
Chapter 4

Biosystems and Bioinspired Systems

Abstract. Artificial genetic codes, neural networks and neural codes are pre-
sented as theoretical frames for evolutionary computation and biomimetic
devices.

Models for genetic code evolution offer suggestions for chemical and bio-
chemical inspired computations as for instance artificial chemistry or chemical
programming.

Neural networks architecture issues require evolvability as outlined by
growing neural nets or by protein based neural networks.

The significance of neural coding, symbolic connectionist hybrids, neural
binding, temporal synchrony studies for unconventional computing and neu-
rocognitive devices is highlighted.

Evolutionary circuits based on electrochemical filaments are proposed.
The perspectives of evolvable circuits based on bio-molecules properties, are
evaluated.

Case studies show how technological innovation should find the right mo-
ment to free the artificial system designer from the detailed experimental
data of real systems.

4.1 Artificial Genetic Codes

4.1.1 Genetic Code Evolution

The main objective of the genetic code theoretical study in terms of PSM
is to understand and make use of genetic code evolution scenarios as sug-
gestions for new computing and information technologies. To re-apply this
understanding in developing new ways of study or explanations of biolog-
ical relevance the for real genetic code, may be considered as a long-term
objective only.

Evolutionary computation studies and evolvable devices may make use of
biological principles but do not attempt to model or to mimic detailed data or
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processes from real genomes. Bio-inspired artificial design is not constrained
by high fidelity to the original natural complex system. Examples include
genetic algorithms calculus inspired by Darwinian evolution and genetics,
artificial neural networks and artificial neural codes inspired by neuroscience
but not restricted to this.

The expanding code scenario from single-bases nucleotides to doublets and
then to triplets that is to codons offer interesting suggestions for evolvability
studies and applications.

Several hypothetic scenarios have been advanced to explain the genetic code
structure and its origin (Weberndorfer et al. 2003, Koonin and Novozhilov
2009). The main concepts on origin and evolution of the code are the stereo-
chemical theory, the co-evolution theory and the adaptive theory.

The stereo-chemical theories suppose that the specificity of a codon for
a particular amino acid is based on a direct interaction of amino acid and
nucleotides. Amino acids might have been binding directly to the codons
when the code was established and such binding imposed the code. The co-
evolution theory explains the non-randomness of the code by the fact that the
code system is an imprint of the pre-biotic pathways of amino-acid formation.
According to this theory the genetic code evolution reflects the relationship
among amino acids and their biosynthesis. In an early code used fewer codons
and amino-acids and then expanded to include new amino-acids arising from
biosynthesis coded for by new codons, with the resulting code assigning sim-
ilar codons to amino acids that are related by biosynthesis.

Adaptive codes theories attempted to explain the observed patterns in
genetic code and its evolution by postulating optimality of the code. Adapta-
tion theories state that selection pressure resulted in the emergence of a code
optimized for some measure, such as for minimization of the physicochemical
effects of single mutational or translational errors.

A notable approach in the study of genetic code evolution is the Eigen’s
work on hypercycles systems of mutually autocatalytic components. It con-
sider the question of under what conditions, the system can self-organize to
a dynamic stability (Eigen and Schuster1979). Eigen approach was based on
the view that the self-organization including the development of hypercycles
is a process that can occur in a homogeneous system by intrinsic necessity.

Eigen and Schuster (1979) considered that the primitive code may use
units of less than three bases. During its early evolution, the code would
have increased both the number of codons and the coded aminoacids and the
present code would reflect the pattern of this historical expansion (Wilhelm
and Nikolajewa 2004, Patel 2005, Wu et al. 2005).

In partial contrast with Eigen approach, in the view of H. Kuhn, under-
standing the origin of living systems is a particular engineering problem: to
find a sequence of physicochemical stages, beginning with prebiotically rea-
sonable conditions and leading to self-organization of matter and to systems
equipped with a life like genetic apparatus (Kuhn and Waser 1981, 1994,
Kuhn H and Kuhn C 2003).
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All these theories suggest that the genetic codes are information commu-
nication system that should reflect the physico-chemical properties of the
amino acids. The different theories are not mutually exclusive and probably
the code was shaped by a compromise of several scenarios (Ardell and Sella
2002).

4.1.2 Model for Code Evolution

4.1.2.1 Genetic Code

The genotype of cells is laid down in a linear sequence of four nucleotides:
A-adenine, C-cytosine, U-uracil and G-guanine. The genetic information is
transcribed in mRNA used as instructions for protein translation. Translation
requires a mapping of the four nucleotides in 20 amino acids. Triplets of
the four different RNA bases are read sequentially from mRNA. DNA is
transcribed to mRNA that makes use of an RNA adaptor, tRNA to interpret
nucleotides in amino acids. The four bases C, G, U and A, might form 64
different simple triplets patterns, the so-called codons. The 20 amino acids
and the start and stop signals are coded redundantly by these 64 codons
(Alberts et al. 1994).

There are some symmetry elements in genetic code. The symmetry sup-
ported the use of algebraic frames to characterize the genetic code. It has
been suggested that the overall layout of the code can be accurately described
in the algebra of group theory or of fields (Danckwerts and Neubert 1975,
Findley et al. 1982, Jimenez-Montano et al. 1996, Jimenez-Montano 1999).
These symmetries may be of help in explaining regularities and periodicities
as observed in proteins sequences. They have been correlated to the possible
evolution scenarios of the genetic code.

The relevant group to describe the symmetries of the bases {C, G, U, A}
should be a group of order 4. There are only two possibilities for the group
structure, the cyclic group C (4) and the group associated to the Galois field,
GF (4). This is the so called Klein 4-group.

Several codes can be associated to the genetic code according to the order
of importance for bases and of their positions in codons.

For triplets or codons the ranking: position 2>position 1>position 3 in
establishing the amino-acid is acknowledged (Perlwitz et al. 1988).

One of the proposed nucleotide hierarchical ordering is: C>G>U>A. This
hierarchy was established starting from the observation that C, in position
2 in codon, is anytime able to be source of a single amino acid. G is able to
determine the amino acids in majority of cases, U only in some cases and
A never. In other words, C base passes any time a single message while U,
and A are credited with at least double message. G passes stronger messages
than U or A, concerning the coded amino acid.

It is possible to associate to any base in codon a two-digit vector: (hydrogen
bonds, chemical nature). The first digit refers to hydrogen bonds and the
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second to the chemical nature. We will use first digit “1” for high number of
hydrogen bonds that is for G and C and second digit “1” for chemical nature
pyrimidines that is for C and U.

We will use first digit “0” for low number of hydrogen bonds that is for A
and U and second digit “0” for chemical nature purines that is for A and G.

In this way we may describe the basis by the two-digit vectors:

C: (1, 1), G: (1, 0), U: (0, 1), A: (0, 0)

This corresponds to the hierarchy: C>G>U>A, and to the real numbers
3, 2, 1, and 0 associated to C, G, U, and A respectively. More exactly:

0=(0, 0), 1=(0, 1), 2=(1, 0), 3=(1, 1).

Of course, restricting the nucleotide characterization to only two proper-
ties: (hydrogen bonds, chemical nature) is a drastic simplification.

4.1.2.2 Expanding Genetic Code

The WE model (Sect. 2.2.2) highlights some particularities of genetic code
Tables, the order of amino-acids availability and in this way, it may be of
interest for evolutionary molecular devices and evolutionary computation.

Several scenarios for genetic code development from primitive bases will
be considered in terms of WE model.

Table 4.1 represents the sum Y=Z⊕T, resulting as a solution of WE, as
shown in Chapter 2. It is the sum for GF (4) or Klein 4 group relevant for
genetic code.

The cyclic group C (4) offers a different solution. Z and T are identified
with their two digit expressions for bases or equivalently with 0, 1, 2 and 3.

The development is supposed to start with all the four bases, C, G, U,
and A.

This situation corresponds to the Table 4.1 for one dimensional Z and T.
Table 4.1 with GF (4) Klein-4 group table structure is well known in genetic

code study.
Since the Table 4.1 contains 4 nucleotide of each type and the coding ac-

complished by nucleotides should allow conflict free access to parallel memory
we will limit the Table 4.1 to vectors containing only distinct elements. They
represent particular solutions of WE at specified levels in development.

An example is the vector Y(T) = y0 = (C, G, U, A).

Table 4.1 Matrix of singlets

A U G C
U A C G
G C A U
C G U A
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A specific folding operation allows rewriting y0, as the Table 4.2.
There are only four elements and it is possible to represent y0 as a 2x2

matrix like in Table 4.2.

Table 4.2 Single bases y0

G A
C U

Other types of folding and other 2x2 matrices may be considered too. The
folding with A and U interchanged was also studied. Various folding algo-
rithms and their significance for genetic programming have been described
by Banzhaf (1993).

It may be supposed that initially only one nucleotide is able to form dou-
blets, then triplets and that this founding molecule is guanine G (Hartman,
1975).

It results the situation shown in Table 4.3. The codification is accomplished
by GC, GG, GA and GU. These doublets corresponds to the amino-acids:
Ala, Gly, Asp, Glu and Val.

Table 4.3 Two-bases matrix

GG GA
G

GC GU

Table 4.4 is the matrix-like presentation of product of two identical vectors
that is

Y(T) = y0×y1 with y0=y1

This includes the elements in Table 4.2.

Table 4.4 Doublets y0× y1

GG AG GA AA
G A

CG UG CA UA

GC AC GU AU
C U

CC UC CU UU

At this stage some amino acids resulted as follows: Pro, Ser, Leu, Thr, Arg
coded without any ambiguity by CC, UC, CU, AC and CG.
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The remaining amino acids will be coded by triplets showing multiple
codifications.

They are: (Phe and Leu), (Ile and Met), (Cis, Trp and Stop), (His and
Gln), (Tyr and Stop), (Ser and Arg) and (Lys and Asn).

They are coded by UU, AU, UG, CA, UA, AG and by AA respectively.
In Table 4.4 the eight “strong” double-bases: CC, GC, CG, GG, GU, CU,

UC and AC are intertwined with the eight “weak” double-bases: AA, UA,
AU, UU, UG, AG, GA and CA. The mirror symmetry G↔A and U↔C
relative to median Y-axis is obvious.

The new letters, A, C, U, G have been put adjacent to the first two ones
to the left side or right side. In this way the significance order corresponds
to the order of letter acquisition.

Table 4.5 is a product of three 2x2-matrices-like tables,
Y(T) = y2 × y0 × y1 with y0=y1=y2

The new letters have been put adjacent to the first two, to the right side.
A version of the genetic table with 64 codons is resulting. Many other

artificial genetic code Tables may be obtained by changing the hierarchy
for codons, the developmental rules, the initial set of bases, the position of
concatenation, and so forth Notice also that there are two groups of order 4,
the Klein group and the cyclic group.

The hypothesis concerning the right or left concatenation of solutions is
related to other proposed evolution scheme. For instance it was suggested
by Wu et al. (2005) that triplet codons gradually evolved from two types of
ambiguous doublet codons, those in which the first two bases of each three-
base window were read (“prefix” codons) and those is which the last two
bases of each window were read (“suffix” codons).

The right or left concatenation of solutions is correlated also to the reverse
recognition conjecture of Nikolajewa et al. (2006).

Table 4.5 contains the 64 codons grouped in 4 large quarters each with a
common base in the center (C, G, U, and A), each formed by 16 codons. Each
large quarter contains 4 new quarters for doublets with the central base in
second position and finally 16 codons since each doublet is the center of a new
quarter with the doublets in the first two positions. Table 4.5 is similar to the
conventional genetic code Table (Alberts et al. 1994). Instead of representing
the codons with a central nucleotide on a column the codons associated to a
central nucleotide C, G, U or A may be found in a quarter. Similar Tables
have been discussed by other authors (Jimenez et al. 1996, Benyo et al. 2004).

For presentation purposes it is easier to portray the codons in plane that
is by Tables than by hyper-cubes. However the modes of presentations are
equivalent.

According to the above analysis there are several stages in the development
of the genetic code. To these corresponds stages of amino-acids availability
in the order:

• 1st stage: [Ala, Gly, Asp, Glu and Val]
• 2nd stage: [Pro, Ser, Leu, Thr, Arg]
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Table 4.5 Triplets. Codons-matrix, y2×y0×y1

GGG GGA AGG AGA GAG GAA AAG AAA
 GG   AG  GA   AA
GGC GGU AGC AGU GAC GAU AAC AAU
   G      A    
CGG CGA UGG UGA CAG CAA UAG UAA
 CG   UG  CA    UA
CGC CGU UGC UGU CAC CAU UAC UAU
              
GCG GCA ACG ACA GUG GUA AUG AUA
 GC    AC GU AU
GCC GCU ACC ACU GUC GUU AUC AAU
   C       U    
CCG CCA UCG UCA CUG CUA UUG UUA
 CC    UC CU UU
CCC CCU UCC UCU CUC CUU UUC UUU

• 3rd stage: [(Phe and Leu), (Ile and Met), (Cis, Trp and Stop), (His and
Gln), (Tyr and Stop), (Ser and Arg) and (Lys and Asn)]

This temporal order is not so far from that resulting from co-evolution
theory (Wong 1975).

A first stage groups the aminoacids Ala, Gly, Asp and Glu. The connection
Ala, Val is not presented in co-evolution theory. The next stage involves
Pro, Ser, Thr, Arg in both theories. The difference refers to Leu and is a
consequence of the missing connection Ala,Val for the first stage.

According to the theory of Eigen and Winkler-Oswatitsch (1981) the first
amino acids were Gly, Ala, Asp and Val a result confirmed by some classical
experiments.

Kuhn and Waser (1994) selected as plausible steps in the evolution of
genetic code Gly Ala,Val, Asp, Glu followed by a class containing Leu, Ile,
Ser, Thr, Lys, then Arg, Gln, Asn, then Pro and so on.

The above results may be compared with consensual chronology of amino
acids (Trifonov 2000). Trifonov presents the codon chronology as follows:

Gly, Ala, Val, Asp, Pro, Ser, Glu, Leu, Thr, Asn, Arg and so on.

4.1.3 Codons and Amino Acids

Each codon, codes for the introduction of a specific amino acid into a growing
protein, a process that involves recognition of the anti-codon sequence.

There exists a relationship between the codons and the properties of the
coded amino acids. To outline this relationship it is possible to associate to
any base in codon a two-digit vector. The Table 4.6 contains the vectors
associated to codons as well as the coded amino acids.
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For the Table 4.6 the associated vector is in the significance order for bases
is:

position2>position1>position3.

For example AUC will be replaced by 010011 corresponding in succession
to U:(01) (position 2), then A:(00) (position 1) and then C:(11) (position 3).
This is in fact the supposed evolutionary pathway for development.

Codons area as outlined by Table 4.6 is again in general agreement with
some assertions of the co-evolution theory (Ronneburg et al. 2000). In the
evolutionary map of the genetic code based on precursor product pairs the
founding precursor is Ala coded by GC. Close to this there are Ser coded
by UC and Gly coded by GG. This can be inferred from the Table 4.6 too.
Relatively far from the Ala precursor in evolutionary map there are Asn and
Lys coded by AA or Leu and Phe coded by UU, Tyr coded by UA, Met coded
by AU. This is obvious from Table 4.6 too.

Table 4.6 may be of use in the context of stereo-chemical theory. This
theory assumes that the physical and chemical properties of a given amino
acid are related to the nature of the codons. If the codons are similar the
amino acids will be similar and reverse.

Moreover similar amino acids might replace each other. This assumption
is in agreement with those theories that place specific constraints on the as-
signment of codons to amino acids. For example a significant correlation was
observed between hydrophobic ranking of the amino acids and the hydropho-
bic character of the anti codons.

4.1.4 Polypeptides

A graphical illustration of the polystochastic framework is presented here.
The Table 4.7 reproduces the genetic code Table and includes free places for
amino acids.

Some examples clarify the PSM framework for polypeptide synthesis.
Elements of the SKUP are emphasized by Table 4.7.
Denote the singlet conditioning level by m=0, the doublet level by m=1

and the triplet level by m=2.
The coding for amino acids may be done by doublets or by triplets.
S, K, U and P will be vectors denoted as follows: S = (s1, s2); K = (k1, k2);

U = (u1, u2); P = (p1, p2). Upper index refers to levels while lower index
will refers to time step.

We start with an m=1 example. It is known that CU coding for Leu may
serve as start.

Let CU=k1
0 , UC=k1

1 , CC=k1
2 , GC=k1

3 UG=k1
4 . The upper index refers

to level while the lower index refers to the time step. The states and the
conditions at the level m=1 are represented in Table 4.7 by high thickness
border cells.

Correspondingly the states at the second level will be: s1
0 = Leu, s1

1 =
Leu.Ser, s1

2 = Leu.Ser.Pro, s1
3 = Leu.Ser.Pro.Ala, s1

4 = Leu.Ser.Pro.Ala.
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Table 4.6 Triplets vectors and amino acids

GGG 
101010
Gly 

GGA 
101000
Gly 

AGG 
100010
Arg 

AGA 
100000
Arg 

GAG 
001010
Glu 

GAA 
001000
Glu 

AAG 
000010
Lys 

AAA 
000000
Lys 

 GG   AG   GA   AA
GGC 
101011
Gly 

GGU 
101001
Gly 

AGC 
100011
Ser 

AGU 
100001
Ser 

GAC 
010011
Asp 

GAU 
010001
Asp 

AAC 
000011
Asn 

AAU 
000001
Asn 

   G       A    
CGG 
101110
Arg 

CGA 
101100
Arg 

UGG 
100110
Trp 

UGA 
100100
Stop 

CAG 
001110
Gln 

CAA 
001100
Gln 

UAG 
000110
Stop 

UAA 
000100
Stop 

 CG   UG   CA    UA
CGC 
101111
Arg 

CGU 
101101
Arg 

UGC 
100111
Cys 

UGU 
100101
Cys 

CAC 
001111
His 

CAU 
001101
His 

UAC 
000111
Tyr 

UAU 
000101
Tyr 

               
GCG 
111010
Ala 

GCA 
111000
Ala 

ACG 
110010
Thr 

ACA 
110000
Thr 

GUG 
011010
Val 

GUA 
011000
Val 

AUG 
010010
Met 

AUA 
010000
Ile 

 GC    AC   GU AU
GCC 
111011
Ala 

GCU 
111001
Ala 

ACC 
110011
Thr 

ACU 
110001
Thr 

GUC 
011011
Val 

GUU 
011000
Val 

AUC 
010011
Ile 

AUU 
000101
Ile 

   C        U    
CCG 
111110
Pro 

CCA 
111100
Pro 

UCG 
111001
Ser 

UCA 
110100
Ser 

CUG 
011110
Leu 

CUA 
011100
Leu 

UUG 
010110
Leu 

UUA 
010100
Leu 

 CC    UC   CU UU
CCC 
111111
Pro 

CCU 
111101
Pro 

UCC 
110111
Ser 

UCU 
110101
Ser 

CUC 
011111
Leu 

CUU 
011101
Leu 

UUC 
010111
Phe 

UUU 
010101
Phe 

The operator U, associated to this one level process is: u1 (s1
0,k

1
1) = s1

1.
Here s1

1 is the amino acid associated to the codon k1
1 coupled to previous

chain of amino acids. Observe that: k1
0, k1

1 , k1
2 , k1

3 , k1
4 is a trajectory in the

K space, while: s1
0, s1

1, s1
2, s1

3, s1
4 is a trajectory in S-space.

Consider now examples of level m=2 of coding evolution. The states and
the conditions at this level are indicated in Table 4.7 by medium thickness
border cells. Suppose that the construction starts at AUG. The codon AUG
codes for methionine and serves as an initiation site. This is the initial con-
dition k2

0 = AUG. The associated state is methionine that is s2
0 = Met.

Then the trajectory may evolve towards the condition k2
1 = UAC.

This corresponds to the amino acid Tyr. The new state s2
1 is the succession

Met.Tyr.
Then the new condition may be k2

2=UAG. This is a terminal codon. Hence
s2
2 = s2

1.
Observe that s2

1 depends on s2
0 and on k2

1 , s2
2 depends on s2

1 and on k2
2 .

The operator u associated to this one level process is: u2 (s2
0,k

2
1) = s2

1.
Here s2

1 is the amino acid associated to the codon k2
1 coupled to previous

chain of amino acids.
Possibility as p (k2

1 | s2
0) depends on the fact that it is a genetic transi-

tion (purine to purine or pyrimidine to pyrimidine) or a genetic transversion
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Table 4.7 Codons and amino acids schema

GGG GGA AGG AGA GAG GAA AAG AAA 

GGC GGU AGC AGU GAC GAU AAC AAU 

s1
4 s2

2

CGG CGA UGG UGA CAG CAA UAG UAA 

UG
s2
1

CGC CGU UGC UGU CAC CAU UAC UAU 

s 1
3 s2

0
GCG GCA ACG ACA GUG GUA AUG AUA 

GC
s2
0'

GCC GCU ACC ACU GUC GUU AUC AUU 

s 1
2 s1

0 s2
3' s2

1'
CCG CCA UCG UCA CUG CUA UUG UUA 

CC UC CU
s2
2'

CCC CCU UCC UCU CUC CUU UUC UUU 

s 1
1

(purine to pyrimidine or vice-versa). Recall that A, G are purines while C,
U are pyrimidines. Examples of possibilities are the similarities as defined in
Sect. 2.3.1.

Periodicities may arise as for instance in the example at level m=2:
k2
0′=AUC.
Then k2

1′=AUU, k2
2′=UUA, k2

3′=UUG.
The conditions and states trajectories are outlined by medium thickness

border cells. More large excursions in the Table 4.7 may be considered and
“junk” steps may be very frequent. Simulation of process as exemplified serves
to illustrate the proposed code evolution scenario.

4.1.5 Basic Framework Evaluation

Life involves a semantically closed organization between symbolic records
and dynamical constraints (Pattee 1995). Symbols, as discrete functional
switching-states, are seen in all evolvable systems in form of genetic codes,
and at the core of all neural systems in the form of informational mecha-
nisms that switch behavior DNA molecules represent the symbolic aspects
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here, that is, the genome. This corresponds to the conditions K, in SKUP
framework. The dynamic material aspects are represented by the phenotype
that is by proteins, organisms and eventually by the environment. This cor-
responds to states S. The genome generates different dynamical systems that
promotes their stability and survive and in that way serves as seeds of a
generally evolvable system.

The genome may be interpreted as a possible solution of the wave model.
It is an apparently “time-less” model since the time T is defined on a

finite group and has a cyclic character. As discussed by H. Kuhn this tem-
poral cycling is crucial for genetic code emergence and evolution. Dynamical
model with usual real time, characterizing the kinetic equations completes
the evolvable system description.

The closure between symbolic that is digital and real aspect of the closure
are clearly illustrated in the PSM framework. The operator U may be associ-
ated to tRNAs. The tRNAs performs decoding activities. It incorporate two
codes: one to read the info from mRNA and a second code that determines
the amino acid with which the tRNA is loaded. This outlines the role of op-
erator U in the transition from discrete symbol to real material aspects. U
correlates informational and chemical data.

The enzymes as RNA-replicase may be associated to possibilities P. It
performs encoding activities. On the primitive genetic code, the tRNAs and
RNA replicases could have been involved but other closure possibilities exists.

PSM framework illustrates a minimal closed organism with translation
(Webernsdorfer et al. 2003). It has a genome that carries genes for a protein
replicase and tRNAs, a translation apparatus, and system loading tRNAs
with amino acids.

P and U correspond to the so-called upward and downward causation re-
spectively (Pattee 2000). For the life and artificial life, AL, situations, the
semantic genetic control can be viewed as up-down causation, while the dy-
namics of organism growth controlling the expression of the genes can be
viewed as down-up causation. The closure concept is an essential relation of
these causations. Semantic closure is limited to two levels, denoted here by
K and S.

The interplay between the WE in the so-called sequence space and the
more or less similar real valued equations of thermodynamics and chemical
kinetics represents the specificity of living systems. Obviously the closure
mediated by the operators U and possibilities P is compatible with both
co-evolution and with stereo-chemical theories (Webernsdorfer et al. 2003).

Table 4.8 illustrates the SKUP schema associated to hypercycles.
The relation of Table 4.8 to WE is similar to that outlined for Table 4.7.
In this case the conditions K are associated to RNA while the states S to

enzymes.
The hypercycle is a self reproducing macromolecular in which RNAs and

enzymes cooperate. There are RNA matrices (Ii), the i-th RNA codes the i-th
enzyme Ei. The enzymes cyclically increase RNA’s replication rates, namely,



152 4 Biosystems and Bioinspired Systems

Table 4.8 Schema for hypercycles

E1

 I1 I2

E0 e31 E2

i31 i32

I0 e30 I3 e32

i30 i33

E3 e33

E0 increases replication rate of I1, E1 increases replication rate of I2, E2

increases replication rate of I3, and E3 increases replication rate of I0. The
hypercycle is represented in Table 4.8 by high thickness border cells.

The mentioned macromolecules cooperate to provide primitive translation
abilities, so the information, coded in RNA-sequences, is translated into en-
zymes analogous to the usual translation processes in biosystems.

The cyclic organization of the hypercycle ensures its structure stability. For
effective competition, the different hypercycles should be placed in separate
compartments.

Table 4.8 shows that some RNA may induce the reproduction of other
metabolites in cyclic manner. Supposing that I3 is in this situation, e30 in-
creases replication rate of i31, e31 increases replication rate of i32, e32 increases
replication rate of i33, and e33 increases replication rate of i30. The secondary
cycle is represented in Table 4.8, by high thickness border cells.

The number of RNAs in each cycle may vary.
The wave model WE, characterizes the genetic bio-chemical reactor in a

discrete space. It includes the “convection” or “drift” term V ⊗ ∂Y
∂Z and the

“kinetic” term Q⊗Y.
Observe that just one wave equation replaces the entire system of differ-

ential equations for quasispecies (Eigen and Schuster 1979).
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This WE is adequate for highly non-linear processes modeling. The time T
is a more natural expression for time to record qualitative developments than
the usual linear time. The cyclic and diversified characters of environment, as
described by Kuhn are accounted for by T and Z introduced here. The different
values of T correspond to the developmental or pattern recognition stages.

Q takes into account the mutations and selections. The velocity V takes
into account the “convection”. It could happen that the convection contribu-
tion is more significant than that of mutations for evolution.

4.1.6 Perspectives

4.1.6.1 Three Realms Framework

Research within evolutionary computation has identified properties of biolog-
ical coding that may be significant to evolutionary algorithms (Rocha 1997,
Kargupta 2001, Suzuki and Sawai 2002). Applying computation results back
to biology suggests that the genetic basis of life may enhance the power of
natural mechanisms as selection as a search algorithm.

This approach offers a partial answer to the present need to elaborate
common mathematical frames for evolvable systems.

Fig. 4.1 shows the categorical framework for the three levels of the refined
central dogma of biology. According to the central dogma proteins are not
made directly from genes but require an intermediary, and this intermediary
is RNA.

Here S denotes the proteins level. For computing purposes, K1 and K2
are the two conditions levels. K1 is associated to RNA K2-is in this case the
meta-level representing the DNA.

The strategies are defined at the level K2 since the information is trans-
mitted from DNA to protein through RNA.

U10: K1 → S describes the translation. U21: K2 → K1 describes the
transcription.

Implicit in the central dogma view is the idea of a unique mapping from
gene to protein in which RNA plays only a mediatory role.

Some refinements of central dogma refer to the possibilities P01 and P12.
P01: S → K1, and P12: K1 → K2 effects may be associated to the regulation
processes.

For the operon model the DNA encodes two classes of proteins, structural
and regulatory. It refers to a splitting of S in two non-interacting realms S1
and S2. Structural proteins play a functional role in the cell’s metabolism.
Regulatory proteins interact with DNA to control the rates of transcription of
other genes. This links the proteins S to K2 realm (Jacob and Monod 1961).

Geard and Wiles (2003) evaluated the possibility of splitting of K1 in two
functional modules corresponding to small RNA and standard RNA. The
small RNA molecules may provide a kind of meta-level of evolution allowing
for the evolution of new and complex functions by modulating the control
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S-Proteins

K1-RNA

K2-DNA

U10 P01

U21 P12

Fig. 4.1 Refined central dogma

architecture of a stable proteome. In this case the DNA should offer the
meta-information.

Fig. 4.2 shows a theoretical model in which S-Proteins are supposed to
play a regulatory role for both K1-RNA and K2-DNA levels.

K1-RNA K2-DNA

S-Proteins

U10 P01 P02 U20

U21

P12

Fig. 4.2 Regulatory models

The categorical framework describes hypothetical interactions as follows:
U10: RNA → Proteins, U20: DNA → Proteins, P01: Proteins → RNA,

P02: Proteins → DNA. The DNA is a code for RNA level.
The framework shown in Fig. 4.2 is an integrative closure and should

correspond to a degree of evolvability and autonomy of the system.

4.1.6.2 Higher Order Genetic Code Hypothesis

It was observed that the genome may contain more information than it has
been anticipated. This redundant information suggested investigating if there
is a higher level genetic code that directs evolution (Caporale 1984).

An examination of the rate of codon substitution during gene evolution
reveals that not all so-called silent mutations, that is, the mutations to an-
other codon that signifies the same amino acid, behave as if they are neutral.
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There appear to be constraints of codons selection so that in a given context
two codons, although thought to be synonymous are not in reality equiva-
lent. Another issue is the evidence that the so-called neutral third position
in codons may also carry a message may be as important as specifying the
amino acid.

Rejecting purely probabilistic mechanism of genetic variation is not a refu-
tation but rather a higher understanding of the Darwinian theory of selec-
tion. Genomes that evolve efficient biochemical systems to navigate through
the space of possible future genomes would be favored by natural selection
and would allow adapting more quickly when confronted by environmental
challenges.

Several other facts allowed the hypothesis of a fourth realm, controlling the
significant modifications of codes, or the transitions between several codes.

A four realms framework may be considered for code evolution.
Fig. 4.3 illustrates this higher order genetic code hypothesis.
The signification of the functors U and possibilities P is explicit in Fig. 4.3.
U10: K1-RNA→S-Proteins, U21: K2-DNA→K1-RNA, U32: K3-Metacode

→K2-DNA, U30: K3-Metacode→S-Proteins, P01: S-Proteins→K1-RNA, P12:
K1-RNA→K2-DNA, P23:K2-DNA→K3-Metacode and P03: S-Proteins→
K3-Metacode.

Observe that: U30=U10oU21oU32 and P03=P01oP12oP23.
The DNA is a code for RNA level.
The new realm, K3-Metacode, is a kind of meta-meta-model that com-

pletes and closes the frameworks shown in Fig. 4.1.
K3 organizes the multiplicities of codes and their overlapping (Trifonov

1999).
K3 represents an efficient way to explore codes and may favor the strategies

that increase the rate of adaptation.
The architecture shown in Fig. 4.3 offers suggestions for modeling genetic

control hierarchies. Biological progress may be accelerated if models are for-
mulated and applied for global genetic control structures.

K1-RNA K2-DNA

S-Proteins K3-Metacode

U10

U21

U32P01

U30

P23

P12

P03

Fig. 4.3 Higher order genetic code hypothesis
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The concept of evolution as a complex hierarchical process was illustrated
by a framework similar to that shown in Fig. 4.3. Gould identified three
levels or “tiers” of evolution (Gould 1985). The first tier selection is the
conventional Darwinian selection of individual organisms and corresponds to
K1. The second-tier selection corresponding to K2 emerges from differential
speciation and extinction among lineages. The third tier selection reflects the
infrequent catastrophes which may eliminate forms of life without respect to
their adaptive or competitive advantage. It corresponds to K3 in Fig. 4.3.

Confirmed at least in part by the study of real biosystems such unconven-
tional models offer in turn interesting suggestions for chemical and biochem-
ical inspired computations and devices as for example in genetic or chemical
programming (Keller and Banzhaf 1999, Matsumaru and Dittrich 2006).

4.1.6.3 Chemical Programming

The architecture of the chemical programming developed in organic comput-
ing studies outlines four realms similar to that shown in Fig. 4.3.

In this case the realms shown in Fig. 4.4 are as follows: S-Hardware, sensor,
actuator, K1-ChemOS, chemical operating system, K2-ChemVM, chemical
virtual machine, and K3-Compiler.

The compiler takes a high level description of a chemical program as in-
put. The chemical program consists of a list of molecules and reaction rules
including kinetic laws. The compiler generates chemical byte code which can
be processed by the chemical virtual machine that is able to run a chemical
program. Communication between the chemical program and other hardware
such as sensors or actuators is handled by the chemical operating system.

The integrative closure refers to compiler and hardware relationship.
Taking bio-chemical information processing as an inspiration for organic

computing is attractive since biochemical systems possess a number of
desirable properties. However chemical programming does not aims to re-
place the current computing systems. For example, implementing a word

K1-ChemOS K2-ChemVM

S-Hardware K3-Compiler

Fig. 4.4 Chemical programming framework
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processor on a chemical basis is not feasible, and techniques for program-
ming chemical-like technical systems are still missing. It is more likely that
“artificial chemistry” or “artificial chemical engineering” will be integrated as
subsystems together with other high-level computing concepts and method-
ologies (Matsumaru and Dittrich 2006). There exists applications were the
molecular level analog computer may have distinct advantages.

4.2 Artificial Neural Networks

4.2.1 Architecture Problem

The domain of evolutionary computation is important for challenging ap-
plications as visual pattern classification, failure diagnosis, signal detection,
sensor fusion, identification and control, planning and robotics, trading and
so forth (Baeck et al. 1997).

The success and speed of training for neural networks NN is based on
the initial parameter settings, weights, learning rates and architecture. NN
simulation studies show that many complex problems cannot be solved by a
learning algorithm in conventional fully connected layered NNs.

In spite of much research activity in the area of neural networks, NN,
the design of architecture of NN was considered as less significant that the
learning rules.

Evolutionary artificial neural network, EANN, refer to a class of artificial
neural networks NNs, in which evolution is another fundamental form of
adaptation in addition to learning. Evolutionary neural networks, EANN
make use of evolutionary algorithm, EA, to improve NN architecture. EA are
used to perform various tasks such as connection weight training, architecture
design, learning rule extraction and adaptation (Yao 1999, Balakrishnan and
Honavar 1995).

Evolutionary behaviour is considered as a preliminary method to confront
complexity advent in computation. As a condition for evolutionary behaviour,
EANN systems should be characterized by closure between the dynamics
that is the phenotypic physical process of the material aspects of NN and the
constraints that is the genotypic, syntactic rules or schemes of the symbolic
aspects of the NN organization.

Evolutionary computational systems should be able to change both archi-
tectures and learning rules for automatic implementation without operator
intervention.

The evolutionary artificial NN, the development models algorithms, are
naturally represented in the PSM framework.

Innovative is the architecture indirect encoding based on the wave equa-
tion, WE. For genotypic, that is symbolic aspects of evolutionary systems the
WE, generating the computation schemes or architectures is operational.
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The novelty of the PSM framework lies also in hierarchical multiple scaled
structure, in specificity of operations of decoding, from genotype to pheno-
type, and encoding, from phenotype to genotype.

The existing algorithms for evolutionary computations have many elements
in common.

This follows the fact that they are inspired by the evolution theory in
biology.

It would be beneficial to outline the common elements, to standardize
the algorithms by applying the same generic framework to different complex
problems.

The elements of a generic framework are that of the basic SKUP, that is
the states S, the conditions K, the operators U and the possibilities P.

The state space S-represents the material aspects, the phenotypes, the
realized experiments. For biological systems S corresponds to proteins, amino-
acids, neurons.

The states changes are governed by dynamical laws and represent the
factual aspects of the closure concept. The semantic closure concept refers to
two levels architecture.

The conditions space K, describes genotypes, schemes, architectures.
For real biological system K is associated to DNA or to genome.
DNA contains the information needed by a biological organism to carry

out its functions.
DNA represents the logic or informational part of the closure.
K is the space of genotypes. K elements may be indirectly specified by the

wave model, WE. The WE solutions pertain to the set of conditions, K.
The genotypes are elements of a high dimensional search space. In conven-

tional genetic algorithms, GA, the genotypes are binary strings of some fixed
length, say n, that code for points in an n-dimensional Boolean search space.
More generally a genotype can be considered as a string of genes.

Each genotype encodes for one or for a set of phenotypes. Such encodings
employ genes that take on numerical values.

For SKUP framework U-is the operator associating to any element of K
elements from S.

It is a decoding operator that produces the phenotypes corresponding to
genotype and to previous phenotypes. This operator associates results, in S,
to experiments designed in K.

Operators U may be stochastic or deterministic.
In real biological systems the genetic information written in DNA is trans-

lated in amino acids by means of a set of molecules known as amino acyl-
tRNAs. These represent the biological interpretation of operators U.

The possibilities P-are related to the procedure to learn, to express infor-
mation, to fitness evaluation. P facilitates the encoding process. This suggests
that to the complementarity between K and S correspond a complementarity
relation between U and P.
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The phenotypes may be equipped with learning algorithms that train using
evaluations on a given task. This evaluation of the phenotype determines the
fitness of the corresponding genotype. In real biological systems P may be
associated to RNA-replicase an enzyme that catalyzes the self-replication of
RNA.

The generic SKUP framework elements for some of the existing evolution-
ary computation algorithms will be emphasized in what follows.

4.2.2 Graph Generation Grammar

Classical learning algorithm for NN aim at finding weights for an NN whose
architecture is frozen. Considerable performances are resulting by modify-
ing NN architectures and the learning rules. The application of evolutionary
algorithms, EA, to neural network, NN illustrates the increasing interest in
combining evolution and learning (Yao 1999).

The graph generation grammar, developed by Kitano (1990) combines a
genetic algorithm, GA with an L-system (Lindenmayer 1968). The L-system
is a rewriting formalism introduced to model the growth of plants and a neu-
ral net, NN to enable modeling of the development process (Appendix A7).
The GA is used to acquire graph rewriting rules, for the graph L-system,
instead of directly acquiring the NN network topology. The introduction of
developmental stages is considered more plausible biologically and computa-
tionally efficient.

The developed graph generation grammar (Kitano 1990) contains rules of
the form:

A → B C
D E

(4.1)

The left-hand-side LHS of the production rule is a symbol and the right
hand side RHS is a matrix of symbols from an alphabet.

The terminal symbols are constant rules as for instance:

0 → 0 0
0 0 1 → 1 1

1 1 (4.2)

After a specified number of steps in L-system the matrix symbols restrict
to 0 or 1. The resulting matrix is considered as a connectivity matrix and as
in direct encoding methods an NN graph is associated to this.

Subsequently the NN weights are modified by learning methods as the
back-propagation, for example.

A new graph generation model is presented in what follows, outlining the
generic PSM framework elements and based on WE.

In this generic PSM framework, the genome corresponds to the elements
of K.
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Starting from an alphabet the WE generates more elements of K.
Consider the WE model with Y=y0y1 and T=t0t1.
The wave equation WE model has among its convection type solutions:

y0 =
0 1
1 0 (4.3)

y1 =

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

(4.4)

The general solution may be the categorical product Y=y0×y1:

Y = y0 × y1 =

00 01 02 03 10 11 12 13
01 02 03 00 11 12 13 10
02 03 00 01 12 13 10 11
03 00 01 02 13 10 11 12
10 11 12 13 00 01 02 03
11 12 13 10 01 02 03 00
12 13 10 11 02 03 00 01
13 10 11 12 03 00 01 02

(4.5)

The matrix Y contains elements of K. To this matrix, a connectivity matrix
CM and an NN is associated in different ways.

Suppose for instance, that instead of the double digit vectors (ij) in Y we
put 0 if the difference between digits is equal or higher than 2 and 1 if the
difference is lower or equal to 1.

The rule may be:

u(ij) =
1 i − j ≤ ±1
0 i − j ≥ ±2 (4.6)

Using this rule, the connectivity matrix CM is resulting instead of Y and
an NN may be associated to this matrix. In this particular case the neuron
1 is connected with 2, 5, 6 and 7, the neuron 2 is connected with 1, 4, 5, 6
and 8 and so on.

CM =

1 1 0 0 1 1 1 0
1 0 0 1 1 1 0 1
0 0 1 1 1 0 1 1
0 1 1 0 0 1 1 1
1 1 1 0 1 1 0 0
1 1 0 1 1 0 0 1
1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0

(4.7)

Elements of generic PSM framework are identifiable and easy to be com-
pared with those of Kitano model.
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The conditions K may include the initial alphabet and the matrices result-
ing as WE solutions.

The grammar rules are based on concatenation as for instance:

0 →
00 01 02 03
01 02 03 00
02 03 00 01
03 00 01 02

1 →
10 11 12 13
11 12 13 10
12 13 10 11
13 10 11 12

(4.8)

These are resulting by categorical product “×” operations used in WE
solutions.

The WE model includes grammar as that used in Kitano model.
The operator U-determine the rule translates a matrix like Y in the con-

nectivity matrix CM. It is a specific rule u, associated to this translation.
The states S- may be identified with the NN weight of the connections

associated to NN.
The possibilities P, give the learning rules for weights.
Table 4.9 contains the solutions Y = y0 and Y = y0×y1 presented to-

gether (equations 4.3 and 4.5). Selected states are bolded and underlined in
Table 4.9.

Table 4.9 WE solutions at m=0 and m=1. Selected states

00 01 02 03 10 11 12 13
01 02 03 00 11 12 13 10

0 1
02 03 00 01 12 13 10 11
03 00 01 02 13 10 11 12
10 11 12 13 00 01 02 03
11 12 13 10 01 02 03 00

1 0
12 13 10 11 02 03 00 01
13 10 11 12 03 00 01 02

Applying for the area selected the rule u, the Table 4.10 results.
It is supposed that only “1” represents a large node “•” at the level m=0

and a smaller node “•” at the level m=1. Table 4.10 shows the cells resulting
after the application of the rule u and area selection.

High border thickness outlines the level m=0 while medium border thick-
ness outlines the level m=1. Next steps in NN development should establish
connections between different nodes. The superposed arrows show an oriented
NN.
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Table 4.10 Associated NN

          •     •     •

     • •   •

       ••••   

     •   • •

       • • •

          

•       

•       

  •       

4.2.3 Cell Space Encoding

4.2.3.1 Growing Neural Networks

Several indirect encoding methods are inspired by the development and mor-
phogenesis biological processes. An illustrative example is the algorithm due
to Nolfi and Parisi (Nolfi and Parisi 1995a, 1995b). This algorithm presents a
method for encoding NN architecture into a generic string, suggested by the
real neural development. Inherited genetic material specifies developmental
instructions that control the axonal grow and the branching process of a set
of neurons. The neurons are encoded with coordinates in a two-dimensional
space.

The neurons located in a 2D space are associated to the space K of condi-
tions in generic PSM framework. K is the set of initially established neurons
or cells.

The dendrite growing is part of the states S-process. For different neurons
or cells, the GA mechanism induces a tree as a random walk in the space S.
If the growing axonal branch of a particular neuron reaches another neuron
a connection is established.



4.2 Artificial Neural Networks 163

The resulting NN contains only the completely connected neurons and the
branches.

The temporal dimension of developmental process was taken into account
in the Nolfi and Parisi models. Several time scales may be naturally consid-
ered in WE study.

The NN architecture was tested for specific problem as for instance for
pattern recognition.

Then according to fitness criteria S is modified. This is the learning process
associated to possibilities P.

4.2.3.2 Schema for Cell Encoding Algorithm

The SKUP framework for new cell space encoding model is presented in what
follows. The hierarchy of neurons will be considered. Here the large dots
“•” denotes the level m=0, while smaller dots “•” denotes the level m=1
(Table 4.11).

For two level evolution, m=0, m=1 the quadruple SKUP consists of the
vectors

S = (s0, s1); K = (k0, k1); U = (u0, u1); P = (p0, p1)

Table 4.11 Schema for cell space encodings

s0
2

•••• k0
1 •••• k0

2

s0
1 s1

2 s03

•••• k1
1 •••• k1

2

•••• k0
0

s1
1 •••• k0

3
s1
3

•••• k1
0 •••• k1

3

s0
0 s1

0
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Let: k0
0 , k0

1 , k0
2 and k0

3 denotes the possible conditions at the level m=0.
The upper index refers to levels while the lower index refers to the time
step. It should be emphasized that the time steps at different levels may be
different and this is a key feature for evolutionary behavior. The states and
the conditions at the level m=0 are represented by high thickness border cells
in Table 4.11.

The system initial state is s0
0. With possibility p0(k0

0 |s0
0) the condition k0

0

is selected. Based on this, the operator s0
1=u0(k0

0,s
0
0) allows the transition

to the new state s0
1. Then with possibility p0(k0

1 | s0
1) the new condition, k0

1

arises. In the new condition, the operator u0(k0
1 , s0

1) = s0
2 allows the system

to reach the state s0
2.

Observe that: s0
1=u0(k0

0 , s0
0) implies s0

2=u0 (k0
1 , u0(k0

0 , s0
0)).

With possibility p0(k0
2 |s0

2), the condition k0
2 is selected and finally the new

state results s0
3=u0(k0

2 , s0
2) results. Observe that s0

3=u0(k0
2 , u0(k0

1 , u0(k0
0 ,

s0
0))).
The states are resulting not necessarily in a recursive way since, in practical

cases the operators may varies with the step.
The possible states at the level m=0 are: s0

0, s0
1, s0

2, s0
3, s0

4. The interpreta-
tion of the higher-thickness border cells trajectory is the process description
as follows: from the state s0

0 through condition k0
0 towards the state s0

1, then
through condition k0

1 towards the state s0
2, and so on.

The net development may be continued at the level m=1 for different new
conditions k1

0 , k
1
1 , k

1
2 , k

1
3 .

The states and the conditions at the level m=1 are represented by medium
thickness border cells. The system initial state at the level m=1 is s1

0.
With possibility p1(k1

0 |s1
0) the condition k1

0 arises. Based on this, the op-
erator u1(k1

0 , s1
0) = s1

1 describes the transition to the new state s1
1. Then with

possibility p1(k1
1 | s1

1) the new condition, k1
1 arises. In the new condition, the

operator u1(k1
1 , s1

1)=s1
2 allows the system to reach the state s1

2.
Observe that: s1

2=u1(k1
1 , u1(k1

0 , s1
0)) and s1

3=u1(k1
2 , u1(k1

1 , u1(k1
0 , s1

0))).
The states at the level m=1 are: s1

0, s1
1, s1

2, s1
3. The conditioning at the

level m=1 is represented by the loop: k1
0 , k1

1 , k1
2 , k1

3 .
The interpretation of the standard border thickness trajectory is as follows:

from the initial state s1
0 through condition k1

0 to the state s1
1, then through

condition k1
1 to the state s1

2, and so on.
The elements of generic PSM framework are clearly indicated here.
The conditions are K = (k0, k1) were k0 corresponds to large neurons “•”

while k1 corresponds to smaller neurons “•”
The states S = (s0, s1) are the NN. There are two types of NN here and

this allows evolutionary computation. This corresponds to a decomposition
of the problem in sub-problems more easy to solve.

Rules for U = (u0, u1) and P = (p0, p1) depend on the studied case.
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4.2.4 Perspectives

4.2.4.1 Hierarchy of Prediction Layers

From the point of view of a natural agent the external environment does not
provide any direct indication on how the agent should act to attain a given
goal. The environment provides a large number of data, the sensory states.
The system should be able to extract regularities from time series through
prediction learning.

Nolfi and Tani (1999) shows that the ability to extract regularities from
data can be enhanced if we use a hierarchical architecture in which higher
layers are trained to predict the internal state of lower layers when such states
change significantly.

S-NN

K1-Level 1

K2-Level 2

U10 P01

U21 P12

Fig. 4.5 Hierarchy of prediction layers

Fig. 4.5 shows the architecture with three levels one corresponding to sen-
sor states and two prediction levels.

For this type of architecture the sensory information will be progressively
transformed going from lower to higher levels.

S denotes the environment that is the NN nodes.
K1 and K2 are the two prediction levels. K1-represents the basic level while

K2-is the meta-level.
A change in K2 has higher leverage because it represents multiple changes

at lower level K1. U10: K1→S describes the decoding and actions, P01:
S→K1, describe the fitness evaluation for S. The information change be-
tween the basic level and the meta-level is characterized by the operator U21
and the possibilities P12.

The first prediction level K1 predicts the states of the sensors by receiving
as input their state in the previous time step and the planned action. The
higher level K2 predicts the internal state of the lower level K1 by receiving
as input their previous state.
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By training an architecture of this type to predict the next sensory state
of an animate navigating in an environment divided into two rooms Nolfi
and Tani (1999) showed how the first level prediction layer extracts low level
regularities such as walls and corners while the second level prediction layer
extracts higher level regularities such as the left side wall of the large room.

That prediction learning can extract higher level regularities from time
series was shown by Elman studies of languages (Elman 1990, 1993). He
showed how by training a simple recurrent NN to predict the next word in
sentences of a language the network was able to extract high level regularities
for words such as nouns or verbs.

The architecture shown in Fig. 4.5 lacks some elements of a potential
top level K3 and also the integrative links between the level, K2 or K3 and
environment S.

The missing links induce limitations and prevents this architecture to
become evolvable and to detect regularities for changing environments as
for instance the presence of a new object for animates or of new words for
language.

4.2.4.2 Structured GA

It was recognized that genetic algorithms work well in some cases and not in
others, but it is not yet clear why this happens.

To address some of the difficulties encountered by the traditional GA in
problem solving Dasgupta and Mc Gregor (1992) introduced a two-level struc-
ture for the chromosome in genetic algorithms.

The structured GA is based on hierarchical genomic structure and a gene
activation mechanism in its chromosome. Genes at different level can be either
active or passive. Higher level genes activate or deactivate sets of lower level
genes. Thus the dynamic behaviour of genes at any level is governed by the
high level genes.

In biological systems, there appear to be many possible strands of evidence
supporting this model.

Fig. 4.6 outlines the categorical framework of evolutionary computation
algorithm for the three levels. S represents the phenotype that is the NN
nodes.

K1 and K2 are the two conditions levels. K1-represents the basic GA chro-
mosome.

K2-is the meta-level representing the structured GA, sGA chromosomes.
The strategies are defined at the meta-level since a change in K2 has higher
leverage because it represents multiple changes at lower level K1.

U10: K1→S describes the decoding P01: S→K1 describes the fitness eval-
uations. The information change between the basic level and the meta-level
of GA is characterized by the operator U21 and the possibilities P12. They
describe sGA rules.
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S-NN

K1-GA

K2-sGA

U10 P01

U21 P12

Fig. 4.6 Evolutionary designs for artificial neural networks

U21 corresponds to transcription processes.
The gene activation mechanism may be expressed by the categorical

product.
It is possible to make use of different types of categorical product in K1

and K2.
Observe that the architecture shown in Fig. 4.6 may act like a complex

network in which the genes corresponding to K1 and K2 regulates one another
activity either directly or through their products, from S. This makes the
architecture applicable to the GA-deceptive problems.

Other three level hierarchical architectures useful for modeling are the
contextual GA (Rocha 1997) and the chemical GA (Suzuki and Sawai 2002).

4.2.4.3 n-Graphs for Growing Neural Networks

The Nolfi and Parisi growing neural networks (Nolfi and Parisi 1995a, 1995b)
may be studied in the n-graphs framework (Appendix A5).

Fig. 4.7 illustrates a potential development for NN dendrites architecture
using n-graphs.

For the stage n=0 there are isolated neurons. The 1st order evolutionary
step is allowed by interactions with the substrate. At n=1 interactions and
branches appear. It is the 1-categories level

Branches are separated for the n=1 stage but they interact as the 2nd

evolutionary step shows. The n=2 level corresponds to 2-categories and allows
arrays of interacting branches, the coupling of two or more branches in macro-
branches or trees.

The 3rd order evolutionary step outlines the final stage, n=3 corresponding
to a kind of single tree. The single tree pattern is specific to the growing. Some
neurons and some branches remain undeveloped. Unconnected branches or
neurons are removed. It is the 3-categories level.

The integrative closure, connecting also the n=0 and n=3 levels represents
the challenge for such NN systems. A possibility shown in Fig. 4.7 is the
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Fig. 4.7 n-graphs for growing neural networks

restriction to the central structure retaining only the four neurons connected
at the levels 1, 2 or 3. Growing net may restart from this central structure
and follow the same steps on a higher methodological plane that is at a new
dimension in modeling. The branching should be reversible.

The integrative closure between cognitive levels and environment was stud-
ied in the so-called artificial life NN, ALNN (Nolfi and Parisi 1977). This
study models an NN that lives in a physical environment. An active, em-
bodied knowledge and knowledge acquisition makes ALNN closer to Piaget
schema rather than to the classical NN.

Networks that adapt or self-organize structurally to the environment by
adding and removing neurons and connections in the system exploit mech-
anisms that are similar to those used in the growth of an organism (Fritzke
1994). A developmental mechanism implies the presence of a mechanism for
cell creation, a requirement for structural adaptation and thus can simplify
the design of structure adaptable systems.

4.2.4.4 Protein Based Neural Networks

Many proteins in living cells appear to have as a primary function the trans-
fer and processing of information accomplished by the physical or chemical
transformation of metabolic intermediates or the building of cellular struc-
tures (Bray 1995, Spiro et al. 1997).

Cells perform calculations as a mean of monitoring and responding to their
internal and external environment.

It was observed that the highly interconnected network of protein based
pathways in living cells share the properties of neural nets allowing cogni-
tive capacities. This refers to memory capacity, pattern recognition, handling
fuzzy data, multifunctionality, signal amplification, integration and crosstalk
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and signal amplification (Paton and Toh 2004). Moreover the mathematical
formalism of artificial neural networks is a more accurate approximation for
networks of protein molecules than for networks of real neutrons (Bray 1995).
Ideas from the category theory can be used to illustrate this point. The in-
ternal organization of a protein can be modeled by a diagram of domains
that is cooperating objects in which links represents functional relations. A
colimit glues a pattern into a single unity in which the degrees of freedom of
the parts are constrained by the whole. A limit represents the relationship
between the whole that is the single unity and its components. It is possi-
ble to reason about functions with regard to how a whole is integrated and
coheres out of its parts. Part-whole relations may be described as emergent
cohesion reflecting the internal synergy in which interactions and local mea-
surement generate cohesion. Cohesion concerned with part-whole relations is
correlated to colimits in the sense that the whole keeps the parts together.

Proteins molecules can act as logical elements and assemblies of proteins
can be artificially coupled to perform computations.

Bacterial chemotaxis illustrates the computation potentialities of protein
networks in living cells. Chemotaxis is the process by which a cell alters its
speed or frequency of turning in response to an extracellular chemical signal.

A four realms framework may describe the circuit mediating the chemo-
tactic response of bacteria.

Fig. 4.8 shows illustrates the organization of protein based neural network
for E. Coli chemotaxis. Here S denotes the receptors. These include chemo-
receptors and amino-acids as ligands. The proteins network includes also a
hierarchy of signaling proteins as: CheA, CheB, CheR, CheW, CheY and
CheZ.

It may be assumed that the categories of signaling proteins are: K1={CheA,
CheW}, K2={CheB, CheY} and K3={CheR, CheZ}.

The signification of the functors U and possibilities P is explicit in Fig. 4.8.

K1-CheA, CheW K2-CheB, CheY

S-Receptors K3-CheR, CheZ

U10

U21

U32P01

U30

P23

P12

P03

Fig. 4.8 Protein network mediating the chemotaxis
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For instance, the operators U10 describes the interaction {CheA, CheW}
→ Receptors while the operator U30 describes the interaction {CheR, CheZ}
→ Receptors.

The mechanism is based on three inter-correlated realms for signaling pro-
teins (Bray 1995). Other chelating proteins and other hierarchical order have
been considered in the vast literature dedicated to chemotaxis.

The framework shown in Fig. 4.8 doesn’t aims to reproduce the details of
the E. coli chemotaxis but to retain the basic pattern and to make suggestions
how to design artificial neural networks.

It is known that despite its relatively simple structure, E. Coli is capable
of embodiment and highly autonomous behavior (Quick et al. 1999).

Viewed as signal processing systems, cell signalling networks like that
shown in Fig 4.8 can be considered as special purposes computers. In contrast
to conventional silicon-based computers, the computation is not realized by
electronic circuits but by chemically reacting molecules in the cell.

Such system may achieve the essential properties of integrative closure. A
critical feature of this closure is that the steady-state values reached after
a changed input should still ensure the autonomous core functioning of the
entire system.

As computational devices the proteins networks can be compared to analog
computers. Several analog computers have long been displaced by the dig-
ital computers due to programming and stability issues. However there are
situations were it is required to interface computation with chemical interac-
tions when artificial protein based neural networks may be used to implement
special computation and signal processing tasks. This may have direct appli-
cations to the so called smart drugs or for other bio-medical interventions.

4.3 Artificial Neural Codes

4.3.1 Neural Coding

The neural coding problem in perception of signals involves the interpretation
of the neural correlations of sensory registrations (von der Malsburg 1994,
Freeman 2000, Cariani 2001).

Sensed information can be encoded in patterns of neurons that respond,
the so-called channel codes or in temporal relations between spikes that is
temporal codes.

Progresses in the domain of understanding neural codes have been achieved
starting from neural activity modeling.

In the firing rate model it is speculated that the information is conveyed by
being encoded in the rate at which action potential are generated by neurons.
Over short times the network structure of the brain is commonly regarded as
fixed. Brain states may be regarded as semantic symbols. They are lacking
hierarchical and syntactical structure.
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The correlation theory of brain function (von der Malsburg 1986, 1994)
challenged the semantic symbol system sketched above and proposed a dif-
ferent interpretation of data in terms of semantic symbols with a richer struc-
ture. The correlation theory suggests that information is conveyed in the brain
through correlations of neural firing patterns.

This theory received support from a model developed by Damasio which
holds that entities and events are represented in the brain by time-locked
synchronous neural firing patterns (Damasio 1989).

An approach based on the PSM method and the wave equation, WE, may
generate solutions looking like the temporal response patterns registered in
brain studies.

The contact with existing symbolic neural architectures may be established
and on this basis potentially neurocognitive architectures are resulting.

Neural-symbolic systems are hybrid systems that integrate symbolic logic
and neural networks. The goal of neural-symbolic integration is to benefit
from the combination of features of the symbolic and connectionist paradigms
of artificial intelligence, AI.

In the basic SKUP framework K is associated to symbols while S to neural
networks.

An open problem is how to put together in the same framework K and S.
It may be assumed that a compositionality principle would allow comput-

ing the meaning of complex formulas using the meaning of the corresponding
sub-formulas.

On the other side, it was assumed that NN are non-compositional from
principle, making them unable to represent complex data structure like for-
mulas, lists, tables, and so forth.

Two aspects can be distinguished, the representation and the inference
problem.

The first problem states that complex data structures can only implicitly
be used and the representation of structured objects is a challenge for con-
nectionist networks. This is correlated to possibilities P in the basic SKUP
framework.

The second problem, of inference, tries to model inferences of logical sys-
tems with neural account. This is correlated to operators U in the SKUP.

4.3.2 Symbolic Connectionist Hybrids

Some authors claimed that connectionist models as the neural networks, NN,
did not support symbolic processing and were incapable of adequately repre-
senting evolving neurocognitive structures (Fodor and Pylyshyn 1988).

Symbolic connectionist models, implemented as hybrid devices allowed a
rebuttal of Fodor and Pylyshyn criticism in both theory and practice.

Hybrid symbolic connectionist techniques allow vectors representing the
constituents of a symbol structure to be combined into a single vector rep-
resenting the whole structure, and for this vector to be decoded into the
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vectors representing the original constituents. In this manner representations
for compositional structures can be built up and, then processed by NN.

The recursive auto-associative memory (RAAM) was among the NN mod-
els developed to address the question of how compositional structures may
be stored within a connectionist framework (Pollack 1990). The data for a
RAAM network consists of a collection of trees and a representation that is
a pattern of “0”, “1” and so on for each terminal symbol occurring in those
trees. The task for the network is to provide a means of compressing each tree
into a representation, an activation vector, and reconstructing the tree from
its representation. The elements of the SKUP are naturally associated to the
RAAM elements. The input and output units may be associated to the set
of conditions, K. The RAAM architecture contains encoding or compressor
networks, associated to possibilities P in the SKUP framework. The RAAM
contains also decoding or reconstruction networks associated to operators U.
The hidden units are associated to the states S. As shown in Sect. 2.3.1, to any
matrices containing discrete information as “0”, “1” and so on, classification
trees may be associated based on similarity calculations. Another promising
NN architecture is the distributed associative memory developed by Austin
(Austin 1996). Associative memories operate differently from the memories
typical for current computer architectures. This type of architecture take a
set of data often in the form of an image, and scan the entire set of data in
memory until it finds a set that matches it, as much as possible.

Fig. 4.9 shows a typical neurocognitive architecture making use of two
categorical frames for conditions, K1 and K2 with two types of tensorial
product, the coproduct “∪” for K1 and the product “×” for K2.

The architecture proposed by Austin makes use for symbolic processing,
the component-wise operations in GF (2). The categorical product “×” is in
this case a vectorial outer product, while the categorical coproduct, “∪” is a
concatenation followed by superimposed coding.

S-States

K1-Coproduct

K2-Product

Fig. 4.9 Typical three levels framework
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Another strategy to meet the challenges posed by connectionism critiques
for both models and devices is offered by the so-called holographic reduced
representations HRR, (Plate 1995). Associative memories are conventionally
used to represent sets of pairs of vectors. Plate describes a method for repre-
senting complex compositional structures in distributed representations. The
method uses circular convolution to associate items which are represented by
vectors. The representation of an association is a vector of the same dimen-
sionality as the vectors which are associated. The method allows encoding
relational structures in fixed width vector representation but it should be
noted that this increases the risk of missing the emergent structures.

Plate calls his models, holographic reduced representations, since convo-
lution and correlation based memory mechanisms are close related to holo-
graphic storage. The circular convolution may be associated to the categorical
product, “×”, while the superposition may be associated to categorical co-
product, “∪” (Fig. 4.9).

The properties of higher neurocognitive processes and how they can be
modelled by NN have been extensively studied by Halford and collaborators
(Wilson and Halford 1994, Halford et al. 1998). They proposed the so-called
STAR model of analogical problem solving.

The rank of tensor used by Halford is linked to the arity of relation, that
is, to the number of attributes to the relation, and in the end, to the Piaget
stages of neurocognitive development. The STAR model uses a tensor of
rank-3 to represents a predicate of two arguments.

Halford studies suggests that for early Piaget stages in neurocognitive de-
velopment, the categorical coproduct, “∪”, prevails allowing the associative
knowledge. This is a fast and parallel process. During the higher Piaget stages
the categorical product, “×” seems preponderant, allowing the relational
knowledge. It is a slow, sequential, effortful, higher neurocognitive process
(Fig. 4.9).

The study of tensor product networks using distributed representations
outlined the significant role of Hadamard matrices (Wilson and Halford
1994). As shown in Sect. 2.2.3 these matrices are special solutions of the WE
equations.

Notice that Halford and associates evaluated the significance of Klein-4
group and of Latin squares for learning transfer in NN and in neurocognitive
systems. Such structures correspond to the INRC group studied by Piaget
(Inhelder and Piaget 1958) as well as to standard solutions of the WE model.

4.3.3 Temporal Synchrony

A promising way of dealing with variable binding in connectionist systems is
to use the temporal aspects of nodes or neurons activation. Phase synchro-
nization can be used since it allows different phases in an activation cycle to
represent different objects involved in reasoning, and representing variable
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binding by the in-phase firing of nodes (von der Malsburg 1986, Hummel and
Biederman 1992).

Based on temporal synchrony, SHRUTI system (Shastri and Ajjanagade
1993) provides a connectionist architecture performing reflexive reasoning.
SHRUTI shows how synchronous activation can be harnessed to solve prob-
lems in the representation and processing of high level conceptual knowl-
edge. LISA system (Hummel and Holyoak 1997, Hummel and Choplin 2000)
used the synchronous activation approach to model analogical inference. Both
computational systems demonstrates that temporal synchrony in conjunction
with structured neural representations suffices to support complex forms of
relational information processing specific to neurocognitive systems.

The problem for such systems is their suitability for reflexive or reflec-
tive neurocognitive processes. Reflexive processes are linked to categorical
coproduct while reflective processes, are linked to the categorical product
(Fig. 4.9).

While reflexive and reflective processes follow different kinds of computa-
tional constraints, in most cases, the two types of processes interact and need
to be integrated in the performance of a single task.

SHRUTI represents a restricted number of rules with multiple place predi-
cates. There are several types of nodes or neurons in the architecture, denoted
for example by circles, triangles and pentagons.

Relational structures as frames and schemas are represented in SHRUTI
by focal clusters of cells, and inference in SHRUTI corresponds to a transient
propagation of rhythmic activity over such cell-clusters. Dynamic bindings
between roles and entities are represented within such a rhythmic activity by
the synchronous firing of appropriate role and entity cells. Rules correspond
to high-efficacy links between cell-clusters, and long-term facts correspond to
coincidence and coincidence-failure detector circuits.

SHRUTI was designed for reflexive reasoning tasks and the model is not
suited to account for reflective processes.

To ensure applicability to complex situations, SHRUTI was coupled with
systems activating the reflective component of problem solving. Such systems
are capable of attention shifting, making and testing assumptions, evaluating
uncertainty. The resulting neurocognitive systems presented both reflexive
and reflective capabilities and has been used to model decision making in
imposed time frames.

LISA is a computational model based on temporal synchrony and designed
for analogical inference and for schemes induction. The data for LISA network
consists of a collection of trees and a representation that is a pattern of “0”,
“1” and so on for each terminal symbol occurring in those trees.

The LISA system is shown in Fig. 4.10.
The basic level includes semantic units, s, the next includes the so-called

localist units, L, (predicate/object or object/roles), the next level includes
the sub-problems and the higher level the problems.
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s ss s s s ss

Sub-problem 1 Sub-problem 2

L L L L

Problem
Source Target

Fig. 4.10 LISA neurogonitive frameworks

4.3.4 Perspectives

4.3.4.1 Three Realms Neurocognitive Architectures

Three realms multi-agent architectures may achieve integrative closure, in
this case cognitive evolvability and autonomy (Zachary and Le Mentec 2000,
Di Marzo Serugendo et al. 2007).

An agent architecture grounded in models of human reasoning such as
Cognet is shown in Fig. 4.11 (Zachary and Le Mentec 2000).

Cognet is a research framework concerning the analysis and modeling of
human behavioral and neurocognitive processes in real-time, multi-tasking
environments.

Meta-cognition refers to cognition about cognition and in this case to the
ability to explicitly and strategically think about and control an agent’s own
neurogonitive processes. The Cognet architecture allows a meta-cognitive
control of neurocognitive processing. An emphasized aspect is that of self-
awareness of resources and processes.

The categorical framework is shown in Fig. 4.12. It shows the architecture
of conditioning levels with two-sided dependence.

The elements of the categorical framework are as follows:

S-Environment interface allowing action and perception
K1-Cognition processes, K2-Metacognitive processes
The neurocognitive level is structured in K1 and K2 to allow performing

integrated cognitive/behavioral tasks.
U10: K1→S actions physical or verbal
P01: S→K1 sense of visual and auditory cues
U20-motor action resources, P02-perception resources
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Perception

Cognition

Motor action

Working memory

Meta-cognitive
processes

Sensory/motor
Cognitive 
processing

Meta-cognitive self-awareness

Visual auditory Physical actions

Fig. 4.11 Cognet information processing framework

K1-Cognition K2-Metacognition

S-Environment

U10 P01 P02 U20

U21

P12

Fig. 4.12 Three realms neurogonitive framework

A similar framework is shown by the self-adaptive and self-organizing
SASO architectures (Di Marzo Serugendo et al. 2007).

In this case, the elements of the categorical framework are as follows:

S-Application components, services
K1-Metadata, K2-Policies
U10: K1→S defines acting
P01: S→K1 defines sensing
U20 and P02 describes the application and acquisition of policies
Elements of the cognitive architecture shown in Fig. 4.12 may be correlated

to the adaptive resonance theory ART (Carpenter and Grossberg 1987).
In this case, the elements of the categorical framework are, S-receiver of

the input signals.
K1-classifier of the afferent input patterns and K2-attention/orienting sub-

system.
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Viewed abstractly, the ART classifier network meets the definition of an al-
gebraic structure known as grupoid. Formally a grupoid is any mathematical
structure consisting of a set of inputs and an operation on this set possessing
the property of closure. A grupoid may be seen as a category in which any
morphism is an isomorphism.

4.3.4.2 Four Levels or Realms Neurocognitive Architectures

A four level architecture for LISA approach is presented in Fig. 4.13.
This architecture takes into account that the working capacity of human is

typically limited at four relations (Halford et al. 1998). Hummel and Holyoak
(1997) correlate the four levels of memory in the LISA neurocognitive frame-
work to the limits in mental storage capacity. Probably, this fact is related to
the four modular architecture of the neurocognitive system and to cerebral
rhythms (Freeman 2000).

The signification of the functors U and possibilities P is explicit in
Fig. 4.13.

S-Semantic units, K1-Localist units, K2-Sub-problems, K3-Problems
U10, U21, U32 corresponds to implementation operations
Observe that: U10:K1-Localist→S-Semantic, U21: K2-Sub-problems→K1-

Localist, and U32: K3-Problems→K2-Sub-problems.
P01, P12, P23 and P03 are synthesis steps.
P01: S-Semantic→ K1-Localist, P12: K1-Localist→K2-Sub-problems, and

P23: K2-Sub-problems→K3-Problems.
The four realms approach emphasizes the need of contact between the

problem and the ground semantics units.

K1-Localis units

K2-Sub-problems

K3-Problems

U21 P12

U32 P23

S-Semantic units

U10 P01

Fig. 4.13 Four levels neurogonitive framework
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K1-Localist units K2-Sub-problems

S-Semantic units K3-Problems

U10

U21

U32P01

U30

P23

P12

P03

Fig. 4.14 Four realms neurogonitive framework

Fig. 4.14 shows a prospective four realms architecture developing the LISA
approach towards integrative closure and evolvability. It is expected to facil-
itate the interaction between S-Semantic units and K3-Problems.

U30 correspond to implementation operations. In this case U30: K3-
Problems→S-Semantic units and U30=U10oU21oU32.

P03 is a synthesis step. In this case P03: S-Semantic units →K3-Problems
and P03=P01oP12oP23

The basic realm n=0 includes semantic units, the next realm n=1 includes
the so-called localist units, the realm n=2 includes sub-problems and the
realm n=3 the problems to solve.

The task for the LISA network is to provide a means of compressing each
tree into a representation, the so-called activation vector, and reconstructing
the tree from its representation. SKUP elements are naturally associated to
the LISA elements. The problems to solve may be associated to the set of
conditions K. LISA contains a driver network associated to operators U, and
to the reflective reasoning. They are U10, U21, U32 and U30. As a difference
from SHRUTI, the initial LISA model was not developed to account for the
reflexive processes. However the representational structure of LISA provides
at least a starting point for reflexive reasoning capabilities. LISA propositions
are retrieved into memory via guided pattern matching. During retrieval and
comparisons the proposition are divided into two mutually exclusive sets:
a driver and one or more recipients or receivers. The receiver network is
associated to possibilities P. The elements are P01, P12 and P23. The calculus
of possibilities for LISA model was studied by Taylor and Hummel (2009).

The switch between reflexive and refractive reasoning passes trough the
semantics. The LISA semantics elements are associated to the states S in
SKUP.
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The activation of semantic units is controlled by time. Often the analysts
do not have the time to allow runaway activation of semantics because they
needs make inferences quickly. Notice that in contrast to reflexive inferences
which are fast, the reflective inferences may require more effort. An open
problem is to establish, for imposed time frames, the number of switching
from reflexive to refractive and the order in which the switching should be
performed.

4.3.4.3 Spatial Cognition

A four level hierarchical architecture was operated in the study of complexity
of behavior for spatial cognition (Mallot 1999) (Fig. 4.15).

K1-Integration

K2-Learning

K3-Cognition

U21 P12

U32 P23

S-Taxis

U10 P01

Fig. 4.15 Four levels for complexity of behavior

The basic level S-Taxis, describes the reflex-life behaviors.
The level K1-Integration, requires spatiotemporal combination of data on

the basis of a simple working memory. The level K2-Learning, requires long-
term memory for procedures.

The level K3-Cognition, requires declarative memory consisting of neuro-
gonitive maps allowing changing behavior according to current goals. Cogni-
tive behavior is characterized by goal-dependent flexibility.

It is difference in time scale for the four levels in the sense that higher
levels are slower.

The spatial cognition is important in the study of autonomous vehicles
(Trullier and Meyer 1997). The functional model of the role of the hippocam-
pus in navigation was implemented as a multi-level feed forward neural-
network (Burgess et al. 1994). The first layer identified as K1 in hierarchy
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consists of sensory neurons that discharge selectively when the environment-S
elements are sensed. The place cells represent the main elements of the K2
layer while the goal cells may be associated to the level K3.

A model of animat navigation based on several neurogonitive modules was
proposed by Schmajuk and Thieme (1992). One module encodes topological
representation and the other selects movements on the basis of predictions
generated by the first module.

The module K2 is the comparator and elaborates next place predictions
based on slow changing signals. A neurogonitive map is part of this. The
module K1 allows goal predictions based on fast changing signals. The module
K3 corresponds to goals.

Another model for spatial cognition was based on mesoscopic dynamics of
brain activity (Freeman 2000). Freeman proposed a hierarchy of models that
have capacity to show aperiodic behavior similar to that shown by electroen-
cephalograms.

For the K-sets computational model due to Freeman (Freeman 2000) the
basic level S is linked to columns, the next level K1 to bulbs, the next level
K2 to cortex and the next level K3 to hemispheres of the brain. Notice that
the corresponding Freeman notations are KI, KII, KIII and KIV.

4.3.4.4 Arrays of Neurogonitive Tiles

In an attempt to develop a model of memory von Foerster (von Foerster1969)
proposed a tessellation of neurogonitive tiles. The idea was to advance a con-
ceptual minimum element capable of observing the desired neurocognitive
characteristics of memory (Rocha 1995). The SKUP are considered as neuro-
gonitive tiles. SKUP includes a self-referential level of interactions, in which
an internal meaning of measured states of the memory empowered organiza-
tion is generated, a closed system, with external meaning is obtained.

The SKUP is seen as a through-put system. Sensory information S is com-
pared in a feed-forward fashion and altered in respect to the existing scheme
in K. The feedback loop incorporates the delay of the system, that is, the
associated time-scales.

We can think at these neurogonitive tiles as a suggested conceptualization
of the necessary connections between symbol and matter in order to obtain
closure.

The SKUPs may be correlated in an array to obtain an autonomous clas-
sification function that is autonomous neurogonitive architectures.

It seems to be of interest to use such arrays not only in higher level model-
ing approaches to evolvability and cognition as in traditional artificial intelli-
gence, AI, models but also at the presumable lower level of artificial life, AL,
models. In a cell we can find different processes with different time-scales.
If these processes can be organized into semantically closed groups, then
they can be represented by neurogonitive tiles and a functioning of the cell
by a tessellation. The network of SKUPs includes processes that affect the
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time-scales of other processes. With an array of SKUPs we may be able
to recognize the true temporal pattern recognition and not simply sequence
recognition as in artificial NN. We can thus start to consider a tessellation of
neurogonitive tiles as a proper measurement device which becomes dynami-
cally coherent.

Implemented by a network of interacting SKUPs such arrays will be re-
sponsible for the recognition of temporal rather than spatial patterns of in-
puts. The recognition of appropriate temporal patterns will then dictate the
neurogonitive system response. Clearly time plays the important role on the
functioning of these arrays, unless the time-less switches of conventional ar-
tificial NNs.

Complex networks of tessellations can be organized as blocks of tiles dy-
namically closing higher semantic loops based on other semantic loops. This
may correspond to categorification process (Appendix A4).

4.3.4.5 n-Graphs for Neural Symbolic Computation

In neurodynamics studies the entities are embodied in the network’s nodes
and activated by associations. Logical systems define symbols that can be
composed in a generative way but do not posses a microstructure appropriate
for perception and learning tasks.

An illustration of the neural symbolic frames is based on the representation
of the NN multi-scale evolution in term of n-graphs (Appendix A5).

The n-graphs characterize asynchronous systems with multiple entrances
and exits.

Fig. 4.16 describes the process of self-structuring in a neural network and
the emergence of symbols. The model is biomimetic.

The role of neocortical self-structuring as a basis for learning in neuro-
dynamics was emphasized by von der Malsburg (1986, 1994), Doursat and
Bienenstock (2006), Doursat (2007). It should be emphasized that Doursat
(2007) approach is limited to a three level hierarchy.

The level n=0 represents to the 0-graphs or sets. This is associated in this
case to the unit isolated neurons. The level n=1 correspond the 1-graphs.
These are directed graphs including the morphisms that is, the connections
between neurons.

Here the connected neurons are denoted by A, B, C and so on.The mor-
phisms are 1-cells, describing relations. Their coupling in the right order
allows the complete signal transfer process.

The level n=2 corresponds to the 2-graphs. These are graphs plus the so-
called 2-cells between paths of same source and target. These 2-cells describe
relations between relations and express the natural lumping of the simplex
A, B, C of neurons in just one loop with specific role.

The level n=3 corresponds to the 3-graphs. These are 2-graphs that in-
clude 3-cells that is, the cells between 2-cells. The 2-graphs and 3-graphs
represent graphs modification and should be subjected to conditions of
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Fig. 4.16 n-graphs for neural symbolic computation

natural transformations. These are related to travels time between neurons
and association of neurons.

Denote by τAB the time necessary to travel from node A to node B (Dour-
sat 1991) Conditions as τAB + τBC = τAC or τCG + τGF + τFE = τEC

should be imposed at the reality level n=2 to ensure the signal route equiva-
lence. Double arrows emphasize these equivalences. There exist two different
compositions of 2-cells. The vertical composition corresponds to sequential
2-cells, while the horizontal composition corresponds to parallel 2-cells.

The level n=3 corresponds to the interaction between two component net-
works of interactions.

In that case coherence conditions are: τAG + τGC = τAC .
Triple arrows characterize equivalences between routes including the two

component nets.
The integrative closure, connecting n=0 and n=3 represents the challenge

for such systems.
The n-graphs for successive stages n, outlines a hierarchy of correlations

of successive orders for neural patterns, a hierarchy of binding levels (von
der Malsburg 1994, 2004). The mechanism is formally similar to that of con-
centration zones, CZ, as discussed by Damasio (1989). Damasio modelled
the brain as an interacting system of hierarchical sub-networks for differ-
ent major neural computing tasks. Healy and Caudell (2006) elaborated a
category theory approach to NN emphasizing the potential role of Damasio
approach. The categorical model, with functors from a category of concepts
to a category of NN components and natural transformations between these
functors, provides a mathematical model for neural structures consistent with
concept-subconcepts relationship. Colimits of diagrams show how concepts



4.4 Evolvable Circuits 183

can be combined and how a concept can be re-used many times in forming
more complex concepts. The functors map commutative diagrams to com-
mutative diagrams capturing this aspect of the colimit structure. Natural
transformations express the fusion of single mode sensor representations of
concepts in the same neural architecture.

This categorical model is compatible with the model of binding proposed
by von der Malsburg or of concentration zones proposed by Damasio.

The architecture shown in Fig. 4.16 suggests considering three stages of
binding or of concentration followed by the 4th order stage of integrative
closure and embodiment.

The stages may be considered in terms of categorical colimits. Categori-
cal limit is the emergent concept summing up in itself the properties of its
constituents. This generates the n-graphs hierarchy where at any stage the
objects are the colimits of objects of the previous stage. This means that
higher level of binding needs n-categorical models.

This idea may be linked to the attempts to make computers more close to
natural brain-body system. It was observed that models suited for “off-line”
computation such as Turing machine should be replaced with frameworks
that are more readily to accommodate “on-line” and “real-time” processing
of environment input streams.

An approach in line with “artificial chemical engineering” was proposed by
Maass (2007). Maass proposed a framework calling it the “liquid computing”
which is a generalization of classical finite states machine to continuous input
streams and state space. The “reservoir computing” paradigm (Schrauwen et
al. 2007) develops the main idea of “liquid computing” paradigm, that is the
separation of the producing output stream from processing the input stream.
Finding out what is a good reservoir represents an active research area. The
n-categorical point of view may introduce a right structuring in levels of the
“reservoir computing”.

4.4 Evolvable Circuits

4.4.1 Evolutionary Circuits

4.4.1.1 Evolutionary Behavior for Circuits

Evolutionary or proactive circuits have the capability to change the preemp-
tively embedded circuitry elements in order to keep on and to accomplish
un-programmed tasks. Evolutionary behavior is a forward-looking perspec-
tive from engineering point of view, enabling to the designed circuit to modify
faster in the anticipation of the future constraints of the environment.

Evolutionary circuits make use of self-construction elements offered by
the basic generic framework, and by the environment. The evolutionary de-
vices and sensors developed by the cybernetician Gordon Pask (Cariani 1989,
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Fig. 4.17 Pask’s evolutionary device

1993), the “evolved radio” described by Bird and Layzell (2002), some devel-
opments of “evolutionary hardware” (Thompson 1998) may be regarded as
a kind of proactive circuitry implementations.

One way to achieve to the circuit a degree of autonomy is to have sensors
constructed by the system itself instead of sensors specified by the designer.
Cariani refers to “Pask’s Ear” as a first example of such evolutionary circuits
(Fig. 4.17). The Pask’s system is an electrochemical device consisting of a set
of platinum electrodes in an aqueous ferrous sulfate/sulfuric acid solution.
When current is fed through the electrodes iron dendrites tends to grow be-
tween the electrodes. If no or low current passes through a thread, it dissolves
back into the acidic solutions.

The threads that follow the path of maximum current develop the best.
In the complex growth and decay of threads, the system mimics a living
system that responds to rewards that is more current and penalty that is
less current. The system itself is able to discover the most favorable forms
for the condition, which may embed information concerning other factors of
the environment such as magnetic fields, auditory vibrations, temperatures
cycles. The system resembles a model of ants leaving pheromone to reach a
target (Virgo and Harvey 2008).

This circuit was trained to discriminate between two frequencies of sound
by rewarding structures whose conductivity varied in some way with the
environmental perturbation. The Pask’s evolutionary device created a set
of sensory distinctions that it did not previously have, proving that emer-
gence of new relevance criteria and new circuits is possible in devices. The
Pask’s device may be considered as an analogous realization of the SKUP and
of the categorical framework. The dendrite structures forming in malleable
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materials correspond to the category S, the resistance, capacitance or ionic
resistance linkage to energy is linked to the category K. The evaluation of
the signal network developed in malleable material is part of the possibilities
P. Amplifying servomechanisms, A, may be linked to the operators U.

Following similar ideas, Bird and Layzell (2002) built an “evolved radio”.
Like Pask’s ear the evolved radio determined the nature of its relation to
environment and the knowledge of a part of the environment.

Bird and Layzell emphasized that novel sensors are constructed when the
device itself rather than the experimenter determines which of the very large
number of environmental perturbations act as useful stimuli.

The relation with von Uexküll Umwelt concept is obvious. Both of these
devices, the Pask’s ear and the evolved radio show epistemic autonomy that
is, they alter their relationship with the environment depending on whether
a particular configuration generates rewarded behavior.

Evolutionary systems include the four basic parts of the von Uexküll func-
tional cycle: object, sensors, the command generator and the actuator (von
Uexküll 1973). These parts are associated to the SKUP with the states S,
the possibilities P, the conditions K, and the operators U, respectively. In
the categorical framework the perception is associated to the functor P and
the action is associated to the functor U. They can be viewed as adjoint
connections of the different categories K and S.

Moreover, as in the functional cycle the evolutionary systems includes two
levels for K, one related to the control K1, and a higher one K2 related to
the coordination.

4.4.1.2 Evolutionary Hardware

Research for evolutionary devices, is associated to the domain of MEMS,
micro-electro-mechanical systems, MECS, micro-energy-chemical systems and
to evolutionary hardware (Thompson 1998, Mahalik 2005).

MEMS represent the integration of mechanical elements, sensors, actua-
tors and electronic circuits on a substrate through the utilization of micro-
fabrication technology.

MECS focus on energy transfer, microfluids and chemical reactions. The
evolutionary circuit is the candidate for the “brain” part of the systems while
MEMS or MECS would allows to the micro-systems to sense and to control
the environment.

In the associated SKUP quadruple, the environment corresponds to the
states S, the evolutionary circuit itself to conditions K, the MEMS or MECS
control part is linked to the operators U and MEMS or MECS sense part to
possibilities P.

For embedded EDOE, the MEMS or MECS and ultimately, the prined
circuits board, PCB may be the physical support material. Coupling evolu-
tionary circuits with PCB and MEMS or MECS may ensure robustness and
autonomy (Cheung et al. 1997, Mahalik 2005).
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Evolutionary hardware represents an emerging field that applies evolution-
ary computations to automate adaptation of reconfigurable and polymorphic
structures such as electronic systems and robots (Thompson 1998).

Evolutionary computation methods in designs that take the performance of
a scheme as prediction for the performance of a modified scheme are suitable
for evolutionary circuit development (Koza 1992). Koza elaborated genetic
programs that could design band-pass filters that are electrical circuits able
to separate signals of one frequency versus another. There is no explicit pro-
cedure for conventional designing these circuits due to the large number of
optimization criteria. The algorithms work by starting with simple circuits
and evolving them. The program, then created different variations, tested
them, select the best and used them for the next generations. Implemented
on silicon such programs may result in a circuitry that has attributes of
novelty. The program may be used to generate evolutionary circuit schemes.

An interesting suggestion for evolutionary hardware architecture is the
CellMatrix (Macias 1999). CellMatrix develops self-modifying, self-assembling
and self-organizing circuits. These circuits are designed for, and constructed
out of, a unique hardware substrate. The Cell Matrix may modify circuit
architecture in the direction of locally connected; re-configurable hardware
meshes that merge processing and memory.

4.4.1.3 Electrochemical Filaments Circuits, ECFC

Based on electrochemical filaments development, a new type of evolutionary
circuits, ECFC became possible.

ECFC construction starts with a generic framework representing the ele-
ments of the set of conditions K.

The K-framework elements may be that generated by wave equation, WE.
The process in K generates successive K-frames, K0, K1,..., Km, at different
levels.

The generic circuitry represented by K-frames is completed by additional
circuitry, traces, dendrites, filaments, and supplementary matter, corrosion
or degradation products. The processing for these additional circuits is an S-
process. S-denotes the physical circuit based on filaments, threads, or micro-
channels for fluids allowing the electrical contact or interaction. The K steps
and the real environment S-steps have complementary contributions in cir-
cuit building. ECFC are expected to be at least partially autonomous. The
autonomy includes the capability in building, assembly, modifying, organiz-
ing, repairing and destroying. As a difference, if compared to adaptive and
self-adaptive devices based mainly on feedback, ECFC make use of the pre-
emptively embedded multi-scale K frames. The appropriate K designs and
the selective addition and the subtraction of appropriate elements from envi-
ronment are the processes allowing both self-functionality and evolutionary
behavior.
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• ECFC design
Suggestions of evolutionary behavior may be detected in conventional multi-
purpose circuit designs. These circuits have only holes and conductors, which
have to be connected or interrupted according to the specific assembly needs.
Often components are assembled directly on the components side so that
it is possible to make small changes and to keep the whole circuit under
control. This technique permits easy adjustment and trials of different com-
ponents to modify the circuit from design stage. Adjacent to multi-purpose
design methodology is the existing design re-use. The need to decrease time
to market imposes to make use of known good sub-circuits or known good
blocks as building elements. The sub-circuits may be developed individually
as component DOE in a design centered EDOE.

The basic elements of ECFC technology are the K-valued generic frame-
work, linked to class of tasks, the environment media for self-construction in
non-stationary or oscillatory fields and the self-learning capability by expo-
sure to environmental complexity and to variable tasks.

The ECFC that results by coupling the electrochemical filaments, ECF of
different orders m, ECFm, over a pre-existing K-frames, K0, K1, K2, . . . , Km
is considered here. The circuit may be described using the categorical tensor
“∗” that links different levels in circuitry: ECFC=K0∗ K1∗. . . ∗Km∗ECF0∗
ECF2∗. . . ∗ ECFm.

The tensorial product “∗” may be the categorical product “×”, the co-
product “∪” and so on.

The categorical presentation of this architecture is shown in Fig. 4.9.
The K-framework should be a quasi complete printed circuit, with several

opens. These opens allows the ECFC versatility and multiple potentialities.
The environment is able to fill the opens sequentially in a way that ensure
functionality. Potential geometrical variants and architectures for ECFC are:
dots, cells, hexagons, triangles, squares, circles arrays, circular crowns, dyadic
structure, labyrinths and mazes, high density circuitry, self-similar nested
structures, tiles, pre-fractals and multi-fractals used for evolving antennas.

It was established that the wave equation, WE, is able to generate fractal
structures making use of categorical product “×”. For example Hadamard-
Sylvester matrices, reduce to Sierpinski triangles if only the “1”s are con-
sidered while the “-1”’s or with other notations the “0”s are neglected since
they breaks the circuit (Barnsley 1993).

The switch from categorical product to categorical coproduct determines
the size and the shape of the circuit. The switch is determined by the oscil-
latory fields that accompanies the ECFC development.

• Materials for ECFC
The materials should offer opportunities for wet chemistry and for solid
physics to play significantly. ECFC’s make use of composites and multi-phase
media. The materials should be as rich as possible in structural possibilities,
for example in phase transitions, on the edge of chaos, in non-linear regimes.
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Interesting options are the existing self-adaptive or smart materials that allow
phase transition, such as the piezoelectric, thermoelectric, electrorheological,
electro active polymers and so forth.

Laminate known as filaments non-resistant as polyester rigid woven glass,
paper phenol, or specially contaminated laminates represents valid opportu-
nities since they allow the electrochemical filament fast formation.

Possible K-frames conductor lines make use of materials like Cu, Ag, Sn,
Sn/Pb, Zn, Al, Mg and Fe. Metallic inorganic salts for conduction may be:
sulfates, chlorides or nitrates of Fe, Cu, Ag, Sn, Pd, Pt, Zn, Al, Mg and
catalysts. Metallic oxides may be useful as potential dielectrics. Damaged
or fatigued printed or integrated circuits represent new potentialities for
proactiveness.

• ECFC processing
ECFC should be processed in the environment that is in real field conditions
in which the circuit should be functional such as:

• Mechanical (vibration, pressure)
• TRB (temperature, relative-humidity, bias) with direct current, alterna-

tive current or pulse plating of variable frequency
• Light, radiation
• Cyclical operation of various types
• Superposed oscillatory fields

These kinds of fields are the usual field of stresses for reliability tests. This
suggests that evolutionary circuits may results from some over-tested circuits
still able to show new capabilities.

An example of flow chart for ECFC fabrication is based on the following
steps:

• Build K-frames-based on the wave equation, WE, solutions
• Select appropriate environment
• Introduce the K-frames and media in field conditions and allows periodic

signals, stress field
• Develop the first level of filaments, ECF0 during training for signal that

needs to be sensed or for any encountered new signals
• Build the circuit ECFC=K0∗ECF0
• Repeat ECF0 procedure and allows ECF1 corresponding to another sig-

nal and so on
• Build the circuit ECFC=K0∗K1∗. . . ∗Km∗ECF1∗ECF2∗. . . ∗ECFm
• Resulting circuits may be covered with gel, organic coating, photo coating

or lacquer to ensure protection and robustness.

The operators U from the associated SKUP describe the evolutionary cir-
cuit at different levels of its construction.

The ECFC would be a circuit useful and stable in its building conditions.
For any new level another frequency domain of oscillatory field is associated.
As much as the oscillatory field still exists the new level would be developed.
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If the structured dendrite structures were located in a specific field, the result-
ing structure would be able to recognize the patterns of that field. Learning
and removal of information is possible if any dendrite may continually be
formed broken and regenerated. Training to discriminate signals may be ac-
complished with the help of WH waves. The similarity associated to WH
waves as defined in Sect. 2.2.3 is associated to the potentialities P of the
SKUP.

• n-graphs for dendrite circuits development
The growing of tiny gold wires circuits in voltage controlled colloids is an
example of ECFC (Miller and Downing 2002).

Fig. 4.18 illustrates a potential development for dendrites architecture us-
ing n-graphs (Appendix A5).

For the stage n=0 the filaments, are isolated wires. At n=1 interactions and
dendrites may appear. This is allowed by interaction within the substrate.
Filaments are separated in the n=1 stage but they interact in the n=2 stage
to form arrays of interacting filaments. The n=2 stage shows the coupling of
two or more dendrites in macro-wires.

The final stage, n=3 corresponds to a kind of single dendrite. The single
dendrite pattern is specific.

The integrative closure, connecting also n=0 and n=3 is still an open
problem for such systems. The dendrites development should be reversible.

A process like this may be compared with the operadic development (Ap-
pendix A6). The transition from 2-graphs to 3-graphs may be described as
an operad.

The relation between higher categories, n-folds operads and dendrite cir-
cuit growth was investigated by Forcey (2008).

n=0

n=1 n=2

n=3

Fig. 4.18 n-graphs for dendrites framework
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4.4.2 Evolvable Circuits

4.4.2.1 Evolvability Challenges

Evolvable circuits, EC, and evolutionary circuits are closely related. The dif-
ference between them corresponds to the degree of achievement from the point
of view of full evolvability. This refers to the number of involved categorical
levels and to closure. Evolutionary circuits show hierarchically architecture
while evolvable ones suppose the integrative closure. This is also correlated to
embodiment degree and to the scales. Transition from fixed circuits to evolv-
able circuits implies a change of scale, an increasing of the number of corre-
lated scales. This is related to the categorical level too. Evolutionary circuits
refer mainly to micro and meso-structured circuitry components while EC
focuses also on molecular and nano-molecular structures facilitating the inte-
grative closure. The evolutionary circuit is based on largely extrinsic designed
and built circuits, while EC is expected to self-construct and to modify most
part of their circuitry based on a genotype-phenotype-like scheme inherent
to evolvability. Evolutionary circuit design is mainly from exterior while EC
should be autonomous and self-programmed from the interior of the devices
in a complex interaction with their environment. There is a threshold below
which evolutionary circuit tends towards fixed circuits and above which they
may progress towards fully EC.

Evolvable designs of experiments, EDOE was presented as a new model-
ing and simulation framework for complex problems solving (Iordache 2009).
Additionally, EDOE may support the neurogonitive architecture for fully
evolvable circuits, EC, practical implementation. The challenge is to build
circuits that take advantage and control of their environment in increasingly
complex ways. EC is supposed to be an embodied EDOE, able to run EDOE
intrinsically, with emergent, behavior.

Unconventional principles, design of configurations, materials, fabrication
methods, testing and applications have to be evaluated for evolvable circuitry
(Bedau et al. 2000, Miller 2008, Rasmussen et al. 2004, Zauner 2005, Mahalik
2005).

Cellular automata suggest interesting architectures for EC soft. An ex-
ample is the EvoCA cellular automata system (Taylor 2002). The EC’s are
supposed to be organizationally closed for matter but informational open.
In order to realize evolvable systems, an important representational distinc-
tion should be between genotype and phenotype plus a biotic structure. As
illustrated by EvoCA, semantically closed constructions may lead to novelty.
EvoCA is a system where the environment is represented by a layer made
of cellular automata, the physical or dynamical part, S and the genotypes
represented by a second genome layer the inert or symbolic part, K. Each
genotype controls a given cell in the first layer and evolves through a genetic
algorithm. EvoCA-like constructions lead to operationally closed evolvable
circuits, embedded in a dynamic environment, having metabolic-like poten-
tial, and being capable of self-replication and self-maintenance.
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4.4.2.2 Molecular Electronics

Molecular and nano-molecular systems represent the promising domain able
to ensure the objectives for EC that is to add evolution capability to devices,
to self-construct systems going beyond learning and being capable to act
completely autonomous in an indeterminate environment. The circuits may
be electronic, optical, molecular, micro-fluidic, and so forth.

As expected, bio-molecules provided potential substrates to build techni-
cal information processes systems as EC. For example biologically available
conjugated polymers, such as carotene, can conduct electricity and can be
assembled into circuits.

Among the bio-molecules, the Bacterio-rhodopsin, BR, and the deoxyri-
bonucleic acid, DNA received extensive attention. Hybrid systems that com-
bine the best features of bio-molecular architecture, with optic, electronic,
micro-fluidic circuits represent a necessary step in EC development. The hy-
brid character refers to both formal models and practical devices.

These hybrids are digital-analog devices. The analog aspects are related to
rate-dependent processes, and the digital aspects are related to macro-states
and to macro-state transition rules. The issue of digital-analog or symbolic
connectionist complementarity is closely related to the closure concept and to
evolutionary behavior for devices (Pattee 1995, Cariani, 2001).The potential
of the hybrid devices and hybrid models remains to be developed, but by
all indications, such representational method can provide strategies of unify-
ing low-level connectionist and high-level symbolic models of neurogonitive
processes.

4.4.2.3 Bacterio − rhodopsin for Optoelectronic Circuitry

Early use of molecules in information processing has been in the field of
optical computing. This suggested as candidate for EC base material, the
Bacterio-rhodopsin, BR, which can serve as computer switch (Birge 1995,
Mann 1996, Vsevolodov 1998).

BR has two useful properties for molecular level calculation. It exhibits
photo chromic switching and shows photoelectric effect also.

The photo-cycle of BR, the sequence of structural changes induced by
light-allows the storage of data in memory. Green, red and blue light induce
structural changes of BR. Green light transforms BR in an intermediate de-
noted by “k” that relaxes to the “o” state. Red light transforms “o” state
in “p” state that relaxes to “q” state. Blue light converts “q” state back to
BR (Birge 1995). Any long lasting states can be assigned to digital values
making possible to story information as a series of BR molecules in one or
another state.

Discrete states as “0”, “1” and so on, allows operating the EC devices.
With these identifications the BR substrate may be the source for the sym-
bolic language such as pixels and strings.
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The photoelectric effect is another BR property useful for EC realization.
Practical use of this property is exigent because it requires the preparation
of BR films with highly oriented molecules. The possibility to interface BR
electrically is the basis for several applications. The light of a specific wave-
length range can be used to change the BR conformational state and the
conformation change is accompanied by a color change that can be detected
by optical means. It should be observed that the circuits are in this case, at
least in part, of optical type.

A significant step in the development of the optoelectronic circuitry and
computing was the study of all-light-modulated transmission mechanism of
BR films. When a yellow beam and a blue beam illuminate the BR film, the
two transmitted beams suppress mutually. Based on this mechanism, an all-
optical operating device in which all 16 kinds of double-variable binary logic
operations was implemented. The intensity of an incident yellow or blue beam
acts as the input to the logic gate and the transmission bears the output of
the gate. It is possible to turn this all-optical device into different states using
different wavelengths and different intensity illuminations.

Full evolvability of hybrid symbolic connectionist models and associated
circuitry that may be based on the unique properties of BR will be evaluated
in the following.

4.4.2.4 Embedded EDOE

The perspectives of a hybrid optoelectronic device based on BR molecules
properties, in which conventional electronics is used to implement DOE anal-
ysis, are evaluated in the following.

Photo-cycle and photoelectric effects allows a direct writing DOE embed-
ding in the BR based substrate. BR memorizing digits should be comple-
mented by standard electronics able to perform the real valued operations.

As shown in Sect. 2.2.4, the DOE are resulting as particular solutions of
the wave equation. Consider the solution:

Y (T, Z) = Z ⊕ (V ⊗ T ) (4.9)

A computing “cell” with three BR molecules is retained here for illustration
purposes. Table 4.12 shows the wave solution for V=1.

Table 4.12 Convection model: Y (T, Z)

Z\T 0 1 2
#0 0 1 2
#1 1 2 0
#2 2 0 1
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Table 4.13 DOE associated to three molecules cell

Exp Molec. Time Operation
1 #0 0 g
2 #0 1 r
3 #0 2 b
4 #1 0 r
5 #1 1 b
6 #1 2 g
7 #2 0 b
8 #2 1 g
9 #2 2 r

The Table 4.12 is resulting by Galois field, GF (3) calculations and is a
3x3 Latin-square. The factors are the time steps 0, 1, 2, the molecules #0,
#1, #2 and the operations 0=g, 1=r, 2=b corresponding to the three colors
green, red, blue able to induce transitions. The time is multiple of the same
time-step.

Standard DOE table may be developed by indicating the conditions asso-
ciated to any element of the 3x3 Latin square (Table 4.13). Experimental re-
sults of DOE application may be the resolution, or any other value or data to
be memorized. The DOE selects the significant results and also the significant
factors by standard ANOVA calculations done by an external computer. This
is Fourier analysis over the real field, for the device functioning parameters.

Successive steps will continue the experiment in the direction of beneficial
results. The new experiment means a new DOE based on GF(m) algebra
calculation and the wave equation. Following the EDOE suggestion, hardware
may be achievable in 2-D or 3-D structures with concentric hierarchically
located levels or planes. Light sources should be placed externally (Birge
1995).

Based on special BR properties, new classes of evolvable circuits, embed-
ding and evolving DOE became possible. The evolvability, for the proposed
architectures is the challenged result. Among the possible sets of DOE ma-
trices, for n runs, m factors, and s settings we select the Walsh matrix of de-
sign, Wn,m,s, or Latin square matrices Ln,m,s generated by first order wave
equation, WE (Iordache 2009). As for the EDOE structures, after the imple-
mentation of the DOE matrix of the type Wn,m,s or Ln,m,s it is required to
perform at least two steps: factor evaluation, on columns in DOE, and ex-
periment classification, on rows in DOE. It is necessary to define thresholds
as degrees of acceptability for results. This help to decide when to recog-
nize a pattern to be classified, as new. Various areas throughout the chosen
EC layers may be written and addressed simultaneously. It is conceivable
to embed Wn, m, s or Ln,m,s matrices in any active areas with memory.
EC would be built using in succession similar additive and subtractive steps
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as for printed circuits and integrated circuits fabrication. Matrices such as
Wn,m,s or Ln,m,s play the role of masks in printed or integrated circuits
fabrication. These evolvable circuits should be able to drive the input signal
and to decode the signal in a manner similar to logical thinking processes.
As a difference, if compared to conventional circuits, this kind of EC will be
continuously formed and erased, allowing the operation to be in succession
forward and backward. The parallel search may be organized to achieve am-
plification, resonance and coherency. The EC works associatively as well as
serially. By parallel processing the experiments would be performed at once,
and the recorded results can be presented simultaneously to the center DOE.
The EC should be able to record data from different areas to analyze and to
give rise to a decision. This means that EC need to have monitoring func-
tions, that is sensors, and executive functions, that is actuators, since the
long term technological challenge is to get results by EC, independent of any
external analyst or “operator”. The EC should be a system that confronts
the environment having the ability to evolve autonomously. New environ-
mental conditions for EC may be materialized by a new row in the existing,
embodied, component DOE matrices. This is the discrete symbolic step of
the EC. Then follows the step in which real field values are associated to
discrete DOE. This real valued step goes after data expansion and precedes
data compression. With a learned degree of acceptability the sensor informa-
tion goes backward and is classified in inner levels or layers and finally come
back in the center. In this way the material embodiment may regenerate the
symbolic description represented by DOE.

4.4.2.5 Hybrid Controlled Micro-fluidic Circuits

In micro-fluidic devices the circuitry from printed or integrated circuits is re-
placed or completed by micro-channels for fluids. The MEMS became in fact
MECS (Mahalik 2005). The transport of molecules in complex biological or
chemical process may be programmed as the electric current in standard elec-
tronic circuits (van Noort et al. 2002, Verpoorte and de Rooij 2003, Erickson
and Li 2004).

The micro-fluidic devices supposes the existence and the development of
sensors, able to monitor changing environment, of actuators able to influence
environment, coupled with computing and control capabilities for communi-
cation and data processing, all physically wired together. Tangen et al. (2006)
presented elements of an interesting development in this direction. It focuses
on the application of on-line programmable micro-fluidic bio-processing as a
vehicle towards the design of artificial cells.

The electronically controlled collection, separation and channel transfer of
the bio-molecules are monitored by sensitive fluorescence setups. This makes
combinatorial fluidic circuitry and biochemical reactions circuitry feasible.

The basic elements of the SKUP quadruple may be identified for the “bio-
molecular console” described by Tangen et al. (2006). The reconfigurable
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electronic interface is linked to the space of conditions, K. The micro-fluidic
network represents the states-S. This includes chemicals reservoirs and prod-
ucts. The parallel actuator network is related to operators U, while the mon-
itoring system is linked to possibilities P. An electronic computer guides and
controls the molecular circuits and ensures the cyclic functioning.

Another promising micro-fluidic technology consisting of a fluidic layer
with a network of micro-channels superposed on layer with external com-
puter programmable electrodes and actuators controlling the flow, has been
proposed by Goranovic et al. (2006).

The project applies micro-fluidic nano-techniques to programming molec-
ular reactions and priming an evolution of artificial cells and cell assemblies,

The basic elements of the SKUP are obvious for this technology. The ge-
netic channel is linked to the space of conditions K. The temperature cycles
ensures the gene replication. This fits with the cyclic character of the time T.

The metabolic channel is naturally linked to states S. The replication of
selected proto-cells is linked to operators U, while the metabolism of selected
proto-cell step is related to the possibilities P. The switch from categorical
product to coproduct is determined by the oscillatory temperature fields and
is able to control the proto-cell replication.

A categorical presentation of the architecture is shown in Fig. 4.9.
An important specificity of this micro-fluidic device is the realization of

closed or loop operations, essential for the transition from fixed circuits to
evolutionary and then to fully evolvable circuits.

4.4.2.6 Self-constructed Molecular Circuits and Computing

Self-construction and separation in classes may be considered as compu-
tational processes and may be utilized to build information processors.
Observe that the basic elements of the SKUP quadruple are naturally as-
sociated to any self-construction or separation processes. Suppose that from
an unstructured environment S, some molecules considered as symbols are
able to assembly in a supra-molecular structure linked to the conditions space
K. These K structures should be recognized by a receptor and possibly ampli-
fied to provide an action U, redirected towards the unstructured environment
S. The selection of specific symbols from the environment is done according
to possibilities P. This may be a process driven by an optimization criterion
as for instance energy or entropy production minimization or maximization
(Prigogine 1980, Dewar 1993).

The self-construction may be described by the WE, too. According to
the interpretation of the tensor product two main types of configurations
are resulting. The tree-like forms are resulting for if the tensor product is
a categorical product and a multiple cells stacked configuration are to be
expected if the tensorial product is a coproduct. The transition between the
two configurations is mediated by the environment conditions.

A categorical presentation of the architecture is shown in Fig. 4.9.
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Elements of the general scheme of self-constructed computing are present
in different DNA experiments (Adleman 1994, Winfree 2000).

Adleman proposed an approach to information processing with biopro-
cesses that allowed solving combinatorial problems by making use of specific
set of DNA molecules.

DNA-based computing consists of four basic operations: encoding, hy-
bridization, ligation and extraction. Problem solutions are obtained through
an exhaustive parallel search by means of the pattern recognition intrinsic
to DNA hybridization that is to self construction of complementary DNA
strands. Involved chemical reactions such as the activity of restriction en-
zymes, ligases polymerases or simple hybridization can operate in parallel
and this explains the possibility to solve complex problems.

Following similar ideas, cellular automata architectures describing DNA
self-constructed circuit patterns for various forms of DNA tiles have been
studied by Winfree (2000). Cook et al. (2004) showed how several common
digital circuits, including de-multiplexers, random access memory, and Walsh
transforms, could be built in a bottom-up manner using biologically inspired
self-construction.

The Walsh-Hadamard matrices may be obtained as particular solutions of
the wave equation WE. Table 4.14 shows a solution of the kinetic model in
which we suppose the rate Q to be constant in the wave equation WE.

It is in fact the so-called Hadamard-Sylvester matrix, similar to Sierpinski
triangle as presented by Cook et al. (2004). To highlight this parallelism the
bolding and underlining is used for the wired “1” cells. It was assumed that
“-1” breaks the circuitry. The non-wired digits are italicized. Notice that only
two digits “0” (replaced here by “-1”) and “1” need to be present in this case.

Based on operations in GF (4) Sierpinski square like fractals may be gen-
erated (Carbone and Seeman 2002 a, 2002 b).

At the present stage, a number of researchersare rather skepticalwhether ex-
isting DNA based computation strategies will ever follow Bacterio-rhodopsin,
BR, on its path in information processing. Critical problems with DNA

Table 4.14 Kinetic model, Y (T)

Q\T 000 001 010 011 100 101 110 111
000 1 1 1 1 1 1 1 1
001 1 -1 1 -1 1 -1 1 -1
010 1 1 -1 -1 1 1 -1 -1
011 1 -1 -1 1 1 -1 -1 1
100 1 1 1 1 -1 -1 -1 -1
101 1 -1 1 -1 -1 1 -1 1
110 1 1 -1 -1 -1 -1 1 1
111 1 -1 -1 1 -1 1 1 -1
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circuits and DNA-bio-computers are related to their inflexibility and to the
ineffective accommodation to the variety of computation requests in real condi-
tions. The assembly of DNA molecules of “tiles” has been designed to simulate
the operation of any Turing machine. The self-construction DNA structures
maybemappednaturally onto the grammars of theChomskyhierarchy (Chom-
sky 1966, Winfree 2000). However for strictly algorithmic operations the DNA
tiling computer can’t compete with silicon machines. It was expected that the
DNA computers may be eventually advantageous for the complementary do-
main of computation, beyond Turing machine capability. Again, it is not the
case for the self-assembled DNA circuits as much as they map the Chomsky
hierarchy of grammars.

The 1-D chain of DNA or the 2-D crystal tiles represent only the infor-
mational that is the K part of the SKUP. Major parts of the actual DNA
computation have been accomplished with human operator involvement. To
solve complex problems the K structure should be part of SKUP quadruple.
K elements should be recognized by a receptor and amplified to provide an
action U towards the external non-assembled environment S. The selection
of specific symbols from the environment S would be done according to the
possibilities P. For this reason the tilling need to be flexible and the tiles
could be cycled through alternating assembly and disassembly stages. The
self-construction and reconstruction operation may be programmable using
glued and un-glued tiles (Carbone and Seeman 2002 b). According to the
signification of the tensor product in WE solution, two main types of config-
urations are resulting. The tree-like forms are resulting if the tensor product
is a categorical product and a multiple tiles stacked configuration is to be
expected if the tensorial product is a categorical coproduct. The switching
from one tensor interpretation to another is induced by environment changes.

A categorical presentation of the architecture is shown in Fig. 4.9.
Interactions between tiles and between tiles and their environment are

mandatory to challenge Turing machines.

4.4.2.7 Conventional Circuits versus Evolvable Circuits

For the forthcoming evolutionary and evolvable circuits fabrication a natu-
ral query is why do not use traditional methods, such as the physical and
chemical study, followed by the modeling and extrinsic implementation of
the models in the usual computer based control of circuit fabrication. The
answer is that the envisaged control and computing task are impossibly to
be extrinsically operated for evolvable systems of high complexity. In con-
ventional circuits design the majority or non-linear interactions that could
possibly contribute to the problem are deliberately excluded. The properties
characterizing EC constructions should be, at least in part, the consequences
of their own dynamic of the computational environment, not of the decision
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Table 4.15 Comparison of conventional circuits and evolvable circuits

Conventional circuits-PC Evolutionary or evolvable circuits
Single objective for any fabrication step More general classes of objectives
Defined-based on previous learning Undefined-open for learning, innovative
Top-down, linear Top-down, bottom-up, cyclic, multi-scale
Aims for best solution, optimal Makes workable, evolvable, active
Looks for perfect elements Accepts elements with small defects
Conventional design-detailed models Generic design-based on wave equation
Clear processing steps, complete data Incomplete data and variable ad-lib steps
Independent on previous designs Use everything at hand, if useful
Insulate the elements, serial or sequential Combine elements, distributed, parallel
Builds Builds, disbands, embeds and reorganizes
Divide and conquer Divide and integrates, opportunistic
Maintain functionality in different media Sensitive to environment, multifunctional
Restricted, static Less restricted, rich, dynamic
Isolate from medium-protection Medium, opportunistic exploitation
Avoid variability, interactions, transitions Accept, use variability, interactions
Reliable Robust, multi-reliable
High maintenance Low and proactive-maintenance
Catastrophic degradation Degradation in steps, hindered

of the designer who is anyway unable to predict the evolution of its con-
struction. EC are supposed to work for their evolution more efficiently than
an external computer or operator can do. EC has the potentiality to be
developed towards an autonomous system allowing survivability in com-
pletely unforeseen situations. It was observed that the more an autonomous
system is optimized to perform a task the less capability it has to deal with
unexpected changes in an uncertain environment. This implies that in com-
plex environments, evolvability rather than adaptability or versatility may
be an appropriate measure of a circuit’s potential to carry out tasks.

Complex systems, natural or artificial, seem to opt for evolvability rather
than for optimization and adaptability. This may be because in a complex
environment it is impossible to achieve the optimum particularly when there
are strong interactions between conditions K and states S. One way to pro-
ceed is to diversify several acceptable circuit options in a given environment
and to let them evolve. This means that evolvable circuits may have several
possible non-optimal but acceptable and useful architectures. This implies the
discovery of environment properties that can be utilized to solve the imposed
tasks.

Table 4.15 summarizes some of the differences between conventional cir-
cuits and unconventional ones such as evolutionary circuits and evolvable
circuits, EC.

At the present technological level, a project grouping in a manufacture and
in a product all the described faculties of EC is unrealistic but it is expected
to manufacture EC of increasing capability in small steps.
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4.4.3 Perspectives

4.4.3.1 Evolutionary Devices

The categorical architectures shown in Fig. 4.19 may be considered for the
study of evolutionary devices. Similar frames have been described by Cariani
(Cariani 1989, 1998). The three levels are outlined in Fig. 4.19.

S-Environment

K1-Control

K2-Coordination

U10 P01

U21 P12

Fig. 4.19 Three levels framework for evolutionary devices

Cariani shows that a hierarchical framework similar to that from Fig. 4.19,
are embedded in the internal structure of individual organisms and evolution-
ary devices. The elements of the categorical framework are as follows:

S corresponds to the environment; K is structured in two levels to allow
performing integrated neurogonitive/behavioral tasks.

K1-Evaluation and control level
K2-Coordination and decision level
U10: K1 → S control actions, decoding
P01: S → K sensor and measuring devices, encoding
U21-effectors resources
P12-evaluation/selection capability

The resulting device is able to evolve new goals to have a creative direction.
The same general framework corresponds to the scientific or engineering

methodology. While this method includes only measurements and computa-
tions, organisms and evolvable device may act directly on the environment
through effector organs of devices. The effectors convert signs into action
on the material world. This corresponds to the control U. The basic infor-
mational operations of signs (semantic functionalities) present in organisms
and devices can be described in terms of measurement (sensing), computa-
tion (coordination) and effecting (action). For living organisms, capable of
neurogonitive behavior this was described by von Uexküll (1973).

It would be interesting to compare Fig. 1.5 showing the functional cycle
with Fig. 4.19 and Fig. 4.9 showing two categorial frames for conditions, K1
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and K2 with two basic interpretations of tensorial product, the coproduct
“∪” for K1 and the product “×” for K2.

The interaction between S and K1 corresponds to a 1st order evolutionary
step, while that between K1 and K2 to a 2nd order evolutionary step.

Many architectures proposed as evolutionary designs are based on less than
four levels and may be considered as still incompletely developed.

The Pask’s evolutionary device and the evolved radio appear to lack some
elements of the top levels and also a link between coordination level K2 and
environment S.

The missing levels and links may induce severe limitations and prevent
this device to become evolvable.

4.4.3.2 Three Realms Frameworks and Molecular Computation

There are several molecular computation studies suggesting how to design
synthetic chemical or biochemical circuitry able to perform specified algo-
rithms (Miller, 2008).

A method to make use of molecules in computing architectures was by
reproduction of computer solid-state components with molecular structure.
This is the usual approach taken in molecular electronics research. Typi-
cal objectives are the molecular wires, rectifiers or transistors (Siegmund et
al. 1990). Another research direction was the chemical computing based on
the fact that chemical reaction networks are able to process information in
parallel. Kuhnert et al. (1989) demonstrated contour detection, contrast en-
hancement and same image processing operations on images projected onto
a thin layer of a light-sensitive variant of chemical waves reaction medium.
This system is a chemical realization of an associative memory and sug-
gests the potential to implement learning networks by chemical means. The
research into parallel chemical information processors led to artificial neural
network, NN design based on mass-coupled chemical reactors (Hjelmfelt et al.
1992). Real chemical computing employs real chemical processes to compute.
For example the simplest nonlinear function XOR can be implemented with
reaction-diffusion behavior of palladium chloride (Adamatzky and Costello
2002).

Studies in molecular and supra-molecular design and engineering opened
the perspectives for the realization of electronic, ionic and photonic cir-
cuits (Lehn 2004). Orchestrated, supra-molecular architectures deliberately
designed to carry information allow to accelerate and to direct molecular
interactions.

Artificial chemistry and organic computing suggests innovative ways to go
beyond the chemical kinetic level and encompass supra-molecular interac-
tions (Dittrich et al. 2001, Dittrich 2005). Interesting projects involve genetic
programming (Harding 2005, Miller 2008).

Genetic programming GP, introduced by Koza (1992) is a development
of genetic algorithms, GA methods. In GP the operations are as in GA but
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K1-GA K2-GP

S-Materials

U10 P01 P02 U20

U21

P12

Fig. 4.20 Genetic programming framework

on populations of programs not on strings. The behavior of each program in
population is evaluated using a fitness function. Programs that do better are
copied into next generation.

Fig. 4.20 outlines a three realms categorical framework for evolutionary
computation.

The notations are as follows: S-Materials, K1-GA, genetic algorithm, K2-
GP, genetic programming. The frame is useful for the study of evolution in
materio (Miller and Downing 2002, Harding 2005).

S represents the material substrate. K1 and K2 are conditioning levels. K1-
represents the basic genetic algorithm GA. K2-is the meta-level representing
the genetic programming, GP. A change in K2 has higher impact because it
represents multiple changes at previous realm K1.

The categorical framework describes interactions as: U10: GA → Materials,
U20: GP → Materials, P01: Materials → GA, P02: Materials → GP.

What is interesting in this three realm architecture is the connection be-
tween K2 and S that is, between meta-model level and materials. This com-
putation in materio, can ensure evolvability and autonomy. For this reason
such frameworks were proposed for extracting computation from physical
systems, for autonomous experimentation (Lovell et al. 2009).

4.4.3.3 Four Level Frameworks

Driven by the continuously changing environment, living beings developed
hierarchical self-repair and self-replicating mechanisms. Embryonics project
brings the worlds of biology and electronics closer, by implementing in silicon
these features.

Progresses have been reported in the construction of multi-cellular self-
replicating systems (Mange et al. 2004). This is significant since one of
the characteristic of evolvability is self-reproduction. Mange and coworkers
proposed the “Tom thumb” algorithms that made possible to design self-
replicating loops with universal construction and universal computation that
can be easily embeddable into silicon.
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K1-Cells

K2-Organism

K3-Population

U21 P12

U32 P23

S-Molecules

U10 P01

Fig. 4.21 Four level organization of embryonics system

Mange et al. (1998) proposed a bio-inspired architecture for evolutionary
electronic devices.

Embryonics bio-inspired devices are made up of four hierarchical levels
(Fig. 4.21).

The multi-scale structure in embryonics project was correlated to the four
levels of organization analogous to molecules, cells, organisms and population.
The molecular level is represented by the basic field programmable gate array,
FPGA elements.

The FPGA is the molecule of the devices. The FPGAs can be put together
through a set of programmable connections to realize different types of digital
circuits.

Each cell is a simple processor for instance a binary processor realizing a
unique function within the organism, defined by a set of instructions.

The organism level is an association of cells while the population level is
an association of organisms. The functionality of the organism is obtained
by the parallel operation of all the cells. The size that is, the number of cells
of an organism is also programmable and given enough space the organisms
replicate automatically. Since the functionality of an organism is identical in
each replicated copy, this mechanism provides an intrinsic fault tolerance.
Given an appropriate cell structure the organisms are capable of learning.

In living cells, the genetic information is processed sequentially. Designing a
memory that is inspired by biology suggests a different type of memory, called
cyclic memory. Cyclic memory does not require any addressing mechanisms.
Instead it consists of a simple storage structure that circulates synchronously
its data in a closed circle, much as the ribosome processes the genome inside
a living cell.
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Observe that for the embryonics project, an architecture showing the inte-
grative closure mappings between the top level K3 and the lower level denoted
by S is still missing.

The embryonics architecture is restricted to the 3rd order evolutionary
step. For this reason the embryonics project may be considered only as evo-
lutionary devices rather then fully evolvable, autonomous devices.

Critical for EC autonomy is the embodiment of the computing capacity
that is the interconnection between K3 and S realms. This is the 4th order
evolutionary step.

Strategies to correlates K3 to S both in programming as in fabrication
are suggested by organic computing studies (Müller-Schloer et al. 2004). In
this general frame Pietzowski et al. (2006) proposed a system that use the
paradigm of antibodies and developed the organic computing middleware
system.

For the organic computing middleware architecture, the four levels may
be identified as: S-Transport connector interface, K1-Event dispatcher, K2-
Service interface, K3-Organic manager. Existing computational systems can
be redesigned and redeveloped to engineer evolvable capabilities into them.
Evolvability capabilities have to be added gradually and incrementally as
organic computation studies suggests. Complete evolvability may be attained
only step by step.

4.4.3.4 n-Graphs Organization of Immuno-embryonic Systems

In order to create technological systems that are autonomous robust and
evolvable, new engineering approaches must draw inspiration from natural
complex systems.

For example in computer security, systems able to mimic the biological
immune system can provide solutions against attacks on computer networks.

The immune system has been a major source of inspiration in the design
of pattern recognition applications including computer security and virus
protection.

Inmunotronics is another bio-inspired concept that has been successfully
implemented in evolutionary hardware (Bradley et al. 2000).

Immunity is a multi-layered and multi-scale architecture starting with phys-
ical barriers, through physiological barriers, through cellular interactions.

Antibody mediated immunity protects the body from bacteria using B
cells to generate antibodies and helper T cells to activate the production of
antibodies.

The geometrical shape plays a crucial role for this type of immunity.
The embryonic cells proposed in embryonics lack a real-time method of

verifying that each is performing the correct operation with respect to neigh-
boring cells.

Bradley et al. (2000) proposed to incorporate emrbryionic and immune
cells.
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n=0

n=1 n=2

n=3

Fig. 4.22 n-graphs for immuno-embryonics framework

Fig. 4.22 illustrates a potential development cycle for architecture using
n-graphs (Appendix A5). It is an appropriate tool for multi-scale systems
study.

The immune cells are black and the embryonic cells are white.
At n=0 the cells, prepared to be immune or embryonic are isolated. At n=1

interactions and couples cells appear. This is allowed by interaction within
the body. Cells are separated in the stage n=1 but they interact in the stage
n=2 to form arrays of interacting cells. The stage n=2 shows the coupling
of two or more cells in frames going beyond cells areas isolation. It describes
interactions of interactions.

The final stage, n=3 corresponds to a kind of global action of the whole
immuno-embryonics architecture. Whole architecture pattern allow to iden-
tify faults and to review critical cases. The integrative closure including the
interconnection of stages n=0 and n=3 represents the challenge for such
systems.

The n-graphs are naturally correlated to n-categories (Appendix A5).
Katis et al. (2000) proposed symmetric monoidal categories with feedback

as appropriate modeling frameworks for concurrent and distribute processes
as those shown in Fig. 4.22.

In this case the objects in category are the cells, immune or embryonic.
Their interconnections represent the relations. In bicategories the objects are
cells, the relations between cells corresponds to 1-graphs, and the relations
between relations to the 2-graphs. There are two different compositions of
2-cells, the vertical and the horizontal.

Notice that Katis et al. (2000) study is restricted to the 2-graphs that is,
to 2-categories.
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The tricategorical development would include the 3-graphs as a step to-
wards the integrative closure.
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