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Preface

Welcome to the 12th International Conference on Rough Sets, Fuzzy Sets, Data
Mining and Granular Computing (RSFDGrC 2009), held at the Indian Institute
of Technology (IIT), Delhi, India, during December 15-18, 2009. RSFDGrC is
a series of conferences spanning over the last 15 years. It investigates the meet-
ing points among the four major areas outlined in its title. This year, it was
co-organized with the Third International Conference on Pattern Recognition
and Machine Intelligence (PReMI 2009), which provided additional means for
multi-faceted interaction of both scientists and practitioners. It was also the core
component of this year’s Rough Set Year in India project. However, it remained
a fully international event aimed at building bridges between countries.

The first sectin contains the invited papers and a short report on the above-
mentioned project. Let us note that all the RSFDGrC 2009 plenary speakers,
Ivo Diintsch, Zbigniew Suraj, Zhongzhi Shi, Sergei Kuznetsov, Qiang Shen, and
Yukio Ohsawa, contributed with the full-length articles in the proceedings.

The remaining six sections contain 56 regular papers that were selected out
of 130 submissions, each peer-reviewed by three PC members. We thank the
authors for their high-quality papers submitted to this volume and regret that
many deserving papers could not be accepted because of our urge to maintain
strict standards. It is worth mentioning that there was quite a good number of
papers on the foundations of rough sets and fuzzy sets, many of them authored
by Indian researchers. The fuzzy set theory has been popular in India for a longer
time. Now, we can see the rising interest in the rough set theory.

The success of the conference would be impossible without the people ac-
knowledged on the following pages. We would like to express our gratitude in
particular to Lotfi A. Zadeh, who agreed to serve as Honorary Chair. Further-
more, on behalf of all the rough set researchers, we would like to thank all the
PReMI organizers for a very fruitful cooperation. We would also like to acknowl-
edge all the organizations that supported us during our preparations: Interna-
tional Rough Set Society, International Fuzzy Systems Association, Indian Unit
for Pattern Recognition and Artificial Intelligence, Indian Statistical Institute
in Calcutta, Machine Intelligence Research Labs, Springer, Chinese Rough Set
and Soft Computing Society, Special Interest Group on Rough Sets in Japan,
Egyptian Rough Sets Working Group, and Infobright. Special thanks go once
more to IIT Delhi for providing the basis for both PReMI and RSFDGrC 2009.

October 2009 Hiroshi Sakai
Mihir Kumar Chakraborty

Aboul Ella Hassanien

Dominik Slezak

William Zhu
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Affordance Relations*

Ivo Diintsch®, Giinther Gediga?, and Adam Lenarcic!

! Dept of Computer Science, Brock University, St. Catharines, ON, Canada
duentsch@brocku.ca, alO4uh@brocku.ca
2 Dept of Psychology, Universitit Miinster, Fliednerstr. 21, D-48149 Miinster
guenther@gediga.de

Abstract. Affordances are a central concept of J.J. Gibson’s approach
to visual perception. We describe and discuss the concept of affordances
with a brief look at its application to robotics, as well as provide an
overview of several existing formalizations. It turns out that a represen-
tation of affordances can be based on a certain hierarchy of Pawlak’s
approximation spaces. We also outline how concepts could be used in a
theory of affordances, and how affordances might be recognized in simple
perceiving situations.

1 Introduction

Over a period of fifty years, J. J. Gibson developed an “Ecological Approach to
Visual Perception” [1I2] that was radically different from the prevailing views of
the time - and, to some extent, from those of today.

“To perceive is to be aware of the surfaces of the environment and of
oneself in it. The interchange between hidden and unhidden surfaces is
essential to this awareness. These are existing surfaces; they are specified
at some points of observation. Perceiving gets wider and finer and longer
and richer and fuller as the observer explores the environment. The full
awareness of surfaces includes their layout, their substances, their events
and their affordances.”

The term ecological in the sense used by Gibson pertains to the natural environ-
ment, to the “everyday things” [3] of the acting individual:

— ‘We are told that vision depends on the eye which is connected to the brain.
I shall suggest that natural vision depends on the eyes in the head on a body
supported by the ground, the brain being the central organ of a complete
visual system.” [2| p. 1]

* Equal authorship is implied. Ivo Diintsch gratefully acknowledges support from the
Natural Sciences and Engineering Research Council of Canada. Giinther Gediga is
also adjunct professor in the Department of Computer Science, Brock University.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 1 20009.
© Springer-Verlag Berlin Heidelberg 2009



2 I. Diintsch, G. Gediga, and A. Lenarcic

Gibson’s two main propositions are as follows [2]:

1. Objects are perceived directly, “not mediated by retinal pictures, neural pic-
tures, or mental pictures”. Perception is regarded as the act of extracting
information from a changing context. While synthesis is a conceptualiza-
tion from the parts to the whole, perception proceeds from the whole to
parts and features. Each feature then can be viewed as an object of further
investigation. Visual perception takes place in a nested environment, and
thus, granular computing, in particular the rough sets model, are a natural
environment to model visual perception.

2. The observer and the observed are an inseparable pair, related by affor-
dances.

“The affordances of the environment are what it offers the animal,
what it provides or furnishes, either for good or ill. The verb to afford
is found in the dictionary, but the noun affordance is not. I have made
it up. I mean by it something that refers to both the environment
and the animal in a way that no existing term does. It implies the
complementarity of the animal and the environment.” [2]

Numerous experiments have been performed to test Gibson’s theory, most no-
tably the early seminal experiments of stair—climbing by Warren [4]. For a more
complete account, the reader is invited to consult [5] for a succinet introduction
to Gibson’s philosophy and Volume 15(2) of the journal Ecological Psychology
(2002) for an account of recent developments.

2 Affordance Relations

The complementarity of the animal and the environment that it perceives is
central to Gibson’s world view and he elaborates

— “An affordance is neither an objective property nor a subjective property; or
it is both if you like. An affordance cuts across the dichotomy of subjective—
objective and helps us to understand its inadequacy. It is equally a fact of
an environment and a fact of behavior. It is both physical and psychical, yet
neither.” [2], p. 129]

As an example, consider the experiments by Warren [4], who associates the
affordance “climb-able” with the ratio } between the stair riser height (p) and
the agent’s leg length (¢). The affordance “climb-able” then is given, when 1; <
0.88. The ratio Z is regarded as an “ecological invariant”: For any agent Z and
any set X of stairs, “climb—able” is afforded when Z < 0.88; in yet another form,
fl’ < 0.88 offers the action “climb”. A stair — climbing affordance, then, is a pair

stair heigh

(2.1) stair height is favourable, can climb).
leg length S~ 7
~

~ ~ organism
environment
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The agent perceives the environment according to what it offers him - a path is
“walk—able”, stairs are “climb-able”, a rabbit is “hug-able”. Affordances may
change over time, and, depending on the state of the agent, the same physical
objects are perceived differently — stairs can be “paint—able”, and a rabbit “eat —
able”; an elephant, viewed from afar may be “wonder—able”, yet, when it gallops
towards us, it will afford danger and, possibly, harm. Also, a flying goose may
afford a feeling of beauty in one observer, while another one sees an object for
the dinner table. Perception is thus “economical” and only that information is
extracted which is necessitated by the affordance.

It is important to note that in Gibson’s world the objects in the environment
are not conceptual in the first place (“This is a bucket”) but obtained from the
concrete physical features of the visual field (after recognizing invariants etc.).
The name “bucket” is just a label arising from an affordance.

Even though affordances are a central construct of Gibson’s theory, there is
surprisingly little agreement on an operational, let alone ontological, definition of
the affordance concept. Various proposals have been made to model affordances.
Below, we give two examples:

— “Affordances .. .are relations between the abilities of organisms and features
of the environment. Affordances, that is, have the structure Affords—¢ (fea-
ture,ability).” (Chemero [6], p. 189)

— “Let W), (e.g. a person-climbing-stairs system) = (X,, Z,) be composed of
different things Z (e.g. person) and X (e.g. stairs). Let p be a property of
X and ¢ be a property of Z. The relation between p and gq, Z, defines a
higher order property (i.e., a property of the animal — environment system),
h. Then h is said to be an affordance of W), if and only if

1. Wpe = (Xp, Z,) possesses h.
2. Neither Z nor X possesses h.” (Stoffregen [7], p. 123).

For an overview of operationalizations of affordances the reader is invited to
consult [8]. Here, we take the view that

— An affordance is a relation R between states (or intentionalities) of an agent
(animal, human, robot) and certain properties of its environment.

This is not as simple as it looks: The environment has infinitely many features,
and an affordance selects a set of features according to the agent’s “affordance
state” or “intentionality”, see Figure[Il These states form a nested set of over-
lapping possibilities. It is important to note that the agent is a part of the
environment, and that affordances depend on the agent’s properties as well as
those offered by the visual field as the stair—climbing environment shows:

“Gibson argued that the proper “objects” of perceiving are the same as
those of activity. Standing still, walking, and running are all relations
between an animal and its supporting surface.” [9 p 239]

Furthermore, affordances need to be modelled in a changing environment.
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Affordance relation
Animal Invariants

Optical array
Human Agent Dynamic flow

Robot

Fig. 1. Affordances I

3 Affordances and Robots

Just as Gibson suggests that natural vision depends on the eyes, head, body, and
ground, so could one suggest that a camera, fixed to a robot, supported on the
ground, might support natural vision as well. Sahin et al. [8] provide a review
and subsequently build on both the concept of affordance, as well as the formal-
ization, with a particular idea in mind. They are motivated by their “interest
in incorporating the affordance concept into autonomous robot control.” [8] The
affordance concept can be viewed as a binary relation, between the agent and
environment, and though several attempts have been made to strengthen this
relation, none have been agreed upon. The challenge is trying to decipher what
parts of the environment, are related to what parts of the agent, and what each
relation should mean to both the agent and environment. Sahin et al. develop
the formalization by first generalizing ‘environment’ to ‘entity’, and ‘agent’ to
‘behavior’; and then suggesting that the effect of each relation between an entity
and a behavior, be explicit in the relation. They refine the formalization in their
paper from (environment, agent) to (effect, (entity, behavior)). The creation of
sets of (effect), and sets of (agent,behavior) tuples is given as the formaliza-
tion develops to account for the equivalences in entities, behaviors, affordances,
effects, and agents.

One of J.J.Gibson’s prominent ideas is the concept of optic flow which he stud-
ied originally pertaining to flying/landing aeroplanes. He reasoned that during
controlled motion, it is not what the parts of the environment are, that an animal
is attentive to, but rather where the parts are in relation to the agent, coupled
with their relative velocity. This agrees with Duchon, Warren and Kaelbling
[10] who implement this activity in robots. Ecological robotics can be described
as applying the theory of ecological psychology to the field of robotics. One
consequence of adhering to the ecological approach is the importance Gibson
lays on the optic array. Vision is the most prominent way in which agents pick
up information about their environment. “The flow of optical stimulation pro-
vides a ‘continuous feedback’ of information for controlling the flow of the motor
activity.” [II] The robots which Duchon et al. implemented used optic flow to
navigate a crowded lab and an atrium. Cameras mounted on top supplied con-
stant feedback to the actuators which used the relative velocities of objects in
the environment to control movement. The robots navigate around obstacles
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successfully without modeling the obstacles internally. The authors claim to
have recreated a ‘how’ pathway in an autonomous robot, hoping to support the
suggestion that the brain has separate ‘how’ and ‘what’ pathways by simulating
one of them.

In order to represent visual field data Yin et al [T2] use extended quadtrees.
The quadtree representation offers a hierarchical decomposition of visual infor-
mation which can be implemented in a system or a robot. More generally, the
quadtree serves well as a representation of a hierarchy of approximation spaces
in the sense of Pawlak ([I3[14]). As there is a huge number of possibilities to
construct the representation, the paper deals with the focus problem, which turns
out to be the mathematical problem of how to choose an optimal root node for
a quadtree to minimize the roughness of the representation. With the solution
to that problem, we are able to analyze the information of the data structure at
any stage of the hierarchy by an optimal rough set representation.

Certainly, this approximation is no more than a first step towards an af-
fordance based object representation using rough sets, as the guidance of the
perceiving act is something like an orientation affordance. But as the focus mech-
anism is described, it can be used in more complex and more dynamic situations.
Obviously, a system using this technology has no a priori layout of objects which
classical rough set based robot systems have (e.g. [15]), but offers a way how to
construct affordance based objects when perceiving a posterior.

4 Affordances and Concepts

A participatory view of “concepts” naturally leads to an affordance relation. In
machine learning, membership in a concept — or, more precisely, in a category
— may be “learned” by a sequence of examples and counterexamples; each finite
stage of this process may be called an approximation of the category. However, if
a concept is to be approximated, then there must be a notion of a “true concept”
that can be approximated. The background is the hypothesis that

— Membership in the category is defined by a common set of attributes the
presence of which is necessary and sufficient for membership.

In other words, machine learning classifiers are based on an extensional under-
standing of a concept; it may be noted that often no distinction is made between
a category and its corresponding concept. A typical situation is an “object — at-
tributes” relationship in which objects are described by feature vectors, and
concepts are formed by aggregating the object — attributes pairs into classes;
rough sets and formal concept analysis are typical examples of such procedure.
Aggregation algorithms are often purely syntactical, and semantical concerns
are taken care of in a pre—processing stage such as choice of attributes, depen-
dencies, weightings, prior probabilities etc. Once this is done, the meaning of a
concept is strictly truth—functional, i.e. the meaning of a composite expression
can be obtained from the meaning of its parts.

While the classical view of understanding a concept based on a set of defining
features and an extensional interpretation is appropriate in delineated contexts,
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it falls short where human cognition is concerned. This has been recognized for
some time, and various approaches to graded membership in conceptual cate-
gories have been proposed, for example, fuzzy sets [T6JI7IIR], prototype theory
[T9120], or the rough set variable precision model [21]. Each of these approaches
have their own problems; for example, handling aggregated concepts within fuzzy
set theory suffers from the strict conditions imposed by t—norms, which are math-
ematically expedient, but not necessarily suitable in everyday situations [2223].

Yet another aspect is the fact that (the meaning of) a concept may change
under varying contexts; Rosch [24] argues convincingly that

“Concepts occur only in actual situations in which they function as par-
ticipating parts of the situation rather than as either representations
or as mechanisms for identifying objects; concepts are open systems by
which creatures can learn new things and can invent; and concepts exist
in a larger context — they are not the only form in which living creatures
know and act”.

The contextual aspects adds to the discussion the pragmatic dimension well
known from linguistics. It seems sensible to regard a concept as a relation be-
tween elements of a set S of states or exemplars of a concept and elements of
a set of situations or contexts, where the situation affords a certain state of
the concept. For example, the concept TREE can have the states “fig tree”,
“oak”, “maple”, but also “artificial Christmas tree”, or a “connected acyclic
simple graph”. For another example, a state of the concept UMBRELLA may
be “closed” in the context “dry weather”, and may change to “open” when it
starts to rain. Such change may or may not occur, for example, if I have to walk
only a short distance in the rain I may not bother to open the umbrella.

One way to describe the inner object relationship given concept and context
information is to assume hidden (and unknown) attributes, which serve as a
basis for a state based description of the conditional inner object relationship.
In this direction, a formalism based on principles of quantum mechanics which
claims to represent concepts in a state — context — property relation (SCOP)
was presented by Aerts and Gabora [25[26]. Their theory assumes very strong
conditions — for example, the set of contexts needs to be a complete ortholattice
— which need further justification. To describe the concept “Pet” the SCOP
formalism requires a Hilbert Space with 1400 largely unspecified dimensiondY.

An alternative which avoids adding hidden attributes, uses only the observ-
ables and coalitions of objects as a basis of a state description of the conditional
inner object relationship given a context. In terms of theories [27I28/29], the
Galois connection between the set of contexts and a certain collection of objects
sets (we call object states) enables us to use observables without assumptions of
hidden states.

A nice way to interpret contexts is to assume that each is a description of an
affordance structure, containing affording objects interacting with the perceiver.

! It turns out that the SCOP formalism is largely tautological; we analyze the SCOP
formalism in a separate paper.
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Table 1. Exemplars and contexts

Exemplar el e2 e3 ed ebe6 1 Contexts

Rabbit 4 7 155 1 0 7 el The pet is chewing a bone

Cat 2513223 3 1 12 e2 The pet is being taught

Mouse 36 8 111 0 5 e3 The pet runs through the garden
Bird 2 8 2 4 171 8 e4 Did you see the type of pet he has?
Parrot 2 161 4 631 7 This explains that he is a weird person
Goldfish 1 2 0 2 0 4810 eb The pet is being taught to talk
Hamster 4 7 6 4 1 0 7 e6 The pet is a fish

Canary 1712718 1 The pet is just a pet

Guppy 1 20 2 0 469

Snake 2 21 2201 3

Spider 113 2300 2

Dog 5019243 6 0 12

Hedgehog 2 2 8 120 0 3

Guinea pig3 7 9 4 1 0 7

Using the Galois connection among the set of contexts and object states, it is
possible to describe concepts and a concept hierarchy by integrating relations
which are governed by basic affordances (or simple contexts) to more complex
affordances (or contexts) which govern a certain structure of objects.

As an example for this idea we re-analyse the data presented in [2526]. The
concept to be modelled is PET; 81 respondents were given 14 exemplars a;
(states) of the concept PET and 7 contexts e;. For each pair (a;,e;) they were
asked to rate the frequency with which exemplar a; appears in context e;; the
responses and the contexts are shown in Table [l FEach context e; defines a
quasiorder on the set of exemplars by setting

ap Se; Om (anaei) < (amaei)-

We exhibit these quasiorders in Table 2} The rows indicate the position of the
exemplar in the quasiorder induced by the context named in the first column.
We assume that 1 is the most general context (“The pet is just a pet”). The
main aim of our approach is now to set up a relationship of concepts with vary-
ing contexts. To this end we introduce contrast concepts —e; by reversing the
order of the quasi-order of e;. In the spirit of rough sets, the approximation of
1 is done by finding that relation e; (or —e;) which is compatible with 1 for
most of the elements. In the second step, the compatible elements are removed
and the best context with respect to the remaining prototypes will be com-
puted. The iteration will come to an end, when either no context is left or the
quasi-order of any remaining contexts are incompatible with 1 on the remaining
prototypes.
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Table 2. The quasiorders

1 2 3 4 5 6 7 8 9 & 10
1 Cat  Goldfish Guppy Bird Rabbit Mouse Snake  Spider
Dog Canary Parrot Hedgehog
Hamster
Guinea pig
el Dog Cat Rabbit Mouse Bird Goldfish
Hamster Guinea Pig  Parrot Canary
Snake Guppy
Hedgehog Spider
e2 Dog Parrot Cat Bird Rabbit Mouse Goldfish Spider
Hamster Guppy
Canary Snake
Guinea pig Hedgehog
e3 Dog Cat Rabbit Guinea pig  Mouse Hamster Spider Bird Parrot(9)
Hedgehog Snake Goldfish(10)
Guppy (10)
e4 Spider Snake Hedgehog Mouse Rabbit Bird Dog Canary
Parrot Cat Guppy
Hamster
Guinea pig
e5 Parrot Bird Canary Dog Cat Mouse Goldfish
Hamster Guppy
Guinea pig Snake
Spider
Hedgehog
e6 Goldfish Guppy Cat Rabbit
Bird Mouse
Parrot Hamster
Canary Spider
Snake Dog
Hedgehog
Guinea pig

The algorithms leads to following result:

1« (—e4,el, e6) with an approximation success of 80%, due to case that 76 of
the 95 elements of the quasi-order 1 is recovered by (—e4,el, ¢6). Furthermore,
it is easy to show that

— The contrast concept —e4 is indispensable for the approximation of 1.

— The concept el can be replaced by e3.

— The concept €6 is only applicable, after el or e3 are applied (conditional
approximation). But e6 is indispensable.

The concepts e2 and e5 are not compatible with 1.

There are six prototypes for which the corresponding relations (governed by
1) cannot be substituted by any combination relation of the basic concepts.
For these prototypes we need other contexts to approximate 1.

We see that this simple approach leads us to quite good and reasonable results.
The main assumption was that we may use conditional relationships among
objects, which are governed by certain affordances.

5 A Closer Look at the Affordance Relations

In order to describe the affordance relation, many entities are used which have a
certain understanding for a perceiver (like a human), but are not self-contained,
when we wish to describe perceiving. Consider Figure Pland the terms used in it.
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Fig. 2. Affordances II

Optical array. This seems as one would expect — there are some kind of sensors

which describe the outer world for the agent. Nevertheless, there is no good
reason to restrict ourselves to the term “optical”. An agent may have sen-
sors for infrared ”light” or for the consistency of surfaces (think of cleaning
robots).

Background and objects. It seems clear, the background is the residual of

object definitions in the optical array. But there are some problems as well,
because affordances establish the background-object relation as well.
Consider the following scenario: You are in a garden with wonderful apple
trees and nice apples. Obviously, the apple trees and the apples form objects.
The “eat—able” relation establishes the object formation; everything else —
e.g. the pathway to a house — is the background for perceiving apples given
the “eat—able” affordance. Obviously, one or more apples are objects for
this certain act of perceiving, because they are “pick—able” and afterwards
“eat—able”.

Things change dramatically, when a lion crosses your way. The “is—safe”
affordance governs the scene now, and one has to look for a path to the house
(which “is—safe”), and where we know that the path is “walk—able” and that
it is connected to an object which “is—safe”. Now, the object is the path and
certainly no apple is the object of perceiving in this moment, and even the
wonderful apple tree forms part of the background.

Note that even in very simple perceiving situations the object-background-
relations flip-flop dramatically as some paintings by Escher demonstrate.

Intentionalities. Whereas we — as humans — seem to know what “intentionali-

ties” mean, it is somewhat problematic to assume intentionalities for robots.
First of all, we note that this term is an abbreviation for one or more very
complex systems. One part of the system must refer to the agent as aiming
to control its future by applying transformations based on affordances. For
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example, the “walk—able” affordances may be triggered by certain intention-
alities in the following way:

— A pre—outer-part: An object approaches which is connected to the affor-
dance “hurt-able”.

— An inner part: The intentionality “have to escape” is triggered by the
objects. Now, an “is—safe” object combined with a “walk—able” object is
needed.

— An expected-post—outer part: This describes how certain change pat-
terns defined on the “optical array” appear, and what change pattern is
connected with an object with an “is—safe” affordance.

The example offers a view of intentionalities which are trigged by an event
from outside the agent. This is not true in general — internal “events” like
hunger or thirst may set intentionalities as well. The more complex the struc-
ture of the agent the more “hidden” intentionalities may exist.

Summary

Affordances are a basic concept of Gibson’s theory regarding how we view the
world. In a broader context, concepts can be viewed as affordances, robotic
vision can be modelled based on an affordance concept, and autonomous robots
could use the concept to act and react in their environments. A formalization of
affordance relations needs to provide crisp and fuzzy structures, mechanisms for
spatial and temporal change, as well as contextual modeling. Besides rough sets
[13], knowledge structures [28] and formal concept analysis [27], Barwise and
Perry’s situation theory [30J31] seems to be an appropriate tool for modeling
affordances (as suggested by Greeno [32]).
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Abstract. The aim of the lecture is to provide a survey of state of the
art related to a research direction concerning relationships between rough
set theory and concurrency in the context of process mining in data. The
main goal of this review is the general presentation of the research in this
area. Discovering of concurrent systems models from experimental data
tables is very interesting and useful not only with the respect to cognitive
aspect but also to possible applications. In particular, in Artificial Intel-
ligence domains such as e.g. speech recognition, blind source separation
and Independent Component Analysis, and also in other domains (e.g.
in biology, molecular biology, finance, meteorology, etc.).
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rent systems, rough sets, Petri nets.

1 Introduction

Data Mining and Knowledge Discovery [3],[8],[9],[34],[36] is a very dynamic re-
search and development area that is reaching maturity. Discovering unsuspected
relationships between data and hidden (intrinsic) models belong to main tasks
of Machine Learning [7]. Data are often generated by concurrent processes,
and discovering of concurrent system models may lead to better understand-
ing the nature of modeled systems, i.e., their structures and behaviors [10],[TT]-
M7MaM7M7M'mvm_mvmvm'M7M‘

A concept of concurrent systems can be understood widely. In general case, a
concurrent system consists of processes, whose local states can coexist together
and they are partly independent. For example, as concurrent systems we can
treat systems consisting of social processes, economic processes, financial pro-
cesses, biological processes, genetic processes, meteorological processes, etc.

Subject matter of this lecture concerns methods of concurrent system model-
ing on the basis of observations or specifications of their behaviors given in the
form of different kinds of data tables. Data tables can include results of obser-
vations or measurements of specific states of concurrent processes. In this case,
created models of concurrent systems are useful for analyzing properties of mod-
eled systems, discovering the new knowledge about behaviors of processes, etc.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 12 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Data tables can also include specifications of behaviors of concurrent processes.
Then, created models can be a tool for verification of those specifications, e.g.
during designing concurrent systems. Methods presented in this lecture can be
used, for example, in system designing or analyzing, data analysis, forecasting.

The aim of the lecture is to provide a survey of state of the art related to a
research direction concerning relationships between rough set theory and con-
currency. The idea of this research direction has been proposed by Z. Pawlak
in 1992 [I4]. In the last two decades we have witnessed an intensive develop-
ment of this relatively new scientific discipline by among others A. Skowron, Z.

Suraj, J.F. Peters, R. Swinarski, K. Pancerz et al. [10],[T1]-[12], [16], [17],[19],[20]-
M7M'mvmvm'mvm»M7m~

In general, this research direction concerns the following problems: (i) discover-
ing concurrent system models from experimental data represented by information
systems, dynamic information systems or specialized matrices, (ii) reconstruction
of concurrent models, (iii) prediction of concurrent models change in time, (iv) a
use of rough set methods for extracting knowledge from data, (v) a use of rules for
describing system behaviors, (vi) modeling and analyzing of concurrent systems
by means of Petri nets on the basis of extracted rules.

2 Data Representation and Interpretation

In the research, data tables (information systems in Pawlak’s sense [I3]) are
created on the basis of observations or specifications of process behaviors in the
modeled systems. The data table consists of a number of rows (each representing
an object). A row in the data table contains the results of sensory measurements
represented by the values of vector of attributes (a pattern). Values of attributes
can be interpreted as states of local processes in the modeled system of concur-
rent processes. However, we interpret the rows of data table as global states of
the system composed with local states of concurrent processes.

Sometimes during the design phase, it is beneficial to transform the origi-
nal experimental data table (with original attributes) into the transformed data
table containing projected attributes represented in possibly better attribute
space. In addition, frequently the attribute selection process follows, when only
the most relevant features are taking to form a final feature vector (a pattern).
These preprocessing steps are necessary when the resulting concurrent model,
constructed directly from the original data table is to complex and dimension-
ality of model variables is too high. Based on the OccamSs razor (and Risannen
minimum description length paradigm) [3], in order to obtain the best general-
izing design system, the model and its variable should be as simple as possible
(preserving system functionality). The phase of attribute transformation and
relevant attribute selection is yet another difficult data mining step [3],[32],[34].
The input for our approach consists of the data table (if necessary, preprocessed
in a way described above).
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3 Research Methodology and Knowledge Representation

Proposed methods of discovering concurrent system models from data tables
are based on rough set theory and colored Petri net theory. Rough set theory
introduced by Z. Pawlak [I3] provides advanced and efficient methods of data
analysis and knowledge extraction. Petri nets are the graphical and mathematical
tool for modeling of different kinds of phenomena, especially those, where actions
executed concurrently play a significant role. As a model for concurrency we
choose coloured Petri nets proposed by K. Jensen [6]. They allow to obtain
coherent and clear models suitable for further computer analysis and verification.
Analysis of net models can reveal important information about the structure and
dynamic behavior of the modeled system. This information can be also used to
evaluate the modeled system and suggest improvements or changes [10],[T1]-[12].

Model construction is supported by methods of Boolean reasoning [2]. Boolean
reasoning makes a base for solving a lot of decision and optimization problems.
Especially, it plays a special role during generation of decision rules [I8]. Data
describing examined phenomena and processes are represented by means of in-
formation systems [14], dynamic information systems [26] or specialized matrices
of forbidden states and matrices of forbidden transitions [10],[I2]. An informa-
tion system can include the knowledge about global states of a given concurrent
system, understood as vectors of local states of processes making up the con-
current system, whereas a dynamic information system can include additionally
the knowledge about transitions between global states of the concurrent system.
The idea of representation of concurrent system by information system is due to
Z. Pawlak [I14].

Nowadays, discovery of process models from data becomes a hot topic under
the name process mining (see, e.g. [11,[5],[8],[12],[16],[19],[27],[36]).

Specialized matrices are designed for specifying undesirable states of a given
concurrent systems (i.e., those states, which cannot hold together) and undesir-
able transitions between their states. Decomposition of data tables into smaller
subtables connected by suitable rules is also possible. Those subtables make up
modules of a concurrent system. Local states of processes represented in a given
subtable are linked by means of functional dependencies [21],[27],[12].

4 Maximal Consistent Extensions of Information Systems

Approaches considered in this lecture are based on the assumption that data col-
lected in data tables include only the partial knowledge about the structure and
the behavior of modeled concurrent systems. Nevertheless, such partial knowl-
edge is sufficient to construct a suitable mathematical models. The remaining
knowledge (or - in the sequel - a part of it) can be discovered on the basis of
created models.

The knowledge - about the modeled systems - encoded in a given data table
can be represented by means of rules which can be extracted from the data table.
We consider deterministic rules and inhibitory rules. In contrast to deterministic
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(standard) rules which have the relation attribute = value on the right-hand
side, inhibitory rules have on the right-hand side the relation attribute # value.
The use of inhibitory rules allows us to represent more knowledge encoded in
data tables. As a result, concurrent models based on inhibitory rules are of-
ten more compact than models based on deterministic rules. Besides SexplicitT
global states, corresponding to objects, the concurrent system generated by the
considered data table can also have ShiddenT global states, i.e., tuples of at-
tribute values not belonging to a given data table but consistent with all the
rules. Such ShiddenT states can also be considered as realizable global states.
This was a motivation for introducing in [20] maximal consistent extensions of
information systems with both SexplicitT and ShiddenT global states. Such ex-
tension includes all possible global states consistent with all rules of a given kind
extracted from the original data table. More precisely, the maximal consistent
extension of an information system relative to the set of given kind of rules is
the set of all objects from the Cartesian product of ranges of attributes from
the information system, for which each rule from the set of rules is true. They
play important role in investigations at the intersection of the rough set theory
and the theory of concurrent systems [14],[20],[22],[17],[29]. The theoretical back-
grounds for the maximal consistent extensions of information systems as well as
the algorithmic problems such as: (i) the membership to the extension, (ii) the
construction of the extension, (iii) the construction of rule system describing the
extension, are presented in [4]. The obtained results and published in [4] show
that the inhibitory rules provide an essentially more power tool for knowledge
representation than the deterministic rules. These results will be useful in appli-
cations of data tables for analysis and design of concurrent systems specified by
data tables.

In this lecture, an approach to consistent extensions of information systems
and dynamic information systems is also presented. Especially, we are interested
in partially consistent extensions of such systems. Methods for computing such
extensions are given. In the proposed approach, global states of a modeled system
and also transitions between states (in the case of dynamic information systems)
can be consistent only partially with the knowledge included in the original
information system or dynamic information system describing a modeled system.
The way of computing suitable consistency factors of new global states or new
transitions between states with the original knowledge about systems is provided

(see [12]).

5 Structures of Concurrent Models

Two structures of concurrent system models are considered, namely synchronous
and asynchronous [12]. In the case of modeling based on information systems,
a created synchronous model enables us to generate the maximal consistent
extension of a given information system. An asynchronous model enable us to
find all possible transitions between global states of a given concurrent system,
for which only one process changes its local state. A model created on the basis
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of dynamic information system enables us to generate a maximal consistent
extension of that system. In this case, such an extension includes all possible
global states consistent with all rules extracted from the original data table and
all possible transitions between global states consistent with all transition rules
generated from the original transition system.

In this lecture, the problems of reconstruction of models and prediction of
their changes in time is also taken up. Those problems occur as a result of
appearing the new knowledge about modeled systems and their behaviors. The
new knowledge can be expressed by appearing new global states, new transitions
between states, new local states of individual processes or new processes in mod-
eled systems. In our approach, the concurrent model can be built on the basis
of a decomposed data table describing of a given system. If the description of a
given concurrent system changes (i.e., a new information system is available), we
have to reconstruct the concurrent model representing the old concurrent sys-
tem (described by the old data table). The structure of a constructed concurrent
model is determined on the basis of components of a data table (an information
system). Some methods for the reconstruction of concurrent models according
to such idea are presented in [24],[25],[30].

One of the important aspects of data mining is analysis of data changing in
time (i.e., temporal data). Many of the systems change their properties as time
goes. Then, models constructed for one period of time must be reconstructed
for another period of time. In the research, we assume that concurrent systems
are described by temporal information systems (data tables include consecutive
global states). In such a case, we observe behavior of modeled systems in consecu-
tive time windows that temporal information systems are split into. Observation
of changes enables us to determine the so-called prediction rules that can be
used to predict future changes of models. For representing prediction rules, both
prediction matrices [12] and Pawlak’s flow graphs are used [I5].

6 Computer Tool

In the todaySs computer science development, the usefulness of proposed methods
and algorithms for real-life data is conditioned by existing suitable computer tools
automating computing processes. Therefore, in this lecture the ROSECON system
is presented. ROSECON system is a computer tool supporting users in automated
discovering net models from data tables as well as predicting their changes in time.
The majority of methods and algorithms presented in this lecture is implemented
in ROSECON [I1]. Results of experiments with using proposed methods and al-
gorithms on real-life data coming from finance are presented [12].

7 Applications

The considered research problems in this lecture belongs to emerged Artificial
Intelligence directions, and it is very important not only with the respect to
cognitive aspect but also to the possible applications. Discovering of concurrent
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systems models from experimental data tables is very interesting and useful for a
number of application domains. In particular, in Artificial Intelligence domains,
e.g. in speech recognition [3], blind source separation and Independent Com-
ponent Analysis. In biology and molecular biology; for example, in obtaining
the answer concerning the following question: How the model of cell evolution
depends on change of the gene codes (see e.g. [35], pp. 780-804).

In the light of the our research findings [I0],[11]-[12],[I7],[L9],[20]-[22],[23]-
[27],[31] we can conclude that the rough set theory is suitable for solving problems
mentioned above.

8 Concluding Remarks

The presented research in the lecture allows us to understand better the struc-
ture and behavior of the modeled system. Due to this research, it is possible
to represent the dependencies between the processes in information system and
their dynamic interactions in graphical way. This approach can be treated as
a kind of decomposition of a given data table. Besides, our methodology can
be applied for automatic feature extraction. The processes and the connections
between processes in the system can be interpreted as new features of the mod-
eled system [23]. Properties of the constructed concurrent systems model (e.g.
their invariants) can be understand as higher level laws of experimental data.
As a consequence, this approach seems to be useful also for state identification
in real-time [20],[22],[27].

In the next paper, we will consider the prediction problem of property chang-
ing net models in non-stationary data systems. Such problem arises when ex-
perimental data tables change with time and the constructed net needs to be
modified by applying some strategies discovered during the process of changes.
We also pursuit application of the presented method to blind separation of
sources (for example concurrent time series represented by the dynamic dis-
crete data tables (contained sequential data). Practical applications comprise
separation of mixed continuous speech data, and model switching detection in
time series and in sequential data given by discrete data tables.
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Abstract. Intelligence Science is an interdisciplinary subject which dedicates to
joint research on basic theory and technology of intelligence by brain science,
cognitive science, artificial intelligence and others. Brain science explores the
essence of brain, research on the principles and models of natural intelligence at
molecular, cellular, and behavior levels. Cognitive science studies human men-
tal activities, such as perception, learning, memory, thinking, consciousness etc.
Artificial intelligence attempts simulation, extension, and expansion of human
intelligence using artificial methods and technologies. Researchers specialized
in above three disciplines work together to explore new concepts, theories, and
methodologies. If successful, it will create a brilliant future in 21st century. The
paper will outline the framework of intelligence science and present its ten big
challenges. Tolerance Granular Space Model (TGSM) will be discussed as one
of helpful approaches.

Keywords: Intelligence Science, Brain Science, Cognitive Science, Artificial
Intelligence, Tolerance Granular Space Model.

1 Introduction

Intelligence is the ability to think and learn. How to create intelligence from matter? It
is a valuable and extractive problem but it is also a tough problem. Since 1956 artifi-
cial intelligence is formally founded and has enjoyed tremendous success over the
past fifty years. Its achievements and techniques are in the mainstream of computer
science and at the core of many systems. For example, the computer beats the world’s
chess champ, commercial systems are exploiting voice and speech capabilities, there
are robots running around the surface of Mars and so on. We have made significant
headway in solving fundamental problems in knowledge representing, symbolic rea-
soning, machine learning, and more.

During the past fifty years, the Turing test and physical symbolic system hypothe-
sis play important roles to push research on artificial intelligence. Alan Turing
claimed that it was too difficult to define intelligence. Instead he proposed Turing test
in 1950 [1]. But the Turing test does not constitute an appropriate or useful criterion
for human-level artificial intelligence. Nilsson suggested we replace the Turing test
by the “employment test” [2]. To pass the employment test, Al programs must be able
to perform the jobs ordinarily performed by humans. Systems with true human-level
intelligence should be able to perform the tasks for which humans get paid. One can

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 202009.
© Springer-Verlag Berlin Heidelberg 2009
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hope that the skills and knowledge gained by a system’s education and experience and
the habile-system approach toward human-level Al can be entered at whatever level.

The 1975 ACM Turing Award was presented jointly to Allen Newell and Herbert
A. Simon at the ACM Annual Conference in Minneapolis, October 20. They deliv-
ered the 1975 ACM Turing Award Lecture and proposed physical symbolic system
hypothesis: “A physical symbol system has the necessary and sufficient means for
intelligent action; it consists of a set of entities, called symbols, which are physical
patterns that can occur as components of another type of entity called an expression”
[3]. Traditional artificial intelligence follows the principle of physical symbolic sys-
tem hypothesis to get great successes, particular in knowledge engineering.

During the 1980s Japan proposed the fifth generation computer system (FGCS).
It suggested expecting knowledge information processing to form the main part of
applied artificial intelligence and to become an important field of information proc-
essing in the 1990s. The key technologies of FGCS seem to be VLSI architecture,
parallel processing such as data flow control, logic programming, knowledge base
based on relational database, applied artificial intelligence and pattern processing.
Inference machines and relational algebra machines are typical of the core processors
which constitute FGCS. After ten years research and development FGCS project did
not reach the expected goal and caused many to reflect over the strategy and method-
ology of artificial intelligence.

In 1991, Kirsh pointed out five foundational issues for Al: (1) Core Al is the study
of conceptualization and should begin with knowledge level theories. (2) Cognition
can be studied as a disembodied process without solving the symbol grounding prob-
lem. (3) Cognition is nicely described in propositional terms. (4) We can study cogni-
tion separately from learning. (5) There is a single architecture underlying virtually all
aspects of cognition [4]. Minsky argued that intelligence is the product of hundreds,
probably thousands of specialized computational mechanisms he terms agents in
Society of Mind [5]. There is no homogenous underlying architecture. In the society
of mind theory, mental activity is the product of many agents of varying complexity
interacting in hundreds of ways. The purpose of the theory is to display the variety of
mechanisms that are likely to be useful in a mind-like system, and to advocate the
need for diversity. There is no quick way to justify the assumption of architecture
homogeneity.

Humans are the best example of human-level intelligence. McCarthy declared the
long-term goal of Al is human-level Al [6]. Recent works in multiple disciplines of
cognitive science and neuroscience motivate new computational approaches to
achieving human-level Al In the book On Intelligence, Hawkins proposed machine
intelligence meets neuroscience [7]. Granger presented a framework for integrating
the benefits of parallel neural hardware with more serial and symbolic processing
which motivated by recent discoveries in neuroscience [8]. Langley proposed a cogni-
tive architecture ICARUS which uses means-ends analysis to direct learning and
stores complex skills in a hierarchical manner [9]. Sycara proposed the multi-agent
systems framework which one develops distinct modules for different facets of an
intelligent system [10]. Cassimatis and his colleagues investigate Polyscheme which
is a cognitive architecture designed to model and achieve human-level intelligence by
integrating multiple methods of representation, reasoning and problem solving [11].
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Through more than ten years investigation, particular encouraged by bioinformat-
ics which is a paragon combining biological science and information science in the
end of 20 century, I think artificial intelligence should change the research paradigm
and learn from natural intelligence. The interdisciplinary subject entitled Intelligence
Science is promoted. In 2002 the special Web site called Intelligence Science and
Artificial Intelligence has been appeared on Internet [12], which is constructed by
Intelligence Science Lab of Institute of Computing Technology, Chinese Academy of
Sciences. A special bibliography entitled Intelligence Science written by author was
published by Tsinghua University Press in 2006 [13]. The book shows a framework
of intelligence science and points out research topics in related subject.

In order to resolve the challenge in information science and technology, that is,
high performance computers with extremely low intelligence level, scientists research
on brain-like computer. IBM has received a $4.9 million grant from DARPA to lead
an ambitious, cross-disciplinary research project to create a new computing platform:
electronic circuits that operate like a brain. Along with IBM Almaden Research
Center and IBM T. J. Watson Research Center, Stanford University, University of
Wisconsin-Madison, Cornell University, Columbia University Medical Center, and
University of California-Merced are participating in the project. Henry Markram who
is Director of the Center for Neuroscience & Technology and co-Director of EPFL's
Brain Mind Institute involves unraveling the blueprint of the neocortical column,
chemical imaging and gene expression.

2 A Framework of Intelligence Science

Intelligence science is an interdisciplinary subject mainly including brain science,
cognitive science, and artificial intelligence. Brain science explores the essence of
brain, research on the principle and model of natural intelligence in molecular, cell
and behavior level. Cognitive science studies human mental activity, such as percep-
tion, learning, memory, thinking, consciousness etc. In order to implement machine
intelligence, Artificial intelligence attempts simulation, extension and expansion of
human intelligence using artificial methodology and technology [12].

Brain can perceive the outside world through our senses, such as eye, ear, nose,
skin, each of which sends patterns corresponding to real-time environment. Sensory
input provides abundant information about certain physical properties in the surround-
ing world. Reception, processing, and transmitting such information are often framed
as a neural bottom-up process. The neural correlates of each can be studied in their
own right by suitable experimental paradigms, and functional magnetic resonance
imaging (fMRI) has proven very valuable in humans.

The brain has trillions of neurons, with complicated branching dendrites, and doz-
ens of different types of ion-selective channels. Brain science, particularly computa-
tional neuroscience focuses on making detailed biologically realistic models which
can be simulated by computer. It points out that perceptive lobes have special func-
tion separately, the occipital lobe processes visual information, the temporal lobe
processes auditory information, the parietal lobe processes the information from the
somatic sensors. All of three lobes deal with information perceived from the physical
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world. Each lobe is covered with cortex where the bodies of neurons are located.
Cortex consists of primary, intermediate and advanced areas at least. Information is
processed in the primary area first, then is passed to intermediate and advanced area.

Cognitive science is interdisciplinary study of mind and intelligence that embraces
philosophy, psychology, artificial intelligence, neuroscience, linguistics, and anthro-
pology. Cognitive scientists study the nature of intelligence from a psychological
point of view, mostly building computer models that help elucidate what happens in
our brains during problem solving, remembering, perceiving, and other psychological
processes. Cognitive science is a study how the mind works, both in its conceptual
organization and computational and neural infrastructure. The mind contains percep-
tion, rational, consciousness and emotion.

Comparing with computer system, the neural network in brain is the same as hard-
ware and the mind looks like software. Most work in cognitive science assumes
that the mind has mental representations analogous to computer data structures, and
computational procedures similar to computational algorithms. Connectionists have
proposed novel ideas to use neurons and their connections as inspirations for data
structures, and neuron firing and spreading activation as inspirations for algorithms.
Cognitive science then works with a complex 3-way analogy among the mind, the
brain, and computers. Mind, brain, and computation can each be used to suggest new
ideas about the others. There is no single computational model of mind, since differ-
ent kinds of computers and programming approaches suggest different ways in which
the mind might work.

Artificial Intelligence develops programs to allow machines to perform functions
normally requiring human intelligence, that is, attempts simulation, extension and
expansion of human intelligence using artificial methods. Russell points out four
approaches to artificial intelligence [14]: Acting humanly: the Turing test approach;
Thinking humanly: the cognitive modeling approach; Thinking rationally: the “laws
of thought” approach; Acting rationally: the rational agent approach.

Traditional work in Al was based on the physical symbol system hypothesis [3]. In
terms of the above hypothesis led to many successes both in creating tools that can
achieve elements of intelligent behavior, as well as in illuminating the many compo-
nents that make up human intelligence. Previous research on artificial intelligence
mainly simulates the human intelligence functionally and views the brain as black box.
Research scientists of intelligence science are changing the situation and exploring
innovative strategy and methodology for investigating the principles and key technol-
ogy of intelligence from cross multiple subjects. The book titled Intelligence Science
presents a primary framework in detail [13].

3 Ten Big Issues of Intelligence Science

Intelligence Science is an interdisciplinary subject which dedicates to joint research
on basic theory and technology of intelligence by brain science, cognitive science,
artificial intelligence and others. Ten big issues of intelligence science will be
discussed in this section.
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3.1 Basic Process of Neural Activity

The brain is a collection of about 10 billion interconnected neurons. Neurons are
electrically excitable cells in the nervous system that process and transmit information.
A neuron's dendritic tree is connected to thousands neighbouring neurons [15]. When
one of those neurons is activated, positive or negative charge is received by one of the
dendrites. The strengths of all the received charges are added together through the
processes of spatial and temporal summation. The aggregate input is then passed to
the soma (cell body). The soma and the enclosed nucleus don't play a significant role
in the processing of incoming and outgoing data. Their primary function is to perform
the continuous maintenance required to keep the neuron functional. The output
strength is unaffected by the many divisions in the axon; it reaches each terminal
button with the same intensity it had at the axon hillock.

Each terminal button is connected to other neurons across a small gap called a syn-
apse. The physical and neurochemical characteristics of each synapse determine the
strength and polarity of the new input signal. This is where the brain is the most flexi-
ble, and the most vulnerable. In molecular level neuron signal generation, transmis-
sion and neurotransmitters are basic problems attracted research scientists to engage
investigation in brain science.

3.2 Synaptic Plasticity

One of the greatest challenges in neuroscience is to determine how synaptic plasticity,
learning and memory are linked. Two broad classes of models of plasticity are de-
scribed by Phenomenological models and Biophysical models [16].

Phenomenological models are characterized by treating the process governing syn-
aptic plasticity as a black box that takes as input a set of variables, and produces as
output a change in synaptic efficacy. No explicit modeling of the biochemistry and
physiology leading to synaptic plasticity is implemented. Two different classes of
phenomenological models, rate based and spike based, have been proposed.

Biophysical models, in contrast to phenomenological models, concentrate on
modeling the biochemical and physiological processes that lead to the induction and
expression of synaptic plasticity. However, since it is not possible to implement
precisely every portion of the physiological and biochemical networks leading to
synaptic plasticity, even the biophysical models rely on many simplifications and
abstractions. Different cortical regions, such as Hippocampus and Visual cortex have
somewhat different forms of synaptic plasticity.

3.3 Perceptual Representation and Feature Binding

The perceptual systems are primarily visual, auditory and kinesthetic, that is, pictures,
sounds and feelings. There is also olfactory and gustatory, i.e. smell and taste. The
perceptual representation is a modeling approach that highlights the constructive, or
generative function of perception, or how perceptual processes construct a complete
volumetric spatial world, complete with a copy of our own body at the center of that
world. The representational strategy used by the brain is an analogical one; that is,
objects and surfaces are represented in the brain not by an abstract symbolic code, or
in the activation of individual cells or groups of cells representing particular features
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detected in the visual field. Instead, objects are represented in the brain by construct-
ing full spatial effigies of them that appear to us for whole world like the objects
themselves or at least so it seems to us only because we have never seen those objects
in their raw form, but only through our perceptual representations of them.

The binding problem is an important one across many disciplines, including psy-
chology, neuroscience, computational modeling, and even philosophy. Feature bind-
ing is the process how a large collection of coupled neurons combines external data
with internal memories into coherent patterns of meaning. Due to neural synchroniza-
tion theory, it is achieved via neural synchronization. When external stimuli come
into the brain, neurons corresponding to the features of the same object will form a
dynamic neural assembly by temporal synchronous neural oscillation, and the dy-
namic neural assembly, as an internal representation in the brain, codes the object in
the external world.

3.4 Coding and Retrieval of Memory

A brain has distributed memory system, that is, each part of brain has several types of
memories that work in somewhat different ways, to suit particular purposes. Accord-
ing to the stored time of contents memory can be divided into long term memory,
short term memory and working memory. Research topics in memory relate to coding,
extracting and retrieval of information. Current working memory attracts more re-
searchers to involve.

Working memory will provides temporal space and enough information for com-
plex tasks, such as understanding speech, learning, reasoning and attention. There are
memory and reasoning functions in the working memory. It consists of three compo-
nents: that is, central nervous performance system, video space primary processing
and phonetic circuit [19].

Memory phenomena have also been categorized as explicit or implicit. Explicit
memories involve the hippocampus-medial temporal lobe system. The most common
current view of the memorial functions of the hippocampal system is the declarative
memory. There are a lot of research issues that are waiting for us to resolve. What is
the readout system from the hippocampal system to behavioral expression of learning
in declarative memory? Where are the long-term declarative memories stored after the
hippocampal system? What are the mechanisms of time-limited memory storage in
hippocampus and storage of permanent memories in extra- hippocampal structures?

Implicit memory involves cerebellum, amygdala, and other systems [20]. Cerebel-
lum is necessary for classical conditioning of discrete behavioral responses. It is
learning to make specific behavioral responses. Amygdalar system is learning fear
and associated autonomic responses to deal with the situation.

3.5 Linguistic Cognition

Language is fundamentally a means for social communication. Language is also often
held to be the mirror of the mind. Chomsky developed transformational grammar that
cognitivism replaced behaviorism in linguistics [21].

Through language we organize our sensory experience and express our thoughts,
feelings, and expectations. Language is particular interesting from cognitive informatics
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point of view because its specific and localized organization can explore the functional
architecture of the dominant hemisphere of the brain.

Recent studies of human brain show that the written word is transferred from the
retina to the lateral geniculate nucleus, and from there to the primary visual cortex.
The information then travels to a higher-order center, where it is conveyed first to the
angular gyrus of the parietal-temporal-occipital association cortex, and then to Wer-
nicke’s area, where visual information is transformed into phonetic representation of
the word. For the spoken word auditory information is processed by primary auditory
cortex. Then information input to higher-order auditory cortex, before it is conveyed
to a specific region of parietal-temporal- occipital association cortex, the angular
gyrus, which is concerned with the association of incoming auditory, visual, and tac-
tile information. From here the information is projected to Wernicke’s area and
Broca’s area. In Broca’s area the perception of language is translated into the gram-
matical structure of a phrase and the memory for word articulation is stored [22].
Fig. 2 illustrates language processing based on Wernicke-Geschwind model in brain.

Intelligent Behavior

Linguistic Cognition

| S

Visual Learning Auditory Learning

< Perceptual Mechanism >

‘ Environment ‘

Fig. 1. Language processing in brain

3.6 Learning

Learning is the basic cognitive activity and accumulation procedure of experience and
knowledge. Through learning, system performance is improved. Perceptual learning,
cognitive learning, and implicit learning are active research topics.

Perceptual learning should be considered as an active process that embeds particu-
lar abstraction, reformulation and approximation within the Abstraction framework.
The active process refers to the fact that the search for a correct data representation is
performed through several steps. A key point is that perceptual learning focuses on
low-level abstraction mechanism instead of trying to rely on more complex algorithm.
In fact, from the machine learning point off view, perceptual learning can be seen as a
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particular abstraction that may help to simplify complex problem thanks to a comput-
able representation. Indeed, the baseline of Abstraction, i.e. choosing the relevant data
to ease the learning task, is that many problems in machine learning cannot be solve
because of the complexity of the representation and is not related to the learning algo-
rithm, which is referred to as the phase transition problem. Within the abstraction
framework, we use the term perceptual learning to refer to specific learning task that
rely on iterative representation changes and that deals with real-world data which
human can perceive.

In contrast with perceptual learning, cognitive learning is a leap in cognition proc-
ess. It generates knowledge by clustering, classification, conceptualization and so on.
In general, there are inductive learning, analogical learning, case-based learning,
explanation learning, and evolutional learning connectionist learning.

The core issue of cognitive learning is self-organizing principles. Kohonen has
proposed self-organizing maps which is a famous neural network model. Babloyantz
applied chaotic dynamics to study brain activity. Haken has proposed a synergetic
approach to brain activity, behavior and cognition.

Introspective learning is an inside brain learning, i.e., there is no input from outside
environment. We have proposed a model for introspective learning with 7 parts in
Figure 3, such as expectant objective, evaluation, explanation, reconstruct strategy,
meta cognition, case bases and knowledge base.

Behavior Fail
. Reconstruct
. R >
— Evaluation Explanation Strategy

X

v
Expectant Meta Case Knowledge
Objective Cognitio Bases Bases

Fig. 2. Introspective learning

The term implicit learning was coined by Reber to refer to the way people could
learn structure in a domain without being able to say what they had learnt [23]. Reber
proposed artificial grammars to study implicit learning for unconscious knowledge
acquisition. It will help to understand the learning mechanism without consciousness.
Since middle of 1980’s implicit learning become an active research area in psychology.

In the Machine Learning Department within Carnegie Mellon University's School
of Computer Science researchers receive $1.1 million from Keck Foundation to pur-
sue new breakthroughs in learning how the brain works. Cognitive neuroscience pro-
fessor Marcel Just and computer science professor Tom Mitchell have received a
three-year grant from the W. M. Keck foundation to pursue new breakthroughs in the
science of brain imaging [24].
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3.7 Thought

Thought is a reflection of essential attributes and internal laws of objective reality in
conscious, indirect and generalization by human brain with consciousness [25]. In
recent years, there has been a noteworthy shift of interest in cognitive science. Cogni-
tive process raises man's sense perceptions and impressions to logical knowledge.
According to abstraction degree of cognitive process, human thought can be divided
into three levels: perception thought, image thought and abstraction thought. A hierar-
chical model of thought which illustrates the characteristics and correlations of
thought levels has been proposed in [26]. Fig 4 shows the hierarchical thought model
of brain.

Abstraction Abstraction

Thought

/ T \ Image

Image 1 Image 2 Image 3 Thought
T T T Perceptual
Audio Vision Motor thought

Fig. 3. Hierarchical thought model of brain

Perception thought is the lowest level of thought. Behavior is the objective of re-
search in perception thought. Reflection is a function of stimulus. Perception thought
emphasizes stimulus-reflection schema or perception-action schema. The thought of
animal and infant usually belong to perception thought because they cannot intro-
spect, and cannot declare empirical consciousness [25]. In perception thought, intelli-
gent behavior takes place without representation and reasoning.

Behavior-based artificial intelligence has produced the models of intelligence
which study intelligence from the bottom up, concentrating on physical systems, situ-
ated in the world, autonomously carrying out tasks of various sorts. They claim that
simple things to do with perception and mobility in a dynamic environment took evo-
lution much longer to perfect. Intelligence in human has been taking place for only a
small fraction of our evolutionary lineage. Machine intelligence can take evolution by
the dynamics of interaction with the world.

3.8 Emotion

The mental perception of some fact excites the mental affection called the emotion,
and that this latter state of mind gives rise to the bodily expression. Emotion is a
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complex psychophysical process that arises spontaneously, rather than through con-
scious effort. It may evoke positive or negative psychological responses and physical
expressions. Research on emotion at varying levels of abstraction, using different
computational methods, addressing different emotional phenomena, and basing their
models on different theories of affect.

Since the early 1990s emotional intelligence has been systematically studied [27].
Scientific articles suggested that there existed an unrecognized but important human
mental ability to reason about emotions and to use emotions to enhance thought.
Emotional intelligence refers to an ability to recognize the meanings of emotion and
their relationships, as well as ability to reason and problem solve on the basis of them.
Emotional intelligence is involved in the capacity to perceive emotions, assimilate
emotion-related feelings, understand information of emotions, and manage them.

3.9 Nature of Consciousness

The most important scientific discovery of the present era will come to answer how
exactly do neurobiological processes in the brain cause consciousness? The question
“What is the biological basis of consciousness?” is selected as one of the 125 ques-
tions formulated for Science's 125th anniversary. Recent scientifically oriented ac-
counts of consciousness emerge from the properties and organization of neurons in
the brain. Consciousness is the notion of mind and soul.

Physical basis of consciousness appears as the crucial challenge to scientific, re-
ductionist world view. Francis Crick's book 'The astonishing Hypothesis' is an effort
to chart the way forward in the investigation of consciousness [28]. Crick has pro-
posed the basic ideas of researching consciousness: a) It seems probable, however,
that at any one moment some active neuronal processes in your head correlate with
consciousness, while others do not. What are the differences between them? b) All the
different aspect of consciousness, for example pain and visual awareness, employ a
basic common mechanism or perhaps a few such mechanisms. If we could understand
the mechanisms for one aspect, then we hope we will have gone most of the way to
understanding them all.

Chalmers suggests the problem of consciousness can be broken down into several
questions. The major one is the neuronal correlate of consciousness (NCC) which
focuses on specific processes that correlate with the current content of consciousness
[29]. The NCC is the minimal set of neurons, most likely distributed throughout cer-
tain cortical and subcortical areas, whose firing directly correlates with the perception
of the subject at the time. Discovering the NCC and its properties will mark a major
milestone in any scientific theory of consciousness. Several other questions need to be
answered about the NCC. What type of activity corresponds to the NCC? What
causes the NCC to occur? And, finally, what effect does the NCC have on postsynap-
tic structures, including motor output.

3.10 Mind Modeling

Mind is a very important issue in intelligence science, and also it is a tuff problem.
Mind could be defined as: “That which thinks, reasons, perceives, wills, and feels.
The mind now appears in no way separate from the brain. In neuroscience, there is no
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duality between the mind and body. They are one.” in Medical Dictionary [30]. A
mind model is intended to be an explanation of how some aspect of cognition is ac-
complished by a set of primitive computational processes. A model performs a spe-
cific cognitive task or class of tasks and produces behavior that constitutes a set of
predictions that can be compared to data from human performance. Task domains that
have received attention include problem solving, language comprehension, memory
tasks, and human-device interaction.

Researchers try to construct mind model to illustrate how brains do. Anderson and
colleagues have demonstrated that a production rule analysis of cognitive skill, along
with the learning mechanisms posited in the ACT model, provide detailed and ex-
planatory accounts of a range of regularities in cognitive skill acquisition in complex
domains such as learning to program Lisp [31]. ACT also provides accounts of many
phenomena surrounding the recognition and recall of verbal material, and regularities
in problem solving strategies.

In the early 1980’s, SOAR was developed to be a system that could support multi-
ple problem solving methods for many different problems [32]. In the mid 1980’s,
Newell and many of his students began working on SOAR as a candidate of unified
theories of cognition. SOAR is a learning architecture that has been applied to do-
mains ranging from rapid, immediate tasks such as typing and video game interaction
to long stretches of problem solving behavior. SOAR has also served as the founda-
tion for a detailed theory of sentence processing, which models both the rapid on-line
effects of semantics and context, as well as subtle effects of syntactic structure on
processing difficulty across several typologically distinct languages.

The Society of Mind offers a revolutionary theory of human thought [5]. Minsky
proposes that the mind consists of several kinds of non-thinking entities, called
agents. Agents alone repeat their tasks with great acumen, but they execute their work
with no understanding of it. Thought occurs when societies of agents interact and
relate, much as a jet engine's components work to generate thrust. Human personality
is not controlled by a centralized "conductor” in the brain, but rather emerges from
seemingly unintelligent and unconnected mental processes, or "agents." With Min-
sky's theory as a metaphor, participants will reach a new sensitivity to the many dif-
ferent parts of the mind that are engaged when we enjoy and respond to music.

3.11 Tolerance Granular Space Model

Granular computing is an emerging paradigm of information processing. Information
granules are collections of entities that usually originate at the numeric level and are
arranged together due to their similarity, functional adjacency, indistinguishability,
coherency, and so on, which arise in the process of data abstraction and derivation of
knowledge from information.

At the present granular computing mainly includes fuzzy set-based computing with
words, rough set and quotient space theory. Computing with Words involves comput-
ing and reasoning with fuzzy information granules. Rough set focuses on study on
how to represent unknown concept (subset) by constructing upper approximation and
lower approximation with equivalence classes. But topological structures of spaces
consisting of these equivalence classes are hardly taken into account. In contrast,
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quotient space theory describes the space structure, which focuses on transformation
and dependence between different granular worlds.

A new tolerance granular space model is presented [33]. The basic idea of the
model is based on the human ability, that is, people can abstract or synthesize the
knowledge and data relating with special tasks to different degrees or sizes granules,
and accomplish the tasks with the help of the granules and relations among them. The
model of tolerance granular spaces has been applied to solve classification, decision-
making, image texture recognizing and so on.

4 Perspective on Intelligence Science

The intelligence revolution with the goal to replace human brain work by machine
intelligence is the next revolution in human society. The incremental efforts in neuro-
science and cognitive science provide us exciting solid foundation to explore brain
model and intelligent behavior. We should research on neocortical column, popula-
tion coding, mind model, consciousness etc. for the human-level intelligence and
brain-like computer. We believe that intelligence science will make great progress
and new breakthroughs in the coming 50 years. Let us work together to contribute our
intellect and capability to promote the development of intelligence science and be-
come a bright spot of human civilization in 21 century.
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Abstract. For data given by binary object-attribute datatables For-
mal Concept Analysis (FCA) provides with a means for both convenient
computing hierarchies of object classes and dependencies between sets of
attributes used for describing objects. In case of data more complex than
binary to apply FCA techniques, one needs scaling (binarizing) data. Pat-
tern structures propose a direct way of processing complex data such as
strings, graphs, numerical intervals and other. As compared to scaling
(binarization), this way is more efficient from the computational point
of view and proposes much better vizualization of results. General def-
inition of pattern structures and learning by means of them is given.
Two particular cases, namely that of graph pattern structures and in-
terval pattern structures are considered. Applications of these pattern
structures in bioinformatics are discussed.

1 Introduction

Many problems of constructing domain taxonomies and ontologies, as well as
finding dependencies in data, can be solved with the use of the models based on
closure operators and respective lattices of closed sets within Formal Concept
Analysis (FCA) [219]. The main definitions of FCA start from a binary relation,
coming from applications as a binary object-attribute table. These tables (called
contexts in FCA) give rise to lattices whose diagrams give nice visualizations of
classes of objects of a domain. At the same time, the edges of these diagrams give
essential knowledge about objects, by giving the probabilities of cooccurrence
of attributes describing objects [I7I8ITY], this type of knowledge being known
under the name of association rules in data mining.

However in many real-world applications researchers deal with complex and
heteregeneous data different from binary datatables in involving numbers, strings,
graphs, intervals, logical formulas, etc. for making descriptions of objects from
an application domain. To apply FCA tools to data of these types, one needs
binarizing initial data or, in FCA terms, applying conceptual scaling. Many types
of scaling exist (see [9]), but do not always suggest the most efficient implemen-
tation right away, and there are situations where one would choose original or
other data representation forms rather than scaled data [7]. Although scaling
allows one to apply FCA tools, it may drastically increase the complexity of
representation and worsen the visualization of results.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 33 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Instead of scaling one may work directly with initial data descriptions defining
so-called similarity operators, which induce semilattice on data descriptions.
In recent decades several attempts were done in defining such semilattices on
sets of graphs [T2UT6JT3], numerical intervals [I2/10], logical formulas [2I3], etc.
In [7] a general approach called pattern structures was proposed, which allows
one to extend standard FCA approaches to arbitrary partially ordered data
descriptions. In this paper we consider pattern structures for several data types
and applications, showing their advantages and application potential.

The rest of the paper is organized as follows: In Section 2 we recall basic
definitions of FCA, as well as related machine learning and rule mining models. In
Section 3 we present pattern structures and respective generalization of machine
learning and rule mining models. In Sections 4 and 5 we consider particular
pattern structures on sets of graphs and vectors of intervals and discuss their
applications in bioinformatics. In Section 6 we discuss computational issues of
pattern structures.

2 Concept Lattices and Concept-Based Learning

2.1 Main Definitions

First we introduce standard FCA definitions from [J]. Let G and M be arbitrary
sets and I C G x M be an arbitrary binary relation between G and M. The triple
(G, M,I) is called a (formal) context. Each g € G is interpreted as an object,
each m € M is interpreted as an attribute. The fact (g, m) € I is interpreted as
“g has attribute m”. The two following derivation operators ()’

A'={meM|Vge A:gIm} for A C G,
B'={geG|Yme B:glm} for BC M

define a Galois connection between the powersets of G and M. For A C G,
B C M, apair (A, B) such that A’ = B and B’ = A, is called a (formal) concept.
Concepts are partially ordered by (A1, B1) < (Aa, Ba) < A1 C As (& By C By).
With respect to this partial order, the set of all formal concepts forms a complete
lattice called the concept lattice of the formal context (G, M,I). For a concept
(A, B) the set A is called the extent and the set B the intent of the concept.
The notion of dependency in data is captured in FCA by means of implications
and partial implications (association rules). For A, B C M the implication A —
B holds if A’ C B’ and the association rule (called partial implication in [17])
A —. s B with confidence c and support s holds if s > |A/|g]|3/| and ¢ > IAI/Q,JIB/I.
The language of FCA, as we showed in [6], is well suited for describing a model
of learning JSM-hypotheses from [4J5]. In addition to the structural attributes of
M, consider a target attribute w ¢ M. This partitions the set G of all objects into
three subsets: The set Gt of those objects that are known to have the property w
(these are the positive examples), the set G_ of those objects of which it is known
that they do not have w (the negative ezamples) and the set G, of undetermined
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examples, i.e., of those objects, of which it is unknown if they have property w
or not. This gives three subcontexts of K = (G, M, I), the first two staying for
the training sample:

K, := (G4, M,1,), K_:=(G_,M,I), andK,:= (G, M,I),

where for e € {+,—,7} we have I, := I N (G: x M) and the corresponding
derivation operators are denoted by (-), (-)7, ()7, respectively.

Intents, as defined above, are attribute sets shared by some of the observed
objects. In order to form hypotheses about structural causes of the target at-
tribute w, we are interested in sets of structural attributes that are common to
some positive, but to no negative examples. Thus, a positive hypothesis h for
w (called “counter-example forbidding hypotheses” in the JSM-method [4l5]) is
an intent of Ky such that ht # 0 and h € g~ := {m € M | (g9,m) € I_} for
any negative example g € G_. Negative hypotheses are defined similarly. Various
classification schemes using hypotheses are possible, as an example consider the
following simple scheme from [5]: If the intent

g ={meM|(g,m)€ I}

of an object g € G contains a positive, but no negative hypothesis, then g™
is classified positively. Negative classifications are defined similarly. If ¢” con-
tains hypotheses of both kinds, or if g™ contains no hypothesis at all, then the
classification is contradictory or undetermined, respectively. In this case one can
apply standard probabilistic techniques known in machine learning and data
mining (majority vote, Bayesian approach, etc.). Notwithstanding its simplicity,
the model of learning and classification with concept-based hypotheses proved
to be efficient in numerous studies in bioinformatics [TISITH].

A well-known application of concept lattices in data mining use the fact that
the edges of the lattice diagram make a basis of association rules for the con-
text [II8II9]. In fact, each edge of a concept lattice diagram, connecting a
higher concept (A’, A) and a lower concept (B, B’), corresponds to a set of
association rules of the form (Y) —.s B (where Y is minimal in the set
{X C A | X" = A}) and all other association rules may be obtained from
rules of these type by some inference [I1].

2.2 Many-Valued Contexts and Their Interordinal Scaling

Consider an object-attribute table whose entries are not binary. It can be given
by a quadruple Ky = (G, S, W, I;), where G, S, W are sets and [; is a ternary
relation I1 C GxSxW.In FCA terms K; = (G, S, W, I) is called a many-valued
context.

Consider an example of analyzing gene expression data (GED) given by tables
of values. The names of rows correspond to genes. The names of the columns of
the table correspond to situations where genes are tested. A table entry is called
an expression value. A row in the table is called expression profile associated
to a gene. In terms of many-valued contexts, the set of genes makes the set of
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objects G, the set of situations makes the set of many-valued attributes S, the
set of expression values makes the set W C R and I; C G x S x W. Then K; =
(G, S, W, I) is a many-valued context representing a GED. The fact (g, s,w) € I
or simply ¢(s) = w means that gene g has an expression value w for situation
s. The objective is to extract formal concepts (4, B) from K;, where A C G is
a subset of genes sharing “similar values” of W, i.e. lying in a same interval.
To this end, we use an appropriate binarization (scaling) technique to build a
formal context Ky = (G, Sa, I2), called derived context of K;.

A scale is a formal context (cross-table) taking original attributes of K; with
the derived ones of Ks. As attributes do not take necessarily same values, each
of them is scaled separately. Let Wy C W be the set of all values of the attribute
s. The following interordinal scale (see pp. 42 in [9]) can be used to represent all
possible intervals of attribute values:

HVVS = (VVS’ W‘?v S)KWS’ Wea Z)

The operation of apposition of two contexts with identical sets of objects, denoted
by |, returns the context with the same set of objects W and the set of attributes
corresponding to the disjoint union of attribute sets of the original contexts. In
our case this operation is applied to two contexts (W, Wy, <) and (Wy, Wy, >)),
the table below gives an example for Wy = {4,5,6}.

51 <451 <55 <68 >451>55>6

4 X X X X
5 X X X X
6 X X X X

The intents given by interordinal scaling are value intervals.

3 Pattern Structures

3.1 Main Definitions and Results

Let G be a set (interpreted as a set of objects), let (D, M) be a meet-semi-lattice
(of potential object descriptions) and let § : G — D be a mapping. Then
(G, D,0d), where D = (D, ), is called a pattern structure, provided that the set

6(G) :=={d(9) | g € G}

generates a complete subsemilattice (Ds, 1) of (D,M), i.e., every subset X of
0(G) has an infimum MX in (D,MN) and Dy is the set of these infima.

Elements of D are called patterns and are naturally ordered by subsumption
relation C: given ¢,d € D one has ¢ C d <= ¢Md = c. A pattern structure
(G, D, 0) gives rise to the following derivation operators (-)°:

A° =[] 8(g) for A C G,
geEA
d°={geG|dCi(g)} for d € (D,M).
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These operators form a Galois connection between the powerset of G and (D, C).
M is also called a similarity operator. The pairs (A4, d) satisfying

ACG, deD, A°=d, and A=d°

are called the pattern concepts of (G, D, ), with extent A and pattern intent d.
For a,b € D the pattern implication a — b holds if a® C b°, and the pattern
association rule a —. s b with confidence ¢ and support s holds if s > Ialgll’ !

°mp® . . C . C .
and ¢ > |a|a0| . Like in case of association rules, pattern association rules may

be inferred from a base that corresponds to the set of edges of the diagram of
the pattern concept lattice.
Operator (-)°° is an algebraical closure operator [9] on patterns, since it is

idempotent: d°°°° = d°°,
extensive: d C d°°,
monotone: d°° C ¢ for d C c.

In [6] we showed that if (D, M) is a complete meet-semi-lattice (where infimums
are defined for arbitrary subsets of elements), in particular a finite semi-lattice,
there is a subset M C D with the following interesting property: The concepts
of the formal context (G, M, I) where [ is given as gIm: < m C §(g), called a
representation context for (G, D, ), are in one-to-one correspondence with the
pattern concepts of (G, D,d). The corresponding concepts have the same first
components (called extents). These extents form a complete lattice, which is
isomorphic to the concept lattice of (G, M, I'). This result is proved by a standard
application of the basic theorem of FCA (which allows one to represent every
lattice as a concept lattice) [2109] and shows the way of binarizing complex data
representation given by a pattern structure. The cost of this binarization may
be a large amount attributes of the representation context and hence, the space
needed for storing this context.

3.2 Learning with Pattern Structures

The concept learning model described in the previous section for standard object-
attribute representation (i.e., formal contexts) is naturally extended to pattern
structures. Suppose we have a set of positive examples F, and a set of negative
examples F_ w.r.t. a target attribute.

A pattern h € D is a positive hypothesis iff

hNE_=0and 3AC E, : A° = h.

Again, a positive hypothesis is a similarity (or least general generalization of
descriptions) of positive examples, which is not contained in (does not cover) any
negative example. A negative hypothesis is defined analogously, by interchanging
+ and —.

The meet-preserving property of projections implies that a hypothesis H,, in
data under projection ¢ corresponds to a hypothesis H in the initial represen-
tation for which the image under projection is equal to Hp, i.e., ¥(H) = Hp.
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Hypotheses are used for classification of undetermined examples along the lines
of [B]. The corresponding definitions are similar to those from Section 2, one just
needs to replace C with C.

3.3 Projections and Learning in Projections

For some pattern structures (e.g., for the pattern structures on sets of graphs
with labeled vertices) even computing subsumption of patterns may be NP-hard.
Hence, for practical situations one needs approximation tools, which would re-
place the patterns with simpler ones, even if that results in some loss of informa-
tion. To this end we use a mapping ¢»: D — D that replaces each pattern d € D
by %(d) such that the pattern structure (G, D,J) is replaced by (G, D, o).
To distinguish two pattern structures, which we consider simultaneously, we use
the symbol © ouly for (G, D,0), not for (G, D, o). Under some natural al-
gebraic requirements (that hold for all natural projections in particular pattern
structures we studied in applications) the meet operation I is preserved:

PXNY) = (X)y(Y).

This property of projection allows one to relate hypotheses in the original rep-
resentation with those approximated by a projection.

This helped us to describe [6] how the lattice of pattern concepts changes when
we replace (G, D, §) by its approximation (G, D, ¥0d). First, we note that (d) C
0(g) < ¥(d) C 1od(g). Moreover, for pattern structures (G, D, d1) and (G, D, d2)
one has J2 = ¥ od; for some projection ¥ of D iff there is a representation context
(G,M,I) of (G,D,d1) and some N C M such that (G,N,I N (G x N)) is a
representation context of (G, D, d2). Thus, the basic theorem of FCA helps us
not only to “binarize” the initial data representation, but to relate binarizations
of different projections.

Pattern structures are naturally ordered by projections: (G, D, d1) > (G, D, d2)
if there is a projection v such that do = 1) o §;. In this case, representation
(G, D, 6d3) can be said to be rougher than (G, D, d;) and the latter to be finer
than the former. In comparable pattern structures implications are related as
follows: If ¢(a) — 1(b) and 1(b) = b then a — b for arbitrary a,b € D. In par-
ticular, if ¥ (a) is a positive (negative) hypothesis in projected representation,
then a is positive (negative) hypothesis in the original representation.

4 Pattern Structures on Closed Sets of Labeled Graphs

In [T2UT3] we proposed a semi-lattice on sets of graphs with labeled vertices and
edges. This lattice is based on a natural domination relation between pairs of
graphs with labeled vertices and edges. Consider an ordered set P of connected
graphaﬂ with vertex and edge labels from the set £ partially ordered by <. Each

1 Omitting the condition of connectedness, one obtains a similar, but computationally
much harder model.
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labeled graph I' from P is a quadruple of the form ((V,1),(E,b)), where V is
a set of vertices, F is a set of edges, [: V — L is a function assigning labels to
vertices, and b: E — L is a function assigning labels to edges. In (P, <) we do
not distinguish isomorphic graphs.

For two graphs I'y := ((Vi,11), (E1,b1)) and Iy := ((Va,l2), (E2,b2)) from P we
say that It dominates I's or I'y, < Iy (or I is a subgraph of I1) if there exists
an injection ¢: Vo — V; such that it

— respects edges: (v,w) € By = (p(v), p(w)) € Ey,
— fits under labels: l3(v) < l1(¢(v)), if (v,w) € Es then ba(v,w) = by (p(v),
p(w)).

Obviously, (P, <) is a partially ordered set. Now a similarity operation M on
graph sets can be defined as follows: For two graphs X and Y from P

(X}{Y}:={Z|Z<X,Y,VZ. < X,Y Z, # Z},

ie, {X}M{Y} is the set of all maximal common subgraphs of graphs X and
Y. Similarity of non-singleton sets of graphs {Xy,..., X} and {Y1,..., ¥, } is
defined as

{Xl, .. ,Xk} 1 {Yh .. .7Ym} = MAXS(UZ')]‘({XZ'} [l {ij})),

where MAX < (X)) returns maximal (w.r.t. <) elements of X.

The similarity operation I on graph sets is commutative: X MY =Y M X
and associative: (X MY)MNZ = XN (Y MZ). A set X of labeled graphs from
P for which M is idempotent, i.e., X M X = X holds, is called a graph pattern.
For patterns we have MAX<(X) = X. For example, for each graph g € P the
set {g} is a pattern. On the contrary, for I, I3 € P such that Iy < I the set
{I'1, I»} is not a pattern. Denote by D the set of all patterns, then (D,M) is a
semi-lattice with infimum (meet) operator M. The natural subsumption order on
patterns is given by cC d < ¢lMd = c.

Let F be a set of object names, and let § : E — D be a mapping, taking each
object name to {g} for some labeled graph g € P (thus, g is “graph description”
of object e). The triple (E, (D,1),d) is a particular case of a pattern structure.

A set of graphs X is called closed if X°° = X. This definition is related to the
notion of a closed graph in data mining and graph mining, which is important for
computing association rules between graphs. Closed graphs are defined in [20]
in terms of “counting inference” as follows.

Given a graph dataset E, support of a graph g or support(g) is a set (or
number) of graphs in E that have subgraphs isomorphic to g. A graph g is
called closed if no supergraph f of g (i.e., a graph such that g is isomorphic to
its subgraph) has the same support.

In terms of pattern structures, E is a set of objects, each object e € E having
a graph description d(e), support(g) = {e € E | d(g) < e}. Note that the
definitions distinguish between a closed graph g and the closed set {g} consisting
of one graph g. Closed sets of graphs form a meet semi-lattice w.r.t. M. Closed
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graphs do not have this property, since in general, there are closed graphs with
no infimums. However, closed graphs and closed sets of graphs are intimately
related, as shown in the following

Proposition 1. Let a dataset described by a pattern structure (E,(D,11),0) be
giwen. Then the following two properties hold:

1. For a closed graph g there is a closed set of graphs G such that g € G.

2. For a closed set of graphs G and an arbitrary g € G, graph g is closed.

Proof

1. Consider the closed set of graphs G = {¢}°°. Since G consists of all maximal
common subgraphs of graphs that have g as a subgraph, G contains as an element
either g or a supergraph f of g. In the first case, property 1 holds. In the second
case, we have that each graph in G that has g as a subgraph also has f as a
subgraph, so f has the same support as g, which contradicts with the fact that
g is closed. Thus, G = {g}°° is a closed set of graphs satisfying property 1.

2. Consider a closed set of graphs G and g € G. If g is not a closed graph, then
there is a supergraph f of it with the same support as g has and hence, with the
same support as G has. Since G is the set of all maximal common subgraphs of
the graphs describing examples from the set G° (i.e, its support), f € G should
hold. This contradicts the fact that g € G, since a closed set of graphs cannot
contain as elements a graph and a supergraph of it (otherwise, its closure does
not coincide with itself). O

Therefore, one can use algorithms for computing closed sets of graphs, e.g., the
algorithm described in [13], to compute closed graphs. With this algorithm one
can also compute all frequent closed sets of graphs, i.e., closed sets of graphs with
support above a fixed threshold (by introducing a slightly different backtrack
condition).

The learning model based on graph pattern structures along the lines of the
previous section was successfully used in series of applications in bioinformatics,
namely in problems where chemical substructures causing particular biological
activities (like toxicity) were investigated [8II5]. In many cases the proposed
graph representation resulted in better predictive accuracy as compared to that
obtained with standard attribute-type languages used for the analysis of biolog-
ical activity of chemicals.

5 Pattern Structures on Intervals

5.1 Main Definitions

To define a semilattice operation M for intervals that would be analogous to
the set-theoretic intersection or meet operator on sets of graphs, one should
realize that “similarity” between two real numbers (between two intervals) may
be expressed in the fact that they lie within some (larger) interval, this interval
being the smallest interval containing both two.
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Thus, for two intervals [a1,b1] and [ag, ba], with ay,b1,az2,bs € R, we define
their meet as

[a1,b1] M [az, ba] = [min(ay, az), maz(by, ba)].

This operator is obviously idempotent, commutative and associative, thus defin-
ing a pattern structure on intervals. The counterintuitive observation that the
meet operator takes two intervals to a larger one (in contrast to set intersection
and meet on graph sets which take sets to smaller ones) fails after realizing that a
larger interval, like in case of smaller sets and smaller sets of graphs, correspond
to a larger set of objects, whose descriptions fall in the interval.

The natural order relation (subsumption) on intervals is given as follows:

[a1,b1] C [az, bo]

< [al, bl] I [ag, bg} = [al, bﬂ
< [min(a, az2), max (b1, b2)] = [a1, b1]
< a1 <ay and by > bs.

Again, contrary to usual intuition, smaller intervals subsume larger intervals that
contain the former. A next step would be considering vectors of intervals. An
interval p-vector is a p-dimensional vector of intervals. The meet M for interval
vectors is defined by component-wise interval meets. Interval p-vector patterns
are p-dimensional rectangular parallelepipeds in Euclidean space. Another step
further would be made by allowing any type of patterns for each component.
The general meet operator on a vector like that is defined by component-wise
meet operators.

5.2 Interval Patterns and Interordinal Scaling

For a many-valued context (G,M,W,I) with W C R consider the respec-
tive pattern structure (G, (D,1),0) on interval vectors, the interordinal scaling
Iy, = (Ws, W5, <) | (Ws, Wy, >) from the previous Section, and the context
K resulting from applying interordinal scaling Iy, to (G, M, W,I). Consider
usual derivation operators (-)' in context K. Then the following proposition
establishes an isomorphism between the concept lattice of K; and the pattern
concept lattice of (G, (D,M),4).

Proposition 2. Let A C G, then the following statements 1 and 2 are
equivalent:

1. A is an extent of the pattern structure (G, (D,M),d) and A® = ([m;, m;]
dielLpl

2. A is a concept extent of the context K1 so that for all i € [1,p] m, is the
largest number n such that the attribute s; > n is in A’ and m; is the smallest
number n such that the attribute s; < n is in A’.

Proof. 1 — 2 Let A C G be a pattern extent. Given ,;(g) the mapping

that returns the *" interval of the vector describing object g. Since A° =
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([m;, mil)ien,p), for every object g € A one has m; < 6;(g) < m; and there
are objects g1, g2 € A such that §;(g1) = m;, 0;(g1) = m,. Hence, in context K
one has

!/
A= UiE[l,p]{si > Nmins -+ +» Si > ni, S < ng,...,S8 < nmax}

where
Nmin < -+ <M1 <n2 < ... < Nmax

and n; = m;, ng = m,;. Hence, m, is the largest number n such that the attribute
s; > nisin A" and m; is the smallest number n such that the attribute s; < n
is in A’. Suppose that A is not an extent of Kj. Hence, A C A” and there is
ge A"\ Aand ¢’ O A’. This means that for all i m; < d;(¢g) < m,;. Therefore,
g € A°® and A # A°°, a contradiction. The proof 2 — 1 is similar. O

The larger is a pattern concept, the more there are elements in its extent, and
the more there are intervals in its intent. However, the main goal in applica-
tions like analysis of gene expression data is extracting homogeneous groups
of objects (e.g., genes), i.e. groups of objects having similar expression values.
Therefore, descriptions of homogeneous groups should be composed of inter-
vals with “small” sizes where size([a,b]) = b — a. Consider parameter ma ;.
that specifies the maximal admissible size of any interval composing an interval
vector. In our gene expression data analysis [I0] we restricted to pattern con-
cepts with pattern intents d = ([as, bi)icp1 ) € (D,MN) satisfying the constraint:
i € [1,p] (bi — a;) < maxs;ze, for any a,b € R, or a stricter constraint like
Vi € [1,p] (by — a;i) < MmaZsize, where maxg;ze is a parameter. Since both con-
straints are monotone (if an intent does not satisfy it, than a subsumed intent
does not satisfy it too), the subsets of patterns satisfying any of these constraints
make an order filter (w.r.t. subsumption on intervals C) of the lattice of pattern
intents and can be computed by an ordinary FCA algorithm with a modified
backtracking condition.

Interval pattern structures were successfully applied to gene expression data
analysis [I0], where classes of situations with similar gene expressions were
generated.

5.3 Computing in Pattern Structures

Many algorithms for generating formal concepts from a formal context are
known, see e.g. a performance comparative [I4]. Experimental results of [I4]
highlight several best algorithms for dense and large contexts, which is the case
of interordinal derived formal contexts. Worst-case upper bound time complex-
ity of these algorithms computing the set of all concepts of the context (G, M, I)
is O(|G|* - |M| - |L|), where L is the set of generated concepts [14].

Several algorithms for computing concept lattices, like NextClosure and CbO,
may be adapted to computing pattern lattices in bottom-up way (starting from
intersecting individual object descriptions and proceeding by intersecting more
and more object descriptions). The worst-case time complexity of computing
all pattern concepts of a pattern structure (G, D,d) in the bottom-up way is
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O((a + B|G])|IG||L]), where « is time needed to perform MM operation and § is
time needed to test C relation. In case of graphs, even § may be exponential wrt.
the number of graph vertices, that is why approximations (like those given by
projections) are often needed. In experiments with many chemical rows in [I5] we
used projections to graphs with about 10 vertices to be able to process datasets
with hundreds of chemical substances.

The worst-case time complexity of computing the set of interval pattern struc-
tures is O(|G|? - |M| - |L]). If a many-valued context (G, M, W,I) is given, the
worst-case complexity of computing the set of all concepts of its interordinally
scaling is O(|G|? - [W| - |L|), which may be fairly large if the cardinality of the
set of attribute values |W| is much larger than that of the set of attributes |M|.
The worst case |W| = |G| x |S] is attained when attribute values are different
for each object-attribute pair. In [I0] several algorithms for computing with in-
terval patterns were compared. The experimental comparison shows that when
the number of attribute values w.r.t. |G| x |S] is very low, computing concepts in
representation contexts is more efficient. For large datasets with many different
attribute values, it is more efficient to compute in pattern structures.

6 Conclusion

Pattern structures propose a universal means of analyzing hierarchies of classes
and dependencies in case of data given by complex ordered descriptions. As
compared to binarization techniques, computing with pattern structures often
gives more efficiency and better vizualization. Pattern projections allows one
to reduce representation dimension to attain even better computer efficiency.
Future research on pattern structure will be concerned with new complex data
types, interesting projections and new applications. The use of pattern structures
for mining association rules in complex data will also be studied.
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Abstract. Both fuzzy set theory and rough set theory play an im-
portant role in data-driven, systems modelling and analysis. They have
been successfully applied to building various intelligent decision support
systems (amongst many others). This paper presents an integrated util-
isation of some recent advances in these theories for detection and pre-
vention of serious crime (e.g. terrorism). It is shown that the use of these
advanced theories offers an effective means for the generation and as-
sessment of plausible scenarios which can each provide an explanation
for the given intelligence data. The resulting systems have the potential
to facilitate rapid response in devising and deploying preventive mea-
sures. The paper also suggests a number of important further challenges
in consolidating and refining such systems.

1 Introduction

Solving complex real-world problems often requires timely and intelligent decision-
making, through analysis of a large volume of information. For example, in the
wake of terrorist atrocities such as September 11, 2001, and July 7, 2005, intelli-
gence experts have commented that the failure in the detection of terrorist activity
is not necessarily due to lack of data, but to difficulty in relating and interpreting
the available intelligence on time. Thus, an important and emerging area of re-
search is the development of decision support systems that will help to establish
so-called situational awareness: a deeper understanding of how the available data
is related and whether or not it represents a threat.

Most criminal and terrorist organisations are embedded within legitimate so-
ciety and remain secrete. However, organised crime and terrorist activity does
leave a trail of information, such as captured communications and forensic evi-
dence, which can be collected by police and security services. Whilst experienced
intelligence analysts can suggest plausible scenarios, the amount of intelligence
data possibly relevant may well be overwhelming for human examination. Hy-
pothetical (re-)construction of the activities that may have generated the intel-
ligence data obtained, therefore, presents an important and challenging research
topic for crime prevention and detection.
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and EP/D057086/1. The author is grateful to all members of the project teams for
their contributions, but will take full responsibility for the views expressed here.
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This paper presents a knowledge-based framework for the development of such
systems, to assist (but not to replace) intelligence analysts in identifying plausible
scenarios of criminal or terrorist activity, and in assessing the reliability, risk and
urgency of generated hypotheses. In particular, it introduces an integrated use of
some recent advances in fuzzy set [34] and rough set [2324] theories to build in-
telligent systems for the monitoring and interpretation of intelligence data. Here,
integration of fuzzy and rough techniques does not necessarily imply a direct com-
bination of both, but utilising them within a common framework. It differs from
the conventional hybridisation approaches [20021126], although part of the work
does involve the employment of the combined fuzzy-rough set theory [3J9].

The rest of the paper is organised as follows. Section 2] outlines the underlying
approach adopted and describes the essential components of such a system.
Section [3] shows particular instantiations of the techniques used to implement
the key components of this framework. Essential ideas are illustrated with some
simple examples. Section Fl summarises the paper and points out important
further research. Due to space limit, this paper concentrates on the introduction
of the underlying conceptual approaches adopted, with specific technical and
application details omitted (which can be found in the references).

2 Plausible Scenario-Based Approach

In order to devise a robust monitoring system that is capable of identifying
many variations on a given type of terrorist activity, this work employs a model-
based approach to scenario generation [28]. The knowledge base of such a sys-
tem consists of generic and reusable component parts of plausible scenarios,
called model or scenario fragments (interchangeably). Such fragments include:
types of (human and material) resources required for certain classes of organised
criminal/terrorist activity, ways in which such resources can be acquired and
organised, and forms of evidence that may be obtained or generated (e.g. from
intelligence databases) when given certain scenarios.

Note that conventional knowledge-based systems (for instance, rule or case-
based) have useful applications in the crime detection area. However, their scope
is restricted to either the situations foreseen or those resulting from previously
encountered cases. Yet, organised terrorist activity tends to be unique, whilst
employing a relatively restricted set of methods (e.g. suicide bombing or bomb
threats in public places). A model-based reasoner designed to (re-)construct
likely scenarios from available evidence, as combinations of instantiated scenario
fragments, seems to be ideally suited to cope with the variety of scenarios that
may be encountered. Indeed, the main strength of model-based reasoning is its
adaptability to scenarios that are previously unseen [13].

Figure M shows the general architecture of the approach taken in this research.
Based on intelligence data gathered, the scenario generation mechanism instan-
tiates and retrieves any relevant model fragments from the library of generic
scenario fragments, and combines such fragments to form plausible explanations
for the data. A description of how such a system is built is given below.
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2.1 Flexible Composition Modelling

The central idea is to establish an inference mechanism that can instantiate and
then dynamically compose generic model fragments into scenario descriptions,
which are plausible and may explain the available data (or evidence). A composi-
tional modelling approach [12] is devised for this purpose. The main potential of
using this approach over conventional techniques is its ability to automatically
construct many variations of a given type of scenario from a relatively small
knowledge base, by combining reusable model fragments on the fly. This ensures
the robustness required for the resulting system to tackle the problems at hand.

The compositional modelling approach developed in this research differs from
those in the literature in two distinct ways:

1. Ability to speculate about plausible relations between different cases. Of-
ten, intelligence data will refer to individuals and objects whose identity is
only partially specified. For example, when a person is observed on a CCTV
camera, some identifying information can be collected, but this may be in-
sufficient for an exact identification. When a person with similar features
has been identified elsewhere, it is important that any relation between both
sightings is explored. Ideas originally developed in the area of link-based
similarity analysis [2T4] are adapted herein for: (a) identifying similar indi-
viduals and objects in a space of plausible scenarios, and (b) supporting the
generation of hypothetically combined scenarios to explore the implications
of plausible matches.

2. Coverage to generate scenarios from a wide range of data sources, including
factual data, collected intelligence, and hypothesised but unsubstantiated
information. This requires matching specific data (e.g. the names of dis-
covered chemicals) with broader (and possibly subjective) knowledge and
other vague information contents. Such knowledge and information may be
abstractly specified in the knowledge base, e.g. “a chemical being highly ex-
plosive”. Similarly, matching attributes of partially identified objects and
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individuals may involve comparing vague features, such as a person’s appar-
ent height, race and age. This suggests the use of a formal mathematical
theory that is capable of capturing and representing ill-defined and impre-
cise linguistic terms, which are common in expressing and inferring from
intelligence knowledge and data. Fuzzy systems methods are therefore intro-
duced to compositional modelling to decide on the applicability of scenario
fragments and their compositions.

2.2 Plausible Scenario-Based Intelligence Monitoring

Monitoring intelligence data for evidence of potential serious criminal activity,
especially terrorist activity, is a non-trivial task. It is not known in advance what
aspects of such activity will be observed, and how they will be interconnected.
There are nevertheless, many different ways in which a particular type of activity
may be arranged. Hence, conventional approaches to monitoring, which aim to
identify pre-specified patterns of data, are difficult to adapt to this domain.

Although general and potentially suitable, the model-based approach adopted
here may lead to systems that generate a large number of plausible scenarios for
a given problem. It is therefore necessary for such a system to incorporate a
means to sort the plausible scenarios, so that the generated information remains
manageable within a certain time frame. For this purpose, scenario descriptions
are presented to human analysts with measurements of their reliability, risk, and
urgency. Each of these features may be assessed by a numeric metric. However,
intelligence data and hypotheses are normally too vague to produce precise es-
timates that are also accurate. Therefore, a novel fuzzy mechanism is devised
to provide an appropriate method of assessing and presenting these factors. The
framework also covers additional tools such as a facility to propose additional
information sources (by exploring additional, real or hypothesised, evidence that
may be generated in a given scenario).

Figure 2l shows a specification of the general framework given in Fig. [l Tech-
nical modules include:

— Fuzzy Feature Selection carries out semantics-preserving dimensionality re-
duction (over nominal and real-valued data).

— Fuzzy Learning provides a knowledge modelling mechanism to generalise
data with uncertain and vague information into mode fragments.

— Fuzzy Iterative Inference offers a combination of abductive and deductive
inferences, capable of reasoning with uncertain assumptions.

— Flexible CSP (constraint satisfaction problem-solver) deals with uncertain
and imprecise constraint satisfaction, subject to preference and priority.

— Fuzzy Interpolative Reasoning enables approximate inference over sparse
knowledge base, using linear interpolation.

— Flexible ATMS is an extended truth-maintenance system that keeps track
of uncertain assumption-based deduction.

— Flexible Coreference Resolution implements a link-based identity resolution
approach, working with real, order-of-magnitude, and nominal values.
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— Fuzzy Aggregation performs information aggregation by combining uncer-
tain attributes as well as their values.

— Fuzzy Evidence Evaluation performs evidence assessment, including discov-
ery of misleading information, and generates evidence-gathering proposal.

— Fuzzy Risk Assessment computes potential loss-oriented risk evaluation
through fuzzy random process modelling.
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Fig. 2. Instantiated Architecture

Systems built following the approach of Fig. 2] can help to improve the likeli-
hood of discovering potential threats posed by criminal or terrorist organisations.
The reasoning of such a system is logical and readily interpretable by human an-
alysts. Thus, it can be very helpful in supporting human analysts when working
under time constraints. For instance, this may aid in avoiding premature com-
mitment to certain seemingly more likely but unreal scenarios, minimising the
risk of producing incorrect interpretations of intelligence data. This is of partic-
ular interest to support staff investigating cases with unfamiliar evidence. The
resulting approach may also be adapted to build systems that facilitate training
of new intelligence analysts. This is possible because the underlying inference
mechanism and the knowledge base built for intelligence data monitoring can be
used to artificially synthesise various scenarios (of whatever likelihood), and to
systematically examine the implications of acquiring different types of evidence.

3 Illustrative Component Approaches

As a knowledge-based approach to building decision support systems, any im-
plementation of the framework proposed above will require a knowledge base to
begin with. The first part of this section will then introduce a number of recent
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advances in developing data-driven learning techniques that are suitable to de-
rive such required knowledge from potentially very complex data. The second
part will describe one of the key techniques that support scenario composition,
especially for situations where limited domain knowledge is available. The third
and final part of the section will demonstrate how risks of generated scenarios
may be estimated. Figure [J outlines a simplified version of the framework which
may be implemented using the techniques described herein.
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Fig. 3. Focussed Illustration

All of these approaches have been developed using fuzzy and rough methods.
These techniques will be introduced at conceptual level with illustrative exam-
ples. Mathematical and computational details are omitted, but can be found in
the relevant references.

3.1 Fuzzy Learning and Feature Selection

In general, an initial knowledge base of generic scenario fragments is built partly
by generalising historical intelligence data through computer-based induction,
and partly through manual analysis of past terrorist or criminal activity. This
work focusses on the automated induction of model fragments.

Fuzzy Descriptive Learning. Many real-world problems require the devel-
opment and application of algorithms that automatically generate human in-
terpretable knowledge from historical data. Such a task is clearly not just for
learning model fragments.

Most of the methods for fuzzy rule induction from data have followed the
so-called precise approach. Interpretability is often sacrificed, in exchange for a
perceived increase in precision. In many cases, the definitions of the fuzzy sets
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that are intended to capture certain vague concepts are allowed to be modified
such that they fit the data better. This modification comes at the cost of ruining
the original meaning of the fuzzy sets and the loss of transparency of the resulting
model. In other cases the algorithms themselves generate the fuzzy sets, and
present them to the user. The user must then interpret these sets and the rules
which employ them (e.g. a rule like: If volume is Tri(32.41, 38.12, 49.18), then
chance is Tri(0.22, 0.45, 0.78), which may be learned from the data presented in
Fig. d). In some extreme cases, each rule may have its own fuzzy set definition
for every condition, thereby generating many different sets in a modest rule base.
The greatest disadvantage of the precise approach is that the resulting sets and
rules are difficult to match with human interpretation of the relevant concepts.

As an alternative, there exist proposals that follow the descriptive (or linguis-
tic) approach. In such work no changes are made to human defined fuzzy sets.
The rules must use the (fuzzy) words provided by the user without modifying
them in any way. One of the main difficulties with this approach is that the possi-
ble rules available are predetermined, equivalently speaking. This is because the
fuzzy sets can not be modified, and only a small number of them are typically
available. Although there can be many of these rules they are not very flexible
and in many cases they may not necessarily fit the data well (e.g. a rule like: If
volume is Moderate, then chance is High, which may be learned from the data
and predefined fuzzy sets given in Fig. []). In order to address this problem, or
at least partially, linguistic hedges (aka. fuzzy quantifiers) are employed.
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The concept of linguistic hedges has been proposed quite early on in fuzzy
systems research [33]. Application of such a hedge to a fuzzy set produces a
new fuzzy set, in a fixed and interpretable manner. The interpretation of the
resultant set emanates from the original fuzzy set and a specific transformation
that the hedge implies. In so doing, the original fuzzy sets are not changed, but
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the hedged fuzzy sets provide modifiable means of modelling a given problem
and therefore, more freedom in representing information in the domain.

This research adopts the seminal work of [I8] which champions this approach.
Figure[@illustrates the ideas: Descriptive fuzzy system models are produced with
a two-step mechanism. The first is to use a precise method to create accurate
rules and the second to convert the resulting precise rules to descriptive ones.
The conversion is, in general, one-to-many. It is implemented by using a heuristic
algorithm that derives potentially useful translations and then, by employing
evolutionary computation to perform a fine tuning of these translations. Both
steps are computationally efficient. The resultant descriptive model is ready to
be directly applied for inference; no precise rules are needed in runtime.

Note that Fig. [6] shows the learning of a “model” in a general sense. Such
a model may be a set of conventional production fuzzy if-then rules, or one or
more generic model fragments which involve not only standard conditions but
also assumptions or hypotheses that must be made in order to draw conclusions.

Fuzzy-Rough Feature Selection. Feature selection [9I5] addresses the prob-
lem of selecting those characteristic descriptors of a domain that are most infor-
mative. Figure [ shows the basic procedures involved in such a process. Unlike
other dimensionality-reduction methods, feature selectors preserve the original
meaning of the features after reduction.

Precise
Feature set
Fragment Precise Fuzzy
Induction Model l
h 4 ) Subset )
Model Frzsies i@ Generation ——> Evaluation
Tuning Linguistic
Conversion Subset
suitability
Continue St@lﬁl’lllﬁ_{
Lingwistie ¥ Criterion
3 Brd Stop
o | Fragment 3 Fuzzy Linguistic l
e “| Induction Model
Featire subset(s)
Fig. 6. Two-Step Learning of Descriptive Fig. 7. Feature Selection Process

Models

There are often many features involved in intelligence data, and combinatori-
ally large numbers of feature combinations, to select from. It might be expected
that the inclusion of an increasing number of features would increase the likeli-
hood of including enough information to distinguish between classes. Unfortu-
nately, this is not necessarily true if the size of the training dataset does not
also increase rapidly with each additional feature included. A high-dimensional
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dataset increases the chances that a learning algorithm will find spurious pat-
terns that are not valid in general. Besides, more features may introduce more
measurement noise and, hence, reduce model accuracy [7].

Recently, there have been significant advances in developing methodologies
that are capable of minimising feature subsets in an imprecise and uncertain
environment. In particular, a resounding amount of research currently being
done utilises fuzzy and rough sets (e.g. [TIUTOII7I27I30032]). Amongst them is
the fuzzy-rough feature selection algorithm [SIT0] that works effectively with
discrete or real-valued noisy data (or a mixture of both), without the need for
user-supplied information. This approach is suitable for the nature of intelligence
data and hence, is adopted in the present work. A particular implementation is
done via hill-climbing search, as shown in Fig. 8 It employs the fuzzy-rough
dependency function, which is derived from the notion of fuzzy lower approx-
imation, to choose those attributes that add to the current candidate feature
subset in a best-first fashion. The algorithm terminates when the addition of
any remaining attribute does not result in an increase in the dependency. Note
that as the fuzzy-rough dependency measure is nonmonotonic, it is possible that
the hill-climbing search terminates having reached only a local optimum.

3.2 Fuzzy Interpolative Reasoning

In conventional approaches to compositional modelling, the completeness of a
scenario space depends upon two factors: (a) the knowledge base must cover all
essential scenario fragments relevant to the data, and (b) the inference mecha-
nism must be able to synthesise and store all combinations of instances of such
fragments that constitute a consistent scenario. However, in practice, it is diffi-
cult, if not impossible, to obtain a complete library of model fragments. Figure @l
shows an example, where a sparse model library consisting of two simplified
model fragments (i.e. two simple if-then rules) is given:

Rule;: If frequency is None then attack is Unlikely
Rulej: If frequency is Often then attack is Likely

In this case, with an observation that states “frequency is Few”, no answer can
be found to the question ”Will there be an attack”? A popular tool to deal
with this type of problem is fuzzy interpretative reasoning [TII31]. In this work,
the transformation-based approach as proposed in [5ll6] is employed to support
model composition, when given an initial sparse knowledge base.

The need for a fuzzy approach to interpolation is obvious: The precision degree
of the available intelligence data is often variable. The potential sources of such
variability include vaguely defined concepts (e.g. materials that constitute a
“high explosive”, certain organisations that are deemed “extremist”), quantities
(e.g. a “substantial” amount of explosives, “many” people) and specifications of
importance and certainty (e.g. in order to deploy a radiological dispersal device,
the perpetrator “must” have access to radioactive material and “should” have
an ideological or financial incentive). Finding a match between the given data
and the (already sparse) knowledge base cannot in general be achieved precisely.
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FRQuickReduct(C.D) Frequency
C, the set of all conditional features;
D, the set of decision features.
(1) R<{}
(2) do
(3) T<R
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(11) return R Pr (Target attack)
Fig. 8. Fuzzy-Rough Feature Selection Fig. 9. Spare Knowledge Base

Figure [0 illustrates the basic ideas of fuzzy interpolative reasoning. It works
through a two-step process: (a) computationally constructing a new inference
rule (or model fragment in the present context) via manipulating two given ad-
jacent rules (or related fragments), and (b) using scale and move transformations
to convert the intermediate inference results into the final derived conclusions.

Rule base

None 2 No Often 2 Yes

Creation of intermediate inference

rule via linear interpolation, guided
Intermediate by observation A*
inference rule

A 2B
Derivation of conclusion via scale
and move transformations, ensuring
Scale & move - g
transformation sumlanty
A*PB*

Fig. 10. Transformation-Based Fuzzy Interpolation

3.3 Fuzzy Risk Assessment

In developing intelligent systems for intelligence data monitoring, a trade-off
needs to be considered. On the one hand, it is important not to miss out any
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potentially significant scenarios that may explain the observed evidence. On the
other hand, too many unsorted and especially, spurious scenarios may confuse
human analysts. Thus, it is desirable to be able to filter the created scenario
space with respect to certain objective measures of the quality of the generated
scenario descriptions. Fortunately, as indicated previously, preferences over dif-
ferent hypothetical scenarios can be determined on the basis of the reliability,
risk and urgency of each scenario.

The reliability of a generated scenario may be affected by several distinct
factors: the given intelligence data (e.g. the reliability of an informant), the in-
ferences made to abduce plausible scenarios (e.g. the probability that a given
money transfer is part of an illegitimate transaction), and the default assump-
tions adopted (e.g. the likelihood that a person seen on CCTV footage is iden-
tified positively). The urgency of a scenario is inversely proportional to the
expected time to completion of a particular terrorist/criminal activity. Therefore,
an assessment of urgency requires a (partial) scenario to be described using the
scenario’s possible consequences and information on additional actions required
to achieve completion. The risk posed by a particular scenario is determined by
its potential consequences (e.g. damage to people and property). Whilst these
are very different aspects that may be used to differentiate and prioritise com-
posed scenarios, the underlying approaches to assess them are very similar. In
this paper, only the scenario risk aspect is discussed.

Risk assessment helps to efficiently devise and deploy counter measures, in-
cluding further evidence gathering of any threat posed by the scenario concerned.
However, estimating the risk of a plausible event requires consideration of vari-
ables exhibiting both randomness and fuzziness, due to the inherent nature of
intelligence data (and knowledge also). Having identified this, in the present
work, risk is estimated as the mean chance of a fuzzy random event [4I29] over
a pre-defined confidence level, for each individual type of loss. In particular,
plausible occurrence of an event is considered random, while the potential loss
due to such an event is expressed as a fuzzy random variable (as it is typically
judged linguistically). In implementation, loss caused by an event is modelled by
a function mapping from a boolean sample space of {Success, Failure} onto a set
of nonnegative fuzzy values. Here, success or failure is judged from the criminal’s
viewpoint, in terms of whether they have carried out a certain activity or not.

Risks estimated over different types of loss (e.g. range of geometric destruc-
tion and number of casualties) can be aggregated. Also, assessments obtained
using different criteria (e.g. resource and urgency) may be integrated to form
an overall situation risk. Such measures may be utilised as flexible constraints
[19] imposed over an automated planning process, say for police resource deploy-
ment. This can help to minimise the cost of successful surveillance, for example.
To generalise this approach further, order-of-magnitude representation [2225]
may be introduced to describe various cost estimations. Figure [[I] shows such
an application.
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Fig. 11. Risk Assessment

4 Conclusion

This paper has introduced a novel framework upon which to develop intelli-
gent decision support systems, with a focussed application to intelligence data
monitoring and interpretation. It has outlined methods that can aid intelligence
analysts in considering as widely as possible a range of emerging scenarios which
are logically inferred and justified, and which may each reflect organised crimi-
nal/terrorist activity. This work has indicated that some of the recent advances in
fuzzy and rough techniques are very successful for data-driven systems modelling
and analysis in general, and for performing the following tasks in particular:

— Fragment induction — Truth maintenance

— Feature selection — Co-reference resolution
— Interpolative reasoning — Information aggregation
— Model composition — Evidence evaluation

— Constraint satisfaction — Risk assessment

However, important research remains. The following lists a number of further
issues that are worthy of investigation and/or development:

— Learning hierarchical model fragments
— Hierarchical and ensemble feature selection
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Unification of scenario generation algorithms

Dynamic co-reference resolution and information fusion
— Evidence-driven risk-guided scenario generation
Reconstruction of reasoning process

Discovery of rare cases

— Meta-feature learning and selection for scenario synthesis

Further studies will help to consolidate and broaden the scope of applications of
fuzzy set and rough set theories. In particular, the proposed framework and asso-
ciated techniques can be adapted to perform different tasks in intelligence data
modelling and analysis, such as: investigator training, policy formulation, and
multi-modal profiling. Additionally, this work may be applied to accomplishing
tasks in other domains, such as academic performance evaluation and financial
situation forecasting. Finally, it is worth noting that most of the component
techniques within the current framework utilise fuzzy set theory as the mathe-
matical foundation. It would be very interesting to investigate if alternative ap-
proaches may be developed using rough sets or their extensions in an analogous
manner. Also, the employment of directly combined and/or hybrid fuzzy-rough
systems may offer even more advantages in copying with complex decision sup-
port problems. The research on fuzzy-rough feature selection as adopted within
this framework has demonstrated, from one aspect, such potential.
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Abstract. We are finding rising demands for chance discovery, i.e., methods
for focusing on new events significant for human’s decision making. Innovation
Game is a tool for aiding innovative thoughts and communication, coming after
our 10-year experiences in chance discovery where tools of data visualization
have been applied in cases of decision making by business teams. This game
enables us to run and accelerate the process of innovation, as well as to train
human’s talent of analogical and combinatorial thinking. In this paper, it is
shown that the effects of Innovation Game are enhanced, especially when suit-
able communications and timely usage of a tool for visualizing the map of
knowledge are executed.

1 Introduction: Chance Discovery as Value Sensing

Since year 2000, we have been developing tools and methods of Chance Discovery,
under the definition of “chance” as an event significant for human’s decision. We edited
books [14], etc. and special issues of journals. We stand on the principle that a decision
is to choose one from multiple scenarios of actions and events in the future. Thus, a
chance defined above can be regarded as an event at the cross of scenarios, which forces
human(s) to choose one of the scenarios. Events bridging multiple clusters of strongly
co-related frequent events, as shown by tools such as C4.5, Correspondence Analysis
[7], KeyGraph [11], etc., have been regarded as the candidates of “chances” which may
have been rare in the past but may become meaningful in the future.

Another aspect for explaining the role of visualization in chance discovery is what
has been called value sensing. Value sensing, to feel associated with the something in
one’s environment, has been regarded as a dimension of human’s sensitivity in the
literature of developmental psychology [3]. We can interpret this as the cognition of
analogy between the target event versus a piece or a combination of pieces of one’s
knowledge (tacit or explicit). In the real world, a huge number of analogical relation-
ships may exist, from which we should choose one link between the confronted novel
event and some part of the knowledge [2].

In this paper, we show Innovation Game, a tool for aiding innovation. This game
came from our experiences in applying chance discovery to cases of business decision
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making. According to the data of communications during the play-times of this game,
we show that the thoughts in Innovation Game come to be innovative when players
executed suitable communications and timely usage of KeyGraph.

2 Using a Scenario Map for Chance Discovery

In projects of chance discovery we conducted so far with companies, the marketer
teams acquired novel awareness of valuable products they had produced but had not
taken into consideration so far because of the weak contribution to their sales per-
formance. For acquiring this awareness, KeyGraph assisted business people by show-
ing a diagram as a map of the market having (1) clusters of items frequently bought as
a set, i.e., at the same time together, and (2) items bridging the clusters in (1), which
may embrace a latent market coming up in the near future.

For example, let us show an example where a diagram obtained by KeyGraph as-
sisted textile marketers seeking new hit products [13]. The marketers started from
data collected in exhibition events, where pieces of textile samples had been arranged
on shelves for customers representing apparel companies just to see (not to buy yet).
In comparison with data on past sales, the exhibition data were expected to include
customers’ preferences of products not yet displayed in stores. After the exhibition,
the marketers of the textile company visualized the data of customers’ preferences
using decision trees [15], correspondence analysis [7], etc. After all, they reached
KeyGraph and obtained the diagram as in Fig. 1(a), where the black nodes linked by
black lines show the clusters corresponding to (1) above, and the red nodes and the
red lines show the items corresponding to (2) above and their co-occurrence with
items in clusters respectively. The marketers, in order to understand this graph, at-
tached real product samples as in Fig. 1(b), in order to sense the smoothness, colors,
etc with eyes and fingers.

Then three, of the 10 marketers, who were experts of women’s blouse interpreted
the cluster at the top of Fig. 1 (b), i.e., of “dense textile for neat clothes, e.g., clothes
for blouse” and 3 others interpreted the cluster in the right as of business suits. 2 oth-
ers interpreted the popular item, not linked to any clusters of (1) via black lines, in the
left, corresponding to materials of casual clothes. These clusters corresponded to
established (already popular) submarkets of the company.

Next, a marketer of 10-years experience paid attention to an item between the item
in the left and the large cluster in the right of the graph. This between node appeared
as a red node, i.e., the niche lying between popular clusters, on which the marketers
came up with a strategic scenario to design a new semi-casual cloth in which ladies
can go both to workplaces and to light dinner after working. As a result, the material
of the red node marked a hit — the 13"™ highest sales among their 800 products. We
have other cases of graph-based chance discoveries [8].
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Fig. 2. Innovation game on the game board, made by data crystallization

3 Innovation Game

3.1 The Outline of Innovation Game with Data Crystallization

Innovation, meaning a creation of social trend by inventing a new technology, comes
from the combination of existing ideas according to [5] [6]. The Innovation Game is a
tool we invented for aiding innovative communications, where combinatorial creativ-
ity, i.e., creating a new idea by combining ideas, is activated. The game starts from
tens of basic cards, on each of which the title and the summary of some existing
knowledge for business is written. The core players are called innovators, who start
with the capital of $10. The innovator’s main operation is to (1) buy a preferable
number of basic cards for $1 per card, (2) combine the cards of one’s own or with
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cards bought/borrowed from other players, and (3) present with an idea created by the
combination. Other innovators may propose the presenter to start collaboration, or
borrow/buy the new idea, with negotiating the dealing price. At the halting time (2
hours after starting), the richest player, i.e., the player having the largest amount of
money comes to be the winner.

Investors and consumers stand around innovators who also start from having 10$.
Each investor buys stocks of innovators who seem to be excellent, according to the
investor’s own sense. The investor having obtained stocks of the highest amount of
total price at the halting time comes to be the winning investor. And, consumers may
buy ideas for prices determined by negotiation with innovators. The consumer who
obtained the idea-set of the highest total price becomes the winning consumer.

Several methods for creative thinking, as the one shown in Section 2, can be posi-
tioned in the application of visualization of ideas. For example, Mind maps [1] have
been introduced for creating ideas with considering the relevance to the central key-
word corresponding to the target problem. The graph obtained from basic cards is
used as the game-board of Innovation Game, as in Fig.2. This intuitively visualizes
the map of ideas’ market, showing the positions of both existing knowledge and latent
ideas which does not appear on any basic card but may be created by combinations,
by applying Data Crystallization [9][12] to the text of basic cards. Data Crystalliza-
tion is an extension of KeyGraph, enabling to show latent items of which the fre-
quency in the given data is zero. E.g., a node such as DE58 in Fig.2 means a new idea
may emerge at the positions by combining ideas in its neighborhood clusters. The
innovators put basic cards on corresponding black nodes when combining the cards
for creating an idea, and to write the created idea on a post-it and put it on the corre-
sponding position. If the basic cards combined have been linked to a red (“DE-X”)
node via lines, then the position is the “DE-X" node.

3.2 Findings from Players’ Communications

The players of games we conducted (we organized more than 50 games so far) men-
tion they felt their skills of communication and thought for creating socially useful
knowledge in business has been elevated during and after the game. After each game,
the quality of created ideas are evaluated by all investors and more objective review-
ers, on criteria such as “originality” “cost” “utility” and “reality.” We found a signifi-
cant relevance between the quality of the players’ communication and the quality of
ideas. According to our data on the utterances by players, we found the originality and
the utility of ideas tend significantly to increase (1) after the increase in the empa-
thetic utterances of investors/consumers and (2) before the appearance of a sequence
of negative utterances followed by a positive utterance. Here, an empathetic utterance
means a comment referring to the context the presented idea may be utilized for fu-
ture businesses. These results imply an innovative communication comes from (1) the
context sharing induced by the visualized graph, and (2) the interest in revising pre-
sented ideas, of all participants.

CEINY3
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4 Niche of Idea Activations as Source of Innovations: Another
Finding from the Innovation Game

We hypothesized and evaluated the effect of idea niche on the innovations. An idea
niche is a part of the market where outstanding ideas do not exist but is surrounded by

Fig. 3. Free (left)/connected (right) niche ideas: with/without connections via links
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existing ideas. We expected humans can activate such a part to have the surrounding
ideas to meet and become combined. As Fig.3 shows, we classified idea niches into
two types. In the upper picture, a created idea is put on a free space, i.e., not at any
node in or linked to clusters. And, in the lower picture, a new idea is presented at a
red node, linking between clusters. Let us call the former type of niche, i.e., a node
connecting nodes in cluster(s), via links in the graph, a connected niche. And, let us
call the space on the graph surrounded by but not connected to clusters, a free niche.
We also classified a niche in another dimension: Whether it is between activated clus-
ters (clusters, all including ideas used already in the game), between partially acti-
vated clusters (i.e. some, not all, of which include ideas already used), or between
newly activated clusters (i.e. none of which include ideas already used). Thus, the
presented ideas in games can be classified into the six classes. Here, all the ideas in
each class, the percentage of the 5 highest-score ideas in each game was counted for
each type of niches respectively. As a result, we found the following three tendencies:

(1) The ideas at niches “between activated clusters” include the highest-score ideas.

(2) The free niche tends to include especially highly scored ideas, but the deviation
of the score is large i.e., the reliability of the ideas presented at free spaces is low
although the average quality is high. On the other hand, the connected niche
tends to include relatively highly scored ideas, and the deviation is small.

(3) The connected niche tends to create more excellent ideas than a free space, when
it is between partially activated clusters.

In summary, we can recommend players in the future to be patient until ideas have
been created combining ideas in clusters on the graph, without expecting high scores,
in the early stage. And, then, the players will be enabled to create good ideas by fo-
cusing on the niches of activated ideas on the graph (on tendency (1)). Here, if the
player likes a hit (especially high score), the free space between clusters including
activated ideas will be recommended at the risk of large deviation of the quality of the
idea. On the other hand, if the player likes reliability (hedging the risk of low score),
positioning ideas on nodes or lines on the graph will be better (on tendency (2)).
However, in real games in companies, where players join for real innovation, it is not
easy to have their patience to wait until clusters become occupied by activated ideas.
In such a case, the player should apply tendency (4). That is, if one prefers to combine
ideas in clusters without activated ideas and in clusters with activated ideas, it is rec-
ommended to create an idea on a node connecting these clusters.

5 Conclusions

Human’s insight is a fruit of the interactions of mental process and the social envi-
ronment [4] [10]. We developed the Innovation Game based on author’s experience of
applying KeyGraph to chance discovery in business teams, where members interacted
in the real team, in the real company, and in the real market.
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In this paper, we analyzed the presented ideas and the communications during
each game. The potential social contribution of each idea was evaluated on measures
as originality, reality, utility, etc. As a result, we are obtaining guidelines for players

e.g.,

to aim at suitable niche in the market of ideas reflecting the situation. These

findings partially correspond to known hypotheses about the mechanism of innova-
tion, but the evidences showing how the activation of basic knowledge leads to the
creation of ideas in real communication is novel as far as we know.

In the next step, we plan to model our recent experiences to put the created ideas
into final decisions and real actions of the company.
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Since its inception in early 80’s, the rough set theory has attracted a lot of interest
from global research community. It turns out as useful in building classification
and prediction models. It complements a number of other soft computing para-
digms. It may be combined with fuzzy logic and probabilistic data analysis. It
has led towards enhancements of neural networks, genetic algorithms, clustering,
support vector machines, regression models, et cetera. Its application domains in-
clude pattern recognition, feature selection, information retrieval, bioinformatics,
computer vision, multimedia, medicine, retail data mining, web mining, control,
traffic engineering, data warehousing, and many others.

A number of researchers have been working on the rough set theory also in
India. It is especially important to mention Mihir K. Chakraborty and Sankar
K. Pal, who contributed to its foundations and applications, respectively. Nowa-
days, rough sets are present at the centers of higher learning such as: Calcutta
University and IST (Kolkata), IIT (Delhi, Kanpur, Kharagpur), IISc (Bangalore),
Anna University (Chennai), Jawaharalal Nehru University (Delhi), et cetera. In
particular, inclusion of rough sets as one of the topics in Schools on Logic held
at IIT Kanpur (2008) and IIT Kharagpur (2009) has provided an evidence of its
acceptance as an unquestionably important research area in India.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 67{68, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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The rough set conferences and workshops have been held in Canada, China,
Japan, Poland, Sweden, USA, and most recently in Australia and Italy. Also, a
number of Indian conferences have considered rough sets as an important topic.
However, until this year, there has been no exclusive rough set conference in
India. In the end of 2008, preparations for two such events were announced: the
Twelfth International Conference on Rough Sets, Fuzzy Sets, Data Mining and
Granular Computing reported in this volume (see Preface), as well as the Inter-
national Conference on Rough Sets, Fuzzy Sets and Soft Computing, organized
at Tripura University, November 5-7, 2009. The aim of that second event was
particularly to expose young researchers to the latest trends in fuzzy and rough
systems through deliberations by well-known scientists. The committee has cho-
sen over 40 papers to be included into the conference materials published by
Serial Publications, New Delhi. It is also important to acknowledge that over 10
invited speakers from both India and abroad attended the conference.

In order to help in linking various rough set research groups in India and en-
able interaction with international rough set community, we proposed to extend
the two above-mentioned events towards a broader initiative named Rough Set
Year in India 2009[] A variety of additional events distributed through the year,
in different parts of India were organized successfully. A good example here is the
International Workshop on Rough Sets, Fuzzy Sets and Soft Computing: The-
ory and Applications, organized by University of Pune, July 7-8, 2009. This two
day workshop was attended by over 60 delegates from 19 different institutions
and 7 different states of India. Presentations by Vijay Raghavan (USA), Sush-
mita Mitra (India), Sonajharia Minz (India), Pawan Lingras (Canada), Dominik
Slezak (Poland), Yiyu Yao (Canada), and Georg Peters (Germany) described
fundamental rough set concepts, as well as their usage in academic research and
real world market applications. It is worth noting that the last three of men-
tioned presentations were delivered online, which shows how new communication
technologies can help in building the worldwide scientific network.

Another example of important event specially dedicated to the rough set the-
ory and applications is the International Symposium on Soft Computing, orga-
nized by Department of Computer Science at University of Mumbai, December
1-2, 2009. Rough set sessions were also present as components of other confer-
ences. For instance, Sonajharia Minz held a special session on rough sets and
granular computing at the National Conference on Computational Mathemat-
ics and Soft Computing, Women’s Christian College, Chennai, July 24-25, 2009.
Rough set research was also broadly represented at the 4th Indian International
Conference on Artificial Intelligence, Tumkur (near Bangalore), December 16-
18, 2009. It is also worth mentioning about the workshop organized by Mohua
Banerjee in Delhi, just before the conference that is reported in this volume.

All these multiple activities helped researchers to attend an event based on
their temporal and spatial convenience. We are confident that our initiative
successfully achieved its objective in developing an interest regarding rough sets
and its applications among a larger group of academicians in India.

! http://cs.smu.ca/~pawan/rsIndia09/index.html
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Abstract. An algebraic semantics for the logic LMSAS, proposed to
study the behavior of rough sets in multiple-source scenario, is presented.
Soundness and completeness theorems are proved.

1 Introduction

In last three decades, rough set theory [7] has been generalized and extended in
many directions enabling it to capture different situations. In [9], a multi-agent
scenario is considered where each agent has her own knowledge base represented
by equivalence relations, and thus perceives the same domain differently depend-
ing on what information she has about the domain. This multi-agent dimension
was also considered by Pawlak in [6] although not mentioned explicitly. In [3If4],
rough set theory is again explored in this context, although the more general
term ‘source’ is used there instead of ‘agent’. A multiple-source approximation
system is considered to study the behavior of rough set in such a situation.

Definition 1. [/ A multiple-source approximation system (MSAS) is a tuple
§ = (U,{R;}icn), where U is a non-empty set, N an initial segment of the
set N of positive integers, and each R;,i € N, is an equivalence relation on the
domain U. |N| is referred to as the cardinality of § and is denoted by |F|.

So MSASs are collections of Pawlak approximation spaces over the same domain
— the idea being that these approximation spaces are obtained from different
sources. The standard concepts such as approximations and definability of sets,
membership functions related with the Pawlak approximation spaces are gener-
alized to define these notions on MSASs. The following notions of lower/upper
approximations are introduced.

Definition 2 ([3]). Let § := (U, {Ri}ien) be a MSAS, and X C U. Then
strong lower approximation X, weak lower approximation X, , strong upper

approximation X, and weak upper approximation X, of X, respectively, are
defined as follows.

X, =NXpg,; X, =UXg,; Xs:=NXgr; Xu:=UXr,,

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 69 2009.
© Springer-Verlag Berlin Heidelberg 2009
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where X p and X g respectively denotes the lower and upper approzimation in
the Pawlak approximation space (U, R).

So in a special case when § consists of a single relation, weak/strong lower and
upper approximations are just the standard lower and upper approximations
respectively.

It is not difficult to show that X, € X,, € X C X, C X,,. Thus given
a MSAS § := (U,{Ri}ien) and a set X C U, on the basis of possibility of
objects to be an element of X, the universe is divided into five disjoint sets
namely X, X, \ X, X\ X,, Xw\Xs and (X,,)¢. The elements of these regions
are respectively called the certain positive, possible positive, certain boundary,
possible negative and certain negative element of X. Here, we would like to
mention that the strong/weak lower and upper approximations are different
from the lower and upper approximations of a set X in the approximation space
(U, R) of strong distributed knowledge R [9], i.e. where R := ;. y Ri. In fact,
we have the inclusion X, C X C Xp C X,.

The above notions of approximations along with other concepts related with
MSASs are studied in [B4] in some detail.

The existing logical systems employed to study the Pawlak approximation
spaces including the epistemic logic S5,, [2] and one given in [6l9] are not strong
enough to express the generalized notions of approximations and definability
of sets introduced in [3]. Thus a quantified propositional modal logic LMSAS
is introduced in [3], using which we can study the behavior of rough sets in
MSASs. In this article, we shall present an algebraic semantics for LMSAS. The
soundness and completeness theorem obtained in the process also establishes a
strong connection between the MSASs and the algebraic counterpart of LMSAS.
In order to obtain the completeness theorem, we have used the technique of com-
pletations of algebras (cf. [B]). @ — filters [I0] are used instead of ultra-filters,
because the embedding given by Jénsson-Tarski Theorem may not preserve in-
finite joins and meets — which is what we require. Since the embedding is done
in some complex algebra[l], we also obtain completeness with respect to a class
of complex algebras.

The remainder of this paper is organized as follows. In Sect. Bl we present
the logic LMSAS. In Sect. Bl we come to the main issue of the article, i.e.
the algebraization of LMSAS. Detailed proofs of the results of this section are
skipped because of a lack of space. Finally, we conclude the article in Sect. [l

2 LMSAS

In this section we briefly describe the logic LMSAS.
Syntax

The alphabet of the language of LMSAS contains (i) a non-empty countable set
Var of variables, (ii) a (possibly empty) countable set Con of constants, (iii) a
non-empty countable set PV of propositional variables and (iv) the propositional
constants T, L.
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The set T of terms of the language is given by VarUCon. Using the standard
Boolean logical connectives — (negation) and A (conjunction), a unary modal
connective [t] (necessity) for each term ¢ € T, and the universal quantifier V,
well-formed formulae (wifs) of LMSAS are defined recursively as:

T|L|p|—ala A Bl[t]laVea,

where p € PV, t € T, z € Var, and «a, 8 are wifs. The set of all wffs and closed
wifs of LMSAS will be denoted by F and F respectively.

Semantics

Definition 3. M := (§,V,I) is an interpretation, where § := (U,{R;}ien) is
a MSAS (cf. Definition), V : PV — P(U) and I : Con — N.

An assignment for an interpretation MM is a map v: T — N such that v(c) =
I(c), for each ¢ € Con.

Let 9t be an interpretation. As in classical first-order logic, two assignments
v,v" for M are said to be x-equivalent for a variable x, provided v(y) = v'(y),
for every variable y, (possibly) other than z.

Definition 4. The satisfiability of a wff a in an interpretation M = (F,V, I),
under an assignment v is defined inductively. We give the modal and quantifier
cases.

M, v, w [= [tla, if and only if for all w' in U with wR,gw', M, v, v’ | a.
M, v,w = Vaa, if and only if for every assignment v' x-equivalent to v,
Mo, w E a.

a is valid, denoted = «, if and only if M,v,w | «, for every interpretation
M= (§,V,I), assignment v for M and object w in the domain of §.

Given an interpretation 9 := (F,V,I) and assignment v, one can extend the
map V to the set of all wifs such that V(a) := {w € U : M,v,w | a}. Let us
recall Definition [ It is not difficult to prove

Proposition 1

1. (a) V({t)a) = V(e)g,, 7 (b) V([tla) = V()
For o which does not have a free occurrence of x,

2. V(Va[z]a) = V(a) ; V(3z[z]a) = V(a)

3. V(Va(zr)a) = V(a); V(Fz(r)a) = V(a)

w-
We would like to mention here that the epistemic logic 55,, and the logics con-
sidered in [6l9] will not suffice for our purpose. The semantics for these logics
considers a finite and fixed number of agents, thus giving a finite and fixed num-
ber of modalities in the language. But in the case of LMSAS, the number of
sources is not fixed. So it is not possible here to refer to all/some sources using
only the connectives A, V, and quantifiers V, 3 are used to achieve the task.

The following sound and complete deductive system for LMSAS was proposed
in [3]. ¢ stands for a term in T'.
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Axiom schema:
All axioms of classical propositional logic;

(1)
(2) Veza — aft/x), where a admits the term ¢ for the variable z;
(3) Vx(a — ) — (a — V), where the variable x is not free in «a;
(4) Vz[tla — [t]Vza, where the term ¢ and variable x are different;
(5) (@ — B) — (ifla — [118);

(6) a— (tha; (7) a— [t(t)as; (8) (H){Hhar — (H)ev.

Rules of inference:

V. « MP. « N. «
Voo a—f [t]ox
B

3 Algebraic Semantics for LMSAS

In this section, we present an algebraic semantics for LMSAS. We begin with
the following definition [IJ.

Definition 5. A tuple A := (A,N,~, 1, fi)kea is said to be a Boolean algebra
with operators (BAO) if (A,N,~,1) is a Boolean algebra and each f : A — A
satisfies (i) fr(1) =1 and (i) fr(aNb) = fr(a) N fi(b). Moreover, A is said to
be complete if it satisfies the following additional properties for all X C A:

(CB1) NX and X exist and (CB2) fr,NX = f:X, k€ A.
N X and |J X, respectively, denote the ¢.l.b and l.u.b of the set X.

In this paper, we are interested only in those complete BAOs (CBAOs) where
A = N and each fj satisfies the following three additional conditions:

(B1) fra < frfra; (B2) fra <a and (B3) a < frgra, where g :=~ fi ~.

Let us denote this class of complete BAOs by €.We shall obtain completeness of
LMSAS with respect to the class €.

Definition 6. Let 2 := (A,N,~, 1, fr)ken be a BAO satisfying (B1)-(B3). An
assignment in 2, is a function 0 : PV — A. 0 can be extended uniquely, in the
standard way, to a meaning function 6 : F — A where in particular, 0([c;la) :=
fi(0(a)), i € N and O(Yza) := N{0(a(c;/x)) - j € N}, provided the g.L.b. exists.
We define 6(a) == 0(cl(a)), o € F and cl(a) denotes the closure of a.

Note that in order to define the natural translation corresponding to all possible
assignments from closed LMSAS wifs to elements of a BAO, we only require the
existence of joins and meets of the sets of the form {#(a(c;/x)) : j € N}, where
« is a LMSAS wif with only one free variable z and 6 is an assignment. This
motivates us to define a realization for LMSAS in the line of realization of first
order formalized languages [§].

Definition 7. A BAO A := (A,N,~, 1, fu)ken satisfying (B1)-(B3) is said to
be a realization for LMSAS, if for every assignment 0 : PV — A the following
18 satisfied:
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(R1) 0(a) ezists for all o € F;
(R2) fi,0(alej/z)) =N, fub(alcj/x)), where o has only one free variable x.

Condition (R2) corresponds to the Axiom 4, and is essential to get the soundness
theorem. Note that every complete BAO satisfying (B1)-(B3) is a realization for
LMSAS. But not all realizations for LMSAS are complete BAOs. For instance,
if a BAO 2 satisfying (B1)-(B3), has only one distinct function symbol, then
each set {8(a(cj/x)) : j € N} will be singleton and thus 2 becomes a realization
which may not necessarily be a CBAO.

Definition 8. Let us consider a structure of the form § := (U,{R;}ica), where
A is an index set and for each i € A, R; C U x U. The complex algebra of
T (notation T ) is the expansion of the power set algebra P(U) with operators
mg, : 2V — 2V, i€ A, where

mp,(X):={x€U: Forally such that zR;y,y € X }.
In the case of MSAS, one can verify (B1)-(B3) to obtain

Proposition 2. Every complex algebra of a MSAS is a complete BAO satisfying
(B1)-(B3).

Let us denote the class of all realizations of LMSAS and complex algebras of
MSASs by R and €m respectively. So we have €m C € C ‘R.

Definition 9. Let 2 := (A,N,~,1, fr)ren be a realization for MSAS. Then we
write A I+« = B if and only if for every assignment 0 : PV — A, 0(«a) = 0(8).
We simply write R Ik a if A - o~ T for all A € R. Similarly we write € IF «
and Cm - « according as A- a~ T for allA € € or A € Em respectively.

Proposition 3 (Soundness Theorem). If F « then R Ik a and hence € IF «
and Cm IF o

Proposition 4 (Completeness Theorem). For o € F, if € Ik «, then - «.

We begin our journey to prove the above completeness theorem with the Lin-
denbaum algebra £n for LMSAS. In fact, giving exactly the same argument as in
the modal logic case, one can easily show that £n:= (F|=,N, ~, 1, fx)ren, where
1 = [T], is a BAO. Moreover, Axioms (6)-(8) give us the properties (B1)-(B3).
Ln is, in fact, a realization for MSAS. But in order to prove this, we need a few
more definitions and results.

Let p1,pa, ... be an enumeration of the propositional variables and ¢’ : PV —
Fl|= be an assignment. Let ai,aq,... be countably many distinct wifs such
that €' (p;) := [a;]. For a given wif o, a* denotes the wif obtained from « by

uniform replacement of propositional variables p;’s by «;’s. By induction on the
complexity of o, we obtain

Proposition 5. The wff (a(c;/x))* is same as the wff a*(¢;/x), j € N.
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Proposition 6. Consider F|=. Then for any o € F which has only x as free
variable, (;[a(c;/z)] exists and is given by [Vza].

We use Propositions [l and [@ to get
Proposition 7. 0/(a) = [o*], for all a € F.

This result ensures (R1). Moreover, due to the presence of Axiom 4, we obtain
the following, giving (R2).

Proposition 8. Let 6’ : PV — F|= be an assignment. Then

S ﬂ 0'(alej/z)) = ()l (ale; /).

J

From Propositions [[] and 8] we obtain
Proposition 9. £n:= (F|=,N,~, 1, fx)ken is a realization for LMSAS.

Due to Proposition @ we obtain the completeness theorem with respect to the
class of all realizations. But, as mentioned earlier, we want the completeness
with respect to the class €. It can be shown, as in the propositional logic case,
that the Lindenbaum algebra £n defined above is not a CBAO and so we need
to do some more work in order to get the completeness theorem with respect to
the class €. Note that we would achieve our goal if we could embed any LMSAS
realization 2 := (A, N, ~, 1, fi)ren into some complex algebra. At this point one
may think of the BAO consisting of all subsets of the set of all ultra-filters of
the BAO 2, as described in the Jonsson-Tarski Theorem. But the embedding
given in this theorem may not preserve infinite joins and meets. This problem
could be overcome if we consider the BAO consisting of all subsets of the set of
all Q-filters [I0] (defined below) instead of ultra-filters. Here, @ is a countably
infinite collection of subsets of A satisfying certain conditions and the embedding
obtained in this case preserves all the infinite joins and meets in Q). Since this
embedding may not preserve all existing joins and meets, the question again
arises whether even this embedding will be able to give us the desired result?
The answer is yes. In the rest of this section, we shall present the result of [10]
discussed above and use it to prove the completeness theorem with respect to
the class €.

Definition 10. Let A := (A,N,~, 1) be a Boolean algebra. Let Q := {Q, C A :
n € N}, where each Qy, is non-empty. A prime filter F' of A is called a Q-filter,
if it satisfies the following for each n € N.

1. If Q,, C F and (\Qy exists then [\ Qn € F.
2. If UQ, exists and belongs to F then Q, N F # (.

The set of all Q—filters of 2 is denoted by Fg ().

Let 20 := (A,N,~, 1, fi)ica beaBAO and Q := {Q,, C A : n € N}, where each
@, is non-empty. Let g be the structure (Fo(A), {R;}ica), where ; C A x A
such that (F,G) € ®; if and only if f;a € F implies a € G. It is not difficult to
obtain:
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Proposition 10. If A := (A,N,~, 1, f)ren be a BAO satisfying (B1)-(B3),
then Ag is a MSAS.

Now, we are in the position of defining the important result which we will use
to obtain the completeness theorem.

Theorem 1 ([10]). Let A := (A,N,~, 1, fi)ica be a BAO and Q be a countable

subset of 24. Let { X, }nen and {Yy,}nen be an enumeration of the sets Q. =

{Qm €Q:NQm € A} and Q" := {Qm € Q : UQm € A}. Moreover, suppose

that Q satisfies the following conditions for each i € A:

(QF1) for any n, () fi X, exists and satisfies that () fiXn = fi () Xm,

(QF2) for any z € A and n, there exists m such that {fi(z — z) 1z € X,,} =
X, where z — v : =~ z Uz,

(QF3) for any z € A and n, there exists m such that {fi(y — z) 1y € Y,} =
Y.

Then the function r : A — 272 defined by r(a) == {F € Fo() : a € F} is
a BAO embedding of 2 into the complex algebra (Ag)™ which also preserves all
of N X, and JY,,.

Let us consider the Lindenbaum algebra £n and the canonical assignment 6¢
which maps propositional variables to its class, i.e. 8°(p) = [p]. For each wif «
with a single free variable x, let us define the set Q. := {A(a(cj/z)) : j € N}
and let @ := {Q, : « has the single free variable z}. Note that @Q is countable.
Take an enumeration {X,}nen and {Y;, }nen of the set Q. and Q*. Then it is
not difficult to obtain:

Proposition 11. Q satisfies the condition (QF1)-(QF3).
Therefore, from Theorem [ we obtain,

Pr0p9sition 12. There exists a BAO embedding v of £n into (£ng)t such that
(N, 0¢(ale; /x))) = N, 7(0(alc; /x))).

We note that by Proposition [0} £ng is a MSAS and hence by Proposition 2
(&ng) T is a complete BAO satisfying (B1)-(B3). By induction on the complexity
of a, we obtain

Proposition 13. Consider the assignment ~y in the BAO (£ng)™ € €m defined
as y(p) :=r([p]), p € PV. Then ¥(a) = r([a]) for all « € F.

Proposition 14. (i) For o € F, €m |- « implies F «.
(ii) For o € F, €m Ik o implies - a.

Proof

(i) If possible, let t# .. Then [o] # 1. Now, consider the algebra (£ng)™ € €m and
the assignment + defined in Proposition [[3 Since [a] # 1, we have r([a]) # 1.
Therefore, 7(a) # 1, a contradiction.

(ii) If possible, let I . Then 7 cl(a) and hence by (i), we obtain a 2 € ¢m and
an assignment 6 in €m such that 6(cl(«)) # 1 and thus we obtain 6(a) # 1.

So Proposition @ follows from Proposition [I4] and the fact that ¢m C €.
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We end this section with the remark that the soundness and completeness
theorems establish a strong connection between the MSASs and the class € of
algebras. It follows that the operators f;, fs and f,, are the counterparts of the
lower, strong lower and weak lower approximations respectively, where fq(a) :=
Nien fi(a) and fu(a) = U;cy fi(a). Thus one could study the properties of
MSASs involving the different notions of lower and upper approximations in
the algebras of the class € using these operators, and conversely. For instance,

the properties X, = (X)) and (Xu) = (Xs), of MSAS correspond to the
properties fs(—a) = —gya and fi,g,a = guwgsa of the algebras of € respectively,
where gs(a) := ;e 9i(a) and gy (a) := U, ey gi(a).

4 Conclusions

Algebraic semantics of the logic LMSAS is presented and completeness theo-
rem is proved with respect to the class of complete BAOs, complex algebras
and LMSAS realizations. It appears from the study that the LMSAS realiza-
tion is the natural counterpart of LMSAS. However, an independent algebraic
characterization of the LMSAS realization is yet to be obtained.
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Abstract. We introduce the concept of a synchronal approximation
space (SA) and a AUAl-multiple approximation space and show that
they are essentially equivalent to an AUAI rough system. Through this
we have estabilished connections between general cover based systems,
dynamic spaces and generalized approximation spaces (APS) for easier
algebraic semantics. AUAl-rough set theory (RST) is also extended to
accommodate local determination of universes. The results obtained are
also significant in the representation theory of general granular RST, for
the problems of multi source RST and Ramsey-type combinatorics.

1 Introduction

A generalised cover based theory of AUAI rough sets was initiated in [I]. Tt
is relatively more general than most other cover based rough set theories. In
the theory, any given generalised cover cannot be associated with a general ap-
proximation space or an information system in a unique way without additional
assumptions. An axiomatic framework for the concept of granules in general RST
is considered in [2] by the present author. Relative this framework, the elements
of the cover used do not by themselves constitute the most appropriate granules
for the theory. The isolation of usable concepts of granulation in the theory is
also complicated by different possible definitions of rough equalities and concepts
of definite objects. Granulation can also be reflected in connections of the theory
with other types of RST.

In the next section, we develop a finer characterization of granules in AUAI
systems. In the third section, the notion of SA is introduced and shown to be
essentially equivalent to AUAl-approximation systems, but with an improved
explicit notion of granularity and better semantic properties. We prove repre-
sentation theorems on the connections between AUAI-RST and a new form of
multi source (or dynamic) APS and provide a long example in the fourth section.

In many possible application contexts common universes may not exist and it
makes sense to modify the theory for a finite set of universes. This modification
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is also sensible when subsets determine their own universes by way of other
semantic considerations. These may also be related to problems of combining
general APS. The representation theorems mentioned above extend to the new
context with limited modifications. We outline the essentials for this in the fifth
section. All of the definitions and theorems (except those in the introduction)
are new and due to the present author.

Some of the essential notions are stated below.

Let S be a set and K = {K;}? :n < oo be a collection of subsets of it. We
will abbreviate subsets of natural numbers of the form {1,2,...,n} by N(n). If
X C S, then consider the sets (with Ky = 0, K,,11 = S for convenience):

() XU = {Ki : K; C X, i € {0, 1, ...,n}}

(i) X2 = Ufnuer(S \Ky) : mier(S\ K,) C X, 1S N(n+ 1))
(111) Xul = m{UiejKi : X CU;er K, IQN(n+1)}

(iV) X2 = ﬂ{S \ K,: XCS \ K;, i€ {07 ,n}}

The pair (X", X*!) is called an AU-rough set by union, while (X'?, X“2) an Al-
rough set by intersection (in the present author’s notation [3]). In the notation of
[ these are (FZ(X), F(X)) and (FL(X), FA(X)) respectively. We will also
refer to the pair (S, KC) as an AUAl-approzimation system. By a partition of a
set S, we mean a pairwise disjoint collection of subsets that covers S.

2 Granules and Equalities in AUAI Rough Set Theory

Possible constructive definitions of granules in a mereology based axiomatic
framework are introduced in [2] by the present author. In this section we simply
take a Granule to mean an element of p(S) that is definite in one of the senses
defined below and is minimal with respect to being so. The associated gran-
ulation should also be able to represent any approximation as a set theoretic
combination of constituent granules. Concepts of rough equalities are naturally
relatable to types of discernibility. [4] suggests another direction.

Definition 1. In a AUAI system (S, K), the following equalities are definable
(A, B € o(5)):

Equality Defining If and Only If Condition Type

A=, B A* = B*; z € {I1,12, ul, u2} Pre-Basic

A =1 B A=7 Band A =,1 B Basic

A =9 B A= Band A =2 B Basic

A=, B A=y Band A =5 B Derived
A= B A =31 Band A = B Derived
A=, B A=, Band A =,2 B Derived
A=_B A= BorA =5 B SubBasic
A=, B A=, BorA =4, B SubBasic
A=_1B A=_ Band A =,_ B SubBasic
A=< B A=_ BorA=,_ B SubBasic

The "Types’ used are relative a natural perspective.
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Definition 2. We define different usable concepts of definite objects below:
Concept  Defining If and Only If Condition Type

A is 1-Definite iff Al = A =AY Balanced
A is 2-Definite iff A2 = A = A*? Balanced
A is 12-Definite  iff A = A = A = A2 = A“2  Balanced
A is 0-Definite iff Al = A2 gnd A = Av? Strong

A is x-Definite iff A = A; x e {11, 12, ul, u2} One-Sided
Below we reduce the number of possible concepts of definiteness to six.

Proposition 1. In the context of the above all of the following hold for any
subset A of S':

1. If A is l1-definite then A is ul-definite, but the converse implication may not
hold in general.

2. If A is u2-definite then A is [2-definite, but the converse implication may not
hold in general.

3. A is 12-definite if and only if A is l1-definite and u2-definite.

Proof

1. If A is [1-definite, then A = A" = (J{K, : K; C A, i € {0,1,....n}}
and so A'! is one of the sets being intersected over in ({U;c/K; : A,C
Uier K;y, I € N(n + 1)}. Obviously the whole intersection must coincide
with Al. So A% = A.

2. If A is u2-definite, then A = A*2 = N{S \ K; : A,C S\ K;, i €
{0, ...,n}}. But this is then the largest possible set included in the union
U{NK? : NK¢ C A}. So A2 = A.

3. This follows from the two propositions proved above. If A is 12-definite, then
it is obviously [1- and u2-definite. O

The elements of K used in AUAI-rough set theory can be seen as quasi-inductive
granules in a more general sense. This is reinforced by the following proposition:

Proposition 2. If K; € K, then

1. K; is 1-definite, but is not necessarily 2-definite
2. K; need not be a minimal element with the property (in the usual order)
3. K¢ is 2-definite, but is not necessarily 1-definite.

3 Synchronal Approximation Spaces

We introduce SAs and show them to be essentially equivalent to AUAI-
approximation systems, but with improved explicit notion of granularity and
semantic features. Basically, these are APS with operators that map equivalence
classes into other classes and are otherwise like the identity map.

Definition 3. By a synchronal approximation space SA, we mean a tuple of
the form (S, R, 1, 02, ... Nn) satisfying all of
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(i) (S, R) is an APS with partition R with n; being maps : p(S) — p(S)
(ii) (VA € R)n;(A) € Rorn;(A)=0; (VA € p(S)\ R)n;(A) = A
(iii) (VA,B € R)(n:;(A),mi(B) € R — Hkvtnf(A) =n;(B))

(v) (Vni,n;)(3A, B € R)ni(B) = n;(A) =0, n;(A), n;(B) € R

(v) (Vn;)(3t € N)(VA € p(S)ni"1(A) = ni(A)

Definition 4. By a n;j-connected component of a SA, we mean a subset C C R
that is maximal with respect to satisfying

(VA, B € C)(3k € N) nj(A) = Born;(B) = A

In other words it is a subset satisfying the condition and mo proper superset
satisfies the same condition.

Definition 5. On a SA, (S, R, 1, 12, ... Wn), apart from the usual lower and
upper aprovimations of a subset X (denoted by X' and X*) of S, we can define
the following approzimations:

(i) X" =U{B; BER, U; Up nf(B) C X}

(ii) X" = {Ujes Up nf(B); X € Ujes Uk nf(B), J S N(n+1), BeR}
(iii) X" = {(Ujes Unn}(B))®; (Ujes Urnf(B))° € X, J C N(n+1), B € R}
(i) X** =N{(Uen}(B))*; X C (Uknj(B)), B € R}

(v) X*0 =UAunf(B); nj(B) N X # 0, BeR}

Theorem 1. Any AUAI approzimation system (S, KC) determines an partition S
along with a SA (S, R,n1,m2,...ny) that is essentially equivalent to the former in
that 114, 124, ul+, u2+4-approzimations of a subset in the latter are the same as
11,12, ul, u2-approximations in the former respectively. Further, the SA uniquely
determines the AUAI approximation system.

Proof. For the forward transformation:

1. Simply decompose each K; into {K;;} with each subset being disjoint from
any other of the form K}, (for any distinct index). Let sets of the form Kj;
for i = 1,...,n be the ones obtained from K; by subtracting all other Kjs
from it.

2. Define the 7;s as per Definition 3 so that Uger Up n¥(B) = K;. More
concretely, let n{(K 11) take all values in K;; with last class being mapped
to 0 and n1(B) = () for other B € R and so on.

Given a SA, the union of connected components of each of the 7;s that ex-
clude the empty set are precisely the elements of the collection K of the AUAI-
approximation system. This can be checked by substitution in the definition of
114, 124, ul+, u2+ approximations. The uniqueness part can be verified by a
contradiction argument. a

As equivalence classes have better granular properties than the elements of I
(relative approximations [, u), SAs have better granulation than AUAl-rough sys-
tems. The lack of uniqueness of definition of 7;s in the proof is considered in more
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detail in a separate paper. Note that we do not need the exact index set over
which % takes values in the above, but the combinatorial part is definitely of
much interest.

Proposition 3. In a SA (S, R, m1, 2, ... Nn), the elements of R are admissible
granules for the approximation operators l, u, 1+, ul+, 124+, u2+, u0+. These
possess the following properties:

(i) (VYBE€R)B' = B = B*
(ii)) (VBeR) VA€ p(S)(ACB— A¢R)
(iii) All of the above mentioned approzimations are representable as set-theoretic

combinations of elements of R.
(iv) (VB € R)(3Bu, ..., B, € R)B U |J] B; is 1 — definite 0

4 Multiple Approximation Spaces

Different APS can be derived from an AUAl-approximation system. In this sec-
tion, we investigate the question of reducibility and equivalence of such systems
with special multi-source APS or dynamic spaces (see [5], [6] for example).

Definition 6. By the ATAU-Mutation Algorithm we will mean the following
procedure:

1. INPUT: K (interpreted as a sequence of sets), for simplicity of notation we
will assume that no element is included in another.

2. The total orders on the index set {1, 2, ..., n} correspond to bijections on

the same set (The set of bijections will be denoted by B(n)).

Fiz o € B(n). Set P, = K1

Set P2 = KJQ \ P1

oo Py = Kg \ UpeiP fors =2...,n+1

OUTPUT: P, = {P}7*" for each 0. We need to ignore empty sets in the

collection for our partitions.

S s Lo

Proposition 4. The collections formed by the AUAl-mutation algorithm are
partitions of the underlying set S. The equivalence corresponding to the partition
P, will be denoted by R, .

Definition 7. In the above context, by a concrete ATAU multiple approximation
space CAMS, we will mean a tuple of the form <S, {RU}JGB(,L)>. The partitions
determined by each R, will be denoted by P, .

Theorem 2. A CAMS (S, {Ro}oenm)). satisfies all of the following:

(i) (Vo € B(n))R, ® Ry = Ry, R;' = R,, As C R,
(ii) (Yo,0’ € B(n))(Ry ® Ryr)™" = Ry ® Ry, As C Ry ® Ry
(iii) (Vo,7 € B(n))(3A,B € P,)(3C,E€P,)A C C,E C B
(iv) (Vk € N(n))(Vo € B(n))(F"F-1P)(3A,,..., A, € P,)(3By,...,B), €
Pr)AL = By,..., Ay = By
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Proof

(i) Each R, is an equivalence relation

(ii) The composition of two distinct equivalences on the same set is symmetric
and reflexive

(iii) Suppose for some i, j, K; € P, and K; € P;. These are guaranteed to exist
by the AUAl-mutation algorithm. If K; ¢ K; and K; ¢ K;, then we will
be able to find some £ C K in P, and a A C K; in P;. If K; = K, then
we need to consider the classes at some later stage of the mutation process.
This proves the statement.

(iv) From the collection K of 'n/ number of subsets of S, we can generate at most
n number of equivalence relations (and the same number of partitions) by
the AUAI-mutation algorithm. Given a specific partition P,, the number of
partitions with exactly k& common elements is (n — k)— 1.

Theorem 3 (Representation Theorem). Fvery AUAI approzimation system
(S, K) determines a unique CAMS (S, {Ro}ocB(n)), which in turn determines
the same (up to a definable isomorphism) AUAI approzimation system by a re-
verse algorithm.

Proof. The = part of the proof has already been done. For generality, we will
assume that [JK # S. Given a CAMS (S, {Ro}oep(n)):

1. Form the partitions P, corresponding to R, and group them into hierarchial
collections {H;;}jen(n) on the basis of number of common elements by the
following rules:

2. For fixed j, any two collections in {H;;} have one common element, while
any elements (partitions) of any two collections in H;; have ¢ + 1 common
elements within themselves (for i =1,2,...n — 1)

3. (y cxrc Hi]‘ — EI!("_i)!zx Cze Hi_lj)

4. The elements of IC are the single common elements in 7;; (for each j). 0O

This theorem completely describes concrete AUAI multiple APS and can be used
as an equivalent representation for AUAI approximation systems. It is also a very
intricate new Ramsey-type theorem ! (see the extended version of this paper for
details).

Extended Example: Let S = {a,b,c,e, f,g}, K1 = {a,b,c}, K3 = {b, c},
Kz = {Cvevf}ﬂ K, = {f’g}ﬂ K5 = {bae} and let K = {KZ}?v thena

— Kt ={a,b,c}, Ki'* = {a,b,c}, Ki*? = {a,b,c}, K{? = {a,b,c,e},. So K is
1-definite, but not 2-definite.

— If A={a, f}, then A" =0, A" ={a,b,c, f}, A®? ={a}, A" = {a, f, g}

— If B = {a,f,c}, then BY = (), B = {a,b,c, f}, B? = {a,c}, B*? =
{a,c, f, 9}

— So A= B,but A#5 B

— AUAI Mutation Algorithm: Applying the algorithm in the order (4,1, 3,2,5)
to KC, we get Py = {f, g}, P> = {a,b,c}, Py = {e}, P, =0, Ps = (). Naturally
we need to ignore the empty partitions.
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— If we apply the algorithm in the order (4,2,5,1,3) to K, then we get P, =
{f,9}, P = {b,c}, Py = {e}, P, = {a}, P = ). Obviously, we can get a
large number of distinct partitions by this method.

More examples can be constructed from the ones in [I] and [3].

5 Generalisation of AUAI-Approximation Systems

In many applications, it can happen that each granule or union of granules
determines its own universe. This may be because the system under consideration
is actually the result of combining APS over different universes. The same applies
when the relevant universes are locally determined with respect to granules (see
[7] by the present author).

Definition 8. A partial map ¢ : p(S) — ©(S) will be said to be a universe
determining map if and only if it is a monotone increasing partial map defined
on the set B of granules and unions of granules. s.t. dom(p) =B ; (x C y —

o(r) C(y)); © C p(z) and (p(r) =y — p(~ x) =y)

Definition 9. A tuple of the form (S, IC, B, @) will be said to be a Quasi-AUAI-
approximation system (or a QAIAU system) if B is the set of granules and
unions of granules, @ is an universe determining map and the approximations
11,12,ul,u2 are defined by conditions similar in form to that of AUAI systems,
but complementation is interpreted relative p-determined universes (that is for
any subset A, A* = p(A)\ A).

From a classicalist perspective, we can define the usual set operations, special
complementation, the unary approximation operators and the O0-place
operations L, 1, T on the power set p(S). The resulting structure, S =

<p(S)7U7ﬂ7*,ll7l2,u1,u2,J_,17T,7717...n¢(n)7§1,...7§¢(n)> with 1| = 0, T =

©(S), 1 = UK, will be termed a concrete QAUAI-algebra. The operations n;, &;
have been introduced to ease the expression of the last two conditions of Thm
!

1.1 of [3]. For even n, ¢(n) = (n/ay2 and for odd n, o(n) = (n+1/2)?én_1/2)!.

A similar structure satisfying all the conditions of Thm 1.1 (of [3]) is definable
for AUAI systems. The main differences are in the properties of (2, u2, the equal-
ities involving mixed approximations and difficulty of abstract representation.
It is also possible to represent QAUAI systems as a collection of APS over dis-
tinct universes under constraints. Importantly the connections with the different

extended APS extend to QAUAI systems in a modified way.

Theorem 4. The following properties hold in any QAUAIl-algebra:

(Z) ¥ = : z* ﬁy* C (ny)*, x*l2 C xul* ; x*ul C xl2*
(ii) In general, (x Ny)2 # (22 Ny'?) ; ¥t £ gu2*
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6 Further Directions

We have shown that SAs and AUAI multiple APS are essentially equivalent to
AUAIl-approximation systems, but with improved granularity. Moreover they are
more amenable from the algebraic point of view through direct methods and
decomposition theorems. For forming the logics of roughly equivalent objects, we
can use typed approaches or deal with the AI and AU approximations sepa-
rately (at the semantic level). The connections proved permit us to consider the
semantic domains of roughly equivalent objects of the AI, AU type respectively
and the classical semantic domain in a dialectical way. This suggests a natural
dialectical approach to the semantics and logic (see [§] and [2]).

In the extended version of this paper we associate typed logics with the vari-
ant of multiple APS obtained in the above. The objects of the rough semantic
domain are described in the same. As the granularity is fairly intricate, we have
separate logics for Al, AU and AUAI approximations. We also introduce a re-
lation algebra like approach to describe the semantics from a classicalist and
rough perspective of things. The associated structures are partial algebras. For
the rough perspective, we use relativisation in the sense of [9] to provide a dis-
tinct interpretation. The main problems solved therein are those of selection of
operations and domain of definition, axiomatisability and/or direct logic formu-
lation. We will also consider the fine structure of the connections with most other
cover based approaches in a separate paper.

Acknowledgement. I would like to thank the anonymous referees for useful
suggestions towards improving the readability of the paper.
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Abstract. In this paper, we discuss some structures on the ordered set of rough
approximations in a more general setting of complete atomic Boolean lattices.
Further, we define an induced map from the map defined from the atoms of
complete atomic Boolean lattice (A(B)) to that lattice B. We also study the con-
nections between the rough approximations x", x" defined with respect to the
induced map and the rough approximations x~, x“defined with respect to the
considered map under certain conditions on the map.

Keywords: Complete atomic Boolean lattices, Complete Ortholattices, linearly
ordered set, rough approximations.

1 Introduction

Rough set theory was introduced by Pawlak [10] to deal with uncertainty, where the
objects were observed only through the available knowledge represented by the indis-
cernibility relation. The Rough Set theory approach is based on indiscernibility rela-
tion and approximation. Pawlak’s rough sets model is based on equivalence relation.
According to Slowinski and Vanderpooten [11], “The equivalence relation seems to
be a stringent condition that may limit the application domain of the standard rough
set model”. So the equivalence relation has been relaxed to arbitrary binary relation
[13] and Yao [14, 15, 16] introduced the notion of generalized rough approximations.
This is one of the ways to generalize the rough set model.

Another way of generalizing the rough set model was done by defining the ap-
proximation operators in various algebraic structures such as Boolean algebras [7, 8],
Complete distributive lattices [5], Completely distributive Complete lattices [4], lat-
tices, posets [17] etc. The properties of the rough approximations in a more general
setting of complete atomic Boolean lattice were studied in [7, 8]. In this paper, we
have proved according to the notations in [7, 8] that the ordered sets (B”,<) and
(B*, <) are complete ortholattices if the map ¢ is extensive and symmetric. Also, we

give a necessary and sufficient condition for the ordered sets (B”,<) and (B*,<) to
be linearly ordered. Further, we define a new map induced from the considered map
@ and study the connection between the rough approximations defined by the map

(@) and the map ¢ .

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 85 2009.
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2 Preliminaries

An ordered set (P, <) is linearly ordered if for every x, y€ P, x<y or y<x. A map f:
P — P is said to be extensive, if x < f(x), for all x& P. The map f is order — preserving
if x<y implies f(x) <f(y). The map f: P — P is said to be idempotent if f(f(x))=f(x). A
closure operator on an ordered set P is an idempotent, extensive and order-preserving
self-map. A self-map f is called a topological closure operator (also called a Kura-
towski closure operator) on complete lattice L if it is idempotent, extensive, and satis-
fies f(0) = 0 and f(a v b) = f(a) v f(b) for all a, b € L. Further, if f is a closure operator
and a complete join-morphism on a complete lattice L, then f is called an Alexandrov
closure operator on L. Let (L, v, A, 0, 1) be a bounded lattice. Then L is said to be an
ortholattice if there exists a unary operation ' : L—L satisfying the conditions x v x' =
L xAax'=0,x <y=y" <x’ and x" = x . For definitions and results in lattice theory
not given here the readers are asked to refer [6, 9, 12].

Let us recall some definitions and results given in [7].

If B is a complete atomic Boolean lattice, then 4(B) denote the set of all atoms
of B.

Definition 1[7]. Let (B, <) be a complete atomic Boolean lattice. A map ¢ :4(B)
— B is said to be

i) extensive, if x< ¢ (x), for all xe A(B).
ii) symmetric, if x< g (y) = y< @ (%), for all x, ye A(B).
iii) closed, if x< @(y) = @) < @ (y), for all x, ye A(B).

Definition 2[7]. Let (B, <) be a complete atomic Boolean lattice and let ¢: A(B)
— B be any map. For any element xe B, let

x"=v{ae AB)/ ¢ (a)<x} and

1
x*=v{ae AB)/ p(a) Ax#0]}. M

Result 1[7]. Let (B, <) be a complete atomic Boolean lattice and let ¢ : A(B) — B
be any map. Then for all ac A(B) and x€ B,

i) a<x® & @(a)axz0

ii) a< x” & @(a)<x
The following results are shown in [7]. For any Sc B, let S* ={x*/ xe S}. The or-
dered sets (B”,<) and (B*, <) are always complete lattices. (B”,<) and (B*,<) are
distributive sub lattices of (B, <) if ¢ is extensive and closed. If the map ¢ is exten-

sive, symmetric and closed, then the ordered sets (B7,<) and (B*,<) are mutually
equal complete atomic Boolean lattices. Further the example 3.16 of [7] shows that
(B7,<)and (B, <) are not necessarily distributive if ¢ is extensive and symmetric.
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3 Some Structures on the Ordered Set of Rough Approximations

The join (C) and meet (X) operations in the complete lattice (B*, <) are as follows:
Let S* cB*. Then vS*=( v x)*and AS*= Vv {@(@)/p@< A x*}, where v
xS xeS§

and A are the join and meet operations in (B, <) respectively.

Theorem 1. If ¢ is extensive and symmetric, then (B*, <) and (B7, <) are complete
ortholattices.

Proof. For each x* € B*, (x‘)L: x*'*, where ' is the complementation operator in
(B, <) is the orthocomplement of x*. Hence the ordered set (B*,<) is a complete
ortholattice. Since ¢ is symmetric, (B*,<)=(B7,<). Hence (B”, <) is also a com-
plete ortholattice. O

Let us denote ¢ (AB))={ ¢ (a)/ac AB)}.

Theorem 2. Let (B, <) be a complete atomic Boolean lattice. Then (B*, <) is linearly
ordered if and only if (@ (AB)), <) is linearly ordered.

Proof. Assume that (@ (A(B)), <) is linearly ordered. Let x, y € B*. Then x=u",
y=v*, for some u, ve B. Suppose x and y are not comparable in B*. Then there exists
a, be AB) such that a<x=u* and a£y=v*, b<y=v*® and b £x=u”. Then, we have
p@Aruz0 and @(a)Av=0, g(b)Av=£0 and @(b) Au=0. Since (@(A(B)),<) is
linearly ordered, we have @(@)< @) or gbD)<@(a). If @< @b), then
@(a) Au# 0 implies ¢ (b) Au# 0, which is a contradiction to the hypothesis. Similar
contradiction also occurs when ¢ (b)< ¢ (a). Hence (B*, <) is linearly ordered. Con-
versely, assume that (B*,<) is linearly ordered. Suppose (¢ (A(B)), <) is not linearly
ordered. Then there exists a, be A(B) such that neither ¢(a)< @ (b) nor ¢(b)< p(a).
Then there exists ¢, de A(B) such that ¢ < g(a) and c £ ¢(b), d< @(b) and d£ ¢p(a).
Then ¢ < ¢(a) and c £ @ (b) implies g(a)ac #0 and @(b) Ac = 0. Then, we have
a<c®and b%c”. Similarly, d< ¢(b) and d£ ¢(a) implies b<d“and a£d". Thus
there exists a, be A(B) such that a<c®and a£d*, b<d* and b%c*. This implies

there exists ¢*, d* € B* such that ¢* £d* and d* £c¢*, which is a contradiction to the
hypothesis. Hence ( ¢ (A(B)), <) is linearly ordered. O

Since (B*, <) is dually order isomorphic to (B™, <), we have the following corollary.
Corollary 1. Let (B, <) be a complete atomic Boolean lattice. Then (B~, <) is line-

arly ordered if and only if (@ (AB)), <) is linearly ordered.

Remark 1. Let us consider ¢ : U— @ (U) defined by ¢ (x) = R(x) for all xe U, where

R(x) = {yeU/ xRy}. If R is transitive and connected, then for every x, ye U, R(x) <
R(y) or R(y) < R(x). Therefore, by the above theorem (% (U)*, <) and ( (U)", ©)
are linearly ordered sets.
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4 New Approaches in Defining the Rough Approximations
We can define a new map (¢) induced from the map ¢ as follows:

(p) (@) = A o(b), for all ae A(B). )
asp(b)
The idea behind the setting is the map (@) : U— % (U) by (@) (x) = (x)R may be
considered to be of the form (¢): 4(B) — B, where (B, <) equals (g (U), <) re-
sembles the definition of (x)R givenin [1, 2, 3].
Now, we can define the lower and upper approximation operators on (B, <) with
respect to the induced map (@) .

Definition 3. Let (B, <) be a complete atomic Boolean lattice and ¢: 4A(B) — B be
any map. For any element x&€ B, we define

x"= v {ae 4AB)/{p) (a)<x} and
3
x"=v{ae AB)/{p) (a) Ax+0}. )

The elements x” and x” are the lower and upper approximations of x with respect to
(@) respectively, where the elements x~ and x* are the lower and upper approxima-

tions of x with respect to .

According to lemma 3.3, 3.4 and proposition 3.5 in [7], the following results are
true for any map ¢ . Since (@) is also a map, the same results hold for the lower and

upper approximations of x€ B with respect to (@) . So, we omit the proof for the fol-
lowing lemma and proposition.

Lemma 1. Let B be a complete atomic Boolean lattice and ¢ : A(B) — B be any map.
Then for any element x, ye B and ac A(B), the following hold

i) a<x" & (@) (a)Ax#0
ii) a< x” & (p)(a)<x
iii) 0"=0and 1" =1
iv) x<y=> x"<y andx"< y”
For any S ¢ B, denote by S*= {x7 xe S} and S"= {x"/ xe S}.

Proposition 1. Let B be a complete atomic Boolean lattice and @ : A(B) — B be any
map. Then the following hold

i) Themaps ~: B— Band " : B— B are mutually dual.

ii) ForallScB, vS =(vS) and AS'=(AS)".

iii) (B%, <) is a complete lattice with null element 0 and all element 1".
iv) (B%, £)is a complete lattice with null element 0 and all element 1.
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Proposition 2. Let B be a complete atomic Boolean lattice and ¢ : AB) — B be any
map. Then the following hold for every x€ B.

i) x""=x"
i) x"T=x"

Proof. 1) Let ae A(B) be such that @ < x™*. Then, we have @ (a)Ax” #0. Then

there exists be A(B) such that b< @ (a) and b<x" which implies () (b) Ax=0.

Since b< @(a), we have (@) (b)< @(a). Thus, p(a) Ax#0. Then @ (a) Ax#0 im-

plies a<x*. This implies Vv {ae€ AB)a<x"*}< v {ae AB)/la<x*} which implies

X< x”.

Let a€ A(B) be such that a<x”. Then, we have @(a)Ax#0. Then there exists
be A(B) such that b< @ (a) and b < x. Since there exists be AB) such that b< ¢ (a),
we have b< (@) (b). Also, we have b<x implies (@) (b) Ax#0. Then, we have
b<x". So, b< ¢(a) and b<x" implies @ (a)Ax" #0. Then, we have a<x"*. Thus,
vi{ae AB)/a < x*}< v{ae AB)/a < x**} which implies x* < x"*. Hence x™*
=x*, for all xe 4(B).

ii) By (i), we have x™* = x*, for all x€ 4(B). Thus for x', we have x"** = x'“. By dual-
ity of the maps*,” and ", ", we have x™* =x"" = x7'=x""'= xT=x". O
The following lemma shows that the map (¢) is always closed for any map ¢ .

Lemma 2. Let B be a complete atomic Boolean lattice. For any map ¢ : A(B) — B,

the induced map {@) is always closed.
Proof. Let a, be A(B) be such that a < (@) (b). Then by definition of (@) , we have
a< @(c), for all ce A(B) such thatb< ¢ (c) 2.1
Let xe A(B) be such that x < (@) (a). Then by definition of (@), we have
x< @ (d), for all de A(B) such thata < ¢ (d) 2.2)
Let ce AB) be such that b< ¢ (c). This implies a< ¢ (c) (by (2.1)) which implies

x< @(c) (by (2.2)). Therefore x< ¢@(c), for all ce A(B) such that b< ¢ (c). Then

x< A @(c)implies x< (@) (b). Thus{xe AB)/x< (@) (@)} < {xe AB)/x< (p) (b)}
bg(c)

implies vi{xe AB)x< {p) (@)} < v {xe AB)/x< {p) (b)} which implies

(@) (@) (@) (b). Thus a< (@) (b) implies (@) (a)< (@) (b), for all a, be A(B).

Hence the map (@) is closed. O

Symmetry of ¢ does not imply symmetry of (@) . But, obviously the extensiveness of
@ implies the extensiveness of (@) . Example 1 shows that, there exist maps ¢ which
are not extensive, but (@) are extensive.
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Example 1. Let B = {0, a, b, 1}, the order < be defined as in fig. 1 and let the map
@: AB) — B be defined by ¢ (a) =b, ¢ (b) =a.

0
Fig. 1. The ordered set (B, S)

Now, (@) (@) = ¢ (b) = a, (@) (b) = ¢(a) = b. We have, x< (@) (x), for all x€ A(B).
Hence the map (@) is extensive, though ¢ is not extensive. Hence for the extensive-
ness of the map(g), a weaker condition, than the extensive condition on ¢ is
sufficient.

Definition 4. Let (B, <) be a complete atomic Boolean lattice. A mapg: AB)— B
is said to be a coverif Vv { ¢ (a)/ac AB) }=1.
Lemma 3. Let B be a complete atomic Boolean lattice. Then the following are

equivalent:

i) @ isacover;
ii) for every ac A(B), there exists be AB) such that a< ¢ (b);

iii) (@) is extensive.

Proposition 3. Let B be a complete atomic Boolean lattice. Then the following are
equivalent:

i) @ isacover;
ii) x” <x, forall xe B;
iii) x< x°, for all xe B.

Proof. The proof follows from the above lemma and proposition 4.2 in [8]. O

Proposition 4. Let B be a complete atomic Boolean lattice. Then the following are
equivalent:

i) @ isacover;
ii) x“=x", forall xe B;
iii) x™ =x", for all xe B.

Proof. The proof follows by using lemma 2 and lemma 3 in proposition 4.4 of [§]. O

Corollary 2. Let B be a complete atomic Boolean lattice. Then the following are
equivalent.
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i) @ isacover;
ii) 7:B — Bis a Alexandrov interior operator;
iii) ": B — Bis a Alexandrov closure operator.

Theorem 3. Let B be a complete atomic Boolean lattice. Then x™ <x” <x< x" < x*
holds for all xe B if and only if ¢ is extensive.

Proof. let ae A(B) be such that a<x”. Then we have ¢@(a)<x. Since

a< ¢(a), A o(c) < p(a)<x. Then (@) (a)<x implies a<x". Thus, we have x” <
asg(c)

x°, for all xe B. Now for x', we have x'~ < x ™. By proposition 3.5(i) of [6] and

proposition 1(i), we have x'7"= x*'and x"= x"". Then x*'=x'" < x"” = x™" implies x" <

x*. Combining proposition 3 with this we have x” <x"<x<x"<x*, for all xe B.

Other part is obvious. |

Example 2. Let us consider a complete atomic Boolean lattice B, the order < be de-
fined as in the fig. 2. The mapg@: A(B) — B be defined by ¢ (a)=c', ¢ (b)=b" and

@ (c)=b". Then obviously ¢ is a cover but not extensive, for b£ ¢ (b).

Fig. 2. The ordered set (B, <)
Here we have that (b’ )™ £(b' )" and b” £b*. Thus the chain of inequality in the
above theorem does not hold if ¢ is merely a cover.

Lemma 4. Let B be a complete atomic Boolean lattice. Then the following holds:
i) If @ is extensive and closed, then (¢) = @.
ii) If @ is symmetric and closed, then (@) = ¢.

Proposition 5. Let B be a complete atomic Boolean lattice. If ¢ is extensive and
closed or ¢ is symmetric and closed, then the rough approximations of the elements

of B with respect to (@) and ¢ are equal.

Proof. The proof follows from the above lemma. O
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The following proposition gives the necessary and sufficient condition for a cover
map ¢ to be equal to its induced map (¢) .

Proposition 6. Let B be a complete atomic Boolean lattice. Then the map ¢ : A(B)

— Bis a cover and (@) = ¢ if and only if ¢ is extensive and closed.

Proof. 1f ¢ is extensive and closed, then by lemma 4 (p) =¢. Since ¢ is extensive,

@ is a cover. Conversely, suppose the map ¢ : AB)— B is a cover and (@) =¢. Then

from lemma 3, we have ¢ is extensive. Also, we have (¢) is always closed. This

implies ¢ is also closed. Hence ¢ is extensive and closed. O
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Abstract. In this paper, rough set approximations based on labelled
blocks are explored. The concept of labelled blocks determined by a
function is first introduced. Lower and upper label-block approxima-
tions of sets are then defined. Properties of label-block approximation
operators are also examined. Finally, relationship between properties of
label-block approximation operators and some essential properties of the
corresponding function is characterized.

Keywords: Granular computing, Granules, Labelled blocks, Rough sets.

1 Introduction

Granular computing (GrC) is a basic issue in knowledge representation and
data mining. The purpose of GrC is to seek for an approximation scheme which
can effectively solve a complex problem, albeit not in the most precise way.
Ever since the introduction of the concept of “GrC” [8I12223], we have wit-
nessed a rapid development of and a fast growing interest in the topic (see e.g.
RGOS TEI TSTOR021]).

A granule is a primitive notion in GrC which is a clump of objects (points)
drawn together by the criteria of indistinguishability, similarity or functionality
[23]. A granule may be interpreted as one of the numerous small particles form-
ing a larger unit. Alternatively, a granule may be considered as a localized view
or a specific aspect of a large unit satisfying a given specification. The set of
granules provides a representation of the unit with respect to a particular level
of granularity. The process of constructing information granules is called infor-
mation granulation. It granulates a universe of discourse into a family of disjoint
or overlapping granules. Thus one of main directions in the study of GrC is to
deal with the construction, interpretation, and representation of granules.

Many models and methods of GrC concentrating on concrete models in special
contexts have been proposed and studied over the years. Rough set theory is one
of the most advanced areas popularizing GrC [BIGIZIOTATITIZ0/21]. Rough set
theory was originally proposed by Pawlak [I1] as a formal tool for modelling and
processing incomplete information. The basic structure of rough set theory is an
approximation space consisting of a universe of discourse and a binary relation

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 93 2009.
© Springer-Verlag Berlin Heidelberg 2009
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imposed on it. Based on the approximation space, the notions of lower and upper
approximation operators can be constructed. This model is very useful in the
analysis of data in complete information systems/tables [ITI24]. The equivalence
relation in the Pawlak’s rough set model groups together entities which are in
some sense indiscernible or similar called equivalence classes. Thus equivalence
classes are the basic building blocks for the representation and approximation
of any subset of the universe. Based on this observation and by employing the
notion of labelled partition, Bittner and Smith [3] proposed the concept of a
granular partition. A granular partition can be seen as an extension of the con-
cept of equivalence relation. In [4], Bittner and Stell showed how the technique
of making rough descriptions of a subset with respect to an equivalence relation
can be extended to descriptions with respect to a granular partition.

A labelled partition of a universe of discourse is a surjective function from
the universe to a labelled set. We observe that each attribute in a complete
information system [I1J24] can be taken as a labelled partition. In this paper,
we propose a concept of block-labelled rough set. We introduce the notion of
labelled blocks, define rough set approximations based on labelled blocks, and
examine their properties.

2 Functions and Labelled Blocks

Let U be a nonempty set, the class of all subsets of U will be denoted by P(U).
For X € P(U), we denote by ~ X the complement of X in U.

Let U denote a nonempty set of objects called the universe of discourse and
R C U x U an equivalence binary relation on U. The equivalence relation R par-
titions the universe U into disjoint subsets. The equivalence classes in Pawlak’s
rough set model provide the basis of “information granules” for database anal-
ysis. It is well known that there exist a one-to-one mapping between the set of
equivalence relations on U and the set of partitions of U. Partitions of the set U
are often identified with functions of the form f : U — V which are surjective,
that is, for each v € V| there exists some u € U such that v = f(v).

Let U and V' be two nonempty sets and consider a function f : U — V, denote
fY(v) = {u € U|f(u) = v}, then we can see that, for vy,vy € V,

v1 # vy = [ v1) N fH (v2) =0 (1)

and

U i =U. (2)

veV

If f is surjective, then {f~1(v)|v € V} forms a partition of U.

For u € U, denote [u]y = {x € U|f(x) = f(u)}, it is easy to observe that
{[u]flu € U} is a partition of U. Moreover, if v = f(u), then [u]; = f~!(v), in
such a case, we say that [u]s is a block with the label v and we call that the pair
([u]f,v) = (f~'(v),v) is a labelled block induced from the function f: U — V.
In [4], a surjective function from U to V is called a V-labelled partition of U.
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One example of class of labelled blocks are maps in the cartographic rather
than the mathematical sense, in which a block is the location of a region whereas
the label is the name of the same region []. Labelled blocks can also be em-
ployed to represent the granular information of the object-attribute values in an
information system [IT/24]. Consider an information system (U, A, F') in which
U is a nonempty finite set of objects called the universe of discourse, A is a
nonempty finite set of attribute such that f, : U — V, for any a € A, where
Vo = {fa(u)|u € U} is the domain of attribute a, and F' = {f,|la € A} is the
set of information functions. Then for each attribute a € A, f, is a surjective
function from U to Vg, ([u]s,, fa(u)) is a labelled block in (U, A, F'), the sets of
all labelled blocks reflect the information granules in the information system.

3 Block-Label Approximations of Sets

In this section, we defined two pairs of lower and upper approximations of a set,
one is in the sense of Pawlak which is constructed by blocks, and the other is
determined by labels.

Definition 1. Let U and V' be two nonempty sets and f : U — V a function
from U to V. For X € P(U), a pair of lower and upper block approzimations,
denoted as f(X) and f(X), are subsets of U and are defined, respectively, as
follows

fX)={ueUluy € X}, f(X)={uveUl|ulynX#0} 3)

(f(X), f(X)) is referred to as the block rough set of X with respect to (U,V, f),

and f and f: P(U) — P(U) are, respectively, called the lower and upper block
approzimation operators. The lower and upper label approximations of X with
respect to (U,V, f), denoted as L(X) and L(X), are subsets of V and are, re-
spectively, defined as follows

LX)={veV|fT(v) X}, LX)={veV|fT()nX#0}. ()

(L(X), L(X)) is referred to as the label rough set of X with respect to (U,V, f),
and L and L : P(U) — P(V) are, respectively, called the lower and upper label
approzimation operators. We call ((f(X), f(X)), (L(X),L(X))) the block-label
rough set of X with respect to (U, V, f).

According to Eq. (3), the lower block approximation, f(X), of X with respect
(U, V, f) is the collection of those objects which can be classified with full cer-
tainty as elements of X in the available knowledge (U, V, f), whereas the upper
block approximation f(X) is the collection of objects which can be possibly
classified as elements of X using the available knowledge (U,V, f). Since the
set of blocks, {[u]slu € U}, is a partition of U, it can yield an equivalence bi-
nary relation Ry on U, then by the definition, we can see that the pair of block
approximations are exactly set approximations in the sense of Pawlak [I1], i.e.,

FX) = U{fulpllu]y € X}, F(X) = U{[u]¢l[u]f N X # 0}. (5)
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Hence, the lower block approximation f(X) is the union of blocks which are
subsets of X and the upper block approximation f(X) is the union of blocks
which have a nonempty intersection with X.

By Eq. (4), the lower label approximation of X with respect (U,V, f) is
the collection of those labels whose corresponding blocks can be classified with
full certainty as elements of X in the available knowledge (U,V, f), whereas
the upper label approximation is the collection of labels whose corresponding
blocks can be possibly classified as elements of X using the available knowledge
(U, V, f). Therefore, the block-label approximations have more semanteme than
the Pawlak approximations.

4 Properties of Block-Label Approximations

Since the block approximations are the same as the Pawlak approximations, the
block approximation operators satisfy the properties of Pawlak approximation
operators and we summarize as following

Theorem 1. [I1] Let U and V be two nonempty sets and f : U — V a function
from U to V. Then the lower and upper block approximation operators defined
in Eq. (3) satisfy the following properties: VX,Y, X; € P(U), i € I, I is an index
set,

(BLO) f(X) =~ f(~ X), (BUO) f(X) =~ f(~ X):

(BL1) f(U) =T, (BU1) f(0) = 0;

(BL2) F( %) = 07X, (BU2) S(U X)) = U F(X0);
(BL3) X C Y = f(X) C f(¥), (BUB) X C Y = f(X) C f(Y);
(BL4) F(U %) 2 U S(X0),  (BU4) S0 X) € N F(X0);
(BL5) f(X) C X, (BUS) X C f(X);

(BLG) /(@) = 0, (BUG) f(U) = U;

(BLT) £(X) = F(f(X)), (BUT) f(f(X)) = f(X):

(BL8) f(X) = [(/(X)), (BUS) f(f(X)) = f(X):

(BLY) /(f(X)) C X, (BU9) X C f(f(X)).

The next theorem presents the basic properties of label approximation operators.

Theorem 2. Let U and V' be two nonempty sets and f : U — V a function
from U to V. Then the lower and upper label approximation operators defined in
Eq. (4) satisfy the following properties: VX,Y, X; € P(U), i € I, I is an index
set,

(LLO) L(X) =~ L(~ X),  (LUO) L(X) =~ L(~ X);

(LL1) L(U) =V, (LU1) L(®) = 0;

(LL2) L(() X:) = () L(X,), (LU2) L(U X,) = U L(X,);

il el el el
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(LL3) X CY = L(X) C L(Y), (LU3) X CY = L(X)C L(Y);
(LL4) L(U Xi) 2 U L(X;),  (LU4) L(N X5) € () L(X).
el el el el
Proof. 1t is directly follows from Eq. (4).

For X € P(U) and W € P(V), denote

FX) ={f@lze X}, fW)={zeUlf(z)eW}= [J{/ @)} (6

weW
It can easily be verified that
FHX)2X VX e P). (7)
and
FUTW) =W YW e P(V). (8)
By Eq. (4), we can easily conclude that
L{u}) ={f(w)}, uwel. 9)
Then, according to property (LU2), we have
= JUrw=rx), xer). (10)

ueX

Theorem 3 below shows the relationship between the two types of approximations
defined in Definition 1.

Theorem 3. Let U and V' be two nonempty sets and f : U — V a function
from U to V. Then, for X € P(U),

FTHLX) = f(X),  F(f(X)) = L(X), (11)

and
THL(X) = f(X),  f(F(X)) = L(X). (12)
Proof. For any u € f~'(L(X)), let v = f(u), then f~!(v) = [u]. Since f(u) =

) =
v € F(X), we have f~1(v) N X # 0, that is, [u]; N X # 0. Hence u € f(X). It

follows that
FHL(X) € F(X). (13)

On the other hand, for any = € f(X), let w = f(z), then [z]f = f~!(w). From
z € f(X), we have [z];NX # 0, that is, f~'(w)NX # 0, and in turn, w € L(X),
hence f(z) € L(X). It follows that € f~1(L(X)). Therefore,

F(X) € FTHLX)). (14)

Combining Egs. (13) and (14), we conclude f~}(L(X)) = f(X). Furthermore,
by Eq. (8), we then obtain f(f(X)) = L(X).
Similarly, we can prove Eq. (12).
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The following Theorems 4 and 5 show that some properties of a function can be
characterized by the properties of label approximation operators.

Theorem 4. Let U and V' be two nonempty sets and f : U — V a function
from U to V. Then the following statements are equivalent:

(1) f:U — V is surjective;
(2) L(X )CL(X) VX e P(U);
(3) L(0) =
(4) LU) =
Proof

“(1) = (2)” For any X € P(U) and v € L(X), by Eq. (4) we have f~1(v) C
X. Since f is surjective, we see that f~!(v) # (. Then f~*(v) N X # (), hence
v € L(X). Thus we have proved that L(X) C L(X).

“2) = (1) If f : U — W is not surjective, there exists a v € V such
that f~1(v) = 0. Then for any X € P(U), we have f~'(v) C X, by Eq. (4),
x € L(X). However, f~1(v) N X =0, that is, v ¢ L(X), which contradicts that
L(X)C L(X). So f: U — V is surjective.

“(2) & (3) & (4)” For any X € P(U), in terms of Theorem 2, we have

X)N (~ LX) =0
YNL(~X)=10
N(~X))=10

Theorem 5. Let U and V' be two nonempty sets and f : U — V a function
from U to V. Then f is injective and surjective (that is, one-to-one) if and only
if

L(X)=L(X) VX eP(). (15)
Proof. “=" Assume that f is one-to-one. For any X € P(U) and v € L(X), by
Eq. (4), we have f~!(v) C X. Since f is surjective, by Theorem 4, we conclude

L(X) C L(X). (16)

On the other hand, for any w € L(X), by definition, f~!(w) N X # (). Notice
that f is one-to-one, then there exists a unique v € U such that f(u) = w,
that is, f~*(w) = {u}. Hence {u} N X # 0, consequently, u € X, and in turn,
f~1(w) C X, by the definition of lower label approximation, we have w € L(X),

therefore,
L(X) C L(X). (17)
Combining Egs. (16) and (17), we conclude Eq. (15).
“<” Assume that Eq. (15) holds. By property (LU1) in Theorem 2, we see that

L(0) = 0, then, by the assumption, we have L(()) = (). According to Theorem 4,
we then conclude that f is surjective.
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Now we are to prove that f is injective. If f is not injective, then there
exists x1,22 € U and z € V such that x1 # a9 and f(z1) = f(x2) = 2. Let
X = {z1}, obviously, z1 € f71(2), so f~1(z) N {z1} # 0. Hence, by Eq. (9),
L(X) = {f(z1)} = {z}. On the other hand, notice that {z1,z2} C f~1(2), thus
f71(2) C {1} does not hold, alternatively, z ¢ L(X) which contradicts Eq. (15).
Therefore, f is injective.

5 Conclusion

In this paper, by using labelled blocks determined by a function, we have de-
veloped a new rough set model called block-labelled rough set model. A block-
labelled rough set includes two pairs of lower and upper approximations: one is
the lower and upper block approximations, and the other is the lower and up-
per label approximations. Alternatively, a block-labelled rough set include two
mechanisms of rough approximation schemes of set, one is represented by the
blocks which is exactly the Pawlak rough set, the other is determined by the
labels related to the blocks. Thus a block-labelled rough set has more seman-
teme or physical meanings than a Pawlak rough set. This model provides a new
approach to describe information granules. We have also examined properties
of the proposed approximation operators. We have further presented the rela-
tionship between the two pairs of lower and upper approximations. Since the
labelled blocks are induced by a function, at the same time, we have employed
the properties of label approximation operators to characterize properties of the
function. For further study, we will investigate block-labelled rough sets as well
as granular computing in complicated information systems.

Acknowledgement

This work was supported by grants from the National Natural Science Founda-
tion of China (Nos. 60673096 and 60773174), and the Natural Science Foundation
of Zhejiang Province (No. Y107262).

References

1. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Aca-
demic Publishers, Boston (2002)

2. Bargiela, A., Pedrycz, W.: Toward a theory of granular computing for human-
centered information processing. IEEE Transactions on Fuzzy Systems 16, 320-330
(2008)

3. Bittner, T., Smith, B.: A theory of granular partitions. In: Duckham, M., Good-
child, M.F., Worboys, M.F. (eds.) Foundations of Geographic Information Science,
pp. 117-151. Taylor & Francis, Abington (2003)

4. Bittner, T., Stell, J.: Stratified rough sets and vagueness. In: Kuhn, W., Wor-
boys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 270-286. Springer,
Heidelberg (2003)



100

5.

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

W.-Z. Wu

Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.): Rough Set Theory and Granular
Computing. Springer, Berlin (2002)

Leung, Y., Li, D.: Maximal consistent block technique for rule acquisition in in-
complete information systems. Information Sciences 153, 85-106 (2003)

Leung, Y., Wu, W.-Z., Zhang, W.-X.: Knowledge acquisition in incomplete informa-
tion systems: A rough set approach. European Journal of Operational Research 168,
164-180 (2006)

. Lin, T.Y.: Granular computing: From rough sets and neighborhood systems to

information granulation and computing with words. In: European Congress on
Intelligent Techniques and Soft Computing, September 8-12, pp. 602-1606 (1997)

. Lin, T\Y., Yao, Y.Y., Zadeh, L.A. (eds.): Data Mining, Rough Sets and Granular

Computing. Physica-Verlag, Heidelberg (2002)

Ma, J.-M., Zhang, W.-X., Leung, Y., Song, X.-X.: Granular computing and dual
Galois connection. Information Sciences 177, 5365-5377 (2007)

Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Boston (1991)

Pedrycz, W. (ed.): Granular Computing: An Emerging Paradigm. Physica-Verlag,
Heidelberg (2001)

Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Comput-
ing. Wiley-Interscience, Hoboken (2008)

Qian, Y.H., Liang, J.Y., Dang, C.Y.: Knowledge structure, knowledge granulation
and knowledge distance in a knowledge base. International Journal of Approximate
Reasoning 50, 174-188 (2009)

Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular
computing. International Journal of Intelligent Systems 16, 57-85 (2001)

Wu, W.-Z., Leung, Y., Mi, J.-S.: Granular computing and knowledge reduction
in formal contexts. IEEE Transactions on Knowledge and Data Engineering 21,
1461-1474 (2009)

Yager, R.R.: Intelligent social network analysis using granular computing. Interna-
tional Journal of Intelligent Systems 23, 1196-1219 (2008)

Yao, J.T.: Recent developments in granular computing: A bibliometrics study. In:
Proceedings of IEEE International Conference on Granular Computing, Hangzhou,
China, August 26-28, pp. 74-79 (2008)

Yao, Y.Y.: Information granulation and rough set approximation. International
Journal of Intelligent Systems 16, 87-104 (2001)

Yao, Y.Y.: A partition model of granular computing. In: Peters, J.F., Skowron,
A., Grzymala-Busse, J.W., Kostek, B.z., Swiniarski, R.W., Szczuka, M.S. (eds.)
Transactions on Rough Sets I. LNCS; vol. 3100, pp. 232-253. Springer, Heidelberg
(2004)

Yao, Y.Y., Liau, C.-J., Zhong, N.: Granular computing based on rough sets, quo-
tient space theory, and belief functions. In: Zhong, N., Ras, Z.W., Tsumoto, S.,
Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 152-159. Springer,
Heidelberg (2003)

Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, N., Ragade, R.,
Yager, R.R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3-18.
North-Holland, Amsterdam (1979)

Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality
in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111-127 (1997)
Zhang, W.-X., Leung, Y., Wu, W.-Z.: Information Systems and Knowledge Dis-
covery (in Chinese). Science Press, Beijing (2003)



On a Criterion of Similarity between Partitions
Based on Rough Set Theory

Yasuo Kudo! and Tetsuya Murai?

1 College of Information and Systems, Muroran Institute of Technology
Mizumoto 27-1, Muroran 050-8585, Japan
kudo@csse.muroran-it.ac. jp
2 Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan
murahiko@main.ist.hokudai.ac.jp

Abstract. In this paper, we introduce a criterion of similarity between
partitions. The proposed similarity criterion is a generalization of an eval-
uation criterion of relative reducts proposed by the authors and evaluates
the similarity of partitions by correctness and roughness with each other.
Moreover, for comparison of similarity scores between different universes,
we also propose a normalized similarity criterion.

1 Introduction

Constructing and evaluating partitions of the given universe are the most basic
and important concepts in rough set theory proposed by Pawlak [Bl6]. In the
aspect of approximation in rough set theory, lower and upper approximations
are directly based on partitions on the given universe constructed by equivalence
relations. In the aspect of reasoning about data in rough set theory, calculation
of relative reducts is one of the most important concepts, which corresponds
indirectly to generating partitions that reproduce the positive region of decision
classes, i. e., lower approximations of decision classes based on the most finest
partition of the universe constructed from all condition attributes. The authors
have proposed an evaluation criterion of relative reducts based on roughness of
partitions constructed from the relative reducts [3/4].

In this paper, we introduce a criterion of similarity between partitions. The
proposed similarity criterion is a generalization of the evaluation criterion of
relative reducts [B4] and evaluates the similarity of partitions by correctness
and roughness with each other. Moreover, for comparison of similarity scores
between different universes, we also propose a normalized similarity criterion.

2 Rough Set

We review the foundations of rough set theory based on mainly [§].
A decision table DT = (U, C,d) is a triple, where U is a finite and non-empty
set (called a universe) of objects, C' is a set of condition attributes such that

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 101 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Table 1. An example of decision table

U c¢1c2c3c4 56 c7csd
rx1 1 11111211
2 2 31312213
3 3 23212112
Ty 4 22222112
x5 5 22 311211
e 6 3 2112 213
zy 71 1112112
rzs 8 23111211
r9 9 33322213
r10101 3 3 11211

each attribute a € C is a function a : U — V, from U to the value set V, of a,
and d is a function d : U — Vj called the decision attribute.
The indiscernibility relation Rp on U with respect to B C C'is defined by

xRpy < a(x) = a(y), Ya € B. (1)

The equivalence class [z]p of © € U by Rp is the set of objects which are not
discernible with z even though using all attributes in B. Any indiscernibility
relation provides a partition of U. In particular, the partition D = {D1,--- , D, }
provided by the indiscernibility relation R; based on the decision attribute d is
called the set of decision classes.

For any decision class D; (1 < i < m)C the lower approximation B(D;) and
the upper approximation B(D;) of D, based on Rp are defined by

B(D;) ={z €U |[z]p C Di}, (2)
B(D;)={z €U |[z]gND; #0}. (3)
Table [ presents an example of a decision table that consists of a set of ob-
jects U = {x1, -+ ,x10}, a set of condition attributes C' = {¢1,---,cs}, and

a decision attribute d. For example, a condition attribute co € C is a func-
tion ¢z : U — {1,2,3}, and the value of an object 3 € U at ¢3 is 3, i. e.,
c3(z3) = 3. The decision attributed d provides the following three decision
classes, D1 = {x1, x5, 25,210}, D2 = {23, 24,27} and D3 = {xa, 6,29 }.

In this paper, we denote a decision rule constructed from a subset B C C' of
condition attribute, the decision attribute d, and an object x € U by (B,z) —
(d,x). Certainty and coverage are well known criteria for evaluating decision
rules. For any decision rule (B, x) — (d, z), the certainty Cer(-) and the coverage
Cov(-) of the decision rule are defined by

Cer((B.x) = (d.)) = Hx}@};&' (1)
Cov((B,z) — (d,z)) = HﬂBDqu" (5)

where D; is the decision class of 2 and | X| is the cardinality of the set X.
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Relative reducts are minimal subsets of condition attributes that provide the
same positive region based on the set C' of all condition attributes. Formally, a
relative reduct for the partition D is a set of condition attributes A C C that
satisfies the following two conditions:

1. Posa(D) = Posc (D),
2. For any proper subset B C A, Posg(D) # Posc(D),

where Posx (D) et Up,ep X(D;) is the positive region of decision classes based
on the partition constructed from X C C.
For example, there are the following six relative reducts of Table [} {c;},

{ca, 6}, {ca, er}y {ce, er}, {e3,ca, 6}, and {c3,ca,¢5,¢7}.

3 Evaluation of Relative Reducts Using Partitions

In this section, we review an evaluation method of relative reducts by using
partitions constructed from the relative reducts [314].

We intend that rougher partitions constructed from relative reducts lead to
better evaluation of the relative reducts. From the viewpoint of rule generation,
rougher partitions constructed from relative reducts tend to generate decision
rules with higher coverage values rather than finer partitions. Following this in-
tention, we consider evaluating relative reducts by using the coverage of decision
rules constructed from relative reducts.

Theorem [l below provides a theoretical basis of our intention.

Theorem 1 ([3i4]). For any non-empty subset B C C' of condition attributes,
the average certainty value ACer(B) and the average coverage value ACov(B)
of all decision rules (B,z) — (d,x) (Vx € U) constructed from B are calculated
by the following equations:

o U/Rs|
ACer(B) = Y isev/rs {Di € D | Dy [a]p # 0} Y
ACov(B) = P! ™)

Z[-T]BEU/RB ‘{Dz eD ‘ D;nN [-T]B #+ Q)}‘

Note that the denominators of ([Bl) and () correspond to the number of decision
rules constructed from B.

In Theorem [T if we use relative reducts as subsets of condition attributes in
the given decision table, it is clear that the smaller the number of equivalence
classes constructed from the relative reduct, the higher the average coverage
value of decision rules generated from the relative reduct. This indicates a pos-
sibility of using the average coverage of decision rules constructed from relative
reducts as an evaluation criterion for relative reducts [3I4].

Ezample 1. Let {c2,c6} be a relative reduct of Table [l We can construct the
following five decision rules from {cz, cg }:



104 Y. Kudo and T. Murai

Table 2. The average certainty and the average coverage of decision rules based on
relative reducts in Table [Tl

Relative reduct Number of rules Average coverage

{c1} 10 0.3
{62,66} 5 0.6
{(32,(37} 5 0.6
{66767} 3 1
{c3,ca,¢6} 10 0.3
{03,(34,(35,(37} 10 0.3
— (c2=1)A(c¢ =1) — (d =1), Certainty= 1, Coverage=1/2,
(
— (2 =2)A (g =1) = (d = 1), Certainty= 1, Coverage= 1/2,
— (2 =1) A (e =2) — (d = 2), Certainty= 1, Coverage=1/3,
— (e2 =2) A (e =2) — (d = 2), Certainty= 1, Coverage= 2/3,
— (2 =3) A (cg =2) — (d = 3), Certainty= 1, Coverage= 1.
( )A( ) = ( y g

The average coverage is (5 + 5 + 5 + 5 +1)/5 = 2 and it is equal to the value
“the number of decision classes / the number of decision rules” by Theorem [
Thus, we get the evaluation score § of the relative reduct {cz, c¢}. Table Blshows
the number of decision rules and the average coverage of the decision rules by
each relative reduct. By this result, we regard the relative reduct {cg,c7} as the
best one that provides the roughest and most correct approximation of decision
classes. Actually, the partition constructed from the relative reduct {cg,c7} is
identical to the set of all decision classes in Table [l

4 A Criterion of Similarity between Partitions

Equations (@) and () are based on comparison of numbers of elements in two
partitions. Thus, as a generalization of (B]) and (), we then introduce a criterion
of similarity between partitions.

Let U(# 0) be a finite set. A partition X of U is a collection of subsets of U
that satisfies the following properties:

1. X; N X; =0 for every disjoint X;, X; € X,

2. U= UX.

Xex

Let X and Y be any partitions on U. We say that X is a refinement of ) if
and only if, for every X € X, there exists Y € ) such that X C Y. Clearly,
|V] < |X| holds if X is a refinement of ), and both X is a refinement of ) and
Y is a refinement of X hold if and only if X = ) holds.

We define the intersection X N )Y of X and )Y by

XNYYUIXNY [ XeXx,Y ey, XnY #£0}. (8)
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It is easy to confirm that X'N) is also a partition on U and X'N) is a refinement
of both X and ).

From the viewpoint of identifying functional dependency by using partitions,
it is known that the number of elements in the intersection X’ N} satisfies the
following inequality (e.g. [1I2]):

max (|X1],[YV]) < |X¥ N Y| < min (|X[|V],[U]). 9)

This inequality indicates that X is a refinement of ) if and only if |X| = [X N ).

From the viewpoint of comparison between two partitions, for each partition
U/Rp constructed from a set B of condition attributes in a given decision table,
we can consider that the evaluation score ACov(B) of B defined by ([{l) compares
“similarity” of the intersection D N U/Rp with respect to D in the sense of
cardinality, and provides the highest score ACov(B) = 1 to B if and only if
[DNU/Rp| =|D], i. e., D is a refinement of U/Rp, and DN U/Rp is the most
“similar” partition with respect to D in the sense of cardinality. On the other
hand, the evaluation score ACer(B) of B defined by (@) becomes the highest
score ACer(B) = 1 when the partition U/Rp is a refinement of D, that is,
the intersection D N U/Rp is the most “similar” partition with respect to the
partition U/Rp in the sense of cardinality.

Thus, combining and generalizing two criteria ACer and ACov, we introduce
a criterion of similarity between two partitions X and ) defined on U through
comparisons of similarity between X and X NY, and Y and X' N Y as follows.

Definition 1. Let X and Y be any partitions on U. A criterion Simy(X,)) of
similarity between X and Y is defined by

, X+ VI

S X = . 10

mo(¥.9) = 1 (10)
By this definition, it is clear that Simgy(X,Y) = Simy (Y, X) holds. If we set
X = U/Rp such that B C C and Y = D with respect to a given decision table
(U, C,d), the similarity Simg by () is

U/Rsl D)
U/RsnD| " [U/RpND|

Simy(U/Rp, D) = ; (

_ ; (ACer(B) + ACou(B)) ,

i.e., the average of ACer(B) and ACov(B) with respect to B.
Proposition [Il below describes the range of scores of the similarity criterion
Simy(X,Y) on U.

Proposition 1. Let X and Y be any partitions on U. The similarity Simy
defined by (I0) has the following properties:

Xy,
. S X < 1.
2 min (]|, o)) = S0 <

2. Simy(X,Y) =1 if and only if X = ).
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. X+ 1V . , .
3. Simy(X,)) = ) if and only if |X NY| = min (|X||Y], |U]).
2min (|X]1Y], |UT)
Note that the triangle inequality with respect to Simy, i. e., the following in-
equality
Simy (X, V) + Simy (Y, Z2) < Simy (X, Z) (11)

is not satisfied in general.

Because the range of cardinality of any partition X on U is 1 < |X| < |U|,
Proposition [l indicates that the minimum score of Simy (X,)) between parti-
tions A and Y on U is uniquely determined by

i+

nSim(U]) — .
minSim(|U1) 1§i§|Urﬂ11n§j§|U|Qmin(ixj,‘UD’

(12)
where i and j are natural numbers. It is not hard to confirm that the minimum
score minSim(|U]) of the similarity criterion defined by ([Z) is monotone non-
increasing with respect to the cardinality |U|. This causes difficulty of direct
comparison of similarity scores between different universes because the minimum
scores by (I0) on different universes U and U’ such that |U| # |U’| may be
different.

Therefore, when we need to consider comparison of similarity scores between
different universes, we should consider the following normalized similarity.

Definition 2. Let X and Y be any partitions on U, Simy(X,Y) be the crite-
rion of similarity between X and Y defined by (), and minSim(|U|) be the
minimum score of the similarity between partitions defined by (I3). A criterion
of normalized similarity between X and ) is defined by

Simy(X,Y) — minSim(|U])

NS(X,Y) = 1 —minSim(|U])

(13)
From the definition of the normalized similarity by (I3]) and the range of the
similarity criterion Simg by Proposition [ it is obvious that the range of the
normalized similarity NS satisfies the following properties.

Corollary 1. Let X and Y be any partitions on U. The normalized similarity
NS defined by (I3) has the following properties:

1. 0 < NS(X,») < 1.
2. NS(X,Y)=1if and only if X = .
3. NS(X,Y) =0 if and only if Simy(X,Y) = minSim(|U]).

Example [ below describes necessity of using the normalized similarity for com-
paring similarity scores between different universes.

Ezample 2. Table B presents another decision table which is identical to Table[I]
except for absence of two elements x9 and x19. For each condition attribute ¢;
(1 <i<8)in TableBland Table[ll we construct a partition U/R,, and compare
with the partition U/R, constructed from the decision attribute d.
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Table 3. Another example of decision table

U c1c2¢3 ¢4 5
11

Q
[=2)
o
Ny
o
oo

X1 1
T2
€T3
Tq
x5
Te
7
Ty

00 O U W N

N = W NN W
W N NN W=
== W NN W
= = N e e
NN DN DN N -
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= NNW R NN W~ Q

Table 4. The similarity and the normalized similarity of condition attributes

Attribute Sim. in TabldIIN. S. in TabldIl Sim. in Tabld3IN. S. in Tabld3l

c1 0.65 0.475 0.69 0.5
c2 0.6 0.4 0.6 0.36
c3 0.33 0 0.375 0

c4 0.5 0.25 0.5 0.2
cs 0.5 0.25 0.625 0.4
Co 0.83 0.75 0.83 0.73
cr 0.83 0.75 0.83 0.73
cg 0.66 0.5 0.67 0.47

Table @ describes the similarity and the normalized similarity between par-
titions U/R,, and U/R, in Table @ (JU| = 10) and Table Bl (|JU| = 8), where
notations “Sim.” and “N.S.” in Table [ are abbreviations of similarity and nor-
malized similarity, respectively. The row of the condition attribute c3 indicates
that the minimum scores of similarity in Table[Il and Table [3] are different, i. e.,
minSim(10) = } and minSim(8) = 3. Thus, in both Table @ and Table B the
similarity of partitions by c¢3 and d is identical to the theoretical minimum score
of similarity, which concludes that the normalized similarity by c¢3 and d is equal
to 0 in both Table [ and Table

On the other hand, the row of ¢4 indicates that comparison of the similarity
scores between different universes is not appropriate, i. e. the normalized similar-
ity scores are different between Table [I] and Table Bl even though the similarity
scores are identical. Thus, we can conclude that the partitions U/R,, and U/Ry
for Table[I] are relatively more similar than those partitions for Table

5 Conclusion

In this paper, we introduced a criterion of similarity between partitions. The
similarity criterion proposed in this paper is a generalization of an evaluation
criterion of relative reducts proposed by the authors [3l4], and evaluates the sim-
ilarity of partitions from the viewpoint of correctness and roughness with each



108 Y. Kudo and T. Murai

other. Moreover, for comparison of similarity scores between different universes,
we also proposed a normalized similarity criterion and illustrated the necessity
of using the normalized similarity for comparing the similarity scores between
different universes. More consideration and refinement of the proposed crite-
ria, and comparison of the proposed criteria with other methods, for example,
approximate entropy reducts [9] in the aspect of evaluation of relative reducts
based on comparison of partitions, and functional dependency analysis between
condition attributes and decision attributes [7] are interesting future issues.
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Abstract. The Rough Sets paradigm is extended to the sets that have some struc-
ture (for example they are relations) and some properties (for example they are
transitive relations).

1 Introduction

Consider the following problem: we have a set of data that have been obtained in an
empirical manner. From the nature of the problem we know that the set should have
some structure and desired properties, for example it should be partially ordered, but
because the data are empirical it is not. In general case this might be just an arbitrary set
without the desired structure and properties. What is the “best” approximation that have
the desired structure and properties and how it can be computed? For the approximation
of arbitrary relations by partial orders this problem was discussed and some solutions
were proposed in - within the standard theory of relations ([8/11]), and in [6] -
within both the standard theory of relations and Rough Sets paradigm ([OI10]). In [6]
some general Rough Sets settings for more general approximation of relations have also
been proposed and analysed.

In this paper we will generalise some ideas of [[6] to more sophisticated data types.

While, in general, sets are just arbitrary collections of arbitrary elements [§]], when
they are applied in other parts of mathematics or science, they usually have some struc-
teres - for example they are relations, and properties - for example transitivity. They
often resemble more abstract data types [1] than standard sets. Those structures and
properties are essential when it comes to the problem of approximation.

It appears that the concept of approximation has two different intuitions in mathe-
matics and science. The first one stem from the fact that all empirical numerical data
have some errors, so in reality we never have the value x but always some interval
(x —&,x+¢€), i.e. the upper approximation and the lower approximation. Rough Sets
exploit this idea for general sets. The second intuition can be illustrated by least square
approximation of points in two dimensional plane (c.f. [14]]). Here we know or assume
that the points should be on a straight line and we are trying to find the line that fits the
data best. In this case tha data have a structure (points in two dimensional plane, i.e. a re-
lation that is a function) and should satisfied a desired property (be on the straight line).
Note that even if we replace a solution f(x) = ax+ b by two lines f(x) =ax+b+ 9

* Partially supported by NSERC grant of Canada.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 109 20009.
(© Springer-Verlag Berlin Heidelberg 2009
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and f>(x) = ax+ b —J, where § is a standard error (c.f. [14]), there is no guarantee that
any point resides between f](x) and f>(x). Hence this is not the case of an upper, or
lower approximation in the sense of Rough Sets. However this approach assumes that
there is a well defined concept of a metric which allows us to minimize the distance,
and this concept is not obvious, and often not even possible for non-numerical objects
(see for instance [4])).

The approach presented in this paper is a mixture of both intuitions, there is no
metric, but the concept of “minimal distance” is simulated by a sequence of property-
driven lower and/or upper approximations.

This paper is a substantial generalisation and refinement of the ideas presented in the
second half of [6].

2 Principles of Rough Sets Paradigm and Relations

To focus the intuition, in this section we will discuss only one special case of sets with
structures and properties, namely, the relations.

The principles of Rough Rets can be formulated as follows. Let U be a finite
and nonepty universum of elements, and let £ C U x U be an equivalence (i.e. reflex-
ive, symmetric and transitive) relation. For each equivalence relation E C U x U, [x|g
will denote the equivalence class of E containing x and U /E will donote the set of
all equivalence classes of E. The elements of U /E are called elementary sets and they
are interpreted as basic observable, measurable, or definable sets. The pair (U, E) is re-
ferred to as a Pawlak approximation space. A set X C U is approximated by two subsets
of U, A(X) - called lower approximation of X, and A(X) - called upper approximation
of X, where:

A(X) :U{[x]E |[xeUNX]g CX}, A(X) :U{[x]E |xe UAx]ENX #0}.

Since every relation is a set of pairs the approach can be used for relations as well
[12]. Unfortunately in the cases as our we want approximations to have some specific
properties as irreflexivity, transitivity etc., and most of those properties are not closed
under the set union operator. As it was pointed out in [16]], in general one cannot expect
approximations to have desired properties (see [16] for details). It is also not clear how
to define the relation E for the cases as our.

However the Rought Sets can also be defined in orthogonal (sometimes called ‘topo-
logical”) manner [TOIT3T5]]. For a given (U, E) we may define D(U) as the smallest set
containing 0, all elements of U /E and closed under set union. Clearly U /E is the set of
all components generated by D(U) [8]. We may start with defining a space as (U, D)
where D is a family of sets that contains @ and for each x € U there is X € D such that
x € X (i.e. Dis a cover of U [11]]). We may now define Ep as the equivalence relation
generated by the set of all components defined by D (see for example [8]]). Hence both
approaches are equivalent [T0/T3IT6]], however now for each A C U we have:

AX)={r |y cxAY € D}, AX)=({Y|X CYAY € D}.

We can now define D as a set of relations having the desired properties and then calcu-
late R and/or R with respect to a given D. Such approach was proposed and analysed in
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[16]], however it seems to have only limited application. First it assumes that the set D
is closed under both union and intersection, and few properties of relations do this. For
instance transitivity is not closed under union and having a cycle is not closed under
intersection. Some properties as for instance “having exactly one cycle” are preserved
by neither union nor intersection. This problem was discussed in [[16] and they pro-
posed that perhaps different 2 could be used for lower and upper approximations. The
approach of [16] assumes additionally that, for upper approximation there is at least
one element of D that contains R, and, for lower approximation there exists at least one
element of D that is uncluded in R. These are too strong assumptions for the cases like
those considered in [5l6], if R contains a cycle, there is no partial order that contains R!

The problem is even bigger when we consider structures more complex than rela-
tions. Hence we need to create a new setting.

3 Sets with Structures and Properties

A set with a structure X is a relational structure (c.f. [28]) X = (Dx,Rf,...,RY), where

Dy is a set called the domain of X and each RY C H];-’;X is a kX-ary relation on Dy.

The tuple (RY,...,RY) is called the structure of X and denoted by S(X). The vec-
tor (k{,...,kX) is called the arity of X. Two sets with structure X = (Dx,S(X)) and
Y = (Dy,S(Y)) are of the same type if they have identical arities. For example binary
relations are sets with structure of arity (2) (i.e.n =1, k¥ = 2).

For two sets with structure of the same type X = (Dx,RY,...,RY), and Y = (Dy,RY,
.,RY), we define X ®Y, where & € {U,N,\}, component-wise as X ®Y = (Dx @
Dy,Rf & RY,....,RX ®RY). Similarly we define @<, X; for any set of indices J. We
also define X CY <= Dy C Dy ARY CRY A...ARX C RY and the empty set with
properties olr} = (0,0,...,0). We will usually write 0 instead of 07} if this will not lead
to any ambiguity. We also define 2¥ in the usual manner, 2X = {Z | Z C X}, but C is as
defined above for sets with a structure.

Let X = (DX,R}f ,-.-,RX) be a set with a structure and let o be any first-order pred-
icate (c.f. [3]]) with the set of atomic formulae being a subset of {RY,...,RX} and all
variables over Dy. Any predicate o of this kind will be called a property over X. The
predicete o is called a property of X if X is a model of ¢, i.e. o holds for any assignment
(c.f. [3]). We would like to point the difference between a property over R, i.e. just a
statement that may or may not be true, and a property of R, a statement that is true for
all assignments.

The question a reader might ask is “why to replace an established name as relational
structures by a new one as sets with structures?” As it was already mentioned, outside
pure set theory, elements of the sets usually have some structure and properties which
are often used in proofs, constructions and algorithms. Even if the integers are used
only as names of objects, in many algorithms the fact that they are totally ordered is
utilised to increase efficiency (c.f. [1I7]). While a collection that consists of, say, a white
elephant, computer mouse, empty set and a letter ‘a’, is a proper set (c.f. [8/11]]), in most
applications the sets are more homogenous, as ‘sets of integers’, ‘vertices’, ‘variables’,
etc. In fact, when it comes to applications, the sets used resembles more abstract data
types (c.f. [1]) than pure sets with uninterpreted elements. Clearly each abstract data
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type can be represented as a relational structure, however usually the set terminology is
used and all the structure is used in an implicit manner.

4 Rough Approximations of Sets with Structures and Properties

Let U = (Dy,S(U)) be a finite set with a structure called universum (with a structure)
and let P be a set of properties over U. Any element o € P is called an elementary
propert)El. We assume that for each o € P there is a non-empty family of sets Py, C 2Y
such that Py, # {0} and for every X C U, if o is a property of X then X € Py, In other
words Py, is the set of all subsets of U that satisfy the property o.

Let P be a subset of P such that o € P iff P, is closed under intersection, and PV
be a subset of P such that o € PV iff Py, is closed under union.

We _assume that P = P U PY and the pair (U,?P) will be called an approximation
spaceﬁ.

Let X C U and o € P. We say that:

— X has o-lower bound <= 3Y € P,. Y C X; and lbo(X) ={Y |Y € Pu AY C X},
— X has o-upper bound <= JY € P,. X CY;and uby(X) ={Y |Y € P4 AX CY}.

For every family of sets 7 C 2V, we define

— min(F)={X |V eFYCX=X=Y),
-max(F)={X|VY € F.XCY=X=Y}.

We are now able to provide the two main definitions of this chapter:

e If X has a-lower bound then we define its o-lower approximation as:

A X) = ﬂ{Y |Y € max(Iby(X))}.

e If X has a-upper bound then we define its oi-upper approximation as:
Ao(X) = J{Y | Y € min(uby(X))}.

If X does not have o-lower bound (a-upper bound) then its a-lower approximation
(o-upper approximation) does not exist. The result below shows that the above two
definitions are sound when X € P,.

Proposition 1. IfX € Py then A,(X)=Aq(X) =X.
Proof. If X € Py then lbo(X) = uby(X) = {X}. O

Directly from the definitions it follows that A, (X) is well defined if o0 € P"' and A (X)
is well defined if o € PV. The result below shows that both concepts are well defined
foralloo € P =P UP".

! Even though any property can be called ‘elementary’, it is assumed that in any concrete case
the elemetary properties are ‘simple’ and ‘regular’. They are just atomic parts from which the
real more sophisticated properties are built.

2 This assumption is much weaker than it might appear as this is an assumption only about
elementary properties, not about compound more sophisticated properties (see next section).
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Proposition 2

L If e PV then Ay (X) = U{Y |Y €lbo(X)} = U{Y |Y CTXAY € P,}.
2. If € P then Ag(X) = ({Y |Y €uby(X)} = (Y | X CYAY € Py}

Proof
() If oe e PV then max(lby (X)) = {U{Y | Y € lbo(X)}}.
2)If oo € P then min(ubo (X)) = {N{Y | Y € uby(X)}}. 0

The next result shows when this model is exactly the same as the classical Rough Sets
approach to relations (the version from [[L5/16]).

Corollary 1
If € PYNP" then Ay(X)=A(X)and Ao(X)=A(X), where A(X) and A(X) are
classical upper and lower rough approximations over the space (U, Py,). (I

The next two results will show that our definitions of o-lower approximation and -
upper upproximation are sound, and their properties pretty close (but not identical) to
those of standard rough set approximations as presented in for example [9/10]. We start
with the properties of oi-lower approximation.

Proposition 3. If X,Y C U have a-lower bound then:

XCY = A,(X) CALY),

Ag(X) CX,

Agl) = Ag (Ag(X)),

Ag(XNY) = Ag(Ag(X)N (Y)),

ifo.e P then Ay (X NY) = Ag(X)NA(Y),

if X has a-upper bound then Ay (X) = Ay (Aq(X)).

AR~

Proof

(1) Since X CY = 1by(X) C lbe(Y) = max(Iby(X)) C Iby(Y), then for each
Z € max(lby (X)) there is Z' € max(Iby(Y)) such that Z C Z'; and intersection preserves
inclusion.

(2) Since Z € Iby(X) = Z C X, and and intersection preserves inclusion.

(3) From Proposition[llas A, (X) € Py.

(4) By (1) we have Ay (X NY) C Ay (X) and Ay (XNY) C Ay(Y), s0 Ag(X NY) C
AL (X)NA,(Y). Hence by (2) and (3) A, (X NY) C A, (A, (X)NALY)).

By the definition we have Ay (A, (X)NALY)) = "{Z | Z € max(Ibe(A,(Y) N
Ay (Y)))}. Let B € Ibg (A, (Y)NAL(Y))). This means B € Pb, AB C Ay, (X)NA,(Y),
hence B€ Ph ABCXABCY,ie B€ Py ABCXNY. Therefore B € Iby(XNY). In
this way we proved that [by (A (Y) NA(Y)) C Ibe(X NY). Hence max(Iby(Ay(Y) N
Ay (Y))) Clbe(XNY), ie. for each Z € max(lba(Ay(Y) NA,(Y))) there exists Z' €
max(lby(X NY)), such that Z C Z'. Since intersection preserves inclusion this means
that A, (A, (X)NAL(Y)) CAL(XNY).

(5) Ifo € P then A, (X)NA(Y) € Py so by Proposition[T]

Ag(X)NAGY) = Ag(Ag(X)NAG(Y)).

(6) If X has a-upper bound then Ay (X) € Py so by Prop.[ll Aq(X) = Ay (Aa(X)). O
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The difference from the classical case is that intersection splits into two cases and mix-
ing lower with upper o-approximation is conditional.
We will now present the properties of o-upper approximation.

Proposition 4. If X,Y C U have o-upper bound then:

2. X C Ag(X),

3. Ag(x) = Au(Au(X)),

4. Ag(XUY) =Ax(Aa(X)UAu(Y)),

5. ifa € PYthen Ag(XUY) = Ag(X)UAy(Y),

6. If X has o-lower bound then A, (X) = Ag(Ay(X)).
Proof

(1) Since X CY = ubo(Y) Cuby(X) = min(uby(Y)) C uby(X), then for each
Z' € min(uby(Y)) there is Z € min(uby(X)) such that Z C Z’; and union preserves
inclusion.

(2) Since Z € uby(X) = X C Z, and and union preserves inclusion.

(3) From Proposition[[las A (X) € Py,

(4) By(l)wehave Ay (X) CAn(XUY)and Ay (Y) CAL(CUY),s0 Ag(X)UA(Y) C
A, (XUY). Hence by (2) and (3) Ay (A (X) UA(Y)) € A(XUY).

Since X CAy(X) and Y C Ay (Y) then XUY C Ag(X)UAy(Y), i.e. upo(Aq(X)U
Au(Y) Cup(X UY), and consequently min(upq(Ag(X) U Ag(Y)) C upe(X UY).
Hence for each Z' € min(upo (Ao (X) UAy(Y)), there exists Z € min(upy,(X UY)) such
that Z C Z'. Since union preserves inclusion, we obtained Ag(X UY) C Ag(Aq(X) U
Aa(Y).

(5) If oo € PV then Ay(X)UAy(Y) € Py so by Proposition [l Ag(X)UAq(Y) =
Aa(Aa(X) UAG(Y)).
(6) If X has a-lower bound then A, (X) € Py, so by Prop.[ll A, (X) = Ag(Ay(X)). O

Here the difference from the classical case is that union splits into two cases and mixing
upper with lower o-approximation is conditional.

5 Compound Properties and Mixed Approximations

Most of the interesting properties are compound properties, like for instance transitivity
and reflexivity for relations, and they can be imposed in various orders [5l6]. In this
section we will propose a framework for doing this in a systematic way.

Let o, € P. We say that B is consitent with o iff for every X € Py

— if X has B-lower bound then Ag(X) € Py,
— if X has B-upper bound then Ag(X) € Py.

We will say that o, and B are consistent iff B is consitent with o. and o is consitent with 3.
We will also assume that for all o, p € P, oo and B are consistent.
From now on when writing a formula like Ag(Aq (X)) we will assume that all nec-
essary conditions are satisfied, i.e. in this case, X has a-upper bound and Ay (X) has
B-lower bound.
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Proposition 5
1. AOL(AB(X)) € Py ﬂPBfor Ag € {A(X’A(X}7AB € {AB,AB},
2. Au(Ag(X)) € Ag(Aa(X)).

Proof

(1) Because all o and B from P are consistent.

(2) By Proposition Hl(2), X C Ay(X), so Ag(X) C Ag(Aq(X)), and Ay (Ag(X)) C
Ac(Ag(Aq(X))). By (1) of this proposition, Ag(Aq (X)) € Pu, so by Proposition [I1
Au(Ag(Ax(X))) = Ag(Aq(X)). Therefore Ao (Ag(X)) C Ag(An(X)). O

Proposition 6. Assume that o, B and 0. AP belong to P.

1. Awonp) (X) € Ag(Ag(X)),
2. Au(Ag(X)) € Aggnp) (X).

Proof

(1) Since obviously [b(g,p)(X) C Ibg(X) then Ap)(X) € Ap(X). Hence Ay (A (p)
(X)) € Aq(Ag(X)). Since A qp)(X) € Py, then due to Proposition[I]

A (Anp) (X)) = Agap) (X), which ends the proof of (1).

(2) Since obviously ubgnp)(X) C ubg(X) then min(ub(g,p)(X)) C ubg(X). This
means AB(X) - A(oc/\B)(X)- Hence Au(AB(X)) C A(x(A(u/\B)(X))- Since A gp) (X) e
Py, then due to Proposition [l Aq(A(gnp) (X)) = A(anp)(X), which ends the proof
of (2). 0

Proposition[6]suggest an important technique for the design of approximation schema. It
in principle says that using a complex predicate as a property result in worse approxima-
tion than when the property is decomposed into simpler ones, and then we approximate
all simpler properties. This means before starting an approximation process we should
think carefully how the given property could be decomposed into the simpler ones.

Define ? = P x {0,1}. The elements of P will be called labelled elementary prop-
erties. We will also write o) or ot instead of (o, 0) and ol!) or o instead of (o, 1).

A sequence s = o Vol o™
1,...,k— 1, is called a schedule.

For will also use A(©) instead of A and A(!) instead of A.

A schedule 5 = ool o™
approximation

of elements of P such that o; # Oy, for i =

is proper if for each X C U the following mixed

AC(X) = Ay (A (- (AGY (X)-..))
is well defined. Let PS denote the set of all proper schedules.

(i) <i2>....(x](:">

Each schedule s = o} oty defines a composite property

7(s) =0 AOp A ... AOY.

A composite property o is approximable if there exists a proper sequence s € PS such
that oo = 7t(ss). For example being a partial order [6] or pairwise comparison ranking data
[4] are approximable composite properties.

The proper schedules could be interpreted as different “metrics” used for approxi-
mation purposes.
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6 Final Comment

The approach presented in this paper can be called property-driven and it is a substan-
tial extension of the ideas presented for relations in [I5I16] and specially recently in [6].
Technically some results of [6] are just special cases of what is proven here. When think-
ing in terms of properties, very often either only lower or only upper approximation does
make sense, and quite often neither of them if the property is too sophisticated. Due to
lack of space we did not discuss this issue in details, an interested reader is referred to
[6] for more on this subject. Proposition[6 might be the most useful result of this paper
as it indicates how properties should be dealt with to get the best approximations. Our
experience with non-numerical ranking [[3] fully agrees with this result. We would like
to point out that all the assumptions from Section 4 relate only to elementary properties;
the requirements for compound properties are much weaker]. We believe the schedules
can often be interpreted as “property-driven non-numerical metrics”, and that finding a
good schedule means finding a good approximation; which appears to be more art than
science (see [316]). Some applications of the approach presented in this paper to the case
of binary relations can be found in [6]].
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Abstract. In order to handle very large data bases efficiently, the da-
ta warehousing system ICE [5] builds so-called rough tables containing
information that is abstracted from certain blocks of the original table.
In this article we propose a formal description of such rough tables. We
also investigate possibilities of mining them for implicational knowledge.

1 Introduction

Consider a large data table. It has rows, describing certain objects, and columns
for attributes which these objects may have. The entry in row g and column
m gives the attribute value that attribute m has for object g. By “large” we
mean that the table has many rows, perhaps 10°, or more. Even for a moderate
number of attributes the size of such a table may be in the terabytes.

Data analysis on such a table faces complexity problems and requires a good
choice of strategy. In the present paper we investigate an approach by Infobright
using rough objects and granular data, and combine it with methods from Formal
Concept Analysis.

Infobright Community Edition (ICE) [5I7] is an open source data warehousing
system which is optimized to obtain high compression rates and to process ana-
lytic queries very quickly. ICE chops the stream of rows into so-called rough rows,
each subsuming 65536 rows. The rough rows divide the columns into so-called
data packs. Each data pack gets stored in a compressed form. For processing
a query one does not want to decompress all data packs. Therefore ICE crea-
tes a so-called data pack node to every data pack. A data pack node contains
meta—information about the corresponding data pack. If for instance the column
contains numeric values, the data pack nodes could consist, e.g., of minimum,
maximum and the sum of the data pack values. The rough table is the data table
that has the rough rows as rows, the same attributes as the original large data
table, and the data pack nodes as values.

In order to sound the possibilities of getting interesting information about
the original data table from the rough table, Infobright offered a contest [6] for
which they provided a rough table with 15259 rough rows (the original table has
one billion rows) and 32 attributes. Furthermore, Infobright invited to propose
ways to do data mining in such rough tables.
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Our approach is a systematic one. Our focus is on “what can be done” rather
than on “how to get quick results”. Although it is likely that a large data table
will contain erroneous and imprecise data, we first concentrate on the case of
precise data. Approximative and fault-tolerant methods shall later be build on
this basis. Please note that we had to leave out some proofs due to a lack of
space. A technical report containing all proofs is available upon request.

2 Partial Formal Contexts

We assume that the reader is familiar with the basic notions of Formal Concept
Analysis [4]. This theory will be used here to provide the basic data model. To
encode the above mentioned granulation process we use the notion of a partial
formal context. The information we are mining is in the form of implications or,
more loosely, of association rules. Our aim is to infer such rules in the full data
set from rules in the granulated data.

Definition 1. A partial formal context (G, M, i) consists of two sets G and
M together with a mapping i : G x M — {x,e, 7} 0

We call the elements of G the objects of the partial formal context, those of M

the attributes. We read i(g, m) as follows:

X the object g has the attribute m,
i(g,m) =< e the object g does not have the attribute m,
? it is unknown if object g has attribute m.

Partial formal contexts have been considered under different aspects by several
authors [T2I3]. A partial formal context (G, M, j) is said to extend (G, M, 1)
if one can build it from (G, M, i) by replacing question marks “?”, i.e., it holds

that
TN CiTAxY) and i H({e}) CTH({e}).

Partial formal contexts which are maximal w.r.t. to this extension order are
called complete. A formal context (G, M, I) in the usual sense, where I C Gx M
is a relation, is called a completion of a partial formal context (G, M, i) iff

T T i ({x 7).

We say that an implication A — B, where A, B C M, holds in a partial formal
context (G, M, i) iff it holds in every completion. An equivalent condition is that
the following holds for every object g € G:

if i(g,m) € {x,?} for all m € A then i(g,n) = x for all n € B.

An implication A — B is refuted by the partial formal context (G, M, 1) if it
holds in no completion. This is equivalent to the existence of an object g with

i(g,m) = x for all m € A and i(g,n) = e for some n € B.
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In order to better handle canonical formal contexts related to the partial context
(G, M, 1) we define for S C {x,e,7}

is:={(g,m) € G x M |i(g,m)e S}=i"*9).

We leave away the set brackets of S. For instance we write iy » instead of iy 7}.

Proposition 1. Let (G, M, i) and (G, M, j) be partial formal contexts such that
(G, M, j) extends (G, M, ). Then

— every implication that holds in (G, M, i) also holds in (G, M, j), and
— every implication that is refuted by (G, M, 1) is also refuted by (G, M, j).

Pr(ﬁf. For every implication A — B that holds in (G, M, 1) it follows for g € G
tha

Aggjx,? S Acggj’ Qgi‘ — Aggix,? — ngix ggjx.

The second item follows immediately from the observation that every object that
refutes an implication in (G, M, 1) also refutes this implication in (G, M, 7). O

3 Partial Contexts Obtained from Streams

There is a natural way how partial formal contexts arise from complete ones.
Let (G, M, I) be a formal context and let F be a family of nonempty subsets of
the object set G, i.e. F C P o(G) := P(G) \ {#}. We obtain a partial formal
context (F, M,i) by defining for every block F' € F

x if FCml,
i(F,m):=<e if FNm! =10,

7 else.

We refer to (F, M,i) as the F-granulated partial context to (G, M, I). Note
that this reflects the situation of Infobright’s rough tables from the contest [6]
and is only formulated in a different language. For further details we refer the
reader to the following Section El

Proposition 2. Let (PB.((G), M, i) be constructed from (G, M,I) as defined
above, for the special case that F := P ((G). Then

— an implication that holds in (P ((G), M, ) also holds in (G, M, I) and
— an implication is refuted by (B o(G), M, i) iff it does not hold in (G, M, I).

! Let (G, M, R) be a formal context, i.e., R C G x M. For g € G we define g™ := {m ¢
M | gRm}. For X C G we define X® := {m € M | 2zRm for all z € X}. Dually one
defines m™ and Y for m € M and Y C M, see [4]. Furthermore, yei=m \Y.
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Proposition 3. For every F C B ((G) it is true that
— no implication refuted by (F, M, i) holds in (G, M, I).
If F is a covering of G then it is true that
— every implication that holds in (F, M, 1) also holds in (G, M, I).

Proof. Let F' € F be a block that refutes A — B in (F, M, ). Then it holds
that A C Fix = F! and B ¢ F*<*. Hence, it follows B ¢ F'* = F! which
implies that A — B cannot hold in (G, M, I), since F! is an intent containing
the premise A, but not containing B.

Let A — B be an implication that holds in (F, M, i) and let g € G. Since F is
a covering there is a block F' € F containing ¢. Hence, it holds that g/ C Fx.*
which implies

ACg! = ACFix? —= BC Fix = B C 4'. O

Now suppose that (G, M, I) is given as a stream of rows, and is chopped into
data packs as described in the introduction. For each pack we take notes only if
each object in the pack does have the attribute, in which case we note an “x” for
the pack, or if no object in the pack has that attribute. We then note down “e”.
If some have and some do not, we note a question mark. This is a very strict rule,
and we refer to it as hard granulation. Its disadvantage is that its outcome can
drastically be changed by a single value in the pack. It shares this property with
logical analysis: If a given logical formula does or does not hold in the original
data, may be decided by a single counterexample. Proposition [l above shows
our possibilities to argue about implicational information of (G, M,I) based
only on the granulated context (F, M,4). It is therefore necessary to investigate
the circumstances under which an implication holds in or is refuted by (F, M, ).
For both concerns it is sufficient to just take a look on implications of the form
A — b, where AC M and b € M.

Proposition 4. For F' € F the following three statements are equivalent:

(a) F refutes A — bin (F, M, i),
(b) FC A"\,
(¢) every single object g € F refutes A — b in (G, M, ).

Proof. F refutes A — biff it holds that A C F'x = FI and b € Fi = FT which
again is equivalent to F C A? and F C b’C. The rest follows immediately. O

The preceding propositions clarify under which conditions an implication A — b
is refuted by the granulated context (F, M, ). If we insist on a definite answer,
an answer that proves a refutation in the full data set on basis of the granulated
data, these seem to be the natural conditions. But how likely is it that these
conditions are satisfied? We attempt to give a first estimation. Obviously, the
number 7 := |Al \ b!| of all objects from the original data table (G, M, I) that
share all attributes from A but do not have attribute b has to be large enough.
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Let k be a fixed number and let n := |G| be the number of objects. For the
probability that a block F' of cardinality k refutes A — b the following holds:

P(F refutes A —b) = (Z) =
(&)
We now assume that all F' € F have the same cardinality k. With the inequality

from above we can conclude the following upper approximation of the probability
that a partial context (F, M, 1) refutes A — b:

re(r—=1)-..-(r—k+1) r\k
(=1 (k1) () o

k
P((F,M,i) refutes A —b) < Y P(F refutes A — b) < |F]- (;) .
FeF

If we for instance assume that 95% of all objects in (G, M,T) refute A — b
and that F contains one million blocks, i.e., " = 95% and |F| = 1.000.000, we
get that already for relatively small block sizes of k& > 539 the probability that
(F, M,i) refutes A — b is smaller than one part of a million.

Proposition 5. For A, B C M the following four statements are equivalent:

(a) A — B holds in (F, M, 1),

(b) for all F € F the implication A C Fix? = B C F'x holds,

(c) for all F € F the implication A C U,cpg' = B C,cpg’ holds,
(d) for all F € F the implication (Va € A: F ¢ a’) = F C B’ holds.

If one takes a look at the third condition it becomes obvious that the bigger the
block sizes |F| are, the more likely it becomes that the premisses are valid, and
the less likely it becomes that the conclusions hold. Hence, if the number of the
blocks and the sizes of the blocks are relatively large, we do not expect a lot of
attribute implications to hold in (F, M,): The probability that a single block
F of cardinality k fulfills the implication from (d) is

P(FacA: FCa')or FCB') < Y P(FCad") + P(FCB)
ac€A

|A‘,(n—\A’\)’“+(\B’\)’{

n n

IN

Thereby the second inequation follows analogously to inequation ([dI). Let us
assume that A — B is a nontrivial implication that holds in (G, M,I), i.e.
) # A C B! # G. Then for a large block size k this probability tends to be
very small. Hence, for a large number of blocks it is far more impropable that
A — B holds in (F, M, 1).

4 The Contest Data Set

The Infobright data set does not come as a formal context right away, but needs
some (uncritical) transformation. The formalisation of a data table which we use
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is that of a many-valued context (G, M, W, J), where G is a set of objects, M
a set of many-valued attributes, W a set of attribute values and .J is a ternary
incidence relation satisfying

(g,m,v) € J and (g, m,w) € J implies v = w.

The standard interpretation of (g,m,v) € J is that the value of attribute m for
object ¢ is v. The value the object g has regarding to attribute m is commonly
denoted with m(g). To better distinguish such many-valued contexts from the
formal contexts introduced first we shall refer to these sometimes as one-valued.

One of the standard techniques in Formal Concept Analysis expresses many-
valued contexts as one-valued ones by means of conceptual scales. With concep-
tual scaling, every many-valued attribute is represented by several one-valued
attributes, and the incidence to these depends on the respective attribute value.
Details can be found in [], but for the moment it suffices to know that with
this technique, a data table can be transformed to a (one-valued) formal con-
text, and this transformation can be done object-wise, one after another. As a
consequence, we may transform a stream of objects with many-valued attributes
into a stream of objects in a formal context. To keep things simple, we summa-
rize: Conceptual scaling associates to each column m of the data table a set of
attributes (the “scale attributes for the many-valued attribute m”).

many-valued context formal context partial formal context

scaling JF-granulation

(G7M07W7']) - (G7M7I) - (]:’M3Z)

SIS N < ©
VIVI AIATAL < N < ©
m g g ggeg VIVI AARANRAY
S EEE
g 2 Fg X[ X X F 71X X|?7]e
h 4 h X X[ X

Fig. 1. A schematic illustration of interordinal scaling and F-granulation

In the case of Infobright’s contest data set we may think of the underlying,
very large data table as a many-valued context (G, My, W, J) in which for every
attribute m € My the set

Wy, == m|[G] := {weW | (g,m,w) € J for some g € G}

of all values occurring in the column of m are ordered linearly in a canonical way.
Depending on the data type of the attribute m this canonical order <,,, can for
instance be the natural order of numbers or the alphabetical order of character
strings. If one transforms this data table (G, My, W, J) into the formal context
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(G, M, I) via scaling every attribute from My interordinally, this formal context
(G, M, I) directly yields to the granulated partial formal context (F, M, ) which
contains exactly the same information as the contests rough table from [6].

We leave out the details about the interordinal scaling of the original data
table (G, My, W, J). We refer the reader to Figure [Il to get an idea on how it
works. The problem with the contest data set is that for almost every attribute
m € My it holds that for almost every rough row F' € F the minimal and
maximal m-values in F' are exactly the overall minimal and maximal m-values,
ie.,

. o q _ .
gpelgm(f) rgrggm(g) an r;leagm(f) rgneagm(g)

This yields to the effect that (F, M, ) is almost full of question marks, which mi-
nimizes the chances to verify or to refute some interesting attribute implications.

5 Soft Granulation

There is a reason why the approach of the previous section led to rather dis-
appointing results: Our definition of the granulation process was too rigid. We
defined that a block has a certain object if all members of a pack have the at-
tribute, etc. As an example from the Infobright data, we mention the minimum
parameter: It expresses that all members of the pack have a value greater or
equal this one.

For a rough estimation, such parameters that can drastically be changed by a
single member of the block seem inappropriate. It seems more promising to work
with parameters which reflect the “tendency” of the data packs. The simplest
suggestion is counting: Let us record for each data pack (F,m) the number of
objects having the attribute. Formally:

supp(F,m) := |m! N F|.

One calls supp(F,m) the support of the data pack (F,m). The number of
objects of a block F' that do not have attribute m is called its negative support
and is defined as

nsupp(F,m) = |F\ m!|.

Our granulation will now work as follows: The formal context (G, M, I) leads
us to the Nyp-valued context (F, M, i), i.e., i : F x M — Ny, with
i(F,m) = supp(F,m).

What we are trying to do is mining in (F, M, %) for association rules that hold
in (G, M,I). An association rule A — B consists of two attribute sets: the
premise A and the conclusion B. We call

supp(4) := |AL] the supportlof A,
supp(A — B) := supp(A U B) the support of the rule A — B, and
conf(A — B) := s“:f;;%i?) the confidence of the rule A — B.
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Furthermore, for given thresholds minsupp € Ny and minconf € [0, 1] we say
an association rule holds in (G, M, ) if its support exceeds minsupp and its
confidence exceeds minconf. Hence, association rules are a generalization of the
attribute implications: The implications that hold in a formal context are exactly
the association rules that hold with minsupp = 0 and minconf = 1. We say an
attribute set (or a rule) is frequent if its support is greater or equal minsupp.

From now on we assume that F is a partition of the object set G and that
the size of every block is known. Hence, for every data pack (F,m) we know
its support and its negative support. We define approximations of the above
mentioned measures just using these information:

supp(A) := Z max{O, |F| — Z nsupp(F, a)},

FeF a€A
supp(4) := » min supp(F, a),
FeF

Y oFer maX{O,minaeA supp(F,a) — > pep\ 4 nSupp(F, b)}

conf(A — B) := supp(A)

Proposition 6. For A, B C M it holds that:
supp(A) < supp(A4) < supp(4).

Furthermore, the inequality conf(A — B) < conf(A — B) holds.

Even though these approximations are very coarse in most cases, they are tight
in the sense that there are cases where equality holds. We say an association
rule holds in the granulated partial context (F, M, i) if

minsupp < supp(AUB) and minconf < conf(A — B).

Corollary 1. Every associationrule that holdsin (F, M, i) alsoholdsin (G, M, I).

For a singleton conclusion B = {b} we can further approximate the lower ap-
proximation conf(A — b) of the confidence of rule A — b (with b ¢ A) in the

following Wayﬁ:
b1

supp(4)
The right side of this inequality exceeds minconf iff the following holds:

conf(A—b) > 1—

I supp(4)
> 1— (1 — minconf) -
G| G|
I
2 Tt is more common to define the support of A as the quotient Vé I We choose to
define it the absolute way since it makes the following formulas more readable.
3 By applying the inequality max{0,x} > z to every summand in the numerator in
the definition of conf.
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Let us take for instance minconf = 70% and supp(A) = 0.6 - |G|. If in this case
82% (=1-0.3-0.6) of all objects have attribute b, we can for sure read from the
granulated context (F, M,4) that the rule is frequent. By the way, the support

b'| = ) supp(F,b)

FeF

of the attribute b can be read from the granulated context (F, M, ). Hence,
we get that at least for association rules with very high support and with a
conclusion containing very frequent attributes, the chances that its conf value
exceeds the threshold minconf are not too bad. But when is the rule a frequent
rule? Let C' be an attribute set (for instance C' = A U {b}). It holds that

supp(C) > |G| = > |m'|
meC
> |G| = |C|- (|G| — supp(C))

The right side exceeds minsupp iff

supp(C) > (IC] = 1) - |G| + minsupp
- 1C '

If we take for instance |C| = 4 and minsupp = 0.2 - |G|, we get that C can be
detected as frequent by just using the granulated context (F, M, i) if its actual
support (in (G, M, 1)) is at least 80% of |G|. Note that the approximations of
supp(C') we made above were quite rigid. Hence, in practice we expect that supp
gives a much better lower approximation of the actual support supp in (G, M, I)
than our example may suggest.

Due to a lack of space we have to leave out the details on how to calculate
a basis of the association rules that hold in (F, M,i). We will do this in a fu-
ture paper. In summary our procedure will use the fact that supp yields to a
closure system on M. The frequent closed attribute sets will be used to build a
Luxenburger-type basis [§]. Furthermore, the following paper should investigate
how to improve the approximations conf and supp if one considers background
knowledge that can for instance be given by the scales used in the scaling process.

6 Conclusion

We proposed a way to describe the rough tables occurring at the data warehou-
sing system ICE. We did that from the standpoint of Formal Concept Analysis
and tried to mine these rough tables for implicational knowledge. We argued
that it is very unlikely that the very rigid minimum and maximum parameters
as for instance used in the contest data set [6] will yield to satisfying results.
We constituted that — having in mind the data mining in rough tables — in the
process of building the data pack nodes it is worth to create more sophisticated
parameters that allow to give a better estimation of the distribution of the values
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in the data packs (like counting the number of incidences in the data packs of
the scaled data table).

Ongoing work has to include the following issues: How can one efficiently
calculate a basis of the association rules in Section B’ One has to explain how
background knowledge can be used to improve data mining in the granulated
contexts. Furthermore, experimental results are needed to find out whether the
soft granulation described in Section [B] will lead to satisfying results in practice.
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Abstract. This paper deals with a survey of some aspects of covering
based approaches to rough set theory and their implication lattices.
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1 Introduction

Pawlak’s rough set theory begins with an approximation space < U, R > where
U is a non empty set and R is an equivalence relation on U. So, the set U is
partitioned. Given any subset A of U, the lower and upper approximations A
and A are then defined by A = {z| [z] C A} and A = {z| [x] N A # ¢}.

One can immediately observe that the following properties of lower and upper
approximations hold.

(la) U = U (Co-normality) (Ib) U = U (Co-normality)

(2a) ¢ = ¢ (Normality) (2b) ¢ = ¢ (Normality)

(3a) X C X (Contraction) (3b) X C X (Extension)

(4a) X NY = X NY (Multiplication) (4b) X UY =XUY (Addition)
(5a) (X) = X (Idempotency) (5b) (X) = X (Idempotency)

(6) (~ X) =~ (X), (~ X) =~ (X) (Duality)

(Ta) X CY = X CY (Monotone) (Tb) X CY = X C Y (Monotone)
(8a) A C (4) (8b) (A) S A

Almost from inception of the theory, various generalizations took place one such
being replacement of the partition of the set U by a covering. One starts with a
set and a covering on it, that is a collection of subsets such that its union is the
whole set U. A passage from partition to covering was natural from the point
of view of applications also. The equivalence relation R in U originates from an
attribute-value system (U, {A;}, V) where {A;} is a set of attributes and V' is a
set of values, each attribute A; giving a unique value from V to each object in
the universe U. Thus a partition emerges, elements having the same attribute-
values being clustered together forms an equivalence class. Elements belonging

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 12772009.
© Springer-Verlag Berlin Heidelberg 2009
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to the same class are indiscernible with respect to the given set of attributes.Now
indiscernibility relation is in general non-transitive - in attribute value systems
such an indiscernibility arises if there are some gaps in the information viz. for
some objects the value of some attribute may not be known. However, value-
gaps are not the only reason for generation of non transitive indiscernibility.
The clusters or granules are formed in this situation in various ways and the
granules are not generally disjoint. The overlapping granules form a covering of
the universe U. Since in the study we shall not be concerned with the process
of granule formation, for our present purpose, as mentioned before, the pair
< U,C > where C = {C;} is a covering of U in a reasonable starting point.

Along with various methods of formation of granules, the lower and upper
approximations of a subset of U are also defined in various ways. The objective
of this paper is to present an account of various definitions of lower and upper
approximations proposed so far and to study their consequences. Consequences
will be marked in terms of implication latices, a notion first introduced in [3].

Given two sets A, B there are nine possible inclusions P C @ where P €
{A, A, A} and Q € {B, B, B}. In case of partition on X we have the following
equivalences {A C B}, {A € B,A C B}, {A C B,A C B}, {A C B} and
{A C B,A C B,A C B} in the sense that inclusions belonging to the same
group are equivalent that is, each implies the other. These equivalence classes
form a lattice with respect to inclusion again. In the present paper this lattice is
the lattice for Py. For more detail of these implication lattices see [3]. However,
in case of covering based approximations, since all the relevant properties among
(1) to (8) are not available the equivalence classes of inclusions are different and
the implication lattices are different too.

The paper is divided into two broad sections. In the following section various
definitions of the lower and upper approximations shall be presented. All these
definitions are already present in rough-set literature; we have only compiled and
categorized them. Categorization shall be done in terms of usual set theoretic
properties. Many of these properties have already been mentioned in earlier
works. But many properties were not investigated before. These are our own
observations and marked with a ‘x’ in the table in the next section.

Section two deals with the implication lattices and categorization with the
help of them.

This paper ends with some concluding remarks.

2 Various Types of Lower and Upper Approximations

Let C = {C;} be a covering of U. The following various types of granulation
around an element x € U are used in defining lower and upper approximations.
NS¢ =U{C; € C:x € C;} = Friends(z) [BIRI1Z]

P¢ ={ycU:VCi(x € C; & y € C;)} (Partition generated by a covering)

HUTISIT2/17]

N(z) =n{C;: C; € C,x € C;} = Neighbour(x) [II6I17]
Md(z)={C;:2€C,eCAN(NSeCAxeSCC;=C;=8)} [10],
e.f(x) =U — Friends(z) [5]
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Except Md(z) all other constructs are subsets of U while Md(x) is a subset of
the power set of U.

Let X be a subset of U, where U is the universe. Then different types of lower
and upper approximations are defined as follows.

We have used P,, P'i= 1,2, 3,4 to recognize Pomykala, since to our knowl-
edge he first studied the lower and upper approximations with the exception Py

which was due to Pawlak. C', c'i= 1,2,3,4,5 are other covering based approx-
imations which are essentially duals. C' and C' with symbols are also covering
based, the symbols being taken from the respective papers straightway. This

. . G
group of pairs barring C', and C " are non-duals.

X)={z:NSCX}

{z:Vy(zENgiNgﬁX#qb)} [BI12]
={y:VCi(ye Ci= C;NX # ¢)} [BIOI2T3I5IIT
=U{P¢: Pt C X}
= U{PS: PENX # ¢} [NATBOIOI2IIATEIT
= U{CZ :C,eC,C; C X}
=~ Ci(~X)=n{~C;:C; €C,C;NX =¢} [10]
={reU:N(x)CX}
={zeU:N(x)nX # ¢} [0
={xeU:Ju(ue Nx)AN(u) C X)}
={zeU :Yu(lue N(x) - Nu)nX #¢)} [10]
={z €U :Vu(r € Nu) - N(u) C X)}
=U{N(z): N(x) N X # ¢} [10]
={xeU:Vulx € Nlu) »ueX)}
(X) = U{N(2) : z € X} [I0]
With the same lower approximation there are a few different upper approxima-
tions. In the following we have the symbols by corresponding authors.

C.(X) = C_(X) = C(X) = Ca(X) = O (X) = Oy (X)
—U{C; €C:Ci C X} =Py(X) [
C7(X) = CX) U {Md(2) : v € X\ X.} [BUIT]

ESES ESES ESES ESES ESES ESES ESES ESESV

SHOEOHOROIHOROIRO RO RO R

C (X)=U{Gi:CGinX #¢} B

™ (X) = U{Md(z) : x € X} [BIIT

C+(X)=C@( JU{Ci: Cin (X \ Ca(X)) # ¢} B

C (X)=C,(X)U{Neighbour(z) :x € X \C  (X)} [5II6]

C’%(X) =Cy(X)U{~ U{Friends(y) :x € X\ Cy(X),y €e.f(x)}} [

Yet another type of lower and upper approximation is defined with the help of
covering.
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Let, Gr.(X) =U{C; € C: C; C X} = P4(X).

This is taken as lower approximation of X and is denoted by C',.(X).
Gri(X)=U{C; €C:C;iN X # ¢} = P (X).

The upper approximation is defined by C’GT(X) = Gr*(X) \ NEGg,(X),
where, NEG¢,(X) = Cgq,(~ X), ~ X being the complement of X [I3].

We split 4(a)(multiplication), 4(b)(addition) each into two components
e.g. 4(a) is split as AN B C AN B and AN B C AN B. Similarly the other.

The reason for this split is that it will be observed that one of the components
may hold while the other may not.

Instead of 5(a) and 5(b) we have taken A C (A) and (A) C A for similar
reasons.

The following table shows that the entire Picture.

Py P, P3 Py Cy Cy O3 Cy Cs Cyr C. C- Cy Ca O Coy
Dual YYYYYYYYY Y NNNNNN
p=0¢=0¢ YYYYYYYYY Y YY YY,YY
U=U=U YYYYYYYYY Y YY YY.YY
ANBCANB Y Y Y YYYYYY Y YY YY.Y Y
ANBCANB Y Y YYNYNY Y N NN NN, N N
AUBCAUB YY Y YNYNY Y N Y YN, Y NN
AUBCAUB YY Y Y YYYYY N Y YN, Y YN
ACB=ACBY YYYYYYYY Y YY YY.YY
ACB=ACBY YYYYYYYY Y NY YN, Y Y
ACA YYYYYYNYY Y YY YY.YY
ACA YYYYYYNYY NYY YY.YN
ACA YYYYYYNYY Y YY YY, Y Y
AC(A) YeN. Y. Y. N.N.,N, YN, N Y,Y, Y Y, N, N,
(A)Cc A YN, Y. Y. N,N,N, YN, N, N., N, Y Y, Y, N,
AC(A) NYYYYYN.NY Y YY YY. VY Y
(A)Cc A NYYYYYNNY Y YYNY, Y Y
AC(A) NNNYNN,NNNNY,Y Y Y. NN
(4)Cc A NNNYNN,NN, N NN,N, YY. Y N

Y : Yes, the property holds. N : No, the property does not hold.

As mentioned in the introduction properties that we have verified are marked
x. The above table may be called the information system for the various ap-
proaches, the first row giving their names.

3 Implication Lattices

Implication lattices were first introduced in [3]. Their role in rough logics has
been discussed in the same paper. We shall now demonstrate various implication
lattices arising in the present context.
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Implication Lattice with respect to P; and Cy

Properties used :
ACB=ACBand AC B, ACB ACB

ACA ACA (A)CAand AC (4). AESB ACH
ACB
ACB=(A)CB=AC(A)CB=ACB eACBH
and ACB=AC(B)CB=ACB
So, ACB& AC B. cACB
Implication Lattice with respect to Ps
Properties used : ACB
ACB=ACBand ACB,
ACA ACA (A)CA AC (4) ACh ACB
AC (A) and (4) C A. ACB
e ACB
ACB=(A)CB=AC(A)CB=ACB
e ACB

and ACB=AC(B)CB=ACB.

So, AC B+ ACB.
ACB=(A)CB=AC(A)CB=ACB.
Also, ACB=ACBCB=ACB.So,ACB< ACB.
Again, ACB=AC(B)=AC(B)CB=ACB.
Also, ACB=ACACB=ACB.So,ACB& ACB.

Implication Lattice with respect to Py

Properties used : ACB
ACB=ACBand AC B,

ACA ACA (A)CAandAC (A), AEB ACB
AC(A)and (A) C A. ACB

ACB=(A)CB=AC(A)CB=ACB
and ACB=AC(B)CB=ACB
So, AC B« ACB.

Clearlyy, ACB=(A)CB=AC (A CB=ACB.
ACB=ACBCB=ACB.SoACB&< ACB.
ACB=(A)CB=AC(A)CB=ACB.

Also, ACB=ACBCB=ACB.So,ACB< ACB.
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Again, ACB=AC(B)=AC(B)CB=ACB.
Also, ACB=ACACB=ACB.So,ACB< ACB.

Implication Lattice with respect to Ca

Properties used : ACB
ACB=ACB, ACA ACA, ACB
A C(A), (A) C A, and A C (A). ACB ACB
ACB
ACB=(A)CB=AC(A)CB=ACB c AC B
and AC B= AC(B)
e ACB

= AC(B)CB=ACB.

So, ACB& ACB.
ACB=(A)CB=AC(A)CB=ACB.
Also, ACB=ACBCB=ACB.So,ACB< ACB.

Implication Lattice with respect to P»,Cy,Cy,C5,C ,Cy

Properties used : ACB

ACB=ACBand ACB,

ACA AC A, ACB ACB

AC(A)and (A)C A ACB
ACB CB

ACB=(A)CB

=AC(A)CB=ACB ACB

Also, ACB=ACBCB= B.So, ACB< ACB.

Implication Lattice with respect to C\

Properties used : ACB

ACB=ACB, ACA AC(A). ACB
ACB ° ACpB

ACB=(A)CB ACB

=AC(A)CB=ACB.
Also, ACB=ACBCB=ACB.
So, AC B ACB. ACB
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Implication Lattice with respect to Cy, Gr

Properties used : ACB

ACB=ACBand AC B, '\oAQB

AC A, AC(A)and (A) C A. ACB ACB
ACB

C C
ACB=(A)CB ACB ACB
=AC(A)CB=ACB. /
Also, ACB=ACBCB= ACB. AcC
So, ACB& ACB.

Implication Lattice with respect to Cs . ACB
Properties used : AC By o4 CB
ACB=ACBand ACB ACB'\/AQB
ACB
AC Be *ACB
°* ACB

The study of implication lattices has the following significance.

e Given two Sets A and B, of the nine possible inclusions between the pairs
from {A, A, A} and {B, B, B} how many are independent is depicted by the
nodes of the diagrams.

e Which inclusion entails which one is shown.

e Any of the inclusion gives rise to a rough Modus Ponens rule [2] and a
corresponding rough logic [2]. Taken with 2 the hierarchy of the logics is obtained.

Underlying modal logical systems of various rough logics are also immediately
visible from the table. It may also be mentioned that it will be necessary to define
and investigate modal logic systems in which necessity and possibility operations
are not dual.

4 Concluding Remarks

Other issues of covering-based approaches e.g. topological and logical aspects
shall be our future work.
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Abstract. A paraconsistent annotated logic program called bf-EVALP-
SN has been developed for dealing with before-after relations between
time intervals (processes) and applied to real-time process order control.
In this paper, we introduce a logical before-after relation reasoning sys-
tem based on two inference rules for before-after relation with simple
examples.

Keywords: Before-after relation, EVALPSN, bf-EVALPSN, annotated
logic program, reasoning system.

1 Introduction

We have already developed a paraconsistent annotated logic program called
Extended Vector Annotated Logic Program with Strong Negation(abbr.
EVALPSN), which can deal with intelligent control and safety verification such
as pipeline process control [BI45]. We also have developed an EVALPSN called
bf(before-after)-EVALPSN to deal with before-after relations between time in-
tervals paraconsistently, which can be applied to real-time process order control
[6/7]. In this paper, we extend the result of Nakamatsu et al.[6] to a before-after
relation reasoning system based on bf-EVALPSN.

Suppose that festival A starts on Feb.10th and finishes on 14th, and festival B
starts on Feb.16th and finishes on 17th. Then, if we have a question, “Is festival
A held before festival B 7”7, everyone has to answer “yes”. On the other hands,
if festival B starts on 11th and finishes on 12th, what about the answer for the
same question 7 Some people may answer “yes” and other people may do “no”.
There is paraconsistency in the people’s knowledge. In bf-EVALPSN, a spe-
cial EVALP literal R(p;,p;,t):[(m,n), u] called bf-EVALP literal whose vector
annotation (m,n) paraconsistently represents the before-after relation between
two processes Pr; and Pr; at time ¢ is introduced. The first/second components
m/n in the vector annotation (m, n) represent after/before degrees of the before-
after relation, respectively. For example, the first before-after relation beteween

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 135{143) 2009.
© Springer-Verlag Berlin Heidelberg 2009
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festivals A and B could be represented as R(fesA, fesB,t):[(0,12), a] El, which
can be intuitively interpreted that it is a fact that nobody agrees “festival A
is held after festival B, and all other 12 people agree that festival A is held
before festival B”. Moreover, the second before-after relation of them could be
represented in the EVALPSN literal R(fesA, fesB,t):[(4,8), a], which can be
paraconsistently interpreted that it is a fact that 4 people agree “festival A is
held after festival B” and other 8 people agree “festival A is held before fes-
tival B”. We will introduce the before-after relation reasoning system to infer
the vector annotation (m,n) of the bf-literal in real time according to process
start/finish time information.

Suppose that we deal with n processes and their bf-relations in bf-EVALPSN,
then ,,Cy bf-relations should be considered, which requires much more computa-
tion cost. It is not so efficient to compute directly all ,,Cy before-after relations
based on all process start/finish time information. In order to avoid such in-
efficiency we also propose another before-after relation reasoning system that
can reason the vector annotation of R(p;,pk,t) from those of R(p;,p;,t) and
R(pj,pr,t) transitively. If we use the transitive before-after relation reasoning
system, only n — 1 before-after relations for n processes should be computed di-
rectly according to process start/finish time information and other before-after
relations can be computed by the transitive reasoning system. We will also in-
troduce the transitive before-after relation reasoning system.

This paper is organized as the following manner: first, EVALPSN and bf-
EVALPSN are reviewed briefly ; next, the basic and transitive before-after rela-
tion reasoning systems are introduced with simple examples ; last, the conclution
is provided.

2 Bf-EVALPSN

We review bf-EVALPSN. The details of them are refered to [3IS].

An annotation in EVALPSN has a form of [(i, ), u] called an extended vector
annotation. The first component (4, 7) is called a vector annotation and the set
of vector annotations constitutes the complete lattice, 7,(n) = {(z,4)|0 < z <
n,0 <y < ng,y and n are integers}. The ordering(=,) of 7,(n) is defined as :
(z1,1y1) 2o (22,9y2) iff 11 < 29 and y; < yo. For each extended vector anno-
tated literal p:[(7, j), 1, the integer ¢ denotes the amount of positive information
to support the literal p, the integer j denotes that of negative information, and
the annotation p € { L, a, 3, 7, *1, *2, *3, T } is an index of deontic notions such
as obligation. The set of the annotations constitutes the complete lattice, 7. The
ordering(=y) of 73 is described by the Hasse’s diagram in Fig[ll Then, the com-
plete lattice 7.(n) of extended vector annotations is defined as 7,(n) x 74. The
intuitive meaning of each member of 7; is L (unknown), « (fact), 8 (obligation),
~ (non-obligation), #; (fact and obligation), *2 (obligation and non-obligation),
3 (fact and non-obligation), and T (inconsistency).

! o is interpreted as “it is a fact that - - 7.
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T Pr;
(070) 1 " Frs
Fig. 1. Lattices 7,,(2) and 74 Before/After
PT‘Z' Ys PT‘]' ys
Ts Pr; Ty Ys Pr; yr - -
> > T x5
Fig. 2. Disjoint Before/After Immediate Before/After
O @ Pr; ay
> >
Ys Pr; Ys Ys Pr; yr
Fig. 3. Joint Before/After S-included Before/After

There are two kinds of epistemic negation —; and —9 in EVALPSN, which
are defined as mappings over lattices 7,(n) and 7, respectively. There also is
ontological(strong) negation(~) in EVALPSN, which is defined by the epistemic
negations —; or -9, and it works as classical negation. Let Ly, -+, L, be weva-
literals B, L1 A+ ALiA ~ Liz1 A+ A ~ Ly, — Lg is called an EVALPSN clause.
An EVALPSN is a finite set of EVALPSN clauses.

First of all, we introduce a literal R(p;,p;,t) whose vector annotation repre-
sents the before-after relation between processes Pr; and Pr; at time ¢, which
is called a bf—litem. An extended vector annotated literal R(p;, p;, t):[p1, o] is
called a bf-EVALP literal, where u; is a vector annotation and ps € {a, 3,7}.
If an EVALPSN clause contains bf-EVALP literals, it is called a bf-EVALPSN
clause or just a bf-EVALP clause if it contains no strong negation.

Now we introduce the following bf-relations represented in vector annotations
called bf-annotations. They are described in process time charts (Fig[l}).

Before (be)/After (af): We define the most basic bf-relations before/ after
based on the bf-relation between each start time of two processes, which are
represented by bf-annotations be/af, respectively. If one process has started be-
fore/after another one, then the bf-relations are defined as “before(be)/after(af)”

Disjoint Before (db)/After (da): Bf-relations disjoint before/ after between
two processes Pr; and Pr; are represented by bf-annotations db/da

2 p:[(4,0), ] and p: [(0,7), u] are called weva-literals, where i, j are non-negative
integers and u € { a, B, v }.
3 Hereafter, the word “before-after” is abbreviated as just “bf” in this paper.
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Fig. 4. Included, F-included, Paraconsistent Before/After

T

knowledge
N

Prq >
Pry >
Te Pry >
before « ° ~ after
Fig. 5. Lattice 7,(12),f Process Schedule Chart

Immediate Before (mb)/After (ma): Bf-relations immediate before/ after be-
tween processes Pr; and Prj are represented by bf-annotations mb/ma

Joint Before (jb)/After (ja): Bf-relations, joint before/ after between pro-
cesses Pr; and Pr; are represented by bf-annotations jb/ja

S-included Before (sb)/After (sa): The bf-relations s-included before/ after
between processes Pr; and Pr; are represented by bf-annotations sb/sa

Included Before(ib)/After(ia): Bf-relations included before/after between
processes Pr; and Pr; are represented by bf-annotations ib/ia

F-included Before(fb)/After(fa): The bf-relations f-include before/ after be-
tween processes Pr; and Pr; are represented by bf-annotations fb/fa

Paraconsistent Before-after (pba): The bf-relation paraconsistent before-
after between processes Pr; and Pr; is represented by bf-annotation pba

If we take the before-after measure over the ten bf-annotations as the hori-
zontal order and the before-after knowledge amount of them as the vertical one,
we obtain the complete bi-lattice 7, (12); s of bf-annotations (Fig.5). Then, there
is the following correspondence between bf-annotations and vector annotations,
be(0,8)/af(8,0), db(0,12)/da(12,0), mb(1,11)/ma(11,1), jb(2,10)/ja(10,2),
sb(3,9)/sa(9,3), ib(4,8)/1ia(8,4), £b(5,7)/fa(7,5), pba(6,6).

3 Bf-Relation Reasoning System

In this section, we introduce the basic and transitive bf-relation(annotation)
reasoning systems. Firstly we show a simple example for reasoning bf-annotations
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with three processes Prg, Pr; and Pry scheduled in Fig.5, and three bf-literals
R(po,p1,t), R(p1,p2,t) and R(po, p2,t).

At time t(, as no process has started, we have no knowledge of bf-relations.
Therefore, the bf-relations are unknown and the same tentative bf-annotation of
all the bf-literals is (0, 0).

At time tq, as only process Prg has started, it can be reasoned that both the
bf-annotations of R(pg,p1,t1) and R(pg, p2,t1) are members of a set {db(0, 12),
mb(1,11), jb(2,10), sb(3,9), ib(4, 8)}. Therefore, the greatest lower bound (0, 8)
of the set is the tentative bf-annotation of them, which is the greatest knowledge
in terms of their bf-relations, and the tentative bf-annotation of R(p1,pa2,t1) is
still unknown (0, 0).

At time to, as process Pry has started before process Prg finishes, it can be
reasoned that the bf-annotation of R(pg, p1,t2) is a member of a set {jb(2, 10),
sb(3,9), ib(4,8)}. Therefore, the greatest lower bound (2,8) of the set is the
tentative bf-annotation of it. Moreover, as process Pro has not started yet, the
tentative bf-annotation of others is the same (0, 8).

At time t3, as process Pry has started before both processes Prg and Pry
finish, it can be reasoned that the tentative bf-annotation of all the bf-literals is
the same (2,8) as well as the case of time t5.

At time t4, as only process Pry has finished, it can be reasoned that the ten-
tative bf-annotation of R(pg, p1,t4) is still (2,8), however the final bf-annotations
of other bf-literals become ib(4, 8).

At time t5, as process Prg has finished before process Pr; finishes, the bf-
annotation of R(pg,p1,t5) becomes jb(2,10). Therefore, even though process
Prq has not finished yet, all bf-relations between processes Pry, Pr; and Pry
have been determined at time t5.

As shown in the above example, bf-relations(annotations) can be determined
according to process start/finish time information. It is quite natural to adopt
the following bf-relation inference rules for the basic bf-relation reasoning system.

(0,0)-rule-1: If process Pr; has started and process Pr; has not started yet, then
the tentative bf-annotation of R(p;,p;,t) becomes (0,8) from (0,0).

(0,0)-rule-2: If both processes Pr; and Pr; have started at the same time, the
tentative bf-annotation of R(p;, p;,t) becomes (5,5) from (0,0). They are repre-
sented by the bf-EVALPSN clause with no deontic annotation,

R(pi,pj,t):(0,0) A st(p;, t):(1,0)A ~ st(p;,t):(1,0) — R(pi,pj,t):(0,8),
R(pi,pj,t):(0,0) A st(p;,t):(1,0) A st(pj,t):(1,0) — R(pi,p;. t):(5,5),
where two literals st(p;, t)/ fi(pi,t) represent “process Pr; starts/finishes at time

t”, and their vector annotations are members of {(1,0)(true), (0, 1)(false) }.

(0,8)-rule-1: If process Pr; has finished, and process Pr; has not started yet,
then the bf-annotation of R(p;,p;,t) becomes db(0, 12) from (0, 8).

(0,8)-rule-2: If process Pr; has finished and process Pr; has started immediately
after it, then the bf-annotation of R(p;,p;,t) becomes ib(1,11) from (0, 8).
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(0,8)-rule-3: If process Pr; has started but not finished yet and process Pr; has
also started after it, then the tentative bf-annotation of R(p;, p;,t) becomes (2, 8)
from (0,8). They are represented by the bf-EVALPSN clause with no deontic
annotation,

R(pi,pj,t):(0,8) A fi(ps, t):(1,0)A ~ st(p;,t):(1,0) — R(pi,pj,t):(0,12),
R(piapj’t):(0’8)/\fi<pi7 ) ( 70)/\3t<p]’ ) (1’0) - (piapj’ )'(1’11)7
R(pi,pj, t):(0,8)A ~ fi(pi,t):(1,0) A st(pj,t):(1,0) — R(pi,pj,t):(2,8).

(5,5)-rule-1: If both processes Pr; and Pr; have started simultaneously and only
process Pr; has finished, then the bf-annotation of R(p;,p;,t) becomes sb(5,7)
from (5,5).

(5,5)-rule-2: If both processes Pr; and Pr; have started simultaneously and
finished simultaneously, then the bf-annotation of R(p;, p;,t) becomes pba(6, 6)
from (5,5).

(5,5)-rule-3: If both processes Pr; and Pr; have started simultaneously and only
process Pr; has finished, then the bf-annotation of R(p;, p;,t) becomes sa(7,5)
fom (5,5). They are represented by the bi-EVALPSN clause with no deontic
annotation,

R(piapj’t):(5’5) A fi(pht) ( 70)/\ (p]’ ) (1’0) - R(pi7pj7t):(577)’
R(pi,pj,t)l(5,5) /\fi(piv ) ( 70) /\fZ(p], ) (170) - R(pupjv ) (676)7
R(pi, pj; 1):(5,5)A ~ fi(pi,):(1,0) A filp;,t):(1,0) — R(pi, p;; ):(7,5).

(2,8)-rule-1: If processes Pr; and Pr; have started sequentially, process Pr;
has finished and process Pr; has not finished yet, then the bf-annotation of
R(pi,pj,t) becomes jb(2,10) from (2, 8).

(2,8)-rule-2: If processes Pr; and Pr; have started sequentially and they finished
at the same time, then the bf-annotation of R(p;,p;,t) becomes £b(3,9) from
(2,8).

(2,8)-rule-3: If processes Pr; and Pr; have started sequentially and process
Pr; has not finished yet, though process Pr; has already finished, then the
bf-annotation of R(p;,p;,t) becomes ib(4,8) from (2,8). They are represented
by the bf-EVALPSN clause with no deontic annotation,

R(pi,pj,t):(2,8) A fi(pi, t):(1,0)A ~ fi(pj,t):(1,0) — R(pi,pj,t):(2,10),
R(pi,pj, t):(2,8) A fi(ps,t):(1,0) A fi(pj,t):(1,0) — R(ps, pj,t):(3,9),
R(pi,pj, t):(2,8)A ~ fi(pi, t):(1,0) A fi(p;,t):(1,0) — R(pi,pj,t):(4,8).

We introduce another bf-relation(annotation) inference rule called the transitive
bf-relation inference rule that can infer the bf-annotation of R(p;,pk,t) from
those of R(pi,pj;,t) and R(pj, px,t) with three processes Pr;,Pr; and Pry, start-
ing sequentially. We show only three simple cases for describing the transitive
reasoning.
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Table 1. Transitive Inference Rules

rules  pi,p; Dj,Pk Pi,Prk rules  pi,p; pj, Pk Di,Px Tules  pi,p; pj, Pk Di, Pk
rl 0,8) (0,0) (0,8) r11  (0,12) (0,0) (0,12) r12  (2,8) (0,8) (0,8)

ri21 (2,10) (0,8) (0,12) r122 (4,8) (0,12) (0,8) r123 (2.8) (2.8) (28)
r1231 (2,10) (2,8) (2,10) r1232 (4,8) (2,10) (2,8) r1233 (2,8) (4,8) (4,8)
r1234 (3,9) (2,10) (2,10) r1235 (2,10) (4,8) (3,9) r1236 (4,8) (3,9) (4.8)
r1237 (3,9) (3,9) (3,9) r124 (3,9) (0,12) (0,12) r125 (2,10) (2,8) (1,11)
r126 (4.8) (1,11) (2,8) r127 (3,9) (1,11) (1,11) r13 (1,11) (0,8) (0,12)
ria  (2,8) (55) (2,8) rld4l (48) (57) (2,8) r142 (28) (7,5) (4.8)
r143  (3,9) (5,7) (2,10)r144 (2,10) (7,5) (3,9) r2  (5,5) (0,8) (0,8)
r21  (57) (0,8) (0,12)r22  (7,5) (0,12) (0,8) r23  (55) (2.8) (2,8)
r231  (5,7) (2,8) (2,10) r232 (7,5) (2,10) (2,8) r233 (5,5) (4.8) (4.8)
r234 (7.5) (3,9) (4,8) r24 (57) (2,8) (1,11)r25  (7,5) (1,11) (2,8)
r3 (55 (55) (55) r31  (75) (57) (55) r32  (5,7) (7,5) (6,6)

Case 1. Suppose that only the first process Pr; has started at time ¢, we ob-
tain the tentative bf-annotation (0,8) of R(p;,p;,t) by (0,0)-rule-1 and we have
the tentative bf-annotation (0,0) of R(p;,px,t), then the vector annotation of
R(p;,pk,t) can be infered deterministically as (0, 8), which is formalized,

R(pi,pj,t):(0,8) A R(p;,pr,t):(0,0) — R(p;,pj,t):(0,8).

Case 2. Suppose that processes Pr; and Pr; have started simultaneously at
time ¢, we obtain the tentative bf-annotation (5,5) of R(p;,p;,t) by the (0,0)-
rule-2 and the tentative bf-annotation (0,8) of R(pj,pk,t) by the (0,0-rule-1,
then the vector annotation of R(p;, pk,t) can be also reasoned deterministically
as (0, 8), which is formalized,

R(pi,pj,t):(5,5) A R(p;, pr,t):(0,8) — R(pi,pj,t):(0,8).

Case 3. Suppose that all processes Pr;, Pr; and Pry have started simultane-
ously at time ¢, we obtain the same tentative bf-annotation (5, 5) of R(p;, p;,t)
and R(pj, pk,t) by the (0,0)-rule-2, then the vector annotation of R(p;, px,t) can
be also reasoned deterministically as (5,5), which is formalized,

R(pi,pj,t):(5,5) A R(p;,pr,t):(5,5) — R(pi,pj,t):(5,5).

Only three rules have been shown though, Other transitive bf-relation inference
rules are listed in Table Il For simplicity the inference rules are represented
by three vector annotations such as (n1,n2)|(ns,n4)|(ns,ne) instead of the bf-
EVALP clause with no deontic annotation,

R(pi, pj,t):(n1,n2) A R(pj, pr, t) : (n3,na) — R(pi, pr,t): (15, n6).

The transitive bf-relation inference rule name (block font) indicates the appli-
cable order of the transitive inference rules. For example, if rule rl has been
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applied, the next applicable rules are r11, r12, r13 or r14. Furthermore, if rule
r12 has been applied, one of rules r121,---,r127, can be applied at the next
step ; on the other hand, if rule r11 has been applied, there is no applicable rule
that follows it and the final bf-annotation (0, 12) of R(p;, pk,t) can be derived.
Here we note that in terms of the inference rules r122, r1232, r126, r141,
r22, r232, r25 and r31, even though they have no following rules to be ap-
plied, they can not derive the bf-annotation of R(p;,ps,t). For example, by
rule r1232, even if both the bf-annotation (4,8) of R(pi,p;,t), and the bf-
annotation (2,10) of R(pj,pk,t) are obtained, the bf-annotation of R(p;, pk,t)
can not be determined and just a tentative bf-annotation (2, 8) is obtained, which
implies three possibilities {(2,10), (3,9), (4,8)} as the final bf-annotation, thus
(2,8)-rules have to be applied at the next step for determining the final bf-
annotation. Therefore, if the transitive inference rules r122 — r31 have been
applied, (0,8),(2,8),(5,5)-rules have to be applied by way of exception.

4 Conclusions

In this paper, we have introduced the bf-relation reasoning system based on
bf-EVALPSN, which consists of the basic and transitive bf-relation inference
rules.

As arelated work, interval temporal logic in which bf-relations are represented
in some special predicates such as Meetd] has been proposed by Allen et al.[1l2]
for representing knowledge of properties, actions and events. It is sure that the
interval temporal logic is a logically sophisticated tool to develop practical plan-
ning or natural language understanding systems though, it does not seem to
be so suitable for real-time processing because bf-relations cannot be deter-
mined until both of them have finished in the logical system. On the other hand,
bf-relations(annotations) are represented by paraconsistent vector annotations
more minutely in bf-EVALPSN, thus, they can be determined in real time by
the basic and transitive bf-relation inference rules according to start/finish infor-
mation of processes. Moreover, since BEEVALPSN is one of logic programs and
can be implemented as both software and hardware[5], The bf-relation reasoning
system can be practically applied to intelligent real-time process order control
and so on
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1 Introduction

In this paper we shall investigate some properties of graded consequence relation.
These properties are in some sense counterparts of proof theoretic assertions in
the classical, intuitionistic or other logics. Theory of graded consequence was
introduced by Chakraborty [II2] in 1986 as a generalization of Gentzen’s no-
tion of consequence in many-valued context. Two main features of this theory
are (1) to lift many-valuedness also to the meta-level notions like consequence,
consistency, tautologihood etc. and (2) to make the logic context-dependent
where the context is given by a set of many-valued valuation functions {T;}ier.
Any T; is a mapping from the set of atomic formulae to a suitable algebraic
structure, constituting the truth set (L) for the given object language. T; is
then extended over the whole set of wifs adopting truth functionality. A collec-
tion {T;}ier can also be interpreted as the opinions of experts or information
about the atomic sentences. As this latest interpretation, a collection {T;}ier
is an information system that initiates rough set theory [II] where the object
set is the set of wifs, T; is an attribute and T;(«) is the value of an wif «
with respect to T;. Let us consider, for example, the following matrix where
ai; = Ti(p;) € L.

H. Sakai ct al. (Eds.): RSFDGrC 2009, LNAT 5908, pp. 144|151, 009.
© Springer-Verlag Berlin Heidelberg 2009
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Well-formed formula ™ Ty ... T, ... T,
Atomic P1 a1l a12 ... A1 -... A1p
P2 21 A22 ... A2 .... A2y
Pk Qk1 Qg2 ... Qi «voo Qfpy
Non-atomic e e e

Any such matrix is called the context. Whatever might be the interpretation,
given a set {T;}ier, a logic may be defined with a fuzzy or graded consequence
relation that assigns a “degree” to the derivability of a wif o from a set X of
premises. This degree may be interpreted as the strength or confidence in which
a may be inferred from the information X given the context {T;};,c;. We shall
denote the consequence relation by [~¢,,_, and the above mentioned degree or
grade by gr(X |~{r1,},., @). One should observe the following:

— the consequence relation is a meta-logical notion and is here taken to be
many-valued in general.

— an implication operator which is not necessarily the implication operator of
the object language is required to define this consequence (see (X') below)

— although the grade gr(X |~{r1,},., @) is taken to be an element of L, the
logical operators for the defining clause of |~7,},., are not necessarily the
same as those(if any at all) for the object language.

Thus, we need two sets of operators on the set L for computing the values of
the object- level and meta-level sentences. For the present paper we shall take a
complete residuated lattice (L, #,,, —m, 0, 1) [S]for the meta-level language and
an algebraic structure (L, *9,—, , 0, 1) for the object level language. Operators
%y, and —,, shall be needed to compute the meta-level "and” and ”if-then”,
while %, —, shall be used for corresponding object level-language.

The main objective of this paper is to investigate into the proof theoretic
results that arise out of various conditions imposed on the object and meta-level
operators and due to various interrelations among them. The rest of the paper
is organized as follows. In section 2, the graded consequence relation |~(7,y,,
shall be defined. In section 3, general study of the proof theoretic properties of
graded consequence relation will be presented. Besides, two specific cases taking
definite structures for object level and meta-level will be investigated. In section
4, we will discuss the significance of proof theoretic properties in the context
of graded consequence in contrast to classical situation. In section 5, there is
an example of finding out actual grade of a derivation in the context of graded
consequence. In the conclusion we indicate some ways of application.

2 Introduction to Graded Consequence

The notion |~{r,},., is a two-stage generalization of the notion of semantic
consequence in classical two-valued logic. The latter is defined by X |= « if and
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only if for all valuations T in the truth set {True, False} or {1,0}, if every
member of X is true under 7' then « is also true under 7. The first stage
generalization was proposed by Shoesmith and Smiley [I2] through relativizing
the notion = in terms of any arbitrary collection {T;};cr of valuations instead of
the set of all valuations. So, one gets X |=(7,},., « if and only if for all valuations
T € {T;}icr, if every member of X is true under T then « is also true under T.
The second stage of generalization was accomplished by taking the valuations
T; as many-valued functions [2] the range being a lattice.

Before proceeding to the actual definition, we shall rewrite the above defining
criterion of |=(7,},., in a form that would be followed throughout the paper.
Every valuation T; may be identified with the set of wifs which are true under
T;. So T; may be considered to be a subset of the set of wifs. Thus the definition
of F=¢7,1,., can be given by

(X) X Fir,y.e, aiff for all valuations T' € {T;}icr, if X C T then o € T.

To present the generalized version of (X)in many-valued context the required
modifications are as follows.

(i) The valuation function T}'s are now many-valued - although the relationship
between the value-set structures for the object and meta-level are not important
at this stage. In fact, at this stage no particular object language is considered,
nor its value set structure.

(ii) In many-valued context to evaluate the defining sentence of the right hand
side of (X) a fuzzy implication operator for ‘if-then’ viz. —,, is needed and hence
the value of the sentence (X) turns out to be

infi{gr(X CT) —pm gr(a € Ty)}
= infi{infrer((v € X) —=m (z € T3)) —m a € T;}
= infi{infeex(l =m Ti(z)) —=m Ti(a)}.

‘inf’ is used to compute the meta-linguistic ‘for all’ present in (X).

In particular, if the —, is taken as the residua of %, present in a residuated
lattice (L, %y, —m, 0, 1)then the value reduces to inf;i{in frexTi(x)) —m Ti(a)}
and is considered as the grade to which « follows from the premise set X. Hence

(2 (X =y @) = infi{infeexTi(z)) —m Ti(a)}

|~17,1,, 15 a graded consequence relation since it satisfies the following axioms
for any general graded consequence relation |~, [3] viz.

GC1.If a € X then gr(X |~ ) = 1,
GC2. If X C Y then gr(X |~ a) < gr(Y |~ a),
GC3. infgeygr(X |~ 03) * gr(X UY |~ a) < gr(X |~ a).

Naturally, |~ is a fuzzy relation from the power set P(F) of the set of formulae F
to F. These are generalizations in the many-valued context of Gentzenian axioms
for consequence relation [5].
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3 Proof Theoretic Properties of Graded Consequence

We divide the results of this section into three categories: properties that depend
only on the conditions imposed on object level operators, properties that depend
only on the interrelation of the object and meta-level operators and the third, a
combination of the previous two. It is to be noted that the basic properties of —,,

which constitute |~{7,y,., play significant role in asserting the following results.

Results of the first category
Theorem 1. If a xg b < a, b then

(i) gr(X u{a} [~ 7) < gr(X U{a&p} [~ 1),

gr(X U{B} |~ 7) < gr(X U{a&p} |~ )
(i) gr(X |~ a&ef) < gr(X |~ a)), gr(X |~ a&f) < gr(X |~ 5))
(ili) gr({ed&ef} |~ a) = 1 and gr({a&ps} |~ ) = 1
(iv) gr({e. B} |~ 7)< gr({a&pB} [~ 7)
In the object level language we have initially taken D and & as primitive con-
nectives. For the time being, let us add one more connective V in the object
level language and @ as the respective operator in the corresponding algebraic
structure.

Theorem2. If a, b < a @ b then

(i) gr(X |~ a) < gr(X |~ aVg), gr(X |~ p) < gr(X|~aVp).
(i) gr(X U{aV B} [~7) < gr(X U{a} |~9),
gr(X U{aV g} [~v) < gr(XU{B} |~7).
(iii) gr({a} |~ aV p)=1and gr({B} |~ aV F) = 1.
Theorem3. If a %o (a —¢ b) < b then
(i) gr({ade(a D> B)} |~ B) = L.
(ii) ~ o = @ D 0 implies gr({a& ~ a} |~ §) = 1.
Notes: 1. 3(ii) gives a sufficient condition for gr({a& ~ a} |~ ) = 1. But ~
needs not to be defined in terms of O always.

2. gr{a& ~ a} |~ B) = 1 does not imply gr({e,~ a} |~ ) = 1 and
similarly gr({a&(a D B)} |~ ) = 1 does not imply gr({a, (o« D 8)} |~ 3) =1
(see theorem 1(iv)). The converses hold for both the cases.

Propositiond. If (a =, b ) A (b —, ¢) < (@ —4 ¢) then
gr(X |~ a2 B)smgr(Y |~ 327) <gr(XUY [~ a D).
Proposition5. If a A (a —, b) < b then

gr(X |~ a) sm gr(Y [~ a D B) < gr(X UY |~ ).
Proposition6. If b < a —, b then gr(|~ 8) < gr(|~ a D B).
Results of the second category

Theorem?7. If —,, < —q then

() gr(X Ufa} |~ ) <gr(X |~aDp).  (i)gr(~a>a)=1.
(ii)gr(l~ B) < gr(l~a>6).  (iv) gr(l~ G2 (@D f) = L.
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Results of the third category
Theorem8. If —,, < —gand aV 3 =~ a D ( then

Hgr(X U{~a} |~ A< gr(X [~aVvp).  (i)gr(X |~ av ~a)= 1.
Theorem9. If —, < —,, and (a —, b) *4, (@ =4 ¢) < @ =4, (b %y, ¢) then

(Dgr(X [~ a)sm gr(Y |~ a D )< gr(X UY |~ f)
(ii) ~ o = a D 0 implies gr({o, ~ a} |~ 3) = 1.

Note3 Usually, for #,, = A, (@ —m b) *m (@ —m ¢) < a —p, (b *4, ¢) holds in
Heyting algebra.

Theorem10. If (a —, b) —, (b = ¢) < (@ —, ¢)and —,, < —¢ then

(1) gr(X [~ aD B)tm gr(Y [~ D 7)< gr(X UY [~ a D7)

(il)~ a = o D 0 implies gr(X |~ a D B)xpm gr(Y |~ (~ 6))< gr(XUY |~ (~ «))
(iii) gr(X [~ a2 B)< gr(X U{~ B} [~ (~ a))

(iv)gr(X U{a} [~ B)< gr(X U{~ B} |~ (~ )

From this general study, a picture of logics with graded notion of consequence can
be assessed. But in some cases, the particular structures, taken for the algebra
of object level as well as meta-level may add some new results. Let us see two
such cases.

(I) Meta-level algebra: A complete pseudo Boolean algebra. Let the primitive
connective of the object language be D. Let ~, &,V be defined by ~ o = a D 0,
a&f = ~(a D~ Bland aV f = ~ a D (. Let the object level algebra be an
Wajsberg algebra (L,—¢, 0). Then the following are obtained.

(Dgr(X Ufa} |~ B) < gr(X |~a > )
(ii) gr(]~a) = 1 for any theorem « of Lukasiewicz logic.
(iif)gr(|~ B) < gr(|~ a > B).

(iv)gr(X U {a} [~ ) < gr(X U {a&f} |~ 7)
(V)gr(X |~ a&p) < gr(X |~ a)
(vi)gr({a&pB}|~ a) = 1 and gr({a&f}|~ ) =1
(vii) gr({e, B} [~ 7)< gr({a&B}|~ 7)
(vii)gr(X |~ a) < gr(X |~ aV f)

(ix) gr(X U {aV B} |~ ) < gr(X U {a} |~ 7)

(x) gr{a}|~aV @) =1and gr({B} |~ aVB) =1.
(xi) gr(X [~ a) = gr(X |~ (~~ a))

(xii) gr(X U{~ a} |~ )< gr(X |~ a V j3).
(xii)gr(X |~ aV ~ a)= 1.

(

1T) Meta-level algebra: An MV-algebra. Object level algebra: A complete pseudo
Boolean algebra.Then the following are obtained.

(er(l~ §) < gr(l~ a > Fas b < a —, b,

(if)gr(]~ «) = 1 for any theorem « of Godel logic.

(iil)gr(X |~ a)*m gr(Y |~ a D f)< gr(X UY |~ )
(iv)gr({a, ~ a} |~ B) = 1. (from (iii))

(V)gr(X |~ aD Bty gr(Y [~ D)< gr(XUY |~ aD7)
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(vi)gr(X [~ a D B)km gr(Y [~ (~ 8))< gr(X U Y |~ (~ a))
(vil)gr(X |~ a D B)< gr(X U {~ G} |~ (~ a))

(vili)gr(X [~ a D B)< gr(X |~ (~ D ~ a)).

(ix)er(X [~ a) < gr(X |~ (~~ a))

(X)er(X U {a} |~ 7) < gr(X U {a&f} |~ 7)

(xi) gr(X [~ a&f) < gr(X |~ )

(xil)gr({a&B}|~ a) = 1 and gr({a&B}|~ 8) = 1

(xii)gr(X |~ a) < gr(X |~ a V)

(xiv) gr(X U {aV B} |~ v) < gr(X U {a} [~ )

(xv) gr({a}|~ a Vv p) =1 and gr({B} [~ aV f) = 1.

4 Significance of Proof Theoretic Properties

Some remarks on some of the above results may be helpful in understanding
their significance.

Theorem1 contains the counterpart of the following properties of classical
logical consequence |-.

XU{alry  Xra&B XrFa&p
XU{a&fity Xka ° XES

Proposition 5 is a version of the rule Modus Ponens.

XFa, YFaDp
XUYFpS

While a & (o D §)F 3, it does not necessarily imply « , (a« D B)F 8 (Theorem 3,
Note) That is the meta-linguistic conjunction comma (,) and the object language
conjunction & should not be treated alike. This is not so in the classical case.

Theorem 7(i) is the counterpart of deduction theorem.

XU{a} kg

XkFaDp.

Theorem 10 (iii), (iv) are counterparts of

XFaD>p , XU{a} B  respectively.
XU{~F}F~a XU{~pftEF~a.

Thus, some well known logical principles (rules) hold because of certain relations
hold among the operators of the truth-set algebras i.e. the semantics of the
languages at the object and meta-levels. In classical two-valued logic in both the
levels the two-point Boolean algebra {1, 0} is employed. In many-valued logics
the algebraic structure for the object level are varied but the algebra for the
meta-level is again the two-point Boolean algebra. Fuzzy logics in the narrow
[6/7IT0]sense differ from the many-valued logics in the use of fuzzy premises and
fuzzy conclusion - these practically mean each wif is tagged with a value from
the truth set. The truth-set algebras are of wide variety but the algebra for the
meta-level is two-valued Boolean. It is in the case of graded consequence that
the meta-level algebra is considered non-Boolean in general. The main difference
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of the theory of graded consequence from other fuzzy logics lies precisely here.
While in fuzzy logics a degree is calculated to the conclusion given degrees to
the premises, in this theory given a set of premises X and a single formula « a
“degree of derivability of « from X” is obtained.

5 An Example

This is an example of applying the principle of graded consequence to a basic
rule of logic like Modus Ponens which can be repeatedly applied to obtain a
derivation in the theory of graded consequence.

Example: Let {p1, p2} be the propositional variables of a language and ~ and V
be two connectives which are computed by —a = 1 — a and ‘max’ respectively.
Let D be defined by p; D p; =~ p; V p;(i = 1,2). Let {T1,T>} be a collection
of fuzzy subsets over the set of formulae, generated from the above mentioned
alphabet and defined by

P1|P2|P1 2 P2(P2 DO P1|~ P1 D P2|~ P2 D P2|P1 D P1|P2 O P2|P1 O ~ P2|P2 O ~ D1
T11.7].8 .8 7 .8 .8 7 .8 3 3
T51.8]1.9 9 .8 9 9 .8 9 2 2

We have not considered the formulas ~ p1 D ~ p1, ~ ps D ~ pa, ~ pas D ~ pq,
~ p1 D ~ p2 in the above table as they have the same truth values as p; D p1,
P2 D p2, p1 D P2, p2 D p1 respectively.

We now calculate the grade of MP taking ([0, 1],x, —, 0, 1), ), an MV-algebra
as the meta-level algebraic structure where — is defined by

a—b=1ifa<b
= (1-a+ b), otherwise.

One can observe that the implications used at the object level and meta-level are
distinct, the first one being that of Kleene-Dienes [9] and the second one that of
Lukasiewicz [8] Now it can be easily shown that inf, ggr({a, (@ D 8)} |~ 8)=
infpip; 97 ({P5 s (P} D))} |~ p}) , where p} denotes any one of p; and ~ p; for i
=1,2,.... n.

Hence info pgr({a, (@ D A} |~ B) = infypgr({ph (0 ' D $))} I~ py)=
i1 e [in S (T (piDA T(0), > L)) — Tilpl)} = 0.

6 Conclusion

From the standpoint of use, theory of graded consequence may offer various
options that is various logics at the two levels. The following diagram will give
a hint.
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Object Level Lukasiewicz ~ Godel Product Kleene
Meta Level Godel  Lukasiewicz Lukasiewicz Lukasiewicz . . .

The results of section 4 will show which properties of the consequence shall follow
for each choice of pairs of logics or equivalently, algebras. In the processing of
data or available information any of the algebras (or logic) of object level may be
used. After that while making a decision in the sense of inferencing from a set of
premises some other logic (algebra) which is not necessarily classical two-valued
may be used. This is the meta-level activity and depending on the necessities,
the corresponding logics (algebras) may be chosen.
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Abstract. Most of the Rough Sets applications are involved in conditional
reduct computations. Quick Reduct Algorithm (QRA) for reduct computation
is most popular since its discovery. The QRA has been modified in this paper
by sequential redundancy reduction approach. The performance of this new
improved Quick Reduct (IQRA) is discussed in this paper.

Keywords: Rough Sets, Feature Selection, Reduct, Quick Reduct, Redundancy,
Variable Precision Rough Sets.

1 Introduction

A good amount of data is getting compiled in experimental, exploratory and interactive
environments. Data pertaining to several attributes/variables on each object results in
production of voluminous data. To handle this data effectively and in the light of curse of
dimensionality [1] a popular technique based on statistical arguments is in the practice
known as Principle Component Analysis (PCA). The PCA transforms the observable
space to a hypothetical space (which is a linear combination of observable variables).
This brings effective dimensional reduction by retaining good amount of information
whereas suffers from interpretation aspects. With the discovery of Rough Sets by Pawlak
[2] it is possible to represent the data in lower dimensional subspace of the observable
space. The advantages of Rough Sets for dimensionality reduction over PCA are given in
[8,9]. Identification of attributes/variables for inducing the subspace with almost the
information contained in the data is an interesting and complex activity.

A minimal collection of set of attributes for meeting the above requirement is
known as a Reduct which is the subject matter of several researchers. Reduct compu-
tation is one of the important activities in several Rough set based soft computing and
Machine Learning systems. Reduct computation is relatively simpler whereas mini-
mal length reduct computation is NP hard [3]. Thus getting a minimal length reduct is
handled by heuristic methods.

Quick Reduct Algorithm (QRA) proposed in [4] is an efficient algorithm for finding
reduct. This is widely used in several soft computing implementations using Rough
Sets [12]. Some improvements to QRA are proposed in [5, 6]. But both accelerated
Quick Reduct algorithm [6] and Improved Quick Reduct algorithm [5] has more time
and space complexity than the QRA. QRA is aimed only at redundancy/dominancy
among attributes but do not consider the redundancy/dominancy associated with the

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 152 2009,
© Springer-Verlag Berlin Heidelberg 2009
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objects. The present study develops theory and algorithm for IQuickReduct (IQRA)
which is an improvement to QRA in both time and space complexity.

Section 2 gives the overview of the QuickReduct algorithm. Section 3 discusses
the limitations of QRA and gives the useful ness of Variable Precision Rough Sets in
improving QRA. Section 4 gives the IQRA algorithm. Section 5 reports the experi-
mental results and illustrates the advantages of the proposed algorithm and the final
section is about the conclusions and future work.

2 QuickReduct Algorithm

The basic concepts of Rough sets are given in [2]. The notations used for Rough sets
are described here. DT denotes the decision table comprising of U a set of objects, C
set of conditional attributes and D set of decision attributes. For a given concept

Xc U, BX denotes lower approximation and BX denotes upper approximation
with respect to set of attributes B € C. POS;(D) denotes the Positive region of

B. ForasetRand R € C, ¥, (D) denote kappa measure which gives dependency

of DonR.

For a given dataset several reducts may exist. An important application of Rough
Sets to Machine Learning is in dimensionality reduction wherein the decision system
is built with using only a reduct attributes. In such applications finding one reduct
would be sufficient. One of the popular algorithms to find reduct is Quick Reduct
algorithm proposed by A. Chouchoulas and Q. Shen [4]. Quick Reduct algorithm is a
step up approach and the outline of the algorithm is given below.

Algorithm Quick Reduct(C,D)
Input: C, the set of all conditional attributes; D, the set of decision attributes.
Output: R, the attribute reduct, R < C.

(HR=D (6) T=RU({x}
(2) do (7)  endfor

(3) T=R 8) R=T

(4) foreachx € (C—R) Ountil ¥, (D) =y.(D)
S if Yeu (D) > y,.(D) (10) return R

QuickReduct algorithm initially starts with an empty set and includes an attribute in
an iteration that increases the kappa in a maximum way. As QuickReduct algorithm
follows a greedy based approach it has been proved in [10] that QuickReduct may not
yield a reduct all times but a super reduct some times. By super reduct we mean a set
of attributes which contains a reduct as a subset of it. Still QuickReduct is used
widely because of fastness with which one can arrive at a set near to a reduct.

3 Limitations of Quick Reduct Algorithm and Relevance of VPRS
Heuristic

The QRA is developed with an assumption that Kappa will be strictly monotonically
increasing from current iteration to the next. It suffers when the Kappa is not
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incremental or zero at any iteration since the algorithms has no directive for the
choices of an attribute. The arbiterization of selection of attribute for adding to the R
leads to (i) Supper reduct and (ii) a reduct with more attributes. A knowledge driven
approach is needed here to improve the performance of QRA. It is observed that QRA
suffers in two cases.

Case IA: The kappa in initial iteration(s) is zero: The problem QRA more often faces
is in the first iteration if kappa values for all conditional attributes become zero. Here
QRA needs to take an arbitrary choice i.e. include the first conditional attribute into
R, and continue to the next iteration and most often resulting in a super reduct.

Case IB: No increment in kappa in intermediate iterations: The other situation that
arises while building a reduct by QRA is that the Kappa may not be strictly increasing
in an intermediate iteration. This situation also leads to arbitrary choice in QRA and
has the possibility of resulting in giving a super reduct.

The principles of Variable precision Rough sets (VPRS) developed by Ziarko [11]
will be handy in these two cases for giving heuristic information for the selection of
attribute into R. VPRS allows calculation of Kappa with a tolerance £ in the range
from 1 to 0.5. So by gradually reducing £ and finding the conditional attribute which
gives kappa gain in both Case IA and IB, a specific selection can be made for inclu-
sion of attribute into R. The following notations are used for VPRS [7] concepts.

Given XcUad BcC, R l’f (X)denotes S lower approximation and

R I'f (X ) denotes S upper approximation. POS g (D) denote Positive region with
P precision and )/l'f (D) denote kappa with 3 precision.

Case II: Redundancy: While studying the various instances it is noted that QRA is
ignoring the redundancy prevailing about the objects. When a concept associated
with an object happened to be in the POS region of a concept induced by D then that
object will not contribute/add any more knowledge in further decision making i.e. in
the rest of the iterations. Thus the set of objects of a POS region are redundant objects
for futuristic purposes. Adoption of filtering the redundant objects in QRA algorithm
would significantly influence the time and space complexity of QRA.

The following Improved Quick Reduct Algorithm (IQRA) has been developed by
embedding the variable precision concept and also by taking care of the redundant
object filtering/removal for finding the Reduct as improvements on QRA.

4 IQuickReduct Algorithm

Algorithm IQuickReduct:
Input: Decision table DT =(U,C U D) where U is the set of objects and C is the set of
conditional attributes and D is the set of decision attributes.

Output: Set of attributes R preserving the property }/,le (D)= }/]C (D).
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1. Calculate }/IC (D). 1. goto 7i
12. else
2. R=®. 13. R=R U {First attribute
3. Count=0. in AvailableSet}
4. While 711e (D) # 7/lc (D), 14.  else /*forifin step 8%/
5 do 15. R=T
' ) 16. Set POSPARTIAL to
6. AvailableSet=C — R POS. (D
7. B=1,&=0.1. 5 (D) for DT
. T=R /*For removal of redundant ob-
. ) jects calculate Positive region
11 foreach g € AvailableSet, with tolerance of 1%/
iii. do 17. Reduce DT by removing the ob-
iv. if ]pﬁu{q}(D) > }pTﬁ (D), jects belonging to POSPARTIAL.
v T=RU {61} 18. Count:Count+‘p05pART]A4
vi. endfor 19. 71]e (D) = Count +|U|
8. if T =R, /*No kappagain*/ 20. endwhile
9. B=p-¢ 21. ReturnR

10. if #>0.5,

Note: In the above algorithm }p,’f (D) is used to denote kappa value when calculated

for reduced decision table and 7}? (D)is used for denoting kappa value for original

decision table.

The working of IQRA is similar to QRA with necessary modifications to overcome
the limitations of QRA such as arbiterization of choice when maximum kappa is zero
or no kapa gain and redundancy involved in calculation of kappa as discussed in the
previous section. IQRA starts with R initialized to empty set and AvailableSet set to C.
At the beginning of the i" iteration Bis setto 1. A step as is in QRA is performed to get
the attribute x € AvalilableSet which results in maximum positive value of

}{O;wl A} (D) .1In case such ‘x’ is available it is included in R. If there is no ‘x” which

increases the current kappa indicates the situation where an arbitrary choice needs to be
made in QRA. Here IQRA incorporates the VPRS heuristic. In such situation the step
“Ii’ is repeated with reduced S until an ‘x’ is found or £ cannot be reduced. In later
case, which would be a rare occurrence, we take an arbitrary decision to include the
first available attribute in R. Otherwise the attribute ‘x” which is resulting in maximum

}{0,/:[][ X} (D) is included in R. After x is included in R the set of objects belonging to

Positive region with tolerance of ‘1’ are calculated. VPRS heuristic is used only for
selecting an attribute to get included in R and the positive region obtained with toler-
ance<l, is not used for the reduction of the Decision Table. After x is included in R the
set of objects belonging to Positive region with tolerance of ‘1’ only is calculated.
These set of objects are redundant for the next iterations. The rows corresponding to
these objects are removed from DT before continuing for the next iteration.



156 P.S.V.S. Sai Prasad and C. Raghavendra Rao

|POSPARTIAL|+|POS |
D)=

1

ey

If we denote the kappa value obtained in the reduced table as 7p1'fu{x} (D) then we

need to calculate the kappa value for the original Decision table after the updating of
R with ‘x’. The formula in equation (1) (which can be supported by theory) is used in
designing this algorithm. In the above equation (1) POS;.; denotes the Positive region
obtained for the original decision table till i-1 iterations and POSPARTIAL is Positive
region of reduced Decision table at ith iteration. In the algorithm Count variable de-
notes the cardinality of Positive region for the original decision table. At the end of
the iteration Count is updated by adding the cardinality of POSPARTIAL and then

used for the calculation of 7,2 (D) . The theoretical analysis of the IQRA algorithm,

the validity and the influence of reduction of the decision table by removal of Positive
region on the solution as well as the time and space complexities are not included in
the current work here due to space constraint.

S Experiments and Results

Both QuickReduct and IQuickReduct algorithms are implemented in Matlab [13] and
are tested against standard discrete data sets available in UCI Machine learning

Table 1. Results of the Experiments for QRA and IQRA

Number Result Time taken Time
Dataset of (in Seconds) G‘am Nature
Name Conditional n of the
attributes QRA | IQRA | QRA IQRA I(iR results
Credit 20 Cl1 Cl1 151.84 | 2397 | 84.21 *
Australia 14 Al Al 71.21 4.57 93.6 *
Heart 13 H1 H1 9.21 2.22 75.9 *
WDBC 9 WD WD 6.01 2.06 66.6 *
Webtest
(Website 2556 W1 | W1 59029 | 230.48 | 96.09 *
classifica-
tion data)
[12 [791
dlzlt‘;gzt 13 375 | 35 9.66 | 575 | 405 o
911] 11]

A1: [141358261]; C1:[14135712916]; H1: [111351436]; WD:[2617];
W1:[1025 1288 2484 1953 2487 2146 2211 865 1623 749 1222 725 347 443 465 595
631 398 520 197 624 238 36 175 21 86292 702 1]
* Reduct in both
*% Reduct in IQRA and Super Reduct in QRA




IQuickReduct: An Improvement to Quick Reduct Algorithm 157

repository [14] and in particular Web test dataset and Mofn dataset are taken from the

website of Richard Jensen[15]. In IQRA algorithm £is set to 0.1. The following Table
1 gives the detailed summary of the results obtained through the experiments.

6 Conclusions and Future Work

For all the datasets there are significant gains in time complexity for IQuickReduct
algorithm over QuickReduct algorithm. Two significant advantages of IQRA over
QRA are given below.

1. Reduction in Time Complexity: This is seen in all the datasets and more
significantly in large datasets. For example the webtest dataset is of the size (149 x
2557). Time taken for finding the reduct using IQuickReduct algorithm is 230.48
seconds where as for QuickReduct it turned out to be 5902.9 seconds. The time
gain in IQRA is 96.09. The reduct found in both cases came out to be same. The
Figure 1 gives below figure gives the estimate of the size of the space (No. of
objects x No of attributes) involved in calculation of kappas in the iterations of
QRA and IQRA for webtest dataset. Figure 2 illustrates the time involved in each
iteration for QRA and IQRA. The large reduction in time is due to the fact that
kappa values are calculated for modified DT in all iterations.

2. Ability to find a better attribute set: As long as all the kappa gain in any
iteration is not zero then the results in IQRA and QRA are same except for time
gain in IQRA over QRA. In case the kappa gain is zero in any iteration for all
alternatives the IQRA will search for the best candidate to be included in Minimal
set using an iterative procedure using VPRS heuristic. In many experiments it is
found that this happens most of the time in first iteration itself. For example for the
data set Mofn, in the first iteration kappas are zero for all the conditional attributes.
The QRA without any heuristics will include the first attribute in the Minimal set
and continue with the remaining iterations. Hence the minimal set found in this
algorithm turned out to be [1 23 7 59 11] of size 7. IQRA using VPRS heuristic
selects 7 as the attribute to be included in R and in turned out that the minimal set
is [79 135 11] of size 6. Figure 3 illustrates the use of VPRS heuristic in Mofn
dataset by giving the kappa values obtained by completing iteration for both QRA
and IQRA. In the first iteration for both QRA and IQRA kappa is zero. But
because of the choice taken in IQRA there is a positive kappa occurring by third
iteration in IQRA. But QRA needed to complete four iterations to get a positive
kappa. This helped in IQRA in reaching the required kappa of ‘1’ by 6 iterations
and QRA needed to take 7 iterations. Even though extra calculations are incurred
for VPRS heuristic calculations in IQRA, the reduction in data set size in iterations
compensates that and there is a significant time gain of 40.5% in IQRA compared
to QRA. Using RSES [16] tool on Mofn dataset we calculated the reducts for Mofn
and Mofn data set has only a single reduct [1 3 5 7 9 11], which is obtained by
IQuickReduct algorithm. As the result of QRA is a super set of IQRA result, the
set obtained in QRA is a super reduct.

It is proposed to adopt apt heuristics for the ambiguity in the selection of the attribute
which may be persistent in IQRA even reaching the lower limit of = 0.5.
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Abstract. In this paper, we deal with the problem of attribute selec-
tion from a sample of partially uncertain data. The uncertainty exists in
decision attributes and is represented by the Transferable Belief Model
(TBM), one interpretation of the belief function theory. To solve this
problem, we propose dynamic reduct for attribute selection to extract
more relevant and stable features for classification. The reduction of the
uncertain decision table using this approach yields simplified and more
significant belief decision rules for unseen objects.

Keywords: Rough sets, belief function theory, uncertainty, dynamic
reduct.

1 Introduction

Feature selection is an important pre-processing stage in machine learning.
Rough set theory provides an attractive mechanism for feature selection [GIGIS].
The simplest approach is based on the calculation of reduct. Another issue in
real world applications is the uncertain, imprecise or incomplete data. Many
researches have adapted rough sets to such an uncertain environment. These
extensions do not deal with partially uncertain decision attribute values. In this
paper, we deal with the problem of attribute selection from partially uncertain
data based on rough sets. The uncertainty exists in decision attributes and is
represented by the Transferable Belief Model (TBM), one interpretation of the
belief function theory. However, computing reducts from uncertain and noisy
data make the results unstable, and sensitive to the sample data. All of these
limit the application of rough set theory. Dynamic reducts [I] can lead to better
performance in very large datasets, and also provide the ability to accommodate
noisy data. The rules calculated by means of dynamic reducts are better pre-
disposed to classify unseen cases, because these reducts are in some sense the
most stable reducts, and they appear most frequently in sub-decision systems
created by random samples of a given decision system. This paper is organized
as follows: Section 2 provides an overview of the rough set theory. Section 3
introduces the belief function theory as understood in the TBM. In Section 4,
we propose a new approach to feature selection based on dynamic reducts from
partially uncertain data.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 160-{167| 2009.
© Springer-Verlag Berlin Heidelberg 2009
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2 Rough Sets

The idea of rough sets was introduced by Pawlak [6] to deal with imprecise and
vague concepts. Here, we introduce only the basic notations. A decision table is
an information system of the form A = (U, C U {d}), where d ¢ C is a distin-
guished attribute called decision. The value set of d is called © ={d, da, ...ds}.
In this paper, the notation ¢;(0;) is used to represent the value of a condition
attribute ¢; € C for an object o; € U. Similarly, the notation d(o;) represents
the value of the decision attribute d for an object o;. The rough sets adopt the
concept of indiscernibility relation [6] to partition the object set U into disjoint
subsets, denoted by U/B or INDpg. The partition that includes o; is denoted
[0j]-

INDp = U/B = {oj]lo; € U} (1)

Where
[ojlp = {0i|Vc € Bc(oi) = c(o)} (2)

The equivalence classes based on the decision attribute are denoted by U/{d}.
INDyqy = U/{d} = {lo;l{a|o; € U} (3)

Let B C C' and X C U. We can approximate X using only the information
contained in B by constructing the B — lower and B — upper approximations
of X, denoted B(X) and B(X), respectively, where

B(X) = {ojlloj]p € X} and B(X) = {ojl[oj]l5 N X # 0} (4)

The objects in B(X') can be classified with certainty as members of X on the basis
of knowledge in B, while the objects in B(X) can be only classified as possible
members of X on the basis of knowledge in B. Posc({d}), called a positive
region of the partition U/{d} with respect to C, is the set of all elements of U
that can be uniquely classified to blocks of the partition U/{d}.

Posc({d}) = |J C(X) (5)

XeU/{d}

A reduct is a minimal subset of attributes from C that preserves the positive
region and the ability to perform classifications as the entire attributes set C. A
subset B C C'is a reduct of C with respect to d, iff B is minimal and:

Posp({d}) = Posc({d}) (6)

The core is the most important subset of attributes, it is included in every reduct.
Core(A, d) = RED(A, d) (7)

Where RED(A,d) is the set of all reducts of A relative to d.
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If A= (U, CU{d}) is a decision table, then any system B = (U’, C U {d})
such that U’ C U is called a subtable of A. Let F' be a family of subtables of
A [1I.

R(A, F) = RED(A,d)n (| RED(B, d) (8)
BeF

Any element of DR(A, F) is called an F-dynamic reduct of A. From the def-
inition of dynamic reducts, it follows that a relative reduct of A is dynamic if
it is also a reduct of all subtables from a given family F. This notation can be
sometimes too restrictive so we apply a more general notion of dynamic reduct.
They are called (F, €)-dynamic reducts, where 1 > ¢ > 0. The set DR.(A4, F)
of all (F), £)-dynamic reducts is defined by

DR.(A, F) = {RGRED(A, d) - HBGF:REFT%ED(B’ D 5 1—5} 9)

3 Belief Function Theory

In this section, we briefly review the main concepts underlying the belief function
theory as interpreted in the Transferable Belief Model (TBM) [9/I0]. Let ©
be a finite set of elementary events to a given problem, called the frame of
discernment. All the subsets of © belong to the power set of @, denoted by 2°.
The impact of a piece of evidence on the subsets of the frame of discernment
O is represented by a basic belief assignment (bba). The bba is a function m :
© —[0,1] such that:
> m(E)=1 (10)

ECO

The value m(E), called a basic belief mass (bbm), represents the portion of
belief committed exactly to the event E. The bba’s induced from distinct pieces
of evidence are combined by the rule of combination [I1].

(m1@m2)(E) = > mi (F) x ma(G) (11)

F,GCO:FNG=E

In the TBM, beliefs to make decisions can be represented by probability functions
called the pignistic probabilities denoted BetP and are defined as [10]:

BetP({a}) = I%:@ | {CT}FQF | 1 T(vf()@)) ,forall a€® (12)

4 Dynamic Reduct under Uncertainty

Our decision system is characterized by high level of uncertain and noisy data.
One of the issues with such a data is that the resulting reducts are not stable, and
are sensitive to sampling. The belief decision rules generated are not suitable for
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classification. The solution to this problem is to redefine the concept of dynamic
reduct in the new context as we have done in this paper. The rules calculated
by means of dynamic reducts are better predisposed to classify unseen objects,
because they are the most frequently appearing reducts in sub-decision systems
created by random samples of a given decision system. In this section, we will
adapt the basic concepts of rough sets such as decision system, indiscernibility
relation, set approximation and positive region in order to redefine the concept
of dynamic reduct in the uncertain context. The objective is to extract more
stable reducts from the uncertain decision system.

4.1 Basic Concepts of Rough Sets under Uncertainty

Uncertain Decision System. Our uncertain decision system is given by A =
(U,C U {ud}), where U = {o; : 1 < j < n} is characterized by a set of certain
condition attributes C={c1, ca,...,cx}, and an uncertain decision attribute ud.
We represent the uncertainty of each object o; by a bba m; expressing beliefs on
decisions defined on the frame of discernment ©={udy, uds,...,uds} representing
the possible values of ud. These bba’s are given by an expert.

Example. Let us use Table [ to describe our uncertain decision system. It con-
tains eight objects, three certain condition attributes C={a, b, ¢} and an uncertain
decision attribute ud = e with two possible values {e1, es} representing .

Table 1. Uncertain decision table

U a b c e

01 O O 0 m1({e1}) = 0.95 ml({EQ}) = 0.05
02 0 1 1 mz({ez}) =1

03 0 0 2 77’L3({61}) =0.5 77’L3(@) =0.5
o4 1 0 2 ma({e2}) = 0.6 m4(O) =0.4
05 1 0 2 m5({€2}) =1

O¢ 0 1 1 mb({EQ}) =0.9 me({@}) =0.1
or 1 0 0 mr({e1}) =1

(0] 1 0 1 mg({el}) =0.9 mg({@}) =0.1

For the object o3, 0.5 of beliefs are exactly committed to the decision ey,
whereas 0.5 of beliefs is assigned to the whole of frame of discernment © (ig-
norance). With bba, we can represent the certain case, like for the objects oo,
o5 and o7. Besides, we can represent probability case, like the bba relative to
the object 01 and possiblitic case like the consonant bba relative to the object
03. The decision rules induced from the partially uncertain decision system are
denoted belief decision rules where the decision is represented by a bba: If a=0
and b=0 and ¢=2 Then ms({e1}) = 0.5 m3(O) = 0.5.

Indiscernibility Relation. For the condition attributes, the indiscernibility
relation U/C' is the same as in the certain case because their values are certain.
However, the indiscernibility relation for the decision attribute U/{ud} is not the
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same as in the certain case. The decision value is represented by a bba. So, we
need to assign each object to the right equivalence class. The idea is to use the
distance between two bba’s. Many distance measures between two bba’s were
developed [2I314]. We will choose the distance measure described in [2] which
satisfies properties such as non-negativity, non-degeneracy and symmetry.

For every ud;, an uncertain decision value, we define:

INDyyay = U/{ud} = {X;|ud; € O} (14)
Where dist is a distance measure between two bba’s.

dist(ma,ms) = \/2(|| my |2 [ mg” |2 =2 < my7my” >) (15)

Where < mi”,m5 > is the scalar product defined by:

12912V AN A
<mi,my >= szl(A,»)mz(Aj)Ml UA?‘ (16)
i=1 j=1 v J
with A;, A; € 29 for i,j = 1,2,---,|29|. || m7” ||? is then the square norm of

my .
Example. Let us continue with the same example to compute the equivalence
classes based on condition attributes in the same manner as in the certain case:
U/C= {{o1},{02,06}, {03}, {04,05}, {07}, {os}} and to compute the equivalence
classes based on uncertain decision attribute U/{ud} as follows:

For the uncertain decision value ud; = eq,

dist(m(e1) =1,mq) # 1
dist(m(er1) = 1,meq) =

dist(m(e;) = 1,mg3) # 1
dist(m(e1) = 1,my) #1
dist(m(e1) = 1,ms) # 1
dist(m(e1) = 1,mg) # 1
dist(m(e1) = 1,m7) #1
dist(m(er) = 1,mg) # 1.

So, X1 ={o1, 03, 04, 05, 06, 07, 08}.
For the uncertain decision value uds = es,

dist(m(ex) =1,mq) # 1
dist(m(ex) = 1,maq) # 1
dist(m(ex) = 1,mg3) # 1
dist(m(es) = 1,my) # 1
dist(m(es) = 1,ms) # 1
dist(m(es) = 1,mg) # 1
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dist(m(ex) =1,m7) =1
dist(m(es) = 1,mg) # 1.

So, X2 ={01, 02, 03, 04, 05, 06, 08}
U/{ud}={{o1, 03, 04, 05, 06, 07, 08}, {01, 02, 03, 04, 05, 06, 08} }.

Set Approximation. To compute the new lower and upper approximations
for our uncertain decision table, we follow two steps:

1. For each equivalence class from U/C based on condition attributes C, com-
bine their bba using the operator mean. The operator mean is more suitable
in our case to combine these bba’s than the rule of combination in eq. 11
which is proposed especially to combine different beliefs on decision for one
object and not different beliefs for different objects.

. For each equivalence class X; from U/{ud} based on uncertain decision at-
tribute ud;, we compute the new lower and upper approximations, as follows:

CX; = {ojllojlc N Xi # Dand dist(m(ud;) = 1,m[,,).) < threshold} (17)

In the lower approximation, we find all equivalence classes (subsets) from
U/C included in X; such that the distance between the combined bba m, ).
and the certain bba m(ud;) = 1 is less than a threshold. (In an uncertain
context, the threshold is needed to give more flexibility to the set approx-
imations). We compute the upper approximation in the same manner as in
the certain case.

CX; ={ojllojlc N Xi # 0} (18)

Example. We continue with the same example to compute the new lower and
upper approximations. After the first step, we obtain the combined bba for
each equivalence class from U/C using operator mean. Table [ represents the
combined bba for the equivalence classes {02, 06} and {o4, 05}.

Table 2. The combined bba for the subsets {02, 06} and {04, 05}

Object m({e1}) m({ez}) m(©)
1

02 0 0
06 0 0.9 0.1
ma.6 0 0.95 0.05
04 0 0.4 0.6
05 0 1 0
ma,s5 0 0.7 0.3

Next, we compute the lower and upper approximations for each equivalence

class U/{ud}. We will use threshold = 0.1.

For the uncertain decision value ud;=ey, let X; ={o1, 03, 04, 05, 0g, 07, 0s}.

The subsets {01}, {03}, {04, 05}, {07} and {0} are included in X;. We should
check the distance between their bba and the certain bba m(e;) = 1.
dist(m(e1) = 1,m1) < 0.1

dist(m(e1) = 1,ms) > 0.1
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dist(m(e1) = 1,ma5) > 0.1

dist(m(e;) = 1,m7) < 0.1

dist(m(e;) = 1,mg) < 0.1

CXlz{Ol, o7, 08} and CXlz{Oh 03, 04, O5, O7, Og}

For uncertain decision value uds=es, let Xo ={01, 02, 03, 04, 05, 06, 0s}.
CXy={02, 06} and CXo={02, 03, 04, 05, 06}

Positive Region. With the new lower approximation, we can redefine the
positive region:
UPosc({ud}) = ) CX; (19)
X, eU/{ud}
Example: Let us continue with the same example, to compute the positive
region of A. UPosc({ud})={o01, 02, 06, 07, 08}

Reduct and Core. Using the new formalism of positive region, we can redefine
the reduct of A as a minimal set of attributes B C C such that:

UPosp({ud}) = UPosc({ud}) (20)

UCore(A, ud) = (| URED(A, ud) (21)
Where URED(A, ud) is the set of all reducts of A relative to ud.

Example. Using our example, we find that U Posy, .y ({ud})= U Posg oy ({ud})
= UPosc({ud}). So, we have two possible reducts {a,c} and {b,c}. The attribute
c is the relative core.

4.2 Dynamic Reduct from Uncertain Data

Using the new definition of reduct in our uncertain context, we can redefine the
concept of dynamic reduct as follows:

UDR(A, F) = URED(A,ud)n () URED(B, ud) (22)
BeF

Where F' be a family of subtables of A. This notation can be sometimes too
restrictive so we apply a more general notion of dynamic reduct. They are called
(F, €)-dynamic reducts, where 1 > ¢ > 0. The set UDR.(A, F) of all (F, ¢)-
dynamic reducts is defined by:

|{B € F:Re RED(B, ud)}|

UDR.(A, F)= {R € URED(A, ud) : 7] >1-—¢

(23)
Example. To compute the dynamic reduct of the uncertain decision system A.
We divide our uncertain decision system into two subtables B and B’ to obtain
a family F of sub-decision system. B contains the objects o1, 02, 03, 04 and B’
contains the objects o5, 0g, 07, 0. The two subtables have the same reducts
as the whole decision system A. So, the subsets {a,c} and {b,c} are dynamic
reducts relative to the chosen family F'.
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Conclusion and Future Work

In this paper, we have adapted the basic concepts of rough sets such as decision
system, indiscernibility relation, set approximation and reduct in an uncertain
context. We handle uncertainty in decision attributes using the belief function
theory. We further propose dynamic reduct to address the problem of unstable
reducts in uncertain decision systems. As a future work, we will experiment with
many uncertain databases to evaluate the proposed feature selection based on
dynamic reducts.
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Abstract. We discuss the notion of risk in generally understood clas-
sification support systems. We consider the situation when granularity
is involved in information system we work with. We propose a method
for approximating the loss function and introduce a technique for assess-
ing the empirical risk from experimental data. We discuss the general
methodology and possible directions of development in the area of con-
structing compound classification schemes.

1 Introduction

While constructing a decision support (classification) system for research pur-
poses we usually rely on commonly used, convenient quality measures, such as
success ratio (accuracy) on test set, coverage (support) and versatility of the
classifier. While sufficient for the purposes of analysing classification methods
in terms of their technical abilities, these measures sometimes fail to fit into a
bigger picture.

In practical applications the classifier is usually just an element in a larger
system. The decision whether to construct and then use such system is taken by
the user on the of his/her assessment of the risk involved in making the decision.

The overall topics of risk assessment, risk management and decision making in
presence of risk constitute a separate field of science. Numerous approaches have
been developed so far in many areas of life, and vast literature dedicated to these
issues exist (see [I], [2]). In this article we restrict ourselves to a much narrower
topic of calculating (assessing) the risk associated with the use of classifier in a
decision-making process.

We focus on one commonly used method for calculating a risk of (using) a
classifier, which is known from the basics of statistical learning theory [3]. In this
approach the risk is measured as a summarised expectation for creating a loss
due to classifier error. It is quite common to make assessment of the involved
risk by hypothesising the situations in which the gain/loss can be generated in
our system, and then weighting them by the likelihood of their occurrence.
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the Ministry of Science and Higher Education of the Republic of Poland.
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We investigate the possibilities for approximating the risk in the situation
when the standard numerical, statistical learning methods cannot be applied to
full extent. The real life data is not always possible to be verified as represen-
tative, large enough or sufficiently compliant with assumptions of underlying
analytical model. Also, the information we posses about the amount of loss and
its probabilistic distribution may be expressed in granular rather than crisp,
numerical way.

The idea of granular systems and granular computing builds on general ob-
servation, that in many real-life situations we are unable to precisely discern be-
tween similar objects. Our perception of such universe is granular, which means,
that we are only able to observe groups of objects with limited resolution.

The existence of granularity and the necessity of dealing with it has led to
formation of the granular computing paradigm and research on granule-based
information systems (cf. [4]). The original ideas of Lotfi Zadeh (cf. [5]) has grown
over time. Currently the granular computing and the notion of granularity are
becoming a unifying methodologies for many branches of soft computing. Several
paradigms related to rough and fuzzy sets, interval analysis, shadowed sets as
well as probabilistic reasoning can be represented within granular framework, as
exemplified by the contents of the handbook [4].

In the paper put forward some ideas regarding the approximate construc-
tion of two crucial components in measuring risk, i.e., the loss function and
the summarisation method needed to estimate overall risk from the empirical,
sample-dependant one. Our focus is on systems that support classification and
decision making in the presence of vagueness, imprecision and incompleteness of
information. In this paper we only address a small portion of such systems and
the granules we are using are of rather basic type. We mostly address the case
when a granule corresponds to an abstraction (indescernibility) class or a simple
fuzzy set, without caring of its internal structure.

The paper starts with more formal introduction of risk functional, as known
from statistical learning theory. Then, we discuss the possible sources of problems
with such risk definition and suggest some directions, in particular an outline
for a loss function approximation method. We also extend the discussion to the
issue of finding the proper summarisation procedure for measuring the value of
empirical risk functional. We introduce a sketch for the methods of risk calcu-
lation in case of granular systems defined using rough and fuzzy sets, which by
no means represent the whole spectrum of granular systems. We conclude by
pointing out several possible directions for further investigation.

2 Risk in Statistical Learning Theory

In the classical statistical learning approach, represented by seminal works of
Vapnik [3l6], the risk associated with a classification method (classifier) « is
defined as a functional (integral) of the loss function L, calculated over an
entire space with respect to probability distribution.
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Formally, let X be the complete (hypothetical) universe of objects and X C
X - a finite sampleEl In this analytical model we assume that probability
distribution P is defined for entire o-field of measurable subsets of X°°.

Definition 1. The risk value for a classifier « is defined as:
Rla) = / L.dP

where Lo, = L(x, fo(x)) is the real-valued loss function defined for every point
x € X where the classifier o returns the value fo(x).

The classical definition of risk, as presented above, is heavily dependent on assump-
tions regarding the underlying analytical model of the space of discourse. While
over the years several methods have been developed within the area of statistical
learning in pursuit of practical means for calculating risk, there are still some im-
portant shortcomings in this approach. In particular, one has to deal with sensi-
tivity to scarceness of the data sample, incomplete definition of loss function, and
incomplete knowledge of the distribution. Even with large data sample X we may
not be certain about its representativeness. The advantage of this model is that,
thanks to solid mathematical grounding, it is possible to provide answers with prov-
able quality, as long as we can assure sufficient compliance with assumptions.

In practice, the empirical risk is usually measured as an average of loss function

on finite sample. For a labelled sample z = {x1,...,2;} of length [
1
i—1 L(wi, folz:
Remp(a) = 2ie1 <xl fal@ ))

It is visible, that the ability to calculate value of loss L., i.e., to compare the
answer of classifier with the desired one is a key element in risk calculation.

3 Approximation of Loss Function and Its Integral

The formal postulates regarding the loss function may be hard to meet, or even
verify in practical situations. Nevertheless, we would like to be able to asses the
loss. In this section we suggest a method for approximating the loss function
from the available, finite sample.

First, we will attempt to deal with the situation when the value of loss function
L, for a classifier « is given as a set of positive real values defined for data points
from a finite sample z. Let z € (X°°)! be a sample consisting of [ data points, by
R we denote the set of non-negative reals (including 0). A function Ly, : z — R,
is called a sample of loss function L, : X — R, if L, is an extension of Ly,.
For any Z C X*° x Ry we introduce two projection sets:

m(Z)={xe X>: JyeRy (z,y) € Z},
m(Z)={y € Ry : Jz € X (x,y) € Z}.

! Please, note that the hypothetical universe X°° shall not be confused with the de-
notation for the set of infinite sequences from the set X, that can be found in some
mathematical textbooks.
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3.1 The Rough Set Case

We assume that we are also given a family C of neighbourhoods (granules),
i.e, non-empty, measurable subsets of X x R . These neighbourhoods shall
be defined for a particular application. In this section we will identify these
neighbourhoods with granules defined as indiscernibility classes.

Under the assumptions presented above the lower approximation of Le rela-
tive to C is defined by

CLo = | J{c € C: La(m(c) Nz) € ma(c)} (1)

Note, that the definition of lower approximation given by () is different from
the traditional one, known from rough set theory [7l§]. Also, the sample z in
definition of approximations (formulse (I),(2), and [@))) is treated as a set of its
elements, i.e., a subset of (X ).

One can define the upper approximation of L, relative to C by

CLo = | J{c € C: La(m(c) Nz) Nma(c) # 0} (2)

For the moment we have defined the approximation of loss function as a pair of
sets created from the elements of neighbourhood family C. From this approxi-
mation we would like to obtain an estimation of risk. For that purpose we need
to define summarisation (integration) method analogous to Def. [l We define
an integration functional based on the idea of probabilistic version of Lebesgue-
Stieltjes integral [3[9].

In order to define our integral we need to make some additional assumptions.
For the universe X°° we assume that m is a measure on a Borel o-field of
subsets of X > and that m(X°) < co. By my we denote a measure on a o-field
of subsets of R;. We will also assume that C is a family of non-empty subsets
of X x R, that are measurable relative to the product measure m = m x my.
Finally, we assume that the value of loss function is bounded by some positive
real B. Please, note that none of the above assumptions is unrealistic, and that
in practical applications we are dealing with finite universes.

For the upper bound B we split the range [0, B] C Ry into n > 0 intervals
of equal length Iy, ..., I,, where I; = [(ifi)]a “B]_This is a simplification of the
most general definition, where the intervals do not have to be equal. For every
interval I; we consider the sub-family C; C C of neighbourhoods such that:

C; = {c cCvoe(znm(e) Pa@) > _nl)B}. 3)

With the previous notation the estimate for empirical risk is given by:

Rempla) =3 D (U m(c)> (1)

i=1 ceC;

In theoretical setting for the formula () above we shall derive its limit as n — oo,
but in practical situation the parameter n does not have to go to infinity. It is
sufficient to find n such that for every pair of points x1 # x5 taken from sample z
if Lo(21) < Lo(x2) then for some integer i < n we have Lo (z1) < B Lo(xs).
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3.2 The Fuzzy Set Case

If we consider another type of neighbourhoods, one defined with use of fuzzy
sets, we will find ourselves in slightly different position. In fact, we may use
fuzzy granules (neighbourhoods) in two ways:

1. We can define the family of neighbourhoods C as a family of fuzzy sets in
X x Ry. This approach leads to more general idea of function approxima-
tion in fuzzy granular environment.

2. We restrict fuzziness to the domain of the loss function, i.e., X°°. The values
of L,(.) remain crisp. That means that we have real-valued loss function that
has a set of fuzzy membership values associated with each argument.

While the former case is more general and could lead to nicer, more universal
definitions of approximation (see, e.g., [I0]), it is at the same time less intuitive
if we want to discuss risk measures. For that reason we restrict ourselves to the
latter case. The family of neighbourhoods C is now defined in such a way that
each ¢ € C is a product of fuzzy set in X and a subset of R;. The family C
directly corresponds to family of fuzzy membership functions (fuzzy sets) C,.
Each ¢ € C is associated with a fuzzy membership function p. : X — [0,1]
corresponding to the fuzzy projection of ¢ onto X°°. Please note that at the
moment we assume nothing about the intersections of elements of C but, we
assume that the family C is finite.

Again, we start with a finite sample of points in the graph of loss function Ly :
z +— Ry for data points from a finite sample z. We will attempt to approximate
Lq by extending its finite sample L. For ¢ € C we now introduce parameterised
projections. For 0 < A < 1, we have:

mi(e, ) ={x e X*°: Jye Ry ((z,y) € ¢ A pe(x) > N},

mo(c,\) ={y € Ry : Tz € X ((z,y) € c A pc(z) > \)}.

The parameter X is used to establish a cut-off value for membership. The inten-
tion behind introduction of this parameter is that in some circumstances we may
want to consider only those neigbourhoods which have sufficient level of confi-
dence (sufficiently high membership). In terms of risk approximation, we would
like to consider only these situations for which the argument of loss function
is sufficiently certain. Naturally, we can make projections maximally general by
putting A = 0. The result of using projection (¢, A) is similar to taking an
alpha-cut known from general fuzzy set theory (see [11]).

With previous notation and under previous assumptions we now introduce an
approximation of L, w.r.t. the family of neighourhoods C and a threshold .

Cilo =|J{c€C: La(m(c.N) Nz) C ma(c, \)} (5)

It is important to notice, that while projections 71 (¢, A) and 72 (c, \) are classical
(crisp) sets, the resulting approximation Cy L,, is of the same type as the original
sample, i.e., it is a union of neigbourhoods (granules) which are products of fuzzy
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set in X*>° and a subset of R . Please also note that the union operator used in
@) is working dimension-wise, and that the resulting set C A[A/a does not have to
be a granule (neighbourhood), as we do not assume that this union operator is
a granule aggregation (fusion) operator.

With all the previously introduced notation, the empirical risk functional is
introduced by first defining the building blocks (strata, neighbourhoods) as:

cﬁ:{cec;vme(zmm(c,x)) Lo(z) > “‘”B}. (6)

n

That leads to the estimate for empirical risk functional:

n
Rongle) =3 0 | U mife. ) 7)
i=1 ceca

The formulee above, just as in the case of rough set risk estimates, are valid only
if some assumptions can be made about the family of neighbourhoods C. Again,
the assumptions that have to be met are rather reasonable, and quite possible to
met if we are dealing with finite sample z and a finite family of neighbourhoods
C. We have to assure that elements of C are measurable w.r.t m = m X myq - the
product measure on X x R,.

As one can see, the risk estimator () is parameterised by the confidence level
A. In fact the selection of proper value of A in all steps of risk assessment in the
fuzzy context is a crucial step. Depending on value of A we may get (radically)
different outcomes. This intuitively corresponds to the fact that we can get
different overview of the situation depending on how specific or how general we
want to be.

The notions of function approximations and risk functional that we have in-
troduced are heavily dependent on the data sample z and decomposition of our
domain into family of neighbourhoods C. It is not yet visible, how the ideas
we present may help in construction of better decision support (classification)
systems. In the following section we discuss these matters in some detail.

4 Classifiers, Neighbourhoods and Granulation

Insofar we have introduced the approximation of loss and the measure of risk.
To show the potential use of these entities, we intend to investigate the process
of creation and evaluation (scoring) of classifier-driven decision support systems.

The crucial component in all our definitions is the family of non-empty sets
(neighbourhoods) C. This family represents the granular nature of the universe
of discourse. We have to know this family before we can approximate loss or esti-
mate empirical risk. In practical situations the family of neighbourhoods have to
be constructed in close correlation with classifier construction. It is quite com-
mon, especially for rough sets approaches, to define these sets constructively by
semantics of some formulas. An example of such formula could be the condi-
tional part of decision rule or a template (in the sense of [T2/T3]). In case of
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fuzzy granules the neighbourhoods may be provided arbitrarily or imposed by
the necessity to instantiate a set of linguistic rules (a knowledge base).

Usually the construction of proper neighbourhoods is a complicated search and
optimisation task. The notions of approximation and empirical risk that we have
introduced may be used to express requirements for this search /optimisation. For
the purpose of making valid, low-risk decision by means of classifier o we would
expect the family C to possess the following qualities:

1. Precision. In order to have really meaningful assessment of risk as well as
good idea about the loss function we would like the elements of neighbour-
hood family to to be relatively large in terms of universe X*°, but at the
same time having possibly low variation.

2. Relevance. This requirement is closely connected withe previous one (preci-
sion). While attempting to precisely dissect the domain into neighbourhoods
we have to keep under control the relative quality (relevance) of neighbour-
hoods with respect to the data sample z. We are only interested in the
neighbourhoods that contain sufficient number of elements of z.

3. Coverage and adaptability. One of the motivations that steer the process of
creating the family of neighbourhoods and the classifier is the expectation
regarding its ability to generalise and adapt the solution established on the
basis of finite sample to a possibly large portion of the data domain.

As discussed in points 1-3 above, the task of finding a family of neighbourhoods
can be viewed as a multi-dimensional optimisation on meta-level. It is in par
with the kind of procedure that has to be employed in construction of systems
based on the granular computing paradigm [4T3].

Yet another is that so far we have followed the assumption made at the begin-
ning of Section 2l that the values of loss function are given as non-negative real
numbers. In real application we may face the situation when the value of loss is
given to us in less precise form. One such example is the loss function expressed
in relative, qualitative terms. If the value of loss is given to us by the human
expert, he/she may be unable to present us with precise, numerical values. We
may then be confronted with situation when the loss is expressed in qualitative
terms such as “big”,“negligible”, “prohibitive”,“acceptable”. Such imprecise de-
scription of the loss function may in turn force us to introduce another training
loop into our system, one that will learn how to convert the imprecise notions
we have into concrete, numerical values of loss function.

5 Conclusion

In this paper we have discussed the issues that accompany the assessment of
risk in classification systems on the basis of the finite set of examples. We have
pointed out some sources of possible problems and outlined some directions, in
which we may search for solutions that match our expectations sufficiently well.

In conclusion, we would like to go back to the more general issue of weighting
the risk involved in computer-supported decision making. As we have mentioned
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in the introduction to this paper, in the real-life situations the human user may
display various patterns in his/her risk assessment and aversion.

It is rather unrealistic to expect that it would be possible to devise and explic-

itly formulate a model, that sufficiently supports extensibility as well as adapt-
ability, and at the same time compliant with human perception and applicable
in many different situations. It is much more likely that in practical situation we
may need to learn (or estimate) not only the parameters, but the general laws
governing its dynamics, at the same time attempting preserve its flexibility and
ability to adapt to new cases.
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Abstract. Gene selection, a key procedure of the discriminant analy-
sis of microarray data, is to select the most informative genes from the
whole gene set. Rough set theory is a mathematical tool for further re-
ducing redundancy. One limitation of rough set theory is the lack of
effective methods for processing real-valued data. However, most of gene
expression data sets are continuous. Discretization methods can result in
information loss. This paper investigates an approach combining feature
ranking together with feature selection based on tolerance rough set the-
ory. Compared with gene selection algorithm based on rough set theory,
the proposed method is more effective for selecting high discriminative
genes in cancer classification task.

Keywords: Microarray data, gene selection, feature ranking, tolerance
rough set theory, cancer classification.

1 Introduction

DNA microarray is a technology to measure the expression levels of thousands of
genes, which is quite suitable for comparing the gene expression levels in tissues
under different conditions, such as healthy versus diseased.

Discriminant analysis of microarray data has been widely studied to assist
diagnosis. Because lots of genes in the original gene set are irrelevant or even
redundant for specific discriminant problem, gene selection is usually introduced
to preprocess the original gene set for further analysis.

There are two basic categories of feature selection algorithms, namely filter
and wrapper models. Filter methods select feature subsets independently of any
learning algorithm and rely on various measures of the general characteristics
of the training data. Some statistical tests (t-test, F-test) have been shown to
be effective. The idea of these methods is that features are ranked and the top
ones or those that satisfy a certain criterion are selected. Wrapper methods use
the predictive accuracy of a predetermined learning algorithm to determine the
goodness of the selected subsets and are computationally expensive.

* Corresponding author.
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Features using existing feature selection such as filter and wrapper have redun-
dancy because genes have similar scores in similar pathways. Rough set theory
can be used to eliminate such redundancy. Rough set theory [1-6], proposed by
Pawlak in 1982, is widely applied in many fields of data mining such as classifica-
tion and feature selection. However, traditional rough set theory-based methods
are restricted to the requirement that all data must be discrete. Existing meth-
ods [7] are to discretize the data sets and replace original data values with crisp
values. This is often inadequate, as degrees of objects to the descretized values
are not considered. Discretization ignores their discrimination. This may cause
information loss. A better choice to solve the problem may be the use of tolerance
rough set theory.

This paper presents a gene selection method based on tolerance rough set the-
ory. By using tolerance relations, the strict requirement of complete equivalence
can be relaxed, and a more flexible approach to subset selection can be developed.
The proposed method is comprised two steps. In step 1, we rank all genes with
the t-test and select the most promising genes. In step 2, we apply tolerance rough
set theory-based method to the selected genes in step 1. The experimental results
demonstrate that the proposed algorithm is more effective than gene selection ap-
proach based on rough set theory for achieving good classification performance.

2 Preliminaries

2.1 Rough Set Theory

There is a classificatory feature in gene expression data sets. We can formalize
the gene expression data set into a decision system.

Definition 1. Decision table.

A decision table is defined as T' = (U,C U D, V, f), where U is a non-empty
finite set of objects; C' is a set of all condition features (also called conditional
attributes) and D is a set of decision features (also called decision attributes);
V = Usecup Va, Va is a set of feature values of feature a; and f : Ux (CUD) —
V' is an information function for every z € U, a € C'U D.

For any B C C' U D, an equivalence (indiscernibility) relation induced by B
on U is defined as Definition 2.

Definition 2. Equivalence relation.
IND (B) ={(z,y) e U xU|Vbe B,b(z)=b(y)}. (1)
The family of all equivalence classes of IND (B), i.e., the partition induced by
B, is given in Definition 3.
Definition 3. Partition.
U/IND (B) ={[z]p |z € U}, (2)

where [z], is the equivalence class containing x. All the elements in [z], are
equivalent (indiscernible) with respect to B. Equivalence classes are elementary
sets in rough set theory.
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For any X C U and B C C, X could be approximated by the lower and upper
approximations.

Definition 4. Lower approximation and upper approximation.
BX = {z|[z]z C X}, (3)

BX = {z|[z]zNn X # 0}. (4)

Let B C C, the positive region of the partition U/IND (D) with respect to B
is defined as Definition 5.

Definition 5. Positive region.
POSg (D) = Uxcu/inpp)BX, (5)

and it is the set of all samples that can be certainly classified as belonging to
blocks of U/IND (D) using B.

By employing the definition of the positive region it is possible to calculate
the rough set degree of dependency of a set of features D on B.

Definition 6. Degree of dependency of feature.

18 (D) = |[POSp (D)|/|U]. (6)

2.2 T-Test

Feature subset selection is an important step to narrowing down the feature
number prior to data mining. We assume that there are two classes of samples
in a gene expression data set.

Definition 7. T-test.
The t-value for gene a is expressed by:

H1 — K2 (7)
\/O’%/ﬂq-i-U%/NQ

where p; and o; are the mean and the standard deviation of the expression levels
of gene a for i =1, 2. When there are multiple classes of samples, the t-value is
typically computed for one class versus all the other classes. The top genes ranked
by t-value can be selected for data mining. Feature set so obtained has certain
redundancy because genes in similar pathways probably all have very similar
score. If several pathways involved in perturbation but one has main influence it
is possible to describe this pathway with fewer genes, therefore feature selection
based on rough set theory is used to minimize the feature set.

t(a) =

2.3 Gene Selection Algorithm Based on Rough Set Theory

Gene selection algorithm based on rough set theory for gene expression data
is composed of t-test and feature selection based on rough set theory. T-test
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is helpful for reducing dimensionality. The algorithm without the t-test prepro-
cessing will get worse performance. After feature ranking, top ranked n genes
are selected to form the feature set. The values of all continuous features are
discretized. Rough set theory-based feature selection method starts with the full
set and consecutively deletes one feature at a time until we obtain a reduction.

Algorithm 1. Gene selection algorithm based on rough set theory (GSRS)

(1) Calculate t-value of each gene, select top ranked n genes to form the
feature set C'

) Discretize the feature set C'

) Set P=C

) do

) for each a € P

) if vp_{a} (D) ==c (D)

) P=P—{a)

) until y(p_(ay) (D) < vc) (D)

(9) return P

(2
(3
(4
(5
(6
(7
(8
9

The loop continues to evaluate in the above manner by deleting conditional
features, until the dependency value of the current reduct is less than that of
the dataset.

3 Gene Selection Algorithm Based on Tolerance Rough
Set Theory

3.1 Similarity Measures

In this approach, suitable similarity measure, given in [2,3], is described in
Definition 8.

Definition 8. Similarity measure.

la (z) —a(y)]
Sy (x,y)=1— , 8
a( ’ ) |amax _amin‘ ( )
where a € CUD, and ayax and api, denote the maximum and minimum values
respectively for feature a. When considering more than one feature, the defined
similarities must be combined to provide a measure of the overall similarity of

objects. For a subset of features, B, the overall similarity measure is defined as
Definition 9.

Definition 9. Overall similarity measure.

Z Sﬂ <x7y)

(z,y) € Spiff*<" > 7

5 2T ©)

where 7 is a global similarity threshold; it determines the required level of simi-
larity for inclusion within tolerance classes. This framework allows for the specific
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case of traditional rough set theory by defining a suitable similarity measure and
threshold (7 =1). From this, for any B C C U D, 0 < 7 < 1, the so-called tol-
erance classes that are generated by a given similarity relation for an object are
defined as Definition 10.

Definition 10. Similarity relation.
Spr(x) ={y € U|(z,y) € Sp,r}- (10)

For any X CU , B C C and 0 < 7 < 1, lower and upper approximations are
then defined in a similar way to traditional rough set theory.

Definition 11. Modified lower approximation and upper approximation.
B:X ={z|Sg- () C X}, (11)

B.X = {z|Sp., (z) N X % 0}. (12)

The tuple <BTX , B X > is called a tolerance-based rough set. Based this, the
positive region and the dependency function can be defined as follows.
Let B C C and 0 < 7 < 1, the positive region is defined as Definition 12.

Definition 12. Modified positive region.
POSB - (D) =Uxev/sp.. B- X. (13)

For B C C and 0 < 7 < 1, the tolerance rough set degree of dependency is given
in Definition 13.

Definition 13. Modified degree of dependency of feature.
VB, (D) = [POSp,- (D) /|U]. (14)

From these definitions, a feature selection method can be formulated that uses
the tolerance-based degree of dependency, vp, - (D), to gauge the significance of
feature subsets.

3.2 Tolerance Rough Set Theory-Based Gene Selection Method

Gene selection algorithm based on tolerance rough set theory for gene expression
data combines feature ranking together with feature selection based on tolerance
rough set theory. Similarly, t-test can eliminate such redundant genes. T-test is
used to feature ranking as the first step and select top ranked n genes to form
the feature set. Tolerance rough set theory-based feature selection method can
judge every feature and delete the features that are superfluous.

Algorithm 2. Gene selection algorithm based on tolerance rough set theory
(GSTRS)

(1) Calculate t-value of each gene, select top ranked n genes to form the
feature set C'
(2) Set P=C
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(3) do

(4) for each a € P

(5) if vp—{ay,r (D) == 7vc,7 (D)
(6) P =P—{a}

(7) until ’VP—{a},T (D) < Ye,r (D)

(8) return P

The stopping criteria is automatically defined through the use of the dependency
measure when the deletion of further features does not result in a decrease in
dependency.

3.3 A Simple Example

To illustrate the operation of feature selection algorithm based on tolerance
rough set theory, it is applied to a simple example dataset in Table 1, which
contains three real-valued conditional features and a crisp-valued decision fea-
ture. Set 7 =0.8. C' = {a,b,c}. D = {d}.

Table 1. Example dataset

Objects a b c d
1 0.3 0.4 0.2 R
2 0.3 1 0.6 A
3 0.4 0.3 0.4 R
4 0.9 0.4 0.7 R
5 0.9 0.7 0.7 A
6 1 0.4 0.7 A

The following tolerance classes are generated:

U/Sp-={{1,3,4},{2,5,6}},
U/Ser={{1},{2}.{3}.{5} . {4,6}},

U/SC*{G}’T = U/S{bxc},ﬂ' = {{1} ) {2} ) {3} ) {5} ) {47 6}}a
U/Scf{b}ﬂ' - U/S{a,C},T = {{1} ) {2} ) {3} ) {5} ) {47 6}}a
U/SC*{C},T = U/S{a,b},r = {{L 3} ) {47 6} ) {2} ) {5}}7
U/SC—{ﬂvb}v"' = U/S{C},‘r = {{1} ) {2} ) {3} ) {47 9, 6}}7
U/SC—{ﬂvC}v"' = U/S{b},'r = {{17 3,4, 6} ) {2} ) {5}}7
U/SC,{Z,)C}’-,— = U/S{a},T = {{L 2, 3} ) {4’ 9, 6}}

Considering feature set , the lower approximations of the decision classes are
calculated as follows:

C;{1,3,4} = {a,b,c}, {1,3,4} = {2[S(apey,- () € {1,3,4}} = {1,3},
C;{2,5,6} = {a,b,c}, {2,5,6} = {2[S{apey,- (x) C{2,5,6}} = {2,5}.
Hence, the positive region can be constructed:

POSc - (D) =Uxeuysp, Cr X = C-{1,3,4} UC; {2,5,6} = {1,2,3,5}.
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The resulting degree of dependency is:

_ |1POSc(D)| _ {1,235} _ 4
Yo (D) = U — 1{1,2,3,4,5,6}| — 6"

For feature set C' — {a}, the corresponding dependency degree is:
_|POSc_(ay (D) (12,35} 4
Yo—{a},r (D) = |U| = {1,2,3,4,5,6}] — 67
Yo—{arr (D) = Ypep.r (D) = ¢, (D) = 2.

Feature a is deleted from feature set C. Similarly, the dependency degree of
feature set {b,c} — {b} is:
_ [POSpey - -D)| _ 23y s
Vibep—{v}r (D) = |U| = 11,2,3,4,5,6}| — 67

Ypet— oy (D) =3 <7er (D) = ¢.

Therefore, the algorithm terminates and outputs the reduct {b, c}.

4 Experiments

To evaluate the performance of the proposed algorithm, we applied it to two
benchmark gene expression data sets: Lymphoma data set (http://llmpp.nih.gov
/lymphoma) and Liver cancer data set (http://genome-www.stanford.edu/hcc/).
The Lymphoma data set is a collection of 96 samples. There are 42 B-cell and 54
Other type samples having 4026 genes. The Liver cancer data set is a collection
of gene expression measurements from 156 samples and 1648 genes. There are
82 cases of HCCs and 74 cases of nontumor livers.

GSRS and GSTRS are run on the two data sets. Firstly, t-test is employed as
a filter on Lymphoma and Liver cancer. The top ranked 50 largest t-test values
genes are selected. When there are missing values in data sets, these values are
filled with mean values for continuous features and majority values for nominal
features [8]. As two data sets are real-valued, for GSRS algorithm, discretization
of every feature of the two data sets is Equal Frequency per Interval [7]. For
GSTRS algorithm, set 7 =0.9. The reduction results are listed in Table 2.

Two factors need to be considered for comparing GSRS and GSTRS. One is
the number of selected genes. From Table 2, we can find that the number of
selected genes by GSRS is equal to the number of selected genes by GSTRS.

The other considered factor is classification accuracy of the selected genes of
two data sets. Two classifiers, C5.0 and KNN, are respectively adopted. As there
are a relatively small number of samples, leave-one-out accuracy is adopted. The
results are shown in Table 3.

Table 2. Reduction results

Data sets Genes Samples GSRS GSTRS

Lymphoma 4026 96 7 7
Liver cancer 1648 156 6 6
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Table 3. The classification accuracy of two data sets

Data sets Lymphoma Liver cancer
GSRS GSTRS GSRS GSTRS
KNN 93.5% 94.8% 89.6% 92.5%
C5.0 95.2% 97.4% 91.3% 94.3%

Experimental results show the selected genes by GSTRS have higher classifi-
cation accuracy than the selected genes by GSRS when we take KNN classifier.
While C5.0 classifier is adopted, the classification accuracy of selected genes
by GSTRS is highest of all. The reason may be that GSTRS can retain the
information hidden in the data.

5 Conclusions

In this paper, we address gene selection of tolerance rough set theory. By con-
structing an example, we show how the technique works. This paper extends the
research of traditional rough set theory and establishes one direction for seeking
an efficient algorithm for gene expression data. Our method is applied to the
gene selection of cancer classification. Experimental results show its validity.
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Foundation of P.R.China (no. 60475019, 60775036) and The Research Fund for
the Doctoral Program of Higher Education (no. 20060247039).
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Abstract. Social networking is becoming necessity of the current generation
due to its usefulness in searching the user’s interest related people around the
world, gathering information on different topics, and for many more purposes.
In social network, there is abundant information available on different domains
by means of variety of users but it is difficult to find the user preference based
information. Also it is very much possible that relevant information is available
in different forms at the end of other users connected in the same network. In
this paper, we are proposing a computationally efficient rough set based method
for ranking of the documents. The proposed method first expands the user query
using WordNet and domain Ontologies and then retrieves documents containing
relevant information. The distinctive point of the proposed algorithm is to give
more emphasis on the concept combination based on concept presence and its
position instead of term frequencies to retrieve relevant information. We have
experimented over a set of standard questions collected from TREC, Word-
book, WorldFactBook and retrieved documents using Google and our proposed
method. We observed significant improvement in the ranking of retrieved
documents.

Keywords: Rough sets, Document Ranking, Concept Extraction, and Social
Domain Networking.

1 Introduction

Today, the WorldWideWeb is growing very fast. Recently published article [1] says
that the number of web pages on the internet increased tremendously and crossed 1
trillion counts in 2008 which was only 200 billion in 2006 [18]. With the growth of
the WorldWideWeb based applications, an advanced Web 2.0 framework was intro-
duced for a variety of applications such as blogging, online gaming, social network-
ing, knowledge sharing, chat rooms etc. Social networking is related to almost every
domain from general to specific domains. [17] discusses about more than 150 popular
social networking websites on a variety of topics. The famous social networking
websites such as Orkut [10], Facebook [5], and Linkedln [8] are becoming essential
for users ranging from school kids to qualified professionals. In a typical social net-
working website, Internet users are invited by the members of the social networking
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website to join their interest related communities, groups, and peoples. The user has
freedom to explore his interest related communities and can join those communities.
Also, there is no limitation on expanding social network. One can join multiple com-
munities, groups, and peoples to get diversified information on different topics. At
present, social networking websites do not have cross-website information and as a
result, scattered information on different topics could be not processed together for
effective use. Another important point is that sometimes the information needed by
the user is not available in their network communities and it could be available in
other networks as well as could be retrieved from WorldWideWeb.

To make an efficient social network, Semantic Web plays an extra-ordinary role in
exchanging information conceptually. Semantic Web represents WorldWideWeb data
in the form of mesh and linked in such a way so that it could be easily processed by
machines on a global scale. In this paper, we are presenting a document retrieval
system which will take the user question as an input and expands them to retrieve
documents from the WorldWideWeb containing relevant concepts and finally ranks
retrieved results as per user relevance. The research paper is organized as follows:
section 2 describes related research work while section 3 explains the proposed rough
set based document ranking algorithms. Section 4 shows our experiment and results.
In the last section, we have stated our conclusion and future directions.

2 Related Work

Social Networking was introduced in 2003 and becoming popular very rapidly. The
available social networking websites as discussed in [3], [21], and [9] are using
tagging approach to improve the search mechanisms as well as for personalized rec-
ommendations. However, tagging for any kind of information, particularly for user
interest, might be done by different users using different vocabularies. So tagging
approach is not useful to retrieve relevant information lying at the end of other users.
Therefore, conceptually expanded user input may solve the term mismatch problem in
building efficient document retrieval system in social networking domain. The use of
semantic web tools such as ontologies and WordNet [19] has been a preferred choice
of researchers to propose input expansion methods. We have also used ontologies
and WordNet combination to solve the term mismatch problem in document retrieval.

There are number of document ranking models proposed such as extended Boolean
model [13], Vector space model [7], and Relevance model [4]. These models are
largely dependent on the query term frequency, document length etc to rank the
documents. These methods are computationally fast. However, they ignore the lin-
guistics features and the semantics of the query as well as the documents which in-
versely affects their retrieval performance. [16] and [12] propose conceptual models
which map a set of words and phrases to the concepts and exploit their conceptual
structures for retrieval. [15] proposes an ontology hierarchy based approach for
automatic topic identification which can be further extended for automatic text cate-
gorization. These models are complicated but retrieve more precise information in
comparison of other statistical models. However, these methods are not able to handle
imprecise information which is necessary to fulfill users need. Therefore, rough set
based methods [14] [2] were proposed for document classification to handle imprecise
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and vague information. [6] proposes automatic classification of WWW bookmarks
based on rough sets while [20] proposes extension of document frequency metric
using rough sets. They have used indiscernibility relation for text categorization. In
this paper, we have proposed a document ranking method which uses an extension of
their research work.

3 Social Networking Based Information Retrieval System -
A Rough Set Based Approach

The proposed social domain document retrieval system considers the user’s interest as
an input and extracts important terms then finds the semantically related concepts
using its query expansion module described in [11]. These conceptually related terms
along with the user input are passed to the document retrieval phase. The document
retrieval phase searches for the documents relevant to the user’s interests and presents
a list of the document in the order of their relevancy using rough set based ranking
algorithm. The proposed document ranking algorithm is not considering term fre-
quencies for ranking of retrieved documents as the algorithms based on term frequen-
cies tend to be more biased towards longer documents. This algorithm expands the
user input, selects the relevant features from the set of documents returned by search
engines and ranks extracted concept combinations according to their relevancy to the
user’s input. Finally, the algorithm performs re-ranking of the documents based on the
position of the concept combinations in the set of documents. We are explaining algo-
rithms in the following sections.

3.1 Concept Combination Ranking Algorithm

In this section, we are proposing an algorithm that uses the indiscernibility relation of
the rough set theory to rank the concept combinations. The basic idea is based on the
algorithm discussed in [20] which uses document frequency to extract the important
features from a set of documents and categorizes them on the basis of their features
(terms). We are extending their algorithm for ranking a concept combination. Let us
assume that the user input contains concepts C;, C,,...C, and the input is expanded
using algorithm proposed in [11]. The key concepts in the expanded set are then
grouped into concept combinations using Cartesian product and ranked according to
the knowledge quantity contained in them. The complete algorithm for ranking the
concept combinations is described below.

Algorithm: Concept_Extraction(Q, D)

Input: User input (Q) and set of documents (D)

Output: Ranked concepts list (G,)

Step 1: Extract key concepts Cy, C,, ..., C, from the input.

Step 2: Expand input using expansion algorithm [11]. The resulting set is

C,UC,u..uC, whereC, =C,; UC;, U..UCyand C; indicates the j"
semantically related word to concept C i

Step 3: Let G = C;, X C, X...X C, where x indicates the Cartesian product.
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Step 4: Define an information system I = (U, A, V, f), where U ={Q ‘ D e D},

AZ{G ‘ G € G}, V is the domain of values of G, and f is an information func-

L

tion (U, A) =V such that:

0 if any of the concepts in G, is not present in D,
f(D;, G,)= {

1 if all concepts in G, are present in D,

Step 5: Determine the “Knowledge Quantity” (KQ) of G; using the equation (1)
KQ, =m(n—m) (1)

where n and m represents cardinality of D and no. of documents in which concept
group G; occurs respectively.

Step 6: Repeat step 5 for all G;.

Step 7: Sort G according to “Knowledge Quantity” and return G, (Sorted G).

Step 8: END

Consider the query “How far is Mars from our planet?” for example. Key concepts in
the query are far, Mars, our, and planet. The expanded query as explained in step 2 of
algorithm Concept_Extraction is “(far OR distant) AND (Mars OR “Red Planet”)
AND our AND (Planet OR “terrestrial planet”)”. The concept combinations, G, ob-
tained after taking Cartesian product is:

G ={(far, Mars, our, planet), (far, Mars, our, terrestrial planet), (far, Red planet,
our, planet), (far, Red planet, our, terrestrial planet), (distant, Mars, our, planet),
(distant, Mars, our, terrestrial planet), (distant, Red planet, our, planet), (distant, Red
planet, our, terrestrial planet) }.

An information system is defined using these concept combinations, documents re-
trieved for the expanded query and the f-values for the concept combinations as ex-
plained in step 4 of the algorithm. In step 5 and 6, knowledge quantity of the each
element of G is computed using the equation 5.4. These concept combinations are
then ranked according to the knowledge quantity contained in them. The ranked con-
cept combinations (in decreasing order) are as follows:

Granked ={ (distant, Mars, our, planet,) (far, Red planet, our, planet), (distant, Red
planet, our, planet), (far, Mars, our, planet), (far, Mars, our, terrestrial planet), (far,
Red planet, our, terrestrial planet), (distant, Red planet, our, terrestrial planet),
(distant, Mars, our, terrestrial planet) .

3.2 Document Ranking Algorithm

The proposed document ranking algorithm considers ranked concept combination
as discussed in section 4.1 and searches the document sets for these concept combina-
tions. The underlying intuition is that a document is more relevant if it contains
combination of concepts together rather than containing individual concepts. The
algorithm considers the most descriptive concepts of the document which are used to
define title or subtitle. Secondly, we consider those sentences more relevant which
contain more number of concepts. Algorithm Document_Ranking describes the pro-
posed document ranking algorithm.
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Algorithm: Document_Ranking (Q, D)

Input: User query (Q) and set of documents (D)

Output: Ranked documents list (D,)

Step 1: Run Concept_Extraction (Q, D) to get ranked list of concept groups.

Step 2: For each document D, € D and concept group G;, compute document score

(W;y) using equation (2).

—7r.
W, =1+ ] Lt ] W, )

Isj<pand G;c D; V4

where p is the cardinality of the set G (step 3 of Concept_Extraction ) and r; is the
rank of Gj obtained in stepl. W, is the initial weight assigned to each document.

Step 3: For each document D; € D and concept group G;j, re-compute document score
(Wp,) using equation (3).

azh

W, =W, +kW, Z ull +k,W,

tcG; and't'isin onesentencebj tcG; and't'isin onesubtitle bj

g (3
+ k%‘/Vil Z —

IgG,- and't'isin title bj

Here ki, k,, and k3 are the weights assigned for occurrence of concept combination in
sentences, sub-titles, and titles within the documents. a;, ag, and a, are the cardinality
of subset ‘t’ in sentences, sub-titles, and title respectively. b; is the cardinality of G;.
Step 4: Rank the document set according to the scores obtained in step 3.

Step 5: END

4 Experimental Results and Discussion

To test the efficiency of the proposed algorithm, we conducted an experiment over a
set of 50 questions collected from social networking websites and further extracted
key concepts. To enhance the recall of the document retrieval, terms semantically
closer to the key concepts were determined using WordNet and domain using the
query expansion algorithm [11]. These original key concepts and semantically related
words were fed into Google in Boolean form and we downloaded 25 documents cor-
responding to each of these 50 questions separately. The retrieved documents were re-
ranked using Document_Ranking algorithm. It was observed that the average number
of documents containing correct answers in top 10 documents increased from 3.56 to
4.48. This indicates an improvement of 25% in the document retrieval.

We also observed increased number of correct answers in top ranked documents.
There were 17 questions whose answers were present in at least 5 documents out of
top 10 documents using Google but using proposed algorithm, this count increased to
25. These results reflect that the algorithm Document_Ranking is bringing more rele-
vant documents to higher ranks. We have summarized our results in table 1.
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Table 1. Comparative Performance Analysis

S.N Performance Parameters Using Using
Google  Proposed
Approach
1 No. of questions whose answers were present in at least 5 docu- 17 25

ments (out of first 10 documents)

2 Average no. of documents containing correct answers (out of  3.56 4.48
first 10 documents)

3 Number of questions with answer in the first document 22 23

4 Average rank of the document containing first correct answer 2.78 2.44

== = Total No. of
Documents
Containing Correct
Answers (out of 25)

= With Google (out of
10)

Number of Retrievec
Documents

= = = = With Proposed
1 6 11 16 21 26 31 36 41 46 Approach (out of

Question Number 10)

Fig. 1. Comparison of Number of Documents Containing Correct Answers

0-; A :E :: i Ny A* B A , E%g:
o VAN Bl
£ 0.2 v -"’ U \ / \\/ Vl ” After Ranking
O Frrrrr T T T T T T T

1 6 11 16 21 26 31 36 41 46

Question Number

Fig. 2. Information Retrieval Precision Graph

Results of the experimental questions are shown in fig. 1. This shows the no. of
documents containing correct answers is higher than original retrieval. Thus, our
algorithm helps in improving the precision which is more explicitly shown in fig. 2
which is derived from fig. 1 by using the formula for precision calculation (Precision=
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ratio of the number of relevant documents retrieved to the total number of relevant
documents that exist for a given question). Further, we represent document rank con-
taining first correct answer in Fig. 3. There are 28% questions for which rank of the
first document with correct answer is same for Google and our proposed method. So
there is no scope of improvement. While in 46% questions, the algorithm improved
the ranks of the first document containing correct answer while rank of the same
declined in case of 26% questions. Thus, it is clear from the fig. 3 that algorithm is
improving the rank of relevant documents.

First Answer

—&— before
—=— after

Doc Number

o 5 10 15 20 25 30 35 40 45 50
Question Number

Fig. 3. Representing Documents’ Rank Containing First Correct Answer

5 Conclusion and Future Scope

Social networking domain is growing rapidly and millions of users are getting bene-
fits by sharing information on different matters. In this paper, we have presented two
algorithms to rank documents conceptually. Our first algorithm ranks concept combi-
nation of the documents which is useful to find more conceptually relevant answers.
Further, second algorithm ranks retrieved documents using position of concept com-
bination which improves the precision of the information retrieval system. Though
this algorithm uses modern semantic tools such as rough set and ontologies but it is a
simple and computationally efficient method. We have experimented on 1250 ques-
tions collected from popular social networking domains to judge the effectiveness of
the proposed method and found favorable results.
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Abstract. Information on the web is growing at a rapid pace and to satisfy the
information need of the user on the web is a big challenge. Search engines are
the major breakthrough in the field of Information Retrieval on the web. Re-
search has been done in literature to use the Information Scent in Query session
mining to generate the web page recommendations. Low computational effi-
ciency and classification accuracy are the main problems that are faced due to
high dimensionality of keyword vector of query sessions used for web page
recommendation. This paper presents the use of Fuzzy Rough Set Attribute Re-
duction to reduce the high dimensionality of keyword vectors for the improve-
ment in classification accuracy and computational efficiency associated with
processing of input queries. Experimental results confirm the improvement in
the precision of search results conducted on the data extracted from the Web
History of “Google” search engine.

Keywords: Fuzzy Rough Set, Information Retrieval, Information Need,
Information Scent, Fuzzy Similarity.

1 Introduction

This Information on the web is growing at a rapid pace. To find the relevant docu-
ments for a specific information need of the user from a big pool of information is a
big challenge. The search query of the user to the search engine is not able to fetch the
sufficient relevant documents [1, 9, 11]. Work in [2, 3, 4, 5] has been done using
Information Scent in Query session mining to improve the Information Retrieval
precision. Query session is defined as set of clicked URLs associated with the user
Query. Information scent is the subjective sense of value and cost of accessing a page
based on perceptual cues with respect to the information need of the user. Users tend
to click URLs with high scent associated with them [6, 10, 15, 16]. These high Scent
pages uniquely satisfy the information needs of the user whereas low scent pages are
less relevant to the information need of the user. Web page recommendations based
on past queries can help to satisfy the information need of the current user. Each
query session is represented by keywords vector weighted using Information Scent.
Query sessions represented by weighted keyword vector are clustered to get the set of
query sessions with similar information need. Each cluster is represented by mean
weighted keyword vector. In [5] during online processing the input query vector is

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 192-200, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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used to find the cluster which closely represent the information need of input query
and recommend the high scent clicked web pages associated with the selected cluster.
The problem that is observed is low computational efficiency and classification accu-
racy due to high dimensionality of keyword vector representing the clusters of query
sessions. Attribute Selection is important for reducing computational cost of classifi-
cation. All the keywords of query sessions keyword vector are not equally important
from the point of view of identifying the different information need represented by
clusters. Classification assumes that all attribute are equally important when classify-
ing using nearest neighbour approach and is sensitive to sparse data representation
which affects the classification accuracy. In [8] Research has been done for personal-
izing the web search using Rough Fuzzy method to personalize the web search more
effectively by identifying the discerning keywords for focussed web search using
Fuzzy set discretization of real valued term weight of document vector and attribute
reduction using Rough set attribute reduction. In this paper Fuzzy Rough Set attribute
reduction has been applied to reduce the keyword vectors representing the query ses-
sions to those keywords of keyword vector which are all imperative to identify the
different information need associated with identified clusters. The reduced set of
keyword vector representing each cluster of query sessions reduces the space com-
plexity due to reduction in memory requirement for storing the clusters mean
weighted keyword vector. Time complexity will be improved in online processing in
computing the clusters which best represent the information need associated with
input query. Thus computational efficiency is improved with the reduction in time and
space complexity. The Classification Accuracy of the input queries to the clusters of
query sessions is improved with reduced relevant attribute set obtained using Fuzzy
Rough Attribute Reduction which uniquely identifies the information need of the user
associated with the input query after removing those attributes which were redundant
and irrelevant from perspective of identifying the information need associated with
the cluster.

This paper is organized as follows section 2 explains the Computation of Informa-
tion Scent, section 3 explains Fuzzy Rough Approach for Attribute Reduction ,
section 4 explains the use of FRSAR in Information Retrieval, section 5 presents the
Experimental study and section 6 concludes the paper.

2 Information Scent Computation

2.1 Information Scent Metric

The Inferring User Need by Information Scent (IUNIS) algorithm provides various
combinations of parameters to quantify the Information Scent [6] [10].The factors
that are taken are page access PF.IPF weight and TIME that are used to quantify the
information scent associated with the clicked page in a query session. The information
scent sid is calculated for each page P;q in a given Query session i as follows.

sii=PF.IPF(Pi)*Time(Pi)Vdel..n (1)
PF.IPF(Pia)=fpie/max(fria) *log(M/mpi¢) where del..n )

where n is the number of unique clicked web pages in query session i.
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PF.IPF(P;y) and Time(P;q) are defined as follows.
PF.IPF(Pu) : PF corresponds to the page Pid normalized frequency fpiq in a given

query session Qi and IPF correspond to the ratio of total number of query sessions
M in the whole log to the number of query sessions mp;y that contain the given page
Pid.

Time(Pia) : It is the ratio of time spent on the page Pid in a given session Qi to the

total duration of session Q;.

3 Fuzzy Rough Approach for Attribute Reduction

3.1 Fuzzy Rough Set Attribute Reduction (FRSAR)

Rough Set Attribute Reduction is well suited to discrete information system
S1=(U,A). In discrete information system all the objects in the table have discrete

value for their data objects. However it is often the case that data object in the infor-
mation system have both real and crisp attribute. Rough set theory in RSAR fails to
find the similarity of data object having real value attribute [12,13]. Fuzzy Rough
approach is used in this paper for the keyword reduction of query sessions vectors
representing the information needs of the query sessions on the web. The keyword
vector of query sessions is weighted using Information Scent.

In order to apply Fuzzy Rough set concept to the reduction of attribute in data set
containing real attribute without loss of information, Fuzzy similarity relation Rp is
used to determine the extent to which the two data object are similar having real val-

ued attribute. The crisp lower and upper approximation PX and P X becomes Fuzzy

lower and upper approximation set with membership function pex(x) and pex(x)

respectively. The P positive region of D, i.e. POSr(D) become Fuzzy set whose
membership function is defined by rosp(D) . The dependency of attribute set D on
P is given by gemma’p(D).

Consider class X represented by Fuzzy set X in U whose membership function is
defined as ux , the lower approximation of X denoted by PX and the upper approxi-

mation of X denoted by px are the fuzzy sets of U whose membership functions are
defined as below.

pex(x) =S min( (rp(X, X'), T ye u(S(N( irp (X', Y)), x(y)))) 3)
- Vx'e U
puex(x)=S l’glin[(flRp(X,X'),S ye U (T(urp(X',y),1x(¥)))) C))
Vx'e

por:U 01 )

|
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l:xe UandD (x)=X

pel0) = }IO:XE UandD (x)# X ©

where

T(a,b)=min(a,b)

S(a, a,.....,an)=max(ai,az,as,....... ,Qn)
N(a)=1-a

Y(a,b,ai,an,....,an)e[0,1]

The membership of an object x € U to the fuzzy positive region can be defined

posrp)(x) = S( pgx(x)) @)
Xe U/D
Using the definition of fuzzy positive region, the new dependency function can be
defined as follows.

gemma’p(D)= SCZG éIPOSP(m(x))/ Ul ®)

4 Use of FRSAR in Information Retrieval

4.1 Query Sessions Representation

Information need associated with the query session is modeled using Information
Scent and content of clicked URLs. Each query session is represented by keyword
vector weighted by information scent as given by the equation below.

Qi= gSid *Pid ®
d=1

In above formula n is the number of distinct clicked pages in the session Qi and sia
(information scent) is calculated for each page Pisin a given session Qi. Pid is a

keyword vector describing the content of the page Pia using tf.idf (where tf repre-
sents term frequency and idf represents inverse document frequency).

The query sessions vector are clustered using k-means Algorithm in [17,18]
to generate clusters of query sessions optimized by criterion function. A score or
criterion function measures the quality of resulting clusters. This is used by common
vector space implementation of k-means algorithm [18]. The function measures the
average similarity between vectors and the centroid of clusters that are assigned to.
Let Cp be a cluster found in a k-way clustering process (pel.k) and let ¢, be the

centroid of pth cluster. The criterion function I is defined as follows:

k
I=UM y % sim(vicp) (10)
p:]ViECp
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where M is the total number of query sessions in all clusters and vi is the vector repre-
senting some query session belonging to the cluster Cp and centroid cp of the cluster
Cp is defined as given below.

cr=( yv)/IC,I (11)
vie Cp

where |Cpl denotes the number of query sessions in cluster Cp . sim(vicp) is calcu-
lated using cosine measure.

Let U be a finite set of query sessions keyword vector called Universe and A be the
set of attribute describing the query sessions where A=(CuD) and (UA) is an
information system S1. Decision column D represents the label of cluster to which
query session belongs and each cluster uniquely represents the specific information
need. The query sessions keyword vectors are stored in (U,A). Each query session in
clusters is stored as row in (U,A) and C columns represent the keywords of weighted
keyword vector of query sessions. A particular cell S1(row,col) represent the weight
of keyword represented by column col of query session vector which is labelled by
row. The membership function of Fuzzy Similarity Relation R, to find the extent of
similarity of query sessions keyword vector is defined below.

trp(X,y)= {cos(x,y): x,y € U and x,y are weighted keyword vector of query ses-
sion with attributes in set P, cos(x,y) calculates the cosine similarity of x and y vec-
tor such that M satisfies the following properties

Hep(xX)=1 Vx€ U prp(X,y)=peo(y X) V x,y€ U pp(X,2) 2> pep(X,y ) A prp((y 2)

Fuzzy Rough Set Attribute Reduction algorithm operates on the (U,A) information

system to reduce the size of keyword vectors without loss of information represented
by query sessions in(U,A).

4.2 Fuzzy Rough Set Attribute Reduction of Clustered Query Sessions Keyword
Vector

The following algorithm is used to generate the reduct R which is a subset of C using
dependency function gemma’g(D). gemma’r(D) is measure of dependency of decision
attribute set D on R condition attribute set .

1. R=C where C={ki,ky,Ks,...Kikeyworast} » D={1,2,..,IClustersl}, gemma’prev=0,
gemma’best = gemma’g(D),Y={ }
2. T=R
3. gemma’prev=gemma’best
4. gemma’best = -1
S5.forallxe Candx ¢ Y
if gemma’ g.(x; (D) > gemma’best
T=R - {x}
Temp={x}
gemma’best=gemma’(D)
end if
6. end for
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7. if(round(gemma’best) = round(gemma’prev))
R=T
Y=Y uTemp
8. end if
9. if round(gemma’best) = round(gemma’prev))
10. goto step 2
else
11. return R

The above algorithm generates R by incrementally removing the least informative
attribute from it till there is no change in the value of dependency function. The round
function used in the algorithm returns the value rounded to the nearest integer.
IKeywordsl| represent the count of all distinct keywords of clicked URLSs present in the
data set after all stopword removal and stemming using Porter Stemming Algorithm.
IClusters| represent the count of clusters obtained in Query sessions mining.

4.3 High Scent Web Page Recommendations in Information Retrieval Using
FRSAR

The proposed method of High Scent Web page recommendations using Query ses-
sions keyword vector reduction with FRSAR in Query session mining is given below.

Offline Processing
1. Clustered Query sessions are represented in the form of information system
S1=U,A) where A=(CuD) where C are set of keywords of keyword vec-

tor representing all query sessions and D is the class label of the cluster to
which query session belongs.

2. Apply the Fuzzy Rough Set Attribute Reduction to reduce the dimensional-
ity of information system using Fuzzy similarity relation for query sessions
keyword vector in FRSAR approach given in section 4.2.

3. Use reduced set of attribute R to define each cluster mean keyword vector.

Online processing

1. The input query is represented in the keyword vector scaled to the dimen-
sion of reduced set R.

2. The input query similarity to each cluster mean term vector is calculated to
classify the input query to the nearest cluster which best represent the in-
formation need similar to that of input query.

3. The High Scent web pages associated with the selected cluster will be rec-
ommended for a given input query.

5 Experimental Study

Experiment was performed on the data collected from Web history of "Google"
search engine. The data set was generated by users who had expertise in specific do-
mains mainly entertainment, academics and sports. The Web history of “Google”
search engine contains the following fields for each clicked URLs.

1. Time of the Day 2. Query terms 3. Clicked URLs
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On submission of input query, “Google” search engine returns a result page consists of
URLSs retrieved for a given query along with the content information about URLs. In
the experiment only those query sessions in the data set were selected which had at
least one click in their answer. Query sessions considered consists of query terms along
with clicked URLs. The numbers of distinct URLSs in the collected data set were found
to be 3145. The data set was pre-processed to get 400 query sessions. The data set
generated from web history was loaded into database format to be processed further.
The experiment was performed on Pentium IV PC with 1 GB RAM under Win-
dows XP using JADE (Java Agent Development Environment) and Oracle database.
Web Sphinx crawler was used to fetch the clicked documents of query sessions in the
data set. Each query session was transformed into the vector representation using
Information Scent and content of clicked URLs and stored in the database. The k-
Means algorithm was executed several times for different values of k and criterion
function was computed for each value of k. The criterion function was found to have
maximum value at k=8 where k is the number of clusters. The similarity of vectors
was measured using cosine formula for weighted term vector. Clusters of 400 query
sessions were stored in the form of information system S1=(U,A) where A=(CUD) .

The initial dimensionality of C was 1429 that is 1429 keyword attributes were repre-
senting each clustered query sessions vector in Information System S1. D was the
class label of the clusters to which query sessions vector belongs. The dimensionality
of reduced set of attributes obtained using Fuzzy Rough Attribute Reduction Algo-
rithm was 314 which is 21% of original set of attributes.

In order to analyze the effectiveness of keyword reduction in query sessions min-
ing in satisfying the information need of the users in information retrieval, the per-
formance of both the approaches with and without using FRSAR was evaluated using
randomly selected test input queries which were categorized as untrained queries set.
The untrained queries were those queries which did not have sessions associated with
them in data set and are categorised as unseen queries. Some of the queries in each of
the category are given below in Table 1.

Table 1. Sample List of Untrained Queries

Category Queries
Untrained Movie song, Space food, novels, magazine, movies ,Numbness,
Set Nature, family play Games, movie pictures, software download,
online tutorial, Free download mp3, skies of arcadia pictures.

The experiment was performed using 46 untrained queries distributed in each of the
domain. The precision was evaluated on untrained set of queries belonging to each of
the domain considered for both without FRSAR and with FRSAR. The average preci-
sion was calculated for first 2 result pages and users mark the relevant documents
within the list of URLSs retrieved using “Google” search engine along with web page
recommendation for a given query using both with and without FRSAR. The Fig 1
shows the average precision calculated for untrained queries .The average precision is
improved for untrained queries using keyword reduction with FRSAR. It is apparent
that dimensionality reduction helps to identify those attributes which uniquely identify
the different information need represented by clusters of query sessions.
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input queries FRSAR and without FRSAR on untrained set
of input queries

Fig 2 shows the dimensionality reduction also has the significant impact on the
time complexity of online processing phase. The time to classify the input query is
reduced significantly. This effect is reflected in the average response time of web
page recommendations for input queries with FRSAR on Google Search engine. The
online processing time decreases tremendously which is significant for a system like
search engine which require quick response time. The storage requirement for clus-
tered data set has been reduced due to reduced keyword vector obtained using
FRSAR. Fuzzy rough set attribute reduction is used for dimensionality reduction
before online processing phase use the attributes belonging to the resultant reduct.
The computational cost of Fuzzy Rough set Attribute Reduction has no impact on the
run time efficiency of online processing phase of High Scent web page recommenda-
tion in Information Retrieval.

6 Conclusion

This paper presented an approach to improve the information retrieval precision by
improving the identification of the past query sessions similar in information need to
that of input queries coupled with the improvement in computational efficiency using
Fuzzy Rough set Attribute Reduction (FRSAR). FRSAR reduce the large dimension-
ality of weighted keyword vector of clusters of query sessions using Fuzzy Similarity
Relation without loss of information. Experiment was conducted on the data extracted
from the Web History of “Google” search engine. Experiments used Fuzzy Rough Set
Attribute Reduction in offline processing before online processing phase use the at-
tributes belonging to the resultant reduct. Experiments show the improvement in the
Information Retrieval precision confirming that FRSAR reduces the dimensionality of
clusters of query sessions vector without loss of information.
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Abstract. The activity of facial recognition is routine for most peo-
ple; yet describing the process of recognition, or describing a face to be
recognized reveals a great deal of complexity inherent in the activity.
Eyewitness identification remains an important element in judicial pro-
ceedings. It is very convincing, yet it is not very accurate. We studied
how people sorted a collection of facial photographs and found that in-
dividuals may have different strategies for similarity recognition. In our
analysis of the data, we have identified two possible strategies. We apply
rough set based attribute reduction methodology to this data in order
to develop a test to identify which of these strategies an individual is
likely to prefer. We hypothesize that by providing a personalized search
and filter environment, individuals would be more adequately equipped
to handle the complexity of the task, thereby increasing the accuracy
of identifications. Furthermore, the rough set based analysis may help
to more clearly identify the different strategies that individuals use for
this task. This paper provides a description of the preliminary study, our
computational approach that includes an important pre-processing step,
discusses results from our evaluation, and provides a list of opportunities
for future work.

1 Introduction

Eyewitness identification holds a prominent role in many judicial settings, yet it
is generally not accurate. Verbal overshadowing [I] is an effect that can obscure
a witness’s recollection of face when she is asked to describe the face to create a
composite sketch. Alternatively, if the witness is asked to examine a large collec-
tion of photos, her memory may become saturated and she may mistakenly judge

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 201 2009.
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the current face similar to another she has examined examined (i.e., inaccurate
source monitoring) and not to the one she is trying to recall [2]. We hypothesize
that if the presentation of images can be personalized, the eyewitness may have
to deal with fewer images, minimizing both of the negative effects discussed.
This research takes the first steps along that path.

This paper discusses an analysis of data from a sorting study, which avoided
verbalization completely while sorting. Each participant was asked to group a
stack of 356 photos according to perceived similarity. As a participant encoun-
tered a photo, she could only place that photo and not disturb any existing
piles. Indirectly, each participant made 63,190 pairwise similarity judgements.
This quantity of data made it a good candidate for rough sets attribute reduction
methodology.

Section [2] describes in more detail the initial study and data analysis that
occurred. Section [3describes the pre-processing developed to limit the number of
pairs (or objects) needed to apply the attribute reduction methodology. Section
presents results from an exploration of the selected pairs. Section Bl presents some
preliminary conclusions and avenues for future work.

2 Sorting Facial Photographs for Similarity

The stimulus photo set comprised equal numbers (n = 178) of Caucasian and
First Nation faces. Cross-race identification of faces is an important topic of
ongoing research [3], and our sorting study seeks to contribute to this body of
work. We have focused on similarity judgements as a way to understand the
way people perceive structure in the stimuli set. It may be that not everyone
perceives the same structure. Therefore, if a person’s preferred structure could
be ascertained easily, it could be used to improve identification accuracy.

Figure[llshows two photos from the stimulus set. Photographs were of the head
and shoulders of each individual in a front facing pose wearing casual clothing.
Subjects for these photographs were positioned 5 feet from the camera and 2 feet
from the background wall. All distinguishing materials (e.g., glasses, piercing)
were removed for the purposes of the photograph. All photographs were edited
using Adobe Photoshop 7.0. Photographs for the facial recognition task were
cropped to include only the subject’s head and shoulders, while the background
colour was changed from white to grey. The photographs were laminated on
5 by 4 inch cards. Participants were asked to view photos one at a time and
place each photo on a pile with similar photos, without disturbing existing piles.
Therefore, not all participants would make this direct comparison only if one
photo was visible when the other was being placed. The number of piles was
not constrained. Within the 25 participants, the number of piles made ranged
between 4 and 38.

From a record of which photos each participant placed together, two things
were done:

— a list of all possible pairs (356 choose 2 = 63,190) was constructed along
with the judgement of similar (in the same pile) or dissimilar (in different
piles)
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Fig. 1. 2 photos from the collection which participants were asked to sort according to
similarity

— the classification of photos was summarized in the following way. The number
of Caucasian (C) and First Nations (F) photos in each pile was expressed as a
percentage. The CHITEST function in Microsoft Excel was used to compare
the ratio of C to F against an expected equal distribution. If p < 0.05 the
pile was classified as C, if C >F or as F if F > C. The pile was classified
as U (for undecided) if p > 0.05. All pictures in that pile were then labelled
as C, F, or U. The numbers for all piles were totalled and expressed as a
percentage (shown in Figure [2]).

Figure 2 shows all participants plotted according to their percentages of photos
classifed as C, F, and U. Many participants made only piles that could be iden-
tified as either C or F. These are found along the bottom line between vertices
1 and 3 in Figure 2l Other participants therefore had some number of unde-
cided piles (and photos), labelled U according to the procedure outlined above.
A threshold of 5% was set for the percentage of U and two groups were formed.
We hypothesize that these groups correspond to different strategies for facial
recognition, which we have labelled as “uses-race” (U < 5%, n = 14) and “uses-
not-race” (U > 5%, n = 11), because we hypothesize that race is being used by
former group but not by the latter.

We seek to find a simple way to classify participants according to these groups,
which we hypothesize will allow for personalization of the eyewitness identifica-
tion process.

The strategy (uses-race or uses-not-race) then becomes the decision variable
as we begin to apply the rough set attribute reduction methodology [4]. The
objective is to reduce the number of pairs required as input to discriminate
between the two strategies, as the original number of pairs is impractical.

3 Pre-processing

If the two groups identified in the last section are meaningfully different, then we
hypothesize that we should be able to distinguish them with the help of pairs for
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1 3

Fig. 2. Distribution of participants based on their classification of photos. Each point
reflects the mix of C, F, and U photos identified by a participant. Vertex 1 is Caucasian,
Vertex 3 is First Nations, and Vertex 2 is Undecided. The lower rectangle identifies par-
ticipants in the “uses-race” group (with no or very few photos classified as undecided).
The upper rectangle identifies participants in the “uses-not-race” group (with many
photos classified as undecided).

rﬂ' “"“"“P”H'ﬂ\ rf“rﬁ

m r} ”i il WW Nfr u[“ * !(

A TN

L R e e e L T e EE R S PR LTI T e EL T L T T e e L T P FYFTTTTTI T

Fig. 3. The two photos from Figure [l are compared against all other photos. The top
graphs show results for the “uses-race” group and the bottom graphs show results for
the “uses-not-race” group. For both the left and right photos from Figure [I} the two
groups behave differently.
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which the similarity ratings differed between the groups. Figure Bl which shows
similarity ratings between the uses-race and uses-not-race groups, indicates that
this may be a fruitful course of action.

Following an approach similar to the feature extraction/selection phase in
knowledge discovery and data mining, we choose pairs with the following condi-
tion: that one group rated the pair very similar and the other group did not. We
parameterize this in the following way. The difference between ratings must be
greater than or equal to X (shown on the horizontal axis in Table [[) and that
one group’s rating of distance for the pair must be less than or equal to Y (show
on the vertical axis in Table [I]).

Table 1. The results for varying parameters for pair selection. The horizontal axis
represents the absolute difference between the distances for a pair between the two
groups. It is most strict at the left. The vertical axis represents the maximum rated
distance for a pair by one of the groups. It is most strict at the top. For our study, we
considered values in the upper left quadrant of this table, and used RSES on each of
those sets of pairs. Results are shown in Table

>09>08>07>06>05>04>03 >02>0.12>0.0
<0.1 0 0 0 1 2 3 5 6 6 6
<0.2 0 0 0 7 11 28 35 37 38 38
<0.3 0 0 17 82 197 350 467 556 585 605
<04 0 0 17 130 401 840 1253 1584 1775 1881
<0.5 0 0 17 130 798 2393 4536 6737 7825 8297
<0.6 0 0 17 130 798 2925 6592 10450 12925 14488
<0.7 0 0 17 130 798 2925 7480 13634 18241 22156
<0.8 0 0 17 130 798 2925 7480 17371 28260 35903
<09 0 0 17 130 798 2925 7480 17371 35398 47589
<1.0 0 0 17 130 798 2925 7480 17371 35398 63190

4 Rough Set Attribute Reduction Methodology

Each of the parameter combinations in the upper left quadrant of Table [ led
to a number of photo pairs being selected for processing. The number of pairs
processed in RSES (Rough Sets Exploration System) ranged from 2 to 798. For
each set of pairs, the following steps were undertaken.

1. Preprocessing: Split input file (50/50): Each file in the analysis was split with
approximately 50% of participants in a training set (data from 12 partici-
pants) and 50% of participants (data from 13 participants) in a testing set.
The files comprised objects each representing the result of a pairwise com-
parison of facial photographs (0 if similar, 1 if dissimilar). The decision class
was the group (either uses-race or uses-not-race), illustrated in Figure
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2. Training: Calculate the reducts in training file using genetic algorithms in
RSES. The genetic algorithms procedure calculates the top N reducts pos-
sible for a given analysis. For the purposes of our analysis, we chose N = 10
in order to pick the top 10 reducts possible (if indeed 10 top reducts could
be found).

3. Testing: Using the reducts generated in step 2, test the results on the data
in the testing set.

4. Classification: Observe the classification accuracy of the train and test pro-
cedure in steps 1-3 and report the results.

All results had 100 percent coverage, which means that the classifier based on the
reducts generated from an ensemble of reducts was able to recognize everything,
which is valuable in itself.

Table 2. Results from running RSES on the pairs from the upper left quadrant of
Table [[I In the case of 1 object, accuracy was computed by direct comparison of
judgement on pair to decision variable.

Total Reducts by Size Global
Condition Objects Reducts 1 2 3 4 Accuracy

0.1v0.6 1 - - - - - 84*
0.1v0.5 2 1 1 62
0.2v0.6 7 3 1 2 85
0.2v0.5 11 10 3 7 69
0.3v0.7 17 10 8 2 92
0.3v0.6 82 10 3 4 3 92
0.3v0.5 197 8 1 4 3 92
0.4v0.7 17 10 10 100
0.4v0.6 131 10 6 4 85
0.4v0.5 401 8 3 2 3 85
0.5v0.7 17 10 1 9 92
0.5v0.6 131 9 8 1 92
0.5v0.5 798 8 4 1 92

The table for rough sets analysis is constructed in the following way: each
row in the table represents an individual participant each column in the table
(object) represents a pairwise photo distance. If two photos were said to be
similar (placed in the same pile) then the object value is 0 (the distance between
them is 0). If two photos were said to be dissimilar (placed in different piles)
then the object value is 1 (the distance between them is 1). The decision variable
is the value determined in Section [2I which indicates the decision of whether
the participant belongs to the “uses-race” group or the “uses-not-race” group.
It was anticipated that rough sets analysis could reduce the necessary pairwise
comparisons to classify a participant, and thereby aid personalization efforts.
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Table 3. A closer look at the solution with 100% global accuracy. Pair 1859a-1907a is
the one shown in Figure [

Unique Pairs

Reducts Pair Frequency
032-129, 1859a-1907a 1859a-1907a 6
0062a-4488a, 032-130 032-129 3
0003a-8230a, 032-129 059-128 2

023-116, 059-128 032-130 2
023-116, 1859a-1907a 023-116 2
032-129, 059-128 8230a-9265a 1
1859a-1907a, 4488a-9622a 4488a-9622a 1
046-087, 1859a-1907a 046-087 1
032-130, 1859a-1907a 0062a-4488a 1
1859a-1907a, 8230a-9265a 0003a-8230a 1

Fig. 4. These figures illustrate some interesting questions that remain unexplored.
On the left, are reducts that use popular photo pairs more useful than others? These
popular pairs are those where the dashed line is higher than the solid line. On the right,
even though we hypothesize that not all people are using race for similarity ratings,
very few mixed race pairs are rated as similar.

Amongst the results obtained from the RSES analysis, 117 unique pairs were
identified in various reducts. The most frequently occurring pair was present in
13 different reducts. 44 pairs appeared more than once. When examining the
solution with 100% global accuracy (condition 0.4v0.7), laid out in Table Bl one
also finds a number of repeated pairs.

5 Conclusion and Future Work

Through this effort, we have found a very succinct test to classify people into
one of two proposed strategy groups. Namely, we proved that rough sets can
help in accuracy and clarity of the results. Our plan is to examine the validity of



208 D.H. Hepting et al.

this test with more participants. This test will also help to clarify the strategies
being used. It remains to be tested whether the 10 unique pairs listed in Table [3]
are the minimum needed to achieve 100% global accuracy. Figure @ illustrates
some other open questions. The amount of overlap of attributes in reducts is
particularly interesting. More than simply counting occurences, a more detailed
analysis of the correlations between attributes is also warranted.

We have explored this data with RSES. However, there are more advanced
rough set approaches and tools, with their own parameters, that can be used in
this situation. It may be indeed useful to experiment with ensembles of reducts,
approximate reducts, and so on, both within and outside RSES.

Also, although we have labelled the groups as uses-race/uses-not-race, it is
interesting to note that only 1 of the pairs used in the reducts is a mixed pair.
More work to understand the uses-not-race strategy especially is required. As
we improve our understanding of this data, we may also be able to find success
using other decision classes.
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Abstract. This paper presents a novel application of fuzzy-rough set-
based feature selection (FRFS) for Mars terrain image classification. The
work allows the induction of low-dimensionality feature sets from sample
descriptions of feature patterns of a much higher dimensionality. In par-
ticular, FRFS is applied in conjunction with multi-layer perceptron and
K-nearest neighbor based classifiers. Supported with comparative stud-
ies, the paper demonstrates that FRFS helps to enhance the effectiveness
and efficiency of conventional classification systems, by minimizing re-
dundant and noisy features. This is of particular significance for on-board
image classification in future Mars rover missions.

1 Introduction

The panoramic camera instruments on the Mars Exploration Rovers have acquired
a large volume of high-resolution images, which provides substantial information
to characterize the Mars environment [T4]. Automated analysis of such images has
since become an important task, especially for surveying places (e.g. for geologic
cues) in Mars [RIT2]. Any progress towards automated detection and recognition of
objects within Mars images, including different types of rocks and their surround-
ings, will make a significant contribution to the accomplishment of this task.
Mars terrain images vary significantly in terms of intensity, scale and rotation,
and are blurred with noise. These factors make Mars image classification a chal-
lenging problem. One critical step to successfully build an image classifier is to ex-
tract and use informative features from given images [BI7I9]. To capture the essen-
tial characteristics of such images, many features may have to be extracted without
explicit prior knowledge of what properties might best represent the underlying
scene reflected by the original image. Yet, generating more features increases com-
putational complexity and measurement noise, and not all such features may be
useful to perform classification. Thus, it is desirable to employ a technique that
can determine the most significant features, based on sample measurements, to
simplify the classification process, while ensuring high classification performance.
This paper presents an approach for performing large-scale Mars terrain im-
age classification, by exploiting the recent advances in fuzzy-rough set-based

* Work funded by the Daphne Jackson Trust and the Royal Academy of Engineering.
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feature selection techniques [6]. As such, fuzzy-rough sets are, for the first time,
applied to tasks relevant to space engineering. Experimental results show that
this application ensures rapid and accurate learning of classifiers. This is of great
importance to on-board ima