

J. Kacprzyk et al. (Eds.): Uncer. Appro. for Spatial Data Model. and Process., SCI 271, pp. 133–154.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

On Some Uses of a Stratified Divisor in an Ordinal
Framework

Patrick Bosc and Olivier Pivert

1Abstract. In this paper, we are interested in taking preferences into account for
division-like queries. The interest for introducing preferences is first to cope with
user needs, then to get discriminated results instead of a flat set of elements. Here,
the idea is to use ordinal preferences which are not too demanding for a casual
user. Moreover, the type of query considered is inspired by the division operator
and some of its variations where preferences apply only to the divisor. The divi-
sion aims at retrieving the elements associated with a specified set of values and in
a similar spirit, the anti-division looks for elements which are associated with
none of the values of a given set. One of the focuses of this paper is to investigate
queries mixing those two aspects. In order to remain coherent with the denomina-
tion of (anti-)division, the property of the result delivered is characterized. Last, a
special attention is paid to the implementation of such queries using a regular
database management system and some experimental results illustrate the feasibil-
ity of the approach.

Keywords: Relational databases, division, anti-division, quotient, ordinal
preferences.

1 Introduction

Queries including preferences have received a growing interest during the last
decade [1, 2, 5, 6, 8, 11, 12, 13]. One of their main advantages is to allow for
some discrimination among the elements of their result (which is no longer a flat
set) thanks to the compliance with the specified preferences. However, up to now,
most of the research works have focused on fairly simple queries where prefer-
ences apply only to selections. The objective of this paper is to enlarge the scope
of queries concerned with preferences by considering more complex queries,

Patrick Bosc and Olivier Pivert
IRISA/ENSSAT - University of Rennes 1, 6 Rue de Kerampont
Technopole Anticipa BP 80518, 22305 Lannion Cedex, France

134 P. Bosc and O. Pivert

founded on the association of an element with a given set of values, in the spirit of
the division operation. Moreover, a purely ordinal framework is chosen and the
user has only to deal with an ordinal scale, which we think to be not too demand-
ing. Last, taking preferences into account will allow for keeping only the best k
answers, in the spirit of top-k queries [5].

Knowing that a regular division delivers a non discriminated set of elements,
the idea is to call on preferences related to the divisor. Two major lines for assign-
ing preferences may be thought of, depending on whether they concern tuples
individually (see e.g., [2]), or (sub)sets of tuples, which is the choice made here
and we will use the term "stratified divisor".

Moreover, we will not only consider the division, but a neighbor operator
called the anti-division. As the division retrieves elements associated with a given
set of values, the anti-division looks for elements that are associated with none of
the elements of a specified set.

In both cases, the first layer of the divisor may be seen as an initial divisor and
the following layers serve to break ties between elements associated with all (re-
spectively none of) the values of the first layer. In other words, to be satisfactory,
an element x of the dividend must be associated with all (respectively none of) the
values of the first layer. The way the next layers are taken into account is dis-
cussed in more details in the body of the paper.

Such extended division (respectively anti-division) queries can be expressed in
natural language as:

"find the elements x connected in priority with all (respectively none) of
 {set}1 then if possible with all (respectively none) of {set}2 …
 then if possible with all (respectively none) of {set}n".

This type of statement has some relationship with bipolarity [9, 10]. Indeed,
this falls in the third category of bipolarity reported in [10] where the two types of
criteria are of a different nature. Here, the connection with all (respectively none
of) the values of {set}1 is a constraint and those with all (respectively none of) the
values of {set}2 to {set}n represent wishes which are not mandatory (in the sense
of acceptance/rejection).

Let us illustrate the idea of an extended division with a user looking for wine
shops offering Saint Emilion Grand Cru, Pomerol and Margaux and if possible
Gewurztraminer Vendanges Tardives and Chablis Premier Cru and if possible
Pommard and Chambertin. Similarly, an anti-division is of interest if one is inter-
ested in food products which do not contain some additives, where some are
totally forbidden and other more or less undesired.

The rest of the paper is organized as follows. Section 2 is devoted to some re-
minders about the division and anti-division operators in the usual relational set-
ting. In section 3 a stratified version of these operators is presented along with
their syntax and modeling. It is also shown that the result they deliver has the
same property as in the usual case. In Section 4, the issue of considering queries
involving both a stratified division and a stratified anti-division is tackled. Imple-
mentation issues for all these queries involving stratified operations are discussed
in section 5. The conclusion summarizes the contributions of the paper and evokes
some lines for future work.

On Some Uses of a Stratified Divisor in an Ordinal Framework 135

2 The Regular Division and Anti-division Operators

In the rest of the paper, the dividend relation r has the schema (A, X), while with-
out loss of generality that of the divisor relation s is (B) where A and B are com-
patible sets of attributes, i.e., defined on the same domains of values.

2.1 The Division

The relational division, i.e., the division of relation r by relation s is defined as:

div(r, s, A, B) = {x | (x ∈ r[X]) ∧ (s ⊆ Ωr(x))} (1)

 = {x | (x ∈ R[X]) ∧ (∀a, a ∈ s ⇒ (a, x) ∈ r)} (2)

where r[X] denotes the projection of r over X and Ωr(x) = {a | <a, x> ∈ r}. In
other words, an element x belongs to the result of the division of r by s if and
only if it is associated in r with at least all the values a appearing in s. The justi-
fication of the term "division" assigned to this operation relies on the fact that
a property similar to that of the quotient of integers holds. Indeed, the resulting
relation res obtained with expression (1) has the double characteristic of a
quotient:

s × res ⊆ r (3a)

∀res’ ⊃ res, s × res’ ⊈ r (3b)

× denoting the Cartesian product of relations. Expressions (3a) and (3b) express
the fact that the relation res resulting from the division (according to formula (1)
or (2)) is a quotient, i.e., the largest relation whose Cartesian product with the
divisor returns a result smaller than or equal to the dividend (according to regular
set inclusion).

In an SQL-like language, the division of r by s can be expressed thanks to a
partitioning mechanism:

select X from r [where condition] group by X
having set(A) contains (select B from s where …).

Example 1. Let us take a database involving the two relations order (o) and prod-
uct (p) with respective schemas O(np, store, qty) and P(np, price). Tuples <n, s, q>
of o and <n, pr> of p state that the product whose number is n has been ordered
from store s in quantity q and that its price is pr. Retrieving the stores which have
been ordered all the products priced under $127 in a quantity greater than 35, can
be expressed thanks to a division as:

div(o-g35, p-u127, {np}, {np})

where relation o-g35 corresponds to pairs (n, s) such that product n has been or-
dered from store s in a quantity over 35 and relation p-u127 gathers products

136 P. Bosc and O. Pivert

whose price is under $127. From the following extensions of relations o-g35 and
p-u127:

o-g35 = {<15, 32>, <12, 32>, <34, 32>, <26, 32>, <12, 7>, <26, 7>,
 <15, 19>, <12, 19>, <26, 19>},
p-u127 = {<15>, <12>, <26>},

the previous division using formula (1) leads to a result made of two elements
{<32>, <19>}. It can easily be checked that this result satisfies expressions (3a)
and (3b). ♦

2.2 The Anti-division

Similarly, we call anti-division the operator ⋇ defined the following way:

r [A ⋇ B] s = {x | (x ∈ r[X]) ∧ (s ⊆ cp(Ωr(x)))} (4)

 = {x | (x ∈ r[X]) ∧ (∀a, a ∈ s[B] ⇒ (a, x) ∉ r)} (5)

where cp(rel) denotes the complement of rel. The result ad-res of the anti-division
may be called an "anti-quotient", i.e., the largest relation whose Cartesian product
with the divisor is included in the complement of the dividend. Thus, the follow-
ing two properties hold:

s × ad-res ⊆ cp(r) (6a)

∀ad-res’ ⊃ ad-res, s × ad-res’ ⊈ cp(r). (6b)

In an SQL-like language, the anti-division of r by s can be expressed in a way
similar to a division:

select X from r [where condition] group by X
having set(A) contains-none (select B from s where …)

where the operator "contains-none" states that the two operand sets do not overlap.
An alternative expression is based on a difference:

(select X from r) differ (select X from r where A in (select B from s)).

Example 2. Let us consider the following relations Prod(product, component,
proportion), which describes the composition of some chemical products and
Nox(component) which gathers the identifications of noxious components:

Prod = {<p1, c1, 3>, <p1, c2, 4>, <p1, c3, 54>, <p2, c1, 9>, <p2, c4, 30>,
 <p3, c2, 8>, p3, c6, 22>},

Nox = {<c1>, <c2>, <c5>}.

The query "retrieve any product which does not contain any noxious compo-
nent in a proportion higher than 5%" can be expressed as the anti-division of the
relation Prod1 derived from Prod (on the basis of a proportion over 5%) made of:

{<p1, c3>, <p2, c1>, <p2, c4>, <p3, c2>, <p3, c6>}

On Some Uses of a Stratified Divisor in an Ordinal Framework 137

by Nox, whose result according to (4) or (5) is {p1} and it is easy to check that
formulas (6a-6b) both hold. ♦

3 Stratified Division and Anti-division Queries

In this section, we first give some characteristics of the stratification. Then, the
expression of stratified division and anti-division queries in an SQL-like fashion is
proposed as well as the modelling of such queries. Finally, the property of the
result delivered is discussed.

3.1 About the Stratification Mechanism

As mentioned before, the key idea is to use a divisor made of several layers. So,
there is a preference relation over the subsets of the divisor, namely:

(S1 = {v1,1, …, v1,j1
}) ≻ … ≻ (Sn = {vn,1, …, vn,jn

})

where a ≻ b denotes the preference of a over b. Associated with this preference
relation is an ordinal scale L with labels li’s such that:

l1 > … > ln > ln+1

which will be also used to assign levels of satisfaction to elements pertaining to
the result of any stratified division or anti-division. In this scale, l1 is the maximal
element for the highest satisfaction and the last label ln+1 expresses rejection.
These two specific levels play the role of 1 and 0 in the unit interval.

Example 3. Coming back to the example of the query related to wine shops
evoked in the introduction, there are three layers:

S1 = {Saint Emilion Grand Cru, Pomerol, Margaux},

S2 = {Gewurztraminer Vendanges Tardives, Chablis Premier Cru},

S3 = {Pommard, Chambertin},

along with the scale L = l1 > l2 > l3 > l4. ♦

According to the view adopted in this paper, the first stratum S1 is considered
mandatory, whereas the next ones (S2 to Sn) define only wishes. In other words, S1
is a regular divisor and S2, …, Sn are introduced as complementary components in
order to discriminate among the elements of the dividend associated with all (re-
spectively none) of the values of S1. In addition, the layers are considered in a
hierarchical fashion, which means that a given layer intervenes only if the associa-
tion (or non-association) with all the previous ones holds. This behavior is similar
to what is done in the systems Preferences [13] and PreferenceSQL [12] or with
the operator winnow [6] when cascades of preferences are used. Finally, an ele-
ment x of the dividend is all the more acceptable as it is (respectively it is not)
connected with a "long" succession of layers of the divisor starting with S1. In
other words, x is preferred to y if x is associated with all (respectively none) of the

138 P. Bosc and O. Pivert

values of the sets S1 to Sp and y is associated with all (respectively none) of the
elements of a shorter list of sets.

Example 4. Let us consider the stratified divisor :

s = {{a, b, c}, {d}, {e, f}}

and the dividend:

r = {<x1, a>, <x1, b>, <x1, c>, <x1, d>, <x1,e>,
 <x2, a>, <x2, b>, <x2, c>,
 <x3, a>, <x3, b>,<x3, c>, <x3, e>, <x3, f>,
 <x4, a>, <x4, e>, <x4, f>,
 <x5, b>, <x5, c>,
 <x6, d>, <x6, e>}.

The stratified division of r by s discards x4, x5 and x6 which are not exhaus-

tively associated with S1 = {a, b, c} and it delivers the result: x1 ≻ {x2, x3}. ♦

It must be noticed that the view adopted here is somehow conjunctive. An alterna-
tive would be to model a behavior that takes into account all the layers in a hierar-
chical way and build, for a given x, a vector E(x) of Boolean values (E(x)[i] = 1 if
x is associated with all (respectively none) of the values from layer Si, 0 other-
wise). The different x’s could then be ranked according to the lexicographic order
over the vectors.

3.2 Syntax of Stratified Operations

Division queries are expressed in an SQL-like style where the dividend may be
any intermediate relation (not only a base relation) and the divisor is either explic-
itly given by the user, or stated thanks to subqueries, along with his/her prefer-
ences. This is done in way quite similar to the usual division (i.e., thanks to a
partitioning mechanism), namely:

select top k X from r [where condition] group by X
having set(A) contains {v1,1, …, v1,j1

} and if possible …

 and if possible {vn,1, …, vn,jn
}.

Coming back to the example of wines evoked before, such a query could be:

select top 6 shop-name from wineshops group by shop-name
having set(wine) contains {Saint Emilion Grand Cru, Pomerol, Margaux}
and if possible {Gewurztraminer Vendanges Tardives, Chablis Premier Cru}
and if possible {Pommard, Chambertin}.

In the context of medical diagnosis, the following example illustrates the use of
subqueries to build the stratified divisor. Let us consider: i) a relation dis-
ease(name, symptom, frequency) which describes the symptoms associated with
some diseases as well as the frequency with which a given symptom appears
for a given disease, ii) a relation patient(#person, symptom) which describes the

On Some Uses of a Stratified Divisor in an Ordinal Framework 139

symptoms shown by some patients. The following stratified division query looks
for the patients which have all of the 100% frequent symptoms of influenza, and if
possible all of the symptoms whose frequency is above 80%, and if possible all of
the symptoms whose frequency is above 50%:

select top 10 #person from patient
group by #person
having set(symptom) contains

(select symptom from disease where name = ’flu’ and frequency = 100)
and if possible

(select symptom from disease
 where name = ’flu’ and frequency between 80 and 99)

and if possible
(select symptom from disease
 where name = ’flu’ and frequency between 50 and 79)

The anti-division is similarly formulated as:

select top k X from r [where condition] group by X
having set(A) contains-none {v1,1, …, v1,j

1
} and if possible …

 and if possible {vn,1, …, vn,j
n
}.

It is worth noticing that an expression based on one (or several) difference(s)
would be complicated to formulate and thus would not be natural at all (especially
for a user), while the one chosen above is. Moreover, the query specifies dislikes
which are given in a hierarchical manner. So, S1 contains the values the most
highly (indeed totally excluded) and Sn those which are the most weakly un-
wanted. Here also, associated with the preference relation sustaining the hierarchy,
is an ordinal scale L with labels li’s (such that l1 > … > ln > ln+1) which will be
used to assign levels of satisfaction to the elements of the result of any stratified
anti-division.

Example 5. Let us consider the case of a consumer who wants food products (e.g.,
noodles or vegetal oil) without certain additive substances. In the presence of the
relation products(p-name, add-s) describing which additives (add-s) are involved
in products, a possible query is:

select top 5 p-name from products group by p-name
having set(add-s) contains-none {AS27, BT12, C3}
and if possible {AS5, D2} and if possible {D8}

which tells that the additives AS27, BT12 and C3 are completely forbidden, that
the absence of both AS5 and D2 is appreciated and that it is still better if D8 is not
in the product. ♦

3.3 Modeling Stratified Operations

We consider a stratified division or anti-division of a relation r whose schema is
(A, X) by a relation s defined over attribute B with A and B compatible attributes

140 P. Bosc and O. Pivert

(in fact, A and B could be compatible sets of attributes as well). The principle for
defining these operations is to extend expressions (2) and (5). This point of depar-
ture entails: i) dealing with the preferences applying to the divisor and ii) using an
ordinal (symbolic) implication. This is why we use an augmented relational fra-
mework where each tuple of a relation rel is assigned a (symbolic) level of prefer-
ence taken from the scale L, denoted by prefrel(t) and any tuple can be written
prefrel(t)/t. Since the dividend relation is not concerned with explicit preferences,
its tuples are assigned the maximal level l1 while the tuples which are absent are
(virtually) assigned the worst level ln+1. For the divisor, the level of preference
attached to a tuple is directly stemming from the place of the corresponding ele-
ment in the hierarchy provided by the user. As to the implication, it can be chosen
among fuzzy implications with two requirements: i) to work in a purely ordinal
context, and ii) to convey the semantics of importance associated with the layered
divisor. It turns out that Kleene-Dienes implication usually defined as:

p ⇒KD q = max(1 – p, q)

meets the goal provided that the complement to 1 is changed into order reversal
over L. In other words, we will use a symbolic version of the previous implication,
denoted by ⇒sKD:

li ⇒sKD lj = max(rev(li), lj)

where ∀li ∈ L = l1 > … ln+1, rev(li) = ln+2-i. In other words, if a symbol s has the
position k on the scale, rev(s), its negation, has the position k when the scale is
read from the end.

Example 6. Let L be the scale:

completely important > highly important > fairly important >
not very important > not at all important.

The inverse scale is :

[rev(completely important) = not at all important] <
[rev(highly important) = not very important] <
[rev(fairly important) = fairly important] <
[rev(not very important) = highly important] <
[rev(not at all important) = completely important]. ♦

So equipped, if V denotes the values of the divisor, the stratified division and anti-
division are defined as follows:

prefstrat-div(r, s, A, B) (x) = minv ∈ V prefs(v) ⇒sKD prefr(v, x))
 = minv ∈ V max(rev(prefs(v)), prefr(v, x)) (7)

prefstrat-antidiv(r, s, A, B) (x) = minv ∈ V prefs(v) ⇒sKD rev(prefr(v, x)))
 = minv ∈ V max(rev(prefs(v)), rev(prefr(v, x))). (8)

On Some Uses of a Stratified Divisor in an Ordinal Framework 141

Due to the fact that prefr(v, x) takes only the two values l1 and ln+1 depending on
the presence or absence of <v, x> in relation r:

i) in expression (7), each term max(rev(prefV(v)), prefr(v, x)) equals l1 if x is
associated with v in r (<v, x> ∈ r), rev(prefV(v)) otherwise,

ii) in expression (8), each term max(rev(prefV(v)), rev(prefr(v, x))) equals l1 if
x is not associated with v in r (<v, x> ∉ r), rev(prefV(v)) otherwise.

In other words, if x is associated with all (respectively none) of the values of the
entire divisor, the maximal level of preference l1 is obtained and as soon as an
association <v, x> is missing (respectively found), the level of preference of x
decreases all the more as v is highly preferred (respectively undesired).

Example 7. Let us consider the following dividend relation r:

r = {<a1, x>, <a2, x>, <a4, x>, <a1, y>, <a3, y>, <a5, z>, <a2, t >}

and the stratified divisor:

s = {a1} ≻ {a2} ≻ {a3, a4}

which induces the four-level scale L = l1 > l2 > l3 > l4. These relations rewrite:

r A X pref s B pref
 a1 x l1 a1 l1
 a2 x l1 a2 l2
 a4 x l1 a3 l3
 a1 y l1 a4 l3
 a3 y l1
 a2 z l1
 a3 z l1
 a4 z l1
 a2 t l1

According to formula (7), the result d-res of the division of r by s is:

prefd-res(x) = min(l1, l1, rev(l3), l1) = l2,

prefd-res(y) = min(l1, rev(l2), l1, rev(l3)) = l3,

prefd-res(z) = min(rev(l1), rev(l2), rev(l3), rev(l3)) = l4,

prefd-res(t) = min(rev(l1), l1, rev(l3), rev(l3)) = l4,

which means that x is preferred to y on the one hand and that z and t are rejected
on the other hand. Similarly, using formula (8), the following result ad-res of the
anti-division of r by s is obtained:

prefad-res(x) = min(rev(l1), rev(l2), l1, rev(l3)) = l4,

prefad-res(y) = min(rev(l1), l1, rev(l3), l1) = l4,

142 P. Bosc and O. Pivert

prefad-resr(z) = min(l1, l1, l1, l1) = l1,

prefad-res(t) = min(l1, rev(l2), l1, l1) = l3,

which states that z is fully satisfactory and t significantly less, while x and y are
quite unsatisfactory. ♦

3.4 Property of the Result of Stratified Divisions and
Anti-divisions

In order to be qualified a division (respectively anti-division), the extended opera-
tor defined above must deliver a result having the characteristic property of a
quotient. This means that one must have valid properties similar to 3a-b (respec-
tively 6a-b). In [2], it is shown that the division of fuzzy relations (i.e., where each
tuple is assigned a membership degree taken in the unit interval) leads to a result
which is a quotient as far as the implication used is either an R-implication, or an
S-implication. The key point of the proof lies in the fact that these implications
(⇒f) may be written in a common format, namely :

p ⇒f q = sup {y ∈ [0, 1] | cnj(p, y) ≤ q}

where cnj is an appropriate conjunction operator (see [2, 7] for more details). In
the specific case considered here, the ordinal version of Kleene-Dienes implica-
tion (which belongs to the family of S-implications) writes:

li ⇒sKD lj = max(rev(li), lj)
 = sup {y ∈ [l1, ln+1] | cnj(li, y) ≤ lj} (9)

with cnj(a, b) = ln+1 if a ≤ rev(b),
 b otherwise. (10)

So, if we denote by d-res (repectively ad-res) the result of a stratified division
(respectively anti-division), due to the very nature of expression (9), the following
expressions hold:

s × d-res ⊆ r (11a) ∀d-res’ ⊃ d-res, s × d-res’ ⊈ r (11b)

s × ad-res ⊆ cp(r) (12a) ∀ad-res’ ⊃ ad-res, s × ad-res’ ⊈ cp(r) (12b)

where the Cartesian product (×), inclusion and complement are respectively de-
fined as:

r × s = {p3/uv | p1/u ∈ r ∧ p2/ v ∈ s> ∧ p3 = cnj(p1, p2)},

r ⊆ s ⇔ ∀ p1/u ∈ r, ∃ p2/u ∈ s such that p1 ≤ p2,

cp(r) = {rev(p)/u | p/u ∈ r}

which means that d-res is a quotient and that ad-res is an anti-quotient.

On Some Uses of a Stratified Divisor in an Ordinal Framework 143

Example 8. Let us come back to the relations of example 7. According to (11a),
we must have:

s B pref d-res X pref r A X pref
 a1 l1 x l2 a1 x l1
 a2 l2 × y l3 ⊆ a2 x l1
 a3 l3 a4 x l1
 a4 l3 a1 y l1
 a3 y l1
 a2 z l1
 a3 z l1
 a4 z l1
 a2 t l1

on the one hand, and with respect to (11b), if any grade is increased in d-res (yiel-
ding d-res’), the Cartesian product of s and d-res’ is not included in r. We will
illustrate what happens for x and t (which may be considered to be in d-res with
the level of preference l4) and it would be easy to observe that the same conclu-
sions can be drawn for y and z.

In the Cartesian product, we have the tuples:

cnj(l1, l2)/<a1, x> = l2/<a1, x>,
cnj(l2, l2)/<a2, x> = l2/<a2, x>,
cnj(l3, l2)/<a3, x> = l4/<a3, x>,
cnj(l3, l2)/<a4, x> = l4/<a4, x>,
cnj(l1, l4)/<a1, t> = l4/<a1, t>,
cnj(l2, l4)/<a2, t> = l4/<a2, t>,
cnj(l3, l4)/<a3, t> = l4/<a3, t>,
cnj(l3, l4)/<a4, t> = l4/<a4, t>,

and the inclusion in r holds. If we suppose that the level of preference of x in d-res
is increased (from l2 to l1), the partial Cartesian product of s and l1/x yields:

cnj(l1, l1)/<a1, x> = l1/<a1, x>,
cnj(l2, l1)/<a2, x> = l1/<a2, x>,
cnj(l3, l1)/<a3, x> = l1/<a3, x>,
 cnj(l3, l1)/<a4, x> = l1/<a4, x>,

for which the inclusion in r does not hold (presence of the tuple l1/<a3, x> which
does not belong to r). Similarly, let us increase the level of preference of t in d-res
(from l4 to l3), the partial Cartesian product of s and l3/t is:

cnj(l1, l3)/<a1, t> = l3/ <a1, t>,
cnj(l2, l3)/<a2, t> = l4/<a2, t>,
cnj(l3, l3)/<a3, t> = l4/<a3, t>,
cnj(l3, l3)/<a4, t> = l4/<a4, t>,

144 P. Bosc and O. Pivert

and the tuple l3, <a1, t> violates the inclusion in r. Due to the increasing monotonicity
of cnj with respect to its second argument, any other increase of the level of prefer-
ence of t in d-res would also lead to the non inclusion of the Cartesian product in r.

We now consider the anti-division of r by s and, for illustration purpose, only
the elements l4/y and l1/z of its result ad-res. In order to check formula (12a), the
Cartesian product of s and these two tuples has to be performed, which results in:

cnj(l1, l4)/<a1, y> = l4/<a1, y>,
cnj(l2, l4)/<a2, y> = l4/<a2, y>,
cnj(l3, l4)/<a3, y> = l4/<a3, y>,
cnj(l3, l4)/<a4, y> = l4/<a4, y>,
cnj(l1, l1)/<a1, z> = l1/<a1, z>,
cnj(l2, l1)/<a2, z> = l1/<a2, z>,
cnj(l3, l1)/<a3, z> = l1/<a3, z>,
cnj(l3, l1)/<a4, z> = l1/<a4, z>,

and the inclusion in the complement of r holds. As to the satisfaction of (12b),
clearly the level of preference of z (l1) is maximal and if that of y is increased
from l4 to l3, we have the Cartesian product:

cnj(l1, l3)/<a1, y> = l3/<a1, y>,
cnj(l2, l3)/<a2, y> = l4/<a2, y>,
cnj(l3, l3)/<a3, y> = l4/<a3, y>,
cnj(l3, l3)/<a4, y> = l4/<a4, y>,

and the tuple l3/<a1, y> violates the desired inclusion (l3 > rev(l1) = l4). ♦

4 Stratified Queries Mixing Division and Anti-division Features

4.1 A Basis for Safe Mixed Queries

The starting point of this section is the analogy between division queries and the
search for documents indexed by a certain set of keywords, since these two activi-
ties are concerned with the association of an element (respectively a document)
with a set of values (respectively keywords). On this line, it seems convenient to
extend/enhance the basis of document retrieval with a set of undesired keywords,
which has a direct counterpart in terms of anti-division. Last, if we introduce the
notion of levels of importance of the keywords in both the positive and negative
parts, we end up with a query involving a stratified division (corresponding to
the desired keywords/positive part) and a stratified anti-division (corresponding to
the unwanted keywords/negative part). Consequently, in the following, we
consider queries where the association and non association conditions relate to a
same attribute, even it would make sense to envisage more general situations.

A query is made of two parts: i) the positive part which gathers the values
which are desired (at different levels of importance) and ii) the negative part
which collects the unwanted values, still with different importances. In fact, such
queries call on two types of bipolarity: i) one tied to the fact that some conditions

On Some Uses of a Stratified Divisor in an Ordinal Framework 145

(the association with all (respectively none) of the values of the first set) are man-
datory whereas others (the association (respectively non association) with the
values of the next sets) are only desirable, and ii) another related to the fact that
the association with some values is expected (those of the positive part), while one
would like the non association with other values (those of the negative part).
Clearly, these two types of bipolarity impact the semantics of a query in two quite
different ways. The first one entails handling the associations (respectively non
associations) with the values of the first stratum as constraints (whose satisfaction
or not causes acceptance or rejection) and the associations (respectively non asso-
ciations) with the values of the other layers as wishes (whose satisfaction or not
influences the discrimination between selected elements). The second aspect leads
to distinguish between values which are desired and values which are unwanted,
then to look for the association with the former ones and for the non association
with the latter ones.

A first approach to mixed stratified queries is to consider them as made of two
components according to the following pattern:

select top k X from r [where condition] group by X
having set(A) contains {v1,1, …, v1,j

1
} and if possible …

 and if possible {vn,1, …, vn,j
n
} and

 contains-none {w1,1, …, w1,k
1
} and if possible …

 and if possible {wp,1, …, wp,k
p
}.

This means that the query refers to two scales:

L1 = l1 > … > ln > ln+1 for the positive part

and:

L2 = l’1 > … > l’p > l’p+1 for the negative part

and the overall satisfaction of a given x would require to combine two symbols
(one from each scale), which raises a serious problem.

To avoid this difficulty, we suggest to build mixed queries in such a way that a
single scale comes into play. Each level of the scale used in a query will be as-
signed a set of desired values (contributing the positive part) and a set of un-
wanted values (subset of the negative part), one of them being possibly empty. A
mixed stratified query will be expressed according to the following model:

select top k X from r [where condition] group by X
having set(A) contains [pos: {v1,1, …, v1,j

1
}, neg: {w1,1, …, w1,k

1
}]

 and if possible …
 and if possible [pos: {vn,1, …, vn,j

n
}, neg: {wn,1, …, wn,k

n
}]

where "pos (respectively neg): S", at a given level of importance, stands for a set
of desired (respectively unwanted) values, which x must be (repectively not be)
associated with. In addition, note that it is possible to have "pos : {}", "neg : {}"
(but not both) at each layer.

146 P. Bosc and O. Pivert

4.2 Syntax, Semantics and Modeling of Mixed Queries

The above type of query is interpreted in a straightforward manner as follows. To
be somewhat satisfactory, a element x: i) must be associated with all the values
{v1,1, …, v1,j

1
} and none of the values of {w1,1, …, w1,k

1
}, and ii) it receives a level

of satisfaction (pref) all the larger as it satisfies the association with all the values
{v2,1, …, v2,k

2
}, …, {vj,1, …, vj,k

j
} and none of the values of {w2,1, …, w2,p

2
}, …,

{wj,1, …, wj,p
j
} with j taking a high value (n for the maximal level pref = l1). In

other words, an element x is preferred to another y if x is connected with {v1,1, …,
v1,k

1
}, …, {vi,1, …, vi,k

i
} and none of {w1,1, …, w1,p

1
}, …, {wi,1, …, wi,p

i
}, while y

is associated with {v1,1, …, v1,k
1
}, …, {vj,1, …, vj,k

j
} and none of {w1,1, …, w1,p

2
},

…, {wj,1, …, wj,p
j
} and i > j.

Let us denote by s = {V1, …, Vn} the different layers of the divisor where each
Vi is made of a positive part Pi and a negative part Ni. Alternatively, s writes as s =
(P, N), its positive and negative parts. The mixed stratified division is defined as:

prefmix-strat-div(r, s, A, B) (x) =
mini ∈ [1, n] min(minv ∈ Pi

 prefs(v) ⇒sKD prefr(v, x)),

 minw ∈ Ni
 prefs(w) ⇒sKD rev(prefr(w, x)))

 = mini ∈ [1, n] min(minv ∈ Pi
 max(rev(li), prefr(v, x)),

 minw ∈ Ni
 max(rev(li), rev(prefr(w, x))))

 = min(minv ∈ P max(rev(prefs(v)), prefr(v, x)),
 minw ∈ N max(rev(prefs(w)), rev(prefr(w, x)))). (13)

By construction, the result delivered by the above operation is a quotient in the

sense that it is a maximal relation. More precisely, it is the largest (ordinal) rela-
tion whose Cartesian product (using the conjunction given in expression (10))
with the positive and negative parts of the divisor is included in the dividend. So,
if m-res denotes the result delivers by expression (13), the following characteriza-
tion formulas hold:

P × m-res ⊆ r
 and (14a)
N × m-res ⊆ cp(r)

 P × m-res’ ⊄ r
∀m-res’ ⊃ m-res, or (14b)
 N × m-res’ ⊄ cp(r)

4.3 A Complete Example

Let us consider a relation Prod(product, component) where a tuple <p, c> ex-
presses that c is one of the components of product p and the mixed division query:

On Some Uses of a Stratified Divisor in an Ordinal Framework 147

select top 5 product from Prod group by product
having set(product) contains [pos: {c1}, neg: {c5, c6}]
 and if possible [pos: {c2}, neg: {}]
 and if possible [pos: {c3, c4}, neg: {c7}]

expressing that the double stratification:

P : {c1} (l1) > {c2} (l2) > {c3, c4} (l3)
N : {c5, c6} (l1) > ∅ > {c7} (l3).

The user wants product c1, if possible c2 and if possible c3 and c4, and he/she
dislikes c5 and c6 (respectively c7) as much as he/she desires c1 (respectively c3
and c4). Notice that there is no counterpart for c2 (in other words c3 and c4 are
forbidden and c7 is only weakly undesired). If the dividend relation is:

r = {<c1, x>, <c2, x>, <c4, x>, <c1, y>, <c2, y>, <c3, y>, <c4, y>, <c7, y>,
 <c2, z>, <c3, z>, <c4, z>, <c1, t>, <c2, t>, <c5, t>, <c1, u>}.

According to formula (13), the levels of satisfaction assigned to x, y, z and t
are:

pref(x) = min(min(l1 ⇒sKD prefr(c1, x), l2 ⇒sKD prefr(c2, x),
 l3 ⇒sKD prefr(c3, x), l3 ⇒sKD prefr(c4, x)),
 min(l1 ⇒sKD rev(prefr(c5, x)), l1 ⇒sKD rev(prefr(c6, x)),
 l3 ⇒sKD rev(prefr(c7, x)))
 = min(l1, l1, l2, l1, l1, l1, l1) = l2

pref(y) = min(min(l1 ⇒sKD prefr(c1, y), l2 ⇒sKD prefr(c2, y),
 l3 ⇒sKD prefr(c3, y), l3 ⇒sKD prefr(c4, y)),
 min(l1 ⇒sKD rev(prefr(c5, y)), l1 ⇒sKD rev(prefr(c6, y)),
 l3 ⇒sKD rev(prefr(c7, y)))
 = min(l1, l1, l1, l1, l1, l1, l2) = l2

pref(z) = min(min(l1 ⇒sKD prefr(c1, z), l2 ⇒sKD prefr(c2, z),
 l3 ⇒sKD prefr(c3, z), l3 ⇒sKD prefr(c4, z)),
 min(l1 ⇒sKD rev(prefr(c5, z)), l1 ⇒sKD rev(prefr(c6, z)),
 l3 ⇒sKD rev(prefr(c7, z)))
 = min(l4, l1, l1, l1, l1, l1, l1) = l4

pref(t) = min(min(l1 ⇒sKD prefr(c1, t), l2 ⇒sKD prefr(c2, t),
 l3 ⇒sKD prefr(c3, t), l3 ⇒sKD prefr(c4, t)),
 min(l1 ⇒sKD rev(prefr(c5, t)), l1 ⇒sKD rev(prefr(c6, t)),
 l3 ⇒sKD rev(prefr(c7, t)))
 = min(l1, l1, l2, l2, l4, l1, l1) = l4

pref(u) = min(min(l1 ⇒sKD prefr(c1, u), l2 ⇒sKD prefr(c2, u),
 l3 ⇒sKD prefr(c3, u), l3 ⇒sKD prefr(c4, u)),
 min(l1 ⇒sKD rev(prefr(c5, u)), l1 ⇒sKD rev(prefr(c6, u)),
 l3 ⇒sKD rev(prefr(c7, u)))
 = min(l1, l3, l2, l2, l1, l1, l1) = l3.

148 P. Bosc and O. Pivert

Finally, one has the resulting relation: {l2/x, l2/y, l3/u}.
It turns out that x and y are equally ranked since the absence of <c3, x> has the

same impact for x as the presence of <c7, y> for y (the level of desire for c3 equals
the level of dislike for c7 – l3). Similarly, the absence of c1 (mandatory) for z has
the same effect (rejection) as the presence of c5 (forbidden) for t.

Using the non commutative conjunction defined in formula (10) (and discard-
ing the tuples whose level is l4), the Cartesian product of the positive part of the
divisor and {<l2, x>, <l2, y>, <l3, u>} is:

{l1/<c1, x>, l1/<c2, x>, l2/<c1, y>, l2/<c2, y>, l3/<c1, u>}

which is included in the dividend r. Similarly, the Cartesian product of the nega-
tive part of the divisor and the previous result yields:

{l2/<c5, x>, l2/<c6, x>, l2/<c5, y>, l2/<c6, y>, l3/<c5, u>, l3/<c6, u>}

which is included in the complement of the dividend (i.e., none of these tuples
appears in the dividend). We observe that formula (14a) holds.

It is easy to check that if the level of preference of any element (x, y, z, t or u)
is upgraded, the property conveyed by formula (14b) is valid. For instance, if we
consider l1/x instead of l2/x, the Cartesian product (with P) becomes:

{l1/<c1, x>, l1/<c2, x>, l1/<c3, x>, l1/<c4, x>, l2/<c1, y>, l2/<c2, y>, l3/<c1, u>}

and the presence of the third tuple shows the non-inclusion in the dividend. Simi-
larly, if the tuple l3/z is introduced, the Cartesian product (with P) becomes:

{l1/<c1, x>, l1/<c2, x>, l2/<c1, y>, l2/<c2, y>, l3/<c1, u>, l3/<c1, z>}

and the last tuple proves that the inclusion in r does not hold (then that property
(14b) is valid). Last, if l2/y is replaced by l1/y, the Cartesian product of N and the
modified result is:

{l2/<c5, x>, l2/<c6, x>, l1/<c5, y>, l1/<c6, y>, l1/<c7, y>, l3/<c5, u>, l3/<c6, u>}

and the presence of the tuple l1/<c7, y> makes the inclusion in the dividend fail,
which, once again, shows the validity of property (14b). ♦

5 Implementation Issues

Now, we tackle processing strategies issues for division and anti-division queries.
The objective is to suggest several algorithms which are suited to a reasonably
efficient evaluation of such queries (subsections 5.1 and 5.2) and to assess the
extra cost with respect to queries involving no preferences (subsection 5.3).

5.1 Processing of Division Queries

Three algorithms implementing formula 7 are successively described. The first
algorithm is based on a sequential scan of the dividend (SSD). The idea is to ac-
cess the tuples from the dividend relation (r) "in gusts", i.e., by series of tuples

On Some Uses of a Stratified Divisor in an Ordinal Framework 149

which share the same X-attribute value (in the spirit of what is performed by a
"group by" clause). Moreover, inside a cluster the tuples (x, a) are ordered increas-
ingly on A. This is performed by the query:

select * from r order by X, A.

Thanks to a table which gives, for each value (val-A) of the divisor, the layer to
which it belongs (str-A), one can update the number of values from each layer
which are associated with the current element x, while scanning the result of the
query above. At the end of a group of tuples, one checks the layers in decreasing
order of their importance. The process stops as soon as the current element x is not
associated with all of the values from a layer Vi. Three cases can appear: i) x is
associated with all of the values from all the layers of the divisor and it gets
the preference level l1, ii) the stop occurs while checking layer Vi whose impor-
tance is not maximal (i > 1) and x gets the preference level rev(li) = ln+2−i , iii) the
stop occurs while checking layer V1 and x gets the level ln+1 meaning that
it is rejected.

In the second algorithm, data accesses are guided by the divisor (AGD). Thus,
instead of scanning the dividend exhaustively and then checking the layers satis-
fied by a given x by means of the aforementioned table, one first retrieves the X-
values from the dividend, and for each such x, the associations with the different
layers are checked by means of an SQL query involving the aggregate count.
Again, a layer is checked only if the layers of higher importance had all of their
values associated with x. The first step is to retrieve the distinct values of attribute
X present in r by means of the query:

select distinct X from r.

Then, for each value x returned, one counts the A-values from V1 which are as-
sociated with x (whose current value is denoted by :x below) in r by means of the
query:

select count(*) from r where X = :x and A in (select A from V1).

If the value returned equals the cardinality of V1, one checks layer V2 by means
of a similar query, and so on. The loop stops as soon as a missing association with
the current layer is detected. The preference level assigned to x is computed ac-
cording to the same principle as in the previous algorithm.

The last strategy relies on a series of regular division queries (SRD). It consists
of two steps: i) to process as many regular division queries as there are layers in
the divisor, and ii) to merge the different results and compute the final preference
degrees. The algorithm has the following general shape:

step 1: for each layer Vi of the divisor, one processes a division query which
retrieves the x’s which are associated in r with all of the values from
Vi. The layers are examined in decreasing order of their importance
and an element x is checked only if it belongs to the result of the query
related to the previous layer.

150 P. Bosc and O. Pivert

step 2: the results T1, …, Tn of the previous division queries are merged by tak-
ing them in decreasing order of the corresponding layers. An element x
which belongs to Ti (the result of layer Vi) but not to Ti+1 gets the pref-
erence level ln−i+1 (assuming that there exists a table Tn+1 which is
empty). We have used an algorithm where the query (in step 2) rests on
an outer join.

5.2 Processing of Anti-division Queries

Each of the previous methods can be adapted so as to apply to anti-division que-
ries. In the SSD algorithm, after running the query:

select * from r order by X, A,

using the table connecting each value of the divisor with its layer, it is possible to
identify the occurrence(s) of unwanted values. At the end of a cluster of tuples, the
level of preference assigned to the current element x is determined by checking
the layers in decreasing order of their importance. Here also, the process can stop
as soon as the current element x is associated with one of the values from a layer
Vi (x receives the level ln+1 if i = 1, ln+2-i if i ∈ [2, n]) and if no undesired associa-
tion is detected, x is assigned the level l1.

Similarly, the algorithm AGD is transformed as follows. As originally, the dis-
tinct values of attribute X present in r are retrieved by means of the query:

select distinct X from r.

Then, for each value x, the number of A-values from V1 (the totally excluded
values specified in the divisor) which are associated with x in r, is computed by
means of the query:

select count(*) from r where X = :x and A in (select A from V1).

If the value returned is zero, one checks layer V2 by means of a similar query,
and so on. The loop stops as soon as an unwanted association with the current
layer is detected. The preference level assigned to x is computed according to the
same principle as in the previous algorithm.

The strategy SRD now means "a series of regular differences". The first step
rests on queries of type:

(select X from r) differ (select X from r where A in (select B from Vi))

for each set Vi corresponding to a layer of the divisor. The second step takes all
the successive pairs of results produced previously in order to assign the prefer-
ence level ln−i+1 to an element x which belongs to the result of layer Vi but not to
that of layer Vi+1.

5.3 Experiments

As mentioned previously, the objectives of the experimentation are mainly to
assess the additional processing cost related to the handling of preferences and to

On Some Uses of a Stratified Divisor in an Ordinal Framework 151

compare the performances of the algorithms presented above. The experimenta-
tion was performed with the DBMS OracleTM Enterprise Edition Release 8.0.4.0.0
running on an Alpha server 4000 bi-processor with 1.5 Gb memory.

A generic stratified division (respectively anti-division) query has been run on
dividend relations of 300, 3000 and 30000 tuples, and a divisor including five
layers made of respectively 3, 2, 1, 2 and 2 values. The query taken as a reference
is the analogous division (respectively anti-division) query without preferences,
where the divisor is made of the sole first layer of the divisor (which corresponds
to a "hard constraint'' as mentioned before). So doing, we can assess the extra cost
related only to the "preference part'' of the query, i.e., to the presence of the non-
mandatory layers. The reference division query has been evaluated using three
methods: i) sequential scan of the dividend (i.e., algorithm SSD without prefer-
ences, denoted by REF1), ii) access guided by the divisor (i.e., algorithm AGD
without preferences, denoted by REF2), iii) algorithm REF3 based on a query
involving a "group by'' clause and a counting, as in the first step of algorithm
SRD. The reference anti-division query has been evaluated using these same
methods. However, it is worth notocing that REF1 shows the same performances
for both the division and anti-division since the only difference lies in the final
comparison of the cardinality of the current subset (with that of the layer for the
division and with 0 for the anti-division. Moreover:

 we used synthetic data generated in such a way that the selectivity of
each value b from the divisor relatively to any x from the dividend is
equal to 75% in the case of a division query (for a given value b from the
divisor and a given x from the dividend, tuple (x, b) has three chances out
of four to be present in the dividend), and it is equal to 25% in the case of
an anti-division query,

 each algorithm was run 8 times so as to avoid any bias induced by the
load of the machine,

 the time unit equals 1/60 second.

The results obtained for the division are reported in the table hereafter:

Size of the dividend 300 3000 30000
REF1 15.8 144.6 1451
REF2 49.7 570 15536
REF3 11.4 40.5 361.9
SSD 99 1011 10451
AGD 84 1035 29927
SRD 89 332 2923

Number of answers 15 172 1693

One can notice that:

 among the reference methods for non-stratified operations, the most effi-
cient is by far REF3. This is due to the fact that is is based on a single
query involving a "group by'' clause, which is very efficiently optimized
by the system,

152 P. Bosc and O. Pivert

 the processing time of the algorithms based on a sequential scan of the
dividend (i.e., SSD and REF1) vary linearly w.r.t. the size of the divi-
dend, contrary to those from the second family (REF2 and AGD); as to
algorithm SRD (implemented with an outer join), its complexity shows
some linearity as soon as the size of the dividend is above a certain
threshold (which means that there is a fixed cost attached to it, which de-
pends on the number of layers of the divisor),

 algorithm SSD becomes better than AGD as soon as the size of the divi-
dend is over 1000 tuples. But the best algorithm is SRD (implemented
with an outer join), which outperforms all the others as soon as the divi-
dend contains more than 300 tuples. It is worth noticing that the ratio be-
tween SRD and REF3 is almost constant (around 8), which is due to the
fact that SRD performs one query of type REF3 per layer (here 5), plus
the combination of the intermediate results.

To sum up, it appears that algorithm SRD based on an outer join is the most

efficient, except for very small sizes of the dividend where AGD is slightly better.
However, the extra cost of SRD with respect to the most efficient reference algo-
rithm, namely REF3, is still important (the multiplicative factor is around 8).

The results obtained for the anti-division are reported in the next table:

Size of the dividend 300 3000 30000
REF1 15.8 144.6 1451
REF2 41.4 400.7 4055
REF3 13.2 81.4 760.2
SSD 108.6 960.5 10418
AGD 54.2 645.2 6315
SRD 106 375.1 4353

Number of answers 37 427 4365

These results show that:

 among the reference methods for non-stratified anti-divisions, REF3 is
much more efficient than REF2; the fact that it outperforms REF2 by
such a large margin means that the DBMS is not efficient at optimizing
nested queries,

 the performances of REF2, AGD and SSD vary linearly with respect to
the size of the dividend. As to REF3 and SRD, their complexity is less
than linear.

It turns out that the best algorithm for stratified anti-divisions is SRD, which is
significantly better than AGD, itself much more efficient than SSD. However, the
extra cost of SRD with respect to the most efficient reference algorithm, namely
REF3, is still rather important (multiplicative factor between 4.6 and 8).

What all these measures show was somewhat predictable: the best way to
process a division or anti-division query (stratified or not) is to express it by
means of a single query that can be efficiently handled by the optimizor of the

On Some Uses of a Stratified Divisor in an Ordinal Framework 153

system, and not by external programs which induce a more or less important over-
head. For instance, in the case of the anti-division, the extra cost attached to SRD
with respect to REF3 is explainable by the fact that SRD processes five regular
anti-division queries (one for each layer) instead of one for REF3, and then has to
merge the results of these queries. Consequently, if the stratified division or anti-
division functionality were to be integrated into a commercial DBMS, it is clear
that it would have to be handled by the optimizor at an internal level, and proc-
essed as one query, according to the format given in Subsection 3.2 and in such a
way that the evaluation of a given x is done in one step.

6 Conclusion

In this article, we dealt with division and anti-division queries involving user
preferences expressed in an ordinal way. The principle consists in using a divisor
made of a hierarchy of layers. The first layer corresponds to a set of mandatory
values, whereas the other layers are used to discriminate among the elements in
the result. So doing, the result is no longer a flat set but a list of items provided
with a level of satisfaction. It has been shown that the stratified division (respec-
tively anti-division) delivers a result that can be characterized as a quotient (re-
spectively an anti-quotient).

Besides, some experimental measures have been carried out in order to assess
the feasibility of such extended division or anti-division queries. Even though these
measures still need to be completed, they show that the additional cost induced by
the stratified nature of the divisor is quite high (multiplicative factor from 5 to 8
with respect to the relative classical operation) but that the overall processing time
is still acceptable for medium-sized dividend relations. To reach better perform-
ances, it would be of course necessary to integrate the new operator into the
processing engine of the system, so as to benefit from a real internal optimization,
instead of processing stratified division queries externally, as we did here.

This work opens several perspectives, among which : i) the enrichment of divi-
sion or anti-division queries whose semantics could be disjunctive with respect to
the role of the layers or even based on the lexicographic order as mentioned in the
end of subsection 3.1, ii) making complementary experiments in order to take into
account larger sizes for both the dividend and the divisor (in particular in the case
where the divisor is not specified extensionally by the user, but results from sub-
queries), iii) the investigation of strategies suited for processing mixed queries in
the sense of section 4, along with the corresponding experiments, and iv) checking
whether the results obtained with Oracle are confirmed when another DBMS (e.g.
PostgresQL or MySQL) is used.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline operator. In: Proc. of the 17th
International Conference on Data Engineering, pp. 421–430 (2001)

2. Bosc, P., Pivert, O., Rocacher, D.: About quotient and division of crisp and fuzzy rela-
tions. Journal of Intelligent Information Systems 29, 185–210 (2007)

154 P. Bosc and O. Pivert

3. Bosc, P., Pivert, O.: On a parameterized antidivision operator for database flexible
querying. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS,
vol. 5181, pp. 652–659. Springer, Heidelberg (2008)

4. Bouchon-Meunier, B., Dubois, D., Godo, L., Prade, H.: Fuzzy sets and possibility the-
ory in approximate and plausible reasoning. In: Bezdek, J., Dubois, D., Prade, H. (eds.)
Fuzzy Sets in Approximate Reasoning and Information Systems, pp. 15–190. Kluwer
Academic Publishers, Dordrecht (1999)

5. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational data-
bases: mapping strategies and performance evaluation. ACM Transactions on Database
Systems 27, 153–187 (2002)

6. Chomicki, J.: Preference formulas in relational queries. ACM Transactions on Data-
base Systems 28, 427–466 (2003)

7. Dubois, D., Prade, H.: A theorem on implication functions defined from triangular
norms. Stochastica 8, 267–279 (1984); Also in: Dubois, D., Prade, H., Yager, R.R.
(eds.) Readings in Fuzzy sets for Intelligent Systems, pp. 105–112. Morgan & Kauf-
mann, San Francisco (1993)

8. Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how. In: Proc. of
the Workshop on Flexible Query-Answering Systems, pp. 89–103 (1996)

9. Dubois, D., Prade, H.: Handling Bipolar Queries in Fuzzy Information Processing. In:
Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Data-
bases. Information Science Reference, Hershey (2008)

10. Dubois, D., Prade, H.: An introduction to bipolar representations of information and
preference. International Journal of Intelligent Systems 23, 866–877 (2008)

11. Hadjali, A., Kaci, S., Prade, H.: Database preferences queries – A possibilistic logic
approach with symbolic priorities. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS
2008. LNCS, vol. 4932, pp. 291–310. Springer, Heidelberg (2008)

12. Kießling, W., Köstler, G.: Preference SQL – Design, implementation, experiences. In:
Proc. 28th Conference on Very Large Data Bases, pp. 990–1001 (2002)

13. Lacroix, M., Lavency, P.: Preferences: putting more knowledge into queries. In: Proc.
13th Conference on Very Large Data Bases, pp. 217–225 (1987)

	On Some Uses of a Stratified Divisor in an Ordinal Framework
	Introduction
	The Regular Division and Anti-division Operators
	The Division
	The Anti-division

	Stratified Division and Anti-division Queries
	About the Stratification Mechanism
	Syntax of Stratified Operations
	Modeling Stratified Operations
	Property of the Result of Stratified Divisions and Anti-divisions

	Stratified Queries Mixing Division and Anti-division Features
	A Basis for Safe Mixed Queries
	Syntax, Semantics and Modeling of Mixed Queries
	A Complete Example

	Implementation Issues
	Processing of Division Queries
	Processing of Anti-division Queries
	Experiments

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

