Chapter 5

Systems Sciences and Cognitive
Systems

Abstract. The evolvable multi-scale engineering design is presented in cor-
relation with general design theory. The role of meta-models for evolvable
and creative conceptual design is emphasized.

The potential of active cases base reasoning systems and their interaction
with designs of experiments is evaluated.

Evolvable diagnosis strategies for failure analysis and security purposes are
proposed.

Manufacturing systems developments from fixed to flexible, reconfigurable
and lastly evolvable with reference to assembly operations are presented.
Multiple-scale agent architectures based on cognitive science studies allows
integrative closure and autonomy.

5.1 Evolvability for Engineering Design
5.1.1 Modeling Design Processes

As products become increasingly complicated and technology becomes in-
creasingly advanced, the amount of engineering knowledge and of operations
required from engineering designers is extensive (Bar-Yam 2003).

Several major problems in developing the computer aided design, CAD
systems are related to the complexity advent in industry. Because designs
are subject to a dynamical industrial context they must be able to change
with the context.

The evolvable designs, and the evolvable CAD, ECAD, represent the tar-
get methodology to confront complexity advent in design. Evolvable designs
are those that are more easily modified in accordance to shifting consumer
demands, safety constraints and dynamic environment. Those designs that
have ability to evolve can change more quickly in concert with the dynamic
market and then have a better chance for continued survival on the market.

The design process has been described by various authors and from a
variety of points of view. Descriptive models explain how design is done,

214 5 Systems Sciences and Cognitive Systems

systematic prescriptive type of models show how design should be done, cog-
nitive models explain the designer thinking process. The correlation with the
cognitive and system sciences methods as artificial intelligence, AT or artificial
life, AL, methods start to be emphasized in design activities.

Interaction between subjective knowledge and objective world was dis-
cussed in significant descriptive theories of design. Yoshikawa (1981) proposed
the theory called General Design Theory GDT in which the interaction be-
tween a designer and an objective world is formulated as a continuous map
between two topological spaces Extended GDT (Tomiyama and Yoshikawa
1987) includes major developments of the GDT. Correlated to such approach
are the axiomatic approach of design and other mathematical theories of
design (Reich 1995, Braha and Reich 2003).

The systematic design approach describes the engineering activities as a
sequence of phases as for instance: clarification of task, conceptual design,
embodiment layout and detailed design (Pahl and Beitz 1996). Related to this
approach is the universal design theory that view design as a finite number
of abstraction levels and a set of structures stages to follow (Grabowski et al.
1998). These methodologies are in the same time descriptive and prescriptive
focusing mainly on how design should be done as a procedure.

The cognitive design approach, identify and represents the cognitive or
mental activities in design. A class of models refers to logical frameworks for
design (Coyne 1988, Takeda et al. 1990). The design process is regarded as an
evolutionary process that is the design is improved step by step. The design
grammar and the analogies between language and design have been empha-
sized by Coyne (Coyne 1988). These grammars are interesting for conceptual
design work, more concerned with reasoning in terms of engineering concept
than physical parts (Pahl and Beitz 1996).

Inspired also by cognitive methods the so-called conceptual cycles of Sowa
(Sowa 2000) may be considered as an illustration of Piaget (Piaget 1971)
developmental theory that found applications in design modeling.

5.1.2 PFramework for Engineering Design

Although engineering design has always been associated with human cre-
ativity and skill, the generation of designs can be formalized in a structured
manner. Such a formalization of design synthesis enables automatic design
synthesis through computation.

The SKUP framework capability for engineering design and relation with
GDT will be evaluated in what follows.

For design modeling the states S, in SKUP will be associated to real arti-
facts or to solutions of the design. The conditions K are associated to symbolic
or ideal design, to specifications or knowledge.

For evolvability we need to consider that the designer system K and the
designed one S, the operators U and the possibilities P are vectors or ten-
sors. This means multiple conditioning levels or in other terms multiple time

5.1 Evolvability for Engineering Design 215

scales. The wave equation, WE, may generate and organize the space of con-
ditions K. The multiple scales allow combining sequential and iterative steps
in design. Large designs can be decomposed into small designs each having
similar structures.

The operator U characterizes the capability to pass from plans or symbols
K to reality based on previous reality and on new plans. In one of the simplest
case U describes the concatenation of successively realized stage of the plans.

The states S capability to reinitiate some of the plans and to modify the
symbolic description is characterized by the possibility P. P describes the
selective activation or deactivation of conditions pertaining to K.

Evolvable designs should be based on the complementarity of upward and
downward causation. The operator U, from the SKUP is associated to the
upward design. Typically upward design is sequential and easier to model.
The design may start with the first-order wave equation, WE solutions.

These generate the design schemes.

GDT formulates engineering design as a process initiated by ideal specifica-
tions such as functional requirements in the function space. This corresponds
to the conditions space K, in the SKUP. The designer is able to match partial
structural information in the attributes space corresponding to S.

The operator U is linked to deduction stages in GDT.

The possibilities P from the SKUP are associated to downward design.
Complementing the upward typically discrete design, it is the downward
design working with continuous parameters states. The appropriate down-
ward dynamical design based on specifications or on dynamical parameter
measurements may contribute to the closure and finally the design scheme
evolvability. The downward design is local and parallel.

The possibilities P are associated to the abduction step in GDT.

Abduction is the method to integrate knowledge that satisfies the two
aspects of the evolutionary design that is creates new product and expands
knowledge.

U and P have complementary roles.

The conventional design cycle is focused upon registering and compen-
sating the deviation from established, specified goals. Conventional design is
about this single loop design cycle and is adaptive. But in complex situations
it happens that this cycle is not achievable in its present form. Developing
the conventional design, the evolvable design focuses upon goal formation.
The general goal formation is included in the design cycle not outside to the
cycle. In other words the evolvable design should be more focused to what
happens inside the design cycle.

The transformations within the design cycles may be more important. The
multi-scale transformations allow accelerating designs and potentially make
the design evolvable. In conventional design, the partial goals formation that
is, the design schemes set up is external to the design cycle. The design
schemes are established too early and are fixed in most cases. Modifications
of design schemes, if performed, are too late. As the design scheme formation

216 5 Systems Sciences and Cognitive Systems

is more included in the multi scale design cycle, the design itself may become
more evolvable. Dynamic markets require that the design have the capability
to adapt itself to an environment within its life span.

Elements of the general SKUP schema may be identified in the study of
evolutionary stimulation in conceptual design. The process design starts from
pre-inventive structure, in K, and follows a cycle including generating design
rules, U, and exploration and understanding of the results, that is P following
S. The new state in K includes the evolutionary design. A practical example
is the cyclic process of chemical product design (Gani 2004). In this case K
denotes the conceptual designs, S the computer aided design, CAD solutions,
U-the methods and constraint selection, P-the result analysis and verification.
The K-process corresponds to the evolution from pre-designs to post-designs.

5.1.3 Multiple Scales Evolvable Designs

Evolvable designs, ED, should have an adjustable or modifiable architecture
since they contain interacting components designs subjected to continuous
reorganization after confronting the reality.

It was observed that design steps consist of typical elementary processes.
These form the so called design cycle. Design cycle solves a small design
problem or divides it into smaller sub-problems. This observation led to a
model which is the repetition of design cycles at different scales (Yoshikawa
1981, Takeda et al. 1990).

Yoshikawa (1981) considered that the so-called ontogenetic design can be
decomposed into small design cycles. Each cycle has sub-processes focusing
on research, development, testing and evaluation aspects.

Following GDT Let us consider that the design cycle has four basic pro-
cesses or actions: R-research (includes problem identification and suggesting
key concepts to solve the problem). D-development (includes developing alter-
natives from the key concepts by using design knowledge. T-testing (includes
evaluation of alternatives, simulations).

E-evaluation and adaptation (includes selection of a candidate for adapta-
tion and modification, conclusions).

K is the symbolic description of the system, in this particular case,
the planned choices for elementary design processes such as research-R,
development-D, testing-T and evaluations-E for different conditioning levels.

For sub-processes the elements of R are R1, R2, R3 and R4, the elements of
D are D1, D2, D3 and D4 and so on. All pertains to K at different conditioning
levels.

K elements may be grouped in matrices of DOE, as generated by the wave
equation, WE.

Examples of DOE are the matrices associated to Latin-squares or to Walsh-
Hadamard designs (Iordache 2009). These should be more efficient than the
unstructured designs of experiments as that utilized by Reich (Reich 1995).

Table 5.1 consists of several levels of conditions.

5.1 Evolvability for Engineering Design 217

Table 5.1 Array of conditions for RDTE

D22 D23 D32 D33 T22 T23 T32 T33
D2 D3 T2 T3
D21 D24 D31 D34 T21 T24 T31 T34
D T
D12 D13 D42 D43 T12 T13 T42 T43
D1 D4 T1 T4
D11 D14 D41 D44 T11 T14 T41 T44
R22 R23 R32 R33 E22 E23 E32 E33
R2 R3 E2 E3
R21 R24 R31 R34 E21 E24 E31 E34
R E
R12 R13 R42 R43 E12 E13 E42 E43
R1 R4 E1l E4
R11 R14 R41 R44 Ell El4 E41 E44

Here the notations are: R-Research, D-Development, T-Testing, and E-
Evaluation.

Then R, D, T and E describe the conditions at the conditioning level m=0.

Then R1, R2, R3, R4 are the conditions of R corresponding to the level
m=1. Then R11, R12, R13, R14 are the sub-conditions of R1 and corresponds
to the level m=2. They were represented as elements of a cyclic loop.

Table 5.1 contains the semantic network off all the possible conditions K,
that is, the selected factors, to be grouped in DOEs.

The design includes the act of redesign which is defined as the act of suc-
cessive improvements or changes made to a previously implemented design.

This suggests to identify elementary RDTE actions having components as
R11-research, r, R12-design, d, R13-test, t and R14-evaluation, e. This reality
level is indexed here by n=0 or by m=2 if considered as a conditioning level.
It is possible that some components of the elementary actions are unrelated.

The coupling of several RDTE actions corresponds to the reality level
n=1 or with different notations to the conditioning level m=1. The resulting
actions are R1, R2 and so on.

For the action R2 we have specific components: R21-research, r, R22-
design, d, R23-test, t and R24-evaluation, e. Coupling the information re-
sulting from different actions corresponds to the reality level n=2 that is,

218 5 Systems Sciences and Cognitive Systems

to the conditioning level m=0. At this level the R, D, T and E are the four
summarizing actions. The reality level n=2 is unconditional in this case study.

One outcome of the complexity is that currently the designer may not
have time to adequately explore all the design alternatives and select the
best alternative.

Consequently, PSM framework will include only some of the conditions K
and the corresponding states S, also.

The detailed PSM framework is presented in the following.

5.1.4 Schema for Multiple Scales

Consider only a fragment of the Table 5.1. For three level evolution, m=0,
m=1, m=2 the SKUP consists of the vectors S = (s%, s!, s?); K = (k°, k',
k?); U= (u°, u', u?); P = (p° p', p?).

Table 5.2 illustrates the PSM framework, with conditions and states for
two-levels only, m=0 and m=1. The conditions at the level m=0 are R, D, T
and E. Let R=), D=k}, T=k) and E=L]. The upper index refers to level
while the lower index refers to the time step. It should be emphasized that
the time steps at different levels may be different and this is a key feature
for different levels of evolvability. The states and conditions at the level m=0
are represented by a loop with high thickness border cells.

The system initial state is s§. With possibility p°(kJ|s)) the condition £ is
selected. This condition is a digit symbolizing a specific research R. This may
be a matrix corresponding to R-DOE. Based on this, the operator s{=u’(k9,
s9) allows the transition to the new state s). This state is the realization of the
research. Then with possibility p®(k?|s}) the new condition, k9 arises. This
condition symbolized by a digit corresponds to the selection of developments
D. In the new condition, the operator u’(k?, s{) = s9 allows the system to
reach the state s9. This corresponds to the completion of design and materials.

Observe that: s§=u’(kJ, sJ) implies s§=u’(k?, u’(kJ, s9)).

With possibility p®(k9]s9) the testing, k9 that is T, is selected and finally
the new state results s9=u"(k3, s9) results. This may corresponds to the
processed product. It represents the succession of realized design, materials
and processes.

Observe that: s§ = u®(k3, u®(k?, uO(kJ, s9))).

This result will be modified at the level m=0 in the condition E denoted by
k9. After this the state is sq=u’(£9, s9)=u’(k3, u®(£9, u (£, u° (K9, s9)))).

The states are resulting not necessarily in a recursive way since, in practical
cases the operators may varies with the step.

The states at the level m=0 are: s, s9, s9, s9, s. The interpretation of
the high thickness border cells trajectory is the process description as follows:
from the state s} through condition k) towards the state s{, then through
condition kY towards the state s, and so on. Any trajectory is a succession
of states and conditions. The role of initial state specification s is outlined
by such presentations.

5.1 Evolvability for Engineering Design 219

If the experiment analysis shows that the factor E is the more significant
factor, the analysis may be continued at the level m=1 for different test con-
ditions El1=k}, E2=k{, E3=ki, E4=F3. This means to perform four different
evaluations.

The states and the conditions at the level m=1 are in medium thickness
border cells. The system initial state at the level m=1 is s}. With possibility
pl(kd| s3) the condition kj arises. The condition is a digit symbolizing a spe-
cific test. Based on this, the operator u'(k{, s§)=s1 describes the transition
to the new state si. Then with possibility p!(ki|si) the new condition, ki
arises. In the new condition, the operator u' (ki, s}) = si allows the system
to reach the state s3.

Observe that: ss=ul(ki, ul (K}, s{)) and si=u'(k3, u*(ki, ul (K, sd)))-

The states at the level m=1 are: s}, si, s, si. The conditioning at the
level m=1 is represented by the loop E1E2E3EA4 tat is: ki, ki, ki, ki-

The interpretation of the medium thickness border cell trajectory is as
follows: from the initial state s} through condition k3 to the state si, then
through condition ki to the state s}, and so on.

Due to representation restrictions Table 5.2 illustrates only two successive
levels, in this case m=0 and m=1. Suppose that a more detailed study is
necessary. The same framework may be used to outlines levels m=1 and
m=2.

Observe that generally K=((k3, k¥,-..), ((k&, ki,-..)), S=((s3, s9,...),
(sbshe.);

U=’ ut,u?...)), P="%p p?%...,)

The design activity is confronted with knowledge data-base acquisition
and development. Modern products and technologies should surpass the com-
plexity emerging by non-linear interactions of large number of rules, restric-
tions or objectives. In the same time it is a need to construct larger-scale
knowledge bases to put together data bases and models from different do-
mains. This represents just a part of the designer activity that includes also,
searching data base, analysis, product improving and so forth. An evolvable
CAD, ECAD is the targeted strategy to confront complexity and the ob-
jective of this research. The entire design system should be evolvable. This
involves problem solving, support of designer and interface. Local databases
store all knowledge about the behavior of the agent and the community to
whom the agents belongs. The information stored in these databases involves
constraints, objectives, procedures, rules and experience, and organizational
structures and techniques. It may be organized by logical rules. The CYC
project, the KIF-knowledge integrated format and KIEF-knowledge intensive
engineering framework represent major attempts in this direction (Takeda et
al. 1995). These projects collect knowledge and provide mechanisms for shar-
ing and reusing knowledge.

220 5 Systems Sciences and Cognitive Systems

Table 5.2 Two levels schema for engineering design

s
D T
s? @ s(3)
B2 E3
R st E s
El B4
50 50

5.1.5 Perspectives
5.1.5.1 Three Levels Evolutionary Designs

Most of the current computer aided design, CAD systems employ the hier-
archical decomposition strategy that is a form of analysis thought process,
corresponding to categorical product interpretation of tensor product for the
K model. Such a strategy can lead to refinements of existing design but do
not leads always to new, evolutionary designs. Moreover it happens that the
design becomes too large.

The switch from categorical product to coproduct controls the size of the
search space and allows the emergence of new designs. Similar ideas have
been emerged in the study of divergence/convergence strategies in engineer-
ing design. The divergence step, correlated to categorical product, implies
understanding the problem and creating solutions. The convergence step,
correlated to coproduct, selects among solutions for further development.

The process is illustrated in Fig. 5.1.

A general categorical presentation of the architecture was presented in
Fig. 4.9.

In this case the notations are: K1-cognitive design, conventional (conver-
gence), K2-evolutionary design (divergence), and S-design entities.

5.1 Evolvability for Engineering Design 221

K2-Evolutionary

U21 I P12
K1-Conventional
U10 I po1
S-Entities

Fig. 5.1 Three levels hierarchical framework for engineering design

5.1.5.2 Four Realms: Meta-meta-models for Engineering Design

Difficulties arising in designing complex industrial products and operations
require evolvable engineering design schemes. Evolvability in turn, is based
on closure, at several complexity levels, for instance the closure between the
dynamical laws of the material aspects and the complementary symbolic as-
pects of a physical organization. Full evolvability and autonomy requires the
integrative closure that is a link between top and bottom levels.

Studies of evolvable and autonomous systems in complexity conditions
challenged the traditional engineering fixed design methodology. Traditional
engineering is based on a clear distinction between the design and the pro-
duction phase and requires a system’s performance and construction to be
specified. For complexity conditions this is neither possible nor recommend-
able. Implementation of cyber-physical systems engineering concepts (Lee
2007, Carreras et al. 2009) outlined the need for a design for complexity that
is a design for systems that fundamentally and continually adapt and evolve
in a changing environment.

One problem that may benefits from this new type of model is the easy
formulation of schedules in cases when the number of manufacturing cells
and interconnected operations increases. The wave model offered the minimal
number of cells and offers feasible schedules (Black 1991).

The challenge is to effectively build a fully evolvable design scheme based
on integrative closure. This implies complementary and continuous back and
forth between the wave equation, WE, results, that is, a specified design
scheme, and the physical data of design process.

For this, the evolvable computer aided design, ECAD, should be able to
face hard restrictions with respect to measurement analysis. The uses of
ECAD lie primarily in exploring beyond the scope of conventional designs
tools not competing with them. The main concerns are related to robustness,
results analysis and scalability.

222 5 Systems Sciences and Cognitive Systems

Design Operations | «— > | Cognitive Process

Data

. «— | Creative Process
Design Elements

Fig. 5.2 Creative conceptual designs

The elements of the four realms schema are easy identified in the study of
creative stimulation in conceptual design (Benami and Jin 2002). In this case
the Data are operated at Design Operation level. To ensure evolvability, this
level should be interconnected to Cognitive and then Creative levels (Fig. 5.2).

Another four level approach to ED may be detected in the use of meta-
meta-model and meta-model concepts for integrated modeling in design
(Tomiyama et al. 1989, Kiriyama et al. 1992).

In this case the levels to be considered are: first level quantitative features,
second level qualitative relationships, third level translation and interaction
of concepts and fourth level the meta-meta-model (Fig. 5.3).

The meta-meta-model represents relation between the aspect models.

Engineering of complex systems focuses on meta-designing of genotype
associated to concepts instead of directly designing the phenotype associated
to quantitative aspects.

21

K1-Qualitative relation K2-Concept translation

R S

! P12

U10 P01 P23 U32
Po3

S-Quantitative aspects K3-Meta-meta-model

U30

Fig. 5.3 Meta-meta-model for evolvable engineering design

5.1 Evolvability for Engineering Design 223

+ > | Cognitive Processes

Design Operations

A

4

Qe ||

« l > | Creative processes

Quantitative Meta-meta-model‘

Fig. 5.4 Four realms and sub-realms for creativity

A

Data
Design Elements

The integrative closure including a link between K3-Meta-meta-model and
S-Quantitative aspects is critical for evolvability and autonomy of the design
system.

The entire structure shown in Fig. 5.2 may be just one realization of the
creative process of four realm diagram shown in Fig. 5.3. This aspect is
clarified by the Fig. 5.4 representing a kind of superposition of Fig. 5.2 and
Fig. 5.3.

The achievement of a particular creative design parallels and recapitulates
the history of general design systems from data to creative stage. It is an
ontogenetic versus phylogenetic relationship.

The relation between ontogenetic design and phylogenetic design has been
discussed also by Braha and Maimon (1998). Purposeful adaptation of artifi-
cial thing, that is, the ontogenetic design was seen as an interface between the
inner environment of artifacts and the outer environment, the surroundings
in which it operates.

Ontogenetic design evolution refers to the design process that share the
characteristic of observed evolutionary phenomenon which occurs between
the time when a problem is assigned to the designer and the time the design
is passed to the manufacturer.

During this period the design evolves and changes from the initial form to
an acceptable form, towards a fit between the design and the requirements.

5.1.5.3 n-Graphs for Multiple Scale Engineering Design

Fig. 5.5 shows a representation of multiple scales frames presented in
Table 5.1 using n-graphs. The n-graphs are computing tools able to describe

224 5 Systems Sciences and Cognitive Systems

asynchronous systems with multiple entrances and exits (Appendix Ab).
Asynchrony allows faster processing.

Different scales are associated to different levels in n-graph.

The reality level n=0 corresponds to the 0-graphs or sets. They represent
r, d, t or e individual, undefined and uncorrelated actions, elementary process
or objects. The level n=1 correspond the 1-graphs. These are directed graphs
including the morphisms that is, the relations between r, d, t and e.

The morphisms are 1-cells. Their coupling allows the initiation of engi-
neering design.

A 1% order evolutionary step is represented by the transition to the level
n=1.

This level is associated to 1-categories.

The level n=2 corresponds to the 2-graphs. These are graphs plus the 2-
cells between paths of same source and target. These 2-cells express relation
between relations, in particular the natural association of the quadruple r, d,
t, e elements in just one macro actions denoted here by D-design, R-research,
E-evaluation, or T-test.

There exist two different compositions of the 2-cells. The vertical cor-
responds to sequential 2-cells, while the horizontal corresponds to parallel
2-cells.

A 2% order evolutionary step is represented by the transition to the level
n=2.

This level is associated to 2-categories.

The level n=3 corresponds to the 3-graphs. These are 2-graphs that include
3-cells that is, the relations between 2-cells. Fig. 5.5 shows the cells association
as an evaluation action E. The 3-graphs represent graphs modification and
should be subjected to conditions of natural transformations too.

n=1 (1-graphs) n=2 (2-graphs)

./ ot 2nd order —
A e
O

) S R
n=0 (sets) 1+t order 3rd order l T n=3 (3-graphs)
° ° -
o © . -
4th order

Fig. 5.5 n-graphs for multiple scale engineering design

5.2 Case Based Reasoning 225

A 37¢ order evolutionary step is represented by the transition to the level
n=3.

This level is associated to 3-categories. The 4" order step represents a
challenge for engineering design.

5.1.5.4 Nested Frameworks for RDTE

Fig. 5.6 shows a categorical framework for RDTE as presented in Table 5.1
The four realms are identified as K0-Research, K1-Design, K2-Tests and

K3-Evaluations. Fig. 5.6 outlines the possibility of integrative closure since it

includes the link between K0 and K3. This allows evolvability and autonomy.

K1-Design K2-Test

A

| k1D || k2T |

| kO-R || K3-E |
) \

KO0-Research K3-Evaluation

Fig. 5.6 Nested frameworks for RDTE

Theoretically the architecture is not confined to four realms.

Fig. 5.6 shows nested and self-similar architectures.

A similar four realm cyclic structure is repeated starting from the whole
central system that may be built by four sub-realms denoted here by k0, k1,
k2 and k3.

Fig. 5.6 emphasizes the integrative closure as a process that can develop
self-similar patterns in design.

5.2 Case Based Reasoning

5.2.1 C(Case Based Reasoning Method

Conventional CBR is a problem solving paradigm that solves a new problem
by remembering a previous similar situation and by reusing information and
knowledge of that situation (Aamodt and Plaza 1994, Aha et al. 2001). More

226 5 Systems Sciences and Cognitive Systems

specifically, CBR uses a database of problems to resolve new problems. The
database can be built through the knowledge engineering (KE) process or it
can be collected from previous cases.

CBR traces its roots to the studies of learning and memory. Schank (1982)
developed a theory of learning and reminding based on retaining of experience
in a dynamic evolving memory structure. This model of dynamic memory was
the basis for some of the earliest CBR systems.

In a problem-solving system, each case would describe a problem and a
solution to that problem. The reasoning engine solves new problems by adapt-
ing relevant cases from the library. Moreover, CBR can learn from previous
experiences. When a problem is solved, the case-based reasoning engine can
add the problem description and the solution to the case library. The new
case that in general represented as a pair <problem, solution> is immediately
available and can be considered as a new piece of knowledge.

The CBR process can be represented by a schematic cycle, as shown in
Fig. 5.7 Aamodt and Plaza (1994) have described CBR typically as cyclical
process comprising the four steps:

1. Recall the most similar cases
During this process, the CBR engine searches the database to find the
most approximate case to the current situation.
2. Reuse the cases to attempt to solve the problem
This process includes using the retrieved case and adapting it to the new
situation. At the end of this process, the user might propose a solution.
3. Revise the proposed solution if necessary
Since the proposed solution could be inadequate, this process can correct
the first proposed solution.
4. Retain the new solution as a part of a new case

This process enables CBR to learn and create a new solution and a new
case that should be added to the case base.

It should be noted that the Recall process in CBR is different from the
process in a database. If we want to query data, the database only retrieves
some data using an exact matching while a CBR can retrieve data using an
approximate matching.

As shown in Fig. 5.7, the CBR cycle starts with the description of a new
problem, which can be solved by recalling previous cases and reusing solved
cases, if possible, revising the solution and giving a suggested solution, re-
taining the restored case and incorporating it into the case base.

However, this cycle rarely occurs without human intervention that is usu-
ally involved in the retain step. Many application systems and tools act as
a case retrieval system, such as help desk systems and customer support
systems.

The CBR provides support for applications if the input data tend to repeat
similar patterns from time to time. When the factors recur, the studied system

5.2 Case Based Reasoning 227

New case
\ =
Case bas l
Retam / ~ Revise
Tested Proposed
Solution Solution

Environment

Fig. 5.7 CBR basic framework

is likely to display regularly repetitive patterns. This repetitiveness explains
why it is reasonably to apply CBR in complex problem solving situations.

Traditional CBR have limited potential. For example in common versions,
CBR involves just one user and don’t answer in real-time to explosive amount
of user data, to the unexpected cases, or to non-linear interacting cases and
questions.

It is a need to implement CBR, frameworks in which answers to multiple
questions are gathered from multiple information sources, in real time.

For continuously addressing multiple-goals, multiple arrays of CBR cells
systems are needed. For such arrays it is difficult to arrange the architecture
or scheme of problem-solving, to schedule, to elaborate and to run rules, to
adjust them to continuous changing environment.

Problem solving methodologies as case-based reasoning CBR, are con-
fronted with high complexity situation due to chaotic or random character of
data, and to severe time restrictions. The method to confront the high com-
plexity is that of evolvability. This implies improving the conventional passive
CBR, to an evolvable one, ECBR. ECBR should be active and autonomous,
able to take control of its environment, able of responding to random unex-
pected problems and to large amounts of knowledge in real-time.

ECBR schemes may be generated by the developed here partial differen-
tial model, WE, and compared to existing schemes. Schemes with variable
number of cells and multi-scale schemes are resulting. Connections between
the problem solving schemes, and the designs of experiments are of interest.

228 5 Systems Sciences and Cognitive Systems

Applicability in domains including: process diagnosis and failure analy-
sis, financial analysis, data mining, sensor operation and interpretation is
expected.

5.2.2 C(Case Based Reasoning Frameworks

Concepts from theoretical biology, developed to characterize evolvability in
artificial and natural systems represent the inspiration source for ECBR
building.

The wave equation, WE, generates schemes with variable number of
stages and multi-scale schemes. Connections between these problem solv-
ing schemes, and the well-known designs of experiments will be outlined.
Cyclic problem solving arrays with evolvability based on multi-scale schemes
organized by self-similar replication at different conditioning levels will be
presented more in detail.

As biology suggests, the evolvable knowledge schemes should be embodied
or situated.

The PSM framework outlines the active interaction between conditions
and real states.

The classic scheme of problem solving in CBR is a cycle with four steps
(Aamodt and Plaza 1994, Melendez et al. 2001). The CBR. cycle steps are:
Recall, Reuse, Revise, and Retain. The steps will be denoted by “c”, “u”,
“v7,and “t”.

The four steps represent a CBR cell.

A platform or a scheme in which in any time step any of the four operations
is activated is of interest. The advantage is continuous data input and output
for the scheme. The scheme should contain four CBR cells indexed here by
#0, #1, #2 and #3.

The functioning of the cells at successive time steps is represented in
Table 5.3.

This table is in fact a solution of the wave equation were the following
identifications are of use: O-c, 1-u, 2-v, and 3-t. Here ¢, u, v and t represent
the cell condition.

T is the time step, 0, 1, 2 or 3 and Z denotes the space of operations, 0, 1,
2 or 3.

7 describes also the travel along the classification scheme.

Observe that the positions of the c-recall, u-reuse, v-revise, t-retain are
changed in the direction of circular information flow at a regularly point in
time. At any given time for any cell, only one of the inputs corresponding to
c-recall, u-reuse, v-revise, or t-retain is in the active mode. The 4 cells allow
continuous input and output.

5.2.3 Schema Modification

Let us restrict as a first example, to the C(4) solution shown in Table 5.3.

5.2 Case Based Reasoning 229

Observe that the above examined cycling operations schedules are in fact
designs of experiments, DOE. Table 5.3 contains a Latin square. Running
DOE based scheme allows fast identification of significant data for classifica-
tion regime acceleration.

The DOE factors are time steps, cell and operations. The time is multiple
of the same time-step.

Standard DOE table may be developed by indicating the conditions asso-
ciated to any element of the 4x4 Latin square (Table 5.4).

Experimental results of DOE application may be the interesting object
selection, the efficiency, the resolution, and so forth. Typical control tasks
in classifications are to obtain the highest throughput of the cell, highest
efficiency or to reduce time consumption.

The DOE selects the significant results and also the significant factors by
standard ANOVA calculations. This is in fact Fourier analysis over the real
field, for the functioning parameters. The evaluation of performances may be
based on real data or on real-field dynamical model of the process.

Next step will be to reorganize the scheme or to reproduce the experiment
in the direction of beneficial results. The new experiment means a new DOE
based on modulo-m algebra calculation and the WE model. Physically this
means to generate a new, modified classification scheme. This scheme may
be one with a different number of cells or a device with the same number of
cells but with modified parameters.

Suppose for instance that the experiment underlined in Table 5.4 gives
the worst result (cell #2, at the third step 3, lumped operation “u-reuse”).
Suppose that u-reuse is the operation offering the expected product or result
and that cell factor is the only significant factor. In that case the cell may
be changed with a modified one, possibly from the same array of cells. The
classification scheme is supposed to be redundant. If all other factors are sig-
nificant, an improvement strategy may consists in the modification of the cell
(#2 by #27), of the time step, 3 by 3’, of the operation u-reuse by u’-reuse
followed by the introduction of a new operation for instance s-restore in a
new cell #4 (Table 5.5). This kind of situation appears in case-base main-
tenance situations. For maintenance, restore step which selects and applies
maintenance operations is necessary.

Schemes as presented Table 5.3 or Table 5.5 are solutions of the wave equa-
tion, WE. The classification scheme evolution appears in fact as a continuous

Table 5.3 Scheduling for CBR

Z\T 0 1 2 3
#0 c u v t
#1 u v t c
#2 v t ¢ u
#3 t ¢ u v

230 5 Systems Sciences and Cognitive Systems

Table 5.4 DOE associated to CBR

Cell Time Operation

=
]
T
w2
&
D
kel

#0
#0
#0
#0
#1
#1
#1
#1
#2
#2
#2
#2
#3
#3
#3
#3

© 00 O U = W N+~

—_ =
= O

[
=W N

—_
ot
W RO WD, OWNFOWNR~O

< 2 0 s 0 g0 g s TS a0

—_
[=p}

Table 5.5 Modified CBR

Z\T 0
#0 C
#1 u’
#2’ v
#3 t
#4 S

o v ot g ==

oscillation between the WE generated DOE schemes and the real field eval-
uations of the resulting data. The complementarity or disjoint-ness between
the finite-field scheme and, the real field data represents the key mechanism
for evolvable classification.

Data mining schemes in which the duration of some steps is higher than
that of other steps are frequently encountered.

5.2.4 Multiple Scales

A multi-scale scheme is considered in what follows. We may limit the Table 5.3
to vectors containing distinct elements only.

They represent solutions at specified time or stage in the problem solving
development.

5.2 Case Based Reasoning 231

Table 5.6 Singlets yo

Z\T 0 1
0 ¢ u
1 t v

They results as solution of the WE too.

Denote by Y(T) = yo = (c, u, v, t).

Since there are only four elements it is possible to represent ypas a 2x2
matrix as that shown in Table 5.6. It results as a kind of cyclic folding of the
vector yo. Obviously other type of folding may be of interest.

Let us consider more scales in the scheme of conditions. The method used
in Sect. 2.2.3 is used in the following. The doublets are resulting by direct
product and concatenation ygxyi. Table 5.7 represents a direct product of
2x2-matrices, Y (T) = yoxy1 with yo=y1 The new letters have been put
adjacent to the first, to the right side. The initial problem was solved by
splitting in 4 steps (¢, u, v, t). However any of these steps is a new problem
that may be solved by the same algorithm.

In this way the sub-problems cc, cu, cv, ct and so on are resulting.

They have significance as described by their notation and as suggested
by the task-method decomposition a possible interpretation is as follows
(Aamodt and Plaza 1994): cc-identify features, cu-initially match, cv-search,
ct-select, tc-extract, tu-index, tv-adjust indexes, tt-update knowledge and
SO on.

The transition from a level to another may be triggered by the presence of
data of interest in the expected product, by specific shapes of the recorded
signals, and so forth The higher-level problem solving operations should take
place with a timing that ensures and support the cyclic functioning at the
previous level. The problem solving scheme should have an adjustable or
unsettled construction since it contains interacting modules subjected to
continuous reorganization after confronting the reality. It is not only a spatial
scheme but a temporal one as well.

Table 5.7 Doublets yox y1

Z\T 00 01 10 11

00 cc cu uc uu
C u

01 ct cv ut uv

10 tc tu ve vu
t v

11 tt tv vt vV

232 5 Systems Sciences and Cognitive Systems

Due to the size of search space the multi-scale scheme is confronted to
the apparent improbability of chance to produce any successful solution of
the problem solving. But in fact the problem solving trajectory in the multi-
scale scheme is not a blind search. The multi-scale scheme allows modifying
the searchable domain and the search velocity by adding more levels and
scales to the search process. Any new problem solving level appears as adding
more sensors and effectors to the system. Moreover interaction with real data
accelerates scheme construction and discovering new solutions.

5.2.5 Schema for Multiple Scales

The elements of the SKUP for multi-scale scheme will be presented in
what follows. This is of help for classification schemes design and processes
visualization.

A section of the general Table 5.7, illustrating PSM structure at two levels
only, m=0 and m=1 will be considered. The SKUP elements are:

S =(sY s); K= (k% k!); U= (u° ul); P = (p° p!)

The scheme includes at the first level m=0 the operations c, u, v, t and at
the second level, m=1, the operations vc, vu, vv and vt. In this particular case,
the second level is resulting by a separate re-cycle processing after operation
v-revise.

The states and conditions at the level m=0 are in the high thickness border
cells.

The states and the conditions at the level m=1 are in medium thickness
border cells.

Table 5.8 includes the conditions K and the real valued states S. The
conditions at the level m=0 are t=kJ, c=k}, u=kY and v=kJ. The upper
index refers to level while the lower index refers to the time step. Time
steps at different levels are different. The system initial state is sJ. With
possibility p®(kJ|s8) the condition £ is selected. This is a digit symbolizing
a specific operation t-retain. Based on this, the operator u®(kj, s3) = s
allows the transition to the new state s{. Then with possibility p°(k?|s}) the
new condition, kY arises. This condition symbolized by a digit corresponds
to the selection of c-recall. In the new condition the operator u’(k{, s¥) = s9
allows the system reach the state sJ. With possibility p°(k9|s9) the operation,
k9 that is u-reuse, is selected and finally the product u®(k9, s9) = s results.
It will be operated at the level m=0 in the condition v-revise denoted by
k3. Then the state is s{. The states at the level m=0 are represented by the
square: s9, sV, 83, s9. The conditions at the level m=0 are represented by the
square t-retain, c-recall, u-reuse, v-revise, tat is: k8, k9, K9, kg.

If experiments shows that v-revise is the critical operation, the classifica-
tion may be limited at the level m=1 for the operations vt=k}, ve=k}, vu=kJ
and vv=Fki.

5.2 Case Based Reasoning 233

Table 5.8 Two-level schema for CBR

0
S2
c u
s? sh sg
Ve vu
t s A\ S%
vt \AY
0 1
50 50

The system initial state at the level m=1 is s}. With possibility p*(kd|sd)
the condition f} arises. This is a digit symbolizing a specific operation. Based
on this the operator u'(kg, s§) = s} describes the transition to the new state
s1 and so on. Each condition supposes the selection of other condition for
operations.

The states at the level m=1 are represented by the square: s}, si, si, si.
The conditions at the level m=0 are represented by the square vt, vc, vu, vv,
tat is: ko, ki, k3, ki.

The potentialities are defined by vectors as P = (p°, p!). The component
p(k™) is an evaluation of the condition k™. An example of evaluation is
to take p(k™) equal to 0 or 1. The value zero corresponds to situation in
which that condition is ineffective while the value 1, corresponds to active
conditions.

Transfer between different levels may be controlled by external criteria.

K elements, representing the symbolic conditions indicating the types of
operations at two levels are in fact cyclic classification schemes. S appears as
sequences of more or less classified problems. Operators U characterize the
capability to pass from intended conditions of classification to the reality of
classification steps. The possibility P describes the capability of states S to
reactivate the classification scheme and to modify the symbolic K description

234 5 Systems Sciences and Cognitive Systems

that is the classification scheme elements. P shows the activation of some
areas of the operations shown in Table 5.8 and the inactivation of others.

5.2.6 Perspectives
5.2.6.1 Three Levels Evolvable CBR

Elements of adaptability and evolvability may be detected for some knowledge
systems presented in literature. For instance, conversational CBR, received
substantial attention (Aha et al. 2001). This essentially interactive CBR,
involves the refinement of diagnoses through interaction with the user or
other CBRs.

These systems attempt to find the quickest ways to increase the accuracy
of diagnosis through estimating information gain.

Another research is that of active knowledge systems with conceptual
graphs (Li and Yang 1999, Delugach 2003). In that case the concept may
play the role of factors.

Difficulties arising in cyclic operations in complex situations require adapt-
able and evolvable classification schemes. These are in turn, based on closure
concepts implies the disjoint or complementary description and closure be-
tween the dynamical laws of the material aspects tat is real data and the
symbolic aspects tat is condition data of the physical organization. This is
the concept of semantic closure, restricted to two levels architectures.

The challenge is to effectively build entirely evolvable classification schemes
based on complementarity and continuous back and forth between the wave
model results that is a specified classification scheme, and the physical or real
data of classification process itself.

A number of useful areas of applications have been identified for evolvable
classification technologies.

Main examples are process and quality control, diagnosis and failure analy-
sis, engineering design, financial analysis, emergency situations, Data mining
with augmented semantics, evolvable agent operations, temporal reasoning,
sensor operation and interpretation.

Evolvable knowledge schemes offer the prospect of devices to suit a
particular individual. Evolvable technologies have the potential to adapt au-
tonomously to changes in their environment. This could be useful for situa-
tions where real-time control over systems is not possible such as for space
applications. Evolvable control systems are required in such cases. Evolv-
able knowledge devices may be of help in the study of central concepts as
self-repair and development.

An open question is if this kind of evolvable knowledge systems can be
implemented in reality. A generic architecture and algorithms should be pro-
posed so that the particular system builder do not starts from beginning and
may become evolvable.

5.2 Case Based Reasoning 235

K2-Revise
v | | P12
K1-Reuse
U10 1 PO1

S-Environment

Fig. 5.8 Three levels framework for evolvable CBR

Fig. 5.8 and Fig. 5.9 show the categorical framework for a CBR system
with three hierarchical levels or three realms.

S represents the real system.

The elements of the SKUP categorical framework are as follows:

S-environment representing the processes

K1 and K2-corresponds to the CBR cycle

U10: K1—S action

P01: S—KI1 sense of data and monitor

K is structured to provide an approximation of what it is considered as
a dynamic memory model that basically consists of retaining experiences as
cases for further reuse.

Cases are registers containing a description of a problem and its solution.

The elements of the categorical framework may be: K1-Reuse, K2-Revise,
U21-Reuse action P12-Retain procedure.

It is possible to run on different time scales for different SKUPs. Several
K1, K2 cycles may be performed before the coupling in the larger SKUP
loop. K1 and K2 cycles negotiate among themselves as to which should be
active. This allows anticipative control of the process.

The system interacts with its environment, through its data base that
acquires new cases in response to changes in the environment and through
the actions that it performs.

The framework shown in Fig. 5.9 allows cognitive evolvability and
autonomy.

5.2.6.2 Nested Frameworks for Evolvable CBR

Applications of CBR methodology for autonomous service failure diagnosis
have been proposed (Montani and Anglano, 2006). This kind of CBR, ap-
proach allowed self-healing in software systems.

236 5 Systems Sciences and Cognitive Systems

U21

K1-Reuse K2-Revise

P12
u1o | [po1 P02/ | 120

S-Environment

Fig. 5.9 Three realms framework for evolvable CBR

Fig. 5.10 shows a four realms categorical framework for CBR as presented
in Table 5.8. The four realms are K0-Retain-T, K1-Recall-C, K2-Reuse-U
and K3-Revise-V.

KO reflects the environment response.

The architecture shown in Fig. 5.10 outlines the possibility of integrative
closure including the link between KO0 and K3 and allowing evolvability and
autonomy.

This link may be established by implementing autonomic computing
paradigm (Kephart and Chess 2003). This studies methods for increasing
environment-awareness and automatic responsiveness. Autonomic computing
methods promise to facilitate CBR tasks and facilitate information capture
(Montani and Anglano 2006).

Theoretically the cyclic architecture is not confined to four realms.

Fig. 5.10 shows nested and self-similar architectures.

A similar structure is repeated starting from the whole central system that
may be built by four sub-realms denoted here by k0, k1, k2 and k3.

K1-Recall-C < > K2-Reuse-U

‘ | / ‘

| ki || k2-U |

| k0-T || K3 |

/ \

A, 4

KO0-Retain-T « > K3-Revise-V

Fig. 5.10 Nested frameworks for evolvable CBR

5.3 Failure Analysis 237
5.3 Failure Analysis

5.3.1 Complexity Challenges

Failure analysis, FA, failure mode and effect analysis, FMEA, root cause
analysis, RCA are useful quality and reliability tools in different industries.

FA and RCA are structured analytic methodology used primarily to ex-
amine the underlying contributors to an adverse event or condition. FMEA
focuses on prevention and proactive risk management as RCA is concentrated
on the occurrence of adverse events.

FMEA differs from FA in that it is a structured methodology used to
evaluate a process prior to its implementation. Its purpose is to identify on
an a priori basis the ways in which that process might potentially fail, with
the goal in mind being to eliminate or reduce the likelihood and outcome
severity of such a failure.

The complexity advent imposes significant modification of basic concepts
and methods such as FA, FMEA, RCA, reliability and quality systems, prob-
lem solving methodologies, testing strategy, time concepts and frames.

Some of the difficulties of conventional FA methods are as follows:

e They focus on short-term customer satisfaction not on process improve-
ment.

e FA is fixed not reviewed during the life of the product.

e In several companies, FA are developed too late and don’t improve the
processes.

e FA are not conceived as dynamic tool that will be developed.

e FA is not able to identify complex failure modes involving multiple failures
or subsystems, or to discover expected failure intervals of particular failure
modes.

e FA don’t take into account the timing and scheduling in failure analysis
and process improvement.

The constructivist strategy to confront complexity frontier is based on
evolvability. Evolvable failure analysis, EFA are presented as the approach to
meet the requirements imposed to the industry in high complexity domains.

An EFA system is an FA system that has the characteristics:

e Addresses multiple problems, tasks, failures that can be correlated to the
real system

e Can change autonomously both the FA scheme as the real process dynamic
behavior

e Is capable to control and to take advantage of the unexpected events of
their environment in increasingly complex ways

e Have emergent, not entirely pre-programmed, behavior
Shows multiple scale, parallel, evolution potentialities
Can incorporate and accommodate new information

238 5 Systems Sciences and Cognitive Systems

5.3.2 Basic Framework for Diagnosis

The two level basic categorical frameworks are able to gather some of the
elements of adaptability for failure analysis (Fig. 5.11).

K-Diagnosis

U P

S-Real system

Fig. 5.11 Two levels diagnosis

The starting step is a failure analysis scheme in K. It is based on the
expertise for several case studies. This summarizes the experiment and the
possible factors.

To this summary we may associate a tree-like diagram being in fact sim-
ilar to the standard fishbone root-causes. Obviously we may start from the
existing root-cause diagrams. Then a comparison with reality S is proposed.

In this step couples of factors are selected and tested.

It is a process described by the operators U showing how the real state for
a given scheme in K.

In the next step the significant factors may be grouped.

It is a process allowing establishing affinity diagrams based on similarities.

It results a structure similar to the root-cause diagram but having reversed
direction arrows. It looks more like a decision diagram.

This step is associated to possibilities P.

Finally a structure in K is resulting.

Tordache (2009) presented in detail examples of failure analysis based on
SKUP frame and DOE resulting as solution of the wave equation WE.

The basic SKUP shown in Fig. 5.11 may be perceived in other failure
analysis method.

The SKUP steps corresponds to the Boyd’s OODA loop (Dettmer 2003).

In this case the observe part is linked to S, the decide part is associated
to K, the orient part is linked to P and the act part is liked to U.

The same elements may be identified in the Goldratt, constraint manage-
ment model (Dettmer 2003).

In this case the mismatches analyze part is linked to S, the creation of
transformation design and plan part is associated to K, the review the strat-
egy and the definition the new paradigm is linked to possibilities P and the
strategy deployment part is liked to the operators U.

5.3 Failure Analysis 239

5.3.3 Perspectives
5.3.3.1 Three Levels Frameworks

Recent work has pointed out that diagnosis strategies represent a necessary
tool for complex systems diagnosis. Nejdl et al. (1995) introduced a formal
meta-language to express strategic knowledge in an explicit way.

Fig.5.12 shows the categorical framework for a diagnosis system with three
levels.

S represents the real system.

K1 and K2 are the two cognitive levels. K1 represents the diagnosis level.

K2 represents the meta-level of strategies. The strategies are defined at
the meta-level.

U10:K1—S8 describes the actions towards the real level while P01: S—K1,
summarizes the observations from S evaluations.

The information change between the basic level and the meta-level of di-
agnosis is characterized by the operator U21 and the possibilities P12.

K2-Strategy

U21 P12

K1-Diagnosis
U10 P01

S-Real system

Fig. 5.12 Three levels hierarchical diagnosis

A similar failure-driven driven modeling approach that incorporates ideas
from developmental learning is due to Sakhanenko et al. (2007). It is based
on the architecture with several levels of control and of learning for adapting
and evolving models to represent changing and evolving situations (Piaget
1970).

The loop S, K1, P01, U10 is linked to assimilation mechanism while the
loop K1, K2, P12, U21 is linked to accommodation mechanism.

Assimilation supposes integrating new information into pre-existing struc-
tures. Accommodation supposes changing and building new structures to
understand information.

240 5 Systems Sciences and Cognitive Systems

5.3.3.2 Four Realms Frameworks

A developed four-level categorical approach for security of distribution in-
formation systems was presented by Sisiaridis et al. (2008). The four levels
correspond to Data, Schema, Construct and Concept (Fig. 5.13). The im-
provement is representing by the integrative closure allowing the emergence
and autonomous testing of new concepts.

Restricting the levels interactions to the operators U10, U21, U32 leave
the choice of control to the users and are appropriate for low-level security
risks. The bottom-up approach, emphasizing the possibilities P01, P12 and
P23 allows risk analysis and are more suited to high level security risks.

The signification of the functors U and possibilities P is explicit. U10, U21,
U32 and U30 corresponds to implementation operations.

Observe that: U10: K1-Schema—S-Data, U21:K2-Constructs—K1-Schema,

U32: K3-Concepts—K2-Constructs, and U30: K3-Concepts—S-Data.

P01, P12, P23 and P03 are synthesis steps.

P01: S-Data—K1-Schema, P12: K1-Schema—K2-Constructs, P23: K2-
Constructs—K3-Concepts, and P03: S-Data—K3-Concepts.

Fig. 5.13 emphasizes the role of integrative closure via U30 and P03. This
interconnection may make the system quite evolvable and autonomous.

The link via U30 and P03 may be established by implementing pervasive
computing (Estrin et al. 2002). In a case of failure analysis and self-healing,
as sensors are installed on a device, the information can be automatically
captured during preventive maintenance. It may be possible to broaden the
range of environmental and device information captured and transmitted
automatically. Pervasive computing methods facilitate information capture
and failure analysis tasks.

U21
K1-Schema K2-Constructs
P12 1
U10 P01 P23 U3
v P03
S-Data K3-Concepts
U30

Fig. 5.13 Four realms network for security of distribution information systems

5.4 Multi Agent Manufacturing Systems 241

U21
K1-Switching groups K2-Clusters
P12
U10 P01 P23 U32

P03

S-Individual

components K3-Power systems
U30

Fig. 5.14 Four realms network for failure diagnosis

Another example of evolved failure analysis making use of the four-level
architectures is shown in Fig. 5.14 (Rayudu et al. 2000).

The first reality level represents behavior of individual components and
their present status. The second level, characterizes the switching groups
and this refers for instance to isolators, protective relays, circuits breakers,
and so forth.

The representation of entities bounded by a set of switching groups called
clusters make the third level. The cluster level incorporates behavior knowl-
edge concerning connected switching groups and the operational equipment
between them.

The fourth level represents the whole network in terms of clusters. This
level encompasses the strategic problem solving knowledge related to the
complete power network. It is an integrative closure for failure diagnosis,
allowing system evolvability, self-repairing and autonomy. The operators U
and P describe the testing procedures and the action in case of failure. The
possibilities P describe the testing procedures and the information transfer
between levels.

5.4 Multi Agent Manufacturing Systems

5.4.1 Multi Agent Systems

Agents are participants as individual elements within a complex system. Each
agent may have its own set of internal states, skills, rules, and strategies that
determine its behavior. Agents generally exist in a hierarchy. For example, an
employee in a corporation interacts with other agents at a higher hierarchical
level in the organizational environment. The agents receive information from
within and outside their environment. Agents may develop their own schema
through interaction and find regularities in the data and compress these per-
ceived regularities into internal models that are used as the basis for action.
An agent may be defined as a device or a self-directed program object which

242 5 Systems Sciences and Cognitive Systems

has its own value system and the means to solve certain tasks independently
and then communicate its solution to a larger problem solving organization.
The main categories of agents are:

e Autonomous agents, capable of effective independent actions
Objective directed agents, when autonomous actions are directed towards
the achievement of defined tasks

e Intelligent agents, with ability to learn and adapt
Cooperative agents, assisting other agents to perform a task

Examples of agents are neurons in brain, antibodies in case of immune
systems, ants in colonies, wolfs in packs, investors in the case of stock market,
people in social networks, and so forth. In each case agents have relatively
limited set of rules, and the complexity of the collective behavior emerges from
the large number of interactions among each other and their environment.
There is constant action and reaction to what other agents are doing, thus
nothing in the system is essentially fixed.

The distributed manufacturing environments and the flexibility and re-
action to disturbances requirements are crucial reasons for moving to new
organization paradigms.

Next generation of manufacturing control systems comprises the high
adaptation and reaction to the occurrence of disturbances and to environment
changes. On the other hand these control systems should optimize the global
performance of the system which requires a global view of the entire system.
These requirements imply the development of new manufacturing control sys-
tems with more autonomy, robustness against disturbances, able to handle
to the changes and disturbances much better than the actual systems. New
paradigms should focus on the ability to respond promptly and correctly to
external changes, without external interventions. Distributed manufacturing
architectures, multi-agent-based manufacturing systems represent a potential
answer to complexity challenges (Parunak and Brueckner 2001).

Table 5.9 compares the multi agent systems MAS, with conventional hi-
erarchical approaches. The autonomous multi agent systems may have some
disadvantages. Theoretical optima cannot be guaranteed. Predictions can be
made only at the aggregate level. Systems of autonomous agents can become
computationally unstable. On the other hand, an autonomous approach ap-
pears to offer significantly advantages over conventional systems. Because
each agent is close to the point of contact with the real world, the system
computational state tracks the state of the world closely, without need for a
centralized database.

Multi agent systems offer a way to relax the constraints of centralized
planned, sequential control. They offer production systems that are decen-
tralized rather than centralized, emergent rather than planned and concurrent
rather than sequential.

5.4 Multi Agent Manufacturing Systems 243

Table 5.9 Multi-agent versus conventional systems

Characteristics Conventional Multi agent systems
Model source Military Biology, economy
Optimum Yes No

Prediction level Individual Aggregate
Computational stability High Low

Match to reality Low High

Requires central data Yes No

Response to change Fragile Relatively robust
System reconfiguration Hard Easy

Calculus Complicated, long ~ Simple, short

Time required to schedule Slow Real time
Processing Sequential Concurrent, parallel

5.4.2 Frameworks for Manufacturing Systems

PSM and EDOE methodology offers suggestions for agent based architectures
for manufacturing applications (Iordache 2009).

The knowledge processor is a knowledge base system that stores and pro-
cesses the necessary knowledge for an agent to play the role the agent society
has designed for it.

The typical conceptual model of an agent comprises four components sur-
rounding the knowledge processor. The four elements are:

e Perception, a channel for an agent to receive information from the external
world

e Actuator, an interface for an agent to modify or influence the states of an
agent community

e Communication, a mechanism for an agent to exchange views with other
members in the agent society

e Objectives, a list of roles for an agent to play

In terms of EDOE, the knowledge processor plays the role of the center, K.

These local databases store all knowledge about the behavior of the agent
and the community were the agents belongs. The information stored in these
databases involves constraints, objectives, procedures, rules and experience,
and organizational structures and techniques. It may be organized by logical
rules.

The four factors of the center K are: Communication C, Perception P,
Objectives O and Actuator A.

Modules have to be associated to component DOE.

The communication module deals with the need to regulate the interaction
between distributed agents and defines a communication language.

244 5 Systems Sciences and Cognitive Systems

The communication module may have sub-modules such as: contents C1,
message C2, physical information C3 and so on. These are analogous to the
factors of component designs.

It results that the generic architecture for an agent may be represented as
an EDOE.

The multi-agent system is an open and distributed system that is formed
by a group of agents combined with each other through a network of coop-
eratively solving a common problem. Often, several agents do same simple
thing. It is possible that other agents don’t use all modules defined in the
generic architecture.

The architecture is in fact a complex EDOE framework and can be oper-
ated according to the EDOE methodology.

It is easy to identify the SKUP elements.

The product of implementing multi-agent architecture is described by S.

The elements of K are denoted by C, P, O, A at the level m=0 and C1,
C2, C3 and so on at the level m=1. Operators U describe the scheduling,
while possibilities P take into account the execution step. The overall sys-
tem performance is not globally planned but emerges through the dynamic
interaction of the agents in real time.

Operators U and possibilities P express that the system does not alternate
between cycles of central scheduling and final execution. Rather than this
mechanism, the schedule emerges from the concurrent independent decisions
of the local agents.

Elements of the SKUP may be detected in other multi-agent systems.

For instance, in the study of coordination, the agents with their specific
roles represents the elements of K, the so-called rational actions are associated
to the elements of U, the perceptions are elements of P while the states S are
represented in this case by pheromones (Parunak and Brueckner 2001).

/

j \
SPRC NG
2SIEh

Fig. 5.15 Three levels hierarchical framework for multi-agent-system

5.4 Multi Agent Manufacturing Systems 245

Fig. 5.15 shows a three levels hierarchical framework for multi-agent-
system.

A general presentation of this architecture was shown in Fig. 4.9.

In this case the notations are: S-environment, Kl-agents and K2-meta
agents.

5.4.2.1 Holonic Manufacturing Systems

The holonic manufacturing system is the paradigm that translates the holon
concept developed for living systems and social organizations into a set of
appropriate concepts for manufacturing industries (Tharumarajah et al. 1996,
Valckenaers et al. 1997, Ulieru 2002).

The term holon describes the basic unit of organization in living organisms
and social organizations. The holon can represent a physical or logical activity
such as a machine on order or a human operator. The holon can be broken
into several other holons, a procedure which allows the reduction of problem
complexity. A manufacturing holon comprises a control part and an optional
physical processing part. Multiple holons may dynamically aggregate into a
single-higher level holon.

The holarchy is a system of holons that can co-operate to achieve an ob-
jective. The holonic manufacturing system is a holarchy that integrates the
entire range of manufacturing activities.

The holonic manufacturing systems paradigm is part of the next genera-
tion of distributed control and introduces the hierarchical control within a
heterarchical structure. This innovation makes available the combination of
robustness against disturbances, presented in heterarchical control with the
stability and global performances optimization presented in hierarchical con-
trol. The implementation of this concept requires that decision power must
be distributed between the central and local holons that is there exists a
switch between hierarchical and heterarchical control. In categorical terms
this corresponds to a switch from product to coproduct constructions. A cat-
egorical presentation of the architecture was shown in Fig. 4.9. Usually the
categorical product is associated to cognitive or interactive steps while the
categorical coproduct is associated to reactive steps.

The function of central holon is to advise the local holons. When distur-
bances occur the autonomy of holons increase, while during normal func-
tioning, the autonomy of local holons decreases and they follows the central
holons input as for example the scheduling plans.

The holonic manufacturing system design starts with a forward control
step in which the definition of all appropriate holons and their responsi-
bility is established. In comparison with traditional methodologies a rather
vague responsibility than a precise function for each holon is established. This
facilitates the backward control. Complementary controls ensure systems
evolvability.

Ulieru et al. (2002) studied the four layer holonic control architecture.

246 5 Systems Sciences and Cognitive Systems

K3-Planning

U32 P23

A,

K2-Control execution

U21 P12

K1-Execution

U10 Po1

S-Hardware

Fig. 5.16 Four levels hierarchical framework for holonic control

The level S corresponds to resources. It represents the physical platform.

The K1 layer is concerned with the execution of the application.

In this case the K2 layer achieves the arranging for the distribution of
applications across multiple resources.

The K3 layer is concerned with planning issues such as reconfiguration or
execution control.

This architecture reflects the multi-resolution structure of the holonic en-
terprise. As we move down the layers shown in Fig. 5.16, time scales become
shorter.

Higher layers are more sophisticated but slower, while lower layers are fast
and light-weight.

The multi layer holonic assembly system was studied also by Sugi et al.
(2003). The holarchy of the system consists of execution holons layer identified
as K1, assembly operation holons layer identified as K2 and top management
operation holon identified here as K3 layer. If the management holon is or-
dered to assembly a specified product, this assembly task is decomposed into
subtasks for lower management holons. An operation holon secures appropri-
ate execution holons, which corresponds to real manufacturing devices, using
the contract net protocol. Then the operation holon makes the execution
holons execute a job such as assembling parts. The decentralized nature of
the system enabled to realize plug and produce, a system function that sup-
ports easy addition and removal of manufacturing devices. Sugi et al. (2003)
developed techniques for plug and produce such as distributed resource allo-
cation method for installation of new robots and an automated calibration
for mutual positional relationship between an existing robot and a newly
added one.

5.4 Multi Agent Manufacturing Systems 247

Plug and produce function is related to interoperability at several levels
and n-categorical modeling.

What is missing for hierarchical holonic architecture as that shown in Fig.
5.16 is the interaction of the top layer K3 and real execution layer S, that is,
the integrative closure.

The four-level approach to holonic systems presented in Fig. 5.17 challenge
this difficulty. It represents the mandatory development of the current hier-
archical approach (Naumenko and Wegmann 2003, Baina and Morel 2006).

In this case the lowest level denoted here by KO presents different subjects
for modeling, each of them called a universe of discourse. The next level K1
contains viewpoints, for instance mechanisms and models.

The next level K2 focuses on meta-models and the highest level K3 focuses
on meta-meta-models.

The meta-meta-model should be designed to allow unification under a
common framework.

Each application can be considered as a specific use of a viewpoint defined
in the K1 level which is based on meta-models described in K2.

The universe of discourses KO concerns the manufacturing enterprise.

To describe this universe it is possible to use holonic views K1 that are
instantiations of the meta-model K2 defining specific type of holons and their
relationship within the context. K2 is an instantiation of K3. K3 level corre-
sponds to the meta-meta-model.

Application interoperability can be resolved by achieving the K3—KO0 con-
nection and the integrative closure. This integrative closure makes the system
evolvable.

U21
K1-Viewpoints K2-Meta-models
4 P12
U10 PO1 P23 U32
, P03
KO-Subjects K3-Meta-meta-models
U30

Fig. 5.17 Four realms multi-agent-system modeling

248 5 Systems Sciences and Cognitive Systems

5.4.3 FEvolvable Manufacturing Systems

The globalization of markets, shortening of product life cycles, decrease of
dimensions for products and outsourcing were identified as major threats
for industry. Answers to such threats were paradigms as evolvable assembly
system, EAS (Onori 2002), evolvable production systems EPS (Onori et al.
2006, Frei et al. 2007), and evolvable manufacturing systems EMS (Iordache
2009).

The design process of assembly systems, EAS has been modeled by a hi-
erarchy of four levels: S-Environment, K1-Domain knowledge, K2-Inference
knowledge and K3-Task knowledge (Lohse et al., 2005). The domain knowl-
edge level defines all the specific concepts needed by the inferences. The
inference knowledge level defines what inferences are needed to fulfill the rea-
soning task. The task knowledge level defines the reasoning tasks required to
achieve a specific goal. All three levels of knowledge, K1, K2 and K3 have
been modeled in a Protégé interface to allow the dynamic definition and
adaptation of the assembly system design process.

As discussed the four levels hierarchy doesn’t allows complete evolvability
and autonomy.

EPS represents a concrete solution to the requirements from the market
such as stated within the agile, reconfigurable and distributed approaches.
They include high responsiveness, low down-times, ability to handle small
series with many variants, and on the fly changeability. Together with
ontology-based process specific modules, a distributed control system using
the multiple agent paradigm allows to quickly and cost effectively adapt to
ever changing production requirements.

EPS have similarities with the bionic, fractal, holonic, biological and re-
configurable manufacturing systems, but there exists major differences too.

Besides considering system morphology, EPS strongly links product, pro-
cesses, system and environment by the means of detailed ontologies.

EPS focuses on self-organization and implies the ability of complex systems
to co-evolve with continuously changing requirements. EPS are expected to
allow the user to build any required system and to modify this at wish.

Some features of the production systems necessary to achieve evolvability
are:

e Modularity since many small, dedicated units that can easily be integrated
into different systems/cells

e Process-orientation for units

e Variable granularity and fluidity process related. This implies multiple
scales
Control system, distributive

e Interoperability

e Multi-agent technology to capture emergent behavior

Evolvable systems may be considered as a natural development of flexible
and reconfigurable manufacturing systems (Table 5.10).

5.4 Multi Agent Manufacturing Systems

249

Table 5.10 Comparison of different management systems

Criterion\System | Specialized Flexible Reconfigurable | Evolvable
Skills One Set of fixed More skills No particular
skills adapted product focus
Flexibility Low Discrete Continuous Emergent
Capability High efficiency | Cope with Cope with Very agile
for one situation | different differences. Can
situations be adapted
Concerns Rigid Cannot cope Unexpected are | Difficult to
with new not coped define a generic
mechanism

Table 5.10 suggests considering the different stage in the historical devel-
opment of manufacturing systems as the necessary stages in categorification.

The first stage corresponds to specialized manufacturing, to single instal-
lation and in the same time to sets or O-categories (Appendix A4).

A 19 order evolutionary step is represented by the transition to flexible
manufacturing systems.

Flexibility approach allows doing diverse tasks with the same installation.

This is associated to 1-categories.

A 274 order evolutionary step is represented by the transition to reconfig-
urable manufacturing systems.

Reconfiguration is supposed to make use of several installations. It is linked
to the 2-categories. Reconfigurable manufacturing systems incorporate prin-
ciples of modularity, integrability, flexibility, scalability, convertibility and
diagnosability. Some flexible and reconfigurable systems failed because they
don’t take into account that if any system is to be flexible then its constituents
need to be far more flexible.

2nd order
Flexible - * Reconfigurable
1t order 31d order
Specialized « Evolvable
4t order

Fig. 5.18 Four stages for evolvable manufacturing systems

250 5 Systems Sciences and Cognitive Systems

A 374 order evolutionary step is represented by the transition to evolvable
manufacturing systems.

Evolvability achieves the full flexibility and is related to the 3-categories
concept implementation.

Observe that EAS, EPS, EMS considers the production unit as an artifi-
cially living entity and emphasizes on evolution rather than adaptation.

Usually the adaptability implies an adjustment on the time scale of the
life cycle of the organism. It characterizes 1-category frames. But this is
not enough to challenge the high complexity. Evolvability should imply the
capacity for genetic-like change to invade new life-like cycles on several time-
scales, by higher categorification steps.

In a dynamic environment, the lineage that adapts first wins. Fewer mu-
tations steps mean faster evolution. The request is for some production or
management systems built to minimize the number of mutations required to
find improvements.

Fig. 5.18 reinforces the idea of categorification process by imposing to
different realms to be categories. By successive categorification the legacy
equipment and associated software will still be utilizable. An n-graph model
may be naturally associated to the framework shown in Fig. 5.18. Categorical
issue implies that EMS achieves specific fluidity properties. It should have
fluidity at different levels of complexity. Consider that the production line is
composed from several components that can be plugged in or out. These are
1-cells and the corresponding fluidity is the so-called fine fluidity or 1-fluidity
corresponding to flexible manufacturing and to 1-categories.

When a manufacturing line is composed of several cells and these cells are
modules or 2-cells that can be plugged in or out this is the thin fluidity or
2-fluidity. It corresponds to reconfigurable manufacturing and to 2-categories.

U21
-—
K1-Products K2-Systems
A P12 1
U10 P01 P23 U

I P03

S-Environment K3-Processes
U30

Fig. 5.19 Four sub-realms network for evolvable manufacturing systems

5.4 Multi Agent Manufacturing Systems 251

Flexible Reconfigurable

ot]+ [Sy |

Specialized > l > Evolvable

H —>
Environment Processes

Fig. 5.20 Four realms and sub-realms for evolvability

The thick fluidity or 3-fluidity will refer to the whole system that is 3-cells
to be plugged in or out. This corresponds to evolvable manufacturing and to
3-categories.

The autonomic and organic computing (Kephart and Chess 2003, Bauer
and Kasinger 2006) were identified as fundamental concepts for achieving
evolvable manufacturing systems. Although autonomic computing was de-
signed for software systems, the related ideas can be projected into a modular
production system. Automatic computing in this context refers to comput-
ing elements disseminated throughout the production system which beyond
the normal mechanical, electrical and sensorial units includes computational
power.

Organic computing focuses on completing the closure by studying the 4"
order evolutionary step.

Fig. 5.19 outlines a four sub-realms network for evolvable manufacturing
systems.

The environment refers to real and artificial aspects, including the available
materials.

Products sub-realm denotes the products and product related activities.
Production sub-realm denotes the production system skills, modules. Pro-
cesses sub-realm refers to all processes, for example assembly.

The signification of the functors U and possibilities P is explicit.

U10, U21, U32 and U30 corresponds to top-bottom implementation
operations

In this case U30=U100U210U32.

P01, P12, P23 and P03 are bottom-top synthesis steps. Observe that:
P03=P01oP120P23.

Fig. 5.19 emphasizes the role of integrative closure via U30 and P03.

252 5 Systems Sciences and Cognitive Systems

Onori (2002) highlighted the interaction between products and systems
illustrated by a generic product life cycle view.

The entire structure shown in Fig. 5.19 may be just one realization of the
four stage diagram shown in Fig. 5.18. This aspect is clarified by the Fig. 5.20.

It is a superposition of Fig. 5.18 and Fig. 5.19.

Observe that the construction of a specific evolvable manufacture parallels
and recapitulates the general history of manufacturing systems from special-
ized to evolvable.

5.4.4 Belief Desire Intention Agents

The belief desire intentions, BDI, agent introduced a formal meta-language
to express agent rationality in an explicit way. BDI architecture is one of
numerous architectures that enact deliberative agents. The BDI agent ar-
chitecture is an attempt to encapsulate the hidden complexity of the inner
functioning of an individual agent.

The agent shown in Fig. 5.21 is structured in four elements: beliefs, goals,
plans and intentions (Rao and Georgeff 1991). We will refer to a BGPI struc-
ture for BDI agent.

Fig. 5.22 outlines a possible categorical framework for a procedural rea-
soning system with three levels.

S represents the environment.

K1 and K2 are the two cognitive levels. In this case K1-includes goals while
K2-includes plans. The strategies are defined at the K2-level.

‘
\ i
Intentions

Sense Act

Environment

Fig. 5.21 Structure of BDI agents

5.4 Multi Agent Manufacturing Systems 253

K2-Plans

U21 T P12
K1-Goals

7'y

U10 P01

S-Environment

Fig. 5.22 Three levels hierarchical framework for cognitive agents

U21

K1-Goals K2-Plans

P12
uto | o1 P02l | U20

S-Environment

Fig. 5.23 Three realms framework for cognitive agents

U10: K1—S describes the actions from goals towards the environment level
while P01: S—KI1 summarizes the sensed info about S and forwards this
toward goals.

The information change between the basic level and the K2 of strategies
is characterized by the operator U21 and the possibilities P12.

The BDI architecture with three realms, and links between K2 and S is
shown in Fig 5.23.

The framework shown in Fig. 5.23 allows cognitive evolvability and
autonomy.

5.4.5 Multiple Levels Cognitive Architecture

5.4.5.1 Multiple Levels Agents

Innovative multiple-scale agent architectures have been proposed by Goschnick
(Goshnick 2003, Goschnick and Sterling 2002).

Based on Jung analytical psychology (Jung 1997) Goschnick developed a
cognitive architecture named Shadow Board. This implies:

254 5 Systems Sciences and Cognitive Systems

e Decomposition of a user’s multiplicity of roles into a hierarchy of sub-
agency

e Relaxing of the autonomy of the sub-agents under control of an au-
tonomous agent-the so called Ego/Self agent which is autonomous

e Wrapping of the external services and agencies including the web services
and utilizing them as if they were internal sub-agents

e Ability to apply ontology at the localized level

The Shadow architecture may be considered as resulting by WE equation.

Table 5.11 shows the agent based structure of the cognitive architecture
at different levels.

The notations are: B-beliefs, G-goals, P-plans, and I-intentions.

The central agent is the so-called Ego/Self agent (Goshnick 2003).

G P
B I

It is autonomous in the sense that its parts B, G, P, I don’t depend on
others agents.

This central agent should be considered as a whole.

It is an executive decision maker. Decisions are based on the knowledge of

sub-selves B, G, P and I.

Table 5.11 Array of conditions for BGPI multi-agent system

G22 G23 G32 G33 P22 P23 P32 P33
G2 G3 P2 P3
G21 G24 G31 G34 P21 P24 P31 P34
G P
G12 G13 G42 G43 P12 P13 P42 P43
G1 G4 P1 P4
Gl11 Gl14 G41 G44 P11 P14 P41 P44
G P
B I
B22 B23 B32 B33 122 123 132 133
B2 B3 12 I3
B21 B24 B31 B34 121 124 131 134
B I
B12 B13 B42 B43 112 113 142 143
B1 B4 11 14
BI1 B14 B41 B44 11 114 141 144

5.4 Multi Agent Manufacturing Systems 255

The Ego/Self agent is able to call the four main agents, B, G, P and I
individually or in team. The sub-selves are again divided in sub-sub-selves as
for instance B is divided in four agents B1, B2, B3 and B4. Then the splitting
in four is continued one level more. From B1 it results B11, B12, B13 and
B14 and so on. They may be identified with an elementary BDI agents B11-
belief, b, B12-goal, g, B13-plans, p and Bl4-intentions, i. Consider that this
elementary level is indexed by n=0. It is possible that the elementary agents
are unrelated.

The coupling in agents corresponds to the level n=1. The resulting agents
are B1, B2 and so on.

For the agent B2 we have specific activities: B21-belief, b, B22-goal, g,
B23-plans, p and B24-intentions, i.

The coupling of information corresponds to the level n=2. At this level the
B, G, P and I are the four agents. The reality level n=3 corresponds to the
Ego/Self agent.

All levels have been illustrated by Table 5.11.

5.4.5.2 n-Graphs for Multiple Levels BGPI

Fig. 5.24 shows a representation of multiple scales frames using n-graphs.
The reality level n=0 corresponds to the 0-graphs or sets. They are repre-
sented by b, g, p or i individual uncorrelated objects. The level n=1 corre-
spond the 1-graphs. These are directed graphs including the morphisms that
is, the connections between b, g, p and i.
The morphisms are 1-cells. Their coupling allows the functioning of agents.
The level n=2 corresponds to the 2-graphs. These are graphs plus the
2-cells between paths of same source and target. These 2-cells express the

n=1 (1-graphs) n=2 (2-graphs)
go/ ’p o ® e —,
\ / N /):B \3 3 ‘G/
beei ° _ ‘P\
.I S !
n=0 (sets) n=3 (3-graphs)

. . . /‘g/Béik

K\- [J
o ° ° — h%_[’ /
o1 ™ P

Fig. 5.24 n-graphs for multi-scale framework

256 5 Systems Sciences and Cognitive Systems

natural association of the quadruple b, g, p, i elements in just one macro
agent denoted here by B-belief, G-goal, P-plans or I-intention. The level n=3
corresponds to the 3-graphs. These are 2-graphs that include the 3-cells that
is, the cells between 2-cells. Fig. 5.24 shows a complete association as a plan P.
The 3-graphs represent graphs modification and are subjected to conditions
of natural transformations too.

5.4.5.3 Nested Frameworks for BGPI

Fig. 5.25 shows a categorical presentation for BGPI architecture as presented
in a different form in Table 5.11.

In this presentation KO includes environment and the Beliefs, K1-Goals,
K2-Plans, K3-Intentions.

The architecture shown in Fig. 5.25 outlines the possibility of integrative
closure allowed by the link between K0 and K3 opening the road for evolv-
ability and autonomy.

The architecture is not confined to four realms.

Fig. 5.25 shows also nested and self-similar architectures.

A similar structure is repeated starting from the whole central system built
by four sub-realms denoted here by kO, k1, k2 and k3.

It should be noted that similar architectures are of interest for autonomic
and organic computing (Trumler et al. 2004, IBM 2005, Bauer and Kasinger
2006).

The logical structure of an autonomic element is similar to that of BDI or
BGPI agents.

For autonomic computing, the BGPI structure is replaced by the so-called
MAPE loop whose elements are M-Monitor, A-Analyze, P-Plans, E-Execute.

Autonomic computing systems are composed of four levels identified as
S-Managed resources, K1-Autonomic managers, K2-Orchestred autonomic

K1-Goals « > K2-Plans

\

| K1G || k2P |

| k0B || K3 |

/ \

KO0-Beliefs “ > K3-Intentions

Fig. 5.25 Nested frameworks for BGPI

References 257

managers, K3-Manual manager. The closed loop in which K3 is replaced by
an automatic device was presented by IBM (2005).

For the organic computing middleware architecture (Trumler et al. 2004),
the four levels may be identified as: S-Transport interface, K1-Event dis-
patcher, K2-Service interface and proxy, K3-Organic manager. In the mid-
dleware architecture the organic manager is, linked to the levels below it.

References

Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications 7(1), 39-59 (1994)

Aha, D.W., Breslow, L.A., Munoz-Avilla, H.: Conversational case-based reasoning.
Applied Intelligence 14(1), 9-32 (2001)

Baina, S., Morel, G.: Product centric holons for synchronization and interoperabil-
ity in manufacturing environments. In: 12th IFAC Symposium on Information
Control Problems in Manufacturing, St-Etienne, France (2006)

Bar-Yam, Y.: When Systems Engineering Fails-Toward Complex Systems Engi-
neering. In: International Conference on Systems, Man & cybernetics, vol. 2, pp.
2021-2028. IEEE Press, Piscataway (2003)

Bauer, B., Kasinger, H.: AOSE and organic computing-how can they benefits from
each other. Position paper. AOSE III. Springer, Heidelberg (2006)

Benami, O., Jin, Y.: Creative stimulation in conceptual design. In: Proceedings of
DETC 2002 ASME 2002 Design Engineering Technical Conference, Montreal,
Canada, vol. 20, pp. 1-13 (2002)

Black, J.: The Design of the Factory with a Future. McGraw-Hill, New York (1991)

Braha, D., Maimon, O.: A mathematical theory of design: foundations, algorithms
and applications. Kluwer, Boston (1998)

Braha, D., Reich, Y.: Topological structures for modeling engineering design pro-
cesses. Res. Eng. Design 14, 185-199 (2003)

Carreras, [., Miorandi, D., Saint-Paul, R., Chlamtac, I.: Bottom-up design patterns
and the energy web. IEEE Transactions on Systems, Man Cybernetics, Part A,
Special issue on Engineering Cyber-Physical Systems (2009)

Coyne, R.: Logic Models of Design. Pitman, London (1988)

Delugach, H.S.: Towards Building Active Knowledge Systems With Conceptual
Graphs. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI),
vol. 2746, pp. 296-308. Springer, Heidelberg (2003)

Dettmer, H.-W.: Strategic Navigation: A Systems Approach to Business Strategy.
ASQ Quality Press (2003)

Estrin, D.,; Culler, D., Pister, K., Sukhatme, G.: Connecting the physical world with
pervasive networks. IEEE Pervasive Computing, 59-69 (2002)

Frei, R., Barata, J., Di Marzo Serugendo, G.: A Complexity Theory Approach to
Evolvable Production Systems. In: Sapaty, P., Filipe, J. (eds.) Proceedings of
the International Workshop on Multi-Agent Robotic Systems (MARS 2007), pp.
44-53. INSTICC Press, Portugal (2007)

Gani, R.: Chemical product design: challenges and opportunities. Comp. & Chem.
Engng. 28, 2441-2457 (2004)

Goschnick, S.B.: Enacting an Agent-based Digital Self in a 24x7 Web Services
World. In: Zhong, N., Ra$, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003.
LNCS (LNAI), vol. 2871, pp. 187-196. Springer, Heidelberg (2003)

258 5 Systems Sciences and Cognitive Systems

Goschnick, S.B., Sterling, L.: Psychology-based Agent Architecture for Whole-of-
user Interface to the Web. In: Proceedings of HF2002 Human Factors Confer-
ence: Design for the Whole Person - Integrating Physical, Cognitive and Social
Aspects, Melbourne (2002)

Grabowski, H., Rude, S., Klein, G. (eds.): Universal Design Theory. Shaker Verlag,
Aachen (1998)

IBM, An architectural blueprint for automatic computing (2005)

Tordache, O.: Evolvable Designs of Experiments. Applications for Circuits. J. Wiley
VCH, Weinheim (2009)

Jung, C.G.: Man and his symbols. Dell Publishing Company, NewYork (1997)

Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41-50 (2003)

Kiriyama, T., Tomiyama, T., Yoshikawa, H.: Qualitative Reasoning in Conceptual
Design with Physical Features. In: Faltings, B., Struss, P. (eds.) Recent Advances
in Qualitative Physics, pp. 375-386. MIT Press, Cambridge (1992)

Lee, E.A.: Computing foundations and practice for cyber-physical systems: A pre-
liminary report. Tech Report Univ of California Berkeley /EECS-2007-72 (2007)

Li, S., Yang, Q.: Active CBR, Integrating case-based reasoning and active database,
TR-1999-03, School of Computing Science, Simon Fraser University, Burnaby
BC, Canada (1999)

Lohse, N., Valtchanov, G., Ratchev, S., Onori, M., Barata, J.: Towards a Unified
Assembly System Design Ontology using Protégé. In: Proceedings of the 8th
Intl. Protégé Conference, Madrid, Spain (2005)

Melendez, J., Colomer, J., Macaya, D.: Case based reasoning methodology for su-
pervision. In: Procceedings of the European Control Conference, ECC 2001,
Oporto, Portugal, pp. 1600-1605 (2001)

Montani, S., Anglano, C.: Case-Based Reasoning for autonomous service failure
diagnosis and remediation in software systems. In: Roth-Berghofer, T.R., Goker,
M.H., Giivenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 489-503.
Springer, Heidelberg (2006)

Naumenko, A., Wegmann, A.: Two approach in system modeling and their illustra-
tion with MDA and RM-ODP. In: ICEIS 2003, the 5th International Conference
on Enterprise Information System (2003)

Nejdl, W., Froehlich, P., Schroeder, M.: A formal framework for representing diag-
nosis strategies in model-based diagnosis systems. In: Int. Joint Conf. on Artif.
Int., IJCAI, vol. 95, pp. 1721-1727. Morgan Kaufmann Publishers, Inc., San
Francisco (1995)

Onori, M.: Evolvable Assembly Systems-A New Paradigm. In: IST 2002 33rd In-
ternational Symposium on Robotics, Stockholm, pp. 617-621 (2002)

Onori, M., Barata, J., Frei, R.: Evolvable Assembly System Basic Principles.
BASYS Niagara Falls, Canada (2006)

Pahl, P.G., Beitz, W.: Engineering design, a systematic approach. Springer, London
(1996)

Parunak, H.V.D., Brueckner, S.: Entropy and Self-Organization. In: Multi-agent
Systems, Proceedings of the Fifth International Conference on Autonomous
Agents, pp. 124-130. ACM Press, New York (2001)

Pattee, H.H.: Causation, control and the evolution of complexity. In: Anderson,
P.B., et al. (eds.) Downward Causation, pp. 63-77. Aarhus University Press,
Aarhus (2000)

Piaget, J.: Genetic Epistemology. Columbia University Press, New York (1970)

References 259

Piaget, J.: The construction of Reality in the Child. Ballantine Books, New York
(1971)

Rao, A., Georgeff, M.: Modelling rational agents with a BDI architecture. In: Allen,
J., Fikes, R., Sandewall, E. (eds.) Proceedings of Knowledge Representation and
Reasoning. Morgan Kaufman Publishers, San Mateo (1991)

Rayudu, R.K., Samarasinghe, S., Maharaj, A.: A co-operative hybrid algorithm for
fault diagnosis in power transmission. IEEE Journal of power Systems Engineer-
ing, 1939-1944 (2000)

Reich, Y.: A critical review of General Design Theory. Res. Eng. Des. 7, 1-18 (1995)

Sakhanenko, N.A., Luger, G.F., Stern, C.R.: Managing Dynamic Contexts Using
Failure-Driven Stochastic Models. In: Wilson, D., Sutcliffe, G. (eds.) Proceedings
of the Florida Artificial Intelligence Research Society of AAAI, FLAIRS-2, pp.
466-472. AAAOI Press (2007)

Schank, R.: Dynamic memory: a theory of reminding and learning in computers
and people. Cambridge University Press, Cambridge (1982)

Sisiaridis, D., Rossiter, N., Heather, M.A.: Holistic Security Architecture for Dis-
tributed Information Systems - A Categorical Approach. In: European Meeting
on Cybernetics and Systems Research, Symposium Mathematical Methods in
Cybernetics and Systems Theory, EMCSR-2008, University Vienna, pp. 52-57
(2008)

Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)

Sugi, M., Maeda, Y., Aiyama, Y., Harada, T., Arai, T.: A Holonic architecture for
easy reconfiguration of robotic assembly systems. IEEE Trans. on Robotics and
Automation 19(3), 457-564 (2003)

Takeda, H., Tomiyama, T., Yoshikawa, H., Veerkamp, P.J.: Modeling design pro-
cesses. Technical Report CS-R9059, Centre for Mathematics and Computer Sci-
ence (CWI), Amsterdam, Netherlands (1990)

Takeda, H., Tino, K., Nishida, T.: Agent organization and communication with
multiple ontologies. International Journal of Cooperative Information Systems 4,
321-337 (1995)

Tharumarajah, A., Wells, A.J., Nemes, L.: Comparison of the bionic, fractal and
holonic manufacturing systems concepts. International Journal of Computer In-
tegrated Manufacturing (9), 217-226 (1996)

Tomiyama, T., Yoshikawa, H.: Extended General Design Theory. In: Design Theory
for CAD, Proceedings from IFIP WG 5.2, Amsterdam (1987)

Tomiyama, T., Kiriyama, T., Takeda, H., Xue, D.: Metamodel: A key to intelligent
CAD systems. Research in Engineering Design 1(1), 19-34 (1989)

Trumler, W., Bagci, F., Petzold, J., Ungerer, T.: Towards an organic middleware
for the smart dooplate project. GI Jahrestagung 2004(2), 626-630 (2004)

Ulieru, M.: Emergence of holonic enterprises from multi-agents systems: A fuzzy
evolutionary approach. In: Loia, V. (ed.) Soft Computing Agents, pp. 187-215.
IOP Press, Amsterdam (2002)

Ulieru, M., Brennan, R.W., Walker, S.S.: The holonic enterprise: a model for
Internet-enabled global manufacturing supply chain and workflow management.
Integrated Manufacturing Systems 13(8), 538-550 (2002)

Valckenaers, P.; Van Brussel, H., Bongaerts, L., Wyns, J.: Holonic Manufacturing
Systems. Integr. Comput-Aided Eng. 4(3), 191-201 (1997)

Yoshikawa, H.: General Design Theory and a CAD system. In: Man-Machine Com-
munications in CAD/CAM, Proceedings, IFTP W.G5.2, Tokyo, pp. 35-38. North-
Holland, Amsterdam (1981)

	Systems Sciences and Cognitive Systems
	Evolvability for Engineering Design
	Modeling Design Processes
	Framework for Engineering Design
	Multiple Scales Evolvable Designs
	Schema for Multiple Scales
	Perspectives

	Case Based Reasoning
	Case Based Reasoning Method
	Case Based Reasoning Frameworks
	Schema Modification
	Multiple Scales
	Schema for Multiple Scales
	Perspectives

	Failure Analysis
	Complexity Challenges
	Basic Framework for Diagnosis
	Perspectives

	Multi Agent Manufacturing Systems
	Multi Agent Systems
	Frameworks for Manufacturing Systems
	Evolvable Manufacturing Systems
	Belief Desire Intention Agents
	Multiple Levels Cognitive Architecture

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

