’t have to worry about issues such as system scalability and
resource management. Specially, BlueSky cloud framework allocates resources on
demand, which solves the dynamic workload problem of E-Learning systems. These
improve the performance, availability and scalability of E-Learning systems.

Acknowledgements. This paper is supported by the NSFC (60825202, 60633020),
the National High-Tech R&D Program of China (2008AA01Z131), and IBM SUR
Project (Research on Transferring BlueSky System to Cloud Computing Platform).

References

1. Wentling, T., Waight, C., Gallaher, J., La Fleur, J., Wang, C., Kanfer, A.: E-Learning - A
review of literature,

 http://learning.ncsa.uiuc.edu/papers/elearnlit.pdf
2. Khan, B.H.: Learning Features in an Open, Flexible, and Distributed Environment. AACE

Journal 13(2), 137–153 (2005)
3. Gartner says cloud computing will be as influential as E-business,

 http://www.gartner.com/it/page.jsp?id=707508
4. EMC Corporation: Deploying a Virtual Infrastructure for SAP with EMC and VMware

Technologies,
 http://www.vmware.com/files/pdf/
 deploying_vi_sap_emc_vmware_tech.pdf

5. Dong, B., Zheng, Q., Yang, J., Li, H., Qiao, M.: An E-learning Ecosystem Based on Cloud
Computing Infrastructure. In: 9th IEEE International Conference on Advanced Learning
Technologies, pp. 125–127. IEEE Press, Latvia (2009)

6. Hypervisor wiki, http://en.wikipedia.org/wiki/Hypervisor

Cloud Infrastructure & Applications – CloudIA

Anthony Sulistio, Christoph Reich, and Frank Doelitzscher

Department of Computer Science
Hochschule Furtwangen University, Germany

{anthony.sulistio,christoph.reich,
frank.doelitzscher}@hs-furtwangen.de

Abstract. The idea behind Cloud Computing is to deliver Infrastructure-as-a-
Services and Software-as-a-Service over the Internet on an easy pay-per-use busi-
ness model. To harness the potentials of Cloud Computing for e-Learning and
research purposes, and to small- and medium-sized enterprises, the Hochschule
Furtwangen University establishes a new project, called Cloud Infrastructure &
Applications (CloudIA). The CloudIA project is a market-oriented cloud infras-
tructure that leverages different virtualization technologies, by supporting Service-
Level Agreements for various service offerings. This paper describes the CloudIA
project in details and mentions our early experiences in building a private cloud
using an existing infrastructure.

1 Introduction

Although Cloud Computing is a popular trend, it is difficult to get a clear definition of
it. Ian et al. [1] discuss the basic concepts of Cloud Computing and show the differences
compared to Grid Computing. The key of Cloud Computing lies in its component-based
nature, i.e. reusability, substitutability (e.g. alternative implementations, specialized in-
terfaces and runtime component replacements), extensibility, customizability and scal-
ability [2]. In addition, Armbrust et al. [3] give a good overview of Cloud Computing
by highlighting obstacles and proposing several opportunities to solve them.

From our point of view, Cloud Computing delivers Infrastructure- and Software-as-a-
Service (IaaS and SaaS) on a simple pay-per-use basis. For small- and medium-sized en-
terprises (SMEs), Cloud Computing enables them to avoid over-provisioning of IT infras-
tructure and training personnel. Thus, SMEs can take advantage of using a cloud when
the IT capacity needs to be increased on the fly. Typically, more resources are needed
for services that are available only for a certain period. For example, AF83, a company
specializing in social networking and live web solutions, uses Amazon IT infrastructure
to deliver a live concert via the web and mobile devices [4]. The concert attracted 7,000
simultaneous users. By using Cloud Computing, AF83 avoids purchasing new hardware
for this special event, and delivers this successful event in a short amount of time.

For companies with large IT infrastructure, such as Amazon and Google, becoming
a cloud provider allow them to offer their resources to SMEs based on pay-as-you-go
and subscription models, respectively. Because not all services need the full resources
at the same time for a long period of time, these companies can still use and lease their
existing infrastructure with a relatively small cost. Hence, they can reduce the total cost
of ownership (TCO) and increase hardware utilization [3].

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 583–588, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

584 A. Sulistio, C. Reich, and F. Doelitzscher

In a typical university scenario, PC labs and servers are under-utilized during the
night and semester breaks. In addition, these resources are on high demands mainly
towards the end of a semester. With the aforementioned motivations and scenarios,
the Hochschule Furtwangen University (HFU) acknowledges the potential benefits of
Cloud Computing. As a result, HFU establishes a new project called Cloud Infras-
tructure and Application (CloudIA). The targeted users of the CloudIA project are
SMEs and HFU staff and students, running e-Science and e-Learning applications.
Such use case scenarios are analyzing third party software, software testing and of-
fering a custom-made SaaS. Therefore, in this paper, we introduce our work in building
a private cloud in order to support various Quality of Service (QoS) objectives, such as
availability, reliability, and security.

The rest of this paper is organized as follows. Section 2 explains the CloudIA project
and its architecture. Section 3 shows the potential usage of the CloudIA project, by
providing several use case scenarios, whereas Section 4 describes a servlet container
application, running on our cloud infrastructure and Amazon. Section 5 mentions our
early experiences in building a private cloud. Finally, Section 6 concludes the paper and
gives future work.

2 The CloudIA Project

To harness the potentials of Cloud Computing for internal usages, and to SMEs, the
CloudIA project is established. The main objective of this project is to build a private
cloud for the purpose of running e-Science and e-Learning applications. The overview
of the CloudIA architecture is shown in Figure 1.

CloudIA leverages various virtualization technologies, such as Xen [5] and KVM [6],
and supports Service-Level Agreements (SLAs) as IaaS and SaaS models, as shown in
Figure 2. In this figure, the Cloud Management System (CMS) of CloudIA is divided
into several layers for extensibility and maintainability. The descriptions of each layer
are as followed:

Physical
Hardware

Virtual Storages
and Machines

Monitor

Load

Balancer

Capacity

Planner . . .

Cloud
Management
System

User 1 User N

Fig. 1. Overview of the CloudIA architecture

Cloud Infrastructure & Applications – CloudIA 585

Reservation
Manager

SLA
Manager

Capacity
Planer

Billing
&

Accounting

Snapshot
Manager

Resource
Calendar

Config
Manager

Shibboleth

SecurityMonitoring
&

Management

User Interface
Layer

Business Layer

Resource Inferface Layer

Cloud Management System

JDBC Hadoop JMS Condor VMware Xen Nagios

Job
Submission

System Layer

Failure
Management

User Account
Manager

QoS
Monitoring

Persistence
&

Checkpointing

Load
Balancer

Replication
Life Cylce

Management

Amazon EC2Amazon S3

Desktop (RDP) Browser (http / https) cmd (ssh)

>_

Application (WS-*)

Fig. 2. Cloud Management System of CloudIA

– User Interface Layer: This layer provides various access points to users and/or an
administrator of the CMS in accessing our cloud system.

– Business Layer: This layer aims to regulate resource supply and demand through
the use of economy and SLA. In addition, this layer enables users to reserve VMs
in advance and manage their personal VMs.

– System Layer: This layer is responsible for daily operation of the CMS, such as
submitting jobs, managing user accounts and monitoring QoS.

– Resource Interface Layer: This layer deals with the physical hardware and hosts
many interfaces and plugins to various virtualization, database, distributed system
and other technologies, such as Xen, Amazon EC2 and S3, and Nagios [7].

– Monitoring & Management Component: To ensure the reliability of each layer in
the system, a monitoring and management component is needed. Thus, this compo-
nent allows system administrator to monitor and to initiate activities of each layer,
in case of failures, conflicts with SLA objectives, under- or over-utilized resources.

– Security Component: To ensure the privacy, recovery, integrity and security of
user data and transactions, a security feature on all layers is required. Besides the
technical solutions, issues in areas such as regulatory compliance and data auditing
are important. Therefore, this component is also addressing these issues.

3 Use Case Scenarios

To show the potential of the CloudIA project, use case scenarios for SMEs, e-Learning
and research purposes are described below:

– SME scenario: There are many opportunities and advantages for SMEs in using
Cloud Computing. For example, SMEs can leverage the CloudIA project for system
and application testing. Software developers must test their software with different
configurations on various operating systems. However, this scenario requires a huge
machine farm to satisfy the testing environment. Therefore, SMEs can utilize Cloud
Computing by acquiring various resources with different specifications on demand.

– E-Learning scenario: Many programming courses at HFU require students to have
their own Java servlet environment for experimentation. In order to reduce a high

586 A. Sulistio, C. Reich, and F. Doelitzscher

learning curve for students, a VM image containing MySQL, Tomcat, PHP, and
Apache web server is created. With this approach, students can focus more on
developing, deploying and testing their applications in a servlet container. More
details on this servlet container can be found in Section 4.

– Research scenario: HFU works together with many research and development labs
or companies in achieving their research objectives. For example, HFU offers its
infrastructure to run parallel jobs of a holographic memory model. As a result,
researchers at Thomson, a company specializing in communication and media, can
minimize the running time of their simulation model significantly [8].

4 Cloud Application: Servlet Container for e-Learning Purposes

As mentioned earlier, many programming courses at HFU require students to have their
own Java servlet environment for experimentation. With a cloud-enabled infrastructure,
students are able to reserve VMs, e.g. for 100 hours with pre-defined packages and
software for their courses. Since these VMs are running in isolation, IT administrator
only need to develop a web front-end embedded in FELIX [9], a Learning Management
System (LMS), for authentication purposes. Thus, to access these VMs, students only
need to login to FELIX, as shown in Figure 3.

After authentication, the students are able to use servlet container VMs with the
following functionalities:

– enables to start and stop servlet container instances, since they can only use these
instances for a limited amount of time, e.g. 100 hours.

– saves and deletes snapshots of their work. A snapshot refers to the Tomcat and
MySQL configuration details and data, such as war files and database tables.

– runs a VM with one of the saved snapshots.
– downloads snapshots to a local hard disk. Thus, students only need to send their

snapshots for the project submission.

Fig. 3. High level overview of running the servlet container application on the cloud

Cloud Infrastructure & Applications – CloudIA 587

By default, servlet container instances are running on HFU. However, if there are no
servers or PCs available, then instances will be running in the public cloud, i.e. using
Amazon’s small EC2 instances, as shown in Figure 3. Once the students stop or shut-
down their instances, only their snapshots are being saved. The VMs and/or Amazon
Machine Images (AMIs) are deleted to save storage. Therefore, these snapshots are
replicated between Amazon S3 and our internal network area storage (NAS). In addi-
tion, Amazon S3 stores a template AMI for the servlet container with the same basic
configurations as the VM hosted on HFU.

By having a servlet container on the cloud, students can start working on their
projects, instead of spending time on installing Apache web server, Tomcat and MySQL
on their computers. The same scenario can also be applied to a tutor or lecturer for
marking the projects. In addition, students can start a basic VM if they misconfig-
ure the Tomcat and/or MySQL configuration details. Thus, for this application, Cloud
Computing provides a fool-proof environment and enhances an e-Learning
experience.

5 Early Experiences in Building a Cloud Infrastructure

Currently, many organizations are building their own private clouds from their existing
infrastructure [3]. Our experiences and difficulties of building a cloud infrastructure are
as followed:

– Internal IT policies: Our university has two departments which are responsible
in maintaining and managing IT resources, i.e. IT and Computer Science depart-
ments. Each department has its own PC pools, data centers and secured network.
Thus, with this separation, each department has their own firewall rules and IP sub-
nets. We found that this is obstructive for building a cloud computing infrastructure
using heterogeneous resources in the university. We later faced a problem of run-
ning out of IP addresses, due to the dynamic creation of virtual instances on the
host PCs that belong to same subnet. As the network plays a critical role in the
whole concept of Cloud Computing, an organization wanting to create a Private
Cloud needs to be wary of the IT policies and practices deployed across internal
divisions.

– Running appropriate services and applications on the Cloud: Hosting a par-
ticular service or running a legacy application on the Cloud can be counterproduc-
tive, i.e. slowing the application down. In addition, it consumes the whole physical
resource. Thus, preventing other VMs running on the same resource. For exam-
ple, our university’s time table and room management software, TimeEdit [10]
was tested on a VM on the HP ESX server. Although the hardware specification
meets the requirement of running several virtual instances, TimeEdit was con-
stantly consumed the available resource. This is because the underlying database of
TimeEdit could not be efficiently run on a VM. Hence, it is important to monitor
VM consumption periodically, and to run resource-intensive services and applica-
tions on dedicated machines.

588 A. Sulistio, C. Reich, and F. Doelitzscher

6 Conclusion and Future Work

The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services (IaaS) and
Software-as-a-Service (SaaS) over the Internet on an easy pay-per-use business model.
To harness the potentials of Cloud Computing for internal usages, and to small- and
medium-sized enterprises, the Hochschule Furtwangen University establishes a Cloud
Infrastructure & Application (CloudIA) project – a cloud infrastructure targeted towards
e-Science and e-Learning applications. To show the potential of CloudIA, we describe
several use case scenarios and early experiences in building a cloud infrastructure.

As for future work, a DNS server to enable the mapping of dynamic IP addresses to
public names will be considered. In addition, we will examine the feasibility of mov-
ing existing services and e-Learning applications hosted on dedicated servers into the
Cloud. Finally, a rule-based cloud monitoring component to control virtual machines’
connection and interaction with other CloudIA components will be considered. In ad-
dition, the CloudIA project is in its early stages. Implementation and evaluation of the
components described in this paper are work in progress. Thus, presentation of these
results are considered as future work.

References

1. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree
Compared. In: Proceedings of the Grid Computing Environments Workshop (GCE 2008),
Austin, Texas, USA (November 16, 2008)

2. Vouk, M., Averritt, S., Bugaev, M., Kurth, A., Peeler, A., Schaffer, H., Sills, E., Stein, S.,
Thompson, J.: Powered by VCL – Using Virtual Computing Laboratory (VCL) Technol-
ogy to Power Cloud Computing. In: Proceedings of the 2nd International Conference on the
Virtual Computing Initiative (ICVCI 2008), May 16-17 (2008)

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28, Univ. of California at Berkeley (Febru-
ary 2009)

4. Amazon Web Services: AF83 Case Study (May 2009),
http://aws.amazon.com/solutions/case-studies/af83/

5. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and The Art of Virtualization. In: Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (SOSP 2003), New York, USA, October 19-22 (2003)

6. Qumranet: KVM: White Paper (2006), http://www.linux-kvm.org/
7. Nagios (May 2009), http://www.nagios.org/
8. Eckhardt, M., Garwers, S., Ruebsamen, T., Stoeffelmaier, T., Zehnder, J., Reich, C.: Windows

Desktop Grid. Technical Report CRL-2009-01, Hochschule Furtwangen University (January
2009)

9. HFU: Furtwangen E-Learning & Information eXchange (FELIX) (May 2009),
https://felix2.hs-furtwangen.de

10. TimeEdit (May 2009), http://www.timeedit.com/

http://aws.amazon.com/solutions/case-studies/af83/
http://www.linux-kvm.org/
http://www.nagios.org/
https://felix2.hs-furtwangen.de
http://www.timeedit.com/

One Program Model for Cloud Computing

Guofu Zhou and Guoliang He

The State Key Laboratory of Software Engineering,
Wuhan University, Wuhan, Hubei 430072, China

gfzhou@whu.edu.cn

Abstract. Cloud computing is dynamically virtual scalable in which
neither a central computing nor a central storage is provided. All re-
sources are virtualized and provided as a service over the Internet. There-
fore different to the traditional program, the cloud program shall be ex-
pressed in a new style. Based on one presented architecture of cloud
computing, characteristics of program in “cloud”, control, variable and
operation, are discussed respectively. Accordingly, one program model
for cloud computing is presented for the future formalization.

1 Introduction

Cloud computing is a style of computing in which dynamically scalable and often
virtualized resources are provided as a service over the Internet[1,2]. Users need
not have knowledge of, expertise in, or control over the technology infrastructure
in the “cloud” that supports them[3]. The term “cloud” is used as a metaphor for
Internet, based on how the Internet is depicted in computer network diagrams
and is an abstraction for the complex infrastructure it conceals[4].

With the development of Internet, more and more applications[5,6] that rely
on internet to satisfy the computing needs of users. And the application and
data are stored on the servers behind “cloud”.

Prof. Ramnath K. Chellappa thinks cloud computing is determined by economic
rationale rather than technical limits[7]. And InfoWorld roughly presents what
cloud computing is all about[5]: Software as a Service(SaaS), Utility Computing
(UC) , Web service(WS), Platform as a Service(PaaS), Management service
provider(MSP), Service commerce platforms(SCP), and Internet integration(II).

The idea of cloud computing is not new, In 90’s, Oracle presented an ar-
chitecture of Network Computer, and also supported by Apple, Sun, IBM and
Netscape. Later in 1997, Microsoft and Intel together presented NetPC concept,
and which is supported by Intel,HP,Dell,Compaq.

Furthermore, the form of cloud computing is getting new life from Ama-
zon.com, Sun, IBM, and others who now offer storage and virtual servers that
IT can access on demand. Cloud computing is different to both NetPC and
NC in theory level. NetPC or NC is a computing entity, but cloud computing
emphasize particularly on service.

Cloud computing create a new software mode based on the individual web-
based service by collecting and integrating the internet sources. Therefore, cloud

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 589–594, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

590 G. Zhou and G. He

computing has a special features, principles and rules[8] different to the tradi-
tional computing model. Cloud computing has a clear boundary, economic or
physical, which is a pool of resources, e.g., computing power or data center.

In the paper, we will present one framework for cloud computing in section 2.
Control flow of program in cloud computing is discussed in section 3. Variable,
operation and interaction are discussed in section 4. And in the last section, we
will summarize the program model on the cloud computing framework.

2 System Model

The traditional computing model is on Turing. CPU, RAM, data and I/O device
are connected through local high speed bus. However, the model of cloud comput-
ing is not based on Turing. In other words, in cloud computing, CPU, RAM and
other I/O device are not integrated but distributed in the physical space.

Clouds can be classified into two basic group, computing (cloud) and data
storage (cloud)(figure 1), which can be analogous to CPU and DISK respectively
in the traditional PC .

In computing cloud, each CPU and RAM execute instruction as that in the
traditional PC. Data storage cloud is a self-governing unit which is not passive
as DISK(data storage device) of the traditional PC. Data storage cloud can
do something for data, e.g., split the data and composite the data. Moreover,
Computing cloud can communicate with data storage cloud through Internet.

Furthermore, cloud computing can fulfil a task by two models . one is the
whole task is assigned to one single server, similar to the traditional computing
model. The other one is the task is parallelized and assigned respectively to
serval servers.

In the first model, Any task will be fulfilled finally in one single server. The
task of cloud computing is only balance the computing workload and dispatch
the the task to one server completely. Therefore, the architecture of program
remains unchanged(see figure 2).

However, in the second model, a special architecture shall also be provided.
Compared with the presented cloud ontology in [8], the five layers framework for
cloud computing in figure 3 is more encapsulated .

Fig. 1. Inside cloud

One Program Model for Cloud Computing 591

Dispatcher

Server2Server1 Server3 Server4

Fig. 2. Task balance

Communication

Computing
Resource

Storage
Resource

Management Platform(OS)

OS Call MiddlewareApplication

Service

Fig. 3. Five layers Model

Where,

Computing Resource is independent and self-governing unit which can fulfil
completely one computing task.

Storage Resource is independent and self-governing unit which can store data.
And, this unit can process independently tasks on data.

Communication provides an interaction way between computing resource
and storage resource, and management platform interacts with computing
resource and storage resource.

Management Platform will decompose a task into some subtasks and allo-
cate the resource for subtasks, such as computing resource and storage re-
source.

Cloudware will provide functions for user called directly, such as APIs provided
by google.

Application is the special software system residing on the server and delivered
to users by internet.

OS Call is interfaces of management platform functions.
Service is the last layer in cloud computing. The provider will release a usage

and renting principles for users.

This model supports a virtual encapsulated system for cloud computing. Bound-
aries of model layers are clear and independent. In fact, this mode looks more
like a virtual network computer, the CPU is composed by nodes of network and
the storage is also composed by nodes of network.

There are two layers in a cloud program, an implementation layer and a logic
layer. The implementation layer describes the basic function of program and
deploys the control flow(logic level in figure 4). The logic layer describes the
workflow of business(implementation level in figure 4).

In the implementation layer, Mi is code which describes the computing how
to work together.

In the logic layer, Servicei focus on the business workflow and can’t know the
implementation detail .

The model, the logic layer and the implementation layer, can guarantee more
platform-independent .

592 G. Zhou and G. He

3 Control Flow

Program control flow describe how the computer works for the expected result.
When design a program, engineers always imply the control flow into the algo-
rithm intentionally. In the traditional imperative program, the control flow is
processed by the central controller. The single central controller determines the
global operations must be sequential. For example, there is a simple program in
the following:

void foo()
{ int x,y,z;
x:=1;
y:=2;
z:=x+y; }

For the above code, one kind of control flow of program can be described as
in figure 5.

The program also can be described as figure 6. Based on the interleaving
assumption, the semantic of figure 6 is equivalent to that of figure 5 .

Meanwhile, when design a traditional program, engineers have to map the
control flow in different time and space into the sequent control flow in the same
time and space, such as either in figure 5 or in figure 6, although x := 1 and
y := 1 can be concurrent. As discussed as above, cloud computing is platform-
free and no interleaving assumption. Therefore, to suite for the situation, the

System

Service1 Service2 Service3Logic level

M1 M2 M3Implementation
level

Fig. 4. Two levels of cloud computing

x := 1 y := 1 z := x + y

Fig. 5. One kind of control flow

y := 1 x := 1 z := x + y

Fig. 6. Another kind of control flow

One Program Model for Cloud Computing 593

z := x + y

x := 1

y := 1

F1

F2

Fig. 7. Control flows without a central
controller

x + yz

x + 1x

y + 1y

Fig. 8. Relations between operations
and variabes

control flow must be described explicitly. Another control can be described as in
figure 7.

The reason that there are two or more kinds of control flows in one program is
the controls are determined by the platform limits. The platform-related control
also can be further grouped into the absolute control and the relative control.
The absolute control is that platform determines unconditionally how to run a
program can ,e.g. , the platform will determine only one must be choose, either
figure 5 or figure 6. The relative control affects indirectly a program run through
allocating resources, such as allocating RAM, CPU time and etc.

4 Variable, Operation and Interaction

Any program can be regarded as a set of variables and operations by the view-
point of Turing machine. However, the traditional program always contains im-
plicitly the platform control .

Cloud program focus on the business function and specially hide the detail of
computing implementation. Therefore operations of cloud program is business
operation but not the traditional algorithm operations.

To suit cloud computing situation, a cloud program (as well as module,
pointer, function) is a description of variables, operations, control flows and
resources. Essentially speaking, the basic parts of program still are data and
process on the data. Variables are basic data units through which programs can
be observed[9].

Generally speaking, Operations is processes on variables and which includes
assigning, logic comparing and value computing.

The semantics of assignment statement is read a value out from a variable, then
do process on the value, finally the computing result is written into the variable.
Contrast to the local addresses in RAM, In cloud computing, variables are resided
in network (internet), and variables are accessed through internet addresses.

Variables in cloud computing are real physical spaces with addresses where
store values. Accordingly, operations on variables are read and write through
communication. Any operation of program can be decomposed into a set of
primitive reads-writes on variables (through internet address).

Programs are running can be observed through variables which record the
trace of values change , either stored, read or write. Therefore variables are un-
dertaker of changing and observing windows of program . The relations between

594 G. Zhou and G. He

operations and variables can be depicted as in 8. Where every variable , x or y
,is resided in a node of Internet. x + 1,y + 1 and x + y are operations on x, y
or both. The final values will be returned to x and y respectively. The line with
arrow denotes a readwrite relation.

Specially, operations and interactions of cloud program don’t manage the
internet resources directly which are hidden by resources’ providers.

5 Conclusion

Cloud computing is a hot topic in recent. However, there is no a common defi-
nition of cloud computing yet.

We know the platform of program is transforming from desktop to internet.
Internet-based is the most important characteristic of cloud computing. Different
to the desktop, internet can not hold one single central control unit, e.g. one
single CPU.

Therefore, in cloud computing, computing units are located in different places.
Accordingly, a exact global time can not be hold. The number of objective entities
in the universe is unaccountable and the space of universe is grand. It is rather
difficult to hold a global time under such a situation. In fact, it is unnecessary
to hold a global time for the objective universe.

Limited by the space of paper, these characteristics can’t be further discussed.
We will continue these topics in the other papers. In the paper, we only present
one five-level model for cloud computing. Furthermore, control flow, variable,
operation and interaction in cloud program are specially discussed. Based on
the model, cloud program can be designed as a service. In the future, we will
further study the features of “cloud” respectively.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berke-
ley view of cloud computing. Technical report, Electrical Engineering and Computer
Sciences University of California at Berkeley, February 10 (2009)

2. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-
degree compared. In: IEEE Grid Computing Environments (2008)

3. Gartner: Gartner says cloud computing will be as influential as e-business (2008)
4. Liu, H., Orban, D.: Gridbatch: Cloud computing for large-scale data-intensive batch

applications. In: Eighth IEEE International Symposium on Cluster Computing and
the Grid, pp. 295–305 (2008)

5. Knorr, E., Gruman, G.: What cloud computing really means (2008)
6. Lawton, G.: Moving the os to the web. Computer 41(3), 16–19 (2008)
7. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the

clouds: Toward a cloud definition. ACM SIGCOMM Computer Communication Re-
view 39(1), 50–55 (2009)

8. Youseff, L., Butrico, M., Silva, D.D.: Toward a unified ontology of cloud computing.
In: Grid Computing Environments Workshop, pp. 1–10 (2008)

9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, NewYork (1985)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 595–600, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Enterprise Cloud Architecture for Chinese Ministry of
Railway

Xumei Shan and Hefeng Liu

Intel IT Flex
Shanghai, China

theresa.shan@intel.com

Abstract. Enterprise like PRC Ministry of Railways (MOR), is facing various
challenges ranging from highly distributed computing environment and low
legacy system utilization, Cloud Computing is increasingly regarded as one
workable solution to address this. This article describes full scale cloud solution
with Intel Tashi as virtual machine infrastructure layer, Hadoop HDFS as com-
puting platform, and self developed SaaS interface, gluing virtual machine and
HDFS with Xen hypervisor. As a result, on demand computing task application
and deployment have been tackled per MOR real working scenarios at the end
of article.

Keywords: Cloud Computing, Hadoop, Map Reduce, HDFS, Tashi.

1 Background

Railway freight data are critical basic information in railway transportation. It’s tre-
mendously bulky, including the whole freight tracing information.

The freight tracing system is a highly distributed dynamic information system that
spans across approximately 100,000 kilometer railways in China. There are about
120,000 transactions per day, up to 160G data volume. These data are dispersed in
certain servers in different bureaus. The same data record is replicated among differ-
ent railway bureaus. The overall data volume is expected to grow exponentially in the
coming 5 years. How to take full advantage of the storage space and to store these
large-sized data is an urgent topic.

The freight transportation status (eg. transportation path, property info, shipment
status etc.) are required by query system. MOR requires centralized federated data
management to meet the complex query requirements. How to get rich real-time
freight transportation data from distributed bureaus is a big challenge.

Moreover, error recovery and dynamic scalability are also ad hoc problems for
MOR freight tracing system, which ensures data integrity and stability.

Cloud computing [1] is an emerging technology which promises to revolutionize
software and business life-cycles. By making data available in the cloud, it can be
more easily and ubiquitously accessed, often at much lower cost, increasing its value
by enabling opportunities for enhanced collaboration, integration, and analysis on a
shared common platform.

596 X. Shan and H. Liu

In this paper, we introduce an enterprise cloud architecture to resolve the critical
TCO issue in PRC MOR IT infrastructure and address compute resource sharing
challenges across geographically distributed MOR railway bureaus. The cloud archi-
tecture for MOR develops specific mechanisms for Manageability and intensive com-
puting. This paper is structured as follows. In section 2, we introduce hadoop and
Tashi’s architectures and frameworks. In section 3, we describe our approach and
architecture. In section 4, we outline the result and advantage of our architecture. We
conclude with a section on our future work.

2 Hadoop and Tashi

In this section, we have a brief idea of hadoop and tashi’s framework and architecture.

2.1 Hadoop

The ability to process enormous quantities of data efficiently, through strategies such
as the map-reduce programming model, has become an essential ingredient for the
success of many prominent enterprises, including the search giants Google and Ya-
hoo!. Hadoop [2-3] provides a distributed file system (HDFS) that can store data across
thousands of servers, and a means of running work (Map/Reduce jobs) across those
machines, running the work near the data.

2.1.1 Hadoop Map/Reduce
MapReduce is a programming model for processing large data sets. It uses a map
algorithm that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce algorithm that merges all intermediate values associated with the
same intermediate key.

Figure 1 describes the dataflow of the map reduce process. The figure shows the
task split into four nodes running map algorithm and three nodes running reduce algo-
rithm. The persistent data are input and output data respectively. The transient data is
the output of map stage, which are key-pair sets for reduce stage.

Fig. 1. Map Reduce Dataflow

 Enterprise Cloud Architecture for Chinese Ministry of Railway 597

2.1.2 Hadoop DFS (HDFS)
Hadoop implements MapReduce, using the HDFS. Typical file size in HDFS is in the
order of terabytes with a block size of 128MB. Blocks are replicated for reliability
and rack-aware placement is used to improve bandwidth. The HDFS operates in a
master-slave mode with one master node called the NameNode that holds the meta-
data and manages the system and a number of slave nodes called DataNodes.

2.2 Tashi

The Tashi [4] project builds a software infrastructure for cloud computing on massive
internet-scale datasets (what we call Big Data). It is a cluster management system that
enables the Big Data that are stored in a cluster/data center to be accessed, shared,
manipulated, and computed on by remote users in a convenient and efficient manner.

User could request Virtual Machines (VM) from Tashi. These VMs could be
batched from various images in Tashi’s image repository. Tashi returns hostnames,
ips and VM status to client. Then user’s able to access the VM directly for operation.

Tashi is still under development and will support more VM hypervisors besides
KVM/Xen and implement security mechanism for VM monitor in the future.

3 Enterprise Cloud Architecture and Implement

In our approach, depicted in figure 2, our cloud has also been divided into three com-
ponents: IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and SaaS
(Software as a Service) [5].

Fig. 2. Enterprise Cloud Conceptual Architecture

3.1 IaaS

IaaS products provides computational and storage infrastructure in a centralized, loca-
tion-transparent service. There are tens of thousands of servers in 18 railway bureaus,
which consist of our cloud test bed.

Tashi, as a management system, manipulates, balances and assigns these comput-
ing and storage resources in MOR’s cloud. Cloud resources are uniform infrastructure

598 X. Shan and H. Liu

available for computing whose physical location is irrelevant. There are several virtu-
alization packages available for Linux, some of which take advantage of processor-
level virtualization support. We choose the open-source Xen [6] hypervisor, which
supports both full virtualization and para-virtualization. It enables us to share these
resources for map-reduce computing and HDFS storage.

3.2 PaaS

PaaS products offer a full or partial application development environment that users
can access and utilize online, even in collaboration with others. We setup Hadoop
above IaaS as MOR’s platform level, which boasts for its fault tolerance, low cost,
large data sets, scalability and portability across heterogeneous hardware or software
platforms.

Fig. 3. HDFS’s dynamic scalability

Each VM is a data node of HDFS, contributing computing and storage capability.
All the freight tracing data are stored and replicated as blocks on VM nodes with

Map Reduce job.
Once a VM fails, data on this node will be automatically proliferated to other data

nodes. End user won’t deceive anything wrong and data will still keep integrity.
If system storage reaches its maximal capacity, some new devices would be ap-

pended to the system. HDFS assesses the load balance of each node and put the new
blocks onto VM nodes in new appending machines. System scales to larger storage

 Enterprise Cloud Architecture for Chinese Ministry of Railway 599

capacity smoothly. Here we bind Tashi and Hadoop together. We inject scripts in VM
image, which will be executed each time it runs. Once a new VM is setup, it would be
automatically included into HDFS by scripts.

Figure 3 depicts the situation when Zhengzhou railway Bureau’s storage is full. A
new VM is created by Tashi on Wuhan railway bureau which is then added into the
HDFS as a new data node. Then the new freight tracing information will be stored on
the new VM node. HDFS’s expansion is totally transparent to end user. Moreover, it
does not impact the whole data storage at all.

3.3 SaaS

SaaS products provide a complete, turnkey application—including complex programs
such as those for CRM or enterprise-resource management via the Internet. MOR
provides freight tracing service and virtual storage expansion service.

Freight tracing service execute queries with map reduce algorithm [7] on top of
HDFS. Since all data are stored on the shared cloud platform, user could get real-time
geographical data from any of the 18 railway bureaus. Map-reduce mechanism
moves query computation onto each data nodes rather than moving data together,
which increases query efficiency.

Virtual storage expansion service supports dynamic scalability. In figure 4, Wuhan
railway bureau added a new server. Tashi will take charge of the physical machine
and creates VM on it. Then these new VMs will be included in HDFS automatically,
namely, system storage’s expanded easily.

4 Results

MOR’s enterprise cloud architecture provides an enterprise perspective and solves
most freight tracing problems. Tashi centralizes, manipulates all hardware recourses
and takes full use of physical devices. Instead of purchasing large volume machines,
our IaaS layer provides massive cluster/data center for resource sharing and map
reduce computing. With hadoop’s powerful replication, data recovery and scalability
functions, our PaaS layer ensure MOR freight tracing system’s data integrity, data
reliability and resource scalability. Freight tracing service and virtual storage expan-
sion service in SaaS layer makes real-time query and virtual expansion workable.
Table 1 illustrates key challenges we met and the solution we use to overcome them.

Table 1. How cloud architecture solve MOR’s problems

No. MOR’s problems Solutions in Cloud Environment

1
Real-time geographic
information query

Freight tracing and query service

2 Storage expansion Virtual storage expansion service

3 Error recovery Automatic failover

4 Data Replication Data block replication in HDFS

600 X. Shan and H. Liu

The freight tracing system is also highly improved in performance by our
solutions:
1. Location irrelevant: Getting rid of high hierarchical query structure, our solution

distributes the workload to each data node. Thus, MOR’s headquarter won’t be
the bottle neck of the whole system.

2. Real-time query and sharing: Cloud framework avoids IT island situation. Freight
tracing data could be shared and queried throughout the MOR’s bureaus.

3. Service-based application: Without expensive installation, software maintenance
fee and costly upgrades, SaaS-based application provides global access and no
installation is required.

4. Redundancy free: Instead of repeating data replication, HDFS only makes essen-
tial backup for data recovery, which helps to reduce redundancy and free unnec-
essary storage.

5 Conclusion and Future Work

In summary, three layers (IaaS, PaaS and SaaS) Cloud computing solution could help
enterprise like PRC MOR to improve HW system utilization, provide on demand,
flexible computing capability to meet scalable requesting. As for next step work, easy
deployment and reliability could be worthy topic; also, security consideration is an-
other must-have feature for enterprise implementation.

References

1. Lohr, S.: Google and IBM join in cloud computing research. New York Times (October 8,
2007)

2. The Hadoop Project, http://hadoop.apache.org/ (last visited July 2009)
3. Lämmel, R.: Google’s Map Reduce programming model - Revisited. Sci. Comput. Pro-

gram. 70(1), 1–30 (2008)
4. The Tashi Project, http://incubator.apache.org/tashi/
5. Cloud Computing: An Overview. P1. ACM, New York (2009)
6. Xen Community, http://www.xen.org/
7. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters (2008),

 http://labs.google.com/papers/mapreduce.html
 (retrieved August 22, 2008)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 601–608, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Research on Cloud Computing Based on Deep Analysis to
Typical Platforms

Tianze Xia, Zheng Li, and Nenghai Yu

MoE-Microsoft Key Laboratory of Multimedia Computing and Commucation
University of Science and Technology of China

{Tianze Xia,Zheng Li,Nenghai Yu}Zenith@mail.ustc.edu.cn

Abstract. Cloud Computing, as a long-term dream of turning the computation
to a public utility, has the potential to make IT industry great changed: making
software more charming as a service and changing the way hardware designed
and purchased. Along with the rapid development of Cloud Computing, many
organizations have developed different Cloud Computing platforms, expressing
their different understandings of the Cloud. Based on these facts, this paper has
analyzed these understandings, introduced and tested several typical kinds of
Cloud Computing platforms, and contrasted among them. The purpose of the
study is to give a deep insight to the trend of Cloud Computing technology and
to provide reference on choosing Cloud Computing platforms according to dif-
ferent needs.

Keywords: Cloud computing, Hadoop, Enomaly, Eucalyptus, trends.

1 Introduction

With Cloud, developers worked for new Internet services no longer need the large
capital outlays in hardware to deploy their service. They do not have to worry about
over-provisioning for a service whose popularity does not meet predictions, or under-
provisioning for one that then becomes popular. Since the concept of Cloud Comput-
ing has been made, it gets rapid development. Not only Google, Microsoft, Amazon,
such commercial companies launched their own Cloud Computing products, but there
are also many open-source software groups published their attractive platforms.

The first part of this paper has studied the principle and structure of Hadoop then
tested. The second part studied and tested two Iaas Cloud platforms—Eucalyptus and
Enomaly. Finally some issues about the tendency of the Cloud Computing will be
raised in this paper.

2 Studies on Cloud Computing Platforms

2.1 Hadoop

Hadoop is a distributed computing framework provided by Apache[4]. It is a Cloud
service similar to PaaS. The core of Hadoop is MapReduce[8] and Hadoop Distributed

602 T. Xia, Z. Li, and N. Yu

File System (HDFS).[5][9] The idea of MapReduce is from a Google’s paper and is
now widely circulated[8]. HDFS provided underying support for distributed storage.

Hadoop is most suitable for mass data analysis. Mass data is divided and sent to a
number of nodes. And then by each node’s parallel computing the output result will
be integrated.

2.2 Eucalyptus

Eucalyptus is developed by University of California (Santa Barbara) for Cloud Com-
puting research[2]. It is compatible with the EC2's API system. Although it supports
for Amazon in the syntax of interfaces and achieve the same functionality (with some
exceptions), but is almost completely different inside. The design goal for Eucalyptus
is easy to expand, and easy to install and maintain. Eucalyptus will become an inte-
grated part of Ubuntu Linux. Ubuntu users will be able to easily use Eucalyptus build-
ing private clouds.

2.3 Enomaly's Elastic Computing Platform (ECP)

Enomaly's Elastic Computing Platform (ECP) is an open source web-based virtual
infrastructure platform.[3] It is also an IaaS platform. Its design goal is to manage the
Distributed Virtual Server environment that is complicated.

2.4 Conclusion

From the introduction of each platform, we can see that Hadoop might be the most
proper for processing data; Eucalyptus might be good for Linux users to build their
private IaaS Cloud; And ECP may be suitable for IT managers to supervise their
Clouds. However, all these are just the official introduction given by each of them,
the real features and performances of them need to be dug and evaluated by experi-
ments and tests. In the following parts, we will perform tests to give a deep analysis
for each of these platforms.

3 Research on Hadoop

3.1 Architecture of Hadoop

There are many elements in Hadoop. At the bottom there is Hadoop Distributed File

System（HDFS)[5].It stores all the data in Hadoop system. On top of HDFS is
MapReduce engine that consists of JobTrackers and TaskTrackers.

HDFS using master /slave architecture. HDFS is a cluster of one Namenode and
numbers of Datanodes[7]. Namenode is a central server that is responsible for manag-
ing the file system namespace, and controls the access of files. From the internal per-
spective, a file is divided into one or more data blocks, these blocks are stored in a
group of Datanodes. Namenode executes the operation of namespace,such as open,
close, rename files or directories. It is also responsible for map a certain data block to
a certain Datanode. Datanode is responsible for handling file system requests.

 Research on Cloud Computing Based on Deep Analysis to Typical Platforms 603

Namenode usually runs independently in a machine. It is responsible for the man-
agement of file system name space and controls the access to external clients. Na-
meNode decide how to map files to data blocks in Datenodes. The actual I / O stream
does not go through it. When an external client sent a request to access a file, Na-
menode responds a Datanode’s IP address that contains the file’s copy. Then the
Datanode responds for the client’s request. This feature of hadoop is very important.
It does not move data to a certain location to process, but move processing to data. So
use hadoop to process data is very efficient.

3.2 Test on Hadoop

During the test of hadoop, we run WordCount[10] for a pdf text file on different
numbers machines. The pdf’s size is 300MB. Table 1 shows the results. The advan-
tage of hadoop mentioned above can be clearly seen.

Table 1. The result of Hadoop test

Number of Datanodes 1 3 7 15

Time cost(seconds) 931 511 274 153

Also we do a file write test. The test system has 16 machines (15 machines are

configured as datanode) and connected with 1000M Ethernet. The results are shown
in Table 2.

Table 2. The result of HDFS test

fileSize (byte) 118147302 12340000 708002 82545 50193

Time cost(ms) 28432 131 63 15 16

3.3 Current Deployment of Hadoop and Some Issues

The feature of Hadoop's map/reduce and the HDFS make it very easy to handle vast
amounts of data[12]. Because of this and other features like easy to extend, reliable,
Yahoo! has chosen Hadoop as its cloud computing platform[6], built the world’s larg-
est Hadoop platform—Yahoo! Search Webmap[11]. In addition, Yahoo! And Carne-
gie - Mellon University launched the Open Academic Clusters-M45 that has more
than 500 machines today and has completed many valuable projects. [13]The index of
Amazon’s search portal—a9.com is also accomplished by Hadoop. The Face-
book.com use Hadoop to build the entire site’s database,which currently has more
than 320 machines for log analysis and data mining.

During the use and the test of hadoop, we found some issues.
a) The performance of hadoop is not stable. Some application might cost different

times. This problem makes hadoop OK to process offline data but unsafe to han-
dle real-time tasks.

b) Hadoop is based on Java. This makes it compatible on different systems but
limit its performance. In a test from Open Cloud Consortium[10], Sector[18]

604 T. Xia, Z. Li, and N. Yu

which is written in C++ is about twice as fast as Hadoop. To build a Hadoop
C++ version is a hopeful way.

4 Research on Eucalyptus and ECP

4.1 Eucalyptus

Eucalyptus will be soon integrated into Ubuntu. Ubuntu users can easily use Eucalyp-
tus building private clouds, just like Amazon Web Services LLC (AWS).And more
this private cloud can work together with AWS to create a “composite cloud”. [14]
Eucalyptus has three components [17]:

a) Cloud Manager (CM)：The CM is responsible for processing incoming user-
initiated or administrative requests, making high-level VM instance scheduling
decisions, processing service-level agreements(SLAs) and maintaining persistent
system and user metadata.

b) Instance Manager (IM): The IM executes on the physical resources that host VM
instances and is responsible for instance start up, inspection, shutdown and
cleanup.

c) Group Manager (GM): The GM is responsible for gathering state information
from its collection of IMs, scheduling incoming VM instance execution requests
to individual IMs, and managing the configuration of public and private instance
networks.

Communications between these three components is “SOAP with WS-security“. In
every cluster there will be only one node operating as Cluster Controller. Every node
has a node controller.

4.2 Enomaly's Elastic Computing Platform (ECP)

Compared with Eucalyptus, ECP has these features:
a) A number of server entities can be managed as a virtual cluster

b) Support a wide range of virtualization environments。 It has a long history of
complete KVM support.

c) Provide an easy-to-use web management. After deployment, almost all opera-
tions can be completed by the web interface.

d) Support python language. That makes the expansion and maintenance are sim-
ple.

e) Valet feature is quite handy when building clusters of VM's.
f) Use KVM as the virtualization hypervisor, by VM Creator in ECP, virtual ma-

chines that OS is pre-installed can be produced in less than 1 minute.
The specific performance of ECP will be described below.

4.3 Test of Eucalyptus and ECP

Eucalyptus and Enomaly's Elastic Computing Platform (ECP) are also IaaS platforms
and both provide the use of virtual machines. So we made a Comparison test between
them.

 Research on Cloud Computing Based on Deep Analysis to Typical Platforms 605

In the test, Eucalyptus adopts Xen and takes ubuntu 8.04LTS as the VM’s OS. ECP
adopt KVM and Debain 4.0. We also made an original OS that runs on real machine
to be the comparison platform. It is fedora Core 6.

Eucalyptus and ECP’s VM both have 512MB RAM, single virtual CPU, 10GB system
image + 20GB supplementary storage. The comparison platform is also build as this.

Gzip Compression tests the efficiency of virtual CPUs. The shorter time costs the
more effective CPU is virtualized.

Lame Compilation tests the cloud VMs’ overall performance. The RAMspeed
batch copy and batch run tests the cloud VMs’ memory speed.
Table 3 to Table 6 gives the results.[16]

Table 3. Gzip Compression Test Result

Platforms Fedora Core 6 Eucalyptus ECP

Time (seconds) 67.73 103.30 97.72

 This test runs “time gzip –c test.tar > test.tar.gz” The size of test.tar is 801MB.

Table 4. Lame Compilation Test Restlt

Platforms Fedora Core 6 Eucalyptus ECP

Time (seconds) 9.24 35 43.27

 This test runs “time make –j 5”.

Table 5. RAMspeed Batch Copy Test Result

Platforms Fedora Core 6 Eucalyptus ECP

Speed(MB/s) 1201.45 1124.36 622.20

 This test runs as INTEGER BatchRun Copy.

Table 6. RAMspeed Batch Run Test Result

Platforms Fedora Core 6 Eucalyptus ECP

Speed(MB/s) 1345.50 1298.84 783.39

 This test runs as INTEGER BatchRun Add.

Test Conclusion:
We can see from the test that the performance of VM that the two IaaS platform
provided has a gap between the actual system there. This should be the cost of net-
work communication and VM scheduling. But for these two types of cloud comput-
ing platform, the computing power of the VM is similar. In the VM memory speed
test, Eucalyptus leads significantly. The reasons for this result may be caused by
different virtualization technologies. And it is also possible that because of different
mechanisms of these two platforms, such as scheduling. We shall study this prob-
lem in future work.

606 T. Xia, Z. Li, and N. Yu

4.4 Comparison of EC2 Eucalyptus and ECP and Some Issues

Finally we compared some key features of Eucalyptus ECP and Amazon EC2. List as
Table 7.

Table 7. The comparison of EC2 Eucalyptus & ECP

 EC2 Eucalyptus ECP
Flow control in data transport O O O
Billing Mechanism O X X
Storage Mechanism O(s3[15]) O(Walrus) O
Block Storage Mechanism O(EBS) O(Walrus) O
Load Balance & Live Migration O(SQS) X X
Target Customers Users Administrators&Users Administrators

a) Both Eucalyptus and ECP do not support virtualization technology from

commercial company such like VMware or Hyper-V.
b) Eucalyptus will be contained in Ubuntu 9.10. This makes it easy to be em-

ployed. However it lacks a method like appzero[19] that can inosculate itself
to other public clouds. This can help people in this scene: employ Eucalyptus
as a development platform to build applications and then run these applica-
tions on AWS seamlessly.

c) The Web management of ECP is a special feature. It is better if the Web sys-
tem can provide management on not only VMs but virtual networks, virtual

applications and storage just by drag and clicks.

5 Predictions and Suggestions

At the basis of research for the developing states on Cloud Computing in different
companies, we have made predictions for the possible developing directions of Cloud
Computing. What is more, from the experiments and tests results described above, we
made an analysis for the performances of the typical existing Cloud Computing plat-
forms, as well as given some suggestions for choosing proper platforms based on dif-
ferent needs.

5.1 Predictions for Trend of Cloud Computing

1. Most clouds today are designed to work just within one data center. An inter-
esting research direction is to develop appropriate network protocols, archi-
tectures and middleware for wide area clouds that span multiple data centers.

2. To investigate how different clouds can interoperate. That is, how two differ-
ent clouds, perhaps managed by two different organizations, can share infor-
mation. And how the “composite cloud” can be build.

3. A practical question is to develop standards and standard based architectures
for cloud services. And thus develop a way to benchmark clouds.

 Research on Cloud Computing Based on Deep Analysis to Typical Platforms 607

4. Neither of the two IaaS platforms discussed in this paper support VM’s Live
Migration. When and how to migration VMs from one server to another shall
be a key problem.

5. There are lots of open-source Cloud Computing platforms in the level of IaaS
and PaaS but few in SaaS. More platforms like 10GEN[1] is needed.

6. Almost all open-source Cloud Computing platforms are based on Linux. A
useful research direction is to make open-source platforms to support multiple
operating systems such like Microsoft Widows. This can make the Cloud
Computing more popular in everyone’s life.

7. Nowadays the ability of Cloud Computing cannot fully meet the requirements
of entertainment. Image this Scene: a user adopted Amazon EC2 and wants to
play 3D games in the VM. Of course the experience he gets will not be good
today. The virtualization technologies have not covered GPU yet. This is an-
other charming direction. GPU has more Floating-point computing power than
CPU. If GPUs can be virtualized, it is also benefit for Scientific Computing.

5.2 Suggestions for Choosing the Proper Platforms

As shown above, Hadoop suits when the ability of intensive data processing is re-
quired, like data mining, Target Recognition on remote-sensing image and so on.
Eucalyptus is a good choice when you are using Ubuntu. It makes a simple way to
build up private Cloud and can work with Amazon EC2 smoothly. So it also suits to
the companies or groups that deployed Amazon EC2 but want to process private data
in their own Cloud. Also the Appscale[20] can run on Eucalyptus. This means people
who want to deploy Google App Engine can choose Eucalyptus. And for Enomaly's
Elastic Computing Platform, Python support and management of servers as virtual
clusters are its strengths.

References

1. 10gen, http://www.10gen.com/
2. Rich, W., Chris, G., Dan, N.: Eucalyptus: An Open-source Infrastructure for Cloud Com-

puting,
 http://open.eucalyptus.com/documents/
 eucalyptus-slides-wolski-cloud_expo_apr08.pdf

3. Enomaly, http://www.enomaly.com/Product-Overview.419.0.html
4. Hadoop, http://hadoop.apache.org/core/
5. Hadoop DFS User Guide, http://hadoop.apache.org/core/docs/r0.17.2/

hdfs_user_guide.html
6. Yahoo! Developer Network Blog (2008),

 http://developer.yahoo.net/blogs/hadoop/2008/02/
 yahoo-worlds-largest-production-hadoop.html

7. Doug, Cutting. Hadoop: Funny Name, Powerful Software (2008),
 http://www.tuxme.com/
 index2.php?option=com_content&do_pdf=1&id=27470

8. Hadoop Wiki, http://wiki.apache.org/hadoop/PoweredBy

608 T. Xia, Z. Li, and N. Yu

9. Michael, N.: Running Hadoop on Ubuntu Linux (Multi-Node Cluster),
 http://wiki.apache.org/hadoop/
 Running_Hadoop_On_Ubuntu_Linux_(Single-Node_Cluster)

10. Open Cloud Testbed,
 http://www.opencloudconsortium.org/testbed.html

11. Scott, D.: Yahoo’s Doug Cutting on MapReduce and the Future of Hadoop (2007),
http://www.infoq.com/articles/hadoop-interview

12. Robert, L., Grossman, Yunhong, G.: On the Varieties of Clouds for Data Intensive Com-
puting. IEEE Computer Society Technical Committee on Data Engineering (2009)

13. Open Cloud Consortium (2008), http://www.opencloudconsortium.org
14. Michael, A., Armando, F., et al.: Above the Clouds: A Berkeley View of Cloud Comput-

ing, http://nma.berkeley.edu/ark:/28722/bk000471b6t
15. Amazon Simple Storage Service, https://s3.amazonaws.com
16. Ramspeed, http://www.alasir.com/software/ramspeed/
17. Daniel, N., Rich, W.: The Eucalyptus Open-source Cloud-computing System,

 http://open.eucalyptus.com/documents/nurmi_et_al-
 eucalyptus_open_source_cloud_computing_system-cca_2008.pdf

18. Sector-Sphere, http://sector.sourceforge.net/
19. Appzero, http://www.trigence.com/
20. Appscale, http://code.google.com/p/appscale/

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 609–614, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Automatic Construction of SP Problem-Solving Resource
Space

Jin Liu1,2, Fei Liu1, Xue Chen3, and Junfeng Wang4

1 State Key Lab. Of Software Engineering, Wuhan University, China 430072
2 State Key Lab. for Novel Software Technology, Nanjing University, China 210093

3 Digital Content Computing and Semantic Grid Group, Key Lab of Grid Technology,
Shanghai University, China 200072

4 College of Computer Science, Sichuan University, China 610065
mailjinliu@yahoo.com

Abstract. The automation and adaptability of software systems to the dynamic
environment and requirement variation is quite critical ability in cloud comput-
ing. This paper tends to organize vast stacks of problem solution resources for
software processes into a structured resource space according to their topic
words. The Resource Space model is well-developed by continuously adapting
to its surroundings, expanding example group and refining model information.
Resource topics are extracted with TDDF algorithm from document resources.
Topic networks are established with topic connection strength. Then these topic
networks are transformed into maximum spanning trees that are divided into
different classification parts with pruning operation. This work may promotes
automation of RS-based software service and development of novel software
development in cloud computing environment.

Keywords: Networked software, Resource space, Problem-solving resource,
Software automation.

1 Introduction

Cloud computing occurs in a highly open computing environment, where various
information processing units interacting with each other. More requirements are pro-
duced during these interaction processes, where the cycle of system evolution is
shorten compared with the same one in the relative close environment. Accordingly,
the adaptability of software systems to the dynamic environment and requirement
variation is quite critical, i.e., the evolution ability of online software system. It is also
an underlying driving force for “X” as-a-service (“X”AAS) [2].

The motivation of this paper is that vast stacks of problem solution resources for
software processes are deposited on the open interconnected environment. These
resources possess prolific empirical knowledge and design knowledge for problem
solutions. The huge mass of knowledge resources can be organized into a structured
resource space according to their topic words. And personalized resource services
may further be provided to deliver suggestive reference empirical knowledge in soft-
ware process, which may improve reuse of legacy knowledge resources, reduce cost

610 J. Liu et al.

of higher-value design and speed product delivery cycles in the interconnected envi-
ronment. Our work focuses on investigate a way of automatic construction and online
evolution of Resource Spaces for sharing SP problem-solving resources.

The primitive idea is that priori knowledge about the structure of resource organi-
zation or the resource space model is limited. It becomes progressively explicit during
the running time of the resource space. The model of the web resource space is well-
developed by continuously adapting to its surroundings, expanding example group
and refining model information.

2 The Web Resource Space

The resource space model is used to organize, specify and share versatile web re-
sources with orthogonal classification semantics, which provides a universal resource
view for conveniently discovering and consuming these resources [3]. It is applicable
to managing versatile problem-solving resources that are produced in software proc-
esses and deposited on the Web. Document topics produced in requirement acquisi-
tion can be extracted and organized into a web resource space. The digested resources
can be found and consumed with corresponding topics in the web resource space.
Figure 1 indicates that problem-solving documents produced in requirement acquisi-
tion are organized into a web resource space. The orthogonal classification scheme
shown bottom left in this figure prescribes the resource organizing solution. As a
semantic coordinate system with independent coordinates and mutual-orthogonal axes
in normal forms, the Web resource space is an ideal approach to eliminate redundant,
disorder and useless resources so as to guarantee the correctness and accuracy of
resource operations. A resource-coordination is denoted as a resource point that con-
tains a resource set with the same classification feature. The orthogonal classification
semantics is accordance with human’s cognitive habit.

Fig. 1. A web resource space of problem-solving resources produced in requirement acquisition

 Automatic Construction of SP Problem-Solving Resource Space 611

3 Domain Topic Extraction

Domain topic words of a document are benefit to identifying problem solving re-
sources. Approaches of topic extraction includes term frequency inverse document
frequency (TFIDF), as well as mutual information, information gain, relevancy score,
chi-square, NGL coefficient and odds ratio [1]. Since TFIDF is effective in extracting
textual keywords from single text, it is more often used in text analysis [1]. And yet it
is difficult to extract domain keywords from multi-texts using TFIDF [1]. TDDF
(TFIDF direct document frequency of domain), proposed by Digital Content Comput-
ing and Semantic Grid Group from Shanghai University, is introduced herein to ex-
tract desired domain topic set from problem solving documents produced in software
process [1]. TDDF enhances TFIDF in domain keyword extraction from multi-texts
by taking document frequency of domain into account and evaluating topic word
frequency in related documents belonging to the same domain.

Definition 1 (Domain Document Frequency): Domain Document frequency

ddf(t, D
ur

), is the number of documents where the word c appears in a domain set D
r

.
Definition 2 (Word Common Possession Rate): The rate of word common posses-

sion ddf(t, D
ur

)/M, denoted as c, is the rate of the document frequency of the domain

with the document number in D
r

, where M is the document number in D
r

. Word
common possession rate is almost proportional to the possibility of a word t being a
domain keyword.

The primitive definition of TDDF can be expressed with equation (1).

2

(,)
(,) 0.01

(, ,)

(,)
(,) 0.01

β

β
∈

+ ×
=

+ ×
⎡ ⎤
⎢ ⎥
⎣ ⎦

∑

r

r r

r
r

r r
r

r

i

i

t
i

d

i

t
i

t D d

D

ddf t D
W t d

MW t d

ddf t D
W t d

M

 (1)

where
2

(,) log(/ 0.01)
(,)

(,) log(/ 0.01)
∈

× +
=

× +⎡ ⎤⎣ ⎦∑

r

r
r

r

r
r

r

i

i

i

i

d
it t

i
d

d
i tt d

tf t d N n
W t d

tf t d N n

is the weight of word

t in document id
ur

; (,)itf t d
ur

 is the frequency of word t in document id
ur

; N is the

number of unrelated documents;
id

tn
ur

is the document frequency in unrelated docu-

ments; (,)ddf t D
ur

is the document frequency of word t in id
ur

; β is the impact degree

of (,)ddf t D
ur

on domain topics; denominator is a standardization factor, and the value
0.01 prevents the denominator from becoming zero.

If β is very large, the impact of (,)
r

ddf t D on the extraction of keywords is sig-
nificant. TDDF with fixed word common possession rate c can be expressed as:

612 J. Liu et al.

(, ,)i DW t d =
r r

2

(,) 0.01

(,) 0.01

i

i

t
i

d

t
i

t D d

W t d

W t d
∈

+

+⎡ ⎤⎣ ⎦∑

r

r r

r

r if ddf(t, D
ur

)/M≥ c

0 if ddf(t, D
ur

)/M< c

(2)

The empirical study indicates that the appropriate c value from 0.2 to 0.4 induces an
acceptable correct extraction rate and the number of domain topics [1, 4].

Fig. 2. Topic networks of SP resource solving resources with different restriction parameters

 Automatic Construction of SP Problem-Solving Resource Space 613

4 Topic Clustering

4.1 Topic Network

Definition 3 (Connection Strength): The connection strength of any two topics p and
q, denoted as CS(p, q), is expressed as equation (3).

log

((|))
(,) log

() ()

×
=

×
N

N N q p
CS p q

N p N q
 (3)

where N is the number of all documents in domain D
r

; N(p) is the total number that

the topic p presents in documents in D
r

; N(q) is the number that the topic q presents

in documents in D
r

; N(q | p) is the number that the topic p occurs when the topic q

presents in the same document in D
r

. In general, CS(p, q) is not equal to CS(q, p).

Definition 4 (Topic Network) A topic network is a directed graph that takes topics as
its vectors and the connection length between two vectors as the weight on the edge

connecting these two vectors, denoted as GTN = (V，E), where V is a vector set and E
is a directed edge set, with the connection strength as the edge weight of any two
vectors. An example of a topic network with 5 vectors is demonstrated in figure 2.

4.2 Topic Classification

A spanning tree of a connected graph is a minimal connected graph that includes all
vectors in a graph and n-1 edges that only constitutes one tree. And a topic network
can be transformed into a maximum spanning tree that the sum of all edge weights is
max in all spanning trees with n vectors. An example of maximum spanning tree that
is deduced from aforementioned case is demonstrated in Fig 3.

Fig. 3. Maximum spanning trees deduced from topic networks of SP resource solving resources

614 J. Liu et al.

Fig 4. is the classification of a topic set that can be performed by pruning on its
maximum spanning tree with a threshold value 0.4. Fig 4(k) is chosen as the core
topic classification that is extended to ensure each resource can be found through this
core topic classification with the measurement of shortest graph paths. The automati-
cally produced Resource Space is at the right hand in this picture.

Fig. 4. Topic set classification and automatically produced Resource Space

5 Discussion and Conclusions

The procedure and critical techniques of the proposed automatic construction of SP
problem-solving Resource Space is sketchily explained due to the page limitation.
More complex empirical cases will further investigated. Relative research points of
on-line evolution and automatic deployment are being carried out recently.

Acknowledgments

The authors would like to thank Hainan Zhou for his selfless programming work.
Financial support by National Natural Science Foundation of China (60703018;
60873024), 973 Program (2007CB310800), 863 Program (2008AA01Z208;
2006AA04Z156) and Open Fund Project of State Key Lab. for Novel Software Tech-
nology, Nanjing University.

References

1. Luo, X., et al.: Experimental Study on the Extraction and Distribution of Textual Domain
Keywords. Concurrency And Computation: Practice And Experience 20, 1917–1932 (2008)

2. SAAS, Wikipedia (2009),
 http://en.wikipedia.org/wiki/Software_as_a_service

3. Zhuge, H., Xing, Y., Shi, P.: Resource Space Model, OWL and Database: Mapping and In-
tegration. ACM Transactions on Internet Technology 8(4), 20 (2008)

4. Zhuge, H., Luo, X.: Automatic generation of document semantics for the e-science. The
Journal of Systems and Software 79, 969–983 (2006)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 615–620, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Idea of Special Cloud Computing
in Forest Pests' Control

Shaocan Jiang, Luming Fang, and Xiaoying Huang∗

School of Information Engineering, Zhejiang Forestry University,
Lin'an 311300, Zhejiang, China

shaocan.jiang@gmail.com, ahxyhn@yahoo.com.cn

Abstract. Forest pests, fires and deforestation, are known as the three forest
disasters. And the severity of forest pests infection has increased in recent dec-
ades. Therefore, it’s becoming more important to have strategic approach to-
ward forest pests control.

In the face of increasingly serious forest pests control work, the existing for-
est management systems are no longer applicable. We are in urgent need of a
new management model. After examining a variety of techniques and models,
we settled on the concept and application of Cloud Computing.

In this paper, we put forward an idea of Special Cloud Computing in forest
pests’ control. It is a strong professional cloud computing service which applies
to forest pests’ control. It is provided by cloud computing provider and forest
pests’ management.

Keywords: Forest Pests, Cloud Computing, Special Cloud, Data Center, SAAS.

1 Introduction

China, which has total forest area of 150 million hm², is one of the countries that
suffer most serious forest pests infection in the world. At the present time, the scourge
to the forest by forest pests is far more severe than that by forest fires. During the
ninth “Five Years Plan” (From 1996 to 2000), the forest pests arose in China was
7333 thousand hm² annually on average. And among that was an area of 42,670 thou-
sand hm² that suffered more than moderate, which was roughly equal to 80% of the
area of artificial afforestation every year. This was far higher than the average level
compare to other part of the world.[1, 2, 7]

Forest pests forecasting is not only important to forest pests control work, but also
a basis for effectively preventing pests from arising and developing [3, 4]. It combines
mathematical analysis with other natural subjects. After decades of research, we have
accumulated and summed up a wealth of forest pests data. However, the data informa-
tion is growing so fast that currently we meet an increasingly large amount of pests’
control work. And there are many disadvantages difficult to overcome in the existing
forest pests MIS, such as the high cost and low utilization. So we have to seek a

* Corresponding Author.

616 S. Jiang, L. Fang, and X. Huang

newer technology, use a newer management and protection platform to solve the
existing key problems of forest pests’ control.[6, 7]

After examining a variety of techniques and models, we settled on the concept and
application of Cloud Computing, which is a revolution in IT.[5, 10, 13] Being con-
trary to the present IT deployment and operating mode, it enhances business man-
agement and resource utilization efficiently.

2 Overview of Cloud Computing

Cloud computing, which is developed from Virtualization, Utility Computing, IAAS
(Infrastructure as a Service), SAAS (Software as a Service), etc, sets Parallel Comput-
ing, Distributed Computing and Grid Computing all in one.[8, 10]

We can regard cloud computing as a kind of computing method that integrates the
free scattered resources into a big pool and takes it as a service to the customers
through the Internet. The resources that customers are using, such as data, server,
software, R&D platform, etc, are all from the virtualization center in the cloud [10,
13]. A cloud is a data center architecture that automates the allocation and realloca-
tion of IT resources to end-user applications in order to dynamically respond to
changing business demands and priorities, while billing users for consumption [13].

Cloud computing is growing extremely fast. And there are numerous providers
succeeded in this field. Here are some clouds provided by commercial entities.

 Amazon EC2 is a web service that provides resizable compute capacity in the
cloud. It is designed to make web-scale computing easier for developers.[14]

 Google App Engine offers a complete development stack that uses familiar tech-
nologies to build and host web applications.[15]

 Microsoft Azure Services Platform provides a wide range of Internet services that
can be consumed from either on-premises environments or the Internet.[16]

 IBM Blue Cloud is to provide services that automate fluctuating demands for IT
resources.[17]

3 The Idea of Special Cloud Computing

3.1 Choice of Cloud

Forest pests control work differs from the operations and management of general
enterprises. It involves forestry administration from national to local levels, large and
small natural and artificial forest throughout our country. With tens of thousands of
species and the complex management computation, ordinary cloud computing may
appear weak in dealing with the strong professional problems of forest pests control.

Cloud computing can be roughly divided into two broad categories. Public Cloud
(or External Cloud) is offered to every paying customers by a service provider, while
Private Cloud (or Internal Cloud) is deployed by the IT department of an enterprise to
its internal users.[12]

However, neither of these two clouds suits our pests’ control and can not solves the
professional problems. The IT requirements in public cloud are not well-defined,
while the resources in private cloud are underutilized.[11, 12, 13]

 An Idea of Special Cloud Computing in Forest Pests' Control 617

After comparing these two clouds, we attempt to build a new cloud which differs
from the public cloud and private cloud--Special Cloud in Forest Pests’ Control.

3.2 Special Cloud Computing

We come up with such an idea: a special forestry administration (in this paper, we
give it a code name "C") cooperates with the cloud computing provider (code name
"P") in setting up the Special Cloud Computing in Forest Pests’ Control.

We define that Special Cloud Computing is a strong professional cloud computing
service for a particular field, and co-provided by professional cloud computing pro-
vider and special administrations in this field.

In our idea, C will be the Chinese State Forestry Administration--the most senior
administration section in China. And the model of special cloud is shown in Figure 1.

Fig. 1. The model of special cloud computing in forest pests’ control

In this special cloud, C provides service mostly for professional pests’ control,
while P provides an effective cloud computing solution. Specifically, the functions of
C and P could be allocated as Table 1 shows at the time of building this special cloud.

Table 1. Functions of C & P

Underlying Structure Services
Management

& Maintenance

C Data center
Majority is for forest pests’ control

(Software, Core Calculation, R&D Platform,
Forecast System, ES, DSS, “3S”, etc.)

Data,
Software, etc.

P

Original resources of cloud
(Server, Virtualization

Components, Monitoring &
Management Technology, etc.)

Majority is for cloud
(Software, Core Calculation, R&D and

Other Platforms, Network Resources, etc.)

Software,
Overall

framework

On the other hand, we can figure out from figure 1 that C has a dual identity, is
both a provider of special cloud computing, and its user. This is also one of the most

618 S. Jiang, L. Fang, and X. Huang

important characteristics of special cloud. As a provider, C plays a decisive role in
setting up and perfecting the special cloud computing service and protecting data
information security and privacy.

In special cloud computing, the identities of all participants are very important. The
matter of identity is also the basis for the distinction between special cloud and other
clouds. The identities of all participants can be shown in Table 2.

Table 2. The identities of all participants in three different clouds

 Public Cloud Private Cloud SpecialCloud

Provider
cloud computing

provider
IT department of an

enterprise

cloud computing provider & special
administrations in a particular field

(Co-provider)

User paying customers Enterprise's internal users administrators in the field

3.3 Changes That Special Cloud May Bring

Data Center. The data center can supply information services, data storage backup,
core calculation for forest pests’ control. However, there are many shortcomings in
ordinary data center, such as high energy consumption, low utilization, limited space,
increasing cost and slow speed of operation, etc.[5, 13] And the complex prediction
model makes unexpected disasters of pests not being treated in time.

Now, in special cloud, our data center can easily solve these problems. And one of
the key features of cloud computing is Super Operation. Cloud computing just inte-
grates the free scattered resources in the cloud, and then endows the users with operat-
ing power as it had never before. With special cloud computing, experts can create
prediction models in real time notwithstanding the dense forest and miscellaneous
pests and non-linear relationships between pests ecological groups.

SAAS & PAAS. During the process of forestry informatization, modern information
technologies have been applied to the work of forest pest control. ES and “3S”
technology are very practical. But as the causes of strong professional, complex
operation, high cost, etc, these high and new technologies can not be popularized in
grassroots forest management.

In our idea, we attempt to combined server, network and various kinds of high and
new technologies into special cloud computing platform by virtualizing them seam-
lessly. And then supply them to all forestry administrators through SAAS and PAAS
(Platform as a Service). This mode of lease or pay-as-you-go is an ideal model to the
grassroots forestry administrators. Meanwhile, it helps them omit the heavy and an-
noying work to maintain all kinds of softwares. On the other hand, PAAS offers an
integrated environment to design, develop, test, deploy and support custom applica-
tions [9, 11]. As for the outbreaking pests disasters, forest pests’ experts can explore
some systems aiming at the disasters in real time by PAAS and then supply them to
all forestry administrators.

Resource Sharing. The forest pests reporting is in great quantity and cluttered. And
the process from primary statistics to final reporting is extremely trivial. It not only
wastes a lot of resources and material, but also delays the reporting. What’s worse,

 An Idea of Special Cloud Computing in Forest Pests' Control 619

some unexpected disasters cannot be dealt with in time. And grassroots administrators
can’t communicate effectively, which will result in breakdown of information flow.

Through special cloud computing service, we can easily make resource sharing
possible. In the special cloud, there will be a communal space, and both the upper and
lower levels (the State Forestry Administration and all local administrations and
grassroots administrators) can get the information and data resources they need in real
time. The efficiency of pests’ control will increase greatly by this convenient and
rapid way to access resources.

In addition, special cloud computing can also easily make the resources sharing
between different devices possible. When the forestry administrators carry on a on-
the-spot investigation in pests’ control, they can easily access to data and use all the
resources in cloud just by connecting to the cloud through some web devices, like
laptops, mobile phones or PDA.

4 Security in Special Cloud

While deploying cloud computing, the primary problems to take into account are data
information security and privacy. And it is the key issue to governments and enter-
prises to enhance data information security and privacy.

The main security problem of cloud computing exists not in the invasion by hack-
ers and network worms, but in the cloud computing providers. Providers hold the root
permissions for all machines in their cloud computing platforms. That is to say, pro-
viders hold all the information and data of users.

Thus, after the special cloud computing in forest pests’ control being set up, the
application processes the following advantages:

 The forest pests control work is different from business activities of enterprises.
And the security level of its information and data is lower than that of govern-
ments and public safeties’. So the data information security demands in pests’
control is much smaller.

 In our idea, C plays a key role in supervision and restraint of P as well as all users.
This will greatly enhance the data information security level.

 In this idea, C and P together hold the root permissions for all machines and the
resources of pests’ control in the special cloud. This lets them supervise mutually,
and then efficiently prevents careless disclosure by either P or C.

 There are not only professional IT maintenance personnel, but also pests control
experts in special cloud. This makes the risk of data loss to minimum.

5 Conclusion

Not only general cloud computing service, special cloud computing in forest pests’
control can provide necessary and professional service for forest pests’ control. First,
it gives all forestry administrations and grassroots administrators the ultra-large-scale
computing power to enable them to efficiently collect, process data information of
pests, then analyze and forecast the cycles of pests arise. Second, it provides a R&D
platform for pest control management. Experts at forest pests can develop a variety of

620 S. Jiang, L. Fang, and X. Huang

different systems that aim at different plants and pests, and make these systems avail-
able to other forest managers through resource sharing. And third, there’s an effective
pests management standard in special cloud to improve the interoperability of the
system and the environment of collaboration within the pests control community. Last
but not least, it supports flexible autonomy, so that all forest managers can acquire
resources on demand, and make it easier to overcome the period of high rising of
forest pests. What’s more, it largely heightens the security and privacy of information
and data resources.

However, cloud computing is still in its early stages, the relevant tools and tech-
niques are being continually perfected. And the special cloud computing in forest
pests’ control is still just an idea. We need considerable effort to make it into a reality.

References

1. Pan, H.: Problems and Countermeasures in Forest Pests Prevention in China. J. Forest Pest
and Disease 21(1) (2002)

2. Pan, H., Wu, J.: Occurrence Dynamics of Important Forest Pests in the Period of the
Ninth-Five-Year Plan and Analysis on the Causes. J. Forest Pest and Disease 20(4) (2001)

3. Wang, Z., Cheng, J., Jiang, M.: Expert System and Its Application in Integrated Pest Man-
agement. J. Acta Agriculturae Jiangxi 12(1) (2000)

4. Ding, S., Cheng, S., Su, B.: The Multiple Fuzzy Regression Forecasting Model and Its
Application. J. Fuzzy Systems and Mathematics 14(3) (2000)

5. Nathuji, R., Schwan, K., Somani, A., Joshi, Y.: VPM Tokens: Virtual Machine-aware
Power Budgeting in Datacenters. J. Cluster Computing 12(2), 189–203 (2009)

6. Wen, L.: Construction of Forest Disease and Pest Consultation Diagnosis Expert System
Based on Network. Master’s Dissertation, Beijing Forestry University (2006)

7. Zhang, P.: Forest Pests MIS Development. Master’s Dissertation, Nanjing Forestry Uni-
versity (2002)

8. Minoli, D.: Grid Computing for Commercial Enterprise Environments. In: Handbook on
Information Technology in Finance. International Handbook on Information Systems. Pt. I,
pp. 257–289. Springer, Heidelberg (2008)

9. Ma, D., Seidmann, A.: The Pricing Strategy Analysis for the “Software-as-a-Service”
Business Model. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) GECON 2008. LNCS,
vol. 5206, pp. 103–112. Springer, Heidelberg (2008)

10. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree
Compared. In: IEEE Grid Computing Environments (GCE 2008), Texas, pp. 1–10 (2008)

11. Li, H., Sedayao, J., Hahn-Steichen, J., Jimison, E., Spence, C., Chahal, S.: Developing an
Enterprise Cloud Computing Strategy (2009),

 http://download.intel.com/it/pdf/320566.pdf
12. IT Modernization: From Grid to Cloud in Financial Services. (2009),

 http://www.platform.com/resources/brochures/
 FSCloud-MarketBrochure-web.pdf

13. Arista Networks, http://www.aristanetworks.com/
14. Amazon EC2, http://aws.amazon.com/ec2/
15. Google App Engine, http://code.google.com/appengine/
16. Microsoft Azure Services,

 http://www.microsoft.com/azure/default.mspx
17. IBM Blue Cloud, http://www.bluecloud.org/

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 621–625, 2009.
© Springer-Verlag Berlin Heidelberg 2009

IBM Cloud Computing Powering a Smarter Planet

Jinzy Zhu, Xing Fang, Zhe Guo, Meng Hua Niu,
Fan Cao, Shuang Yue, and Qin Yu Liu,

Abstract. With increasing need for intelligent systems supporting the world's
businesses, Cloud Computing has emerged as a dominant trend to provide a dy-
namic infrastructure to make such intelligence possible. The article introduced
how to build a smarter planet with cloud computing technology. First, it intro-
duced why we need cloud, and the evolution of cloud technology. Secondly, it
analyzed the value of cloud computing and how to apply cloud technology. Fi-
nally, it predicted the future of cloud in the smarter planet.

Keywords: Cloud Computing, Smarter Planet.

1 Why Cloud?

The world is increasingly interconnected, instrumented and intelligent, creating un-
precedented opportunities for business and society. We need think about more intelli-
gent ways to handle the 15 petabytes of new information we generate each day, and
the massive increase of connected devices we use to work with that data. It's time for
a platform designed for efficient, effective computing in wide open spaces. In other
words, we need a smarter planet.

Success in the new smarter planet demands reduced capital and operating expense,
greater collaboration, and flawless execution when responding to rapidly changing
market conditions. Using a dynamic infrastructure that adapts to changing require-
ments, IBM Service Management helps clients create and deliver new services like
cloud computing - to improve service quality, reduce costs, and manage risk. As a
complement to your existing enterprise, IBM Cloud is a complete IBM Service Man-
agement package of hardware, software and services, which simplifies cloud comput-
ing acquisition and deployment.

2 Evolution of Cloud Computing Technology

As a new computing model, cloud computing has been in the making for a long time -
- it embodies the development and evolution of existing computing styles such as grid
computing and utility computing. Some traces of grid computing and utility comput-
ing can be found in cloud computing use cases. However, cloud computing distin-
guishes itself from previous technology with its combination of the latest in technical
developments and emerging business model, creating remarkable commercial value in
new use scenarios.

Taking IT capability as a service may be a simple idea, but to realize it, many prob-
lems remain to be solved. Different types of cloud computing services (IaaS, PaaS,

622 J. Zhu et al.

SaaS) are faced with different problems. The following table shows the different
technologies used in different cloud computing service types.

Table 1. Different technologies used in IaaS, PaaS and SaaS services

Service Type IaaS PaaS SaaS

Service Category VM Rental,

Online Storage

Online Operating

Environment, Online

Database, Online

Message Queue

Application and

Software Rental

Service Customization Server Template Logic Resource

Template

Application Template

Service Provisioning Automation Automation Automation

Service Accessing and

Using

Remote Console, Web

2.0

Online Development

and Debugging,

Integration of Offline

Development Tools

and Cloud

Web 2.0

Service Monitoring Physical Resource

Monitoring

Logic Resource

Monitoring

Application Monitoring

Service Level

Management

Dynamic Orchestration

of Physical Resources

Dynamic Orchestration

of Logic Resources

Dynamic Orchestration

of Application

Service Resource

Optimization

Network Virtualization,

Server Virtualization,

Storage Virtualization

Large-scale Distributed

File System, Database,

Middleware etc

Multi-tenancy

Service Measurement Physical Resource

Metering

Logic Resource Usage

Metering

Business Resource

Usage Metering

Service Integration

and Combination

Load Balance SOA SOA, Mashup

Service Security Storage Encryption and

Isolation,

VM Isolation,

VLAN, SSL/SSH

Data Isolation, Operat-

ing Environment

Isolation,

SSL

Data Isolation,

Operating Environment

Isolation, SSL, Web

Authentication and

Authorization

At the IaaS level, what cloud computing service provider offer is basic computing

and storage capability, such as the cloud computing center founded by IBM in Wuxi
Software Park and Amazon EC2. Taking computing power provision as an example,
the basic unit provided is the server, including CPU, memory, storage, operating sys-
tem and some software. In order to allow users customize their own servers, server
template technology is resorted to, which means binding certain server configuration

 IBM Cloud Computing Powering a Smarter Planet 623

and the operating system and software together, and providing customized functions
as required at the same time. Service provision is crucial since it directly affects the
service efficiency and the IaaS maintenance and operation costs. Automation, the core
technology, can make resources available for users through self-service without
getting the service providers involved. Additionally, virtualization is another key
technology. It can maximize resource utilization efficiency and reduce cost of IaaS
platform and user usage by promoting physical resource sharing. The dynamic migra-
tion function of virtualization technology can dramatically improve the service avail-
ability and this is attractive for many users.

At the PaaS level, what the service providers offer is packaged IT capability, or
some logical resources, such as databases, file systems, and application operating
environment. Currently, actual cases in the industry include Rational developer cloud
of IBM, Azure of Microsoft and AppEngine of Google. At this level, two core tech-
nologies are involved. The first is software development, testing and running based on
cloud. PaaS service is software developer-oriented. It used to be a huge difficulty for
developers to write programs via network in the cloud environment, and now due to
the improvement of network bandwidth, two technologies can solve this problem. The
first is online development tools. Developers can directly complete remote develop-
ment and application through browser and remote console (development tools run in
the console) technologies without local installation of development tools. Another is
integration technology of local development tools and cloud computing, which means
to deploy the developed application directly into cloud computing environment
through local development tools. The second core technology is large-scale distrib-
uted application operating environment. It refers to scalable application middleware,
database and file system built with a large amount of servers. This application operat-
ing environment enables application to make full use of abundant computing and
storage resource in cloud computing center to achieve full extension, go beyond the
resource limitation of single physical hardware, and meet the access requirements of
millions of Internet users.

At the SaaS level, service providers offer the industrial application directly to end
users and various enterprise users. At this level, the following technologies are in-
volved: Web 2.0, Mashup, SOA and multi-tenancy. The development of AJAX tech-
nology of Web 2.0 makes Web application easier to use, and brings user experience
of desktop application to Web users, which in turn make people adapt to the transfer
from desktop application to Web application easily. Mashup technology provide a
capability of assembling contents on Web, which can allow users to customize web-
sites freely and aggregate contents from different websites, and enables developers to
build application quickly. Similarly, SOA provides combination and integration func-
tion as well, but it provides the function in the background of Web. Multi-tenancy is a
technology that supports multi tenancies and customers in the same operating envi-
ronment. It can significantly reduce resource consumptions and cost for every
customer.

To sum up, important technologies used in cloud computing are: automation, virtu-
alization, dynamic orchestration, online development, large-scale distributed applica-
tion operating environment, Web 2.0, Mashup, SOA and multi-tenancy etc. Most of
these technologies matured in recent years, and that’s exactly why cloud computing is
so different.

624 J. Zhu et al.

3 Value of Cloud Computing for Smarter Planet

With Cloud Computing, we could build a smarter planet. IBM Cloud fully demon-
strated the application value of new technology and new methodology: reducing
operation cost, easily and flexibly responding to business changes, building green
datacenter.

Through virtualization technology, cloud computing center could increase the utili-
zation rate of server, storage, network and so on; Automation technology could re-
duce labor cost. IT professionals can devote more energy to enhancing the value of
using IT for their enterprises and less on the day-to-day challenges of IT.

Cloud computing liberates organizations to deliver IT services as never before.
Cloud enables the dynamic availability of IT applications and infrastructure, regard-
less of location. More rapid service delivery results from the ability to orchestrate the
tasks to create, configure, provision and add computing power in support of IT and
business services much more quickly than would be possible with today’s computing
infrastructure.

The great majority of experts in the science community now agree that it is over-
whelmingly obvious that climate change is an accelerating reality that will impact us
and our children much sooner than we think. IT leaders throughout the world under-
stand that Green IT technologies will pay a massively greater role in the coming
years, and will be among the fastest growing areas in IT. Unitek Education has
worked closely with Boots on the Roof to develop a boot camp that discusses a com-
prehensive approach to Green IT, including waste reduction, virtualization, blade
technologies and cloud computing.

4 Cloud Computing Model Application Methodology

Cloud computing is a new business services model. This kind of service delivery
model is based on future development consideration and can meet current develop-
ment requirements. The three levels of cloud computing service (IaaS, PaaS and
SaaS) cover a huge range of services. Besides computing and the service delivery
mode of storage infrastructure, various modes such as data, software application,
programming model etc are applicable to cloud computing. More importantly, cloud
computing mode involves all aspects of enterprise transformation in its evolution, so
technology architecture is only one part of it, and multi-aspect development such as
organization, processes and different business modes should also be under considera-
tion. Based on IBM Enterprise Architecture methodology and combined with best
practices of cloud computing in different areas, IBM has designed a Cloud Mode
Application Methodology to guide industry customer analysis and solve potential
problems and risks emerged during the evolution from current computing mode to
cloud computing mode. This methodology can also be used to instruct the investment
and decision making analysis of cloud computing mode, determine the process, stan-
dard, interface and public service of IT assets deployment and management to pro-
mote business development. The diagram below shows the overall status of this
methodology.

 IBM Cloud Computing Powering a Smarter Planet 625

Fig. 1. IBM Cloud Computing Blueprint Model

5 The Outlook of Cloud Computing

Cloud computing un-tethers the applications from the underlying physical infrastruc-
ture and delivers them to the end user over the internet or intranet. Computing
processes function without a direct connection to the computer or ownership of the
application or infrastructure. In the 21st century, the intelligence resides in the
infrastructure. Cloud computing can serve as the "connective tissue" among the foun-
dational building blocks of technology and skills that IBM has defined and delivered
for years.

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 626–631, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Cloud Computing: An Overview

Ling Qian, Zhiguo Luo, Yujian Du, and Leitao Guo

53A, Xibianmennei Ave, Xuanwu District, Beijing 100053, China
{qianling,luozhiguo,duyujian,guoleitao}@chinamobile.com

Abstract. In order to support the maximum number of user and elastic service
with the minimum resource, the Internet service provider invented the cloud
computing. within a few years, emerging cloud computing has became the hot-
test technology. From the publication of core papers by Google since 2003 to
the commercialization of Amazon EC2 in 2006, and to the service offering of
AT&T Synaptic Hosting, the cloud computing has been evolved from internal
IT system to public service, from cost-saving tools to revenue generator, and
from ISP to telecom. This paper introduces the concept, history, pros and cons
of cloud computing as well as the value chain and standardization effort.

Keywords: Cloud computing, Cloud Storage, Virtualization.

1 Definitions of Cloud Computing

Similar to e-commerce, cloud computing is one of the most vague technique termi-
nologies in history. One reason is that cloud computing can be used in many applica-
tion scenarios, the other reason is that cloud computing are hyped by lots of compa-
nies for business promotion. From the Hyper Cycle published by Gartner Group in
2008, we can see that the cloud computing is in the phase of fast growing.

Fig. 1. Cloud computing is in the phase of fast growing

 Cloud Computing: An Overview 627

In the MIT Centennial talk in 1961, John McCarthy said that “… The computer
utility could become the basis of a new and important industry”, which implied the
underlying concepts of cloud computing. However the “cloud computing” as a whole
is probably first introduced by Eric Schmidt in his talk on Search Engine Strategies
Conferences in 2006[15].

 Now there are lots of definitions and metaphors of cloud computing. From our
points of view, cloud computing is a kind of computing technique where IT services
are provided by massive low-cost computing units connected by IP networks. Cloud
computing is rooted in search engine platform design. There are 5 major technical
characteristics of cloud computing: (1) large scale computing resources (2) high scal-
ability & elastic (3)shared resource pool (virtualized and physical resource)
(4)dynamic resource scheduling and (5) general purpose.

2 History and Status

With the explosion of the Internet, tight pressure is put to the existing storage and
computing facilities. The Internet service providers start to use the cheap commodity
PCs as the underlying hardware platform. Various kinds of software technologies are
invented to make these PCs work elastically, which has led to 3 major cloud comput-
ing styles based on the underlying resource abstraction technologies: the Amazon
style, Google Style and Microsoft style.

 Amazon’s cloud computing is based on server virtualization technology.
Amazon released Xen-based Elastic Compute Cloud™ (EC2), object stor-
age service (S3) and structure data storage service (SimpleDB)[12] during
the 2006 – 2007, under the name Amazon Web Service™ (AWS)[9]. On-
demand and cheaper AWS becomes the pioneer of Infrastructure as a Ser-
vice (IaaS) provider.

 Google’s style is based on technique-specific sandbox. Google published
several research papers from 2003 to 2006[1-5], which outline a kind of
Platform as a Service (PaaS) cloud computing. The platform, which is
called Google App Engine™ (GAE), is released to public as a service in
2008.

 Microsoft Azure™ [10] is released in Oct. 2008, which uses Windows Az-
ure Hypervisor (WAH) as the underlying cloud infrastructure and .NET as
the application container. Azure also offers services including BLOB ob-
ject storage and SQL service.

It’s hard to judge which one is better, but apparently server virtualization is more
flexible and compatible with existing software and applications; while the sandboxes
put more restrictions on programming languages but less abstraction overhead. Cur-
rently, server virtualization is the most popular resource abstraction technique in
cloud computing.

Except these public cloud services, lots of companies has experimented and/or im-
plemented internal cloud computing systems. Cloud computing is already key strategy
for IT vendors, ISP and telecom service providers. Even further, United States of
America and Japan have made cloud computing the national strategy. The following
table lists some of the adopters for each style.

628 L. Qian et al.

Table 1. Three major cloud computing styles and their adopters, based on the resource abstrac-
tion techniques

Resource Abstraction Tech. Adopters
Server Virtualization
(Amazon Style)

Amazon EC2 (Xen), GoGrid (Xen), 21vianet
CloudEx (Xen), RackSpace Mosso (Xen),
Joyent (Accelerator), AT&T Synaptic
(Vmware), Verizon CaaS (Vmware)

Technique-specific sandbox
(Google Style)

GAE (Python & JVM), Heroku (Ruby),
Morph Application Platform(Ruby)

Server Virtualization & Technique-
specific sandbox (Microsoft Style)

Microsoft Azure (WAH & .NET)

3 Cloud Computing Architecture

Many organizations and researchers have defined the architecture for cloud comput-
ing. Basically the whole system can be divided into the core stack and the manage-
ment. In the core stack, there are three layers: (1) Resource (2) Platform and (3) Ap-
plication. The resource layer is the infrastructure layer which is composed of physical
and virtualized computing, storage and networking resources.

The platform layer is the most complex part which could be divided into many sub-
layers. E.g. a computing framework manages the transaction dispatching and/or task
scheduling. A storage sub-layer provides unlimited storage and caching capability.
The application server and other components support the same general application
logic as before with either on-demand capability or flexible management, such that no
components will be the bottle neck of the whole system.

Physical Resource

Virtualized Resource

Application
Browsing

OA & M

Server Storage Network

Interactive

Deployment

Scheduling

Performance

Monitor

Fault & logging

Billing

Configuration

TransactionalAnalytical …

Application Capability Components

Server
Virtualization

WebServer AppServer Reporting ESB …

Cache MsqQ Database DW

Computing Frameworks
Analytical/SchedulingTransactional/Dispatching …

Storage
Virtualization

Network
Virtualization

…

Platform
A

pp.
R

esource

Fig. 2. The Reference architecture

 Cloud Computing: An Overview 629

Based on the underlying resource and components, the application could support
large and distributed transactions and management of huge volume of data. All the
layers provide external service through web service or other open interfaces.

4 Cloud Computing Categories

There are diverse dimensions to classify cloud computing, two commonly used cate-
gories are: service boundary and service type.

* From the service boundary’s view, cloud computing can be classified as public
cloud, private cloud and hybrid cloud. The public cloud refers to services provided to
external parties. The enterprises build and operate private cloud for themselves. Hy-
brid cloud shares resources between public cloud and private cloud by a secure net-
work. Virtual Private Cloud (VPC) services released by Google[8] and Amazon[9]
are examples of Hybrid cloud.

* From the service type’s view, cloud computing can be classified as Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).
SaaS provide services to end users, while IaaS and PaaS provide services to ISV and
developers - leaving a margin for 3-party application developers.

5 Advantages and Risks

The cloud computing is a Win-Win strategy for the service provider and the service
consumer. We summarize the advantages as below:

 Satisfy business requirements on demand by resizing the resource occu-
pied by application to fulfill the changing the customer requirements.

 Lower cost and energy-saving. By making use of low cost PC, customer-
ized low power consuming hardware and server virtualization, both
CAPEX and OPEX are decreased.

 Improve the efficiency of resource management through dynamic re-
source scheduling.

However there are also some major challenges to be studied.
 Privacy and security. Customer has concerns on their privacy and data se-

curity than traditional hosting service.
 The continuity of service. It refers to the factors that may negatively af-

fected the continuity of cloud computing such as Internet problems, power
cut-off, service disruption and system bugs. Followed are some typical
cases of such problems: In November 2007, RackSpace, Amazon’s com-
petitor, stopped its service for 3 hours because of power cut-off at its data
center; in June 2008, Google App Engine service broke off for 6 hours due
to some bugs of storage system; In March 2009, Microsoft Azure experi-
enced 22 hours’ out of service caused by OS system update. Currently, the
public cloud provider based on virtualization, defines the reliability of ser-
vice as 99.9% in SLA.

 Service migration. Currently, no regularity organization have reached the
agreement on the standardization of cloud computing’s external interface.

630 L. Qian et al.

As a result, once a customer started to use the service of a cloud computing
provider, he is most likely to be locked by the provider, which lay the cus-
tomer in unfavorable conditions.

6 Value Chain of Cloud Computing

The following figure depicts the cloud computing value chain with related organiza-
tions and their functionalities.

Fig. 3. The trunk and supporting value chain of cloud computing

 Cloud Applications: The driven force of cloud computing, which is different
from traditional application module.

 Cloud Application Operator: Offers cloud computing products. In many cases,
they are same as by application provider or platform provider.

 Cloud Application Platform Operator: Provides cloud application and develop-
ment platform, such as GAE™ and Force.com™, etc.

 Cloud infrastructure operator: Provide infrastructure service, such as AWS™
and GoGrid.

 Network Operator: Provide network access service to the above platform opera-
tors and the end users.

 Technique supporting vendor: Offer technical support to players in this chain,
including software development, testing, provisioning and operation.

 Terminal equipment vendor: Offer device maintenance service for all players in
the chain.

 End Users: End users pays for the cloud services.

7 Standardization

Distributed Management Task Force[7] is an industry alliance composed by over 200
IT related corporations including IBM, EMC, HP, Cisco, Oracle and Microsoft, which
is committed to develop, maintain and popularize the IT management system under
enterprise context. DMTF has published Virtualization Management Initiative and
Open Virtualization Format, and the latter is declared to be supported by major ven-
dors. DMFT founded Open Cloud Standards Incubator at the year 2009, whose aim is
to clarify the interoperability between several cloud systems.

 Cloud Computing: An Overview 631

OGF (Open Grid Forum) has started some work to discuss cloud computing related
standards, which is a standardization organization like IETF aiming at promoting the
standardization and best practice of distribute computing related techniques. CCI-WG
(Open Cloud Computing Interface Working Group) is established to design resource
management API for IaaS cloud services by OGF. Some cloud computing service
providers like ElasticHosts, GoGrid, and FlexiScale have announced to adhere this
API in the later developments.

Besides, SNIA (Storage Network Industry Association), CSA (Cloud Security Alli-
ance) and OCC (Open Cloud Consortium) is now working on cloud storage, cloud
security and cloud intercommunication standards respectively. In order to coordinate
the work of above standardization organizations, OMG (Object Management Group)
appealed that all the organizations maintain their own standards on http://cloud-
standards.org.

PaaS and SaaS don’t have related cloud computing standards yet. Most current
systems exploit mature protocols and have variety kinds of service forms.

References

[1] Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: SOSP (2003)
[2] Dean, J., Ghemawat, S.: MapReduce: Simplifed Data Processing on Large Clusters. In:

OSDI 2004 (2004)
[3] Chang, F., Dean, J., Ghemawat, S., et al.: Bigtable: A Distributed Storage System for

Structured Data. In: OSDI 2006 (2006)
[4] Burrows, M.: The Chubby lock service for loosely-coupled distributed systems. In: OSDI

2006 (2006)
[5] Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the Data: Parallel Analysis

with Sawzall. Scientific Programming (2005)
[6] Open Cloud Computing Interface, http://www.occi-wg.org/doku.php
[7] Distributed Management Task Force, http://www.dmtf.org
[8] Google App Engine, http://appengine.google.com
[9] Amazon Web Service, http://aws.amazon.com

[10] Microsoft Azure, http://www.microsoft.com/azure/
[11] DeCandia, G., Hastorun, D., Jampani, M., et al.: Dynamo: Amazon’s Highly Available

Key-value Store. In: SOSP 2007 (October 2007)
[12] Schmidt, E.: Conversation with Eric Schmidt hosted by Danny Sullivan. In: Search En-

gine Strategies Conference (August 2006)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 632–637, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Integrating Cloud-Computing-Specific Model into
Aircraft Design*

Tian Zhimin1,2, Lin Qi2, and Yang Guangwen1

1 Department of Computer Science & Technology, Tsinghua University
2 Aviation Industry Development Research Center of China

T_zhm@163.com, linqi_1999@yahoo.com.cn, ygw@tsinghua.edu.cn

Abstract. Cloud Computing is becoming increasingly relevant, as it will en-
able companies involved in spreading this technology to open the door to
Web 3.0. In the paper, the new categories of services introduced will slowly
replace many types of computational resources currently used. In this per-
spective, grid computing, the basic element for the large scale supply of cloud
services, will play a fundamental role in defining how those services will be
provided. The paper tries to integrate cloud computing specific model into
aircraft design. This work has acquired good results in sharing licenses of
large scale and expensive software, such as CFD (Computational Fluid Dy-
namics), UG, CATIA, and so on.

Keywords: Cloud Computing, Model, Aircraft Design, License Share.

1 Introduction

An important factor to the success of portals like Google[1], Yahoo[2] and MSN[3] is
that often involve highly personalized solutions or even, in the case of Google, an ad
hoc infrastructure. Both IBM[4] and Google have taken the latter as starting point to
create the new computing paradigm, cloud computing[5], which will allow the compa-
nies to open the doors to Web 3.0.

Cloud computing, recently introduced by the media, is thought by some to be an
innovative term. But behind this poetic name probably lies one of the most important
new technologies in the ICT area[6]. The first to give prominence to the term of cloud
computing was Google’s CEO Eric Schmidt, in late 2006. The term refers to an im-
portant and long-term trend: computing over the Internet.

The birth of cloud computing is very recent, but the technology’s origins can be
traced to the evolution of grid computing technologies and in particular, the accom-
plished business way from the main search engines, which were also the first to
propose cloud services on the market, such as the well-known Amazon ecommerce
site[7][8]. Gartner maintains that cloud computing is one of the 10 strategic technolo-
gies for 2008 and many companies will compete in this IT sector.

* This work has been supported by 863. (NO.2006AA01A106).

 Integrating Cloud-Computing-Specific Model into Aircraft Design 633

In the aviation industry cloud computing model is exploited step by step. During
the tenth five-year plan, we have already create grid computing platform for aviation
industry that implemented share of license of expensive software and representative
scientific computing, such as CFD, etc. However, we only resolve the problem of lack
of license at the peak of application, regardless of priority. For example, the owner of
the hardware and software resources may have preferential right. They may
seize/order the resources that have being used. In this work, we will resolve the prob-
lem by cloud computing pattern.

2 Cloud Computing Model in Aviation Industry

A key differentiating element of a successful information technology (IT) is its ability
to become a true, valuable, and economical contributor to cyberinfrastructure[9].
Cloud computing embraces cyberinfrastructure and builds upon decades of research
in virtualization, distributed computing, grid computing, utility computing, and more
recently networking, web and software services. It implies a service oriented architec-
ture, reduced information technology overhead for the end user, greater flexibility,
reduced total cost of ownership, on-demand services and so on[10][11].

2.1 General Framework

The framework of Cloud Computing Platform of Aviation Industry(CCPAI) includes
physical resource layer, grid middleware layer, Cloud Middleware Layer and Appli-
cation Service Layer. Meanwhile, the framework efficiently provides a mechanism of
monitoring management and security.

The physical resource layer integrates high performance computing infrastruc-
ture, floating license, all sorts of data that every factory and institute has provided.
In the grid middleware layer, the platform may implement share of hardware based
on virtualization technology. The cloud middleware layer, as the core of the
CCPAI, encapsulates the services such as computing resources scheduling service,
data service, global floating license management service, charging service. The
layer supports to create the typical application of the whole industry. In application
layer, it is conceived to construct share of UG/CATIA, CFD computing,
DMU(Digital Mock-up) service and so on. The application is divided into small
work units, and each unit can be executed in any computational node. The frame-
work also has a distributed file system, which stores data on the various nodes.
Once the cloud services supply platform has been created, it will provide access to
the grid, to those factories/institutes requesting it. Every guest may decide whether
to offer cloud services or introduce its services in a general catalogue within a de-
fault cloud and in the same common administrative domain. The main features of
the platform include high system reliability and transparent management of infor-
mation shifting. One possible configuration of the hierarchical abstraction layers
involved in this case-study is shown in the Figure 1.

634 T. Zhimin, L. Qi, and Y. Guangwen

Fig. 1. The framework of Cloud Computing Platform of Aviation Industry

The mechanism of monitoring management is responsible for running of the
whole cloud computing environment. In defense industry information security is of
vital importance. Intellectual property protection is crucial among the facto-
ries/institutes. Information security strategy is proposed to ensure confidentiality of
all of the resources in CCPAI. According to responsibility and right, we divide the
users into four categories: local user, cloud user, resources provider, and cloud
administrators. The local users directly use the cluster and data of the companies
owned, while they don’t use the resources of other companies. The cloud users, as
aircraft designers over cloud, use UG/CATIA floating license to design or manufac-
ture the aircraft. The resources providers are the administrators of the facto-
ries/institutes. They are responsible for deploying their hardware and software re-
sources on the cloud. The cloud administrators monitor and configure the whole
cloud platform.

 Integrating Cloud-Computing-Specific Model into Aircraft Design 635

2.2 Virtualization

Virtualization is another very useful concept. It allows abstraction and isolation of
lower-level functionalities and underlying hardware. This enables portability of
higher-level functions and sharing and/or aggregation of the physical resources.

The virtualization concept has been around in some form since 1960s. Since then, the
concept has matured considerably and it has been applied to all aspects of computing –
memory, storage, processors, software, networks, as well as services that IT offers. It is
the combination of the growing needs and the recent advances in the IT architectures
and solutions that is now bringing the virtualization to the true commodity level. Virtu-
alization, through its economy of scale, and its ability to offer very advanced and com-
plex IT services at a reasonable cost, is poised to become, along with wireless and
highly distributed and pervasive computing devices, such as sensors and personal cell-
based access devices, the driving technology behind the next wave in IT growth.

In the aerocraft design phase, the system will break the input data as so to split a
big analysis job into several fairly small jobs. After the split, each small job will have
its own input and output data. Job scheduling software will submit the split jobs to the
computing resource pool in the grid, and conduct each analysis separately in each
node, after the job is done, the analysis result will be merged by the postprocessing,
and store the result in PDM data base. The analysis process in the grid is illustrated in
the following figure.

Input Files Splitter Merger Output Files

Fig. 2. The process of Flow Field Solving

3 The Simplified Architecture of CCPAI

The aims of the CCPAI range from license share of expensive software to resources
scheduling, to management and share of industry experimental data and design draw-
ings, to run of the platform, and to mechanism of security and monitoring. The platform
has efficiently aggregated the resources, including hardware and software, of
CAE(Chinese Aeronautical Establishment), ACTRI(Aviation Computing Technology
Research Institute), FAI(The First Aircraft Institute of AVIC), and

636 T. Zhimin, L. Qi, and Y. Guangwen

CAE

FAI

ACTRI

HONGDU

Capacity: 10Tflops
CAD/CAM Software:
CATIA, UG, Fluent,
CFX, FASTRAN,
NASTRAN,Abaqus,
FEKO

Capacity: 1Tflops
CAD/CAM Software:
UG, Fluent, CFX,
FASTRAN,
NASTRAN,Abaqus,

Capacity: 2.5Tflops
CFD Software:
WiseMan,
WiseManPlus,WiseCFD

Capacity: 2.5Tflops
CAD/CAM Software:
CATIA, Fluent, CFX,
FASTRAN,
NASTRAN,Abaqus,
FEKO

Industry
Private

 Network

10M

10M

10M

10M

Fig. 3. The Simplified Architecture of CCPAI

HONGDU(HONGDU Aviation Industry Group LTD). The CCPAI takes research and
manufacturing of L15 trainer aircraft for example to efficiently support the CFD, DMU
and MDO(Multidisciplinary Design Optimization). The figure 3 illustrates the case.

4 Conclusions

Cloud computing builds on decades of research in virtualization, grid computing,
distributed computing, utility computing, and more recently network, web and soft-
ware services. It implies a service oriented architecture, reduced information technol-
ogy overhead for the end-user, great flexibility, reduced total cost of ownership, on
demand services and many other things. This paper discussed the concept of cloud
computing, issues it tries to address, related research topics, and a cloud implementa-
tion in aviation industry. Our experience technology is excellent and we are in the
process of addition functionalities and features that will make it even more suitable
for cloud framework construction.

References

1. Google App Engine, http://code.google.com/appengine/
2. HP, Intel and Yahoo Cloud Computing Test Bed,

 http://labs.yahoo.com/Cloud_Computing

 Integrating Cloud-Computing-Specific Model into Aircraft Design 637

3. Microsoft Cloud Computing Tools,
 http://msdn.microsoft.com/en-us/vstudio/cc972640.aspx

4. IBM Blue Cloud,
 http://www03.ibm.com/press/us/en/pressrelease/22613.wss

5. Wikipedia, Cloud Computing (May 2009),
 http://en.wikipedia.org/wiki/Cloud_computing

6. Vaguero, L., et al.: A Break in the Clouds: Towards a Cloud Definition. ACM SIGCOMM
Computer Communication Review 39(1), 1 (2009)

7. Amazon Web Services, http://aws.amazon.com
8. Palankar, M., Onibokun, A., et al.: Amazon S3 for Science Grids: a Viable Solution. In:

4th USENIX Symposium on Networked Systems Design & Implementation (NSDI 2007)
(2007)

9. Vouk, M.A.: Cloud computing-Issues, research and implementations. Information Tech-
nology Interfaces, 31–40 (2008)

10. Ramakrishnan, A., Singh, G., et al.: Scheduling Data-Intensive Workflows onto Storage-
Constrained Distributed Resources. In: CCGrid 2007 (2007)

11. Liu, H., Orban, D.: Gridbatch: Cloud computing for large-scale data-intensive batch appli-
cations. In: CCGRID, pp. 295–305. IEEE Computer Society, Los Alamitos (2008)

Towards a Theory of Universally Composable
Cloud Computing

Huafei Zhu

I2R, A*STAR, Singapore

Abstract. This paper studies universally composable Cloud computing
and makes the following two-fold contributions
– In the first fold, various notions of Clouds are introduced and formal-

ized. The security of public Cloud computing is formalized within
the standard secure computations framework.

– In the second, a universally composable theorem of Cloud computing
in the presence of monotone adversary structure within Canetti’s
universally composable framework is presented and analyzed.

Our contribution possibly bridges security gaps between the industrial
views of Clouds and that of theoretical researchers.

1 Introduction

Cloud computing is a style of computing services over the Internet, usually at
the scale and with the reliability of a data center (say, [3], [12] and [11]). Cloud
computing is closely related to the notion of Grid computing. Grid interfaces tend
to be complete and try to expose a complete set of available system capability.
Cloud interfaces however, tend to be minimalistic and try to expose only a
limited set of capabilities so that is enough to process a given job. There are at
least two types of computing Clouds: the first category of computing Cloud is
designed to providing computing instances on demand, while the second category
of computing Cloud is designed to providing computing capacity on demand. As
an example of the first category of computing Cloud, Amazon’s EC2 service
provides computing instances on demand (say [1] and [2]). As an example of the
second category of computing Cloud, Google’s MapReduce application provides
computing capacity on demand [10]. Note that both computing clouds use similar
machines, but the first is designed to scale out by providing additional computing
instances, while the second is designed to support data or compute intensive
applications by scaling capacity.

It is certainly welcome to distinguish between private Clouds and public
Clouds. A private Cloud is designed to be used internally by a company or an
organization while a public Cloud is designed to provide Cloud-based services
to third party clients. For example, the Google file system [13], Mapreduce [10]
and BigTable [14] are examples of private Cloud services that are designed to
realize certain functionalities on demand by Google. Since private/public Cloud
services serve multiple customers, there are various issues related to multiple

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 638–643, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards a Theory of Universally Composable Cloud Computing 639

customers possibly sharing the same piece of hardware and software and hav-
ing data accessible by third parties, private/public Cloud services may present
security, compliance or regulatory issues. On the other side, there are economy
scale advantages when security related services are provided by data centers.

Security is an area of Cloud computing that presents some special challenges.
For Cloud computing applications, security is still somewhat immature. For
example, the first category of Cloud [1] and [2] and the second category of
Cloud [13], [10] and [14] do not support high-level security applications although
they are expected in later developments.

1.1 This Work

This paper towards a theory of Cloud in the universally composable framework in
the context of the standard multi-party computations. Firstly, various notions
of Clouds are introduced and formalized. Secondly, a universally composable
theorem of Cloud computing in the framework of Canetti is presented which is
informally stated below:

A universally composable Cloud computing theorem: Let A and B be monotone
adversary structures such that B � A. Let f and g be two n-party functions,
and ρ be an n-party protocol that non-adaptively and t-securely evaluates f
in the presence of adversary structure A. Let π be an n-party protocol that
non-adaptively and t-securely evaluates g in the f -hybrid model in the presence
of adversary structure B. Then the composed protocol πρ non-adaptively and
t-securely evaluates g in the adversary structure B.

1.2 Applications

Our result bridges security-related gaps between industrial views of clouds and
that from theoretical researchers. To demonstrate interesting applications of our
result, we consider the parallel computing of MapReduce over Clouds.

MapReduce is a simple yet powerful interface that enables automatic paral-
lelization and distribution of large-scale computations introduced and formalized
by Dean and Ghemawat [10]. MapReduce is a programming model and an associ-
ated implemenation for processing and generating large data sets. In MapReduce
model, users specify a map function that processes a key/value pair to generate a
set of intermediate key/value pairs, and reduce function merges all intermediate
values associated with the same intermediate key. Assume that the adversary
structure in the first map-and-reduce is A and the instance implementation is
secure against the adversarial structure A and in the second map-and-reduce is
B and the instance implementation is secure against the adversarial structure B,
then the composition of the two map-and-reduce computations should maintain
the security in the presence of the adversary structure B, where B � A.

Another example is Cloud-storage in the context of secure payment systems.
Note that a payment system cannot naturally be formulated as a computation of
a single function: what we want here is to continuously keep track of how much
money each player has available and avoid cases where for instances people spend

640 H. Zhu

more money than they have. Such a system should behave like a secure general
purpose computer: it can receive inputs from the players at several points in time
and each time it will produce results for each player computed in a specified way
from the current inputs and from previous stored values. A MapReduce com-
putation can easily produce list of transactions, with each transaction contains
payments of players. To maintain the security of transaction record in different
storages, the universally composable security is essential for such an application
environment.

2 A Formalization of Cloud and Cloud Computing

Secure Cloud computing can be viewed as an extension of classic secure com-
putations of any function in the computational setting by Yao [15], Goldreich,
Micali and Wigderson [8] and Goldreich, Micali and Wigderson [9] or informa-
tion theoretical setting by Ben-Or, Goldwasser and Wigderson [4] and Chaum,
Crépeau and Damg̊ard [7]. Any party in a protocol is formalized as an Interactive
Turing Machine (ITM). An ITM is a six-tape deterministic machine with a ready
only input tape, a ready-only random type, a read/write work tape, a read-only
communication tape, a write-only communication tape, and a write-only output
tape. The content of the input tape is called the input, and the content of the
output tape is called the output. The content of the read-only communication
tape is called the received messages and the content on the write-only commu-
nication tape is called sent messages. The infinite content of the random tape is
called the infinite unbiased coin tosses of the machine. Let I be a countable index
set. An ensemble indexed by I is a sequence of random variables X ={Xi}i∈I .
An ensemble X = {Xi}i∈I is polynomial time computable (or constructible) if
there exists a probabilistic polynomial time algorithm A so that for every i ∈ I,
the random variables A(1n) and Xn are identically distributed (notation: A(1n)
≡ Xn).

2.1 A Formalization of Cloud

Recall that the concept of Cloud computing refers to both applications delivered
as services over the Internet and the hardware and software in the data centers
that provide those services (hardware as a service and software as a service). We
view hardware and software of a data center as ITMs, and formalize notions of
Cloud and Cloud computing in the context of ITMs.

Let {Fi}∞i=1 be a set of functionalities provided by a service-center. Let F
= {Fi}∞i=1. Let {Ii}∞i=1 be a set of implementations of F . Let P be a set of
functionalities listed in a public bulletin board (a bulletin board is a read-only
public tape for all users. A service provider however can write strings on the
bulletin board). A functionality Fi is called public if Fi ∈ P . A functionality Fi

is called private if Fi ∈ F \ P .
We say a functionality Fi ∈ F is available if there exists an onto mapping φ

such that φ(Fi) ⊆ I. If an available functionality Fi ∈ P , we say Fi is publicly
available. If an available functionality Fi ∈ F\P , we say Fi is privately available.

Towards a Theory of Universally Composable Cloud Computing 641

Definition 1. Let F be a set of available functionalities {Fi}∞i=1. Let CF be a
set consisting of all pre-images of {φ−1(φ(Fi))} ⊆ I, where Fi ∈ F . We call CF
a Cloud. We say CF is a public Cloud if CF ={φ−1(φ(Fi))}, where Fi ∈ P. We
say CF is a private Cloud if CF ={φ−1(φ(Fi))}, where Fi ∈ F \ P.

Definition 2. If CF =I, we say the Cloud is complete; We refer to the comple-
mentary set I \ CF as the complementary Cloud, denoted by co-CF .

2.2 A Formalization of Cloud Computing

Throughout the paper, a Cloud CF refers to a publicly available Cloud. We
further assume that the publicly available Cloud CF is complete, i.e., CF=I.

The Cloud environment. In this section, a new notion which is called Cloud
environment Z is introduced and formalized. We model Z an environment where
all Cloud computing are executed. The environment Z includes external en-
vironment (e.g., a platform, data storage/backup systems and communication
channels for applications of the Cloud) and internal environment (e.g., software
and hardware in the data-center) of a Cloud. The Z communicates an proba-
bilistic polynomial time Turing Machine called adversary A during an execution
of a computation freely during the course of computation. The task of Cloud
environment Z is to provide inputs to all parties in the Cloud and instruct the
adversary A to communicate with the honest parties and coordinate with cor-
rupted parties in the protocol instances. The Cloud environment Z receives all
outputs of parties and will output its internal state eventually.

The monotone adversary structure. It is unknown to the honest players
which subset of players is corrupted during the course of Cloud computation.
We thus define an adversary structure A, which is simply a family of subsets
of players. The adversary structure could comprise all subsets with cardinality
less than some threshold value t (i.e., at most t parties can be corrupted by
the adversary A). Since in the Cloud computing environment, the adversary’s
structure can be different in the different Cloud environment, we must require
that any adversary structure is monotone.

Definition 3. Let A and B be two adversarial structures. We say B � A, if the
corrupted parties in B is a subset of A.

3 Universally Composable Cloud Computing

The universally composable framework defines a probabilistic polynomial time
(PPT) environment machine Z. Z oversees the execution of a protocol π in
the real world involving PPT parties and a real world adversary A and the
execution of a protocol in the ideal world involving dummy parties and an ideal
world adversary S (a simulator). In the real world, parties (some of them are
corrupted) interact with each other according to a specified protocol π. In the

642 H. Zhu

ideal world, dummy parties (some of them are corrupted) interact with an ideal
functionality F . The task of Z is to distinguish between two executions. We refer
to [6] for a detailed description of the executions, and definitions of IDEALF ,S,Z
and REALπ,A,Z .

Let π be a protocol with an PPT adversary A. Let t be the maximum num-
ber of parties A may non-adaptively corrupt (i.e., the adversary A may non-
adaptively corrupt parties as long as at most t parties are corrupted altogether).
Once a party is corrupted, the internal state of a corrupted party becomes avail-
able to the adversary.

Definition 4. Let f be a n-party function and π be a protocol for n-party. We
say that π is t-securely evaluates f if for any real world adversary A, there exists
an ideal world adversary S such that for any environment Z, the two random
variables IDEALf,S,Z and EXECπ,A,Z) are computationally indistinguishable.

Let A be an adversary that can only corrupt a subset of the players if that subset
is in A. Let A ∈ A, and B ⊆ A (hence B ∈ A). Let π be a protocol that realizes
a functionality F in the f -hybrid model. Let ρ be a protocol that universally
composably realizes the functionality f . By the definition of the UC-security,
there exists an ideal world adversary S such that REALρ,A,Z ≈ IDEALf,S,Z
and thus REALρ,B,Z ≈ IDEALf,S|B,Z , where the notion S|B means that the
simulator is restricted to the adversarial structure B. Without the loss of gen-
erality, we simple write S|B as S when the protocol execution is clear in the
context). If we assume that π realizes the functionality F in the f -hybrid model,
then there exists an ideal world such that REALπρ,B,Z ≈ IDEALFf ,S,Z . Roughly
speaking, if the first Cloud who invokes the protocol ρ securely computes the
functionality f and the second Cloud who invokes a protocol π securely com-
putes the functionality F in the f -hybrid model, then the combined protocol πρ

securely computes F . That is, by applying the standard universally composable
technique [5] and [6], we are able to show that

Theorem 1. LetA andB bemonotone adversary structures such thatB ⊆ A. Let f
and g be two n-party functions, and ρ be an n-party protocol that non-adaptively and
t-securely evaluates f in the presence of adversary structure A. Let π be an n-party
protocol that non-adaptively and t-securely evaluates g in the f -hybrid model in the
presence of adversary structure B. Then the composed protocol πρ non-adaptively
and t-securely evaluates g in the adversary structure B.

4 Conclusion

We have given various notions of clouds within the multi-party computation
framework and have shown a universally composable theorem for monotone
adversary structures for public Cloud computing. The result may bridge the
security-related gaps between industrial views of clouds and that of theoretical
researchers.

Towards a Theory of Universally Composable Cloud Computing 643

References

1. Amazon Elastic Compute Cloud, Amazon ec2 (2008)
2. Amazon Web Services Developer Connection (2008), aws.amazon.com
3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,

G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A
Berkeley View of Cloud Computing, Technical Report No. UCB/EECS-2009-28

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract). In:
STOC 1988, pp. 1–10 (1988)

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

6. Canetti, R.: A new paradigm for cryptographic protocols. In: FOCS 2001, pp.
136–145 (2001)

7. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty Unconditionally Secure Proto-
cols (Abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, p. 462.
Springer, Heidelberg (1988)

8. Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But their Va-
lidity and a Methodology of Cryptographic Protocol Design (Extended Abstract).
In: FOCS 1986, pp. 174–187 (1986)

9. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority. In: STOC 1987, pp.
218–229 (1987)

10. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

11. Grossman, R.L.: A Quick introdcution to Clouds, Technical report, University of
Illinois at Chicago (2008)

12. Grossman, R.L., Bennett, C., Seidman, J.: Creditstone: A benchmark for clouds
that provide on-demand capacity. Technical report, University of Illinois at Chicago
(2008)

13. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In: SOSP 2003:
Proceedings of the nineteenth ACM symposium on Operating systems principles,
pp. 29–43. ACM, New York (2003)

14. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. In: OSDI 2006: Seventh Symposium on Operating System Design
and Implementation (2006)

15. Yao, A.C.-C.: Protocols for Secure Computations (Extended Abstract). In: FOCS
1982, pp. 160–164 (1982)

aws.amazon.com

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 644–649, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Service-Oriented Qos-Assured and Multi-Agent
Cloud Computing Architecture

Bu-Qing Cao1,2,3,∗, Bing Li1,2, and Qi-Ming Xia1,2

1 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, 430072, China
2 School of Computer, Wuhan University, Wuhan, 430072, China

3 School of Computer Science and Engineering,
Hunan University of Science and technology, Xiangtan, 411201, China

cao6990050@163.com, bingli@whu.edu.cn

Abstract. The essence of Cloud Computing is to provide services by network.
As far as user are concerned, resources in the “Cloud” can be extended indefi-
nitely at any time, acquired at any time, used on-demand, and pay-per-use.
Combined with SOA and Multi-Agent technology, this paper propose a new
Service-Oriented QOS-Assured cloud computing architecture which include
physical device and virtual resource layer, cloud service provision layer, cloud
service management and multi-agent layer to support QOS-Assured cloud ser-
vice provision and request. At the same time, based on the proposed service-
oriented cloud computing architecture, realization process of cloud service is
simplified described.

Keywords: cloud computing; SOA; Multi-Agent; QOS-Assured; architecture.

1 Introduction

With the significant advances in Information and Communications Technology over
the last half century, there is an increasingly perceived vision that computing will be
the 5th utility one day (after water, electricity, gas, and telephony) [1].There are many
technologies which enable cloud computing are still evolving and progressing, for
example, Web2.0 and Service Oriented Computing [2].Now, IT companies are now
talking about establishment environments of cloud computing, however, if each com-
pany will build its own cloud computing platform, this will result in isolated cloud.
Therefore, it is especially important to design architecture for cloud computing. At
present, different manufacturers offer different design schemes, which result in read-
ers can’t entirely understand cloud computing principles. Combined with SOA and
Multi-Agent technology, this paper proposes a new Service-Oriented QOS-Assured
and Multi-Agent cloud computing architecture which includes physical device and
virtual resource layer, cloud service provision layer, cloud service management and
Multi-Agent layer to support QOS-Assured cloud service provision and request.

∗ Corresponding author. Tel.: +86-027-61304188 , fax: +86-027-68754590.

 A Service-Oriented Qos-Assured and Multi-Agent Cloud Computing Architecture 645

2 Service-Oriented Qos-Assured and Multi-Agent Cloud
Computing Architecture

This section firstly introduces SOA and Multi-agent technology; secondly, cloud service
Qos model is established according to the characteristic of cloud service consumer and
provider; finally, a Service-Oriented QOS-Assured and Multi-Agent cloud computing
architecture is designed to support QOS-Assured cloud service provision and request.

2.1 SOA and Multi-Agent Technology

There are advantages for service management and architect-driven concept in the
SOA [3-6].Currently, cloud computing technology has hardly any service manage-
ment and architect-driven concept. Therefore, many companies choose to wait-and-
see attitude rather than rush to adopt it. So, the idea of service management and archi-
tect-driven can be applied to cloud computing. By this, cloud computing can be seen
an extension which SOA provides resources to “cloud”, such as, IaaS, PaaS, SaaS,
and its key is to determine which cloud services, information and processes on the
cloud is the best candidate, and which cloud services should be abstracted in the exist-
ing or emerging SOA.

Software agent is a software entity which runs continuous and independent in a
given environment, usually combined other agents with solving problem [7]. Multi-
Agent system has been increasingly attracted to researchers in various fields, particu-
larly in the network environment, agent can be used to complete complex task by
communicating with many resources and task publishers. Cloud computing refers to
both the applications delivered as services over internet and hardware and systems
software in the datacenters[8], and it provides a variety of resources, such as network,
storage, computing resources to users adopted by IaaS, PaaS, SaaS and other forms of
service. These resources are vast, heterogeneous, distributed; it is very important how
to provide them to users with high-quality, validity. Described by the above, agent
can be used to complete complex task by communicating with many resources and
task publishers. So, it can be used in service-oriented cloud computing architecture to
support QOS-Assured cloud service provision and request.

2.2 Cloud Service Qos Model

There have many related research work on QOS, but QOS mentioned in many articles
mentioned only relate to consumers. Taking into account strong background resource
process and service provision capabilities, this paper considers all related QOS attrib-
utes of cloud service consumer and cloud service providers. As far as cloud service
providers, cloud service Qos provided by the physical device and virtual resources
layer mainly focus on data center’s performance, reliability, stability; cloud service
Qos provided by Iaas likely emphasize on response time, resource utilization, and
prices, and so on. As far as cloud service consumers, they are very important, such as,
response time, price, availability, reliability, reputation, and they can also be provided
by the service provider. Thus, considering Qos of cloud services providers and
consumers, the most common attributes of Qos will be illustrated as follows and other
attributes can be extended according to different service form.

646 B.-Q. Cao, B. Li, and Q.-M. Xia

Definition 1 CloudServiceQOSresponsetime(S). It represents the interval from the re-
quirement sending of cloud service consumers to cloud service implements competi-
tion, which is calculated as follows:

CloudServiceQOSresponsetime(S)=Timetransfers(S)+Timerun(S). (1)

Among this, Timetransfers(S) on behalf of the transmission time form requirement sending
to results return and it can be gained by cloud service monitor; Time run(S) represent
cloud service implements time and it also can be obtained by cloud service monitor.

Definition 2 CloudServiceQOScost(S). It represents fees paid when customer use
service provided by cloud service provider, that is, pay-per-use, and it can be realized
by cloud service meterage.

Definition 3 CloudServiceQOSavailability(S). It represents that the probability of cloud
services can be accessed, which is calculated as follows:

CloudServiceQOSavailability(S) =A/N. (2)

Among this, N express the request times that consumer want to use cloud service S
during a certain period of time; A express the accessible times of cloud service S.

Definition 4 CloudServiceQOSreliability (S). It show the capacity that cloud service
accurately implements its function and the times of validation and invalidation can be
acquired by cloud service monitor, which is calculated as follows:

CloudServiceQOSreliability (S)=R/M. (3)

Among this,R express the times of called and successful implements of the cloud
service S; M on behalf of the total called times of the cloud service S.

Definition 5 CloudServiceQOSreputation(S). It expresses the creditability of cloud
services. Reputation can be seen as the sum of subjective customer’s rating and
objective QoS advertising messages credibility (CoWS) (based on the Bayes learning
theory),in order to reduce the impact of malicious rating[9], which is calculated as
follows:

CloudServiceQOSreputation(S)= i=1

α β× ×∑
n

（ Rat i ng）/ n+ coWS
.

(4)

Thus, according to above given definition of cloud services related Qos, an integrated
Qos model of cloud service S can be expressed as follows:

CloudServiceQOS(S)=W1 |CloudServiceQOSresponsetime(S)|+W2
|CloudServiceQOScost(S)|+ W3 CloudServiceQOSavailability(S)+ W4 CloudSer-

viceQOSreliability (S) +W5 CloudServiceQOSreputation(S)
(5)

Here， iW ∈[0,1]， 5

i

i = 1

= 1W∑ ，Wi express the weight of corresponding Qos i and its

value can be set according to user preferences, for example, user preferences is lower
prices and faster response time in an air ticket booking service, thus, the values of W1

and W2 can be set to bigger. |CloudServiceQOSresponsetime (S) | expressed QOS
attributes dimensionless or normalized process. Specific dimensionless process
method does not belong to the scope of this study. This model sustain the extension of

 A Service-Oriented Qos-Assured and Multi-Agent Cloud Computing Architecture 647

QOS attributes, that is can add or remove QOS attributes according to specific situa-
tion, to support QOS-assured cloud service acquired at any time, used on-demand,
pay-per-use and extended indefinitely.

2.3 Service-Oriented QOS-Assured and Multi-Agent Cloud Computing
Architecture

Figure1 shows a Service-Oriented QOS-Assured and Multi-Agent cloud computing
architecture which includes physical device and virtual resource layer, cloud service
provision layer, cloud service management and Multi-Agent layer, to support QOS-
Assured cloud service provision and request.

Saas (Asp, SalesForce)

Paas (Google App Engine, 10gen)

Iaas (Amazon S3,EC2)

Virtual resources

Physical device

Computation
resource

Computation
resource

Storage
resource
Storage
resource

Network
resource
Network
resource

Cloud requirementCloud requirement

Agent
ManagerRequestor

Agent
Cloud service

Qos Agent
Service Interface

Service repertory
Service description

Service category…

Service repertory
Service description

Service category…

Cloud requirementCloud requirement

Service Interface
Provider

Agent
Cloud service

Qos Agent
Agent

Manager

Cloud provisionCloud provision Cloud provisionCloud provision

Service
aggregate
Service
aggregate

Service
monitor
Service
monitor

Service
deploy
Service
deploy

Service
meterage
Service
meterage

Service
security
Service
security

Qos
manage

Fig. 1. Service-Oriented and Multi-Agent Cloud Computing Architecture

1) Physical Device and Virtual Resource Layer
Physical resources is all kinds of physical equipment which support upper services of
cloud computing, such as a large number of servers in data center, network equip-
ment, storage equipment and so on. Cloud computing is a shared-resource computing
method by the form of virtualization. Here, physical resources can be converted into
various resources, such as computing resources, storage resources, network resources
by virtualization technology, then they can be connected together to form a flexible,
unified resources pool in order to dynamically allocated to different applications and
service requirement, thereby improve resources utilization rate.

2) Cloud Service Provision Layer
Cloud service provision layer can provide some forms of services by functions com-
position provided by physical device and virtual resource layer. The forms of service

648 B.-Q. Cao, B. Li, and Q.-M. Xia

that cloud computing provides today may be broken down into managed services,
SaaS, Web services, utility computing, and PaaS. Figure 1 shows a concentrated ser-
vices view of cloud computing, including Iaas, Paas, and Saas, which provide IT
service capabilities to users.

3) Cloud Service Manager and Multi-Agent Layer
Cloud service manager and multi-agent layer mostly manages a variety of services pro-
vided by cloud service provision layer and finds QOS-assured cloud service in service
repertory according to user’s cloud service requirement. As shown in Figure 1, cloud
services management which includes service repertory, service interface, service aggre-
gate, service monitor, service deploy, service meterage, service security, QOS manage.
Among them, service repertory similar to UDDI in the SOA, which includes service
description, service category, and so on. Service description represents service func-
tional and non-functional information, such as service names, response time, and so on;
service category represents service type provided by cloud service provision layer, such
as IaaS, Saas, Paas; service interface represents access interface according to services
types, for example, Remote Desktop for IaaS, API for PaaS, web services for SaaS;
service aggregate represents that new services can be created based on existing services;
service monitor represents monitor and alarm according to health status of the services
and automatically correct abnormity state of services; service deploy represents auto-
matically deploy and configure specific services examples according to users require-
ments; service meterage represents cloud services, similar to water, electricity and gas,
which are available and pay on-demand by the user; service security represents provide
authorization control, trust management, auditing, consistency check for cloud services;
QOS manage represents that manage cloud service Qos model which select, calculate
and dimensionless process Qos attributes and described in section2.2, at the same time,
sustain the extension of QOS attributes, that is can add or remove QOS attributes ac-
cording to specific situation, to support QOS-assured cloud service acquired at any time,
used on-demand, pay-per-use and extended indefinitely, and return the best expected
cloud service to user.

Cloud multi-agent management which includes cloud service requestor agent, cloud
service QOS agent, cloud service provider agent and agent manager, and it is mainly
support QOS-assured cloud service provision and request. Cloud services requester is
no longer direct visit cloud service but commit to requestor agent, who mainly collects
feedback information of request and submits cloud service request based on QOS. Simi-
larly, Cloud services provider is no longer direct publish services but commit to pro-
vider agent, who mainly collects cloud service use information and publishes cloud
service. Cloud service QOS agent primarily submits cloud services QOS information.
Agent manager primarily manages various managers, such as new, recovery operation.

Thus, the process of cloud service provision can be described: First of all, Cloud
service provision layer can provide various cloud service to agent manager and then
establish provider agent and cloud service QOS agent. Secondly, service function
information, such as service description, service category, which can be standardized
by service interface, will be submitted to service repertory by provider agent. At the
same time, service QOS information, such as, response time, cost, which can be stan-
dardized by service interface, will be submitted to service repertory by cloud service
QOS agent. The process of cloud service request is the same to the process of cloud
service provision.

 A Service-Oriented Qos-Assured and Multi-Agent Cloud Computing Architecture 649

4 Conclusion and Future Work

This paper proposes a new Service-Oriented QOS-Assured and Multi-Agent cloud
computing architecture to support QOS-Assured cloud service provision and request.
There are research challenges in the future for cloud computing that make use of open
standards and architecture to allow different clouds for interoperability. Next research
work will focus on cloud services interoperability research.

Acknowledgement

This work is supported by National Basic Research Program (973) of China
under grant No. 2007CB310801, National High Technology Research and Develop-
ment Program (863) of China under grant No. 2006AA04Z156, National Natural
Science Foundation of China under grant No. 60873083 and 60803025, Research
Fund for the Doctoral Program of Higher Education of China under grant No.
20070486065,National Science Foundation of Hubei Province for Distinguished
Young Scholars under grant No.2008CDB351 and National Science Foundation of
Hubei Province under grant No.2008ABA379.

References

1. Buyya, R., et al.: Cloud Computing and Emerging IT Platforms: Vision, Hype, and Reality
for Delivering Computing as the 5th Utility. Future Generation Computer Systems 25(6),
599–616 (2009)

2. Wang, L., von Laszewski, G.: Cloud Computing: a Perspective Study
3. Toward a service-oriented analysis and design methodology for software product lines,
 http://www.ibm.com/developerworks/webservices/library/
 ar-soaspl/

4. Vouk, M.A.: Cloud Computing-Issues, Research and Implementations. In: ITI 2008, Cavtat,
Croatia (2008)

5. de Leusse, P.: Secure & Rapid composition of infrastructure services in the Cloud. In: The
Second International Conference on Sensor Technologies and Applications, Cap Esterel,
France (August 2008)

6. van der Burg, S., Dolstra, E.: Software Deployment in a Dynamic Cloud: From Device to
Service Orientation in a Hospital Environment. In: ICSE CLOUD 2009, Vancouver, Can-
ada, May 23 (2009)

7. Adshaw, J.M.: An Introduction to Software Agents. In: Bradshaw, J.M. (ed.) Software
Agents, pp. 3–46. AAAI Press, Menlo Park (1997)

8. Armbrust, M.: Above the Clouds: A Berkeley View of Cloud Computing, EECS Depart-
ment, University of California, Berkeley (2009)

9. Li, Z., Su, S., Yang, F.C.: WSrep: A novel reputation model for web services selection. In:
Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS
(LNAI), vol. 4496, pp. 199–208. Springer, Heidelberg (2007)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 650–655, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Price-Oriented Trading Optimization for Grid Resource

Hao Li, Guo Tang, Wei Guo, Changyan Sun, and Shaowen Yao

School of Software, Yunnan University, Kunming, China
Lihao707@ynu.edu.cn, tangguo001@gmail.com,

guoweisiwin@126.com, 1200701576@mail.ynu.edu.cn,
yaosw@ynu.edu.cn

Abstract. The resources in the Grid are heterogeneous and geographically
distributed. Availability, usage and cost policies vary depending on the par-
ticular user, time, priorities and goals. Quality of service (QoS) in grid cannot
be guaranteed. This article proposes a computational economy as an effective
metaphor for the management of resources and application scheduling. It
proposes a QoS-based grid banking model. The model is divided into the ap-
plication-layer, virtual organization (VO) layer, and the physical resources and
facilities layer. At each layer, the consumer agent, service agent, and resource
provider agent optimize the multi-dimensionality QoS resources respectively.
The optimization is under the framework of the grid banking model and the
hierarchical constraints in their respective conditions so that it can maximize
the function. The optimization algorithm is price-oriented constant iteration at
all levels.

Keywords: Grid banking model,QoS,price,optimization, hierarchical structure.

1 Introduction

In recent years, Globus league brought forward the Open Grid Services Architecture
(OGSA) at the OGF(Open Grid Forum) in 2002, and proposed WSRF (Web Services
Resource Framework) join IBM in 2004, it makes grid services studies become a
hotspot. QoS, which is the primary objective of the Service Grid study, has become the
focus in grid. "To provide the extraordinary QoS"[1] is one of the three criteria to
determine whether it is the grid or not.

At present, the implementations of the network infrastructure is set up on the basis of
“try one’s best”. Therefore, it cannot guarantee the QoS, especially in grid. It proposed
and set up a bank under the grid structure of the model-level QoS based on different
objects needs of QoS parameters on the classification at different aspects of QoS de-
scription in this paper.

This paper is organized as follows: In Section 2, we describe previous works re-
garding grid QoS. In section 3, we introduce the architecture of QoS-based grid
banking model. In section 4, we analyze optimization solutions in detail under banking
model. In section 5, we generate an algorithm. Finally, we conclude the paper in
section 6.

 Price-Oriented Trading Optimization for Grid Resource 651

2 Research of Grid QoS

There are some available methods which can provide QoS on the Internet. For example:
DiffServ (differentiated services), which gather the quality of the provision of specific
scheduling services on the border of the network. RSVP (Resource Reserve Protocol)
,which reserve part of network resources (i.e. bandwidth), for the transmission of
streaming media.GARA[2] (General-purpose Architecture for Reservation and Alloca-
tion), which providing advanced and immediate reservation through a unified interface.
G-QoSM (Grid QoS Management Architecture),it is an adaptive resource reservation and
the QoS management architecture in OGSA grid environment.

Buyya, from an economic point of view, put forward GRACE (Grid Architecture for
Computational Economy) [3]. GRACE mainly considerate the deadline and budget
constraints, it can control the allocation of resources, supply and demand of resources
effectively. More literature [4-6] applied to put the principles of economics in grid
resource scheduling and optimization.

3 QoS-Based Grid Banking Model

A grid banking is a grid mechanism after reference the economy grid [3], through
simulating the bank's business process. Buyya mentioned QBank and GBank in the
GRACE, but it is only used to account. In [7], grid environment can be divided into
three roles: Grid Resources Consumer, Grid Bank, and Grid Service Provider.

We make a number of improvements in this paper and refine the function of grid
banks. We use the Grid Dollar to quantify the parameters of the grid resources, in the
meantime, we consider supply and demand of grid resources, using price leverage to
allocate resources in the market. Fig 1 shows the Grid Bank model and its interaction.

The resources consumer agent deals with interactive business between resource users
and internal part of the grid bank in application layer. The QoS requirements put forward
by the consumer agent will be mapped to a particular type of grid QoS by the service
agent in VO layer and it will be provided to the appropriate sub-agents. At physical re-
sources and facilities layer, the resources provider agent captures the various QoS at-
tributes to support the various types of QoS from VO layer. When trading occurs, the
whole process is organized by the three types of agents under the coordination from the
banking model. Resource provider agent acts on behalf of the potential resources’ eco-
nomic interests of the physical resources and facilities layer; the consumer agent acts

Resource Provider Agent
Computing resource

provider agent
Storage resource
provider agent

Network resource
provider agent

Service Agent
Computing resources agent Network resource agentStorage resource agent

Overall Allocation of Resources

C
om

m
unications and security

Q
oS R

equerm
ent

 Resources Consumer AgentApplication
Layer

VO Layer

Physical resources
and facilities layer

Fig. 1. Grid bank model and its interaction

652 H. Li et al.

on behalf of consumers who use the grid to achieve the interests in application layer; the
service agent in the VO layer not only acts as a resources buyer from the aspect of re-
source provider agent, but also acts as a seller from the consumer agent. The three types
of agents interact through the operation of the market mechanism. The object of market
behavior is to pursuit its own interests in economic field. The supply and demand situa-
tion in grid market will be reflected in the price fluctuations.

In market economy, there are multiple service agents in consultation with the con-
sumer agents at the same time. Grid resource scheduler adapt price-oriented algorithm
in the model. The main function of the model is to inquiry the appropriate services,
which meet the QoS standards, manage local and remote resources, complete the
transaction, combine and match resources in a distributed environment.

4 Optimization Solutions

QoS must be distinguished among levels because there are different representations
of QoS at different levels [8]. Li Chunlin, who put forward a three-dimensional
(cost, time, reliability) QoS formula, it optimized the task agent and resource agent
respectively [9-11]. In this paper, the quantitative dimensions have been expanded.

Table 1. The system parameters for the algorithm

Parameter Description

zi
l

computing resource prices obtained by service agent i from the computing
resource provider agent l

yi
k

network resource prices obtained by service agent i from the network resource
provider agent k

xi
j

storage resource prices obtained by service agent i get from the storage re-
source provider agent j

pxi
j prices of storage resource i provided by storage resource provider agent j

pyi
k prices of network resource i provided by network resource provider agent k

pzi
l prices of processor resource i provided by processor resource provider agent l

Si capacity of service agent i
SCj capacity of storage resource agent j
NCk capacity of network resource agent k
PCl capacity of processor resource agent l
Tm time limits given by the resource consumer agent m to complete its all jobs
SPi

j the payments of the service agent i to the storage resource provider j
NPi

k the payments of the service agent i to the network resource provider k
PPi

l the payments of the service agent i to processor resource provider l
Em the budget of resource consumer agent m
SEi the budget of service agent i
vm

i the service sold to resource consumer agent m by service provider i
APm

i the payments of resource consumer agen m to the service provider i
LSi delay limit of storage resource required by sevice agent i
LNi delay limit of network resource required by sevice agent i
LPi delay limit of proceding resource required by sevice agent i
ADi total composite service delay=LSi+LNi+LPi
GTm

n total service requirement of resource consumer agen m’s nth job.

 Price-Oriented Trading Optimization for Grid Resource 653

Express the QoS needs more careful at different levels and interaction between those
levels. Table 1 shows the symbol in this paper.

The ultimate goal of optimization is maximize UGrid(Qglobal), at the limit of respective
conditions at three levels [11].

i
l

l
i

k

k
i

j

j
im

i

i
mi

N

n

n
m

i
i

l
ii

k

k
ii

j

j
ij

i

j
ik

i

k
il

i

l
i

i
m

m

i
m

l
i

l
i

k
i

k
i

j
i

j
iglobalGrid

SEPPNPSP，EAP，Tt

LPPD，LNBD，LSSD，SCx，NCy，PCzts

f

g
vAPzPPyNPxSPQMaxU

≤++≤≤

≤≤≤≤≤≤

++++=

∑∑∑∑∑

∑∑∑∑∑∑

∑∑

=1

,..

log)logloglog()(

Lagrange method is introduced to solve this problem in this paper, according to the
ultimate goal to be achieved, Lagrangian function is constructed as follows:

.)()(log

))(()logloglog(

1 f

g
tTAPEvAP

PPNPSPSEzPPyNPxSPL

N

n

n
mi

i

i
mm

i
m

m

i
m

l

l
i

k

k
i

j

j
ii

l
i

l
i

k
i

k
i

j
i

j
i

+−+−++

++−+++=

∑∑∑

∑∑∑∑

=
γβ

λ

Where λ, β, γ is the Lagrange multipliers, to solve (1) directly is very difficult, and the
maximum of the Lagrange problem can be decomposed into three questions at dif-
ferent layer:

()

...

,..

log

..logloglog

11
3

2

1

m
i

i
mi

N

n

n
m

N

n

n
mi

i

i
mm

m
i

i
mi

i

l
ii

k

k
ii

j

j
i

i
m

m

i
m

l

l
i

k

k
i

j

j
ii

j
i

j
ik

i

k
il

i

l
i

l
i

l
i

k
i

k
i

j
i

j
i

EAP，TttstTAPEMaxF

SvLPPD，LNBD，LSSDts

f

g
vAPPPNPSPSEMaxF

SCx，NCy，PCztszPPyNPxSPMaxF

≤≤
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ −+⎟
⎠

⎞
⎜
⎝

⎛ −=

≤≤≤≤

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=

≤≤≤++=

∑∑∑∑

∑∑∑∑

∑∑∑∑

∑∑∑∑

==

(2)

Physical resources and facilities layer is to resolve F1 with constraint conditions in

(2). we get Lagrangian function [10]:

() ()
() .logloglog

logloglog,,

lkj
l
i

k
i

j
i

l
i

l
i

k
i

k
i

k
i

j
i

i

l
il

i

k
ik

i

j
ij

l
i

l
i

k
i

k
i

k
i

j
i

l
i

k
i

j
iphy

PCNCSCzyxzPPyNPxSP

zPCyNCxSCzPPyNPxSPzyxL

γβλγβλ

γβλ

+++−−−++=

⎟
⎠

⎞
⎜
⎝

⎛ −+⎟
⎠

⎞
⎜
⎝

⎛ −+⎟
⎠

⎞
⎜
⎝

⎛ −+++=

∑

∑∑∑∑
 (3)

VO layer must resolve F2 with constraint conditions in (2). According to service agent
acting roles: consumer to the physical layer, provider to application layer, the corre-
sponding Lagrange can break down into the following two functions [10] :

;

1_

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−−−=

⎟
⎠

⎞
⎜
⎝

⎛ −+⎟
⎠

⎞
⎜
⎝

⎛ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−−=

∑∑∑∑∑∑

∑∑∑∑∑∑

i l
l

i

l
i

k k
k

i

k
i

j j
j

i

j
i

l

l
i

k

k
i

j

j
ii

i

l
ii

k

k
ii

j

j
ii

l

l
i

k

k
i

j

j
iiVO

PCPP

pz
LP

NCNP

py
LN

SCSP

px
LSPPNPSPSE

PDLPNDLNSDLSPPNPSPSEL

βηλ

βηλ

(4)

.log2_ ⎟
⎠

⎞
⎜
⎝

⎛ −++= ∑∑
m

i
mi

i
m

m

i
mVO vS

f

g
vAPL δ

(5)

Application layer is to resolve F3 with constrained conditions in (2). Where tm

n is the
time of the grid resource consumer agent m for the nth job, in order to simplify the

study, assume)./()(/ i
miimn

i
mmn

n
m APSpsGTvGTt ••== Combined with its constraints, con-

struct Lagrange function of consumer agent as follows:

(1)

654 H. Li et al.

() ⎟
⎠

⎞
⎜
⎝

⎛ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
•

•
−+⎟

⎠

⎞
⎜
⎝

⎛ −= ∑∑∑
==

N

n

n
mm

N

n
i

mi

imn
m

i

i
mm

i
mAPP tT

APS

psGT
TAPEAPL

11

λ

(6)

5 Algorithm Implementation

This algorithm has been modified and expanded on the basis of literature [10, 11]. It
calculated out the price expressed, finally, the feedback is outputted to other relevant
agents. Continuous iterative process is repeated until all participants have reached a
common solution. The price iteration algorithm described as follows:

5.1 Resource Provider Agent

1. To receive xi
j(n), xi

k(n),xi
l(n) from service agent;

2. To maximize F1 in (2), according (3), computing

∑∑∑
===

•
=

•
=

•
=

n

i

l
i

l
l

il
in

i

k
i

k
k

ik
in

i

j
i

j
j

ij
i

PP

PCPP
z；

NP

BCNP
y；

SP

SCSP
x

1

*

1

*

1

*

3.Calculate new price of storage resource j [10]：)}(,max{ *)()1(

j
i

j
i

nj
i

nj
i SCxpxpx −+= ∑+ ηε

(Note: 0>η , it is a smaller step size of price, n is the number of iterations, ε is a
protected price after considering the cost of a variety of revenue. This formula can
ensure the largest benefit of the resource provider agent.)
New price of network resource k:)}(,max{ *)()1(

k
i

k
i

nk
i

nk
i NCypypy −+= ∑+ ηε ;

New price of computing resource l:)}(,max{ *)()1(
l

i

l
i

nl
i

nl
i PCzpzpz −+= ∑+ ηε ;

4. Return to the storage resource agent:pxi

j(n+1); Return to the network resource agent:
pyi

k(n+1);Return to the computing resource agent: pzi
l(n+1).

5.2 Service Agent

1. To receive demand vm
i from consumer agent m;

2. Maximize LVO_2 in (5), calculates: ∑•=
m

i
ki

i
m

i
m APSAPv /*

3. Calculate new services prices, return psi
(n+1) to all consumer agent;

)}(max{ *)()1(
i

m

i
m

n
i

n
i Svpsps −+= ∑+ ηε　，

;
4. Receive the new price pxi

j(n) , pxi
k(n), pxi

l(n); Maximize of LVO_1 in (4), calculate

i

l j

l

j

ll
i

i

k j

k

j

kj
i

i

j j

j

j

jj
i LP

PC
pz

PC

pz
PP

LN

NC
py

NC

py
SP

LS

SC
px

SC

px
SP

∑∑∑ ⎟
⎠
⎞

⎜
⎝
⎛

•⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛

•⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛

•⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2

1

2

1

*

2

1

2

1

*

2

1

2

1

* ,,

5.Calculate:)()(*)1(/ nj
i

nj
i

nj
i pxSPx =+ ;)()(*)1(/ nk

i
nk

i
nk

i pxNPx =+ ;)()(*)1(/ nl
i

nl
i

nl
i pzPPz =+ ;

6. Return the new price xi
j(n+1), xi

k(n+1), xi
l(n+1) to the resource provider agent.

5.3 Consumer Resources Agent

1. To receive psi
(n) from service agent i;

2. Maximize F3 in (2), according (6),calculate [10]

 Price-Oriented Trading Optimization for Grid Resource 655

m

N

n i

imn

i

imni
m T

S

psGT

S

psGT
AP

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ •

•⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ •
= 1

2
1

2
1

* ;

3. Calculate the demand of services:
)()(*)1(/ n

i
ni

m
ni

m psAPv =+
;

Return vm
i(n+1)to the service agent i.

6 Summary

Based on the research of existing grid QoS, by using hierarchical thinking, we put
forward the QoS-based grid bank model, and the model is divided into three layers.
Three types of agent optimize resource among the layers and the interaction between
the various agents may be done through the SLA. Optimization algorithm is based on
the principle of economic. Continuous iterative process is repeated until all partici-
pants have reached a common solution.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China (Grant No.60763008) and the Science and Engineering Foundation of
Yunnan University (2008YB014).

References

1. Foster, I.: The Grid: Blueprint for a New Computing Infrastructure (1999)
2. Foster, I., Roy, A., Sander, V.: A Quality of Service Architecture that Combines Resource

Reservation and Application Adaptation. In: Proceedings of the Eight International Work-
shop on Quality of Service, pp. 181–188 (June 2000)

3. Buyya, R.: Economic-based distributed resource management and scheduling for Grid
computing, Doctor’S Thesis, Monash University (2002)

4. Subramoniam, K., Maheswaran, M., Toulouse, M.: Towards a micro-economic model for
resource allocation in Grid computing systems. In: Proceedings of the 2002 IEEE Canadian
Conference on Electrical & Computer Engineering (2002)

5. Stuer, G., Vanmechelen, K., Broeckhove, J.: A commodity market algorithm for pricing
substitutable Grid resources. Future Generation Computer Systems 23, 688–701 (2007)

6. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing Market-based Resource Allocation
Strategies for the Computational Grid. International Journal of High-performance Com-
puting Applications 15 (Fall 2001)

7. Li, H., Zhong, Y., Lu, J., Zhang, X., Yao, S.: A Banking Based Grid Recourse Allocation
Scheduling. In: GPC Workshops (2008)

8. Kenyon, C.: Architecture Requirements for Commercializing Grid Resources. In: Pro-
ceeding of the 11th IEEE International Symposium on High Performance Distributed
Computing (HPDC) (2002)

9. Chunlin, L., Layuan, L.: A distributed multiple dimensional QoS constrained. Journal of
Computer and System Sciences (72), 706–726 (2006)

10. Chunlin, L., Layuan, L.: Cross-layer optimization policy for QoS scheduling in computa-
tional grid. Journal of Network and Computer Applications 31, 258–284 (2008)

11. Chunlin, L., Layuan, L.: QoS based resource scheduling by computational economy in
computational grid. Information Processing Letters, 98, 116–126 (2006)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 656–661, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Requirements Recommendation Method Based on
Service Description

Da Ning and Rong Peng

State Key Lab. Of Software Engineering, Wuhan University, Wuhan, China
ningdadh@163.com, rongpeng@sklse.org

Abstract. The development of Service oriented architecture (SOA) has brought
new opportunities to requirements engineering. How to utilize existing services
to guide the requestors to express their requirements accurately and completely
becomes a new hotspot. In this paper, a requirements recommendation method
based on service description was proposed. It can find web services correspond-
ing to user’s initial requirements, establish the association relationship between
user’s requirements and service functions, and in turn, recommend the associ-
ated service’s functions to the requestor and assist him to express requirements
accurately and completely. The effectiveness of this method is evaluated and
demonstrated by a case-study in travel planning system.

Keywords: SOA; service description; service functions; requirements recom-
mendation.

1 Introduction

SOA (Service-Oriented Architecture) has become a popular framework for software
design. The independence of services in SOA allows different providers to provide
different business functions according to their own specialty. Service requestors can
select the services provided by various providers according to their own preferences.
SOA doesn’t only change the way how software is designed, implemented, deployed
and utilized, but also provides a new way to satisfy user’s requirements. In SOC
(Service-Oriented Computing), using the existing services to satisfy user’s real-time
requirements has been considered as the first choice [1, 2]. Only when the needed
service doesn’t exist, a new development will start.

From another point of view, the initial requirements description proposed by users
always has some fuzziness or ambiguity. Their target is not really very clear. So it can
be adjusted or complemented according to the similar functions which can be sup-
plied by existing services. In this paper, the emphasis is placed on how to assist re-
questors to express their requirements accurately and practically through utilizing the
existing services. It is organized as follows: Session 2 discusses the related work; a
framework based on service description for requirement recommendation is given in
Session 3; and a requirement recommendation algorithm is presented in Session 4;
Session 5 gives an experimental example; Session 6 is the conclusion.

 A Requirements Recommendation Method Based on Service Description 657

2 Related Work

In SoC, demand-driven service discovery [3] method has already existed. On the one
hand, researchers have tried to improve the existing requirements elicitation approach
according to service feature [5], making requirements elicited hold the service spe-
cific features such as QoS to facilitate the service matching. On the other hand, they
try to enhance the service semantic description capability to fill the gap between the
requirements and service description [4, 6].

Andreas, et al, present an alignment method between business requirement and
service by using the model comparison techniques [4]. But how to automatically gen-
erate the Tropos goal model of requirements and services is the bottleneck. Haus-
mann, et al, present a model-based service discovery method [6], which utilizes soft-
ware models and graph transformations to describe the service semantics. It is well
known that modeling is a difficult task for both service providers and service request-
ors. Whatever the automated requirement modeling tool or service semantic modeling
tool is hard to practice. Thus, in this paper, we presents a service requirement recom-
mendation method based on the concept of the initial keywords description of user’s
requirement and service description, establishing the association between them by
similarity calculation. And then, guide the user to modify and perfect the requirement
expression according to the existing services’ functions.

3 Recommending Requirements Framework Based on WSDL

As it is well known, web services often use WSDL/OWL-S to encapsulate the de-
scription of service, which is regarded as the information source for requirement rec-
ommendation. The recommendation framework is shown in Figure 1.

In the framework, user is regarded as service requestor, using the requirement
template of the requirement elicitation platform SklseWiki [7] to present the initial
requirement. And then, the keywords of the requirement are extracted to facilitate
service matching. Varieties of service registrations, such as Seekda, include a large
amount of web service using WSDL to describe its functions. The service semantics

Fig. 1. A requirement recommendation framework based on service description

658 D. Ning and R. Peng

represented by functional keywords will be analyzed by the service function extractor
according to the WSDL description. After the similarity calculation between the key-
words, the most suitable services will be found out, and the related recommendations
can be given to guide the requestor’s expression.

4 Automatic Service Requirements Recommendation

The automatic service requirements recommendation method consists of following
three steps.

4.1 The Keywords of Initial Requirement Extracting

The user’s requirements are captured by the Sklsewiki platform [7] (see Figure 2).
The requirement is described according to various templates. In this method, we
mainly concern functional requirements template, which is described as follows:

FuncTemplate= {reqDesc, funcName, roleSet, subFuncSet, keywordSet}
reqDesc: describing the user’s original requirements, for instance, “The system

should be able to provide the function of travel planning. It should be able to book
flights, hotels and cars for vacations.”

funcName: the function name extracted from user’s requirements, for example, the
above requirements can be named as “Provide TripPlan”.

roleSet: the roles corresponding to requirements, such as traveler.
subFuncSet: sub functions resolved from the initial requirements, such as “Book

Flights”, “Book Hotel” and “Book Cars” .
keywordSet: keywords description for the original requirement. This element is a

connection hub between the service requestors and service providers. The user may
further describe requirements by using the keywords such as TravelPlanning, Book-
Flights, BookHotel, etc.

4.2 Service Functions Extracting

We only considered the service described by WSDL. It can be regarded as the follow-
ing five-tuple.

SERVICE = {types, message, portType, binding, service}

In which, portType is responsible for defining the operation executed in service,

which is similar to the function、module or class in traditional programming lan-
guage. The element portType is defined as follows:

<portType name=“port name”>
 …

 <operation name=“operation nameN”>
 <input message=“operation input”>
 <output message=“operation output”>
 </operation>

 …
</portType>

 A Requirements Recommendation Method Based on Service Description 659

Through traversing sub-element <operation> of <portType>, extracting each opera-
tion name, we will obtain an operational set S = (operation1, operation2, ... , opera-
tionN), which is used to express all the functions each service can provide.

4.3 Automatic Service Requirements Recommendation

Requirement recommendation algorithm based on service description aims to query
service resource repository according to user’s initial requirement. And then, find out
his genuine requirement by the matched service.

Assumption: Traversing the services registered in the repository, and building a
service function set {Fs}, the Fsi denotes the i-th service function set.

Algorithm ServAutoMatch({Req}):
1) Establishing user’s requirement function set {Fu} according to the keywords

description of initial requirement Req;
2) Compared each item of {Fu} with that of {Fs}(see the similarity calculation

method in [8]);
a) if {Fu}={Fsi}, then return entire service to the user as well as record the

corresponding relation between the requirement and service, goto 3;
b) else if {Fu} ⊂ {Fsi}, then record the functions in {Fsi}-{Fu} as a rec-

ommendation set and the service matched to the requirement;
c) else if {Fu} ⊃ {Fsi}, then record the service matched to the requirement

and call ServAutoMatch({Fu}-{Fsi});
d) else if {Fu} ∩ {Fs} ≠ ∅ , then record the functions in {Fsi}-{Fu} as a

recommendation set and the service matched to the requirement, call
ServAutoMatch({Fu}-{Fsi});

3) Sort the recommendation records by the size of recommendation set, and
recommend them to user.

4) Stop.
Note: Recording service functions matched aims to provide guidance for later devel-
opment.

5 The Example and Experimental Results

According to the above method, an example of travel planning is given. The requirement
created by the user using the Sklsewiki platform is shown in Figure 2. For the require-
ment “The system should be able to provide the function of travel planning. It should be
able to book flights, hotels and cars for vacations.”, the user can use the keywords
“TravelPlanning”, “BookFlights”, “BookHotel”, “BookCars” to tag the requirement.

Using the keyword “BookHotel”, the service “Booking Engine” in the service re-
source repository Seekda1 can be found since the “SearchAccommodation” is one of
the operations of the “Booking Engine”. On the other hand, the other operations
“AddBooking”, “GetAllAirports”, “GetAllDestinations”, “GetResortInfo”, and
“GetResortList” is recommended to the user who can use these information to com-
plement his original requirement.

1 http://seekda.com/

660 D. Ning and R. Peng

Fig. 2. Sklsewiki platform for requirements elicitation

Fig. 3. The webpage of Seekda, which is used as a service repository in SKLSEWiki

6 Conclusion and Future Work

With the development of SOC, how to utilize the existed services’ functions to adjust
and improve the user’s requirements becomes a new direction of requirement
elicitation. The main advantages of the requirements recommendation method are as
following:

1) It is based on the similarity calculation algorithm which is mature compara-
tively.

2) Converting the issue of automatic service requirements recommendation to
the matching problem between user’s requirements and existing services.
Through the matched service, the additional operations of the service are used
to adjust and perfect the initial requirement;

3) Converting the matching problem between user’s requirements and service to
that between original keywords description of user’s requirements and service
functions. The conversion makes it possible to compute the similarity be-
tween them;

 A Requirements Recommendation Method Based on Service Description 661

4) This method provides a flexible requirement engineering process for future
applications based on services. Through utilizing the method we can not only
find a suitable service, but also it can advance user to make use of the current
existing service meet to the requirements.

The future work is focused on improving the efficiency of algorithms and developing
better recommendation strategies.

Acknowledgments. This research project was supported by the National Natural
Science Foundation of China under Grant N.o.60703009, the National Basic Research
Program of China (973) under Grant No. 2007CB310801, the “Chen Guang” project
of Wuhan under Grant No. 200950431189, and the 111 Project of China under grant
No. B07037.

References

1. Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., Zuccalà, M.: Speaking a Common
Language: A Conceptual Model for Describing Service-Oriented Systems. In: Benatallah,
B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 48–60. Springer, Hei-
delberg (2005)

2. van Eck, P.A.T., Wieringa, R.J.: Requirements Engineering for Service-Oriented Comput-
ing: A Position Paper. In: 1st International E-Services Workshop, PA, Pittsburgh, pp. 23–28
(2003)

3. Zachos, K., Maiden, N.A.M., Zhu, X., Jones, S.: Discovering Web Services to Specify
More Complete System Requirements. In: 19th International Conference on Advanced In-
formation Systems Engineering, Trondheim, Norway, pp. 142–157 (2007)

4. Andreas, G., Nadine, B., Klaus, P.: Goal-Driven Alignment of Services and Business Re-
quirements. In: 2008 International Workshop on Service-Oriented Computing Conse-
quences for Engineering Requirements, Barcelona, Spain, pp. 1–7 (2008)

5. Xiang, J., Liu, L., Qiao, W., Yang, J.: SREM: A Service Requirements Elicitation Mecha-
nism based on Ontology. In: 31st Annual International Computer Software and Applications
Conference, vol. 1, pp. 196–203. IEEE computer society, Beijing (2007)

6. Hausmann, J.H., Heckel, R., Lohmann, M.: Model-Based Discovery of Web Services. In:
IEEE International Conference on Web Services, CA, San Diego, pp. 324–331 (2004)

7. http://61.183.121.131:8080/sklsewiki/
8. Zhang, X., Li, Z.-J., Li, M.-J.: An Approach and Implementation to Semantic Web Service

Matchmaking. Computer Science 134(15), 99–103 (2007)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 662–667, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Extending YML to Be a Middleware for Scientific Cloud
Computing

Ling Shang1,3, Serge G. Petiton1, Nahid Emad2, Xiaolin Yang1, and Zhijian Wang3

1 Lifl, University of Science and Technology of Lille, France
{ling.shang,serge.petiton}@lifl.fr

2 PRiSM - Laboratoire d’informatique - UVSQ, Versailles, France
3 College of Computer and Information Engineering, Hohai University, China

Abstract. Grid computing has gained great success in harnessing computing re-
sources. But its progress of gridfication on scientific computing is slower than
anticipation. This paper analyzes these reasons of hard gridification in detail.
While cloud computing as a new paradigm shows its advantages for its many
good features such as lost cost, pay by use, easy of use and non trivial Qos.
Based on analysis on existing cloud paradigm, a cloud platform architecture
based on YML for scientific computing is presented. Emulations testify we are
on the right way to extending YML to be middleware for cloud computing. Fi-
nally on going improvements on YML and open problem are also presented in
this paper.

Keywords: Grid computing, Cloud computing, YML, Scientific computing,
Cloud middleware.

1 Introduction

Grid computing has become a mature paradigm aiming at harnessing high perform-
ance distributed computing resources (CR) in a simple and standard way. And it
widely diffused in many aspects of scientific computing such as biochemical, Physics,
Astronomical Sciences, Ocean Sciences, Earth Sciences…Two kinds of Grid platform
has been established which are service based grid platform and desktop grid platform.
In which service based grid platform, utilized to harness dedicated CR belongs to
‘push model’; while desktop grid platform is ‘pull model’ mainly collecting non-
dedicated CR. Scalability is poor to service based grid for non-technology reason and
high costs. Desktop grid is famous for its scalability and low costs but high volatility
is its key problem. Lots of grid platform has been established based on these two
kinds of platforms for scientific computing. Such as service based Grid: TeraGrid,
Open Science Grid, LCH Grid, EGEE, Earth System Grid; Desktop Grid: Bonic,
Seti@home, Xtremweb, Entropia. Some problems met during the practice of running
scientific computing on these platforms and which can be summarized as follows: 1)
From the end users’ viewpoint: the grid interfaces for users are complete and it is hard
for end user to find appropriate interface they need. To utilize the grid platform, users
are required to know system details ranging from resource configuration to service
availability to hardware configuration. In a word, grid is hard to use for end users.

 Extending YML to Be a Middleware for Scientific Cloud Computing 663

This is the reason why so many scientific computing are still based on clusters and
supercomputer. 2) From the Gird itself viewpoint: most schedulers in grid middleware
are based on batch scheduler, which can’t adapt tasks to appropriate CR. Thus causes
lower efficiency of platform. Additionally, almost data transfer/migration model in
grid is based on client/server, which leads to a lot of time spent on unnecessary data
transfer and ultimately decreases the efficiency of platform. In a word, scheduler and
data transfer model in most grid system are two bottlenecks which decrease the effi-
ciency of grid platform.

Cloud computing has been a spotlight since at the end of 2007 and it arouses great
concerns for it can provide flexible, on demand, non-trivial quality and easy-to-use
service to end users. As well known to us all, Grid computing is presented to make
distributed CR as services work collaboratively. And cloud computing is raised to
make sure those services can be invoked in low cost, easy-of-use and non-trivial Qos
way. Researches on cloud products from famous IT enterprises such as Google, Ama-
zon, IBM and Microsoft have testified our viewpoints. Cloud computing belong to a
special problem solving environment (SPSE). In other word, cloud platform is utilized
to solve a special kind of problem or achieve a definite goal with a simple interface.
For example, the goal of Google’s cloud platform is to index valuable information
from huge volume of data. These SPSEs are always based on large scale computing
platform. It also can provide end user an easy-of-use, pay-by-use interface and on
demand, low cost services. Users can invoke these services as they need in a very
simple way without knowing about inner structure of cloud platform. Through the
analysis above, a definition of cloud computing can be: cloud computing is a specific
problem solving environment based on large scale resources pool (consist of clus-
ters, grid, desktop grid, super computer or hybrid platform); It encapsulates all
technological details through virtual technology and can provide end users with on
demand provision, non-trivial quality of service and pay by use, easy of use, high
level program interface; End users can utilize all these services provided by cloud
platform in a very simple way without knowing where these services come from and
on what kinds of platform/ system/ infrastructure these services run. According to
this definition, we propose a cloud model based on YML [1][2][3][6] for scientific
computing. Finally, our on-going works for extending YML to be a middleware of
cloud computing is summarized and an open problem is also presented in this paper.

2 Lesson Learned from Practice on Gridification

The reason of hard gridification can be summarized from the following two aspects:

2.1 Viewpoint from End Users

Grid platform is hard to utilize for end users: Grid expose all the interfaces to
users, though a lot of interfaces are useless to a special user. And users need to spend
a lot of time to find and learn how to use them. The second reason is that grid plat-
form is a kind of very complex system. End users need to book CR they need and
then deploy appropriate environment they need. This is another hard point for non
expert users.

664 L. Shang et al.

Grid middleware is hard for end users to develop application: To successfully
utilize middleware, developers are required to know system details ranging from
resource configuration to service availability to hardware configuration. When creat-
ing Grid applications, proper management of the underlying resources has to be done.
Some factors such as resource availability, fault tolerance, load balancing and sched-
uling have to be taken into account. These requirements significantly increase the
burden of responsibility on Grid users.

2.2 Viewpoint from Gird Itself

Scheduler in many grid middleware is a bottleneck: Most schedulers in grid mid-
dleware are based batch scheduler. This kind of scheduler doesn’t support adaptive
scheduling in Grid system. Thus causes the scheduler can’t dispatch tasks to appropri-
ate CR. Grid platform belongs to heterogeneous environment in both available and
capability of CR. So static and a single level scheduler can’t meet the requirement of
grid platform.

The method of data transfer is another bottleneck: Most data transfer models are
almost based on Serve/Client model. All the data are store in a data server. When a
task to be executed, it need get the data needed from data server and send back to data
server when the task finishes. If another task’s input is the output of the first task,
unnecessary data transfer generate.

3 Extending YML to Be a Middleware for Cloud Computing

Researches on products from very famous It enterprises show that cloud computing is
a specific problem solving environment based on large scale resources pool (consist
of clusters, grid, desktop grid, super computer or hybrid platform); It encapsulates all
technological details through virtual technology and can provide end users with on
demand provision, non-trivial quality of service and pay by use, easy of use, high
level program interface; End users can utilize all these services provided by cloud
platform in a very simple way without knowing where these services come from and
on what kinds of platform/ system/ infrastructure these services run. Based on that, A
cloud model based on YML is presented as follows:

Computing Resources pool: The CR pool of this cloud paradigm consists of two
different kinds of CR which are dedicated CR (servers, supercomputer, clusters) and
non dedicated CR (personal PCs). Generally speaking, supercomputer, clusters are too
expensive to scale up for a research institute or enterprise. At the same time, there are
a lot of PCs of which a lot of cycles wasted. So it is appealing (from the view of both
economic and feasibility) for users to harness these two kinds of CR. CR pool consist-
ing of a lot of non dedicated PCs, is easy to contribute to low cost, scalability by na-
ture. And these features are key points for cloud computing platform. As to these two
different kinds of CR, we can use gird middleware OmniRPC to collect cluster and
grid CR. And middleware XtremWeb can manage volunteer CR. Now YML can
support to integrate these two different kinds of middleware to harness the CR in the
cloud pool.

 Extending YML to Be a Middleware for Scientific Cloud Computing 665

Fig. 1. Architecture of Cloud Platform Based on YML

Operating System: you can use the operating system you would like to use (now
only windows and Linux can be supported). And different middleware visions have
been put forward to adapt to different operating system.

Application layer: The application of scientific computing or numerical computing is
better based on service of architecture (SOA). Service of computing technology is
adopted in this layer. And the reason is that it is helpful to invoke the third parts ser-
vice and the services developed can be reused very easily.

Interface: users can describe their algorithm through an easy of use interface based
on YvetteML language which is a XML based description language. It belongs to
pseudo code. This interface makes sure the pseudo code is platform independent and
middleware independent. See detail in [5]

Business model is used for describing user’s requirement on their expected costs.
This is the base for the selection of third part services and CR.

YML backend: YML backend encapsulates different middleware underlying to pro-
vide a consistent execution environment to YML services. Concurrently it permits to
utilize one or several middleware through providing the specific interface for each
middleware. The back-end layer consists in three parts named Monitor, worker coor-
dinator and data manager. Data manager is a component for managing all data ex-
changes between nodes and data server. This component provides two services to its
local or distant worker: distributing appropriate data to workers in advance and re-
trieving the final results. Worker coordinator maintains a list of active requests and a
list of finished requests. The polling of the middleware allows the back-end to move
requests from the active queue to the queue of finished requests. It is also in charge of
allocating tasks to different virtual resources. Monitor component is used for moni-
toring the status of computing nodes. The monitoring mechanism is based on users’

666 L. Shang et al.

daily behavior which is adopted to predict available time of CR and make prediction
for task allocation/migration [4].

YML frontend: This part is to provide end user with a transparent access interface
and make end user only focus on the algorithm itself without caring about lower-level
software/hardware. To reach this objective, a middleware-independent and intuitive
workflow programming language called YvetteML is adopted. Component ‘reusable
services’ in this layer orchestrates reusable computational services and these services
are platform-independent, program language independence, system independence.
Another component in this layer is ‘business model’. This model can support pay by
use method and users can acquire services under the scope of their anticipation with
the help of auctions mechanism. To those operations needed in the program, appro-
priate services will be chosen referring to its prices from third part services library
under the guide of business model. YML scheduler can select appropriate services for
executable tasks through auctions mechanism, which can improve utilization ratio of
computing resources and thus raise the efficiency of platform.

The core of YML: YML register, YML compiler and YML scheduler are three
mainly components in this cloud middleware. YML register is for user to register their
developed or pay by use services in cloud platform. Once registered, these services can
be invoked by YML scheduler automatically. YML compiler is composed of a set of
transformation stages which lead to the creation of an application file from XML based
program. YML compiler parses the program and an application file consisting of a
series of events and operations, is generated. Events are in charge of sequence of op-
erations. Operations are a series of services registered through YML register. An im-
portant thing in this paper is to add data flow table into the application file. Through
which data dependence between operations can be dealt with. As well known to us all,
these data dependence determine the execution way (in parallel/sequence) of those
operations. So through data flow table, data persistent and data replication mechanism
can be realized in cloud middleware. YML scheduler is a just-in-time scheduler which
is in charge of executing the application on the underlying runtime environment de-
fined by the back-end layer. YML scheduler is always executing two main operations
sequentially. First, it checks for tasks ready for execution. This is done each time once
a new event/fact is introduced and leads to allocate tasks to the back-end. The second
operation is the monitoring of the work currently being executed. Once a new worker
begins executing, the scheduler of the application regularly checks if the new worker
has entered the finished state. The scheduler interacts with the back-end layer through
the data manager and backend components. The scheduler takes tasks with an input
data set and corresponding operations from application file and executes these tasks on
underlying virtual resources until completion or unexpected error. To realize the proc-
ess presented, some things have to be done. Firstly, a trust model will provide sched-
uler with availability of a computing node in a future time span. The scheduler allo-
cates tasks to CR according to its trustiness degree. Secondly, YML service will tell
YML scheduler the expected time of being executed on a standard virtual machine
(VM). The standard VM can be set in advance. For example, the VM is set through a
series of parameters like that (Ps, Ms, Ns, Hs), in which Ps stands for processor of VM
(2.0 Hz CPU), Ms represents memory of VM (1G Memory), Ns means network band-
width of VM (1G) and Hs stands for hard space left (10 G). According to reality, you

 Extending YML to Be a Middleware for Scientific Cloud Computing 667

can add/minus the number of parameters. A real machine ‘Rm’ can be set as (Pr, Mr,
Nr, Hr). the capacity (Crm) of ‘Rm’ can be presented as follows: Crm= a1*Pr/Ps
+a2*Mr /Ms+a3*Nr/Ns+a4 *Hr/Hs, in which a1+a2+a3+a4=1. The value of ax can be
set according to real case. Based on these two points presented above, scheduler can
choose appropriate CR for tasks. Of courses, business model is also important factor
for scheduler to take into account. Scheduler will choose better computing resources
based on users’ expected costs.

4 Conclusion and Open Problem

To make/extend YML suit for cloud computing environments, detail descriptions
have been described in section 3. Here I want to make a summary on our on-going
work for extending YML to be middleware for cloud computing: 1), Introduce the
business model to support pay by use method for cloud platform and it also can be
used as a guider cost to bid up in third part service market. At the same time, this
model also helps to select appropriate CR for these tasks to be executed in low costs.
2), Data flows are added in the application file. Through adding this flow, data persis-
tence and data replication mechanism can be realized in our cloud platform, which
will improve the efficiency of platform greatly. Some emulation experiments have
been made to testify our point. 3) Monitor and Trust model is introduced to predict
the available status of non dedicated CR. Also a method to evaluate expected execu-
tion time based on standard VM is adopted.

Open problem: How to allocate tasks to different CR is key issue. Because two
kinds of CR which are dedicated CR and non-dedicated CR are harnessed in the cloud
platform based on YML. Making full use of dedicated CR and appropriately utilize
the non dedicated CR will generate incredible computing power with lowest cost.
Appropriate CR selection during the process of scheduling can improve the efficiency
of cloud platform greatly.

References

1. Delannoy, O., Petiton, S.: A Peer to Peer Computing Framework: Design and Performance
Evaluation of YML. In: HeteroPar 2004, Ireland. IEEE Computer Society Press, Los Alami-
tos (2004)

2. Delannoy, O., Emad, N., Petiton, S.G.: Workflow Global Computing with YML. In: The
7th IEEE/ACM International Conference on Grid Computing, pp. 25–32 (2006)

3. Delannoy, O.: YML: A scientific Workflow for High Performance Computing, Ph.D. The-
sis, Septembre, Versailles (2008)

4. Shang, L., Wang, Z., Zhou, X., Huang, X., Cheng, Y.: Tm-dg: a trust model based on com-
puter users’ daily behavior for desktop grid platform. In: CompFrame 2007, pp. 59–66.
ACM, New York (2007)

5. Shang, L., Wang, Z., Petiton, S., Lou, Y., Liu, Z.: Large Scale Computing on Component
Based Framework Easily Adaptive to Cluster and Grid Environments. Third Chinagrid An-
nual Conference Chinagrid 2008. IEEE Computer Society, 70–77 (2008)

6. YML, http://yml.prism.uvsq.fr/

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 668–673, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Power-Aware Management in Cloud Data Centers

Milan Milenkovic, Enrique Castro-Leon, and James R. Blakley

Intel Corporation, Hillsboro, Oregon, USA
{milan,enrique.g.castro-leon,jim.r.blakley}@intel.com

Abstract. Power efficiency is a major concern in operating cloud data centers.
It affects operational costs and return on investment, with a profound impact on
the environment. Current data center operating environments, such as manage-
ment consoles and cloud control software, tend to optimize for performance and
service level agreements and ignore power implications when evaluating work-
load scheduling choices. We believe that power should be elevated to the first-
order consideration in data-center management and that operators should be
provided with insights and controls necessary to achieve that purpose.

In this paper we describe several foundational techniques for group-level
power management that result in significant power savings in large data centers
with run-time load allocation capability, such as clouds and virtualized data
centers. We cover VM migration to save power, server pooling or platooning to
balance power savings with startup times so as not to impair performance, and
discuss power characteristics of servers that affect both the limits and the op-
portunities for power savings.

Keywords: power management, power-aware scheduling, cloud management,
virtualization management, power efficiency, energy-proportional computing.

1 Introduction

Power efficiency is a major concern in operating cloud data centers. It affects opera-
tional costs and return on investment, with a profound impact on the environment.
Power consumption in a data center is driven by the operation of the information
technology (IT) equipment, including servers, networking, and storage, directly and
indirectly through coupling with cooling. Current data center operating environments,
such as cloud control software stacks and commercial management consoles, tend to
optimize for performance and service-level agreements (SLAs) and largely ignore
power implications when evaluating workload scheduling choices.

Our objective is to elevate power consumption to a first-class consideration in data
center resource allocation and workload scheduling. The hypothesis and our
experimental experience is that power-aware placement, management and balancing
of workload can reduce power consumption in a data center with negligible impact
on performance. Additional savings are possible through power capping policies that
manage power-performance tradeoffs in accordance with business objectives. Key
power management techniques include consolidation and migration of workloads
to keep active machines at optimal operating points, creation of pools of standby

 Power-Aware Management in Cloud Data Centers 669

machines with different wakeup latencies (and proportionally reduced power con-
sumption) to accommodate dynamic up and down capacity scaling in response to load
variations, matching workload characteristics to individual machine power-
performance profiles, and placement and balancing of workload to minimize thermal
variance in the data center and thus reduce cooling inefficiencies.

2 Power Characteristics of Servers

Energy proportional designs have been proposed to improve energy efficiency data
centers. Actual energy savings attainable with the current state of the art in server
design are somewhat more limited. The power consumption of a server can be repre-
sented by the following model:

Pactual = Pbaseline + PspreadL

where Pactual is the actual power consumption, Pbaseline is power consumption at idle,
Pspread is the power consumption spread between idle and full power, and L is the per
unit workload on the server, ranging from 0 to 1.

Loading factors in today’s data centers are usually in the 10 to 50 percent range, so
the actual power consumption from servers is less than the peak. However, even
when loading factors are low, power consumption remains significant due to rela-
tively high power use at idle.

A low Pbaseline is better. Current technology imposes a limit on how low this number
can be. Just a few years ago, idle power use was close to 90% of maximum power,
while today it stands closer to 50%.

Literature and our experience indicate that power proportionality can be closely
approximated in cloud services via pools of virtualized servers that collectively yield
a value of Pbaseline much lower than the 50 % attainable with a single server through
application of integrated power management processes.

At higher load factors another technology is available, Intel® Dynamic Power
Node Manager (DPNM) that allows rolling back power consumption by as much as a
third of the full load. The reduced power consumption comes at the expense of per-
formance. The loss of performance varies with the type of workload.

Fig. 1. Power Proportional Computing Model for Servers

670 M. Milenkovic, E. Castro-Leon, and J.R. Blakley

3 VM Migration to Save Power

This section describes a specific prototype designed to explore the components, poli-
cies, behavior, and power savings made possible in virtualized environments by
power-aware rebalancing of the workload.

Group-Enabled Management Systems (GEMS) is a prototype group-enabled man-
agement system designed for autonomic management of collections of server nodes.
Its variant developed for virtualization with power management, GEMS-VPM, spe-
cifically implements rebalancing of workload in collections of virtualized systems in
order to save power by (1) proactively consolidating the active workload on a subset
of machines that can run it at optimal power-performance settings, and (2) shutting
off unused capacity.

Basically, the system consists of a collection of physical servers that are virtualized
and effectively create a pool of virtual machines for execution of user workloads in
response to incoming requests. This is a common setting for cloud operators that
provide Infrastructure as a Service (IaaS) offerings, essentially running customer
workloads, packaged and managed as virtual machines, for a fee.

Fig. 2. Dynamic Workload (VM) Allocation System

In a typical usage, work requests are arriving to the workload manager that com-
municates with virtualization manager (whose console screen shot is shown above the
VM Management Console server) to create, provision and place virtual machines
(VMs) on a suitable physical machine for execution. The life cycle of individual
VMs is dictated externally by workload requests; they are created, activated, sus-
pended, or terminated as appropriate.

In this prototype, GEMS adds power and thermal awareness to workload allocation
and binding to physical servers. In particular, instead of random allocation of VMs to

 Power-Aware Management in Cloud Data Centers 671

suitable nodes that is quite common in contemporary cluster and cloud schedulers,
GEMS is used for power-aware placement and balancing of workload. In general,
power-aware placement implies optimal placement of workload among a collection of
eligible physical machines based on power projections of specific workload alloca-
tions and selection of an optimal one.

GEMS-VPM prototype implements workload rebalancing to minimize global
power consumption. It operates as a policy-driven automation mechanism that proac-
tively seeks opportunities to migrate VMs away from lightly loaded nodes and to save
system power by shutting off vacated nodes (servers) left with no active workload.

All nodes contain built-in power and thermal sensors, designated as Node P&T
sensor, that are common in contemporary commercial server offerings. GEMS group
leader and Power Visualizer, an early prototype of Intel Data-Center Manager (DCM)
offering, collaborate to provide real-time individual server and aggregate cluster
power readings. These are valuable operator tools that allow added insights such as
correlating of workloads with power usage and measuring power savings resulting
from policy-based VM migrations described here.

Power-aware policies, running in GEMS leader node, are evaluated in response to
significant system events, such as creation and deletion of VMs whose lifecycle is
dictated by workload requests that are external to the system. The policy manager
activates live VM migration by issuing the necessary APIs to VM management con-
sole. Nodes that are shut down to save power during comparatively low overall utili-
zation of the VM execution pool, can be programmatically brought back into opera-
tion when needed in response to workload demand fluctuations.

Savings resulting from shutting off of unused nodes are significant due to the fact
that contemporary server platforms tend to consume on the order of 50% of their
maximum power consumption when idle. As in illustration, consider a pool of 20
physical servers that consume 500W each at full load and 250W at idle. At 100%
total aggregate load, the server pool consumes 10,000 W. At 50% aggregate load, the
unbalanced pool would consume somewhat in excess of 7500W, depending on load
distribution. With VM migration to save power described here, the system could use
as little as 5000W while executing the same workload by consolidating it on 10 active
servers and shutting off the remaining ones, thus yielding power savings on the order
of 30%. Even though in practice operators tend to set a limit below 100% for maxi-
mum server utilization, power-aware VM migration results in significant power sav-
ings often in double digit percentages.

4 Energy Proportional vs. Power Proportional Computing

Power consumed by a server can vary instantaneously and continuously. The energy
consumed by a server can be represented by the integral of its power consumption
over that particular interval:

E = ∫ P(t) dt

A power saving mechanism can also yield energy savings. Let’s build a simple model
to compare the power consumed by a server without any power saving mechanism vs.
a server that does. The server without power management would exhibit a constant

672 M. Milenkovic, E. Castro-Leon, and J.R. Blakley

Fig. 3. Measuring Energy Saved

power consumption Punmanaged regardless of the operational state. Let’s also track the
actual power consumption Pactual over time. The energy saved by the power mecha-
nisms in effect would be the area determined by the difference between Punmanaged and
Pactual over time:

Energy saved is represented by the equation

E = ∫ (Punmanaged(t) – Pactual(t)) dt

From this analysis it becomes clear that in order for a power saving mechanism to
yield meaningful energy savings, power savings need to be maintained for a long time
and the difference between Punmanaged and Pactual be as large as possible.

A single mechanism will not yield the desired benefits. For instance, a typical
power consumption of a Nehalem generation server is about 300 watts when utiliza-
tion is close to 100 percent. Applying DPNM power capping can bring the power
consumption to about 200 watts. If the server is brought to idle, power consumption
will descend to about 150 watts.

Applying a power management mechanism may have a performance impact:
DPNM works through voltage and frequency scaling, that is by reducing the voltage
applied to the CPU and the frequency at which it works in discrete steps. Doing so
impacts performance. The actual penalty is a function workload type.

Another limitation imposed by power management mechanisms is a restricted op-
erational envelope: DPNM works best at high loading factors, while mechanisms like
demand based switching (DBS) work best when workloads are light.

One way to maximize the difference Punmanaged and Pactual is to reduce Pbaseline as
much as possible. In virtualized cloud environments where server resources are
pooled, it is possible to bring down Pbaseline collectively for the pool by shutting down
servers not needed to meet the current load. Doing so allows extending the power
dynamic range with workload considerably. A system exhibiting a large dynamic
range is said to be workload power scalable. Since it takes several minutes to restart
a server, it may be necessary to designate an extra pool of servers in a higher energy
state to pick up load spikes while dormant servers are restarted.

We describe a scheme whereby a large pool of servers is divided into sub-pools
supporting each other for the purposes of meeting a time-varying workload. For this
reason we call this scheme platooning.

A platooning example is depicted in Figure 4 using ACPI S5 sleep as the dormant
state and a sub-pool of power capped servers as the reserve pool. The reserve pool is
operational and can be used to run low priority loads. PSMI stands for Power Supply
Management Interface, a standard that allows real-time power supply readouts.

 Power-Aware Management in Cloud Data Centers 673

Fig. 4. Platooning: Achieving High Pspread and Low Pbaseline Power Management with Server
Pools

It is important to note that this scheme is not viable in a traditional application en-
vironment where applications are bound to physical servers. A key factor is to have
fungible pools of compute and storage resources.

References

1. Barroso, L.A., Hölzle, U.: The Case for Energy-Proportional Computing. IEEE Computer,
33–37 (December 2007)

2. Nathuji, R., Schwan, K.: VirtualPower: Coordinated Power Management in Virtualized
Enterprise Systems. In: ACM Symposium on Operating Systems Principles, SOSP 2007
(2007)

3. Ranganathan, P., Leech, P., Irwin, D., Chase, J.: Ensemble-Level Power Management for
Dense Blade Servers. In: International Symposium on Computer Architecture, ISCA 2006
(2006)

4. Moore, J., Chase, J., Ranganathan, P.: Weatherman: Automated, Online, and Predictive
Thermal Mapping and Management for Data Centers. In: IEEE International Conference
on Autonomic Computing, ICAC 2006 (2006)

5. Nathuji, R., Canturk, I., Gorbatov, E.: Exploiting Platform Heterogeneity for Power Effi-
cient Data Center. In: ICAC 2007 (2007)

6. Castro-Leon, E.: The Web within the Web. IEEE Spectrum 42(2), 42–46 (2004)
7. Castro-Leon, E., He, J., Chang, M., Peiravi, P.: The Business Value of Virtual Service Ori-

ented Grids. Intel Press (2008)
8. DCMIspecification, http://download.intel.com/technology/product/

Data_Center_Manageability_Interface_whitepaper.pdf
9. IPMI specification, http://www.intel.com/design/servers/ipmi/

10. WS-Management specification, http://www.dmtf.org/standards/wsman/

Parallel K -Means Clustering Based on
MapReduce

Weizhong Zhao1,2, Huifang Ma1,2, and Qing He1

1 The Key Laboratory of Intelligent Information Processing, Institute of Computing
Technology, Chinese Academy of Sciences

2 Graduate University of Chinese Academy of Sciences
{zhaowz,mahf,heq}@ics.ict.ac.cn

Abstract. Data clustering has been received considerable attention in
many applications, such as data mining, document retrieval, image seg-
mentation and pattern classification. The enlarging volumes of informa-
tion emerging by the progress of technology, makes clustering of very
large scale of data a challenging task. In order to deal with the problem,
many researchers try to design efficient parallel clustering algorithms.
In this paper, we propose a parallel k -means clustering algorithm based
on MapReduce, which is a simple yet powerful parallel programming
technique. The experimental results demonstrate that the proposed algo-
rithm can scale well and efficiently process large datasets on commodity
hardware.

Keywords: Data mining; Parallel clustering; K -means; Hadoop; MapRe-
duce.

1 Introduction

With the development of information technology, data volumes processed by
many applications will routinely cross the peta-scale threshold, which would
in turn increase the computational requirements. Efficient parallel clustering
algorithms and implementation techniques are the key to meeting the scalability
and performance requirements entailed in such scientific data analyses. So far,
several researchers have proposed some parallel clustering algorithms [1,2,3].
All these parallel clustering algorithms have the following drawbacks: a) They
assume that all objects can reside in main memory at the same time; b) Their
parallel systems have provided restricted programming models and used the
restrictions to parallelize the computation automatically. Both assumptions are
prohibitive for very large datasets with millions of objects. Therefore, dataset
oriented parallel clustering algorithms should be developed.

MapReduce [4,5,6,7] is a programming model and an associated implementa-
tion for processing and generating large datasets that is amenable to a broad
variety of real-world tasks. Users specify the computation in terms of a map and
a reduce function, and the underlying runtime system automatically parallelizes
the computation across large-scale clusters of machines, handles machine fail-
ures, and schedules inter-machine communication to make efficient use of the

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 674–679, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Parallel K -Means Clustering Based on MapReduce 675

network and disks. Google and Hadoop both provide MapReduce runtimes with
fault tolerance and dynamic flexibility support [8,9].

In this paper, we adapt k -means algorithm [10] in MapReduce framework
which is implemented by Hadoop to make the clustering method applicable to
large scale data. By applying proper <key, value> pairs, the proposed algorithm
can be parallel executed effectively. We conduct comprehensive experiments to
evaluate the proposed algorithm. The results demonstrate that our algorithm
can effectively deal with large scale datasets.

The rest of the paper is organized as follows. In Section 2, we present our
parallel k -means algorithm based on MapReduce framework. Section 3 shows ex-
perimental results and evaluates our parallel algorithm with respect to speedup,
scaleup, and sizeup. Finally, we offer our conclusions in Section 4.

2 Parallel K -Means Algorithm Based on MapReduce

In this section we present the main design for Parallel K -Means (PKMeans)
based on MapReduce. Firstly, we give a brief overview of the k -means algorithm
and analyze the parallel parts and serial parts in the algorithms. Then we explain
how the necessary computations can be formalized as map and reduce operations
in detail.

2.1 K -Means Algorithm

K -means algorithm is the most well-known and commonly used clustering
method. It takes the input parameter, k, and partitions a set of n objects into
k clusters so that the resulting intra-cluster similarity is high whereas the inter-
cluster similarity is low. Cluster similarity is measured according to the mean
value of the objects in the cluster, which can be regarded as the cluster’s ”center
of gravity”.

The algorithm proceeds as follows: Firstly, it randomly selects k objects from
the whole objects which represent initial cluster centers. Each remaining object
is assigned to the cluster to which it is the most similar, based on the distance
between the object and the cluster center. The new mean for each cluster is then
calculated. This process iterates until the criterion function converges.

In k -means algorithm, the most intensive calculation to occur is the calcu-
lation of distances. In each iteration, it would require a total of (nk) distance
computations where n is the number of objects and k is the number of clusters
being created. It is obviously that the distance computations between one ob-
ject with the centers is irrelevant to the distance computations between other
objects with the corresponding centers. Therefore, distance computations be-
tween different objects with centers can be parallel executed. In each iteration,
the new centers, which are used in the next iteration, should be updated. Hence
the iterative procedures must be executed serially.

676 W. Zhao, H. Ma, and Q. He

2.2 PKMeans Based on MapReduce

As the analysis above, PKMeans algorithm needs one kind of MapReduce job.
The map function performs the procedure of assigning each sample to the closest
center while the reduce function performs the procedure of updating the new
centers. In order to decrease the cost of network communication, a combiner
function is developed to deal with partial combination of the intermediate values
with the same key within the same map task.

Map-function The input dataset is stored on HDFS[11] as a sequence file
of <key, value> pairs, each of which represents a record in the dataset. The key
is the offset in bytes of this record to the start point of the data file, and the
value is a string of the content of this record. The dataset is split and globally
broadcast to all mappers. Consequently, the distance computations are parallel
executed. For each map task, PKMeans construct a global variant centers which
is an array containing the information about centers of the clusters. Given the
information, a mapper can compute the closest center point for each sample.
The intermediate values are then composed of two parts: the index of the closest
center point and the sample information. The pseudocode of map function is
shown in Algorithm 1.

Algorithm 1. map (key, value)
Input: Global variable centers, the offset key, the sample value
Output: <key’, value’> pair, where the key’ is the index of the closest center point and value’ is
a string comprise of sample information

1. Construct the sample instance from value;
2. minDis = Double.MAX VALUE ;
3. index = -1;
4. For i=0 to centers.length do

dis= ComputeDist(instance, centers[i]);
If dis < minDis {

minDis = dis;
index = i;

}
5. End For
6. Take index as key’;
7. Construct value’ as a string comprise of the values of different dimensions;
8. output < key′, value′ > pair;
9. End

Note that Step 2 and Step 3 initialize the auxiliary variable minDis and index ;
Step 4 computes the closest center point from the sample, in which the function
ComputeDist (instance, centers [i]) returns the distance between instance and
the center point centers [i]; Step 8 outputs the intermediate data which is used
in the subsequent procedures.

Combine-function. After each map task, we apply a combiner to combine the
intermediate data of the same map task. Since the intermediate data is stored in
local disk of the host, the procedure can not consume the communication cost.
In the combine function, we partially sum the values of the points assigned to
the same cluster. In order to calculate the mean value of the objects for each

Parallel K -Means Clustering Based on MapReduce 677

cluster, we should record the number of samples in the same cluster in the same
map task. The pseudocode for combine function is shown in Algorithm 2.

Algorithm 2. combine (key, V)
Input: key is the index of the cluster, V is the list of the samples assigned to the same cluster
Output: < key′, value′ > pair, where the key’ is the index of the cluster, value’ is a string comprised
of sum of the samples in the same cluster and the sample number

1. Initialize one array to record the sum of value of each dimensions of the samples contained in
the same cluster, i.e. the samples in the list V ;

2. Initialize a counter num as 0 to record the sum of sample number in the same cluster;
3. while(V.hasNext()){

Construct the sample instance from V.next();
Add the values of different dimensions of instance to the array
num++;

4. }
5. Take key as key’;
6. Construct value’ as a string comprised of the sum values of different dimensions and num;
7. output < key′, value′ > pair;
8. End

Reduce-function. The input of the reduce function is the data obtained from
the combine function of each host. As described in the combine function, the
data includes partial sum of the samples in the same cluster and the sample
number. In reduce function, we can sum all the samples and compute the total
number of samples assigned to the same cluster. Therefore, we can get the new
centers which are used for next iteration. The pseudocode for reduce function is
shown in Algorithm 3.

Algorithm 3. reduce (key, V)
Input: key is the index of the cluster, V is the list of the partial sums from different host
Output: < key′, value′ > pair, where the key’ is the index of the cluster, value’ is a string repre-
senting the new center

1. Initialize one array record the sum of value of each dimensions of the samples contained in the
same cluster, e.g. the samples in the list V ;

2. Initialize a counter NUM as 0 to record the sum of sample number in the same cluster;
3. while(V.hasNext()){

Construct the sample instance from V.next();
Add the values of different dimensions of instance to the array
NUM += num;

4. }
5. Divide the entries of the array by NUM to get the new center’s coordinates;
6. Take key as key’;
7. Construct value’ as a string comprise of the center ’s coordinates;
8. output < key′, value′ > pair;
9. End

3 Experimental Results

In this section, we evaluate the performance of our proposed algorithm with
respect to speedup, scaleup and sizeup [12]. Performance experiments were run

678 W. Zhao, H. Ma, and Q. He

1 2 3 4
1

1.5

2

2.5

3

3.5

number of nodes

sp
ee

du
p

1GB
2GB
4GB
8GB

(a) Speedup

1 2 3 4
0.75

0.8

0.85

0.9

0.95

1

number of nodes

sc
al

eu
p

(b) Scaleup

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

size of dataset (GB)

si
ze

up

1 node
2 nodes
3 nodes
4 nodes

(c) Sizeup

Fig. 1. Evaluations results

on a cluster of computers, each of which has two 2.8 GHz cores and 4GB of
memory. Hadoop version 0.17.0 and Java 1.5.0 14 are used as the MapReduce
system for all experiments.

To measure the speedup, we kept the dataset constant and increase the num-
ber of computers in the system. The perfect parallel algorithm demonstrates lin-
ear speedup: a system with m times the number of computers yields a speedup
of m. However, linear speedup is difficult to achieve because the communication
cost increases with the number of clusters becomes large.

We have performed the speedup evaluation on datasets with different sizes
and systems. The number of computers varied from 1 to 4. The size of the
dataset increases from 1GB to 8GB. Fig.1.(a) shows the speedup for different
datasets. As the result shows, PKMeans has a very good speedup performance.
Specifically, as the size of the dataset increases, the speedup performs better.
Therefore, PKMeans algorithm can treat large datasets efficiently.

Scaleup evaluates the ability of the algorithm to grow both the system and
the dataset size. Scaleup is defined as the ability of an m-times larger system to
perform an m-times larger job in the same run-time as the original system.

To demonstrate how well the PKMeans algorithm handles larger datasets when
more computers are available, we have performed scaleup experiments where we
have increased the size of the datasets in direct proportion to the number of com-
puters in the system. The datasets size of 1GB, 2GB, 3GB and 4GB are executed
on 1, 2, 3 and 4 computers respectively. Fig.1.(b) shows the performance results
of the datasets. Clearly, the PKMeans algorithm scales very well.

Sizeupanalysis holds thenumberof computers in the systemconstant,andgrows
the size of the datasets by the factor m. Sizeup measures how much longer it takes
on a given system, when the dataset size ism-times larger than the originaldataset.

To measure the performance of sizeup, we have fixed the number of computers
to 1, 2, 3, and 4 respectively. Fig.1.(c) shows the sizeup results on different
computers. The graph shows that PKMeans has a very good sizeup performance.

4 Conclusions

As data clustering has attracted a significant amount of research attention,
many clustering algorithms have been proposed in the past decades. However, the

Parallel K -Means Clustering Based on MapReduce 679

enlarging data in applications makes clustering of very large scale of data a chal-
lenging task. In this paper, we propose a fast parallel k -means clustering algo-
rithm based on MapReduce, which has been widely embraced by both academia
and industry. We use speedup, scaleup and sizeup to evaluate the performances
of our proposed algorithm. The results show that the proposed algorithm can
process large datasets on commodity hardware effectively.

Acknowledgments. This work is supported by the National Science Foun-
dation of China (No.60675010, 60933004, 60975039), 863 National High-Tech
Program (No.2007AA01Z132), National Basic Research Priorities Programme
(No.2007CB311004) and National Science and Technology Support Plan
(No.200-6BAC08B06).

References

1. Rasmussen, E.M., Willett, P.: Efficiency of Hierarchical Agglomerative Clustering
Using the ICL Distributed Array Processor. Journal of Documentation 45(1), 1–24
(1989)

2. Li, X., Fang, Z.: Parallel Clustering Algorithms. Parallel Computing 11, 275–290
(1989)

3. Olson, C.F.: Parallel Algorithms for Hierarchical Clustering. Parallel Comput-
ing 21(8), 1313–1325 (1995)

4. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Proc. of Operating Systems Design and Implementation, San Francisco,
CA, pp. 137–150 (2004)

5. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Communications of The ACM 51(1), 107–113 (2008)

6. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluat-
ing MapReduce for Multi-core and Multiprocessor Systems. In: Proc. of 13th Int.
Symposium on High-Performance Computer Architecture (HPCA), Phoenix, AZ
(2007)

7. Lammel, R.: Google’s MapReduce Programming Model - Revisited. Science of
Computer Programming 70, 1–30 (2008)

8. Hadoop: Open source implementation of MapReduce,
http://lucene.apache.org/hadoop/

9. Ghemawat, S., Gobioff, H., Leung, S.: The Google File System. In: Symposium on
Operating Systems Principles, pp. 29–43 (2003)

10. MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Ob-
servations. In: Proc. 5th Berkeley Symp. Math. Statist, Prob., vol. 1, pp. 281–297
(1967)

11. Borthakur, D.: The Hadoop Distributed File System: Architecture and Design
(2007)

12. Xu, X., Jager, J., Kriegel, H.P.: A Fast Parallel Clustering Algorithm for Large
Spatial Databases. Data Mining and Knowledge Discovery 3, 263–290 (1999)

http://lucene.apache.org/hadoop/

Storage and Retrieval of Large RDF Graph
Using Hadoop and MapReduce

Mohammad Farhan Husain, Pankil Doshi, Latifur Khan,
and Bhavani Thuraisingham

University of Texas at Dallas, Dallas TX 75080, USA

Abstract. Handling huge amount of data scalably is a matter of concern
for a long time. Same is true for semantic web data. Current semantic web
frameworks lack this ability. In this paper, we describe a framework that we
built using Hadoop1 to store and retrieve large number of RDF2 triples. We
describe our schema to store RDF data in Hadoop Distribute File System.
We also present our algorithms to answer a SPARQL3 query. We make
use of Hadoop’s MapReduce framework to actually answer the queries.
Our results reveal that we can store huge amount of semantic web data
in Hadoop clusters built mostly by cheap commodity class hardware and
still can answer queries fast enough. We conclude that ours is a scalable
framework, able to handle large amount of RDF data efficiently.

1 Introduction

Scalibility is a major issue in IT world. Basically what it means is that a system
can handle addition of large number of users, data, tasks etc. without affecting its
performance significantly. Designing a scalable system is not a trivial task. This
also applies to systems handling large data sets. Semantic web data repositories
are no exception to that. Storing huge number of RDF triples and the ability to
efficiently query them is a challenging problem which is yet to be solved. Trillions
of triples requiring peta bytes of disk space is not a distant possibility any more.
Researchers are already working on billions of triples[1]. Competitions are being
organized to encourage researchers to build efficient repositories4.

Hadoop is a distributed file system where files can be saved with replica-
tion. It provides high fault tolerance and reliability. Moreover, it provides an
implementation of MapReduce programming model. MapReduce is a functional
programming model which is suitable for processing large amount of data in
parallel. In this programming paradigm, MapReduce processes are run on inde-
pendant chunks of data making parallelization easier. MapReduce is an evolving
technology now. The technology has been well received by the community which
handles large amount of data. Google uses it for web indexing, data storage, so-
cial networking [2]. It is being used to scale up classifiers for mining peta-bytes
1 http://hadoop.apache.org
2 http://www.w3.org/RDF
3 http://www.w3.org/TR/rdf-sparql-query
4 http://challenge.semanticweb.org

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 680–686, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce 681

of data [3]. Data mining algorithms are being rewritten in different forms to take
the advantage of MapReduce technology [4]. Biological data is being analyzed
by this technology[1].

Current semantic web frameworks like Jena5 do not scale well. These frame-
works run on single machine and hence cannot handle huge amount of triples.
For example, we could load only 10 million triples in a Jena in-memory model
running in a machine having 2 GB of main memory. In this paper, we describe
our work with RDF data and Hadoop. We devise a schema to store RDF data in
Hadoop. In a preprocessing stage, we process RDF data and put it in text files in
the distributed file system according to our schema. We chose Lehigh University
Benchmark[5] (LUBM) data generator to generate our data. We have a retrieval
mechanism by MapReduce programming. We find that for many queries, one
MapReduce job is not enough. We need to have an algorithm to determine how
many jobs are needed for a given query. We devise such an algorithm which not
only determines the number of jobs but also their sequence and inputs. We run
all the LUBM benchmark queries. We run them on different sizes of data sets
starting from 100 million triples to 1 billion triples.

The remainder of this paper is organized as follows: in section 2 we discuss
the architecture of our system and data storage. We discuss how we answer a
SPARQL query in section 3. Finally, we present the results of our experiments
in section 4.

2 Proposed Architecture

Our architecture consists of several software components. We make use of Jena
Semantic Web Framework in data preprocessing step and Pellet OWL Reasoner6

in query execution. Our framework consists of two components: data generator-
preprocessor and MapReduce framework for query processing.

We have three sub-components for data generation and preprocessing. The
LUBM [5] data generator creates data in RDF/XML serialization format. We
take this data and convert it to N-Triples serialization format using our N-
Triple Converter component. This component uses Jena framework to convert
the data. The Predicate Based File Splitter takes the converted data and splits
it into predicate files. The predicate based files are then fed into the Object-
Type Based File Splitter which split the predicate files to smaller files based of
type of objects. These steps are described in section 2.1. The output of the last
component are then put into HDFS7.

Our MapReduce framework has three sub-components in it. It takes SPARQL
query from the user passes it to Job Decider and Input Selector. This component
decides how many jobs are needed and selects the input files and passes the
information to the Job Handler component which submits corresponding jobs to
Hadoop. It then relays the query answer from Hadoop to the user. To answer
queries that require inferencing, we use Pellet OWL Reasoner.
5 http://jena.sourceforge.net
6 http://clarkparsia.com/pellet
7 http://hadoop.apache.org/core/docs/r0.18.3/hdfs design.html

682 M.F. Husain et al.

2.1 File Organization

In HDFS a file takes space replication factor times its size. As RDF is text data,
it takes a lot space in HDFS to store a file. To minimize the amount of space, we
replace the common prefixes in URIs with some much smaller prefix strings. We
keep track of this prefix strings in a separate prefix file. This reduces the space
required by the data by a significant amount.

As there is no caching in Hadoop, each SPARQL query needs reading files
from HDFS. Reading directly from disk always have a high latency. To reduce
the execution time of a SPARQL query, we came up with an organization of files
which provides us with the capability to determine the files needed to search in
for a SPARQL query. The files usually constitute a fraction of the entire data
set and thus making the query execution much faster.

We do not store the data in a single file because in Hadoop file is the smallest
unit of input to a MapReduce job. If we have all the data in one file then the
whole file will be input to MapReduce jobs for each query. Instead we divide
the data in multiple steps. Predicate Split (PS): in the first step, we divide
the data according to the predicates. Predicate Object Split (POS): In the
next step, we work with the type information of objects. The rdf type file is first
divided into as many files as the number of distinct objects the rdf:type predicate
has. This further reduces the amount of space needed to store the data. For each
distinct object values of the predicate rdf:type we get a file. We divide other
predicate files according to the type of the objects. Not all the objects are URIs,
some are literals. The literals remain in the file named by the predicate i.e. no
further processing is required for them. The objects move into their respective
file named as predicate type. In our work we found 70.42% space gain after PS
step and 7.04% more gain for 1000 universities dataset.

3 MapReduce Framework

3.1 The DetermineJobs Algorithm

To answer a SPARQL query by MapReduce jobs, we may need more than one
job. It is because we cannot handle all the joins in one job because of the way
Hadoop runs its map and reduce processes. Those processes have no inter process
communication and they work on idependent chunks of data. Hence, processing
a piece of data cannot be dependent on the outcome of any other piece of data
which is essential to do joins. This is why we might need more than one job
to answer a query. Each job except the first one depends on the output of its
previous job.

We devised Algorithm 1 which determines the number of jobs needed to an-
swer a SPARQL query. It determines which joins are handled in which job and
the sequence of the jobs. For a query Q we build a graph G = (V, E) where V
is the set of vertices and E is the set of edges. For each triple pattern in the
query Q we build a vertex v which makes up the set V . Hence |V | is equal to the
number of triple patterns in Q. We put an edge e between vi and vj , where i �= j,

Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce 683

if and only if their corresponding triple patterns share at least one variable. We
label the edge e with all the variable names that were shared between vi and
vj . These edges make up the set E. Each edge represents as many joins as the
number of variables it has in its label. Hence, total number of joins present in
the graph is the total number of variables mentioned in the labels of all edges.
An example illustrates it better. We have chosen LUBM [5] query 12 for that
purpose. Listing 1.1 shows the query.

Listing 1.1. LUBM Query 12

1SELECT ?X WHERE {
2?X rd f : type ub : Cha ir .
3?Y rd f : type ub : Department .
4?X ub : worksFor ?Y .
5?Y ub : subOrganizat ionOf <http : / /www. Un iv e r s i ty0 . edu> }

The graph we build at first for the query is shown in figure 1. The nodes are
numbered in the order they appear in the query.

Algorithm 1. DetermineJobs(Query q)
Require: A Query object returned by RewriteQuery algorithm.
Ensure: The number of jobs and their details needed to answer the query.

1: jobs ← φ; graph ← makeGraphFromQuery(q); joins left ← calculateJoins(graph)
2: while joins left 	= 0 do
3: variables ← getV ariables(graph); job ← createNewJob()
4: for i ← 1 to |variables| do
5: v ← variables[i]; v.nodes ← getMaximumV isitableNodes(v, graph)
6: v.joins ← getJoins(v.nodes, graph)
7: end for
8: sortV ariablesByNumberOfJoins(variables)
9: for i ← 0 to |variables| do

10: if |v.joins| 	= 0 then
11: job.addV ariable(v); jobs left ← jobs left − |v.joins]
12: for j ← i + 1 to |variables| do
13: adjustNodesAndJoins(variables[j], v.nodes)
14: end for
15: mergeNodes(graph, v.nodes)
16: end if
17: end for
18: jobs ← jobs ∪ job
19: end while

20: return jobs

Fig. 1. Graph for Query 12 in Iteration 1 Fig. 2. Graph for Query 12 in Iteration 2

684 M.F. Husain et al.

Table 1. Iteration 1 Calculations

Variable Nodes Joins ‖Joins‖
Y 2, 3, 4 2-3, 3-4, 4-2 3
X 1, 2 1-2 1

Table 2. Iteration 1 - After choosing X

Variable Nodes Joins ‖Joins‖√
Y 2, 3, 4 2-3, 3-4, 4-2 3
X 1 0

Table 3. Iteration 2 Calculations

Variable Nodes Joins Total Joins
X 1, 2 1-2 1

In figure 1, each node in the figure has a node number in the first line and
variables it has in the following line. Nodes 1 and 3 share the variable X hence
there is an edge between them having the label X . Similarly, nodes 2, 3 and
4 have edges between them because they share the variable Y . The graph has
total 4 joins.

Algorithm 1 is iterative. It takes a Query object as its input, initializes the
jobs set (line 1), builds the graph shown in figure 1 before entering first iteration
(line 2). It also calculates the number of jobs left (line 3). It enters the loop in
line 4 if at least one job is left. At the beginning of the loop it retrieves the set of
variables (line 5) and creates a new empty job (line 6). Then it iterates over the
variable (line 7 and 8), lists the maximum number of nodes it can visit by edges
having the variable in its label (lines 9). It also lists the number of joins that
exist among those nodes (line 10). For example, for variable Y we can visit nodes
2, 3 and 4. The joins these nodes have are 2-3, 3-4 and 4-2. The information it
collects for each variable is shown in table 1.

It then sorts the variables in descending order according to the number of
joins they cover (line 12). In this example, the sort output is the same as table
1. Then, in greedy fashion, it iterates over the variables and chooses a variables
if the variable covers at least one join (line 13 and 14). In each iteration, after it
chooses a variable, it eliminates all the nodes it covers from subsequent variable
entries (lines 17 to 19). It then calculates the number of joins still left in the
graph (line 16). For example, once the algorithm chooses the variable Y , the
nodes and joins for X becomes like table 2.

It also merges the nodes visited by the chosen variable in the graph (line 20).
Hence, after choosing Y it will not choose X as it does not cover any join any
more. Here the inner loop terminates. The joins it picked are the joins that will
be done in a job. The algorithm then checks whether any join is not picked (line
4). If such is the case, then more jobs are needed and so the algorithm goes to
the next iteration.

At the beginning of the subsequent iteration it again builds a graph from the
graph of the previous iteration but this time the nodes which took part in joins
by one variable will be collapsed into a single node. For our example, nodes 2,
3 and 4 took part in joins by Y . So they will collapse and form a single node.
For clarity, we name this collapsed node as A and the remaining node 1 of the

Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce 685

graph in figure 1 as B. The new graph we get like this is shown in figure 2. The
graph has total 1 join. We have listed the nodes which were collapsed in braces.

After building the graph, the algorithm moves on to list the maximum number
of nodes, joins and total number of joins each variable covers. This is shown in
table 3. The algorithm chooses X and that covers all the joins of the graph. The
algorithm determines that no more job is needed and returns the job collection.

4 Results

Due to space limitations we choose to report runtimes of six LUBM queries
which we ran in a cluster of 10 nodes with POS schema. Each node had the
same configuration: Pentium IV 2.80 GHz processor, 4 GB main memory and
640 GB disk space. The results we found are shown in table 4.

Table 4. Query Runtimes

Universities Triples (million) Query1 Query2 Query4 Query9 Query12 Query13
1000 110 66.313 146.86 197.719 304.87 79.749 198.502
2000 220 87.542 216.127 303.185 532.982 95.633 272.521
3000 330 115.171 307.752 451.147 708.857 100.091 344.535
4000 440 129.696 393.781 608.732 892.727 115.104 422.235
5000 550 159.85 463.344 754.829 1129.543 132.043 503.377
6000 660 177.423 543.677 892.383 1359.536 150.83 544.383
7000 770 198.033 612.511 1067.289 1613.622 178.468 640.486
8000 880 215.356 673.0 1174.018 1855.5127 184.434 736.189
9000 990 229.18 727.596 1488.586 2098.913 214.575 821.459
10000 1100 273.085 850.503 1581.963 2508.93 286.612 864.722

Table 4 has query answering times in seconds. The number of triples are
rounded down to millions. As expected, as the number of triples increased, the
time to answer a query also increased. Query 1 is simple and requires only one
join. We can see that it took the least amount of time among all the queries.
Query 2 is one of the two queries having most number of triple patterns. We can
observe that even though it has three times more triple patterns it does not take
thrice the time of query 1 answering time because of our storage schema. Query
4 has one less triple pattern than query 2 but it requires inferencing to bind 1
triple pattern. As we determine inferred relations on the fly, queries requiring
inferencing takes longer times in our framework. Query 9 and 12 also require
inferencing and query 13 has an inverse property in one of its triple patterns.

We can see that the ratio between the size of two datasets and the ratio
between the query answering times for any query are not the same. The increase
in time to answer a query is always less than the increase in size of datasets. For
example, 10000 universities dataset has ten times triples than 1000 universities
but for query 1 time only increases by 4.12 times and for query 9 by 8.23 times.

686 M.F. Husain et al.

The later one is the highest increase in time which is still less than the increase
in dataset size. Due to space limitations, we do not report query runtimes with
PS schema here. We observed that PS schema is much slower than POS schema.

References

1. Newman, A., Hunter, J., Li, Y.F., Bouton, C., Davis, M.: A Scale-Out RDF Molecule
Store for Distributed Processing of Biomedical Data Semantic Web for Health Care
and Life Sciences. In: Workshop WWW 2008, Beijing, China (2008)

2. Chang, F., Dean, J., et al.: Bigtable: A Distributed Storage System for Structured
Data. In: OSDI Seventh Symposium on Operating System Design and Implementa-
tion (November 2006)

3. Moretti, C., Steinhaeuser, K., Thain, D., Chawla, N.V.: Scaling Up Classifiers to
Cloud Computers. In: IEEE ICDM (2008)

4. Chu, C.-T., Kim, S.K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.:
Map-reduce for machine learning on multicore. In: NIPS 2007 (2007)

5. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Sys-
tems. Journal of Web Semantics 3(2), 158–182 (2005)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 687–693, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Distributed Scheduling Extension on Hadoop

Zeng Dadan, Wang Xieqin, and Jiang Ningkang

Software Engineering Institute, East China Normal University
ddzeng@sei.ecnu.edu.cn

Abstract. Distributed computing splits a large-scale job into multiple tasks and
deals with them on clusters. Cluster resource allocation is the key point to restrict
the efficiency of distributed computing platform. Hadoop is the current most
popular open-source distributed platform. However, the existing scheduling
strategies in Hadoop are kind of simple and cannot meet the needs such as sharing
the cluster for multi-user, ensuring a concept of guaranteed capacity for each job, as
well as providing good performance for interactive jobs. This paper researches the
existing scheduling strategies, analyses the inadequacy and adds three new features
in Hadoop which can raise the weight of job temporarily, grab cluster resources by
higher-priority jobs and support the computing resources share among multi-user.
Experiments show they can help in providing better performance for interactive
jobs, as well as more fairly share of computing time among users.

Keywords: Hadoop, Distributed Scheduling, MapReduce, Fair Share.

1 Preface

Cluster resource allocation is the key of the efficiency in a distributed computing plat-
form. The quality of the scheduling strategy will directly affect the operational efficiency
of the entire cluster. Google's MapReduce framework is a typical representative for dis-
tributed computing platform[1,2]. Hadoop is the open source implementation of Apache
Software Foundation's MapReduce which is used to deal with the parallel computing on
large-scale data sets (TB orders of magnitude)[3]. Hadoop splits calculation into map and
reduce in order to distribute the computing tasks to various nodes in clusters and finally
complete the parallel computing on large-scale data sets through summarizing the results
of each node. Because of its open source and the powerful processing capabilities of
distributed computing, Hadoop has been the most widely used platform in the industry.
Besides Yahoo, Facebook ,Amazon and other major companies, researchers at Cornell
University, Carnegie Mellon University, University of Maryland, and Palo Alto Research
Center use Hadoop for such distributed computing as seismic modeling, natural language
processing, and Web data mining[5,6,7,8].

This article studies the scheduling model Hadoop used. Then, analyses the limita-
tions of the existing scheduling strategy, the imperfect of it. On the basis of that, three
improvements are added to the existing scheduling strategy combined with the specific
needs in the distributed environment.

688 Z. Dadan, W. Xieqin, and J. Ningkang

2 Scheduling Strategies of Hadoop

Hadoop with the FIFO scheduling strategy is mainly for large batch operations, such as
Web search, Log Mining and so on [4]. FIFO scheduling strategy is not able to meet the
new demands of multi-user's sharing of cluster while it is hard to deal with
the highly-demanded response time in the aspect of the interactive task. In this case, the
third-party companies develop some new scheduling strategy according to their busi-
ness. Take some famous example, Facebook's FairScheduler and Yahoo's Capacity-
Scheduler. FairScheduler is based on the principle of fair sharing. Fair sharing aims at
the pro-rata sharing of resources among the users.

 Similar to FairScheduler, CapacityScheduler is also applicable to multi-user share
cluster. In CapacityScheduler, the user could define a series of naming queues while he
could configure the number of maps and reduces’ computing resources that each queue
needs. When there is a job in the queue, CapacityScheduler will provide the queue with
the computing resources according to the configuration, meanwhile, it will allocate the
surplus computing resources equally. Inside each queue, capacityscheduler simulate
Hadoop's FIFO scheduling strategy which is that the scheduler decides the processing
sequence according to the job's priority and submit time.

3 Design and Implementation to Improve the Hadoop-Based
Scheduling

Hadoop is assumed to be mainly used for large-scale batch processing operations in
design, for example Web search, log mining, and so on. Its built-in scheduler Job-
QueueTaskScheduler is based on FIFO scheduling thought. However, with more and
more data added to HDFS by the Hadoop users, a new demand comes into existence.
When multi-users are sharing the cluster resources, the scheduler should provide rapid
response capability to the interactive jobs. Since that Hadoop scheduling strategy is
hard to deal with multi-users sharing of clusters, in the July of 2008 Apache Software
Foundation designs the Hadoop scheduler as a pluggable component. Which enable the
organizations or individuals define the distributed computing scheduling strategy ac-
cording to their own business demands.

But the current scheduling strategy of third-party developers has their limitations
too. Take fair scheduling strategy for example, provides each job with some computing
resources. The short jobs will not be starved by the high-priority, but the schedule
doesn't specifically optimize the performance of the interactive job. On the other hand,
fair scheduling strategy does not allow jobs to preempt.

3.1 Temporary Weight Enhancement Mechanism

The scheduling algorithm of FairScheduler tracks and maintains the weight in real
time. Through modifying the scheduling algorithm for reading the configuration
information and endowing the enhancement of their weight after defining each new
run time T (which may be user configured, the default is 10 minutes).The scheduling

 Distributed Scheduling Extension on Hadoop 689

strategy can significantly reduce more response time of interactive operations. At the
same time, the mechanism is dynamically guaranteed to the fairness of all the jobs
because each job has access to the temporary weighting enhancement after running
the first T time.

Job is an instance of the object, JobInProgress, which means the job enters the
processing queue. CurrentWeight means the current weight of the job which is value
that takes job’s priority, job’s size and job’s waiting time into consideration. FACTOR
is the weight enhancement cause of the algorithm maintained in configuration file. Its
default value is set to 3. DURATION is the running time has to be waited in order that
the program can be enhanced by the weight. Its default value is set to 600000 (10 * 60 *
1000, 10 minutes) and it is maintained in configuration file too.

3.2 Preempting Mechanism

Users may accidentally submit the long-running jobs. Or they have to process the mass
data which may lead to longtime running. In order to meet demands of the fair sched-
uling strategy to ensure the basic computing resources of the determined queue and the
response time of the interactive jobs, the article introduce the preempting mechanism.

The job is able to preempt other jobs’ computing resources if a job doesn’t get the
smallest computing resources ensured by cluster in at least T1 time or the computing
resources it gets is less than the certain percentage (for example, 1 / 3) of its Fair Share
in T2 time. Of which, T1 will be smaller than T2 so as to first ensure the smallest
guaranteed amount of computing resources, and T2 is used to ensure that those queue
not important and there is no guarantee amount will not be starved. T1, T2 can be
configured by the user.

First, GrabTasksNecessary () need to check the jobs needing to preempt the re-
sources. If such operations exist, GrabTasksNecessary () will sort all the jobs according
to computing resources’ shortage monitored and maintained by scheduling strategy.
And then GrabTasks() will consider preempting the job that has the largest idle re-
sources by sequence.

TasksToGrab () is used to define the jobs need to preempt how many computing
resources of the designated type. If the job’s waiting time exceed the given min-
ShareTimeout and its resources is less than the minimum quota, the job can preempt
the computing resources (the preemptive computing resources is decided by margin
of the deserved computing resources and its occupied computing resources); if the
job’s waiting time exceed the given fairShareTimeout, and its resources are less than
the certain amount of the Fair Share (can be configured, the default is 1 / 3), the job
can preempt the computing resources until it meet the allocation of he Fair Share
value. Meeting the above two situation, the job will preempt the maximum of re-
sources. According to the time out configured by users, the situation generally does
not occur unless the user deliberately set the same time out. (Under normal circum-
stances, minShareTimeout is smaller than fairShareTimeout).

GrabTasks () will preempt the maximum tasks number that doesn’t exceed the
specified number of specified type (map or reduce) while ensuring that the computing

690 Z. Dadan, W. Xieqin, and J. Ningkang

resources of the job being preempt will not less than their minimal guaranteed amount
or a certain ratio of Fair Share (1/CONST_RATE, can be configured).The algorithm is
preferred to select the active task.

3.3 The Fair Share of Computing Resources among the Resource Pool

FairScheduler will default the jobs as equal entities in the aspects of sharing resources
so that it can share the surplus computing resources fairly among the jobs with the
minimal of guaranteed computing resources. It results the situation that users who
submit two jobs get twice computing resources as the users who submit one. Appar-
ently, this allocation is inadequate because the user can submit multiple jobs inten-
tionally to get more computing resources. This article will take the strategy that each
user is allocated a separate computing pool while they are regarded as equal entities to
share the surplus computing resources fairly. On the other hand, weight can be added to
the computing pool so that several users or organizations who actually need can acquire
greater share of the cluster.

4 The Realization and Experiments

The FairScheduler tool developed by Facebook in this text will realize the temporally
raising of weight, preemption by higher priority and the resource sharing between users
by the java, and will load it on the Hadoop scheduler.

4.1 The Realization

1) Temporarily raising of weight

Define a class named WeightBosster in the FairScheduler, the structure is in Figure 1.

Fig. 1. Class WeightBooster

DEFAULT_FACTOR is assigned to the default factor of the raised weight and the
default value is 3.DEAFAULT_DURATION is used to assign when default temporally
raised weight happen, and its default value is 10*60*1000(10 minutes); set-
Conf(Configuration) maintained FACTOR and DURATION these two vital factor of
raising weight algorithm dynamically through the configuration file.

 Distributed Scheduling Extension on Hadoop 691

UpgradeWeight(JobInProgress,TaskType,double) is the realization of the raised

weight by java.

2) Resource sharing between users

FairScheduler scheduler define the way of resource allocating in the FairSched-
uler.java. In order to change to our new way, override the method assignTasks().
Meanwhile, the over defining of the computing pool allocation in the PoolMan-
ager.java adopts the way of sharing resource. It must provide each user its own com-
puting pool whose default name is its computer name

3) Preemption of higher priority
Define a class named GrabTasks in the FairScheduler.

Fig. 2. Preemption realization

GRAB-INTERVAL is used to define the interval of the preemption algorithm, the
default value is 300000(five minutes); grabEnabled determines whether scheduler actives
the preemption .LastGrabCehckTime, lastTimeAtMapMiniShare, lastTimeAtReduce-
MinShare, lastTimeAMapFairShare, LastTimeAtReduceFairShare, each of these define
the key attribution value of realizing preemption algorithm. These values combine with
the methods isStarvedForMinShare() and isStarvedForFairShare(), which provide the
reference of the preempting algorithm. UpdateGrabVariables() is used to maintain the
various attributes of class GrabTasks. GrabTasksIfNecessary() calls the methods Task-
sToGrab() and GrabTasks() to scan the Hadoop task queue and if any task needs preempt
resource then the preemption happens.

4) Test environment

We get four simple personal computer(CPU:1.86HZ*1,Memory:2GB*1)that are con-
nected to a switch board to make up a LAN. One of the computerss is preinstall cygwin

692 Z. Dadan, W. Xieqin, and J. Ningkang

to simulate linux environment and is regarded as NameNode. The rest three of the
computers are preinstalled linux environment and are regarded as SecondNameNode
and the other two DataNode. Meanwhile, install Hadoop on these four computers and
active the dfs and mapred these two process. The total testing data is about a thousand
txt files(The total size is about 1GB).

4.2 Performance Test

1) Raised weight

The raised weight is designed for prompt the response of small tasks. The test involves
in two distributed tasks, task A and task B. Task A runs wordcount on 10MB data, and
task B runs wordcount on 500MB data. Suppose that the quality of task A is similar to
interactive task, and user wants to get the result of task A as soon as possible. What’s
more, when the task A is submitted, task B has already executed for about three min-
utes. In this test, task A is spilt into 300 small tasks and task B is split into 25000 tasks.
When the raised weight is not used, in the premise of that task B occupies the resource
and is running, the performance of A’s process is stable which is about 38 per minute.
The Figure 3 shows the result.

Fig. 3. Result without raised weight Fig. 4. With using weight raised

When using the raised weight, in order to make the result of test more obvious, we
set the multiply to five and the time to 3 minutes.The moment that the running time of
task A is three minutes, the speed of it rise from 28 per minute in the first three minutes
to 83 per minute, while task B’s process speed decrease obviously. So 300 tasks take
six minutes.

2) Task preemption

Without preemption, it’s hard for task A and task B to obtain adequate resource in the
condition that task C occupies huge amounts of resource result in that they must wait
for the completion of task C and release its resource. In the 10 minutes, they all finish
200 small tasks.

After using the preemption, task A and task B grab the task C’s resource in their one
minute’s running which shows the prompt of process is about 250%. In the ten minutes’
running, task A and task B have each processed 500 small tasks.

 Distributed Scheduling Extension on Hadoop 693

Fig. 5. Without Job-grabbing Fig. 6. Preemption Scheduling

5 Conclusion

Schedule strategy is an important part of a distributed system. This article focuses on
the Hadoop’s schedule model and its disadvantages to solve the processing interactive
task problem, low priority tasks hungry and the sharing resource in Multi-user clusters
problem.The experiments show that these improvement can meet the specified need
properly to advance the hadoop scheduling.

With the increase of data and the expansion of users, the schedule will certainly meet
more and more challenges such as safety in distributed system, refinement of users’
pool and hierarchical solution and so on which could be done in the future work.

References

[1] Lammel, R.: Google’s mapreduce programming model revisited. Science of Computer
Programming 70(1), 1–30 (2008)

[2] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM 51(1), 107–113 (2008)

[3] http://hadoop.apache.org/core/docs/r0.17.2/
mapred_tutorial.html

[4] Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapReduce Per-
formance in Heterogeneous Environments. University of California, United States (2004)

[5] Amazon EC2 Instance Types, http://tinyurl.com/3zjlrd
[6] Yahoo! Launches World’s Largest Hadoop Production Application,
 http://tinyurl.com/2hgzv7

[7] Chu, C.-T., Kim, S.K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce
for machine learning on multicore. In: Advances in Neural Information Processing Systems,
pp. 281–288. MIT Press, Cambridge (2007)

[8] Lin, J.: Brute Force and Indexed Approaches to Pairwise Document Similarity Comparisons
with MapReduce. In: Proceedings of the 32nd Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR 2009), Boston, Mas-
sachusetts (July 2009)

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 694–699, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Data Distribution Aware Task Scheduling Strategy for
MapReduce System

Leitao Guo, Hongwei Sun, and Zhiguo Luo

China Mobile Research Institute,
53A, Xibianmennei Ave., Xuanwu District, Beijing 100053, P.R. China
{guoleitao,sunhongwei,luozhiguo}@chinamobile.com

Abstract. MapReduce is a parallel programming system to deal with massive
data. It can automatically parallelize MapReduce jobs into multiple tasks,
schedule to a cluster built by PCs. This paper describes a data distribution
aware MapReduce task scheduling strategy. When worker nodes requests for
tasks, it will compute and obtain nodes’ priority according to the times for re-
quest, the number of tasks which can be executed locally and so on. Meanwhile,
it can also calculate tasks’ priority according to the numbers of copies executed
by the task, latency time of tasks and so on. This strategy is based on node and
task’s scheduling priority, fully considers data distribution in the system and
thus schedules Map tasks to nodes having data in high probability, to reduce
network overhead and improve system efficiency.

Keywords: MapReduce, Task Scheduling.

1 Introduction

MapReduce is a new parallel programming system proposed by Google Inc [1, 3],
which summarizes the data processing in two steps: map and reduce. Library provided
by mapreduce system can automatically handle the parallel processing, fault toler-
ance, data distribution, load balance and etc. As the system architecture shown in
Figure 1, mapreduce system is mainly composed of 3 parts. Client is used to submit
the user’s mapreduce program to the master node; master node can initialize the pro-
gram into map and reduce tasks automatically, and schedule them to worker nodes;
worker nodes request and execute tasks from master. At the same time, a distributed
file system (DFS) built on worker nodes is used to store input/output data for mapre-
duce jobs [1,2] .

The major feature for the task scheduling strategy in MapReduce system, is to
schedule the tasks to the workers which store the data for map task. This location-
based scheduling policy can reduce the network overhead and improve system per-
formance when map task can be executed on the workers which have data. Due to the
reliability and storage capacity of the different worker nodes, the uneven distribution
of the data will be caused. The existing scheduling strategy doesn’t fully consider the
situation of data distribution, and will result in more network load.

 A Data Distribution Aware Task Scheduling Strategy for MapReduce System 695

Fig. 1. System Architecture of MapReduce System

2 Problems in the Existing MapReduce Scheduling Methods

Scheduling of MapReduce is divided into 2 phases: initialization and task scheduling.

Initialization process is as following:
1. Master receives submitted tasks, and initializes it as map and reduce tasks;
2. After initialization, put the task into the pending task list;
3. Calculated local task list for each worker node;
4. Waiting for the worker to request tasks.
Task scheduling process is as following:
1. Master receives the task request from worker. It examines whether there are run-

nable tasks in local task list of worker, if there are, return the first task in local task
list; otherwise, continue;

2. From near to far, to inquire the worker’ nearby worker neighbors about whether
there is runnable task in their local task list, if there is, return the first runnable
task; otherwise, continue;

3. traverse local task list to return the first runnable task; if not found, continue;

4. Do following steps such as speculative scheduling [1] and so on.

The existing task scheduling ignored the data distribution situation for map task, such
as the number of local task for a worker and the number of data copies for each map
task. In the following scenarios, more map task cannot run locally and will cause
more network overheads.

Scenario 1, there are different number of local tasks in worker nodes
As shown in Table 1, when the worker nodes request for new task in the order of H4-
H1-H2-H3, based on current scheduling strategy, the result is: H4 gets T1, H1 gets T2,
H2 gets T3, and H3 gets T4. This will result in 3 times of network data copy. Since
there are 2 splits of data on H3, the best scheduling result is scheduling T3 or T4 to H4.

696 L. Guo, H. Sun, and Z. Luo

Table 1. Scenario 1

Worker node Data splits stored in the worker Local task list

H1 S1 T1

H2 S2 T2

H3 S3，S4 T3,T4

H4 - -

Scenario 2, there are different number copies of data.
As shown in Table 2, when the worker nodes request for new task in the order of H4-
H1-H2-H3, based on current scheduling strategy, the result is: H4 gets T1, H1 gets
T2, H2 gets T3, and H3 gets T4. This will result in 3 times of network data copy.
Since T2 and T3 have more copies of data, while T1 and T4 have only one copy, the
best scheduling result is: H4 gets T1, H1 gets T4, H2 gets T2 and H3 gets T3.

Table 2. Scenario 2

Worker node Data splits stored in the worker Local task list

H1 S1, S2, S3, S4 T1, T2, T3, T4

H2 S2, T2

H3 S3 T3

H4 - -

Scenario 3, there are only one copy of data, and the data are uniformly distributed.
As shown in Table 3, when the worker nodes request for new task in the order of H4-
H1-H2-H3, based on current scheduling strategy, the result is: H4 gets T1, H1 gets
T2, and H2 gets T3. This will result in 3 times of network data copy. Since every task
has the same number of copy, the best scheduling result is: refuse the request of H4
and wait for H1, H2 and H3 request for task.

Table 3. Scenario 3

Worker node Data splits stored in the worker Local task list

H1 S1 T1

H2 S2 T2

H3 S3 T3

H4 - -

According to the above analysis, current mapreduce task scheduling strategy doesn’t

consider the data distribution of tasks, and will result in more network overhead

 A Data Distribution Aware Task Scheduling Strategy for MapReduce System 697

3 Data Distribution Aware Task Scheduling Strategy

There are 2 main phases in this Strategy: in the initialization phase, statistics number
of copies of data processed by each map task. At the same time, statistics the number
of localizable tasks for each worker; in the scheduling phase, according to the infor-
mation above, calculating the scheduling priorities for each task and each works that
requesting task, and scheduling the task to works based on this priority.

3.1 Main Modules in Master Node

In addition to the existing data structure that included in the current system, the mas-
ter node needs to enhance the following modules:

(1) Module for calculating the scheduling priority for each task

The master node needs to calculate the scheduling priority for each map task, which is
P_Task, based on the distribution of data to be processed by this map task. A map
task with a higher P_Task will have higher priority to be scheduled. P_Task is related
to the following parameters:

• Replica_Num: number of workers that can execute the map task locally. P_Task is
inversely proportional to Replica_Num, map tasks have lower Replic_Num will
have higher priority to be scheduled.

• Worker_TaskList: length of localizable tasks list for the workers who keep the data
to be processed by the map task. The task with bigger Worker_TaskList has higher
P_Task.

• Task_WaitTime: time period for a task from the initialization to the current moment
of time. Task with longer Task_WaitTime has higher scheduling priority.

Therefore, the scheduling priority for each task can be calculated by the following
formula:

3 4 5
P_Task (_) (ker_) (_)F replica num F wor tasklist F task waittime Cα β γ= + + +

While, C represents some impact factor that should be considered,

3
(_)F replica num is a decreasing function, and

4
(ker_)F wor tasklist and

5
(_)F task waittime are increasing function.

(2) Module for calculating the scheduling priority for each workers which
requesting task

This module is responsible for the calculation of the scheduling priority for workers,
P_Worker. The master will schedule the task to the workers with higher P_Worker.
P_Workers can be calculated by the following parameters:

 Worker’s local task list: task list kept for each worker. Every task in this list
can be processed locally on this worker. If the worker’s local task list is not
empty, P_Worker can be set as the maximum priority, and master will sched-
ule the task in this list to the worker first.

698 L. Guo, H. Sun, and Z. Luo

 Request_Num: number of requests since the worker gets a task last time. A
bigger Request_Num shows that this worker has low load and can handle
more tasks. Worker with a bigger Request_Num has higher P_Worker.

 History_Info: the success rate for task processing on the worker. History_Info
is proportional to P_Worker.

Therefore, the scheduling priority of a worker can be calculated as the following formula:

1 2

_ ker_ 1
_ ker

(_) (_ inf) 0

P Wor Max
P Wor

F request num F history o C

θ

α β θ

=
=

+ + =
⎧
⎨
⎩

In this formula, _ ker_P Wor Max represents the maximum value of P_Worker, C

represents some impact factor that should be considered. When the worker’s local

task list is not empty, 1θ = otherwise 0θ = .
1
(_)F request num and

2
(_ inf)F history o are increasing function.

(3) Refinement for job initialization process
Regarding to the scheduling priority of task and workers, the job initialization process
will be refined as the following:
1. Master node instantiations the map and reduce tasks after receiving the job.

2. Master puts the initialized job into the pending job list.
3. Calculate the Replic_Num for each map task.

4. Calculate the Worker_tasklist for workers who keep the data for this job.

5. Waiting for the worker to request a new task.

(4) The scheduling decision-making module
The scheduling decision-making module determines whether to schedule a task to a

worker based the value of P_Worker and P_Task. A simple decision-making system

just like: * _ ker * _P Wor P Taskα β τ+ > , τ is a threshold value for decision-

making, when the value is bigger that τ , the master schedules the task to this worker.
In the case that worker’s scheduling priority is omitted, the scheduling decision-

making module can be simplified as the following process:

1. Firstly, master node checks the local task list for the workers, and scheduler the
task with the minimum Replic_Num to the worker. If the length of local task list is
0, go to the next step.

2. Scan the workers that near to this worker, and schedule the map task with the
minimum Replic_Num from their local task list. If cannot find a proper map task,
then continue.

3. Calculate the length of worker_tasklist for workers that can process the tasks lo-
cally. Pick the worker with the longest worker_tasklist, and schedule its map task
with the minimum Replic_Num. if cannot find a proper map task, then continue.

4. Start to handle the speculative scheduling.

 A Data Distribution Aware Task Scheduling Strategy for MapReduce System 699

3.2 Main Modules in WorkerNode

In addition to the existing data structures that included in the current system, the
worker node needs to have the function to handle the request fault by dynamically
adjusting the period of task requesting.

When workers request master for a new task, but master failed to schedule a task to
this worker, the worker should wait for a while and request again. To decrease the
resource waste when waiting for a new task in workers, worker should shorten the
task request period. Once the worker gets a runnable task, the task request period will
be reset to the default value.

4 Analysis of Application Effectiveness

Using the proposed schedule algorithm, the results of three scenarios described in
Section 2 are as follows,

Scenario 1: The schedule result is：H4 executes T3, H1 executes T1, H2 executes
T2, and H3 executes T4.

Scenario 2: The schedule result is：H4 executes T1, H1 executes T4, H2 executes
T2, and H3 executes T3.

Scenario 3: Since replica_num of T1 and T2 is 1, and worker_tasklist of every node
is 1, so P_Task is high, this results in no task to be processed in H4. The schedule

result is：H1 executes T1, H2 executes T2, and H3 executes T3.

5 Conclusions and Future Works

This paper proposed a data distribution aware MapReduce task schedule strategy
based on data distribution, which can increase the probability of the localized task
implementation. Future works include the optimization of this schedule strategy, such
as the management of the used resources by jobs and the schedule algorithm based on
the loads of all nodes.

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
OSDI 2004, 6th Symposiumon Operating Systems Design and Implementation, Sponsored
by USENIX, incooperation with ACM SIGOPS, pp. 137–150 (2004)

2. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: Proceedings of the
19th ACM Symposium on Operating Systems Principles, pp. 20–43 (2003)

3. Hadoop opensource project, http://hadoop.apache.org/

M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudCom 2009, LNCS 5931, pp. 700– 704, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Cloud Computing Based Internet Data Center

Jianping Zheng, Yue Sun, and Wenhui Zhou

53A, Xibianmennei Ave, Xuanwu District, Beijing, 100053, China
{zhengjianping,sunyue,zhouwenhui}@chinamobile.com

Abstract. Cloud computing offers a great opportunity for Internet Data Center
(IDC) to renovate its infrastructure, systems and services, and cloud computing
based IDC is promising and seem as the direction of next generation IDC. This
paper explores the applications of cloud computing in IDC with the target of
building a public information factory, proposes the framework of cloud comput-
ing based in IDC, and probe into how to build cloud services over the cloud
platform in the IDC.

Keywords: Internet Data Center, Cloud Computing, Public Information Factory.

1 Introduction

The Internet Data Center (IDC) and its services evolve with the development of Inter-
net and information technology. The first generation IDC only provides the simple
and basic services like web hosting, server renting and bandwidth renting. The second
generation IDC offers value-added services such security and load balance, and im-
proves its quality of service. However, the 2nd generation IDC faces new challenges.
First, the IDC customers demand the gradual increase of IDC resources including
computing, storage and bandwidth resources to meet their business growth, while they
do not expect service break due to the system upgrade. Second, the IDC consumes
mass power and faces the energy saving problem. Cloud computing seems to be the
best solution to overcome these challenges. It realizes elastic computing and also
improves the efficiency of server utilization to save power. Cloud computing based
IDC is promising and is the direction of 3rd generation IDC.

Google, Amazon and Microsoft are running cloud computing based data centers
across the globe to provide competitive cloud services. Google App Engine (GAE) [1] is
built over Google cloud computing infrastructure including GFS, BigTable and MapRe-
duce, and provides the web service development environment as well as web hosting for
the developers. Amazon Web Service (AWS) [2] is Amazon's cloud computing platform
that provides companies of all sizes with an infrastructure web services platform in the
cloud. Amazon provides EC2, S3, CloudFront, SQS and other cloud services over AWS.
The Azure Services Platform [3] is an internet-scale cloud computing and services plat-
form hosted in Microsoft data centers. The Azure Services Platform provides a range of
functionality to build applications that span from consumer web to enterprise scenarios
and includes a cloud operating system and a set of developer services.

Telecom operators, the main players of IDC services, are also active in introducing
cloud computing to IDC to develop new services. For example, recently AT&T
launched synaptic hosting service. The telecom operators have advantage network

 Cloud Computing Based Internet Data Center 701

resources and a very large number of customers. With cloud computing, the telecom
operator can turn the IDC into a public information factory. Such a public information
factory provides the virtual, security, reliable and scalable IT infrastructure. Moreover
on top of the IT infrastructure the telecom operator can build open platforms that
enable the third party to develop new applications. Finally, the public information
factory can provide variety of information services to the consumer, enterprise and
government on demand and in a pay-as-you-go manner, just as the way of providing
gas or water service.

This paper, from the viewpoint of telecom operators, explores the applications of
cloud computing in IDC with the target of building a public information factory, pro-
poses the framework of cloud computing based in IDC, and probe into how to build
cloud services over the cloud platform in the IDC.

2 Framework of Cloud Computing Based IDC

Cloud computing offers a great opportunity for Internet Data Center (IDC) to reno-
vate its infrastructure, systems and services, and make the IDC as a public informa-
tion factory. As a public information factory, the IDC should provide its customers all
kinds of IT services on demand. The IT services by the telecom operator are all
around. Basically, the infrastructure services including computing, storage and net-
working services should be provided to the web hosting customers. Second, the tele-
com services such as voice, SMS, MMS, WAP and location service should be opened
as capabilities to the developers to develop new applications. In addition, the IDC
needs to provide services to help Internet Software Vendors (ISV) to host their on-line
software in the IDC.

To offer the above IT services, the IDC utilizes the cloud computing to construct a
cloud platform, on top of which three kinds of cloud services including Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) are
provided. Fig. 1 illustrates the framework of cloud computing based IDC. The IT
resources including computing, storage and networking resources in the IDC are

Fig. 1. Framework of cloud based IDC

702 J. Zheng, Y. Sun, and W. Zhou

virtualized and managed by cloud platform. Based on the cloud platform, IaaS, PaaS
and SaaS are provided to the customers to develop and deploy applications in the
IDC. To guarantee the Service Level Agreement (SLA) with the customers, all the
cloud services are well managed with powerful management systems.

With IaaS, PaaS and SaaS, the developers can develop and deploy their applica-
tions in the IDC and do not need to take care of constructing the servers for the appli-
cations. The IDC offers the developers with elastic computing resources on demand.
The consumer can have his computing desktop in IDC and access it anywhere by any
device. The enterprise and government can build their virtual data centers in the cloud
based IDC, which saves their IT Capex and Opex.

3 Services in Cloud Based IDC

3.1 Infrastructure as a Service

IaaS is the delivery of computing infrastructure as a service. The providers rent com-
puting power and disk space and access them from desktop PCs through a private
network or across the Internet. Amazon EC2 and S3 services are typical IaaS. The
telecom operator has mass IT resource in its IDC. Traditionally, the operator has lim-
ited kind of services and business model in renting the resource. Typically, the cus-
tomer rent servers or bandwidth for a fixed term e.g. one year. With cloud computing,
the operator can be much more flexible in renting resources, and the customer can
have scalable resource on demand and pay for utility. The elastic computing service,
cloud storage service and content delivery service are the most important infrastruc-
ture services in IDC for telecom operators.

Fig. 2 shows the system architecture of IaaS. Built on top of the IT infrastructure,
the cloud platform consists of cloud computing system, cloud storage system and
Content Delivery Network (CDN) system, which have API open to the cloud services

Fig. 2. System Architecture of IaaS

 Cloud Computing Based Internet Data Center 703

for accessing the IT resource. The cloud services e.g. elastic computing service are
provided to the customer by service API or management console.

3.2 Platform as a Service

As pointed out in [4], PaaS can add significant value to enterprise IT by enabling IT
to better serve the business, operate at a strategic level with business divisions and
rapidly deliver application solutions to business partners. Google App Engine and
Microsoft’s Azure are the examples of PaaS that benefits the Internet society and
enterprise in developing and delivering new applications. To promote the telecom
services and solutions, the telecom operator need to construct its own PaaS.

The telecom PaaS is a platform for the customers to develop, deploy, execute and
manage their applications. It consists of three main components, i.e. telecom service
gateway, runtime environment and development environment, as shown in Fig. 3. The
core value of telecom PaaS is that it opens the telecom enablers, such as SMS, MMS
and WAP, to the 3rd parties so that they can create innovative applications that com-
bined the Internet and telecom services.

Fig. 3. System Architecture of Telecom PaaS

4 Summary

Cloud computing can provide large scale, low cost, reliable and scalable IT infrastruc-
ture for IDC, which offers great opportunities for the IDC to renovate its system and
services to make itself more competitive. IaaS, PaaS and SaaS are cloud services that
will make the IDC as a public information factory providing all kinds of information
services to the customers on demand.

704 J. Zheng, Y. Sun, and W. Zhou

Building cloud based IDC is one of the important strategies for the telecom opera-
tors. With cloud based IDC, the telecom operators not only innovate in the IDC ser-
vices but also reduce the operation cost. Furthermore, it helps the telecom operators to
exploit the long tail market of IDC services, and keeps their competitive position in
the Internet services.

However, the cloud based IDC faces challenges, among of which availability and
security are the most vital. As a public information factory, high availability is the
basic requirement of IDC. Even a short outage of cloud service could cause wide-
spread panic. Security concerns arise because both customer data and program are
residing in IDC. However, the cloud based IDC faces the problems such as vulner-
ability in virtualization, denial of services, and information confidentiality. Much
work is needed to overcome these challenges to make a cloud based IDC as an oper-
able and trustable information factory.

References

1. Google App Engine, http://code.google.com/appengine/
2. Amazon Web Service, http://aws.amazon.com/
3. Microsoft Azure Platform, http://www.microsoft.com/azure/default.mspx
4. Cheng, D.: PaaS-onomics: A CIO’s Guide to using Platform-as-a-Service to Lower Costs of

Application Initiatives While Improving the Business Value of IT. Technical report, Long
Jump (2008)

Author Index

Ai, Lihua 565
Ali, Mufajjul 451
Antonio, John K. 435
Azab, Abdulrahman 200

Beason, Scott 2
Begnum, Kyrre 266
Blakley, James R. 668
Briscoe, Gerard 472
Broberg, James 254
Buyya, Rajkumar 24, 254

Cao, Bu-Qing 644
Cao, Fan 621
Carrera, David 243
Castro-Leon, Enrique 668
Cayirci, Erdal 57
Charlesworth, Andrew 131
Chen, Chunlin 413
Chen, Xiuhong 510
Chen, Xue 609
Choi, Jong 2
Creese, Sadie 119

Dadan, Zeng 687
Dai, Yuan-Shun 571
Dai, Yuanshun 45, 157
Dailey, Matthew 243
Danwei, Chen 559
Deng, Chao 224
De Sterck, Hans 393
Devadasan, Neil 2
Doelitzscher, Frank 583
Dohi, Tadashi 178
Dong, Bo 577
Doshi, Pankil 680
Du, Yujian 626

Ekanayake, Jaliya 2
Emad, Nahid 662

Fang, Luming 615
Fang, Xing 621
Fang, Zhe 80
Farhan Husain, Mohammad 680
Fox, Geoffrey 2

Gao, Dan 224
Gao, Yuan 212
Grounds, Nicolas G. 435
Guangwen, Yang 632
Gunarathne, Thilina 2
Guo, Leitao 626, 694
Guo, Suchang 571
Guo, Wei 650
Guo, Xiao 290
Guo, Zhe 621

Han, Dong 290
Han, Jinyu 332
Han, Laiquan 405
He, ChengWan 497
He, Guoliang 589
He, Keqing 510
He, Qing 674
He, Yangfan 510
He, Yin 547
Hopkins, Paul 119
Hou, Yifan 547
Hu, Luokai 145, 413
Hu, Min 332
Huang, Ru-Cheng 541
Huang, Wan-Ming 541
Huang, Xiaoying 615
Huang, Xin 547
Huiskamp, Wim 57

Ibrahim, Shadi 519
Iqbal, Waheed 243

Jaatun, Martin Gilje 107
Jia, Xiangyang 145, 413
Jiang, Minghao 553
Jiang, Shaocan 615
Jiang, Yang 547
Jin, Hai 519

Kaio, Naoto 178
Khan, Latifur 680
Kim, Soo Dong 278

706 Author Index

La, Hyun Jung 278
Lartey, Nii Apleh 266
Li, Bing 312, 644
Li, Hao 650
Li, Honghui 359
Li, Hongwei 157
Li, Lisi 547
Li, Lu 510
Li, Minglu 80
Li, Wenjuan 69
Li, Xuhui 301
Li, Yang 529
Li, Zheng 529, 601
Lin, Ben 232
Liu, Fei 497, 609
Liu, Feng 359
Liu, Gilbert 2
Liu, Hefeng 595
Liu, Huan 369
Liu, Jiale 347
Liu, Jin 497, 609
Liu, Qin Yu 621
Lu, Lu 519
Luo, Siwei 565
Luo, Yuan 80
Luo, Zhiguo 224, 338, 626, 694

Ma, Huifang 674
Ma, Ke 529
Ma, Xiaohao 553
Marinos, Alexandros 472
Meling, Hein 200
Miao, Kai 232, 359, 553
Milenkovic, Milan 668
Mowbray, Miranda 90
Muehring, Jeff 435

Ning, Da 656
Ningkang, Jiang 687
Niu, Meng Hua 621
Nyre, Åsmund Ahlmann 107

Ou, Weijie 290

Pan, Wei-Feng 312
Pandey, Suraj 24
Pearson, Siani 90, 119, 131
Peng, Rong 656
Peng, Tao 312

Petiton, Serge G. 662
Ping, Lingdi 69

Qi, Ji 338
Qi, Li 519
Qi, Lin 632
Qian, Ling 338, 626
Qiao, Mu 577
Qin, Li 312
Qiu, Xiaohong 2

Reich, Christoph 583
Rho, Mina 2
Rong, Chunming 19, 57, 167, 460

Sedayao, Jeff 553
Shan, Xumei 595
Shang, Ling 662
Shen, Yun 90, 119
Shi, Xuanhua 519
Shu, Jian 577
Sriram, Ilango 381
Su, Steven 553
Sulistio, Anthony 583
Sun, Changyan 650
Sun, Hongwei 332, 694
Sun, Lan 547
Sun, Shaoling 224
Sun, Wei 347
Sun, Yue 700

Tan, Feng 571
Tang, Guo 650
Tang, Haixu 2
Tang, Na 347
Tang, Yong 347
Thorsen, Kari Anne Haaland 460
Thuraisingham, Bhavani 680
Tian, Ling 157

Uemura, Toshikazu 178

Vecchiola, Christian 24
Venugopal, Srikumar 254
Verkoelen, Cor 57
Voorsluys, William 254

Wang, Bai 212
Wang, Bo 423
Wang, Cuirong 405
Wang, Jinkuan 405

Author Index 707

Wang, Junfeng 609
Wang, Wei 232
Wang, Sheng 322
Wang, Yonggang 322
Wang, Zhijian 662
Wee, Sewook 369
Weng, Chuliang 80
Winter, Markus 190
Wlodarczyk, Tomasz Wiktor 460
Wu, Bin 212
Wu, Song 519
Wu, Xiaoxin 232

Xia, Qi-Ming 644
Xia, Tianze 601
Xiang, Yanping 45
Xieqin, Wang 687
Xing, Lu 266
Xiuli, Huang 559
Xu, Jin-Song 541
Xu, Meng 224
Xunyi, Ren 559

Yan, Liang 167
Yang, Bo 571
Yang, Geng 541
Yang, Haomiao 157
Yang, Jie 577
Yang, Shengqi 212
Yang, Xiaolin 662
Yao, Shaowen 650

Ye, Xiaoping 347
Yeh, James T. 1
Ying, Shi 145, 413
Yu, Nenghai 529, 601
Yue, Shuang 621

Zeng, Cheng 290
Zhang, Baopeng 359
Zhang, Chen 393
Zhang, Feng 347
Zhang, Gewei 45
Zhang, Hao 301
Zhang, Ning 359
Zhang, Sina 547
Zhang, Tingting 547
Zhang, Xiao Ming 485
Zhang, Yongfa 301
Zhao, Gansen 167, 347
Zhao, Haizhou 212
Zhao, Kai 145
Zhao, Weizhong 674
Zheng, Jianping 700
Zheng, Qinghua 577
Zhimin, Tian 632
Zhou, Daliang 322
Zhou, Guofu 589
Zhou, Jing 497
Zhou, Wenhui 700
Zhu, Huafei 638
Zhu, Jinzy 621

	Title Page
	Preface
	Organization
	Table of Contents
	1. Invited Papers
	The Many Colors and Shapes of Cloud
	Biomedical Case Studies in Data Intensive Computing
	Introduction
	Data Intensive Computing Architecture
	Gene Sequencing Applications
	Alu Sequencing Studies
	Smith Waterman Dissimilarities
	Pairwise Clustering
	Multidimensional Scaling MDS

	Linking Environment and Health Data
	Introduction
	Correlating Environment and Patient Data
	Canonical Correlation Analysis and Multidimensional Scaling

	Conclusions
	References

	An Industrial Cloud: Integrated Operations in Oil and Gas in the Norwegian Continental Shelf
	Introduction
	Integrated Operations in the Norwegian Continental Shelf
	Conclusion
	References

	Cloudbus Toolkit for Market-Oriented Cloud Computing
	Introduction - Technology Trends
	Cloud Computing
	Cloud Definition
	Open Challenges
	Cloud Computing Reference Model

	Cloudbus Vision and Architecture
	Cloudbus / CLOUDS Lab Technologies
	Aneka
	Broker
	Workflow Engine
	Market Maker/Meta-broker
	From InterGrid to InterCloud
	MetaCDN
	Energy Efficient Computing
	CloudSim

	Related Technologies, Integration, and Deployment
	Future Trends
	References

	2. Full Papers
	Self-healing and Hybrid Diagnosis in Cloud Computing
	Introduction
	Self-diagnosis and Self-healing
	Consequence-Oriented Self-diagnosis
	Consequence Oriented Self Healing

	Hybrid Diagnosis Approach
	Multiple-valued Decision Diagrams (MDD)
	The Naïve Bayes Classifier

	Example
	Conclusion
	References

	Snow Leopard Cloud: A Multi-national Education Training and Experimentation Cloud and Its Security Challenges
	Introduction
	ETEC Architecture for Snow Leopard and Its Advantages
	Security Challenges for Cloud Computing
	Multi-Level Security for ETEC
	Conclusion
	References

	Trust Model to Enhance Security and Interoperability of Cloud Environment
	Introduction
	Definitions
	Trust Relationship
	Classification of Trust
	Features of Trust

	Trust Models in Distributed Environment [7-11]
	PKI Based Trust Model
	Network Topology Based Trust Model
	Basic Behavior Based Trust Model
	Domain Based Trust Model
	Subjective Trust Model
	Dynamic Trust Model

	Proposed Trust Model
	Trust Relationship Table
	Realization Mechanism

	Emulation Experiment and Results
	Conclusion and Future Work
	References

	Dynamic Malicious Code Detection Based on Binary Translator
	Introduction
	Related Work
	DMCC Module Overview
	DMCC Module Components
	DMCC Rule
	DMCC Parser
	DMCC Engine

	Performance Evaluation
	Conclusion
	References

	A Privacy Manager for Cloud Computing
	Introduction
	Our Solution: Privacy Manager
	Architectural Options
	Privacy Manager in the Client
	Privacy Manager in a Hybrid Cloud
	Privacy Infomediary within the Cloud

	Obfuscation
	The Algebra of Obfuscation

	Online Photo Scenario
	Scenario: Cloud Photo Application
	Privacy Manager User Interface

	Previous Approaches to Privacy Management for Data Repositories
	Analysis and Next Steps
	Conclusion and Acknowledgements
	References

	Privacy in a Semantic Cloud: What’s Trust Got to Do with It?
	Introduction
	Foundations
	Privacy
	Trust Management

	Probabilistic Privacy Policy Enforcement
	Personal Data Recorder
	Personal Data Monitor
	Trust Assessment Engine
	Trust Monitor
	Policy Decision Point

	Discussion
	Conclusion and Further Work
	References

	Data Protection-Aware Design for Cloud Services
	Introduction
	Related Work
	Cloud Capability Maturity Model
	Examples of Privacy Controls in Cloud Computing
	Designing Privacy into the Cloud via Design Patterns
	Maintaining Data Protection in the Cloud via SLAs
	Conclusion and Acknowledgements
	References

	Accountability as a Way Forward for Privacy Protection in the Cloud
	Introduction
	Privacy Issues for Cloud Computing
	Mapping Legal and Regulatory Approaches

	Accountability: A Way Forward
	What Is Accountability?
	How Accountability Might Provide a Way Forward for Privacy Protection within Cloud Computing
	Procedural Approach
	Co-design Involving Technological Approach

	Analysis of Our Approach
	Conclusions
	References

	Towards an Approach of Semantic Access Control for Cloud Computing
	Introduction
	Related Works
	Access Control Oriented Ontology System
	Semantic Access Control Policy Language (SACPL)
	Meta-model of SACPL
	Syntax Structure of SACPL
	Context of SACPL

	Conclusion
	References

	Identity-Based Authentication for Cloud Computing
	Introduction
	Identity-Based Hierarchical Model for Cloud Computing
	Identity-Based Encryption and Signature for IBHMCC
	Identity-Based Encryption
	Identity-Based Signature

	Identity-Based Authentication for Cloud Computing
	Performance Analysis and Simulation
	Communication Cost
	Computation Cost
	Simulation and Experiment Results

	Conclusion
	References

	Strengthen Cloud Computing Security with Federal Identity Management Using Hierarchical Identity-Based Cryptography
	Introduction
	Security in Cloud Computing
	Identity-Based Cryptography and Signature
	Using Federated Identity Management in Cloud
	Federated Identity Management in the Cloud
	Key Generation and in the Cloud
	Date Encryption and Digital Signature
	Secret Session Key Exchange and Mutual Authentication
	Key Escrow

	Conclusion
	References

	Availability Analysis of a Scalable Intrusion Tolerant Architecture with Two Detection Modes
	Introduction
	SITAR
	Availability Analysis
	EMC Approach
	Semi-markovModel
	Optimal Switching Time

	Numerical Examples
	Conclusion
	References

	Data Center Consolidation: A Step towards Infrastructure Clouds
	Introduction
	New Computing for Data Centers
	The Transformation of Data Centers
	Consolidation Study
	Data Collection
	Data Analysis

	Results and Outlook
	References

	Decentralized Service Allocation in a Broker Overlay Based Grid
	Introduction
	Architectural Overview
	Resource Information Exchange
	Service Allocation
	Service Validation Parameters

	Failure Handling
	Performance Evaluation
	Validity of Stored Resource Information
	Efficiency of Service Allocation
	Impact of Broker Failure on Resource Information Updating

	Conclusions
	References

	DisTec: Towards a Distributed System for Telecom Computing
	Introduction
	Preliminary
	Map-Reduce Model and Hadoop Implementation
	Social Network Analysis

	Constructing Methodology and Application Scenarios
	Implementation
	Hardware Construction
	Data Model
	Critical Requirements

	Case Studies
	Preprocessing
	Customer Churn
	Network Evolution
	Public Services

	Discussion
	Conclusion and Future Work
	References

	Cloud Computing Boosts Business Intelligence of Telecommunication Industry
	Introduction
	Business Intelligence
	New Challenges to the Business Intelligence System of CMCC
	The Emerging Cloud Computing

	Cloud Computing Based Business Intelligence System
	BC-PDM Architecture
	Features of BC-PDM
	Experiment Evaluation

	Advantages and Issues to Be Solved
	Advantages
	Issues to Be Solved

	Conclusions and Future Works
	References

	Composable IO: A Novel Resource Sharing Platform in Personal Clouds
	Introduction
	Composable USB for IO Sharing
	State of Arts for Resource Sharing
	Composable IO: Virtual Platform for IO Sharing
	Composable USB

	Implementation and Testing Results
	Conclusions and Future Works
	References

	SLA-Driven Adaptive Resource Management for Web Applications on a Heterogeneous Compute Cloud
	Introduction
	System Design and Implementation
	Experiments
	Testbed Cloud
	Sample Web Application and Workload Generation
	Experiment 1: Static Allocation
	Experiment 2: Adaptive Allocation

	Results
	Experiment 1: Static Allocation
	Experiment 2: Adaptive Allocation

	Conclusion and Future Work
	References

	Cost of Virtual Machine Live Migration in Clouds: A Performance Evaluation
	Introduction
	Background
	Our Contribution

	Related Work
	Characteristics of Modern Internet Applications
	Evaluation of Live Migration Cost
	Testbed Specifications
	Workload
	Benchmarking Architecture
	Experimental Design

	Results and Discussion
	Conclusions and Future Work
	References

	Cloud-Oriented Virtual Machine Management with MLN
	Introduction
	Background
	MLN
	Integrating Amazon EC2 and Eucalyptus

	Case: On-Demand Render Farm
	Case: Scaling Web Service
	Self-management with Local Policies
	Service Optimization through User Proximity
	Cloud-Assisted Queue Processing

	Discussion
	Conclusion
	References

	A Systematic Process for Developing High Quality SaaS Cloud Services
	Introduction
	Related Works
	Design Criteria
	Theoretical Foundation for SaaS Services
	Meta Model of SaaS
	Commonality and Variability in SaaS

	The Process and Instructions
	Domain Analysis
	Functional Modeling
	Structural and Dynamic Modeling
	Architecture Design
	Database Design

	Assessment and Conclusion
	References

	Cloud Computing Service Composition and Search Based on Semantic
	Introduction
	Cloud Computing Services Storage and Search Framework
	Automatic Web Service Composition Based on Semantic
	Web Service Matching Algorithm (SMA)
	Service Composition Path Computing

	Web Service Search and Result Ranking
	Web Service Search with SQL Statements
	Ranking of Service Search Results

	Experiments
	Conclusion
	References

	Deploying Mobile Computation in Cloud Service
	Introduction
	Related Works
	MCF: A Mobile Cloud Framework
	Architecture of MCF
	Service Discovery in MCF
	Service Invocation in MCF
	Service Composition in MCF
	Service Programming and Execution in MCF
	Prototype of MCF

	Conclusion
	References

	A Novel Method for Mining SaaS Software Tag via Community Detection in Software Services Network
	Introduction
	Approach
	Term Extraction
	Term Similarity Computation
	Document Similarity Computation
	Software Similarity Network Construction
	Community Detection
	Tag Mining

	Experiment
	Conclusion and Future Work
	References

	Retrieving and Indexing Spatial Data in the Cloud Computing Environment
	Introduction
	Related Work
	Spatial Information System Based on Cloud
	Spatial Data Retrieving
	Spatial Data Model
	Spatial Data Retrieving

	Spatial Data Indexing
	Spatial Index Algorithm
	Build Spatial Index in the Cloud

	Experiment and Result
	Conclusions and Future Work
	References

	Search Engine Prototype System Based on Cloud Computing
	Introduction
	Advantages Using Cloud Computing
	Search Engine Based on Cloud Computing
	Core Part of Search Engine
	Management Part of Search Engine

	Experimental Results
	Conclusions
	References

	Distributed Structured Database System HugeTable
	Introduction
	HugeTable System
	ODBC/JDBC Drivers and SQL Service
	Indexing
	High Availability Design

	Experiments
	Experiment Environment and Tools
	Throughput
	Responding Time

	Conclusions
	References

	Cloud Computing: A Statistics Aspect of Users
	Introduction
	Challenges
	Statistic Model of User Growth
	Assumptions
	Statistic Model
	Approximation
	Improvement of the DP Model

	Related Work
	M/M/1 Model
	Growth Models

	Case Study
	Conclusions
	References

	An Efficient Cloud Computing-Based Architecture for Freight System Application in China Railway
	Introduction
	Related Work
	Cloud Computing-Based Freight System Design
	Cloud Computing-Based Architecture
	System Implementation
	MapReduce-Based Freight Search Mechanism
	Virtual Storage Expansion

	Prototype System Implementation
	Conclusion and Future Work
	References

	Web Server Farm in the Cloud: Performance Evaluation and Dynamic Architecture
	Introduction
	Understanding Cloud Components
	Performance Assessment Setup
	Amazon EC2 Instance as a Web Server
	Amazon EC2 Instance as a Load Balancer
	Google App Engine as a Load Balancer
	Amazon Elastic Load Balancing
	Amazon S3 as a Web Server for Static Content

	Dynamic Switching Architecture
	Cloud Configurations
	Switching Mechanism and Criteria
	Session Management

	Conclusions
	References

	SPECI, a Simulation Tool Exploring Cloud-Scale Data Centres
	Introduction
	Background
	Cloud Computing
	Normal Failure and Middleware Scalability

	Related Work
	Cloud Computing
	Simulation Method: Simkit

	SPECI Example: Scalable Middleware
	Simulator Architecture
	Case Study
	Future Work
	Conclusion
	References

	CloudWF: A Computational Workflow System for Clouds Based on Hadoop
	Introduction
	System Design and Implementation
	Overview
	Expressing Workflows: CloudWF Description Language
	Storing Workflows: HBase Tables
	Staging Files Transparently with DFS
	Executing Workflows

	Advanced Features
	Related Work
	Conclusions and Future Work
	References

	A Novel Multipath Load Balancing Algorithm in Fat-Tree Data Center
	Introduction
	Related Work
	Fat Tree Model and Algorithm Implementation
	Fat Tree Model
	Algorithm Implementation

	Simulation and Performance Analysis
	Scenarios Introduction
	Single Path Forwarding
	Flow-Based Forwarding
	ECMP Forwarding
	HFMF Forwarding
	Performance Analysis

	Conclusion
	References

	Scheduling Active Services in Clustered JBI Environment
	Introduction
	JBI Components, Service Unit and Service Assembly
	Scheduling Mechanism
	Overview of Scheduling Framework
	Scheduling Algorithm

	Case Study
	Cluster and Load Balancing of SOAWARE Platform
	Active Services Scheduling Mechanism in SOAWARE Platform

	Experiment and Discussion
	Experiment
	Discussion

	Conclusion
	References

	Task Parallel Scheduling over Multi-core System
	Introduction
	Related Work
	Task Scheduling
	Task Scheduling Definition
	Concurrent Model Definitions for Scheduling

	Parallel Algorithm Implements in the Multi-core System
	Synchronization Algorithm Introduction
	Several Algorithm Implementations for Parallel Adding Operation

	Experiment Evaluation
	Future Work
	Conclusion
	References

	Cost-Minimizing Scheduling of Workflows on a Cloud of Memory Managed Multicore Machines
	Introduction
	Background and Related Work
	Cloud Environment
	Overview
	Workflow Graph (WFG) Model
	Efficiency-Based Machine Model

	Cost-Minimizing Scheduler
	Notation
	Cost-Minimizing Scheduling Algorithm (CMSA)

	Simulation Studies
	Conclusions
	References

	Green Cloud on the Horizon
	Introduction
	Background
	Green Cloud
	Ad-Hoc Cloud
	So-Hosted Cloud
	Community Cloud
	Private Cloud
	Public Cloud

	Green Cloud Architecture
	Layer 1 – Telco Network (NaaS)
	Layer 2 – Firmware/Hardware
	Layer 3 – Software Kernel
	Layer 4 – App Grid
	Layer 5 – Computational Resource/ Storage and Communication
	Layer 6 – Cloud Software Environment
	Layer 7 – Cloud Application/Services

	Green Cloud Benefits
	Benefits for Telco
	Benefits for Businesses
	Benefits for Consumer

	Conclusion
	References

	Industrial Cloud: Toward Inter-enterprise Integration
	Introduction
	Categories of Clouds
	Public Cloud
	Enterprise Cloud
	Beyond Enterprise Cloud

	Industrial Cloud
	Definition and Architecture
	Example from the Integrated Operations in Oil and Gas
	Challenges and Further Work

	Cloud Categories Comparison
	Summary
	References

	Community Cloud Computing
	Introduction
	Cloud Computing
	Layers of Abstraction
	Concerns

	Grid Computing: Distributing Provision
	Digital Ecosystems: Distributing Control
	Green Computing: Growing Sustainably
	Community Cloud
	Conceptualisation
	Architecture

	In the Community Cloud
	Conclusions
	References

	A Semantic Grid Oriented to E-Tourism
	Introduction
	Framework Overview
	Design Issues
	Architecture
	Ontologies Structure
	Semantic Reconciliation
	Unified Service and Resource Discovery
	Role Based Authorization
	Intelligent Agent

	Implementation
	Related Work
	Conclusion
	References

	Irregular Community Discovery for Social CRM in Cloud Computing
	Introduction
	Essential Elements
	Irregular Community Identification
	Maximal Clique Combination
	Irregular Overlapping Community
	Community with Sparse Vertex

	Empirical Case
	Co-buying CR Network
	Community Identification and Evaluation

	Conclusions
	References

	A Contextual Information Acquisition Approach Based on Semantics and Mashup Technology
	Introduction
	The Approach
	Building and Managing Context Ontology
	Context Mining
	Context Box
	Related Work
	Conclusion
	References

	Evaluating MapReduce on Virtual Machines: The Hadoop Case
	Introduction
	Background and Motivations
	MapReduce
	Hadoop
	Why MapReduce on VMs

	Methodology and Hardware Platform
	Experiments Design and Motivations
	Benchmarks

	Experiment Results
	Hadoop Distributed File System
	VMs Feasibility
	MapReduce on Virtual Machines Performance Analyze

	Discussion and Open Issues
	Conclusion and Future Work
	References

	APFA: Asynchronous Parallel Finite Automaton for Deep Packet Inspection in Cloud Computing
	Introduction
	Related Works
	Motivation
	State Explosion
	Handle the Length Restriction
	Observations

	Main concept of APFA
	Preprocessing Module
	Asynchronous Parallelism
	Heuristically Forecast Mechanism

	Analysis and Optimization
	Time and Memory Performance
	Optimizations
	Overlapping Problem

	Experiment Evaluation
	Stable Space Performance
	Real Space and Runtime Performance

	Conclusion
	References

	3. Short Papers
	Secure Document Service for Cloud Computing
	Introduction
	Related Work
	Secure Document Service Mechanism
	Separation of Content and Format
	Document Partition
	Document Authorization

	Secure Document Service Archetype
	Conclusion and Future Work
	References

	Privacy of Value-Added Context-Aware Service Cloud
	Introduction
	Framework
	CRAC
	PPCS and Evaluation

	Conclusion
	References

	A Simple Technique for Securing Data at Rest Stored in a Computing Cloud
	Introduction
	Problem Scope
	Solution Design
	Implementation Experiences
	Web Performance Measurement Implementation
	Scanner Implementation

	Related Work
	Conclusions
	References

	Access Control of Cloud Service Based on UCON
	Introduction
	Cloud Services Access Control Based UCON
	UCON Model
	Cloud Services Access Control Based UCON

	Summary
	References

	Replica Replacement Strategy Evaluation Based on Grid Locality
	Introduction
	Related Works
	Grid Locality and Measure
	Grid locality Concept and Influence Analysis
	Measure of Grid Locality

	Experiment and Conclusion
	Simulation Configuration and Results
	Performance Evaluation
	Conclusion

	References

	Performance Evaluation of Cloud Service Considering Fault Recovery
	Introduction
	Service Response Time Modeling
	Waiting Time and Service Time
	Total Execution Time
	Service Response Time

	Conclusion
	References

	BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing
	Introduction
	Challenges of Current E-Learning Systems
	BlueSky Cloud Framework
	Design of BlueSky Cloud Framework
	Architecture of BlueSky Cloud Framework
	Core Components of BlueSky Cloud Framework

	Conclusion
	References

	Cloud Infrastructure & Applications – CloudIA
	Introduction
	The CloudIA Project
	Use Case Scenarios
	Cloud Application: Servlet Container for e-Learning Purposes
	Early Experiences in Building a Cloud Infrastructure
	Conclusion and Future Work
	References

	One Program Model for Cloud Computing
	Introduction
	System Model
	Control Flow
	Variable, Operation and Interaction
	Conclusion
	References

	Enterprise Cloud Architecture for Chinese Ministry of Railway
	Background
	Hadoop and Tashi
	Hadoop

	Enterprise Cloud Architecture and Implement
	IaaS
	PaaS
	SaaS

	Results
	Conclusion and Future Work
	References

	Research on Cloud Computing Based on Deep Analysis to Typical Platforms
	Introduction
	Studies on Cloud Computing Platforms
	Hadoop
	Eucalyptus
	Enomaly's Elastic Computing Platform (ECP)
	Conclusion

	Research on Hadoop
	Architecture of Hadoop
	Test on Hadoop
	Current Deployment of Hadoop and Some Issues

	Research on Eucalyptus and ECP
	Eucalyptus
	Enomaly's Elastic Computing Platform (ECP)
	Test of Eucalyptus and ECP
	Comparison of EC2 Eucalyptus and ECP and Some Issues

	Predictions and Suggestions
	Predictions for Trend of Cloud Computing
	Suggestions for Choosing the Proper Platforms

	References

	Automatic Construction of SP Problem-Solving Resource Space
	Introduction
	The Web Resource Space
	Domain Topic Extraction
	Topic Clustering
	Topic Network
	Topic Classification

	Discussion and Conclusions
	References

	An Idea of Special Cloud Computing in Forest Pests' Control
	Introduction
	Overview of Cloud Computing
	The Idea of Special Cloud Computing
	Choice of Cloud
	Special Cloud Computing
	Changes That Special Cloud May Bring

	Security in Special Cloud
	Conclusion
	References

	IBM Cloud Computing Powering a Smarter Planet
	Why Cloud?
	Evolution of Cloud Computing Technology
	Value of Cloud Computing for Smarter Planet
	Cloud Computing Model Application Methodology
	The Outlook of Cloud Computing

	Cloud Computing: An Overview
	Definitions of Cloud Computing
	History and Status
	Cloud Computing Architecture
	Cloud Computing Categories
	Advantages and Risks
	Value Chain of Cloud Computing
	Standardization
	References

	Integrating Cloud-Computing-Specific Model into Aircraft Design
	Introduction
	Cloud Computing Model in Aviation Industry
	General Framework
	Virtualization

	The Simplified Architecture of CCPAI
	Conclusions
	References

	Towards a Theory of Universally Composable Cloud Computing
	Introduction
	This Work
	Applications

	A Formalization of Cloud and Cloud Computing
	A Formalization of Cloud
	A Formalization of Cloud Computing

	Universally Composable Cloud Computing
	Conclusion
	References

	A Service-Oriented Qos-Assured and Multi-Agent Cloud Computing Architecture
	Introduction
	Service-Oriented Qos-Assured and Multi-Agent Cloud Computing Architecture
	SOA and Multi-Agent Technology
	Cloud Service Qos Model
	Service-Oriented QOS-Assured and Multi-Agent Cloud Computing Architecture

	Conclusion and Future Work
	References

	Price-Oriented Trading Optimization for Grid Resource
	Introduction
	Research of Grid QoS
	QoS-Based Grid Banking Model
	Optimization Solutions
	Algorithm Implementation
	Resource Provider Agent
	Service Agent
	Consumer Resources Agent

	Summary
	References

	A Requirements Recommendation Method Based on Service Description
	Introduction
	Related Work
	Recommending Requirements Framework Based on WSDL
	Automatic Service Requirements Recommendation
	The Keywords of Initial Requirement Extracting
	Service Functions Extracting
	Automatic Service Requirements Recommendation

	The Example and Experimental Results
	Conclusion and Future Work
	References

	Extending YML to Be a Middleware for Scientific Cloud Computing
	Introduction
	Lesson Learned from Practice on Gridification
	Viewpoint from End Users
	Viewpoint from Gird Itself

	Extending YML to Be a Middleware for Cloud Computing
	Conclusion and Open Problem
	References

	Power-Aware Management in Cloud Data Centers
	Introduction
	Power Characteristics of Servers
	VM Migration to Save Power
	Energy Proportional vs. Power Proportional Computing
	References

	Parallel K-Means Clustering Based on MapReduce
	Introduction
	Parallel K-Means Algorithm Based on MapReduce
	K-Means Algorithm
	PKMeans Based on MapReduce

	Experimental Results
	Conclusions
	References

	Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce
	Introduction
	Proposed Architecture
	File Organization

	MapReduce Framework
	The $DetermineJobs$ Algorithm

	Results
	References

	Distributed Scheduling Extension on Hadoop
	Preface
	Scheduling Strategies of Hadoop
	Design and Implementation to Improve the Hadoop-Based Scheduling
	Temporary Weight Enhancement Mechanism
	Preempting Mechanism
	The Fair Share of Computing Resources among the Resource Pool

	The Realization and Experiments
	The Realization
	Performance Test

	Conclusion
	References

	A Data Distribution Aware Task Scheduling Strategy for MapReduce System
	Introduction
	Problems in the Existing MapReduce Scheduling Methods
	Data Distribution Aware Task Scheduling Strategy
	Main Modules in Master Node
	Main Modules in WorkerNode

	Analysis of Application Effectiveness
	Conclusions and Future Works
	References

	Cloud Computing Based Internet Data Center
	Introduction
	Framework of Cloud Computing Based IDC
	Services in Cloud Based IDC
	Infrastructure as a Service
	Platform as a Service

	Summary
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

