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Preface

Welcome to the 12th International Conference on Rough Sets, Fuzzy Sets, Data
Mining and Granular Computing (RSFDGrC 2009), held at the Indian Institute
of Technology (IIT), Delhi, India, during December 15-18, 2009. RSFDGrC is
a series of conferences spanning over the last 15 years. It investigates the meet-
ing points among the four major areas outlined in its title. This year, it was
co-organized with the Third International Conference on Pattern Recognition
and Machine Intelligence (PReMI 2009), which provided additional means for
multi-faceted interaction of both scientists and practitioners. It was also the core
component of this year’s Rough Set Year in India project. However, it remained
a fully international event aimed at building bridges between countries.

The first sectin contains the invited papers and a short report on the above-
mentioned project. Let us note that all the RSFDGrC 2009 plenary speakers,
Ivo Düntsch, Zbigniew Suraj, Zhongzhi Shi, Sergei Kuznetsov, Qiang Shen, and
Yukio Ohsawa, contributed with the full-length articles in the proceedings.

The remaining six sections contain 56 regular papers that were selected out
of 130 submissions, each peer-reviewed by three PC members. We thank the
authors for their high-quality papers submitted to this volume and regret that
many deserving papers could not be accepted because of our urge to maintain
strict standards. It is worth mentioning that there was quite a good number of
papers on the foundations of rough sets and fuzzy sets, many of them authored
by Indian researchers. The fuzzy set theory has been popular in India for a longer
time. Now, we can see the rising interest in the rough set theory.

The success of the conference would be impossible without the people ac-
knowledged on the following pages. We would like to express our gratitude in
particular to Lotfi A. Zadeh, who agreed to serve as Honorary Chair. Further-
more, on behalf of all the rough set researchers, we would like to thank all the
PReMI organizers for a very fruitful cooperation. We would also like to acknowl-
edge all the organizations that supported us during our preparations: Interna-
tional Rough Set Society, International Fuzzy Systems Association, Indian Unit
for Pattern Recognition and Artificial Intelligence, Indian Statistical Institute
in Calcutta, Machine Intelligence Research Labs, Springer, Chinese Rough Set
and Soft Computing Society, Special Interest Group on Rough Sets in Japan,
Egyptian Rough Sets Working Group, and Infobright. Special thanks go once
more to IIT Delhi for providing the basis for both PReMI and RSFDGrC 2009.

October 2009 Hiroshi Sakai
Mihir Kumar Chakraborty

Aboul Ella Hassanien
Dominik Ślęzak

William Zhu
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Dominik Śl ↪ezak



XII Table of Contents

Learning Player Behaviors in Real Time Strategy Games from Real
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Peter H.F. Ng, Simon C.K. Shiu, and Haibo Wang

An Efficient Prediction Model for Diabetic Database Using Soft
Computing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Veena H. Bhat, Prasanth G. Rao, P. Deepa Shenoy,
K.R. Venugopal, and L.M. Patnaik

A Decision Making Model for Vendor-Buyer Inventory Systems . . . . . . . . 336
Hui-Ming Wee, Jie Lu, Guangquan Zhang, Huai-En Chiao, and
Ya Gao

Software Reliability Prediction Using Group Method of Data
Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Ramakanta Mohanty, V. Ravi, and Manas Ranjan Patra

Mining Temporal Patterns for Humanoid Robot Using Pattern Growth
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Upasna Singh, Kevindra Pal Singh, and Gora Chand Nandi

Multiscale Comparison of Three-Dimensional Trajectories: A
Preliminary Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Shoji Hirano and Shusaku Tsumoto

Time Series Forecasting Using Hybrid Neuro-Fuzzy Regression Model . . . 369
Arindam Chaudhuri and Kajal De

A Fast Support Vector Machine Classification Algorithm Based on
Karush-Kuhn-Tucker Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Ying Zhang, Xizhao Wang, and Junhai Zhai

Data Mining Using Rules Extracted from SVM: An Application to
Churn Prediction in Bank Credit Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

M.A.H. Farquad, V. Ravi, and S. Bapi Raju

Clustering and Current Trends in Computing

Interval Set Cluster Analysis: A Re-formulation . . . . . . . . . . . . . . . . . . . . . . 398
Yiyu Yao, Pawan Lingras, Ruizhi Wang, and Duoqian Miao

Rough Entropy Based k -Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Dariusz Ma�lyszko and Jaros�law Stepaniuk

Fast Single-Link Clustering Method Based on Tolerance Rough Set
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Bidyut Kr. Patra and Sukumar Nandi



Table of Contents XIII

A Novel Possibilistic Fuzzy Leader Clustering Algorithm . . . . . . . . . . . . . . 423
Hong Yu and Hu Luo

Projected Gustafson Kessel Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Naveen Kumar and Charu Puri

Improved Visual Clustering through Unsupervised Dimensionality
Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

K. Thangavel, P. Alagambigai, and D. Devakumari

An Improved Cluster Oriented Fuzzy Decision Trees . . . . . . . . . . . . . . . . . . 447
Shan Su, Xizhao Wang, and Junhai Zhai

Combining Naive-Bayesian Classifier and Genetic Clustering for
Effective Anomaly Based Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . . . 455

S. Thamaraiselvi, R. Srivathsan, J. Imayavendhan,
Raghavan Muthuregunathan, and S. Siddharth

Ant Colony Optimisation Classification for Gene Expression Data
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Gerald Schaefer

A Comparative Performance Analysis of Multiple Trial Vectors
Differential Evolution and Classical Differential Evolution Variants . . . . . 470

G. Jeyakumar and C. Shunmuga Velayutham

Information Retrieval and Text Mining

Granular Computing for Text Mining: New Research Challenges and
Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

Liping Jing and Raymond Y.K. Lau

Polarity Classification of Subjective Words Using Common-Sense
Knowledge-Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Ashish Sureka, Vikram Goyal, Denzil Correa, and Anirban Mondal

A Weighted Hybrid Fuzzy Result Merging Model for Metasearch . . . . . . . 494
Arijit De and Elizabeth D. Diaz

Comparing Temporal Behavior of Phrases on Multiple Indexes with a
Burst Word Detection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Hidenao Abe and Shusaku Tsumoto

A Comparative Study of Pattern Matching Algorithms on Sequences . . . 510
Fan Min and Xindong Wu

BPBM: An Algorithm for String Matching with Wildcards and Length
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Xiao-Li Hong, Xindong Wu, Xue-Gang Hu, Ying-Ling Liu,
Jun Gao, and Gong-Qing Wu

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527



Affordance Relations�

Ivo Düntsch1, Günther Gediga2, and Adam Lenarcic1

1 Dept of Computer Science, Brock University, St. Catharines, ON, Canada
duentsch@brocku.ca, al04uh@brocku.ca

2 Dept of Psychology, Universität Münster, Fliednerstr. 21, D–48149 Münster
guenther@gediga.de

Abstract. Affordances are a central concept of J.J. Gibson’s approach
to visual perception. We describe and discuss the concept of affordances
with a brief look at its application to robotics, as well as provide an
overview of several existing formalizations. It turns out that a represen-
tation of affordances can be based on a certain hierarchy of Pawlak’s
approximation spaces. We also outline how concepts could be used in a
theory of affordances, and how affordances might be recognized in simple
perceiving situations.

1 Introduction

Over a period of fifty years, J. J. Gibson developed an “Ecological Approach to
Visual Perception” [1,2] that was radically different from the prevailing views of
the time - and, to some extent, from those of today.

“To perceive is to be aware of the surfaces of the environment and of
oneself in it. The interchange between hidden and unhidden surfaces is
essential to this awareness. These are existing surfaces; they are specified
at some points of observation. Perceiving gets wider and finer and longer
and richer and fuller as the observer explores the environment. The full
awareness of surfaces includes their layout, their substances, their events
and their affordances.”

The term ecological in the sense used by Gibson pertains to the natural environ-
ment, to the “everyday things” [3] of the acting individual:

– ‘We are told that vision depends on the eye which is connected to the brain.
I shall suggest that natural vision depends on the eyes in the head on a body
supported by the ground, the brain being the central organ of a complete
visual system.” [2, p. 1]

� Equal authorship is implied. Ivo Düntsch gratefully acknowledges support from the
Natural Sciences and Engineering Research Council of Canada. Günther Gediga is
also adjunct professor in the Department of Computer Science, Brock University.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 1–11, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 I. Düntsch, G. Gediga, and A. Lenarcic

Gibson’s two main propositions are as follows [2]:

1. Objects are perceived directly, “not mediated by retinal pictures, neural pic-
tures, or mental pictures”. Perception is regarded as the act of extracting
information from a changing context. While synthesis is a conceptualiza-
tion from the parts to the whole, perception proceeds from the whole to
parts and features. Each feature then can be viewed as an object of further
investigation. Visual perception takes place in a nested environment, and
thus, granular computing, in particular the rough sets model, are a natural
environment to model visual perception.

2. The observer and the observed are an inseparable pair, related by affor-
dances.

“The affordances of the environment are what it offers the animal,
what it provides or furnishes, either for good or ill. The verb to afford
is found in the dictionary, but the noun affordance is not. I have made
it up. I mean by it something that refers to both the environment
and the animal in a way that no existing term does. It implies the
complementarity of the animal and the environment.” [2]

Numerous experiments have been performed to test Gibson’s theory, most no-
tably the early seminal experiments of stair–climbing by Warren [4]. For a more
complete account, the reader is invited to consult [5] for a succinct introduction
to Gibson’s philosophy and Volume 15(2) of the journal Ecological Psychology
(2002) for an account of recent developments.

2 Affordance Relations

The complementarity of the animal and the environment that it perceives is
central to Gibson’s world view and he elaborates

– “An affordance is neither an objective property nor a subjective property; or
it is both if you like. An affordance cuts across the dichotomy of subjective–
objective and helps us to understand its inadequacy. It is equally a fact of
an environment and a fact of behavior. It is both physical and psychical, yet
neither.” [2, p. 129]

As an example, consider the experiments by Warren [4], who associates the
affordance “climb–able” with the ratio p

q between the stair riser height (p) and
the agent’s leg length (q). The affordance “climb-able” then is given, when p

q ≤
0.88. The ratio p

q is regarded as an “ecological invariant”: For any agent Z and
any set X of stairs, “climb–able” is afforded when p

q ≤ 0.88; in yet another form,
p
q ≤ 0.88 offers the action “climb”. A stair – climbing affordance, then, is a pair

〈stair height
leg length

is favourable︸ ︷︷ ︸
environment

, can climb︸ ︷︷ ︸
organism

〉.(2.1)
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The agent perceives the environment according to what it offers him - a path is
“walk–able”, stairs are “climb–able”, a rabbit is “hug–able”. Affordances may
change over time, and, depending on the state of the agent, the same physical
objects are perceived differently – stairs can be “paint–able”, and a rabbit “eat –
able”; an elephant, viewed from afar may be “wonder–able”, yet, when it gallops
towards us, it will afford danger and, possibly, harm. Also, a flying goose may
afford a feeling of beauty in one observer, while another one sees an object for
the dinner table. Perception is thus “economical” and only that information is
extracted which is necessitated by the affordance.

It is important to note that in Gibson’s world the objects in the environment
are not conceptual in the first place (“This is a bucket”) but obtained from the
concrete physical features of the visual field (after recognizing invariants etc.).
The name “bucket” is just a label arising from an affordance.

Even though affordances are a central construct of Gibson’s theory, there is
surprisingly little agreement on an operational, let alone ontological, definition of
the affordance concept. Various proposals have been made to model affordances.
Below, we give two examples:

– “Affordances . . . are relations between the abilities of organisms and features
of the environment. Affordances, that is, have the structure Affords–φ (fea-
ture,ability).” (Chemero [6], p. 189)

– “Let Wpq (e.g. a person-climbing-stairs system) = (Xp, Zq) be composed of
different things Z (e.g. person) and X (e.g. stairs). Let p be a property of
X and q be a property of Z. The relation between p and q, p

q , defines a
higher order property (i.e., a property of the animal – environment system),
h. Then h is said to be an affordance of Wpq if and only if
1. Wpq = (Xp, Zq) possesses h.
2. Neither Z nor X possesses h.” (Stoffregen [7], p. 123).

–

For an overview of operationalizations of affordances the reader is invited to
consult [8]. Here, we take the view that

– An affordance is a relation R between states (or intentionalities) of an agent
(animal, human, robot) and certain properties of its environment.

This is not as simple as it looks: The environment has infinitely many features,
and an affordance selects a set of features according to the agent’s “affordance
state” or “intentionality”, see Figure 1. These states form a nested set of over-
lapping possibilities. It is important to note that the agent is a part of the
environment, and that affordances depend on the agent’s properties as well as
those offered by the visual field as the stair–climbing environment shows:

“Gibson argued that the proper “objects” of perceiving are the same as
those of activity. Standing still, walking, and running are all relations
between an animal and its supporting surface.” [9, p 239]

Furthermore, affordances need to be modelled in a changing environment.
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Fig. 1. Affordances I

3 Affordances and Robots

Just as Gibson suggests that natural vision depends on the eyes, head, body, and
ground, so could one suggest that a camera, fixed to a robot, supported on the
ground, might support natural vision as well. Sahin et al. [8] provide a review
and subsequently build on both the concept of affordance, as well as the formal-
ization, with a particular idea in mind. They are motivated by their “interest
in incorporating the affordance concept into autonomous robot control.”[8] The
affordance concept can be viewed as a binary relation, between the agent and
environment, and though several attempts have been made to strengthen this
relation, none have been agreed upon. The challenge is trying to decipher what
parts of the environment, are related to what parts of the agent, and what each
relation should mean to both the agent and environment. Sahin et al. develop
the formalization by first generalizing ‘environment’ to ‘entity’, and ‘agent’ to
‘behavior’, and then suggesting that the effect of each relation between an entity
and a behavior, be explicit in the relation. They refine the formalization in their
paper from (environment, agent) to (effect, (entity, behavior)). The creation of
sets of 〈effect〉, and sets of 〈agent, behavior〉 tuples is given as the formaliza-
tion develops to account for the equivalences in entities, behaviors, affordances,
effects, and agents.

One of J.J.Gibson’s prominent ideas is the concept of optic flow which he stud-
ied originally pertaining to flying/landing aeroplanes. He reasoned that during
controlled motion, it is not what the parts of the environment are, that an animal
is attentive to, but rather where the parts are in relation to the agent, coupled
with their relative velocity. This agrees with Duchon, Warren and Kaelbling
[10] who implement this activity in robots. Ecological robotics can be described
as applying the theory of ecological psychology to the field of robotics. One
consequence of adhering to the ecological approach is the importance Gibson
lays on the optic array. Vision is the most prominent way in which agents pick
up information about their environment. “The flow of optical stimulation pro-
vides a ‘continuous feedback’ of information for controlling the flow of the motor
activity.”[11] The robots which Duchon et al. implemented used optic flow to
navigate a crowded lab and an atrium. Cameras mounted on top supplied con-
stant feedback to the actuators which used the relative velocities of objects in
the environment to control movement. The robots navigate around obstacles
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successfully without modeling the obstacles internally. The authors claim to
have recreated a ‘how’ pathway in an autonomous robot, hoping to support the
suggestion that the brain has separate ‘how’ and ‘what’ pathways by simulating
one of them.

In order to represent visual field data Yin et al [12] use extended quadtrees.
The quadtree representation offers a hierarchical decomposition of visual infor-
mation which can be implemented in a system or a robot. More generally, the
quadtree serves well as a representation of a hierarchy of approximation spaces
in the sense of Pawlak ([13,14]). As there is a huge number of possibilities to
construct the representation, the paper deals with the focus problem, which turns
out to be the mathematical problem of how to choose an optimal root node for
a quadtree to minimize the roughness of the representation. With the solution
to that problem, we are able to analyze the information of the data structure at
any stage of the hierarchy by an optimal rough set representation.

Certainly, this approximation is no more than a first step towards an af-
fordance based object representation using rough sets, as the guidance of the
perceiving act is something like an orientation affordance. But as the focus mech-
anism is described, it can be used in more complex and more dynamic situations.
Obviously, a system using this technology has no a priori layout of objects which
classical rough set based robot systems have (e.g. [15]), but offers a way how to
construct affordance based objects when perceiving a posterior.

4 Affordances and Concepts

A participatory view of “concepts” naturally leads to an affordance relation. In
machine learning, membership in a concept – or, more precisely, in a category
– may be “learned” by a sequence of examples and counterexamples; each finite
stage of this process may be called an approximation of the category. However, if
a concept is to be approximated, then there must be a notion of a “true concept”
that can be approximated. The background is the hypothesis that

– Membership in the category is defined by a common set of attributes the
presence of which is necessary and sufficient for membership.

In other words, machine learning classifiers are based on an extensional under-
standing of a concept; it may be noted that often no distinction is made between
a category and its corresponding concept. A typical situation is an “object – at-
tributes” relationship in which objects are described by feature vectors, and
concepts are formed by aggregating the object – attributes pairs into classes;
rough sets and formal concept analysis are typical examples of such procedure.
Aggregation algorithms are often purely syntactical, and semantical concerns
are taken care of in a pre–processing stage such as choice of attributes, depen-
dencies, weightings, prior probabilities etc. Once this is done, the meaning of a
concept is strictly truth–functional, i.e. the meaning of a composite expression
can be obtained from the meaning of its parts.

While the classical view of understanding a concept based on a set of defining
features and an extensional interpretation is appropriate in delineated contexts,
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it falls short where human cognition is concerned. This has been recognized for
some time, and various approaches to graded membership in conceptual cate-
gories have been proposed, for example, fuzzy sets [16,17,18], prototype theory
[19,20], or the rough set variable precision model [21]. Each of these approaches
have their own problems; for example, handling aggregated concepts within fuzzy
set theory suffers from the strict conditions imposed by t–norms, which are math-
ematically expedient, but not necessarily suitable in everyday situations [22,23].

Yet another aspect is the fact that (the meaning of) a concept may change
under varying contexts; Rosch [24] argues convincingly that

“Concepts occur only in actual situations in which they function as par-
ticipating parts of the situation rather than as either representations
or as mechanisms for identifying objects; concepts are open systems by
which creatures can learn new things and can invent; and concepts exist
in a larger context – they are not the only form in which living creatures
know and act”.

The contextual aspects adds to the discussion the pragmatic dimension well
known from linguistics. It seems sensible to regard a concept as a relation be-
tween elements of a set S of states or exemplars of a concept and elements of
a set of situations or contexts, where the situation affords a certain state of
the concept. For example, the concept TREE can have the states “fig tree”,
“oak”, “maple”, but also “artificial Christmas tree”, or a “connected acyclic
simple graph”. For another example, a state of the concept UMBRELLA may
be “closed” in the context “dry weather”, and may change to “open” when it
starts to rain. Such change may or may not occur, for example, if I have to walk
only a short distance in the rain I may not bother to open the umbrella.

One way to describe the inner object relationship given concept and context
information is to assume hidden (and unknown) attributes, which serve as a
basis for a state based description of the conditional inner object relationship.
In this direction, a formalism based on principles of quantum mechanics which
claims to represent concepts in a state – context – property relation (SCOP)
was presented by Aerts and Gabora [25,26]. Their theory assumes very strong
conditions – for example, the set of contexts needs to be a complete ortholattice
– which need further justification. To describe the concept “Pet” the SCOP
formalism requires a Hilbert Space with 1400 largely unspecified dimensions1.

An alternative which avoids adding hidden attributes, uses only the observ-
ables and coalitions of objects as a basis of a state description of the conditional
inner object relationship given a context. In terms of theories [27,28,29], the
Galois connection between the set of contexts and a certain collection of objects
sets (we call object states) enables us to use observables without assumptions of
hidden states.

A nice way to interpret contexts is to assume that each is a description of an
affordance structure, containing affording objects interacting with the perceiver.

1 It turns out that the SCOP formalism is largely tautological; we analyze the SCOP
formalism in a separate paper.
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Table 1. Exemplars and contexts

Exemplar e1 e2 e3 e4 e5 e6 1
Rabbit 4 7 15 5 1 0 7
Cat 25 13 22 3 3 1 12
Mouse 3 6 8 11 1 0 5
Bird 2 8 2 4 17 1 8
Parrot 2 16 1 4 63 1 7
Goldfish 1 2 0 2 0 48 10
Hamster 4 7 6 4 1 0 7
Canary 1 7 1 2 7 1 8
Guppy 1 2 0 2 0 46 9
Snake 2 2 1 22 0 1 3
Spider 1 1 3 23 0 0 2
Dog 50 19 24 3 6 0 12
Hedgehog 2 2 8 12 0 0 3
Guinea pig 3 7 9 4 1 0 7

Contexts
e1 The pet is chewing a bone
e2 The pet is being taught
e3 The pet runs through the garden
e4 Did you see the type of pet he has?

This explains that he is a weird person
e5 The pet is being taught to talk
e6 The pet is a fish
1 The pet is just a pet

Using the Galois connection among the set of contexts and object states, it is
possible to describe concepts and a concept hierarchy by integrating relations
which are governed by basic affordances (or simple contexts) to more complex
affordances (or contexts) which govern a certain structure of objects.

As an example for this idea we re-analyse the data presented in [25,26]. The
concept to be modelled is PET; 81 respondents were given 14 exemplars ai

(states) of the concept PET and 7 contexts ei. For each pair 〈ai, ej〉 they were
asked to rate the frequency with which exemplar ai appears in context ej ; the
responses and the contexts are shown in Table 1. Each context ei defines a
quasiorder on the set of exemplars by setting

an �ei am ⇐⇒ (an, ei) ≤ (am, ei).

We exhibit these quasiorders in Table 2; The rows indicate the position of the
exemplar in the quasiorder induced by the context named in the first column.
We assume that 1 is the most general context (“The pet is just a pet”). The
main aim of our approach is now to set up a relationship of concepts with vary-
ing contexts. To this end we introduce contrast concepts −ei by reversing the
order of the quasi-order of ei. In the spirit of rough sets, the approximation of
1 is done by finding that relation ei (or −ei) which is compatible with 1 for
most of the elements. In the second step, the compatible elements are removed
and the best context with respect to the remaining prototypes will be com-
puted. The iteration will come to an end, when either no context is left or the
quasi-order of any remaining contexts are incompatible with 1 on the remaining
prototypes.
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Table 2. The quasiorders

1 2 3 4 5 6 7 8 9 & 10
1 Cat Goldfish Guppy Bird Rabbit Mouse Snake Spider

Dog Canary Parrot Hedgehog
Hamster

Guinea pig
e1 Dog Cat Rabbit Mouse Bird Goldfish

Hamster Guinea Pig Parrot Canary
Snake Guppy

Hedgehog Spider
e2 Dog Parrot Cat Bird Rabbit Mouse Goldfish Spider

Hamster Guppy
Canary Snake

Guinea pig Hedgehog
e3 Dog Cat Rabbit Guinea pig Mouse Hamster Spider Bird Parrot(9)

Hedgehog Snake Goldfish(10)
Guppy(10)

e4 Spider Snake Hedgehog Mouse Rabbit Bird Dog Canary
Parrot Cat Guppy

Hamster
Guinea pig

e5 Parrot Bird Canary Dog Cat Mouse Goldfish
Hamster Guppy

Guinea pig Snake
Spider

Hedgehog
e6 Goldfish Guppy Cat Rabbit

Bird Mouse
Parrot Hamster
Canary Spider
Snake Dog

Hedgehog
Guinea pig

The algorithms leads to following result:

1 ← (−e4, e1, e6) with an approximation success of 80%, due to case that 76 of
the 95 elements of the quasi-order 1 is recovered by (−e4, e1, e6). Furthermore,
it is easy to show that

– The contrast concept −e4 is indispensable for the approximation of 1.
– The concept e1 can be replaced by e3.
– The concept e6 is only applicable, after e1 or e3 are applied (conditional

approximation). But e6 is indispensable.
– The concepts e2 and e5 are not compatible with 1.
– There are six prototypes for which the corresponding relations (governed by

1) cannot be substituted by any combination relation of the basic concepts.
For these prototypes we need other contexts to approximate 1.

We see that this simple approach leads us to quite good and reasonable results.
The main assumption was that we may use conditional relationships among
objects, which are governed by certain affordances.

5 A Closer Look at the Affordance Relations

In order to describe the affordance relation, many entities are used which have a
certain understanding for a perceiver (like a human), but are not self-contained,
when we wish to describe perceiving. Consider Figure 2 and the terms used in it.
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Fig. 2. Affordances II

Optical array. This seems as one would expect – there are some kind of sensors
which describe the outer world for the agent. Nevertheless, there is no good
reason to restrict ourselves to the term “optical”. An agent may have sen-
sors for infrared ”light” or for the consistency of surfaces (think of cleaning
robots).

Background and objects. It seems clear, the background is the residual of
object definitions in the optical array. But there are some problems as well,
because affordances establish the background-object relation as well.
Consider the following scenario: You are in a garden with wonderful apple
trees and nice apples. Obviously, the apple trees and the apples form objects.
The “eat–able” relation establishes the object formation; everything else –
e.g. the pathway to a house – is the background for perceiving apples given
the “eat–able” affordance. Obviously, one or more apples are objects for
this certain act of perceiving, because they are “pick–able” and afterwards
“eat–able”.

Things change dramatically, when a lion crosses your way. The “is–safe”
affordance governs the scene now, and one has to look for a path to the house
(which “is–safe”), and where we know that the path is “walk–able” and that
it is connected to an object which “is–safe”. Now, the object is the path and
certainly no apple is the object of perceiving in this moment, and even the
wonderful apple tree forms part of the background.

Note that even in very simple perceiving situations the object-background-
relations flip-flop dramatically as some paintings by Escher demonstrate.

Intentionalities. Whereas we – as humans – seem to know what “intentionali-
ties” mean, it is somewhat problematic to assume intentionalities for robots.
First of all, we note that this term is an abbreviation for one or more very
complex systems. One part of the system must refer to the agent as aiming
to control its future by applying transformations based on affordances. For
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example, the “walk–able” affordances may be triggered by certain intention-
alities in the following way:
– A pre–outer-part: An object approaches which is connected to the affor-

dance “hurt–able”.
– An inner part: The intentionality “have to escape” is triggered by the

objects. Now, an “is–safe” object combined with a “walk–able” object is
needed.

– An expected-post–outer part: This describes how certain change pat-
terns defined on the “optical array” appear, and what change pattern is
connected with an object with an “is–safe” affordance.

The example offers a view of intentionalities which are trigged by an event
from outside the agent. This is not true in general – internal “events” like
hunger or thirst may set intentionalities as well. The more complex the struc-
ture of the agent the more “hidden” intentionalities may exist.

6 Summary

Affordances are a basic concept of Gibson’s theory regarding how we view the
world. In a broader context, concepts can be viewed as affordances, robotic
vision can be modelled based on an affordance concept, and autonomous robots
could use the concept to act and react in their environments. A formalization of
affordance relations needs to provide crisp and fuzzy structures, mechanisms for
spatial and temporal change, as well as contextual modeling. Besides rough sets
[13], knowledge structures [28] and formal concept analysis [27], Barwise and
Perry’s situation theory [30,31] seems to be an appropriate tool for modeling
affordances (as suggested by Greeno [32]).

References

1. Gibson, J.J.: The Senses Considered as Perceptual Systems. Greenwood Press,
New York (1983); Originally published 1966 by Houghton Mifflin, Westport

2. Gibson, J.J.: The ecological approach to visual perception, 2nd edn. Lawrence
Erlbaum, Hillsdale (1986)

3. Norman, D.A.: The Design of Everyday Things. Basic Books (2002)
4. Warren, W.: Perceiving affordances: Visual guidance of stair climbing. Journal of

Experimental Psychology 10(5), 371–383 (1984)
5. Mace, W.L., James, J.: Gibson’s ecological approach: Perceiving what exists. Ethics

and the Environment 10(2), 195–215 (2005)
6. Chemero, A.: An outline of a theory of affordances. Ecological Psychology 15(2),

181–195 (2003)
7. Stoffregen, T.: Affordances as properties of the animal environment system. Eco-

logical Psychology 15(2), 115–134 (2003)
8. Sahin, E., Cakmak, M., Dogar, M., Ugur, E., Ücoluk: To afford or not to afford: A
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Abstract. The aim of the lecture is to provide a survey of state of the
art related to a research direction concerning relationships between rough
set theory and concurrency in the context of process mining in data. The
main goal of this review is the general presentation of the research in this
area. Discovering of concurrent systems models from experimental data
tables is very interesting and useful not only with the respect to cognitive
aspect but also to possible applications. In particular, in Artificial Intel-
ligence domains such as e.g. speech recognition, blind source separation
and Independent Component Analysis, and also in other domains (e.g.
in biology, molecular biology, finance, meteorology, etc.).

Keywords: Knowledge discovery, data mining, process mining, concur-
rent systems, rough sets, Petri nets.

1 Introduction

Data Mining and Knowledge Discovery [3],[8],[9],[34],[36] is a very dynamic re-
search and development area that is reaching maturity. Discovering unsuspected
relationships between data and hidden (intrinsic) models belong to main tasks
of Machine Learning [7]. Data are often generated by concurrent processes,
and discovering of concurrent system models may lead to better understand-
ing the nature of modeled systems, i.e., their structures and behaviors [10],[11]-
[12],[16],[17],[19],[20]-[22],[23]-[27],[28],[29]-[30],[31].

A concept of concurrent systems can be understood widely. In general case, a
concurrent system consists of processes, whose local states can coexist together
and they are partly independent. For example, as concurrent systems we can
treat systems consisting of social processes, economic processes, financial pro-
cesses, biological processes, genetic processes, meteorological processes, etc.

Subject matter of this lecture concerns methods of concurrent system model-
ing on the basis of observations or specifications of their behaviors given in the
form of different kinds of data tables. Data tables can include results of obser-
vations or measurements of specific states of concurrent processes. In this case,
created models of concurrent systems are useful for analyzing properties of mod-
eled systems, discovering the new knowledge about behaviors of processes, etc.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 12–19, 2009.
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Data tables can also include specifications of behaviors of concurrent processes.
Then, created models can be a tool for verification of those specifications, e.g.
during designing concurrent systems. Methods presented in this lecture can be
used, for example, in system designing or analyzing, data analysis, forecasting.

The aim of the lecture is to provide a survey of state of the art related to a
research direction concerning relationships between rough set theory and con-
currency. The idea of this research direction has been proposed by Z. Pawlak
in 1992 [14]. In the last two decades we have witnessed an intensive develop-
ment of this relatively new scientific discipline by among others A. Skowron, Z.
Suraj, J.F. Peters, R. Swinarski, K. Pancerz et al. [10],[11]-[12],[16],[17],[19],[20]-
[22],[23]-[27],[28],[29]-[30],[31],[33],[34].

In general, this research direction concerns the following problems: (i) discover-
ing concurrent system models from experimental data represented by information
systems, dynamic information systems or specialized matrices, (ii) reconstruction
of concurrent models, (iii) prediction of concurrent models change in time, (iv) a
use of rough set methods for extracting knowledge from data, (v) a use of rules for
describing system behaviors, (vi) modeling and analyzing of concurrent systems
by means of Petri nets on the basis of extracted rules.

2 Data Representation and Interpretation

In the research, data tables (information systems in Pawlak’s sense [13]) are
created on the basis of observations or specifications of process behaviors in the
modeled systems. The data table consists of a number of rows (each representing
an object). A row in the data table contains the results of sensory measurements
represented by the values of vector of attributes (a pattern). Values of attributes
can be interpreted as states of local processes in the modeled system of concur-
rent processes. However, we interpret the rows of data table as global states of
the system composed with local states of concurrent processes.

Sometimes during the design phase, it is beneficial to transform the origi-
nal experimental data table (with original attributes) into the transformed data
table containing projected attributes represented in possibly better attribute
space. In addition, frequently the attribute selection process follows, when only
the most relevant features are taking to form a final feature vector (a pattern).
These preprocessing steps are necessary when the resulting concurrent model,
constructed directly from the original data table is to complex and dimension-
ality of model variables is too high. Based on the OccamŠs razor (and Risannen
minimum description length paradigm) [3], in order to obtain the best general-
izing design system, the model and its variable should be as simple as possible
(preserving system functionality). The phase of attribute transformation and
relevant attribute selection is yet another difficult data mining step [3],[32],[34].
The input for our approach consists of the data table (if necessary, preprocessed
in a way described above).
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3 Research Methodology and Knowledge Representation

Proposed methods of discovering concurrent system models from data tables
are based on rough set theory and colored Petri net theory. Rough set theory
introduced by Z. Pawlak [13] provides advanced and efficient methods of data
analysis and knowledge extraction. Petri nets are the graphical and mathematical
tool for modeling of different kinds of phenomena, especially those, where actions
executed concurrently play a significant role. As a model for concurrency we
choose coloured Petri nets proposed by K. Jensen [6]. They allow to obtain
coherent and clear models suitable for further computer analysis and verification.
Analysis of net models can reveal important information about the structure and
dynamic behavior of the modeled system. This information can be also used to
evaluate the modeled system and suggest improvements or changes [10],[11]-[12].

Model construction is supported by methods of Boolean reasoning [2]. Boolean
reasoning makes a base for solving a lot of decision and optimization problems.
Especially, it plays a special role during generation of decision rules [18]. Data
describing examined phenomena and processes are represented by means of in-
formation systems [14], dynamic information systems [26] or specialized matrices
of forbidden states and matrices of forbidden transitions [10],[12]. An informa-
tion system can include the knowledge about global states of a given concurrent
system, understood as vectors of local states of processes making up the con-
current system, whereas a dynamic information system can include additionally
the knowledge about transitions between global states of the concurrent system.
The idea of representation of concurrent system by information system is due to
Z. Pawlak [14].

Nowadays, discovery of process models from data becomes a hot topic under
the name process mining (see, e.g. [1],[5],[8],[12],[16],[19],[27],[36]).

Specialized matrices are designed for specifying undesirable states of a given
concurrent systems (i.e., those states, which cannot hold together) and undesir-
able transitions between their states. Decomposition of data tables into smaller
subtables connected by suitable rules is also possible. Those subtables make up
modules of a concurrent system. Local states of processes represented in a given
subtable are linked by means of functional dependencies [21],[27],[12].

4 Maximal Consistent Extensions of Information Systems

Approaches considered in this lecture are based on the assumption that data col-
lected in data tables include only the partial knowledge about the structure and
the behavior of modeled concurrent systems. Nevertheless, such partial knowl-
edge is sufficient to construct a suitable mathematical models. The remaining
knowledge (or - in the sequel - a part of it) can be discovered on the basis of
created models.

The knowledge - about the modeled systems - encoded in a given data table
can be represented by means of rules which can be extracted from the data table.
We consider deterministic rules and inhibitory rules. In contrast to deterministic
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(standard) rules which have the relation attribute = value on the right-hand
side, inhibitory rules have on the right-hand side the relation attribute �= value.
The use of inhibitory rules allows us to represent more knowledge encoded in
data tables. As a result, concurrent models based on inhibitory rules are of-
ten more compact than models based on deterministic rules. Besides ŞexplicitŤ
global states, corresponding to objects, the concurrent system generated by the
considered data table can also have ŞhiddenŤ global states, i.e., tuples of at-
tribute values not belonging to a given data table but consistent with all the
rules. Such ŞhiddenŤ states can also be considered as realizable global states.
This was a motivation for introducing in [20] maximal consistent extensions of
information systems with both ŞexplicitŤ and ŞhiddenŤ global states. Such ex-
tension includes all possible global states consistent with all rules of a given kind
extracted from the original data table. More precisely, the maximal consistent
extension of an information system relative to the set of given kind of rules is
the set of all objects from the Cartesian product of ranges of attributes from
the information system, for which each rule from the set of rules is true. They
play important role in investigations at the intersection of the rough set theory
and the theory of concurrent systems [14],[20],[22],[17],[29]. The theoretical back-
grounds for the maximal consistent extensions of information systems as well as
the algorithmic problems such as: (i) the membership to the extension, (ii) the
construction of the extension, (iii) the construction of rule system describing the
extension, are presented in [4]. The obtained results and published in [4] show
that the inhibitory rules provide an essentially more power tool for knowledge
representation than the deterministic rules. These results will be useful in appli-
cations of data tables for analysis and design of concurrent systems specified by
data tables.

In this lecture, an approach to consistent extensions of information systems
and dynamic information systems is also presented. Especially, we are interested
in partially consistent extensions of such systems. Methods for computing such
extensions are given. In the proposed approach, global states of a modeled system
and also transitions between states (in the case of dynamic information systems)
can be consistent only partially with the knowledge included in the original
information system or dynamic information system describing a modeled system.
The way of computing suitable consistency factors of new global states or new
transitions between states with the original knowledge about systems is provided
(see [12]).

5 Structures of Concurrent Models

Two structures of concurrent system models are considered, namely synchronous
and asynchronous [12]. In the case of modeling based on information systems,
a created synchronous model enables us to generate the maximal consistent
extension of a given information system. An asynchronous model enable us to
find all possible transitions between global states of a given concurrent system,
for which only one process changes its local state. A model created on the basis
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of dynamic information system enables us to generate a maximal consistent
extension of that system. In this case, such an extension includes all possible
global states consistent with all rules extracted from the original data table and
all possible transitions between global states consistent with all transition rules
generated from the original transition system.

In this lecture, the problems of reconstruction of models and prediction of
their changes in time is also taken up. Those problems occur as a result of
appearing the new knowledge about modeled systems and their behaviors. The
new knowledge can be expressed by appearing new global states, new transitions
between states, new local states of individual processes or new processes in mod-
eled systems. In our approach, the concurrent model can be built on the basis
of a decomposed data table describing of a given system. If the description of a
given concurrent system changes (i.e., a new information system is available), we
have to reconstruct the concurrent model representing the old concurrent sys-
tem (described by the old data table). The structure of a constructed concurrent
model is determined on the basis of components of a data table (an information
system). Some methods for the reconstruction of concurrent models according
to such idea are presented in [24],[25],[30].

One of the important aspects of data mining is analysis of data changing in
time (i.e., temporal data). Many of the systems change their properties as time
goes. Then, models constructed for one period of time must be reconstructed
for another period of time. In the research, we assume that concurrent systems
are described by temporal information systems (data tables include consecutive
global states). In such a case, we observe behavior of modeled systems in consecu-
tive time windows that temporal information systems are split into. Observation
of changes enables us to determine the so-called prediction rules that can be
used to predict future changes of models. For representing prediction rules, both
prediction matrices [12] and Pawlak’s flow graphs are used [15].

6 Computer Tool

In the todayŠs computer science development, the usefulness of proposed methods
and algorithms for real-life data is conditioned by existing suitable computer tools
automating computing processes. Therefore, in this lecture the ROSECON system
is presented. ROSECON system is a computer tool supporting users in automated
discovering net models from data tables as well as predicting their changes in time.
The majority of methods and algorithms presented in this lecture is implemented
in ROSECON [11]. Results of experiments with using proposed methods and al-
gorithms on real-life data coming from finance are presented [12].

7 Applications

The considered research problems in this lecture belongs to emerged Artificial
Intelligence directions, and it is very important not only with the respect to
cognitive aspect but also to the possible applications. Discovering of concurrent
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systems models from experimental data tables is very interesting and useful for a
number of application domains. In particular, in Artificial Intelligence domains,
e.g. in speech recognition [3], blind source separation and Independent Com-
ponent Analysis. In biology and molecular biology; for example, in obtaining
the answer concerning the following question: How the model of cell evolution
depends on change of the gene codes (see e.g. [35], pp. 780-804).

In the light of the our research findings [10],[11]-[12],[17],[19],[20]-[22],[23]-
[27],[31] we can conclude that the rough set theory is suitable for solving problems
mentioned above.

8 Concluding Remarks

The presented research in the lecture allows us to understand better the struc-
ture and behavior of the modeled system. Due to this research, it is possible
to represent the dependencies between the processes in information system and
their dynamic interactions in graphical way. This approach can be treated as
a kind of decomposition of a given data table. Besides, our methodology can
be applied for automatic feature extraction. The processes and the connections
between processes in the system can be interpreted as new features of the mod-
eled system [23]. Properties of the constructed concurrent systems model (e.g.
their invariants) can be understand as higher level laws of experimental data.
As a consequence, this approach seems to be useful also for state identification
in real-time [20],[22],[27].

In the next paper, we will consider the prediction problem of property chang-
ing net models in non-stationary data systems. Such problem arises when ex-
perimental data tables change with time and the constructed net needs to be
modified by applying some strategies discovered during the process of changes.
We also pursuit application of the presented method to blind separation of
sources (for example concurrent time series represented by the dynamic dis-
crete data tables (contained sequential data). Practical applications comprise
separation of mixed continuous speech data, and model switching detection in
time series and in sequential data given by discrete data tables.
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Abstract. Intelligence Science is an interdisciplinary subject which dedicates to 
joint research on basic theory and technology of intelligence by brain science, 
cognitive science, artificial intelligence and others. Brain science explores the 
essence of brain, research on the principles and models of natural intelligence at 
molecular, cellular, and behavior levels. Cognitive science studies human men-
tal activities, such as perception, learning, memory, thinking, consciousness etc. 
Artificial intelligence attempts simulation, extension, and expansion of human 
intelligence using artificial methods and technologies. Researchers specialized 
in above three disciplines work together to explore new concepts, theories, and 
methodologies. If successful, it will create a brilliant future in 21st century. The 
paper will outline the framework of intelligence science and present its ten big 
challenges. Tolerance Granular Space Model (TGSM) will be discussed as one 
of helpful approaches. 

Keywords: Intelligence Science, Brain Science, Cognitive Science, Artificial 
Intelligence, Tolerance Granular Space Model. 

1   Introduction 

Intelligence is the ability to think and learn. How to create intelligence from matter? It 
is a valuable and extractive problem but it is also a tough problem. Since 1956 artifi-
cial intelligence is formally founded and has enjoyed tremendous success over the 
past fifty years. Its achievements and techniques are in the mainstream of computer 
science and at the core of many systems. For example, the computer beats the world’s 
chess champ, commercial systems are exploiting voice and speech capabilities, there 
are robots running around the surface of Mars and so on. We have made significant 
headway in solving fundamental problems in knowledge representing, symbolic rea-
soning, machine learning, and more. 

During the past fifty years, the Turing test and physical symbolic system hypothe-
sis play important roles to push research on artificial intelligence. Alan Turing 
claimed that it was too difficult to define intelligence. Instead he proposed Turing test 
in 1950 [1]. But the Turing test does not constitute an appropriate or useful criterion 
for human-level artificial intelligence. Nilsson suggested we replace the Turing test 
by the “employment test” [2]. To pass the employment test, AI programs must be able 
to perform the jobs ordinarily performed by humans. Systems with true human-level 
intelligence should be able to perform the tasks for which humans get paid. One can 
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hope that the skills and knowledge gained by a system’s education and experience and 
the habile-system approach toward human-level AI can be entered at whatever level. 

The 1975 ACM Turing Award was presented jointly to Allen Newell and Herbert 
A. Simon at the ACM Annual Conference in Minneapolis, October 20. They deliv-
ered the 1975 ACM Turing Award Lecture and proposed physical symbolic system 
hypothesis: “A physical symbol system has the necessary and sufficient means for 
intelligent action; it consists of a set of entities, called symbols, which are physical 
patterns that can occur as components of another type of entity called an expression” 
[3]. Traditional artificial intelligence follows the principle of physical symbolic sys-
tem hypothesis to get great successes, particular in knowledge engineering. 

During the 1980s Japan proposed the fifth generation computer system (FGCS).  
It suggested expecting knowledge information processing to form the main part of 
applied artificial intelligence and to become an important field of information proc-
essing in the 1990s. The key technologies of FGCS seem to be VLSI architecture, 
parallel processing such as data flow control, logic programming, knowledge base 
based on relational database, applied artificial intelligence and pattern processing. 
Inference machines and relational algebra machines are typical of the core processors 
which constitute FGCS. After ten years research and development FGCS project did 
not reach the expected goal and caused many to reflect over the strategy and method-
ology of artificial intelligence. 

In 1991, Kirsh pointed out five foundational issues for AI: (1) Core AI is the study 
of conceptualization and should begin with knowledge level theories. (2) Cognition 
can be studied as a disembodied process without solving the symbol grounding prob-
lem. (3) Cognition is nicely described in propositional terms. (4) We can study cogni-
tion separately from learning. (5) There is a single architecture underlying virtually all 
aspects of cognition [4]. Minsky argued that intelligence is the product of hundreds, 
probably thousands of specialized computational mechanisms he terms agents in 
Society of Mind [5]. There is no homogenous underlying architecture. In the society 
of mind theory, mental activity is the product of many agents of varying complexity 
interacting in hundreds of ways. The purpose of the theory is to display the variety of 
mechanisms that are likely to be useful in a mind-like system, and to advocate the 
need for diversity. There is no quick way to justify the assumption of architecture 
homogeneity. 

Humans are the best example of human-level intelligence. McCarthy declared the 
long-term goal of AI is human-level AI [6]. Recent works in multiple disciplines of 
cognitive science and neuroscience motivate new computational approaches to 
achieving human-level AI. In the book On Intelligence, Hawkins proposed machine 
intelligence meets neuroscience [7]. Granger presented a framework for integrating 
the benefits of parallel neural hardware with more serial and symbolic processing 
which motivated by recent discoveries in neuroscience [8]. Langley proposed a cogni-
tive architecture ICARUS which uses means-ends analysis to direct learning and 
stores complex skills in a hierarchical manner [9]. Sycara proposed the multi-agent 
systems framework which one develops distinct modules for different facets of an 
intelligent system [10]. Cassimatis and his colleagues investigate Polyscheme which 
is a cognitive architecture designed to model and achieve human-level intelligence by 
integrating multiple methods of representation, reasoning and problem solving [11]. 
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Through more than ten years investigation, particular encouraged by bioinformat-
ics which is a paragon combining biological science and information science in the 
end of 20 century, I think artificial intelligence should change the research paradigm 
and learn from natural intelligence. The interdisciplinary subject entitled Intelligence 
Science is promoted. In 2002 the special Web site called Intelligence Science and 
Artificial Intelligence has been appeared on Internet [12], which is constructed by 
Intelligence Science Lab of Institute of Computing Technology, Chinese Academy of 
Sciences. A special bibliography entitled Intelligence Science written by author was 
published by Tsinghua University Press in 2006 [13]. The book shows a framework 
of intelligence science and points out research topics in related subject. 

In order to resolve the challenge in information science and technology, that is, 
high performance computers with extremely low intelligence level, scientists research 
on brain-like computer. IBM has received a $4.9 million grant from DARPA to lead 
an ambitious, cross-disciplinary research project to create a new computing platform: 
electronic circuits that operate like a brain. Along with IBM Almaden Research  
Center and IBM T. J. Watson Research Center, Stanford University, University of 
Wisconsin-Madison, Cornell University, Columbia University Medical Center, and 
University of California-Merced are participating in the project. Henry Markram who 
is Director of the Center for Neuroscience & Technology and co-Director of EPFL's 
Brain Mind Institute involves unraveling the blueprint of the neocortical column, 
chemical imaging and gene expression.  

2   A Framework of Intelligence Science 

Intelligence science is an interdisciplinary subject mainly including brain science, 
cognitive science, and artificial intelligence. Brain science explores the essence of 
brain, research on the principle and model of natural intelligence in molecular, cell 
and behavior level. Cognitive science studies human mental activity, such as percep-
tion, learning, memory, thinking, consciousness etc. In order to implement machine 
intelligence, Artificial intelligence attempts simulation, extension and expansion of 
human intelligence using artificial methodology and technology [12]. 

Brain can perceive the outside world through our senses, such as eye, ear, nose, 
skin, each of which sends patterns corresponding to real-time environment. Sensory 
input provides abundant information about certain physical properties in the surround-
ing world. Reception, processing, and transmitting such information are often framed 
as a neural bottom-up process. The neural correlates of each can be studied in their 
own right by suitable experimental paradigms, and functional magnetic resonance 
imaging (fMRI) has proven very valuable in humans. 

The brain has trillions of neurons, with complicated branching dendrites, and doz-
ens of different types of ion-selective channels. Brain science, particularly computa-
tional neuroscience focuses on making detailed biologically realistic models which 
can be simulated by computer. It points out that perceptive lobes have special func-
tion separately, the occipital lobe processes visual information, the temporal lobe 
processes auditory information, the parietal lobe processes the information from the 
somatic sensors. All of three lobes deal with information perceived from the physical  
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world. Each lobe is covered with cortex where the bodies of neurons are located. 
Cortex consists of primary, intermediate and advanced areas at least. Information is 
processed in the primary area first, then is passed to intermediate and advanced area. 

Cognitive science is interdisciplinary study of mind and intelligence that embraces 
philosophy, psychology, artificial intelligence, neuroscience, linguistics, and anthro-
pology. Cognitive scientists study the nature of intelligence from a psychological 
point of view, mostly building computer models that help elucidate what happens in 
our brains during problem solving, remembering, perceiving, and other psychological 
processes. Cognitive science is a study how the mind works, both in its conceptual 
organization and computational and neural infrastructure. The mind contains percep-
tion, rational, consciousness and emotion. 

Comparing with computer system, the neural network in brain is the same as hard-
ware and the mind looks like software. Most work in cognitive science assumes  
that the mind has mental representations analogous to computer data structures, and 
computational procedures similar to computational algorithms. Connectionists have 
proposed novel ideas to use neurons and their connections as inspirations for data 
structures, and neuron firing and spreading activation as inspirations for algorithms. 
Cognitive science then works with a complex 3-way analogy among the mind, the 
brain, and computers. Mind, brain, and computation can each be used to suggest new 
ideas about the others. There is no single computational model of mind, since differ-
ent kinds of computers and programming approaches suggest different ways in which 
the mind might work. 

Artificial Intelligence develops programs to allow machines to perform functions 
normally requiring human intelligence, that is, attempts simulation, extension and 
expansion of human intelligence using artificial methods. Russell points out four 
approaches to artificial intelligence [14]: Acting humanly: the Turing test approach; 
Thinking humanly: the cognitive modeling approach; Thinking rationally: the “laws 
of thought” approach; Acting rationally: the rational agent approach. 

Traditional work in AI was based on the physical symbol system hypothesis [3]. In 
terms of the above hypothesis led to many successes both in creating tools that can 
achieve elements of intelligent behavior, as well as in illuminating the many compo-
nents that make up human intelligence. Previous research on artificial intelligence 
mainly simulates the human intelligence functionally and views the brain as black box. 
Research scientists of intelligence science are changing the situation and exploring 
innovative strategy and methodology for investigating the principles and key technol-
ogy of intelligence from cross multiple subjects. The book titled Intelligence Science 
presents a primary framework in detail [13]. 

3   Ten Big Issues of Intelligence Science 

Intelligence Science is an interdisciplinary subject which dedicates to joint research 
on basic theory and technology of intelligence by brain science, cognitive science, 
artificial intelligence and others. Ten big issues of intelligence science will be  
discussed in this section. 
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3.1   Basic Process of Neural Activity 

The brain is a collection of about 10 billion interconnected neurons. Neurons are 
electrically excitable cells in the nervous system that process and transmit information. 
A neuron's dendritic tree is connected to thousands neighbouring neurons [15]. When 
one of those neurons is activated, positive or negative charge is received by one of the 
dendrites. The strengths of all the received charges are added together through the 
processes of spatial and temporal summation. The aggregate input is then passed to 
the soma (cell body). The soma and the enclosed nucleus don't play a significant role 
in the processing of incoming and outgoing data. Their primary function is to perform 
the continuous maintenance required to keep the neuron functional. The output 
strength is unaffected by the many divisions in the axon; it reaches each terminal 
button with the same intensity it had at the axon hillock. 

Each terminal button is connected to other neurons across a small gap called a syn-
apse. The physical and neurochemical characteristics of each synapse determine the 
strength and polarity of the new input signal. This is where the brain is the most flexi-
ble, and the most vulnerable. In molecular level neuron signal generation, transmis-
sion and neurotransmitters are basic problems attracted research scientists to engage 
investigation in brain science. 

3.2   Synaptic Plasticity 

One of the greatest challenges in neuroscience is to determine how synaptic plasticity, 
learning and memory are linked. Two broad classes of models of plasticity are de-
scribed by Phenomenological models and Biophysical models [16]. 

Phenomenological models are characterized by treating the process governing syn-
aptic plasticity as a black box that takes as input a set of variables, and produces as 
output a change in synaptic efficacy. No explicit modeling of the biochemistry and 
physiology leading to synaptic plasticity is implemented. Two different classes of 
phenomenological models, rate based and spike based, have been proposed. 

Biophysical models, in contrast to phenomenological models, concentrate on  
modeling the biochemical and physiological processes that lead to the induction and 
expression of synaptic plasticity. However, since it is not possible to implement  
precisely every portion of the physiological and biochemical networks leading to 
synaptic plasticity, even the biophysical models rely on many simplifications and 
abstractions. Different cortical regions, such as Hippocampus and Visual cortex have 
somewhat different forms of synaptic plasticity. 

3.3   Perceptual Representation and Feature Binding 

The perceptual systems are primarily visual, auditory and kinesthetic, that is, pictures, 
sounds and feelings. There is also olfactory and gustatory, i.e. smell and taste. The 
perceptual representation is a modeling approach that highlights the constructive, or 
generative function of perception, or how perceptual processes construct a complete 
volumetric spatial world, complete with a copy of our own body at the center of that 
world. The representational strategy used by the brain is an analogical one; that is, 
objects and surfaces are represented in the brain not by an abstract symbolic code, or 
in the activation of individual cells or groups of cells representing particular features 
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detected in the visual field. Instead, objects are represented in the brain by construct-
ing full spatial effigies of them that appear to us for whole world like the objects 
themselves or at least so it seems to us only because we have never seen those objects 
in their raw form, but only through our perceptual representations of them. 

The binding problem is an important one across many disciplines, including psy-
chology, neuroscience, computational modeling, and even philosophy. Feature bind-
ing is the process how a large collection of coupled neurons combines external data 
with internal memories into coherent patterns of meaning. Due to neural synchroniza-
tion theory, it is achieved via neural synchronization. When external stimuli come 
into the brain, neurons corresponding to the features of the same object will form a 
dynamic neural assembly by temporal synchronous neural oscillation, and the dy-
namic neural assembly, as an internal representation in the brain, codes the object in 
the external world. 

3.4   Coding and Retrieval of Memory 

A brain has distributed memory system, that is, each part of brain has several types of 
memories that work in somewhat different ways, to suit particular purposes. Accord-
ing to the stored time of contents memory can be divided into long term memory, 
short term memory and working memory. Research topics in memory relate to coding, 
extracting and retrieval of information. Current working memory attracts more re-
searchers to involve. 

Working memory will provides temporal space and enough information for com-
plex tasks, such as understanding speech, learning, reasoning and attention. There are 
memory and reasoning functions in the working memory. It consists of three compo-
nents: that is, central nervous performance system, video space primary processing 
and phonetic circuit [19]. 

Memory phenomena have also been categorized as explicit or implicit. Explicit 
memories involve the hippocampus-medial temporal lobe system. The most common 
current view of the memorial functions of the hippocampal system is the declarative 
memory. There are a lot of research issues that are waiting for us to resolve. What is 
the readout system from the hippocampal system to behavioral expression of learning 
in declarative memory? Where are the long-term declarative memories stored after the 
hippocampal system? What are the mechanisms of time-limited memory storage in 
hippocampus and storage of permanent memories in extra- hippocampal structures? 

Implicit memory involves cerebellum, amygdala, and other systems [20]. Cerebel-
lum is necessary for classical conditioning of discrete behavioral responses. It is 
learning to make specific behavioral responses. Amygdalar system is learning fear 
and associated autonomic responses to deal with the situation. 

3.5   Linguistic Cognition 

Language is fundamentally a means for social communication. Language is also often 
held to be the mirror of the mind. Chomsky developed transformational grammar that 
cognitivism replaced behaviorism in linguistics [21]. 

Through language we organize our sensory experience and express our thoughts, 
feelings, and expectations. Language is particular interesting from cognitive informatics 
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point of view because its specific and localized organization can explore the functional 
architecture of the dominant hemisphere of the brain. 

Recent studies of human brain show that the written word is transferred from the 
retina to the lateral geniculate nucleus, and from there to the primary visual cortex. 
The information then travels to a higher-order center, where it is conveyed first to the 
angular gyrus of the parietal-temporal-occipital association cortex, and then to Wer-
nicke’s area, where visual information is transformed into phonetic representation of 
the word. For the spoken word auditory information is processed by primary auditory 
cortex. Then information input to higher-order auditory cortex, before it is conveyed 
to a specific region of parietal-temporal- occipital association cortex, the angular 
gyrus, which is concerned with the association of incoming auditory, visual, and tac-
tile information. From here the information is projected to Wernicke’s area and 
Broca’s area. In Broca’s area the perception of language is translated into the gram-
matical structure of a phrase and the memory for word articulation is stored [22].  
Fig. 2 illustrates language processing based on Wernicke-Geschwind model in brain. 

Perceptual Mechanism

 

Fig. 1. Language processing in brain 

3.6   Learning 

Learning is the basic cognitive activity and accumulation procedure of experience and 
knowledge. Through learning, system performance is improved. Perceptual learning, 
cognitive learning, and implicit learning are active research topics. 

Perceptual learning should be considered as an active process that embeds particu-
lar abstraction, reformulation and approximation within the Abstraction framework. 
The active process refers to the fact that the search for a correct data representation is 
performed through several steps. A key point is that perceptual learning focuses on 
low-level abstraction mechanism instead of trying to rely on more complex algorithm. 
In fact, from the machine learning point off view, perceptual learning can be seen as a 
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particular abstraction that may help to simplify complex problem thanks to a comput-
able representation. Indeed, the baseline of Abstraction, i.e. choosing the relevant data 
to ease the learning task, is that many problems in machine learning cannot be solve 
because of the complexity of the representation and is not related to the learning algo-
rithm, which is referred to as the phase transition problem. Within the abstraction 
framework, we use the term perceptual learning to refer to specific learning task that 
rely on iterative representation changes and that deals with real-world data which 
human can perceive. 

In contrast with perceptual learning, cognitive learning is a leap in cognition proc-
ess. It generates knowledge by clustering, classification, conceptualization and so on. 
In general, there are inductive learning, analogical learning, case-based learning, 
explanation learning, and evolutional learning connectionist learning. 

The core issue of cognitive learning is self-organizing principles. Kohonen has 
proposed self-organizing maps which is a famous neural network model. Babloyantz 
applied chaotic dynamics to study brain activity. Haken has proposed a synergetic 
approach to brain activity, behavior and cognition. 

Introspective learning is an inside brain learning, i.e., there is no input from outside 
environment. We have proposed a model for introspective learning with 7 parts in 
Figure 3, such as expectant objective, evaluation, explanation, reconstruct strategy, 
meta cognition, case bases and knowledge base. 

 Behavior Fail
Reconstruct 
Strategy Evaluation 

Meta 

Cognitio

Expectant 

Objective 

Explanation

Knowledge 

Bases 
  Case    

Bases
 

Fig. 2. Introspective learning 

The term implicit learning was coined by Reber to refer to the way people could 
learn structure in a domain without being able to say what they had learnt [23]. Reber 
proposed artificial grammars to study implicit learning for unconscious knowledge 
acquisition. It will help to understand the learning mechanism without consciousness. 
Since middle of 1980’s implicit learning become an active research area in psychology. 

In the Machine Learning Department within Carnegie Mellon University's School 
of Computer Science researchers receive $1.1 million from Keck Foundation to pur-
sue new breakthroughs in learning how the brain works. Cognitive neuroscience pro-
fessor Marcel Just and computer science professor Tom Mitchell have received a 
three-year grant from the W. M. Keck foundation to pursue new breakthroughs in the 
science of brain imaging [24]. 
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3.7   Thought 

Thought is a reflection of essential attributes and internal laws of objective reality in 
conscious, indirect and generalization by human brain with consciousness [25]. In 
recent years, there has been a noteworthy shift of interest in cognitive science. Cogni-
tive process raises man's sense perceptions and impressions to logical knowledge. 
According to abstraction degree of cognitive process, human thought can be divided 
into three levels: perception thought, image thought and abstraction thought. A hierar-
chical model of thought which illustrates the characteristics and correlations of 
thought levels has been proposed in [26]. Fig 4 shows the hierarchical thought model 
of brain. 

 

Fig. 3. Hierarchical thought model of brain 

Perception thought is the lowest level of thought. Behavior is the objective of re-
search in perception thought. Reflection is a function of stimulus. Perception thought 
emphasizes stimulus-reflection schema or perception-action schema. The thought of 
animal and infant usually belong to perception thought because they cannot intro-
spect, and cannot declare empirical consciousness [25]. In perception thought, intelli-
gent behavior takes place without representation and reasoning. 

Behavior-based artificial intelligence has produced the models of intelligence 
which study intelligence from the bottom up, concentrating on physical systems, situ-
ated in the world, autonomously carrying out tasks of various sorts. They claim that 
simple things to do with perception and mobility in a dynamic environment took evo-
lution much longer to perfect. Intelligence in human has been taking place for only a 
small fraction of our evolutionary lineage. Machine intelligence can take evolution by 
the dynamics of interaction with the world. 

3.8   Emotion 

The mental perception of some fact excites the mental affection called the emotion, 
and that this latter state of mind gives rise to the bodily expression. Emotion is a  
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complex psychophysical process that arises spontaneously, rather than through con-
scious effort. It may evoke positive or negative psychological responses and physical 
expressions. Research on emotion at varying levels of abstraction, using different 
computational methods, addressing different emotional phenomena, and basing their 
models on different theories of affect. 

Since the early 1990s emotional intelligence has been systematically studied [27]. 
Scientific articles suggested that there existed an unrecognized but important human 
mental ability to reason about emotions and to use emotions to enhance thought. 
Emotional intelligence refers to an ability to recognize the meanings of emotion and 
their relationships, as well as ability to reason and problem solve on the basis of them. 
Emotional intelligence is involved in the capacity to perceive emotions, assimilate 
emotion-related feelings, understand information of emotions, and manage them. 

3.9   Nature of Consciousness 

The most important scientific discovery of the present era will come to answer how 
exactly do neurobiological processes in the brain cause consciousness? The question 
“What is the biological basis of consciousness?” is selected as one of the 125 ques-
tions formulated for Science's 125th anniversary. Recent scientifically oriented ac-
counts of consciousness emerge from the properties and organization of neurons in 
the brain. Consciousness is the notion of mind and soul. 

Physical basis of consciousness appears as the crucial challenge to scientific, re-
ductionist world view. Francis Crick's book 'The astonishing Hypothesis' is an effort 
to chart the way forward in the investigation of consciousness [28]. Crick has pro-
posed the basic ideas of researching consciousness: a) It seems probable, however, 
that at any one moment some active neuronal processes in your head correlate with 
consciousness, while others do not. What are the differences between them? b) All the 
different aspect of consciousness, for example pain and visual awareness, employ a 
basic common mechanism or perhaps a few such mechanisms. If we could understand 
the mechanisms for one aspect, then we hope we will have gone most of the way to 
understanding them all. 

Chalmers suggests the problem of consciousness can be broken down into several 
questions. The major one is the neuronal correlate of consciousness (NCC) which 
focuses on specific processes that correlate with the current content of consciousness 
[29]. The NCC is the minimal set of neurons, most likely distributed throughout cer-
tain cortical and subcortical areas, whose firing directly correlates with the perception 
of the subject at the time. Discovering the NCC and its properties will mark a major 
milestone in any scientific theory of consciousness. Several other questions need to be 
answered about the NCC. What type of activity corresponds to the NCC? What 
causes the NCC to occur? And, finally, what effect does the NCC have on postsynap-
tic structures, including motor output. 

3.10   Mind Modeling 

Mind is a very important issue in intelligence science, and also it is a tuff problem. 
Mind could be defined as: “That which thinks, reasons, perceives, wills, and feels. 
The mind now appears in no way separate from the brain. In neuroscience, there is no 



30 Z. Shi 

 

duality between the mind and body. They are one.” in Medical Dictionary [30]. A 
mind model is intended to be an explanation of how some aspect of cognition is ac-
complished by a set of primitive computational processes. A model performs a spe-
cific cognitive task or class of tasks and produces behavior that constitutes a set of 
predictions that can be compared to data from human performance. Task domains that 
have received attention include problem solving, language comprehension, memory 
tasks, and human-device interaction. 

Researchers try to construct mind model to illustrate how brains do. Anderson and 
colleagues have demonstrated that a production rule analysis of cognitive skill, along 
with the learning mechanisms posited in the ACT model, provide detailed and ex-
planatory accounts of a range of regularities in cognitive skill acquisition in complex 
domains such as learning to program Lisp [31]. ACT also provides accounts of many 
phenomena surrounding the recognition and recall of verbal material, and regularities 
in problem solving strategies. 

In the early 1980’s, SOAR was developed to be a system that could support multi-
ple problem solving methods for many different problems [32]. In the mid 1980’s, 
Newell and many of his students began working on SOAR as a candidate of unified 
theories of cognition. SOAR is a learning architecture that has been applied to do-
mains ranging from rapid, immediate tasks such as typing and video game interaction 
to long stretches of problem solving behavior. SOAR has also served as the founda-
tion for a detailed theory of sentence processing, which models both the rapid on-line 
effects of semantics and context, as well as subtle effects of syntactic structure on 
processing difficulty across several typologically distinct languages. 

The Society of Mind offers a revolutionary theory of human thought [5]. Minsky 
proposes that the mind consists of several kinds of non-thinking entities, called 
agents. Agents alone repeat their tasks with great acumen, but they execute their work 
with no understanding of it. Thought occurs when societies of agents interact and 
relate, much as a jet engine's components work to generate thrust. Human personality 
is not controlled by a centralized "conductor" in the brain, but rather emerges from 
seemingly unintelligent and unconnected mental processes, or "agents." With Min-
sky's theory as a metaphor, participants will reach a new sensitivity to the many dif-
ferent parts of the mind that are engaged when we enjoy and respond to music. 

3.11   Tolerance Granular Space Model 

Granular computing is an emerging paradigm of information processing. Information 
granules are collections of entities that usually originate at the numeric level and are 
arranged together due to their similarity, functional adjacency, indistinguishability, 
coherency, and so on, which arise in the process of data abstraction and derivation of 
knowledge from information. 

At the present granular computing mainly includes fuzzy set-based computing with 
words, rough set and quotient space theory. Computing with Words involves comput-
ing and reasoning with fuzzy information granules. Rough set focuses on study on 
how to represent unknown concept (subset) by constructing upper approximation and 
lower approximation with equivalence classes. But topological structures of spaces 
consisting of these equivalence classes are hardly taken into account. In contrast, 
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quotient space theory describes the space structure, which focuses on transformation 
and dependence between different granular worlds. 

A new tolerance granular space model is presented [33]. The basic idea of the 
model is based on the human ability, that is, people can abstract or synthesize the 
knowledge and data relating with special tasks to different degrees or sizes granules, 
and accomplish the tasks with the help of the granules and relations among them. The 
model of tolerance granular spaces has been applied to solve classification, decision-
making, image texture recognizing and so on. 

4   Perspective on Intelligence Science 

The intelligence revolution with the goal to replace human brain work by machine 
intelligence is the next revolution in human society. The incremental efforts in neuro-
science and cognitive science provide us exciting solid foundation to explore brain 
model and intelligent behavior. We should research on neocortical column, popula-
tion coding, mind model, consciousness etc. for the human-level intelligence and 
brain-like computer. We believe that intelligence science will make great progress 
and new breakthroughs in the coming 50 years. Let us work together to contribute our 
intellect and capability to promote the development of intelligence science and be-
come a bright spot of human civilization in 21 century. 
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Abstract. For data given by binary object-attribute datatables For-
mal Concept Analysis (FCA) provides with a means for both convenient
computing hierarchies of object classes and dependencies between sets of
attributes used for describing objects. In case of data more complex than
binary to apply FCA techniques, one needs scaling (binarizing) data. Pat-
tern structures propose a direct way of processing complex data such as
strings, graphs, numerical intervals and other. As compared to scaling
(binarization), this way is more efficient from the computational point
of view and proposes much better vizualization of results. General def-
inition of pattern structures and learning by means of them is given.
Two particular cases, namely that of graph pattern structures and in-
terval pattern structures are considered. Applications of these pattern
structures in bioinformatics are discussed.

1 Introduction

Many problems of constructing domain taxonomies and ontologies, as well as
finding dependencies in data, can be solved with the use of the models based on
closure operators and respective lattices of closed sets within Formal Concept
Analysis (FCA) [21,9]. The main definitions of FCA start from a binary relation,
coming from applications as a binary object-attribute table. These tables (called
contexts in FCA) give rise to lattices whose diagrams give nice visualizations of
classes of objects of a domain. At the same time, the edges of these diagrams give
essential knowledge about objects, by giving the probabilities of cooccurrence
of attributes describing objects [17,18,19], this type of knowledge being known
under the name of association rules in data mining.

However in many real-world applications researchers deal with complex and
heteregeneous data different from binary datatables in involving numbers, strings,
graphs, intervals, logical formulas, etc. for making descriptions of objects from
an application domain. To apply FCA tools to data of these types, one needs
binarizing initial data or, in FCA terms, applying conceptual scaling. Many types
of scaling exist (see [9]), but do not always suggest the most efficient implemen-
tation right away, and there are situations where one would choose original or
other data representation forms rather than scaled data [7]. Although scaling
allows one to apply FCA tools, it may drastically increase the complexity of
representation and worsen the visualization of results.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 33–44, 2009.
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Instead of scaling one may work directly with initial data descriptions defining
so-called similarity operators, which induce semilattice on data descriptions.
In recent decades several attempts were done in defining such semilattices on
sets of graphs [12,16,13], numerical intervals [12,10], logical formulas [2,3], etc.
In [7] a general approach called pattern structures was proposed, which allows
one to extend standard FCA approaches to arbitrary partially ordered data
descriptions. In this paper we consider pattern structures for several data types
and applications, showing their advantages and application potential.

The rest of the paper is organized as follows: In Section 2 we recall basic
definitions of FCA, as well as related machine learning and rule mining models. In
Section 3 we present pattern structures and respective generalization of machine
learning and rule mining models. In Sections 4 and 5 we consider particular
pattern structures on sets of graphs and vectors of intervals and discuss their
applications in bioinformatics. In Section 6 we discuss computational issues of
pattern structures.

2 Concept Lattices and Concept-Based Learning

2.1 Main Definitions

First we introduce standard FCA definitions from [9]. Let G and M be arbitrary
sets and I ⊆ G×M be an arbitrary binary relation between G and M . The triple
(G, M, I) is called a (formal) context. Each g ∈ G is interpreted as an object,
each m ∈ M is interpreted as an attribute. The fact (g, m) ∈ I is interpreted as
“g has attribute m”. The two following derivation operators (·)′

A′ = {m ∈ M | ∀g ∈ A : gIm} for A ⊆ G,

B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆ M

define a Galois connection between the powersets of G and M . For A ⊆ G,
B ⊆ M , a pair (A, B) such that A′ = B and B′ = A, is called a (formal) concept.
Concepts are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1).
With respect to this partial order, the set of all formal concepts forms a complete
lattice called the concept lattice of the formal context (G, M, I). For a concept
(A, B) the set A is called the extent and the set B the intent of the concept.

The notion of dependency in data is captured in FCA by means of implications
and partial implications (association rules). For A, B ⊆ M the implication A →
B holds if A′ ⊆ B′ and the association rule (called partial implication in [17])
A −→c,s B with confidence c and support s holds if s ≥ |A′∩B′|

|G| and c ≥ |A′∩B′|
|A′| .

The language of FCA, as we showed in [6], is well suited for describing a model
of learning JSM-hypotheses from [4,5]. In addition to the structural attributes of
M , consider a target attribute ω /∈ M . This partitions the set G of all objects into
three subsets: The set G+ of those objects that are known to have the property ω
(these are the positive examples), the set G− of those objects of which it is known
that they do not have ω (the negative examples) and the set Gτ of undetermined
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examples, i.e., of those objects, of which it is unknown if they have property ω
or not. This gives three subcontexts of K = (G, M, I), the first two staying for
the training sample:

K+ := (G+, M, I+), K− := (G−, M, I−), and Kτ := (Gτ , M, Iτ ),

where for ε ∈ {+,−, τ} we have Iε := I ∩ (Gε × M) and the corresponding
derivation operators are denoted by (·)+, (·)−, (·)τ , respectively.

Intents, as defined above, are attribute sets shared by some of the observed
objects. In order to form hypotheses about structural causes of the target at-
tribute ω, we are interested in sets of structural attributes that are common to
some positive, but to no negative examples. Thus, a positive hypothesis h for
ω (called “counter-example forbidding hypotheses” in the JSM-method [4,5]) is
an intent of K+ such that h+ �= ∅ and h �⊆ g− := {m ∈ M | (g, m) ∈ I−} for
any negative example g ∈ G−. Negative hypotheses are defined similarly. Various
classification schemes using hypotheses are possible, as an example consider the
following simple scheme from [5]: If the intent

gτ := {m ∈ M | (g, m) ∈ Iτ}

of an object g ∈ Gτ contains a positive, but no negative hypothesis, then gτ

is classified positively. Negative classifications are defined similarly. If gτ con-
tains hypotheses of both kinds, or if gτ contains no hypothesis at all, then the
classification is contradictory or undetermined, respectively. In this case one can
apply standard probabilistic techniques known in machine learning and data
mining (majority vote, Bayesian approach, etc.). Notwithstanding its simplicity,
the model of learning and classification with concept-based hypotheses proved
to be efficient in numerous studies in bioinformatics [1,8,15].

A well-known application of concept lattices in data mining use the fact that
the edges of the lattice diagram make a basis of association rules for the con-
text [17,18,19]. In fact, each edge of a concept lattice diagram, connecting a
higher concept (A′, A) and a lower concept (B, B′), corresponds to a set of
association rules of the form (Y ) −→c,s B (where Y is minimal in the set
{X ⊆ A | X ′′ = A}) and all other association rules may be obtained from
rules of these type by some inference [11].

2.2 Many-Valued Contexts and Their Interordinal Scaling

Consider an object-attribute table whose entries are not binary. It can be given
by a quadruple K1 = (G, S, W, I1), where G, S, W are sets and I1 is a ternary
relation I1 ⊆ G×S×W . In FCA terms K1 = (G, S, W, I1) is called a many-valued
context.

Consider an example of analyzing gene expression data (GED) given by tables
of values. The names of rows correspond to genes. The names of the columns of
the table correspond to situations where genes are tested. A table entry is called
an expression value. A row in the table is called expression profile associated
to a gene. In terms of many-valued contexts, the set of genes makes the set of
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objects G, the set of situations makes the set of many-valued attributes S, the
set of expression values makes the set W ⊂ R and I1 ⊆ G× S ×W . Then K1 =
(G, S, W, I1) is a many-valued context representing a GED. The fact (g, s, w) ∈ I1
or simply g(s) = w means that gene g has an expression value w for situation
s. The objective is to extract formal concepts (A, B) from K1, where A ⊆ G is
a subset of genes sharing “similar values” of W , i.e. lying in a same interval.
To this end, we use an appropriate binarization (scaling) technique to build a
formal context K2 = (G, S2, I2), called derived context of K1.

A scale is a formal context (cross-table) taking original attributes of K1 with
the derived ones of K2. As attributes do not take necessarily same values, each
of them is scaled separately. Let Ws ⊆ W be the set of all values of the attribute
s. The following interordinal scale (see pp. 42 in [9]) can be used to represent all
possible intervals of attribute values:

IWs = (Ws, Ws,≤)|(Ws, Ws,≥).

The operation of apposition of two contexts with identical sets of objects, denoted
by |, returns the context with the same set of objects Ws and the set of attributes
corresponding to the disjoint union of attribute sets of the original contexts. In
our case this operation is applied to two contexts (Ws, Ws,≤) and (Ws, Ws,≥)),
the table below gives an example for Ws = {4, 5, 6}.

s1 ≤ 4 s1 ≤ 5 s1 ≤ 6 s1 ≥ 4 s1 ≥ 5 s1 ≥ 6
4 × × × ×
5 × × × ×
6 × × × ×

The intents given by interordinal scaling are value intervals.

3 Pattern Structures

3.1 Main Definitions and Results

Let G be a set (interpreted as a set of objects), let (D,�) be a meet-semi-lattice
(of potential object descriptions) and let δ : G −→ D be a mapping. Then
(G, D, δ), where D = (D,�), is called a pattern structure, provided that the set

δ(G) := {δ(g) | g ∈ G}
generates a complete subsemilattice (Dδ,�) of (D,�), i.e., every subset X of
δ(G) has an infimum �X in (D,�) and Dδ is the set of these infima.

Elements of D are called patterns and are naturally ordered by subsumption
relation �: given c, d ∈ D one has c � d ⇐⇒ c � d = c. A pattern structure
(G, D, δ) gives rise to the following derivation operators (·)�:

A� =
�

g∈A

δ(g) for A ⊆ G,

d� = {g ∈ G | d � δ(g)} for d ∈ (D,�).
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These operators form a Galois connection between the powerset of G and (D,�).
� is also called a similarity operator. The pairs (A, d) satisfying

A ⊆ G, d ∈ D, A� = d, and A = d�

are called the pattern concepts of (G, D, δ), with extent A and pattern intent d.
For a, b ∈ D the pattern implication a → b holds if a� ⊆ b�, and the pattern
association rule a −→c,s b with confidence c and support s holds if s ≥ |a��b�|

|G|
and c ≥ |a��b�|

|a�| . Like in case of association rules, pattern association rules may
be inferred from a base that corresponds to the set of edges of the diagram of
the pattern concept lattice.

Operator (·)�� is an algebraical closure operator [9] on patterns, since it is

idempotent: d���� = d��,
extensive: d � d��,
monotone: d�� � c�� for d � c.

In [6] we showed that if (D,�) is a complete meet-semi-lattice (where infimums
are defined for arbitrary subsets of elements), in particular a finite semi-lattice,
there is a subset M ⊆ D with the following interesting property: The concepts
of the formal context (G, M, I) where I is given as gIm : ⇔ m � δ(g), called a
representation context for (G, D, δ), are in one-to-one correspondence with the
pattern concepts of (G, D, δ). The corresponding concepts have the same first
components (called extents). These extents form a complete lattice, which is
isomorphic to the concept lattice of (G, M, I). This result is proved by a standard
application of the basic theorem of FCA (which allows one to represent every
lattice as a concept lattice) [21,9] and shows the way of binarizing complex data
representation given by a pattern structure. The cost of this binarization may
be a large amount attributes of the representation context and hence, the space
needed for storing this context.

3.2 Learning with Pattern Structures

The concept learning model described in the previous section for standard object-
attribute representation (i.e., formal contexts) is naturally extended to pattern
structures. Suppose we have a set of positive examples E+ and a set of negative
examples E− w.r.t. a target attribute.

A pattern h ∈ D is a positive hypothesis iff

h� ∩ E− = ∅ and ∃A ⊆ E+ : A� = h.

Again, a positive hypothesis is a similarity (or least general generalization of
descriptions) of positive examples, which is not contained in (does not cover) any
negative example. A negative hypothesis is defined analogously, by interchanging
+ and −.

The meet-preserving property of projections implies that a hypothesis Hp in
data under projection ψ corresponds to a hypothesis H in the initial represen-
tation for which the image under projection is equal to Hp, i.e., ψ(H) = Hp.
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Hypotheses are used for classification of undetermined examples along the lines
of [5]. The corresponding definitions are similar to those from Section 2, one just
needs to replace ⊆ with �.

3.3 Projections and Learning in Projections

For some pattern structures (e.g., for the pattern structures on sets of graphs
with labeled vertices) even computing subsumption of patterns may be NP-hard.
Hence, for practical situations one needs approximation tools, which would re-
place the patterns with simpler ones, even if that results in some loss of informa-
tion. To this end we use a mapping ψ : D → D that replaces each pattern d ∈ D
by ψ(d) such that the pattern structure (G, D, δ) is replaced by (G, D, ψ ◦ δ).
To distinguish two pattern structures, which we consider simultaneously, we use
the symbol � only for (G, D, δ), not for (G, D, ψ ◦ δ). Under some natural al-
gebraic requirements (that hold for all natural projections in particular pattern
structures we studied in applications) the meet operation � is preserved:

ψ(X � Y ) = ψ(X) � ψ(Y ).

This property of projection allows one to relate hypotheses in the original rep-
resentation with those approximated by a projection.

This helped us to describe [6] how the lattice of pattern concepts changes when
we replace (G, D, δ) by its approximation (G, D, ψ◦δ). First, we note that ψ(d) �
δ(g) ⇔ ψ(d) � ψ◦δ(g). Moreover, for pattern structures (G, D, δ1) and (G, D, δ2)
one has δ2 = ψ◦δ1 for some projection ψ of D iff there is a representation context
(G, M, I) of (G, D, δ1) and some N ⊆ M such that (G, N, I ∩ (G × N)) is a
representation context of (G, D, δ2). Thus, the basic theorem of FCA helps us
not only to “binarize” the initial data representation, but to relate binarizations
of different projections.

Pattern structures are naturally ordered by projections: (G, D, δ1) ≥ (G, D, δ2)
if there is a projection ψ such that δ2 = ψ ◦ δ1. In this case, representation
(G, D, δ2) can be said to be rougher than (G, D, δ1) and the latter to be finer
than the former. In comparable pattern structures implications are related as
follows: If ψ(a) → ψ(b) and ψ(b) = b then a → b for arbitrary a, b ∈ D. In par-
ticular, if ψ(a) is a positive (negative) hypothesis in projected representation,
then a is positive (negative) hypothesis in the original representation.

4 Pattern Structures on Closed Sets of Labeled Graphs

In [12,13] we proposed a semi-lattice on sets of graphs with labeled vertices and
edges. This lattice is based on a natural domination relation between pairs of
graphs with labeled vertices and edges. Consider an ordered set P of connected
graphs1 with vertex and edge labels from the set L partially ordered by �. Each

1 Omitting the condition of connectedness, one obtains a similar, but computationally
much harder model.
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labeled graph Γ from P is a quadruple of the form ((V, l), (E, b)), where V is
a set of vertices, E is a set of edges, l : V → L is a function assigning labels to
vertices, and b : E → L is a function assigning labels to edges. In (P,≤) we do
not distinguish isomorphic graphs.
For two graphs Γ1 := ((V1, l1), (E1, b1)) and Γ2 := ((V2, l2), (E2, b2)) from P we
say that Γ1 dominates Γ2 or Γ2 ≤ Γ1 (or Γ2 is a subgraph of Γ1) if there exists
an injection ϕ : V2 → V1 such that it

– respects edges: (v, w) ∈ E2 ⇒ (ϕ(v), ϕ(w)) ∈ E1,
– fits under labels: l2(v) � l1(ϕ(v)), if (v, w) ∈ E2 then b2(v, w) � b1(ϕ(v),

ϕ(w)).

Obviously, (P,≤) is a partially ordered set. Now a similarity operation � on
graph sets can be defined as follows: For two graphs X and Y from P

{X} � {Y } := {Z | Z ≤ X, Y, ∀Z∗ ≤ X, Y Z∗ �≥ Z},

i.e., {X} � {Y } is the set of all maximal common subgraphs of graphs X and
Y . Similarity of non-singleton sets of graphs {X1, . . . , Xk} and {Y1, . . . , Ym} is
defined as

{X1, . . . , Xk} � {Y1, . . . , Ym} := MAX≤(∪i,j({Xi} � {Yj})),

where MAX≤(X) returns maximal (w.r.t. ≤) elements of X .
The similarity operation � on graph sets is commutative: X � Y = Y � X

and associative: (X � Y ) � Z = X � (Y � Z). A set X of labeled graphs from
P for which � is idempotent, i.e., X � X = X holds, is called a graph pattern.
For patterns we have MAX≤(X) = X . For example, for each graph g ∈ P the
set {g} is a pattern. On the contrary, for Γ1, Γ2 ∈ P such that Γ1 ≤ Γ2 the set
{Γ1, Γ2} is not a pattern. Denote by D the set of all patterns, then (D,�) is a
semi-lattice with infimum (meet) operator �. The natural subsumption order on
patterns is given by c � d ⇔ c � d = c.

Let E be a set of object names, and let δ : E → D be a mapping, taking each
object name to {g} for some labeled graph g ∈ P (thus, g is “graph description”
of object e). The triple (E, (D,�), δ) is a particular case of a pattern structure.

A set of graphs X is called closed if X�� = X . This definition is related to the
notion of a closed graph in data mining and graph mining, which is important for
computing association rules between graphs. Closed graphs are defined in [20]
in terms of “counting inference” as follows.

Given a graph dataset E, support of a graph g or support(g) is a set (or
number) of graphs in E that have subgraphs isomorphic to g. A graph g is
called closed if no supergraph f of g (i.e., a graph such that g is isomorphic to
its subgraph) has the same support.

In terms of pattern structures, E is a set of objects, each object e ∈ E having
a graph description δ(e), support(g) = {e ∈ E | δ(g) ≤ e}. Note that the
definitions distinguish between a closed graph g and the closed set {g} consisting
of one graph g. Closed sets of graphs form a meet semi-lattice w.r.t. �. Closed
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graphs do not have this property, since in general, there are closed graphs with
no infimums. However, closed graphs and closed sets of graphs are intimately
related, as shown in the following

Proposition 1. Let a dataset described by a pattern structure (E, (D,�), δ) be
given. Then the following two properties hold:

1. For a closed graph g there is a closed set of graphs G such that g ∈ G.
2. For a closed set of graphs G and an arbitrary g ∈ G, graph g is closed.

Proof

1. Consider the closed set of graphs G = {g}��. Since G consists of all maximal
common subgraphs of graphs that have g as a subgraph, G contains as an element
either g or a supergraph f of g. In the first case, property 1 holds. In the second
case, we have that each graph in G that has g as a subgraph also has f as a
subgraph, so f has the same support as g, which contradicts with the fact that
g is closed. Thus, G = {g}�� is a closed set of graphs satisfying property 1.

2. Consider a closed set of graphs G and g ∈ G. If g is not a closed graph, then
there is a supergraph f of it with the same support as g has and hence, with the
same support as G has. Since G is the set of all maximal common subgraphs of
the graphs describing examples from the set G� (i.e, its support), f ∈ G should
hold. This contradicts the fact that g ∈ G, since a closed set of graphs cannot
contain as elements a graph and a supergraph of it (otherwise, its closure does
not coincide with itself). �
Therefore, one can use algorithms for computing closed sets of graphs, e.g., the
algorithm described in [13], to compute closed graphs. With this algorithm one
can also compute all frequent closed sets of graphs, i.e., closed sets of graphs with
support above a fixed threshold (by introducing a slightly different backtrack
condition).

The learning model based on graph pattern structures along the lines of the
previous section was successfully used in series of applications in bioinformatics,
namely in problems where chemical substructures causing particular biological
activities (like toxicity) were investigated [8,15]. In many cases the proposed
graph representation resulted in better predictive accuracy as compared to that
obtained with standard attribute-type languages used for the analysis of biolog-
ical activity of chemicals.

5 Pattern Structures on Intervals

5.1 Main Definitions

To define a semilattice operation � for intervals that would be analogous to
the set-theoretic intersection or meet operator on sets of graphs, one should
realize that “similarity” between two real numbers (between two intervals) may
be expressed in the fact that they lie within some (larger) interval, this interval
being the smallest interval containing both two.
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Thus, for two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R, we define
their meet as

[a1, b1] � [a2, b2] = [min(a1, a2), max(b1, b2)].

This operator is obviously idempotent, commutative and associative, thus defin-
ing a pattern structure on intervals. The counterintuitive observation that the
meet operator takes two intervals to a larger one (in contrast to set intersection
and meet on graph sets which take sets to smaller ones) fails after realizing that a
larger interval, like in case of smaller sets and smaller sets of graphs, correspond
to a larger set of objects, whose descriptions fall in the interval.

The natural order relation (subsumption) on intervals is given as follows:

[a1, b1] � [a2, b2]
⇐⇒ [a1, b1] � [a2, b2] = [a1, b1]

⇐⇒ [min(a1, a2), max(b1, b2)] = [a1, b1]
⇐⇒ a1 ≤ a2 and b1 ≥ b2.

Again, contrary to usual intuition, smaller intervals subsume larger intervals that
contain the former. A next step would be considering vectors of intervals. An
interval p-vector is a p-dimensional vector of intervals. The meet � for interval
vectors is defined by component-wise interval meets. Interval p-vector patterns
are p-dimensional rectangular parallelepipeds in Euclidean space. Another step
further would be made by allowing any type of patterns for each component.
The general meet operator on a vector like that is defined by component-wise
meet operators.

5.2 Interval Patterns and Interordinal Scaling

For a many-valued context (G, M, W, I) with W ⊂ R consider the respec-
tive pattern structure (G, (D,�), δ) on interval vectors, the interordinal scaling
IWs = (Ws, Ws,≤) | (Ws, Ws,≥) from the previous Section, and the context
KI resulting from applying interordinal scaling IWs to (G, M, W, I). Consider
usual derivation operators (·)′ in context KI . Then the following proposition
establishes an isomorphism between the concept lattice of KI and the pattern
concept lattice of (G, (D,�), δ).

Proposition 2. Let A ⊆ G, then the following statements 1 and 2 are
equivalent:

1. A is an extent of the pattern structure (G, (D,�), δ) and A� = 〈[mi, mi]
〉i∈[1,p]

2. A is a concept extent of the context KI so that for all i ∈ [1, p] mi is the
largest number n such that the attribute si ≥ n is in A′ and mi is the smallest
number n such that the attribute si ≤ n is in A′.

Proof. 1 → 2 Let A ⊆ G be a pattern extent. Given δi(g) the mapping
that returns the ith interval of the vector describing object g. Since A� =
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〈[mi, mi]〉i∈[1,p], for every object g ∈ A one has mi ≤ δi(g) ≤ mi and there
are objects g1, g2 ∈ A such that δi(g1) = mi, δi(g1) = mi. Hence, in context KI

one has

A′ = ∪i∈[1,p]{si ≥ nmin, . . . , si ≥ n1, si ≤ n2, . . . , si ≤ nmax}
where

nmin ≺ . . . ≺ n1 ≤ n2 ≺ . . . ≺ nmax

and n1 = mi, n2 = mi. Hence, mi is the largest number n such that the attribute
si ≥ n is in A′ and mi is the smallest number n such that the attribute si ≤ n
is in A′. Suppose that A is not an extent of KI . Hence, A ⊂ A′′ and there is
g ∈ A′′ \ A and g′ ⊇ A′. This means that for all i mi ≤ δi(g) ≤ mi. Therefore,
g ∈ A�� and A �= A��, a contradiction. The proof 2 → 1 is similar. �
The larger is a pattern concept, the more there are elements in its extent, and
the more there are intervals in its intent. However, the main goal in applica-
tions like analysis of gene expression data is extracting homogeneous groups
of objects (e.g., genes), i.e. groups of objects having similar expression values.
Therefore, descriptions of homogeneous groups should be composed of inter-
vals with “small” sizes where size([a, b]) = b − a. Consider parameter maxsize

that specifies the maximal admissible size of any interval composing an interval
vector. In our gene expression data analysis [10] we restricted to pattern con-
cepts with pattern intents d = 〈[ai, bi]〉i∈[1,p] ∈ (D,�) satisfying the constraint:
∃i ∈ [1, p] (bi − ai) ≤ maxsize, for any a, b ∈ R, or a stricter constraint like
∀i ∈ [1, p] (bi − ai) ≤ maxsize, where maxsize is a parameter. Since both con-
straints are monotone (if an intent does not satisfy it, than a subsumed intent
does not satisfy it too), the subsets of patterns satisfying any of these constraints
make an order filter (w.r.t. subsumption on intervals �) of the lattice of pattern
intents and can be computed by an ordinary FCA algorithm with a modified
backtracking condition.

Interval pattern structures were successfully applied to gene expression data
analysis [10], where classes of situations with similar gene expressions were
generated.

5.3 Computing in Pattern Structures

Many algorithms for generating formal concepts from a formal context are
known, see e.g. a performance comparative [14]. Experimental results of [14]
highlight several best algorithms for dense and large contexts, which is the case
of interordinal derived formal contexts. Worst-case upper bound time complex-
ity of these algorithms computing the set of all concepts of the context (G, M, I)
is O(|G|2 · |M | · |L|), where L is the set of generated concepts [14].

Several algorithms for computing concept lattices, like NextClosure and CbO,
may be adapted to computing pattern lattices in bottom-up way (starting from
intersecting individual object descriptions and proceeding by intersecting more
and more object descriptions). The worst-case time complexity of computing
all pattern concepts of a pattern structure (G, D, δ) in the bottom-up way is
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O((α + β|G|)|G||L|), where α is time needed to perform � operation and β is
time needed to test � relation. In case of graphs, even β may be exponential wrt.
the number of graph vertices, that is why approximations (like those given by
projections) are often needed. In experiments with many chemical rows in [15] we
used projections to graphs with about 10 vertices to be able to process datasets
with hundreds of chemical substances.

The worst-case time complexity of computing the set of interval pattern struc-
tures is O(|G|2 · |M | · |L|). If a many-valued context (G, M, W, I) is given, the
worst-case complexity of computing the set of all concepts of its interordinally
scaling is O(|G|2 · |W | · |L|), which may be fairly large if the cardinality of the
set of attribute values |W | is much larger than that of the set of attributes |M |.
The worst case |W | = |G| × |S| is attained when attribute values are different
for each object-attribute pair. In [10] several algorithms for computing with in-
terval patterns were compared. The experimental comparison shows that when
the number of attribute values w.r.t. |G|×|S| is very low, computing concepts in
representation contexts is more efficient. For large datasets with many different
attribute values, it is more efficient to compute in pattern structures.

6 Conclusion

Pattern structures propose a universal means of analyzing hierarchies of classes
and dependencies in case of data given by complex ordered descriptions. As
compared to binarization techniques, computing with pattern structures often
gives more efficiency and better vizualization. Pattern projections allows one
to reduce representation dimension to attain even better computer efficiency.
Future research on pattern structure will be concerned with new complex data
types, interesting projections and new applications. The use of pattern structures
for mining association rules in complex data will also be studied.
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Abstract. Both fuzzy set theory and rough set theory play an im-
portant role in data-driven, systems modelling and analysis. They have
been successfully applied to building various intelligent decision support
systems (amongst many others). This paper presents an integrated util-
isation of some recent advances in these theories for detection and pre-
vention of serious crime (e.g. terrorism). It is shown that the use of these
advanced theories offers an effective means for the generation and as-
sessment of plausible scenarios which can each provide an explanation
for the given intelligence data. The resulting systems have the potential
to facilitate rapid response in devising and deploying preventive mea-
sures. The paper also suggests a number of important further challenges
in consolidating and refining such systems.

1 Introduction

Solving complex real-worldproblems often requires timely and intelligent decision-
making, through analysis of a large volume of information. For example, in the
wake of terrorist atrocities such as September 11, 2001, and July 7, 2005, intelli-
gence experts have commented that the failure in the detection of terrorist activity
is not necessarily due to lack of data, but to difficulty in relating and interpreting
the available intelligence on time. Thus, an important and emerging area of re-
search is the development of decision support systems that will help to establish
so-called situational awareness: a deeper understanding of how the available data
is related and whether or not it represents a threat.

Most criminal and terrorist organisations are embedded within legitimate so-
ciety and remain secrete. However, organised crime and terrorist activity does
leave a trail of information, such as captured communications and forensic evi-
dence, which can be collected by police and security services. Whilst experienced
intelligence analysts can suggest plausible scenarios, the amount of intelligence
data possibly relevant may well be overwhelming for human examination. Hy-
pothetical (re-)construction of the activities that may have generated the intel-
ligence data obtained, therefore, presents an important and challenging research
topic for crime prevention and detection.
� This work was supported by UK EPSRC grants GR/S63267/01-02, GR/S98603/01
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This paper presents a knowledge-based framework for the development of such
systems, to assist (but not to replace) intelligence analysts in identifying plausible
scenarios of criminal or terrorist activity, and in assessing the reliability, risk and
urgency of generated hypotheses. In particular, it introduces an integrated use of
some recent advances in fuzzy set [34] and rough set [23,24] theories to build in-
telligent systems for the monitoring and interpretation of intelligence data. Here,
integration of fuzzy and rough techniques does not necessarily imply a direct com-
bination of both, but utilising them within a common framework. It differs from
the conventional hybridisation approaches [20,21,26], although part of the work
does involve the employment of the combined fuzzy-rough set theory [3,9].

The rest of the paper is organised as follows. Section 2 outlines the underlying
approach adopted and describes the essential components of such a system.
Section 3 shows particular instantiations of the techniques used to implement
the key components of this framework. Essential ideas are illustrated with some
simple examples. Section 4 summarises the paper and points out important
further research. Due to space limit, this paper concentrates on the introduction
of the underlying conceptual approaches adopted, with specific technical and
application details omitted (which can be found in the references).

2 Plausible Scenario-Based Approach

In order to devise a robust monitoring system that is capable of identifying
many variations on a given type of terrorist activity, this work employs a model-
based approach to scenario generation [28]. The knowledge base of such a sys-
tem consists of generic and reusable component parts of plausible scenarios,
called model or scenario fragments (interchangeably). Such fragments include:
types of (human and material) resources required for certain classes of organised
criminal/terrorist activity, ways in which such resources can be acquired and
organised, and forms of evidence that may be obtained or generated (e.g. from
intelligence databases) when given certain scenarios.

Note that conventional knowledge-based systems (for instance, rule or case-
based) have useful applications in the crime detection area. However, their scope
is restricted to either the situations foreseen or those resulting from previously
encountered cases. Yet, organised terrorist activity tends to be unique, whilst
employing a relatively restricted set of methods (e.g. suicide bombing or bomb
threats in public places). A model-based reasoner designed to (re-)construct
likely scenarios from available evidence, as combinations of instantiated scenario
fragments, seems to be ideally suited to cope with the variety of scenarios that
may be encountered. Indeed, the main strength of model-based reasoning is its
adaptability to scenarios that are previously unseen [13].

Figure 1 shows the general architecture of the approach taken in this research.
Based on intelligence data gathered, the scenario generation mechanism instan-
tiates and retrieves any relevant model fragments from the library of generic
scenario fragments, and combines such fragments to form plausible explanations
for the data. A description of how such a system is built is given below.
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Fig. 1. Architecture of Intelligent Systems for Intelligence Data Analysis

2.1 Flexible Composition Modelling

The central idea is to establish an inference mechanism that can instantiate and
then dynamically compose generic model fragments into scenario descriptions,
which are plausible and may explain the available data (or evidence). A composi-
tional modelling approach [12] is devised for this purpose. The main potential of
using this approach over conventional techniques is its ability to automatically
construct many variations of a given type of scenario from a relatively small
knowledge base, by combining reusable model fragments on the fly. This ensures
the robustness required for the resulting system to tackle the problems at hand.

The compositional modelling approach developed in this research differs from
those in the literature in two distinct ways:

1. Ability to speculate about plausible relations between different cases. Of-
ten, intelligence data will refer to individuals and objects whose identity is
only partially specified. For example, when a person is observed on a CCTV
camera, some identifying information can be collected, but this may be in-
sufficient for an exact identification. When a person with similar features
has been identified elsewhere, it is important that any relation between both
sightings is explored. Ideas originally developed in the area of link-based
similarity analysis [2,14] are adapted herein for: (a) identifying similar indi-
viduals and objects in a space of plausible scenarios, and (b) supporting the
generation of hypothetically combined scenarios to explore the implications
of plausible matches.

2. Coverage to generate scenarios from a wide range of data sources, including
factual data, collected intelligence, and hypothesised but unsubstantiated
information. This requires matching specific data (e.g. the names of dis-
covered chemicals) with broader (and possibly subjective) knowledge and
other vague information contents. Such knowledge and information may be
abstractly specified in the knowledge base, e.g. “a chemical being highly ex-
plosive”. Similarly, matching attributes of partially identified objects and
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individuals may involve comparing vague features, such as a person’s appar-
ent height, race and age. This suggests the use of a formal mathematical
theory that is capable of capturing and representing ill-defined and impre-
cise linguistic terms, which are common in expressing and inferring from
intelligence knowledge and data. Fuzzy systems methods are therefore intro-
duced to compositional modelling to decide on the applicability of scenario
fragments and their compositions.

2.2 Plausible Scenario-Based Intelligence Monitoring

Monitoring intelligence data for evidence of potential serious criminal activity,
especially terrorist activity, is a non-trivial task. It is not known in advance what
aspects of such activity will be observed, and how they will be interconnected.
There are nevertheless, many different ways in which a particular type of activity
may be arranged. Hence, conventional approaches to monitoring, which aim to
identify pre-specified patterns of data, are difficult to adapt to this domain.

Although general and potentially suitable, the model-based approach adopted
here may lead to systems that generate a large number of plausible scenarios for
a given problem. It is therefore necessary for such a system to incorporate a
means to sort the plausible scenarios, so that the generated information remains
manageable within a certain time frame. For this purpose, scenario descriptions
are presented to human analysts with measurements of their reliability, risk, and
urgency. Each of these features may be assessed by a numeric metric. However,
intelligence data and hypotheses are normally too vague to produce precise es-
timates that are also accurate. Therefore, a novel fuzzy mechanism is devised
to provide an appropriate method of assessing and presenting these factors. The
framework also covers additional tools such as a facility to propose additional
information sources (by exploring additional, real or hypothesised, evidence that
may be generated in a given scenario).

Figure 2 shows a specification of the general framework given in Fig. 1. Tech-
nical modules include:

– Fuzzy Feature Selection carries out semantics-preserving dimensionality re-
duction (over nominal and real-valued data).

– Fuzzy Learning provides a knowledge modelling mechanism to generalise
data with uncertain and vague information into mode fragments.

– Fuzzy Iterative Inference offers a combination of abductive and deductive
inferences, capable of reasoning with uncertain assumptions.

– Flexible CSP (constraint satisfaction problem-solver) deals with uncertain
and imprecise constraint satisfaction, subject to preference and priority.

– Fuzzy Interpolative Reasoning enables approximate inference over sparse
knowledge base, using linear interpolation.

– Flexible ATMS is an extended truth-maintenance system that keeps track
of uncertain assumption-based deduction.

– Flexible Coreference Resolution implements a link-based identity resolution
approach, working with real, order-of-magnitude, and nominal values.
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– Fuzzy Aggregation performs information aggregation by combining uncer-
tain attributes as well as their values.

– Fuzzy Evidence Evaluation performs evidence assessment, including discov-
ery of misleading information, and generates evidence-gathering proposal.

– Fuzzy Risk Assessment computes potential loss-oriented risk evaluation
through fuzzy random process modelling.

Fig. 2. Instantiated Architecture

Systems built following the approach of Fig. 2 can help to improve the likeli-
hood of discovering potential threats posed by criminal or terrorist organisations.
The reasoning of such a system is logical and readily interpretable by human an-
alysts. Thus, it can be very helpful in supporting human analysts when working
under time constraints. For instance, this may aid in avoiding premature com-
mitment to certain seemingly more likely but unreal scenarios, minimising the
risk of producing incorrect interpretations of intelligence data. This is of partic-
ular interest to support staff investigating cases with unfamiliar evidence. The
resulting approach may also be adapted to build systems that facilitate training
of new intelligence analysts. This is possible because the underlying inference
mechanism and the knowledge base built for intelligence data monitoring can be
used to artificially synthesise various scenarios (of whatever likelihood), and to
systematically examine the implications of acquiring different types of evidence.

3 Illustrative Component Approaches

As a knowledge-based approach to building decision support systems, any im-
plementation of the framework proposed above will require a knowledge base to
begin with. The first part of this section will then introduce a number of recent
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advances in developing data-driven learning techniques that are suitable to de-
rive such required knowledge from potentially very complex data. The second
part will describe one of the key techniques that support scenario composition,
especially for situations where limited domain knowledge is available. The third
and final part of the section will demonstrate how risks of generated scenarios
may be estimated. Figure 3 outlines a simplified version of the framework which
may be implemented using the techniques described herein.

Fig. 3. Focussed Illustration

All of these approaches have been developed using fuzzy and rough methods.
These techniques will be introduced at conceptual level with illustrative exam-
ples. Mathematical and computational details are omitted, but can be found in
the relevant references.

3.1 Fuzzy Learning and Feature Selection

In general, an initial knowledge base of generic scenario fragments is built partly
by generalising historical intelligence data through computer-based induction,
and partly through manual analysis of past terrorist or criminal activity. This
work focusses on the automated induction of model fragments.

Fuzzy Descriptive Learning. Many real-world problems require the devel-
opment and application of algorithms that automatically generate human in-
terpretable knowledge from historical data. Such a task is clearly not just for
learning model fragments.

Most of the methods for fuzzy rule induction from data have followed the
so-called precise approach. Interpretability is often sacrificed, in exchange for a
perceived increase in precision. In many cases, the definitions of the fuzzy sets
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that are intended to capture certain vague concepts are allowed to be modified
such that they fit the data better. This modification comes at the cost of ruining
the original meaning of the fuzzy sets and the loss of transparency of the resulting
model. In other cases the algorithms themselves generate the fuzzy sets, and
present them to the user. The user must then interpret these sets and the rules
which employ them (e.g. a rule like: If volume is Tri(32.41, 38.12, 49.18), then
chance is Tri(0.22, 0.45, 0.78), which may be learned from the data presented in
Fig. 4). In some extreme cases, each rule may have its own fuzzy set definition
for every condition, thereby generating many different sets in a modest rule base.
The greatest disadvantage of the precise approach is that the resulting sets and
rules are difficult to match with human interpretation of the relevant concepts.

As an alternative, there exist proposals that follow the descriptive (or linguis-
tic) approach. In such work no changes are made to human defined fuzzy sets.
The rules must use the (fuzzy) words provided by the user without modifying
them in any way. One of the main difficulties with this approach is that the possi-
ble rules available are predetermined, equivalently speaking. This is because the
fuzzy sets can not be modified, and only a small number of them are typically
available. Although there can be many of these rules they are not very flexible
and in many cases they may not necessarily fit the data well (e.g. a rule like: If
volume is Moderate, then chance is High, which may be learned from the data
and predefined fuzzy sets given in Fig. 5). In order to address this problem, or
at least partially, linguistic hedges (aka. fuzzy quantifiers) are employed.

Fig. 4. Precise Modelling Fig. 5. Descriptive Modelling

The concept of linguistic hedges has been proposed quite early on in fuzzy
systems research [33]. Application of such a hedge to a fuzzy set produces a
new fuzzy set, in a fixed and interpretable manner. The interpretation of the
resultant set emanates from the original fuzzy set and a specific transformation
that the hedge implies. In so doing, the original fuzzy sets are not changed, but
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the hedged fuzzy sets provide modifiable means of modelling a given problem
and therefore, more freedom in representing information in the domain.

This research adopts the seminal work of [18] which champions this approach.
Figure 6 illustrates the ideas: Descriptive fuzzy system models are produced with
a two-step mechanism. The first is to use a precise method to create accurate
rules and the second to convert the resulting precise rules to descriptive ones.
The conversion is, in general, one-to-many. It is implemented by using a heuristic
algorithm that derives potentially useful translations and then, by employing
evolutionary computation to perform a fine tuning of these translations. Both
steps are computationally efficient. The resultant descriptive model is ready to
be directly applied for inference; no precise rules are needed in runtime.

Note that Fig. 6 shows the learning of a “model” in a general sense. Such
a model may be a set of conventional production fuzzy if-then rules, or one or
more generic model fragments which involve not only standard conditions but
also assumptions or hypotheses that must be made in order to draw conclusions.

Fuzzy-Rough Feature Selection. Feature selection [9,15] addresses the prob-
lem of selecting those characteristic descriptors of a domain that are most infor-
mative. Figure 7 shows the basic procedures involved in such a process. Unlike
other dimensionality-reduction methods, feature selectors preserve the original
meaning of the features after reduction.

Fig. 6. Two-Step Learning of Descriptive
Models

Fig. 7. Feature Selection Process

There are often many features involved in intelligence data, and combinatori-
ally large numbers of feature combinations, to select from. It might be expected
that the inclusion of an increasing number of features would increase the likeli-
hood of including enough information to distinguish between classes. Unfortu-
nately, this is not necessarily true if the size of the training dataset does not
also increase rapidly with each additional feature included. A high-dimensional
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dataset increases the chances that a learning algorithm will find spurious pat-
terns that are not valid in general. Besides, more features may introduce more
measurement noise and, hence, reduce model accuracy [7].

Recently, there have been significant advances in developing methodologies
that are capable of minimising feature subsets in an imprecise and uncertain
environment. In particular, a resounding amount of research currently being
done utilises fuzzy and rough sets (e.g. [11,16,17,27,30,32]). Amongst them is
the fuzzy-rough feature selection algorithm [8,10] that works effectively with
discrete or real-valued noisy data (or a mixture of both), without the need for
user-supplied information. This approach is suitable for the nature of intelligence
data and hence, is adopted in the present work. A particular implementation is
done via hill-climbing search, as shown in Fig. 8. It employs the fuzzy-rough
dependency function, which is derived from the notion of fuzzy lower approx-
imation, to choose those attributes that add to the current candidate feature
subset in a best-first fashion. The algorithm terminates when the addition of
any remaining attribute does not result in an increase in the dependency. Note
that as the fuzzy-rough dependency measure is nonmonotonic, it is possible that
the hill-climbing search terminates having reached only a local optimum.

3.2 Fuzzy Interpolative Reasoning

In conventional approaches to compositional modelling, the completeness of a
scenario space depends upon two factors: (a) the knowledge base must cover all
essential scenario fragments relevant to the data, and (b) the inference mecha-
nism must be able to synthesise and store all combinations of instances of such
fragments that constitute a consistent scenario. However, in practice, it is diffi-
cult, if not impossible, to obtain a complete library of model fragments. Figure 9
shows an example, where a sparse model library consisting of two simplified
model fragments (i.e. two simple if-then rules) is given:

Rulei: If frequency is None then attack is Unlikely
Rulej: If frequency is Often then attack is Likely

In this case, with an observation that states “frequency is Few”, no answer can
be found to the question ”Will there be an attack”? A popular tool to deal
with this type of problem is fuzzy interpretative reasoning [1,31]. In this work,
the transformation-based approach as proposed in [5,6] is employed to support
model composition, when given an initial sparse knowledge base.

The need for a fuzzy approach to interpolation is obvious: The precision degree
of the available intelligence data is often variable. The potential sources of such
variability include vaguely defined concepts (e.g. materials that constitute a
“high explosive”, certain organisations that are deemed “extremist”), quantities
(e.g. a “substantial” amount of explosives, “many” people) and specifications of
importance and certainty (e.g. in order to deploy a radiological dispersal device,
the perpetrator “must” have access to radioactive material and “should” have
an ideological or financial incentive). Finding a match between the given data
and the (already sparse) knowledge base cannot in general be achieved precisely.
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Fig. 8. Fuzzy-Rough Feature Selection Fig. 9. Spare Knowledge Base

Figure 10 illustrates the basic ideas of fuzzy interpolative reasoning. It works
through a two-step process: (a) computationally constructing a new inference
rule (or model fragment in the present context) via manipulating two given ad-
jacent rules (or related fragments), and (b) using scale and move transformations
to convert the intermediate inference results into the final derived conclusions.

Fig. 10. Transformation-Based Fuzzy Interpolation

3.3 Fuzzy Risk Assessment

In developing intelligent systems for intelligence data monitoring, a trade-off
needs to be considered. On the one hand, it is important not to miss out any
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potentially significant scenarios that may explain the observed evidence. On the
other hand, too many unsorted and especially, spurious scenarios may confuse
human analysts. Thus, it is desirable to be able to filter the created scenario
space with respect to certain objective measures of the quality of the generated
scenario descriptions. Fortunately, as indicated previously, preferences over dif-
ferent hypothetical scenarios can be determined on the basis of the reliability,
risk and urgency of each scenario.

The reliability of a generated scenario may be affected by several distinct
factors: the given intelligence data (e.g. the reliability of an informant), the in-
ferences made to abduce plausible scenarios (e.g. the probability that a given
money transfer is part of an illegitimate transaction), and the default assump-
tions adopted (e.g. the likelihood that a person seen on CCTV footage is iden-
tified positively). The urgency of a scenario is inversely proportional to the
expected time to completion of a particular terrorist/criminal activity. Therefore,
an assessment of urgency requires a (partial) scenario to be described using the
scenario’s possible consequences and information on additional actions required
to achieve completion. The risk posed by a particular scenario is determined by
its potential consequences (e.g. damage to people and property). Whilst these
are very different aspects that may be used to differentiate and prioritise com-
posed scenarios, the underlying approaches to assess them are very similar. In
this paper, only the scenario risk aspect is discussed.

Risk assessment helps to efficiently devise and deploy counter measures, in-
cluding further evidence gathering of any threat posed by the scenario concerned.
However, estimating the risk of a plausible event requires consideration of vari-
ables exhibiting both randomness and fuzziness, due to the inherent nature of
intelligence data (and knowledge also). Having identified this, in the present
work, risk is estimated as the mean chance of a fuzzy random event [4,29] over
a pre-defined confidence level, for each individual type of loss. In particular,
plausible occurrence of an event is considered random, while the potential loss
due to such an event is expressed as a fuzzy random variable (as it is typically
judged linguistically). In implementation, loss caused by an event is modelled by
a function mapping from a boolean sample space of {Success, Failure} onto a set
of nonnegative fuzzy values. Here, success or failure is judged from the criminal’s
viewpoint, in terms of whether they have carried out a certain activity or not.

Risks estimated over different types of loss (e.g. range of geometric destruc-
tion and number of casualties) can be aggregated. Also, assessments obtained
using different criteria (e.g. resource and urgency) may be integrated to form
an overall situation risk. Such measures may be utilised as flexible constraints
[19] imposed over an automated planning process, say for police resource deploy-
ment. This can help to minimise the cost of successful surveillance, for example.
To generalise this approach further, order-of-magnitude representation [22,25]
may be introduced to describe various cost estimations. Figure 11 shows such
an application.
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Fig. 11. Risk Assessment

4 Conclusion

This paper has introduced a novel framework upon which to develop intelli-
gent decision support systems, with a focussed application to intelligence data
monitoring and interpretation. It has outlined methods that can aid intelligence
analysts in considering as widely as possible a range of emerging scenarios which
are logically inferred and justified, and which may each reflect organised crimi-
nal/terrorist activity. This work has indicated that some of the recent advances in
fuzzy and rough techniques are very successful for data-driven systems modelling
and analysis in general, and for performing the following tasks in particular:

– Fragment induction – Truth maintenance
– Feature selection – Co-reference resolution
– Interpolative reasoning – Information aggregation
– Model composition – Evidence evaluation
– Constraint satisfaction – Risk assessment

However, important research remains. The following lists a number of further
issues that are worthy of investigation and/or development:

– Learning hierarchical model fragments
– Hierarchical and ensemble feature selection
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– Unification of scenario generation algorithms
– Dynamic co-reference resolution and information fusion
– Evidence-driven risk-guided scenario generation
– Reconstruction of reasoning process
– Discovery of rare cases
– Meta-feature learning and selection for scenario synthesis

Further studies will help to consolidate and broaden the scope of applications of
fuzzy set and rough set theories. In particular, the proposed framework and asso-
ciated techniques can be adapted to perform different tasks in intelligence data
modelling and analysis, such as: investigator training, policy formulation, and
multi-modal profiling. Additionally, this work may be applied to accomplishing
tasks in other domains, such as academic performance evaluation and financial
situation forecasting. Finally, it is worth noting that most of the component
techniques within the current framework utilise fuzzy set theory as the mathe-
matical foundation. It would be very interesting to investigate if alternative ap-
proaches may be developed using rough sets or their extensions in an analogous
manner. Also, the employment of directly combined and/or hybrid fuzzy-rough
systems may offer even more advantages in copying with complex decision sup-
port problems. The research on fuzzy-rough feature selection as adopted within
this framework has demonstrated, from one aspect, such potential.
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18. Maŕın-Blázquez, J., Shen, Q.: From approximative to descriptive fuzzy classifiers.
IEEE Transactions on Fuzzy Systems 10(4), 484–497 (2002)

19. Miguel, I., Shen, Q.: Fuzzy rrDFCSP and planning. Artificial Intelligence 148(1-2),
11–52 (2003)

20. Pal, S., Polkowski, L., Skowron, A.: Rough-Neural Computing: Techniques for
Computing with Words. Springer, Heidelberg (2004)

21. Pal, S., Skowron, A.: Rough Fuzzy Hybridization: A New Trend in Decision-
Making. Springer, Heidelberg (1999)

22. Parsons, S.: Qualitative probability and order of magnitude reasoning. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11(3), 373–
390 (2003)

23. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishing, Dordrecht (1991)

24. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1),
3–27 (2007)

25. Raiman, O.: Order-of-magnitude reasoning. Artificial Intelligence 51, 11–38 (1991)
26. Shen, Q., Chouchoulas, A.: A rough-fuzzy approach for generating classification

rules. Pattern Recognition 35(11), 2425–2438 (2002)
27. Shen, Q., Jensen, R.: Selecting informative features with fuzzy-rough sets and its

application for complex systems monitoring. Pattern Recognition 37(7), 1351–1363
(2004)

28. Shen, Q., Keppens, J., Aitken, C., Schafer, B., Lee, M.: A scenario driven decision
support system for serious crime investigation. Law, Probability and Risk 5(2),
87–117 (2006)

29. Shen, Q., Zhao, R., Tang, W.: Modelling random fuzzy renewal reward processes.
IEEE Transactions on Fuzzy Systems 16(5), 1379–1385 (2008)

30. Slezak, D.: Rough sets and functional dependencies in data: Foundations of asso-
ciation reducts. Transactions on Computational Science 5, 182–205 (2009)

31. Tikk, D., Baranyi, P.: Comprehensive analysis of a new fuzzy rule interpolation
method. IEEE Transactions on Fuzzy Systems 8(3), 281–296 (2000)

32. Tsang, E., Chen, D., Yeung, D., Wang, X., Lee, J.: Attributes reduction using fuzzy
rough sets. IEEE Transactions on Fuzzy Systems 16(5), 1130–1141 (2008)

33. Zadeh, L.: The concept of a linguistic variable and its application to approximate
reasoning I. Information Sciences 8, 199–249 (1975)

34. Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)



 

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 59–66, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Innovation Game as a Tool of Chance Discovery 

Yukio Ohsawa 

Department of Systems Innovation, The University of Tokyo 
7-3-1 Hongo, Bunkyo-ku Tokyo, 113-8656 Japan 

ohsawa@sys.t.u-tokyo.ac.jp 

Abstract. We are finding rising demands for chance discovery, i.e., methods 
for focusing on new events significant for human’s decision making. Innovation 
Game is a tool for aiding innovative thoughts and communication, coming after 
our 10-year experiences in chance discovery where tools of data visualization 
have been applied in cases of decision making by business teams. This game 
enables us to run and accelerate the process of innovation, as well as to train 
human’s talent of analogical and combinatorial thinking. In this paper, it is 
shown that the effects of Innovation Game are enhanced, especially when suit-
able communications and timely usage of a tool for visualizing the map of 
knowledge are executed. 

1   Introduction: Chance Discovery as Value Sensing 

Since year 2000, we have been developing tools and methods of Chance Discovery, 
under the definition of “chance” as an event significant for human’s decision. We edited 
books [14], etc. and special issues of journals. We stand on the principle that a decision 
is to choose one from multiple scenarios of actions and events in the future. Thus, a 
chance defined above can be regarded as an event at the cross of scenarios, which forces 
human(s) to choose one of the scenarios. Events bridging multiple clusters of strongly 
co-related frequent events, as shown by tools such as C4.5, Correspondence Analysis 
[7], KeyGraph [11], etc., have been regarded as the candidates of “chances” which may 
have been rare in the past but may become meaningful in the future. 

Another aspect for explaining the role of visualization in chance discovery is what 
has been called value sensing. Value sensing, to feel associated with the something in 
one’s environment, has been regarded as a dimension of human’s sensitivity in the 
literature of developmental psychology [3]. We can interpret this as the cognition of 
analogy between the target event versus a piece or a combination of pieces of one’s 
knowledge (tacit or explicit). In the real world, a huge number of analogical relation-
ships may exist, from which we should choose one link between the confronted novel 
event and some part of the knowledge [2].  

In this paper, we show Innovation Game, a tool for aiding innovation. This game 
came from our experiences in applying chance discovery to cases of business decision 
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making.  According to the data of communications during the play-times of this game, 
we show that the thoughts in Innovation Game come to be innovative when players 
executed suitable communications and timely usage of KeyGraph. 

2   Using a Scenario Map for Chance Discovery 

In projects of chance discovery we conducted so far with companies, the marketer 
teams acquired novel awareness of valuable products they had produced but had not 
taken into consideration so far because of the weak contribution to their sales per-
formance. For acquiring this awareness, KeyGraph assisted business people by show-
ing a diagram as a map of the market having (1) clusters of items frequently bought as 
a set, i.e., at the same time together, and (2) items bridging the clusters in (1), which 
may embrace a latent market coming up in the near future.  

For example, let us show an example where a diagram obtained by KeyGraph as-
sisted textile marketers seeking new hit products [13]. The marketers started from 
data collected in exhibition events, where pieces of textile samples had been arranged 
on shelves for customers representing apparel companies just to see (not to buy yet). 
In comparison with data on past sales, the exhibition data were expected to include 
customers’ preferences of products not yet displayed in stores. After the exhibition, 
the marketers of the textile company visualized the data of customers’ preferences 
using decision trees [15], correspondence analysis [7], etc. After all, they reached 
KeyGraph and obtained the diagram as in Fig. 1(a), where the black nodes linked by 
black lines show the clusters corresponding to (1) above, and the red nodes and the 
red lines show the items corresponding to (2) above and their co-occurrence with 
items in clusters respectively.  The marketers, in order to understand this graph, at-
tached real product samples as in Fig. 1(b), in order to sense the smoothness, colors, 
etc with eyes and fingers.   

Then three, of the 10 marketers, who were experts of women’s blouse interpreted 
the cluster at the top of Fig. 1 (b), i.e., of “dense textile for neat clothes, e.g., clothes 
for blouse” and 3 others interpreted the cluster in the right as of business suits. 2 oth-
ers interpreted the popular item, not linked to any clusters of (1) via black lines, in the 
left, corresponding to materials of casual clothes. These clusters corresponded to 
established (already popular) submarkets of the company. 

Next, a marketer of 10-years experience paid attention to an item between the item 
in the left and the large cluster in the right of the graph. This between node appeared 
as a red node, i.e., the niche lying between popular clusters, on which the marketers 
came up with a strategic scenario to design a new semi-casual cloth in which ladies 
can go both to workplaces and to light dinner after working. As a result, the material 
of the red node marked a hit – the 13th highest sales among their 800 products. We 
have other cases of graph-based chance discoveries [8]. 
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Fig. 1. Marketing as value sensing from visualized data 
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Fig. 2. Innovation game on the game board, made by data crystallization 

3   Innovation Game 

3.1   The Outline of Innovation Game with Data Crystallization 

Innovation, meaning a creation of social trend by inventing a new technology, comes 
from the combination of existing ideas according to [5] [6]. The Innovation Game is a 
tool we invented for aiding innovative communications, where combinatorial creativ-
ity, i.e., creating a new idea by combining ideas, is activated. The game starts from 
tens of basic cards, on each of which the title and the summary of some existing 
knowledge for business is written. The core players are called innovators, who start 
with the capital of $10. The innovator’s main operation is to (1) buy a preferable 
number of basic cards for $1 per card, (2) combine the cards of one’s own or with 
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cards bought/borrowed from other players, and (3) present with an idea created by the 
combination. Other innovators may propose the presenter to start collaboration, or 
borrow/buy the new idea, with negotiating the dealing price. At the halting time (2 
hours after starting), the richest player, i.e., the player having the largest amount of 
money comes to be the winner. 

Investors and consumers stand around innovators who also start from having 10$. 
Each investor buys stocks of innovators who seem to be excellent, according to the 
investor’s own sense. The investor having obtained stocks of the highest amount of 
total price at the halting time comes to be the winning investor. And, consumers may 
buy ideas for prices determined by negotiation with innovators. The consumer who 
obtained the idea-set of the highest total price becomes the winning consumer. 

Several methods for creative thinking, as the one shown in Section 2, can be posi-
tioned in the application of visualization of ideas. For example, Mind maps [1] have 
been introduced for creating ideas with considering the relevance to the central key-
word corresponding to the target problem. The graph obtained from basic cards is 
used as the game-board of Innovation Game, as in Fig.2. This intuitively visualizes 
the map of ideas’ market, showing the positions of both existing knowledge and latent 
ideas which does not appear on any basic card but may be created by combinations, 
by applying Data Crystallization [9][12] to the text of basic cards. Data Crystalliza-
tion is an extension of KeyGraph, enabling to show latent items of which the fre-
quency in the given data is zero. E.g., a node such as DE58 in Fig.2 means a new idea 
may emerge at the positions by combining ideas in its neighborhood clusters. The 
innovators put basic cards on corresponding black nodes when combining the cards 
for creating an idea, and to write the created idea on a post-it and put it on the corre-
sponding position. If the basic cards combined have been linked to a red (“DE-X”) 
node via lines, then the position is the “DE-X” node. 

3.2   Findings from Players’ Communications  

The players of games we conducted (we organized more than 50 games so far) men-
tion they felt their skills of communication and thought for creating socially useful 
knowledge in business has been elevated during and after the game. After each game, 
the quality of created ideas are evaluated by all investors and more objective review-
ers, on criteria such as “originality” “cost” “utility” and “reality.” We found a signifi-
cant relevance between the quality of the players’ communication and the quality of 
ideas. According to our data on the utterances by players, we found the originality and 
the utility of ideas tend significantly to increase (1) after the increase in the empa-
thetic utterances of investors/consumers and (2) before the appearance of a sequence 
of negative utterances followed by a positive utterance.  Here, an empathetic utterance 
means a comment referring to the context the presented idea may be utilized for fu-
ture businesses. These results imply an innovative communication comes from (1) the 
context sharing induced by the visualized graph, and (2) the interest in revising pre-
sented ideas, of all participants.  
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4   Niche of Idea Activations as Source of Innovations: Another 
Finding from the Innovation Game 

We hypothesized and evaluated the effect of idea niche on the innovations. An idea 
niche is a part of the market where outstanding ideas do not exist but is surrounded by  
 

 

 
Fig. 3. Free (left)/connected (right) niche ideas: with/without connections via links 
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existing ideas. We expected humans can activate such a part to have the surrounding 
ideas to meet and become combined. As Fig.3 shows, we classified idea niches into 
two types.  In the upper picture, a created idea is put on a free space, i.e., not at any 
node in or linked to clusters.  And, in the lower picture, a new idea is presented at a 
red node, linking between clusters. Let us call the former type of niche, i.e., a node 
connecting nodes in cluster(s), via links in the graph, a connected niche. And, let us 
call the space on the graph surrounded by but not connected to clusters, a free niche. 
We also classified a niche in another dimension: Whether it is between activated clus-
ters (clusters, all including ideas used already in the game), between partially acti-
vated clusters (i.e. some, not all, of which include ideas already used), or between 
newly activated clusters (i.e. none of which include ideas already used).  Thus, the 
presented ideas in games can be classified into the six classes. Here, all the ideas in 
each class, the percentage of the 5 highest-score ideas in each game was counted for 
each type of niches respectively. As a result, we found the following three tendencies: 

 
(1) The ideas at niches “between activated clusters” include the highest-score ideas.  
(2) The free niche tends to include especially highly scored ideas, but the deviation 

of the score is large i.e., the reliability of the ideas presented at free spaces is low 
although the average quality is high. On the other hand, the connected niche 
tends to include relatively highly scored ideas, and the deviation is small. 

(3) The connected niche tends to create more excellent ideas than a free space, when 
it is between partially activated clusters. 

 
In summary, we can recommend players in the future to be patient until ideas have 
been created combining ideas in clusters on the graph, without expecting high scores, 
in the early stage. And, then, the players will be enabled to create good ideas by fo-
cusing on the niches of activated ideas on the graph (on tendency (1)). Here, if the 
player likes a hit (especially high score), the free space between clusters including 
activated ideas will be recommended at the risk of large deviation of the quality of the 
idea. On the other hand, if the player likes reliability (hedging the risk of low score), 
positioning ideas on nodes or lines on the graph will be better (on tendency (2)). 
However, in real games in companies, where players join for real innovation, it is not 
easy to have their patience to wait until clusters become occupied by activated ideas. 
In such a case, the player should apply tendency (4). That is, if one prefers to combine 
ideas in clusters without activated ideas and in clusters with activated ideas, it is rec-
ommended to create an idea on a node connecting these clusters.  

5   Conclusions 

Human’s insight is a fruit of the interactions of mental process and the social envi-
ronment [4] [10]. We developed the Innovation Game based on author’s experience of 
applying KeyGraph to chance discovery in business teams, where members interacted 
in the real team, in the real company, and in the real market.  
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In this paper, we analyzed the presented ideas and the communications during 
each game.  The potential social contribution of each idea was evaluated on measures 
as originality, reality, utility, etc. As a result, we are obtaining guidelines for players 
e.g., to aim at suitable niche in the market of ideas reflecting the situation. These 
findings partially correspond to known hypotheses about the mechanism of innova-
tion, but the evidences showing how the activation of basic knowledge leads to the 
creation of ideas in real communication is novel as far as we know.   

In the next step, we plan to model our recent experiences to put the created ideas 
into final decisions and real actions of the company. 
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Since its inception in early 80’s, the rough set theory has attracted a lot of interest
from global research community. It turns out as useful in building classification
and prediction models. It complements a number of other soft computing para-
digms. It may be combined with fuzzy logic and probabilistic data analysis. It
has led towards enhancements of neural networks, genetic algorithms, clustering,
support vector machines, regression models, et cetera. Its application domains in-
clude pattern recognition, feature selection, information retrieval, bioinformatics,
computer vision, multimedia, medicine, retail data mining, web mining, control,
traffic engineering, data warehousing, and many others.

A number of researchers have been working on the rough set theory also in
India. It is especially important to mention Mihir K. Chakraborty and Sankar
K. Pal, who contributed to its foundations and applications, respectively. Nowa-
days, rough sets are present at the centers of higher learning such as: Calcutta
University and ISI (Kolkata), IIT (Delhi, Kanpur, Kharagpur), IISc (Bangalore),
Anna University (Chennai), Jawaharalal Nehru University (Delhi), et cetera. In
particular, inclusion of rough sets as one of the topics in Schools on Logic held
at IIT Kanpur (2008) and IIT Kharagpur (2009) has provided an evidence of its
acceptance as an unquestionably important research area in India.
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The rough set conferences and workshops have been held in Canada, China,
Japan, Poland, Sweden, USA, and most recently in Australia and Italy. Also, a
number of Indian conferences have considered rough sets as an important topic.
However, until this year, there has been no exclusive rough set conference in
India. In the end of 2008, preparations for two such events were announced: the
Twelfth International Conference on Rough Sets, Fuzzy Sets, Data Mining and
Granular Computing reported in this volume (see Preface), as well as the Inter-
national Conference on Rough Sets, Fuzzy Sets and Soft Computing, organized
at Tripura University, November 5-7, 2009. The aim of that second event was
particularly to expose young researchers to the latest trends in fuzzy and rough
systems through deliberations by well-known scientists. The committee has cho-
sen over 40 papers to be included into the conference materials published by
Serial Publications, New Delhi. It is also important to acknowledge that over 10
invited speakers from both India and abroad attended the conference.

In order to help in linking various rough set research groups in India and en-
able interaction with international rough set community, we proposed to extend
the two above-mentioned events towards a broader initiative named Rough Set
Year in India 2009.1 A variety of additional events distributed through the year,
in different parts of India were organized successfully. A good example here is the
International Workshop on Rough Sets, Fuzzy Sets and Soft Computing: The-
ory and Applications, organized by University of Pune, July 7-8, 2009. This two
day workshop was attended by over 60 delegates from 19 different institutions
and 7 different states of India. Presentations by Vijay Raghavan (USA), Sush-
mita Mitra (India), Sonajharia Minz (India), Pawan Lingras (Canada), Dominik
Ślęzak (Poland), Yiyu Yao (Canada), and Georg Peters (Germany) described
fundamental rough set concepts, as well as their usage in academic research and
real world market applications. It is worth noting that the last three of men-
tioned presentations were delivered online, which shows how new communication
technologies can help in building the worldwide scientific network.

Another example of important event specially dedicated to the rough set the-
ory and applications is the International Symposium on Soft Computing, orga-
nized by Department of Computer Science at University of Mumbai, December
1-2, 2009. Rough set sessions were also present as components of other confer-
ences. For instance, Sonajharia Minz held a special session on rough sets and
granular computing at the National Conference on Computational Mathemat-
ics and Soft Computing, Women’s Christian College, Chennai, July 24-25, 2009.
Rough set research was also broadly represented at the 4th Indian International
Conference on Artificial Intelligence, Tumkur (near Bangalore), December 16-
18, 2009. It is also worth mentioning about the workshop organized by Mohua
Banerjee in Delhi, just before the conference that is reported in this volume.

All these multiple activities helped researchers to attend an event based on
their temporal and spatial convenience. We are confident that our initiative
successfully achieved its objective in developing an interest regarding rough sets
and its applications among a larger group of academicians in India.

1 http://cs.smu.ca/∼pawan/rsIndia09/index.html
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Abstract. An algebraic semantics for the logic LMSAS, proposed to
study the behavior of rough sets in multiple-source scenario, is presented.
Soundness and completeness theorems are proved.

1 Introduction

In last three decades, rough set theory [7] has been generalized and extended in
many directions enabling it to capture different situations. In [9], a multi-agent
scenario is considered where each agent has her own knowledge base represented
by equivalence relations, and thus perceives the same domain differently depend-
ing on what information she has about the domain. This multi-agent dimension
was also considered by Pawlak in [6] although not mentioned explicitly. In [3,4],
rough set theory is again explored in this context, although the more general
term ‘source’ is used there instead of ‘agent’. A multiple-source approximation
system is considered to study the behavior of rough set in such a situation.

Definition 1. [3] A multiple-source approximation system (MSAS) is a tuple
F := (U, {Ri}i∈N), where U is a non-empty set, N an initial segment of the
set N of positive integers, and each Ri, i ∈ N, is an equivalence relation on the
domain U . |N | is referred to as the cardinality of F and is denoted by |F|.
So MSASs are collections of Pawlak approximation spaces over the same domain
– the idea being that these approximation spaces are obtained from different
sources. The standard concepts such as approximations and definability of sets,
membership functions related with the Pawlak approximation spaces are gener-
alized to define these notions on MSASs. The following notions of lower/upper
approximations are introduced.

Definition 2 ([3]). Let F := (U, {Ri}i∈N ) be a MSAS, and X ⊆ U . Then
strong lower approximation Xs, weak lower approximation Xw, strong upper
approximation Xs, and weak upper approximation Xw of X, respectively, are
defined as follows.

Xs :=
⋂

XRi
; Xw :=

⋃
XRi

; Xs :=
⋂

XRi ; Xw :=
⋃

XRi ,

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 69–76, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



70 M.A. Khan and M. Banerjee

where XR and XR respectively denotes the lower and upper approximation in
the Pawlak approximation space (U, R).

So in a special case when F consists of a single relation, weak/strong lower and
upper approximations are just the standard lower and upper approximations
respectively.

It is not difficult to show that Xs ⊆ Xw ⊆ X ⊆ Xs ⊆ Xw. Thus given
a MSAS F := (U, {Ri}i∈N ) and a set X ⊆ U , on the basis of possibility of
objects to be an element of X , the universe is divided into five disjoint sets
namely Xs, Xw\Xs, Xs\Xw, Xw\Xs and (Xw)c. The elements of these regions
are respectively called the certain positive, possible positive, certain boundary,
possible negative and certain negative element of X . Here, we would like to
mention that the strong/weak lower and upper approximations are different
from the lower and upper approximations of a set X in the approximation space
(U, R) of strong distributed knowledge R [9], i.e. where R :=

⋂
i∈N Ri. In fact,

we have the inclusion Xw ⊆ XR ⊆ XR ⊆ Xs.
The above notions of approximations along with other concepts related with

MSASs are studied in [3,4] in some detail.
The existing logical systems employed to study the Pawlak approximation

spaces including the epistemic logic S5n [2] and one given in [6,9] are not strong
enough to express the generalized notions of approximations and definability
of sets introduced in [3]. Thus a quantified propositional modal logic LMSAS
is introduced in [3], using which we can study the behavior of rough sets in
MSASs. In this article, we shall present an algebraic semantics for LMSAS. The
soundness and completeness theorem obtained in the process also establishes a
strong connection between the MSASs and the algebraic counterpart of LMSAS.
In order to obtain the completeness theorem, we have used the technique of com-
pletations of algebras (cf. [5]). Q− filters [10] are used instead of ultra-filters,
because the embedding given by Jónsson-Tarski Theorem may not preserve in-
finite joins and meets − which is what we require. Since the embedding is done
in some complex algebra[1], we also obtain completeness with respect to a class
of complex algebras.

The remainder of this paper is organized as follows. In Sect. 2, we present
the logic LMSAS. In Sect. 3, we come to the main issue of the article, i.e.
the algebraization of LMSAS. Detailed proofs of the results of this section are
skipped because of a lack of space. Finally, we conclude the article in Sect. 4.

2 LMSAS

In this section we briefly describe the logic LMSAS.
Syntax

The alphabet of the language of LMSAS contains (i) a non-empty countable set
V ar of variables, (ii) a (possibly empty) countable set Con of constants, (iii) a
non-empty countable set PV of propositional variables and (iv) the propositional
constants �,⊥.
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The set T of terms of the language is given by V ar∪Con. Using the standard
Boolean logical connectives ¬ (negation) and ∧ (conjunction), a unary modal
connective [t] (necessity) for each term t ∈ T , and the universal quantifier ∀,
well-formed formulae (wffs) of LMSAS are defined recursively as:

�|⊥|p|¬α|α ∧ β|[t]α|∀xα,

where p ∈ PV, t ∈ T, x ∈ V ar, and α, β are wffs. The set of all wffs and closed
wffs of LMSAS will be denoted by F and F respectively.
Semantics

Definition 3. M := (F, V, I) is an interpretation, where F := (U, {Ri}i∈N ) is
a MSAS (cf. Definition 1), V : PV → P(U) and I : Con → N .

An assignment for an interpretation M is a map v : T → N such that v(c) =
I(c), for each c ∈ Con.

Let M be an interpretation. As in classical first-order logic, two assignments
v, v′ for M are said to be x-equivalent for a variable x, provided v(y) = v′(y),
for every variable y, (possibly) other than x.

Definition 4. The satisfiability of a wff α in an interpretation M := (F, V, I),
under an assignment v is defined inductively. We give the modal and quantifier
cases.

M, v, w |= [t]α, if and only if for all w′ in U with wRv(t)w
′, M, v, w′ |= α.

M, v, w |= ∀xα, if and only if for every assignment v′ x-equivalent to v,
M, v′, w |= α.

α is valid, denoted |= α, if and only if M, v, w |= α, for every interpretation
M := (F, V, I), assignment v for M and object w in the domain of F.

Given an interpretation M := (F, V, I) and assignment v, one can extend the
map V to the set of all wffs such that V (α) := {w ∈ U : M, v, w |= α}. Let us
recall Definition 2. It is not difficult to prove

Proposition 1

1. (a) V (〈t〉α) = V (α)Rṽ(t)
; (b) V ([t]α) = V (α)

Rṽ(t)
.

For α which does not have a free occurrence of x,
2. V (∀x[x]α) = V (α)

s
; V (∃x[x]α) = V (α)

w
.

3. V (∀x〈x〉α) = V (α)s; V (∃x〈x〉α) = V (α)w.

We would like to mention here that the epistemic logic S5n and the logics con-
sidered in [6,9] will not suffice for our purpose. The semantics for these logics
considers a finite and fixed number of agents, thus giving a finite and fixed num-
ber of modalities in the language. But in the case of LMSAS, the number of
sources is not fixed. So it is not possible here to refer to all/some sources using
only the connectives ∧, ∨, and quantifiers ∀, ∃ are used to achieve the task.

The following sound and complete deductive system for LMSAS was proposed
in [3]. t stands for a term in T .
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Axiom schema:
(1) All axioms of classical propositional logic;
(2) ∀xα → α(t/x), where α admits the term t for the variable x;
(3) ∀x(α → β) → (α → ∀xβ), where the variable x is not free in α;
(4) ∀x[t]α → [t]∀xα, where the term t and variable x are different;
(5) [t](α → β) → ([t]α → [t]β);
(6) α → 〈t〉α; (7) α → [t]〈t〉α; (8) 〈t〉〈t〉α → 〈t〉α.

Rules of inference:

∀. α MP. α N. α
∀xα α → β [t]α

β

3 Algebraic Semantics for LMSAS

In this section, we present an algebraic semantics for LMSAS. We begin with
the following definition [1].

Definition 5. A tuple A := (A,∩,∼, 1, fk)k∈∆ is said to be a Boolean algebra
with operators (BAO) if (A,∩,∼, 1) is a Boolean algebra and each fk : A → A
satisfies (i) fk(1) = 1 and (ii) fk(a ∩ b) = fk(a) ∩ fk(b). Moreover, A is said to
be complete if it satisfies the following additional properties for all X ⊆ A:

(CB1)
⋂

X and
⋃

X exist and (CB2) fk

⋂
X =

⋂
fkX, k ∈ ∆.⋂

X and
⋃

X, respectively, denote the g.l.b and l.u.b of the set X.

In this paper, we are interested only in those complete BAOs (CBAOs) where
∆ = N and each fk satisfies the following three additional conditions:

(B1) fka ≤ fkfka; (B2) fka ≤ a and (B3) a ≤ fkgka, where gk :=∼ fk ∼.

Let us denote this class of complete BAOs by C.We shall obtain completeness of
LMSAS with respect to the class C.

Definition 6. Let A := (A,∩,∼, 1, fk)k∈N be a BAO satisfying (B1)-(B3). An
assignment in A, is a function θ : PV → A. θ can be extended uniquely, in the
standard way, to a meaning function θ̃ : F → A where in particular, θ̃([ci]α) :=
fi(θ̃(α)), i ∈ N and θ̃(∀xα) :=

⋂{θ̃(α(cj/x)) : j ∈ N}, provided the g.l.b. exists.
We define θ̃(α) := θ̃(cl(α)), α ∈ F and cl(α) denotes the closure of α.

Note that in order to define the natural translation corresponding to all possible
assignments from closed LMSAS wffs to elements of a BAO, we only require the
existence of joins and meets of the sets of the form {θ̃(α(cj/x)) : j ∈ N}, where
α is a LMSAS wff with only one free variable x and θ is an assignment. This
motivates us to define a realization for LMSAS in the line of realization of first
order formalized languages [8].

Definition 7. A BAO A := (A,∩,∼, 1, fk)k∈N satisfying (B1)-(B3) is said to
be a realization for LMSAS, if for every assignment θ : PV → A the following
is satisfied:



An Algebraic Semantics for the Logic of MSASs 73

(R1) θ̃(α) exists for all α ∈ F ;
(R2) fk

⋂
j θ̃(α(cj/x)) =

⋂
j fkθ̃(α(cj/x)), where α has only one free variable x.

Condition (R2) corresponds to the Axiom 4, and is essential to get the soundness
theorem. Note that every complete BAO satisfying (B1)-(B3) is a realization for
LMSAS. But not all realizations for LMSAS are complete BAOs. For instance,
if a BAO A satisfying (B1)-(B3), has only one distinct function symbol, then
each set {θ̃(α(cj/x)) : j ∈ N} will be singleton and thus A becomes a realization
which may not necessarily be a CBAO.

Definition 8. Let us consider a structure of the form F := (U, {Ri}i∈∆), where
∆ is an index set and for each i ∈ ∆, Ri ⊆ U × U . The complex algebra of
F (notation F+) is the expansion of the power set algebra P(U) with operators
mRi : 2U → 2U , i ∈ ∆, where

mRi(X) := {x ∈ U : For all y such that xRiy, y ∈ X}.

In the case of MSAS, one can verify (B1)-(B3) to obtain

Proposition 2. Every complex algebra of a MSAS is a complete BAO satisfying
(B1)-(B3).

Let us denote the class of all realizations of LMSAS and complex algebras of
MSASs by R and Cm respectively. So we have Cm ⊆ C ⊆ R.

Definition 9. Let A := (A,∩,∼, 1, fk)k∈N be a realization for MSAS. Then we
write A � α ≈ β if and only if for every assignment θ : PV → A, θ̃(α) = θ̃(β).
We simply write R � α if A � α ≈ � for all A ∈ R. Similarly we write C � α
and Cm � α according as A � α ≈ � for all A ∈ C or A ∈ Cm respectively.

Proposition 3 (Soundness Theorem). If � α then R � α and hence C � α
and Cm � α.

Proposition 4 (Completeness Theorem). For α ∈ F , if C � α, then � α.

We begin our journey to prove the above completeness theorem with the Lin-
denbaum algebra Ln for LMSAS. In fact, giving exactly the same argument as in
the modal logic case, one can easily show that Ln := (F|≡,∩,∼, 1, fk)k∈N, where
1 = [�], is a BAO. Moreover, Axioms (6)-(8) give us the properties (B1)-(B3).
Ln is, in fact, a realization for MSAS. But in order to prove this, we need a few
more definitions and results.

Let p1, p2, . . . be an enumeration of the propositional variables and θ′ : PV →
F|≡ be an assignment. Let α1, α2, . . . be countably many distinct wffs such
that θ′(pi) := [αi]. For a given wff α, α∗ denotes the wff obtained from α by
uniform replacement of propositional variables pi’s by αi’s. By induction on the
complexity of α, we obtain

Proposition 5. The wff (α(cj/x))∗ is same as the wff α∗(cj/x), j ∈ N.
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Proposition 6. Consider F|≡. Then for any α ∈ F which has only x as free
variable,

⋂
j [α(cj/x)] exists and is given by [∀xα].

We use Propositions 5 and 6 to get

Proposition 7. θ̃′(α) = [α∗], for all α ∈ F .

This result ensures (R1). Moreover, due to the presence of Axiom 4, we obtain
the following, giving (R2).

Proposition 8. Let θ′ : PV → F|≡ be an assignment. Then

fk

⋂
j

θ̃′(α(cj/x)) =
⋂
j

fkθ̃′(α(cj/x)).

From Propositions 7 and 8, we obtain

Proposition 9. Ln := (F|≡,∩,∼, 1, fk)k∈N is a realization for LMSAS.

Due to Proposition 9, we obtain the completeness theorem with respect to the
class of all realizations. But, as mentioned earlier, we want the completeness
with respect to the class C. It can be shown, as in the propositional logic case,
that the Lindenbaum algebra Ln defined above is not a CBAO and so we need
to do some more work in order to get the completeness theorem with respect to
the class C. Note that we would achieve our goal if we could embed any LMSAS
realization A := (A,∩,∼, 1, fk)k∈N into some complex algebra. At this point one
may think of the BAO consisting of all subsets of the set of all ultra-filters of
the BAO A, as described in the Jónsson-Tarski Theorem. But the embedding
given in this theorem may not preserve infinite joins and meets. This problem
could be overcome if we consider the BAO consisting of all subsets of the set of
all Q-filters [10] (defined below) instead of ultra-filters. Here, Q is a countably
infinite collection of subsets of A satisfying certain conditions and the embedding
obtained in this case preserves all the infinite joins and meets in Q. Since this
embedding may not preserve all existing joins and meets, the question again
arises whether even this embedding will be able to give us the desired result?
The answer is yes. In the rest of this section, we shall present the result of [10]
discussed above and use it to prove the completeness theorem with respect to
the class C.

Definition 10. Let A := (A,∩,∼, 1) be a Boolean algebra. Let Q := {Qn ⊆ A :
n ∈ N}, where each Qn is non-empty. A prime filter F of A is called a Q-filter,
if it satisfies the following for each n ∈ N.

1. If Qn ⊆ F and
⋂

Qn exists then
⋂

Qn ∈ F .
2. If

⋃
Qn exists and belongs to F then Qn ∩ F �= ∅.

The set of all Q−filters of A is denoted by FQ(A).
Let A := (A,∩,∼, 1, fi)i∈∆ be a BAO and Q := {Qn ⊆ A : n ∈ N}, where each

Qn is non-empty. Let AQ be the structure (FQ(A), { i}i∈∆), where  i ⊆ A×A
such that (F, G) ∈  i if and only if fia ∈ F implies a ∈ G. It is not difficult to
obtain:
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Proposition 10. If A := (A,∩,∼, 1, fk)k∈N be a BAO satisfying (B1)-(B3),
then AQ is a MSAS.

Now, we are in the position of defining the important result which we will use
to obtain the completeness theorem.

Theorem 1 ([10]). Let A := (A,∩,∼, 1, fi)i∈∆ be a BAO and Q be a countable
subset of 2A. Let {Xn}n∈N and {Yn}n∈N be an enumeration of the sets Q∗ :=
{Qm ∈ Q :

⋂
Qm ∈ A} and Q∗ := {Qm ∈ Q :

⋃
Qm ∈ A}. Moreover, suppose

that Q satisfies the following conditions for each i ∈ ∆:

(QF1) for any n,
⋂

fiXn exists and satisfies that
⋂

fiXn = fi

⋂
Xm,

(QF2) for any z ∈ A and n, there exists m such that {fi(z → x) : x ∈ Xn} =
Xm, where z → x :=∼ z ∪ x,

(QF3) for any z ∈ A and n, there exists m such that {fi(y → z) : y ∈ Yn} =
Ym.

Then the function r : A → 2FQ(A) defined by r(a) := {F ∈ FQ(A) : a ∈ F} is
a BAO embedding of A into the complex algebra (AQ)+ which also preserves all
of

⋂
Xn and

⋃
Yn.

Let us consider the Lindenbaum algebra Ln and the canonical assignment θc

which maps propositional variables to its class, i.e. θc(p) = [p]. For each wff α
with a single free variable x, let us define the set Qα := {θ̃(α(cj/x)) : j ∈ N}
and let Q := {Qα : α has the single free variable x}. Note that Q is countable.
Take an enumeration {Xn}n∈N and {Yn}n∈N of the set Q∗ and Q∗. Then it is
not difficult to obtain:

Proposition 11. Q satisfies the condition (QF1)-(QF3).

Therefore, from Theorem 1, we obtain,

Proposition 12. There exists a BAO embedding r of Ln into (LnQ)+ such that
r(
⋂

j θ̃c(α(cj/x))) =
⋂

j r(θ̃c(α(cj/x))).

We note that by Proposition 10, LnQ is a MSAS and hence by Proposition 2,
(LnQ)+ is a complete BAO satisfying (B1)-(B3). By induction on the complexity
of α, we obtain

Proposition 13. Consider the assignment γ in the BAO (LnQ)+ ∈ Cm defined
as γ(p) := r([p]), p ∈ PV . Then γ̃(α) = r([α]) for all α ∈ F .

Proposition 14. (i) For α ∈ F , Cm � α implies � α.
(ii) For α ∈ F , Cm � α implies � α.

Proof
(i) If possible, let �� α. Then [α] �= 1. Now, consider the algebra (LnQ)+ ∈ Cm and
the assignment γ defined in Proposition 13. Since [α] �= 1, we have r([α]) �= 1.
Therefore, γ̃(α) �= 1, a contradiction.
(ii) If possible, let �� α. Then �� cl(α) and hence by (i), we obtain a A ∈ Cm and
an assignment θ in Cm such that θ̃(cl(α)) �= 1 and thus we obtain θ̃(α) �= 1.

So Proposition 4 follows from Proposition 14 and the fact that Cm ⊆ C.
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We end this section with the remark that the soundness and completeness
theorems establish a strong connection between the MSASs and the class C of
algebras. It follows that the operators fi, fs and fw are the counterparts of the
lower, strong lower and weak lower approximations respectively, where fs(a) :=⋂

i∈N
fi(a) and fw(a) :=

⋃
i∈N

fi(a). Thus one could study the properties of
MSASs involving the different notions of lower and upper approximations in
the algebras of the class C using these operators, and conversely. For instance,
the properties Xc

s = (Xw)c and (Xw)
w

= (Xs)w of MSAS correspond to the
properties fs(¬a) = ¬gwa and fwgwa = gwgsa of the algebras of C respectively,
where gs(a) :=

⋂
i∈N

gi(a) and gw(a) :=
⋃

i∈N
gi(a).

4 Conclusions

Algebraic semantics of the logic LMSAS is presented and completeness theo-
rem is proved with respect to the class of complete BAOs, complex algebras
and LMSAS realizations. It appears from the study that the LMSAS realiza-
tion is the natural counterpart of LMSAS. However, an independent algebraic
characterization of the LMSAS realization is yet to be obtained.
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Abstract. We introduce the concept of a synchronal approximation
space (SA) and a AUAI-multiple approximation space and show that
they are essentially equivalent to an AUAI rough system. Through this
we have estabilished connections between general cover based systems,
dynamic spaces and generalized approximation spaces (APS) for easier
algebraic semantics. AUAI-rough set theory (RST) is also extended to
accommodate local determination of universes. The results obtained are
also significant in the representation theory of general granular RST, for
the problems of multi source RST and Ramsey-type combinatorics.

1 Introduction

A generalised cover based theory of AUAI rough sets was initiated in [1]. It
is relatively more general than most other cover based rough set theories. In
the theory, any given generalised cover cannot be associated with a general ap-
proximation space or an information system in a unique way without additional
assumptions. An axiomatic framework for the concept of granules in general RST
is considered in [2] by the present author. Relative this framework, the elements
of the cover used do not by themselves constitute the most appropriate granules
for the theory. The isolation of usable concepts of granulation in the theory is
also complicated by different possible definitions of rough equalities and concepts
of definite objects. Granulation can also be reflected in connections of the theory
with other types of RST.

In the next section, we develop a finer characterization of granules in AUAI
systems. In the third section, the notion of SA is introduced and shown to be
essentially equivalent to AUAI-approximation systems, but with an improved
explicit notion of granularity and better semantic properties. We prove repre-
sentation theorems on the connections between AUAI-RST and a new form of
multi source (or dynamic) APS and provide a long example in the fourth section.

In many possible application contexts common universes may not exist and it
makes sense to modify the theory for a finite set of universes. This modification
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is also sensible when subsets determine their own universes by way of other
semantic considerations. These may also be related to problems of combining
general APS. The representation theorems mentioned above extend to the new
context with limited modifications. We outline the essentials for this in the fifth
section. All of the definitions and theorems (except those in the introduction)
are new and due to the present author.

Some of the essential notions are stated below.
Let S be a set and K = {Ki}n

1 : n < ∞ be a collection of subsets of it. We
will abbreviate subsets of natural numbers of the form {1, 2, . . . , n} by N(n). If
X ⊆ S, then consider the sets (with K0 = ∅, Kn+1 = S for convenience):

(i) X l1 =
⋃{Ki : Ki ⊆ X, i ∈ {0, 1, ..., n}}

(ii) X l2 =
⋃{∩i∈ I(S \Ki) : ∩i∈ I(S \ Ki) ⊆ X, I ⊆ N(n + 1)}

(iii) Xu1 =
⋂{∪i∈ IKi : X ⊆ ∪i ∈ I Ki, I ⊆ N(n + 1)}

(iv) Xu2 =
⋂{S \ Ki : X ⊆ S \ Ki, i ∈ {0, ..., n}}

The pair (X l1, Xu1) is called an AU -rough set by union, while (X l2, Xu2) an AI-
rough set by intersection (in the present author’s notation [3]). In the notation of
[1] these are (F∪

∗ (X), F∗
∪(X)) and (F∩

∗ (X), F∗
∩(X)) respectively. We will also

refer to the pair 〈S, K〉 as an AUAI-approximation system. By a partition of a
set S, we mean a pairwise disjoint collection of subsets that covers S.

2 Granules and Equalities in AUAI Rough Set Theory

Possible constructive definitions of granules in a mereology based axiomatic
framework are introduced in [2] by the present author. In this section we simply
take a Granule to mean an element of ℘(S) that is definite in one of the senses
defined below and is minimal with respect to being so. The associated gran-
ulation should also be able to represent any approximation as a set theoretic
combination of constituent granules. Concepts of rough equalities are naturally
relatable to types of discernibility. [4] suggests another direction.

Definition 1. In a AUAI system 〈S, K〉, the following equalities are definable
(A, B ∈ ℘(S)):

Equality Defining If and Only If Condition Type
A =z B Az = Bz; z ∈ {l1, l2, u1, u2} Pre-Basic
A =1 B A =l1 B and A =u1 B Basic
A =2 B A =l2 B and A =u2 B Basic
A =o B A =1 B and A =2 B Derived
A =l B A =l1 B and A =l2 B Derived
A =u B A =u1 B and A =u2 B Derived
A =l− B A =l1 B or A =l2 B SubBasic
A =u− B A =u1 B or A =u2 B SubBasic
A =− B A =l− B and A =u− B SubBasic
A " B A =l− B or A =u− B SubBasic

The ’Types’ used are relative a natural perspective.
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Definition 2. We define different usable concepts of definite objects below:

Concept Defining If and Only If Condition Type
A is 1-Definite iff Al1 = A = Au1 Balanced
A is 2-Definite iff Al2 = A = Au2 Balanced
A is 12-Definite iff Al1 = A = Au1 = Al2 = Au2 Balanced
A is 0-Definite iff Al1 = Al2 and Au1 = Au2 Strong
A is x-Definite iff Ax = A; x ∈ {l1, l2, u1, u2} One-Sided

Below we reduce the number of possible concepts of definiteness to six.

Proposition 1. In the context of the above all of the following hold for any
subset A of S:

1. If A is l1-definite then A is u1-definite, but the converse implication may not
hold in general.

2. If A is u2-definite then A is l2-definite, but the converse implication may not
hold in general.

3. A is 12-definite if and only if A is l1-definite and u2-definite.

Proof

1. If A is l1-definite, then A = Al1 =
⋃{Ki : Ki ⊆ A, i ∈ {0, 1, ..., n}}

and so Al1 is one of the sets being intersected over in
⋂{∪i∈ IKi : A,⊆

∪i∈ I Ki, I ⊆ N(n + 1)}. Obviously the whole intersection must coincide
with A1. So Au1 = A.

2. If A is u2-definite, then A = Au2 =
⋂{S \ Ki : A,⊆ S \ Ki, i ∈

{0, ..., n}}. But this is then the largest possible set included in the union⋃{∩Kc
i : ∩Kc

i ⊆ A}. So Al2 = A.
3. This follows from the two propositions proved above. If A is 12-definite, then

it is obviously l1- and u2-definite. �#
The elements of K used in AUAI-rough set theory can be seen as quasi-inductive
granules in a more general sense. This is reinforced by the following proposition:

Proposition 2. If Ki ∈ K, then

1. Ki is 1-definite, but is not necessarily 2-definite
2. Ki need not be a minimal element with the property (in the usual order)
3. Kc

i is 2-definite, but is not necessarily 1-definite.

3 Synchronal Approximation Spaces

We introduce SAs and show them to be essentially equivalent to AUAI-
approximation systems, but with improved explicit notion of granularity and
semantic features. Basically, these are APS with operators that map equivalence
classes into other classes and are otherwise like the identity map.

Definition 3. By a synchronal approximation space SA, we mean a tuple of
the form 〈S, R, η1, η2, . . . ηn〉 satisfying all of
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(i) 〈S, R〉 is an APS with partition R with ηi being maps : ℘(S) $−→ ℘(S)
(ii) (∀A ∈ R) ηj(A) ∈ R or ηj(A) = ∅ ; (∀A ∈ ℘(S) \ R) ηj(A) = A
(iii) (∀A, B ∈ R)(ηi(A), ηi(B) ∈ R −→ ∃k, t ηk

i (A) = ηt
i(B))

(iv) (∀ηi, ηj)(∃A, B ∈ R)ηi(B) = ηj(A) = ∅, ηi(A), ηj(B) ∈ R
(v) (∀ηj)(∃t ∈ N)(∀A ∈ ℘(S)) ηt+1

j (A) = ηt
j(A)

Definition 4. By a ηj-connected component of a SA, we mean a subset C ⊆ R
that is maximal with respect to satisfying

(∀A, B ∈ C)(∃k ∈ N) ηk
j (A) = B or ηk

j (B) = A

In other words it is a subset satisfying the condition and no proper superset
satisfies the same condition.

Definition 5. On a SA, 〈S, R, η1, η2, . . . ηn〉, apart from the usual lower and
upper aproximations of a subset X (denoted by X l and Xu) of S, we can define
the following approximations:

(i) X l1+ =
⋃{B; B ∈ R, ∪j ∪k ηk

j (B) ⊆ X}
(ii) Xu1+ =

⋂{∪j∈J ∪k ηk
j (B) ; X ⊆ ∪j∈J ∪k ηk

j (B), J ⊆ N(n + 1), B ∈ R}
(iii) X l2+ =

⋃{(∪j∈J ∪kηk
j (B))c ; (∪j∈J ∪kηk

j (B))c ⊆ X, J ⊆N(n+1), B ∈ R}
(iv) Xu2+ =

⋂{(∪k ηk
j (B))c ; X ⊆ (∪k ηk

j (B))c, B ∈ R}
(v) Xu0+ =

⋃
j{∪kηk

j (B) ; ηk
j (B) ∩ X �= ∅, B ∈ R}

Theorem 1. Any AUAI approximation system 〈S,K〉 determines an partition S
along with a SA 〈S, R, η1, η2, . . . ηn〉 that is essentially equivalent to the former in
that l1+, l2+, u1+, u2+-approximations of a subset in the latter are the same as
l1, l2, u1, u2-approximations in the former respectively. Further, the SA uniquely
determines the AUAI approximation system.

Proof. For the forward transformation:

1. Simply decompose each Ki into {Kij} with each subset being disjoint from
any other of the form Khv (for any distinct index). Let sets of the form Kii

for i = 1, . . . , n be the ones obtained from Ki by subtracting all other Kjs
from it.

2. Define the ηis as per Definition 3 so that ∪B∈R ∪k ηk
i (B) = Ki. More

concretely, let ηj
1(K11) take all values in Kij with last class being mapped

to ∅ and η1(B) = ∅ for other B ∈ R and so on.

Given a SA, the union of connected components of each of the ηis that ex-
clude the empty set are precisely the elements of the collection K of the AUAI-
approximation system. This can be checked by substitution in the definition of
l1+, l2+, u1+, u2+ approximations. The uniqueness part can be verified by a
contradiction argument. �#
As equivalence classes have better granular properties than the elements of K
(relative approximations l, u), SAs have better granulation than AUAI-rough sys-
tems. The lack of uniqueness of definition of ηis in the proof is considered in more
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detail in a separate paper. Note that we do not need the exact index set over
which k takes values in the above, but the combinatorial part is definitely of
much interest.

Proposition 3. In a SA 〈S, R, η1, η2, . . . ηn〉, the elements of R are admissible
granules for the approximation operators l, u, l1+, u1+, l2+, u2+, u0+. These
possess the following properties:

(i) (∀B ∈ R)Bl = B = Bu

(ii) (∀B ∈ R)(∀A ∈ ℘(S))(A ⊂ B −→ A /∈ R)
(iii) All of the above mentioned approximations are representable as set-theoretic

combinations of elements of R.
(iv) (∀B ∈ R)(∃B1, . . . , Br ∈ R)B ∪ ⋃r

1 Bi is 1− definite �#

4 Multiple Approximation Spaces

Different APS can be derived from an AUAI-approximation system. In this sec-
tion, we investigate the question of reducibility and equivalence of such systems
with special multi-source APS or dynamic spaces (see [5], [6] for example).

Definition 6. By the AIAU-Mutation Algorithm we will mean the following
procedure:

1. INPUT: K (interpreted as a sequence of sets), for simplicity of notation we
will assume that no element is included in another.

2. The total orders on the index set {1, 2, . . . , n} correspond to bijections on
the same set (The set of bijections will be denoted by B(n)).

3. Fix σ ∈ B(n). Set P1 = Kσ1
4. Set P2 = Kσ2 \ P1
5. . . . Ps = Ks \ ∪r<sPr for s = 2 . . . , n + 1
6. OUTPUT: Pσ = {Pi}n+1

1 for each σ. We need to ignore empty sets in the
collection for our partitions.

Proposition 4. The collections formed by the AUAI-mutation algorithm are
partitions of the underlying set S. The equivalence corresponding to the partition
Pσ will be denoted by Rσ.

Definition 7. In the above context, by a concrete AIAU multiple approximation
space CAMS, we will mean a tuple of the form

〈
S, {Rσ}σ∈B(n)

〉
. The partitions

determined by each Rσ will be denoted by Pσ.

Theorem 2. A CAMS
〈
S, {Rσ}σ∈B(n)

〉
, satisfies all of the following:

(i) (∀σ ∈ B(n))Rσ % Rσ = Rσ, R−1
σ = Rσ, ∆S ⊆ Rσ

(ii) (∀σ, σ′ ∈ B(n))(Rσ % Rσ′)−1 = Rσ % Rσ′ , ∆S ⊆ Rσ % Rσ′

(iii) (∀σ, τ ∈ B(n))(∃A, B ∈ Pτ )(∃C, E ∈ Pσ)A ⊂ C, E ⊂ B
(iv) (∀k ∈ N(n))(∀σ ∈ B(n))(∃≥(n−k)−1Pτ )(∃A1, . . . , Ak ∈ Pσ)(∃B1, . . . , Bk ∈

Pτ )A1 = B1, . . . , Ak = Bk
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Proof

(i) Each Rσ is an equivalence relation
(ii) The composition of two distinct equivalences on the same set is symmetric

and reflexive
(iii) Suppose for some i, j, Ki ∈ Pσ and Kj ∈ Pτ . These are guaranteed to exist

by the AUAI-mutation algorithm. If Ki � Kj and Kj � Ki, then we will
be able to find some E ⊂ Kj in Pσ and a A ⊂ Ki in Pτ . If Ki = Kj, then
we need to consider the classes at some later stage of the mutation process.
This proves the statement.

(iv) From the collection K of ′n′ number of subsets of S, we can generate at most
n number of equivalence relations (and the same number of partitions) by
the AUAI-mutation algorithm. Given a specific partition Pσ, the number of
partitions with exactly k common elements is (n− k)− 1.

Theorem 3 (Representation Theorem). Every AUAI approximation system
〈S, K〉 determines a unique CAMS

〈
S, {Rσ}σ∈B(n)

〉
, which in turn determines

the same (up to a definable isomorphism) AUAI approximation system by a re-
verse algorithm.

Proof. The ⇒ part of the proof has already been done. For generality, we will
assume that

⋃K �= S. Given a CAMS
〈
S, {Rσ}σ∈B(n)

〉
:

1. Form the partitions Pσ corresponding to Rσ and group them into hierarchial
collections {Hij}j∈N(n) on the basis of number of common elements by the
following rules:

2. For fixed j, any two collections in {Hij} have one common element, while
any elements (partitions) of any two collections in Hij have i + 1 common
elements within themselves (for i = 1, 2, . . .n− 1)

3. (y ∈ x ∈ Hij −→ ∃!(n−i)!z x ⊂ z ∈ Hi−1j)
4. The elements of K are the single common elements in Hij (for each j). �#

This theorem completely describes concrete AUAI multiple APS and can be used
as an equivalent representation for AUAI approximation systems. It is also a very
intricate new Ramsey-type theorem ! (see the extended version of this paper for
details).

Extended Example: Let S = {a, b, c, e, f, g}, K1 = {a, b, c}, K2 = {b, c},
K3 = {c, e, f}, K4 = {f, g}, K5 = {b, e} and let K = {Ki}51, then,

– K l1
1 = {a, b, c}, Ku1

1 = {a, b, c}, K l12
1 = {a, b, c}, Ku2

1 = {a, b, c, e},. So K1 is
1-definite, but not 2-definite.

– If A = {a, f}, then Al1 = ∅, Au1 = {a, b, c, f}, Al2 = {a}, Au2 = {a, f, g}
– If B = {a, f, c}, then Bl1 = ∅, Bu1 = {a, b, c, f}, Bl2 = {a, c}, Bu2 =
{a, c, f, g}

– So A =1 B, but A �=2 B
– AUAI Mutation Algorithm: Applying the algorithm in the order (4, 1, 3, 2, 5)

to K, we get P1 = {f, g}, P2 = {a, b, c}, P3 = {e}, P4 = ∅, P5 = ∅. Naturally
we need to ignore the empty partitions.
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– If we apply the algorithm in the order (4, 2, 5, 1, 3) to K, then we get P1 =
{f, g}, P2 = {b, c}, P3 = {e}, P4 = {a}, P5 = ∅. Obviously, we can get a
large number of distinct partitions by this method.

More examples can be constructed from the ones in [1] and [3].

5 Generalisation of AUAI-Approximation Systems

In many applications, it can happen that each granule or union of granules
determines its own universe. This may be because the system under consideration
is actually the result of combining APS over different universes. The same applies
when the relevant universes are locally determined with respect to granules (see
[7] by the present author).

Definition 8. A partial map ϕ : ℘(S) $−→ ℘(S) will be said to be a universe
determining map if and only if it is a monotone increasing partial map defined
on the set B of granules and unions of granules. s.t. dom(ϕ) = B ; (x ⊂ y −→
ϕ(x) ⊆ ϕ(y)); x ⊆ ϕ(x) and (ϕ(x) = y −→ ϕ(∼ x) = y)

Definition 9. A tuple of the form 〈S, K, B, ϕ〉 will be said to be a Quasi-AUAI-
approximation system (or a QAIAU system) if B is the set of granules and
unions of granules, ϕ is an universe determining map and the approximations
l1, l2, u1, u2 are defined by conditions similar in form to that of AUAI systems,
but complementation is interpreted relative ϕ-determined universes (that is for
any subset A, A∗ = ϕ(A) \A).

From a classicalist perspective, we can define the usual set operations, special
complementation, the unary approximation operators and the 0-place
operations ⊥, 1, T on the power set ℘(S). The resulting structure, S =〈
℘(S),∪,∩,∗ , l1, l2, u1, u2,⊥, 1, T, η1, . . . ηφ(n), ξ1, . . . , ξφ(n)

〉
with ⊥ = ∅, T =

℘(S), 1 =
⋃K, will be termed a concrete QAUAI-algebra. The operations ηi, ξj

have been introduced to ease the expression of the last two conditions of Thm
1.1 of [3]. For even n, φ(n) = n!

(n/2)!2 and for odd n, φ(n) = n!
(n+1/2)! (n−1/2)! .

A similar structure satisfying all the conditions of Thm 1.1 (of [3]) is definable
for AUAI systems. The main differences are in the properties of l2, u2, the equal-
ities involving mixed approximations and difficulty of abstract representation.
It is also possible to represent QAUAI systems as a collection of APS over dis-
tinct universes under constraints. Importantly the connections with the different
extended APS extend to QAUAI systems in a modified way.

Theorem 4. The following properties hold in any QAUAI-algebra:

(i) x∗∗ = x ; x∗ ∩ y∗ ⊆ (x ∪ y)∗; x∗l2 ⊆ xu1∗ ; x∗u1 ⊆ xl2∗

(ii) In general, (x ∩ y)l2 �= (xl2 ∩ yl2) ; x∗l1 �= xu2∗
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6 Further Directions

We have shown that SAs and AUAI multiple APS are essentially equivalent to
AUAI-approximation systems, but with improved granularity. Moreover they are
more amenable from the algebraic point of view through direct methods and
decomposition theorems. For forming the logics of roughly equivalent objects, we
can use typed approaches or deal with the AI and AU approximations sepa-
rately (at the semantic level). The connections proved permit us to consider the
semantic domains of roughly equivalent objects of the AI, AU type respectively
and the classical semantic domain in a dialectical way. This suggests a natural
dialectical approach to the semantics and logic (see [8] and [2]).

In the extended version of this paper we associate typed logics with the vari-
ant of multiple APS obtained in the above. The objects of the rough semantic
domain are described in the same. As the granularity is fairly intricate, we have
separate logics for AI, AU and AUAI approximations. We also introduce a re-
lation algebra like approach to describe the semantics from a classicalist and
rough perspective of things. The associated structures are partial algebras. For
the rough perspective, we use relativisation in the sense of [9] to provide a dis-
tinct interpretation. The main problems solved therein are those of selection of
operations and domain of definition, axiomatisability and/or direct logic formu-
lation. We will also consider the fine structure of the connections with most other
cover based approaches in a separate paper.

Acknowledgement. I would like to thank the anonymous referees for useful
suggestions towards improving the readability of the paper.
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Abstract. In this paper, we discuss some structures on the ordered set of rough 
approximations in a more general setting of complete atomic Boolean lattices. 
Further, we define an induced map from the map defined from the atoms of 
complete atomic Boolean lattice (A(B)) to that lattice B. We also study the con-
nections between the rough approximations xˇ, xˆ defined with respect to the  
induced map and the rough approximations x , x defined with respect to the 
considered map under certain conditions on the map. 

Keywords: Complete atomic Boolean lattices, Complete Ortholattices, linearly 
ordered set, rough approximations. 

1   Introduction 

Rough set theory was introduced by Pawlak [10] to deal with uncertainty, where the 
objects were observed only through the available knowledge represented by the indis-
cernibility relation. The Rough Set theory approach is based on indiscernibility rela-
tion and approximation. Pawlak’s rough sets model is based on equivalence relation. 
According to Slowinski and Vanderpooten [11], “The equivalence relation seems to 
be a stringent condition that may limit the application domain of the standard rough 
set model”. So the equivalence relation has been relaxed to arbitrary binary relation 
[13] and Yao [14, 15, 16] introduced the notion of generalized rough approximations. 
This is one of the ways to generalize the rough set model. 

Another way of generalizing the rough set model was done by defining the ap-
proximation operators in various algebraic structures such as Boolean algebras [7, 8], 
Complete distributive lattices [5], Completely distributive Complete lattices [4], lat-
tices, posets [17] etc. The properties of the rough approximations in a more general 
setting of complete atomic Boolean lattice were studied in [7, 8]. In this paper, we 
have proved according to the notations in [7, 8] that the ordered sets (B , ≤ ) and 
(B , ≤ ) are complete ortholattices if the map ϕ  is extensive and symmetric. Also, we 

give a necessary and sufficient condition for the ordered sets (B , ≤ ) and (B , ≤ ) to 
be linearly ordered. Further, we define a new map induced from the considered map 
ϕ  and study the connection between the rough approximations defined by the map 

〉〈ϕ and the map ϕ . 
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2   Preliminaries  

An ordered set (P, ≤ ) is linearly ordered if for every x, y∈P, x ≤ y or y ≤ x. A map f: 
P → P is said to be extensive, if x ≤ f(x), for all x∈P. The map f is order – preserving 
if x ≤ y implies f(x) ≤ f(y). The map f: P → P is said to be idempotent if f(f(x))=f(x). A 
closure operator on an ordered set P is an idempotent, extensive and order-preserving 
self-map. A self-map f is called a topological closure operator (also called a Kura-
towski closure operator) on complete lattice L if it is idempotent, extensive, and satis-
fies f(0) = 0 and f(a ∨ b) = f(a) ∨ f(b) for all a, b ∈L. Further, if f is a closure operator 
and a complete join-morphism on a complete lattice L, then f is called an Alexandrov 
closure operator on L. Let (L, ∨, ∧, 0, 1) be a bounded lattice. Then L is said to be an 
ortholattice if there exists a unary operation ' : L→L satisfying the conditions x ∨ x' = 
1, x ∧ x' = 0, x ≤ y ⇒ y' ≤ x'  and x'' = x . For definitions and results in lattice theory 
not given here the readers are asked to refer [6, 9, 12]. 

Let us recall some definitions and results given in [7]. 
If B is a complete atomic Boolean lattice, then A(B) denote the set of all atoms  

of B. 

Definition 1[7]. Let (B, ≤ ) be a complete atomic Boolean lattice. A map ϕ :A(B) 

→ B is said to be  

i) extensive, if x ≤ ϕ (x), for all x∈A(B). 

ii) symmetric, if x ≤ ϕ (y)⇒  y ≤ ϕ (x), for all x, y∈A(B). 

iii) closed, if x ≤ ϕ (y) ⇒ ϕ (x) ≤ ϕ (y), for all x, y∈A(B). 

Definition 2[7]. Let (B, ≤ ) be a complete atomic Boolean lattice and let ϕ : A(B) 

→ B be any map. For any element x∈B, let  

x = ∨ {a∈A(B) / ϕ (a) ≤ x} and 

x = ∨ {a∈A(B) / ϕ (a) ∧ x ≠ 0}. 
(1)

 

Result 1[7]. Let (B, ≤ ) be a complete atomic Boolean lattice and let ϕ  : A(B) → B 

be any map. Then for all a∈A(B) and x∈B,  

i) a ≤  x  ⇔  ϕ (a) ∧ x ≠ 0 

ii) a ≤  x  ⇔ ϕ (a) ≤ x 

The following results are shown in [7]. For any S ⊆ B, let S  ={x / x∈S}. The or-
dered sets (B , ≤ ) and (B , ≤ ) are always complete lattices. (B , ≤ ) and (B , ≤ ) are 
distributive sub lattices of (B, ≤ ) if ϕ  is extensive and closed. If the map ϕ  is exten-

sive, symmetric and closed, then the ordered sets (B , ≤ ) and (B , ≤ ) are mutually 
equal complete atomic Boolean lattices. Further the example 3.16 of [7] shows that 
(B , ≤ ) and (B , ≤ ) are not necessarily distributive if ϕ  is extensive and symmetric. 
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3   Some Structures on the Ordered Set of Rough Approximations 

The join ( ∨ ) and meet ( ∧ ) operations in the complete lattice (B , ≤ ) are as follows: 

Let S ⊆ B . Then ∨ S = ( x
Sx∈

∨ )  and   ∧ S = ∨ {ϕ (a) /ϕ (a) ≤ x
Sx∈

∧ }, where ∨  

and ∧  are the join and meet operations in (B, ≤ ) respectively. 

Theorem 1. If ϕ  is extensive and symmetric, then (B , ≤ ) and (B , ≤ ) are complete 

ortholattices. 

Proof. For each x ∈  B , (x ) ⊥ = x ' , where ' is the complementation operator in 
(B, ≤ ) is the orthocomplement of x . Hence the ordered set (B , ≤ ) is a complete 
ortholattice. Since ϕ  is symmetric, (B , ≤ ) ≅ (B , ≤ ). Hence (B , ≤ ) is also a com-

plete ortholattice.                                                                                                           

Let us denote ϕ (A(B)) = {ϕ (a) / a∈A(B)}. 

Theorem 2. Let (B, ≤ ) be a complete atomic Boolean lattice. Then (B , ≤ ) is linearly 
ordered if and only if (ϕ (A(B)), ≤ ) is linearly ordered. 

Proof. Assume that (ϕ (A(B)), ≤ ) is linearly ordered. Let x, y ∈B . Then x=u , 

y=v , for some u, v∈B.  Suppose x and y are not comparable in B . Then there exists 
a, b∈A(B) such that a ≤ x=u  and a ≤/ y=v , b ≤ y=v  and b ≤/ x=u . Then, we have 
ϕ (a) ∧ u ≠ 0 and ϕ (a) ∧ v=0, ϕ (b) ∧ v ≠ 0 and ϕ (b) ∧ u=0. Since (ϕ (A(B)), ≤ ) is 

linearly ordered, we have ϕ (a) ≤ ϕ (b) or ϕ (b) ≤ ϕ (a). If ϕ (a) ≤ ϕ (b), then 

ϕ (a) ∧ u ≠ 0 impliesϕ (b) ∧ u ≠ 0, which is a contradiction to the hypothesis. Similar 

contradiction also occurs when ϕ (b) ≤ ϕ (a). Hence (B , ≤ ) is linearly ordered. Con-

versely, assume that (B , ≤ ) is linearly ordered. Suppose (ϕ (A(B)), ≤ ) is not linearly 

ordered. Then there exists a, b∈A(B) such that neither ϕ (a) ≤ ϕ (b) nor ϕ (b) ≤ ϕ (a). 

Then there exists c, d∈A(B) such that c ≤ ϕ (a) and c ≤/ ϕ (b),  d ≤ ϕ (b) and d ≤/ ϕ (a). 

Then c ≤ ϕ (a) and c ≤/ ϕ (b) implies ϕ (a) ∧ c ≠ 0 and ϕ (b) ∧ c = 0. Then, we have 

a ≤ c and b ≤/ c . Similarly, d ≤ ϕ (b) and d ≤/ ϕ (a) implies b ≤ d and a ≤/ d . Thus 

there exists a, b∈A(B) such that a ≤ c and a ≤/ d , b ≤ d  and b ≤/ c . This implies 
there exists c , d ∈B  such that c ≤/ d  and d ≤/ c , which is a contradiction to the 
hypothesis. Hence (ϕ (A(B)), ≤ ) is linearly ordered.                                                    

Since (B , ≤ ) is dually order isomorphic to (B , ≤ ), we have the following corollary. 

Corollary 1. Let (B, ≤ ) be a complete atomic Boolean lattice. Then (B , ≤ ) is line-
arly ordered if and only if (ϕ (A(B)), ≤ ) is linearly ordered. 

Remark 1. Let us considerϕ : U → ℘(U) defined by ϕ (x) = R(x) for all x∈U, where 

R(x) = {y∈U/ xRy}. If R is transitive and connected, then for every x, y∈U, R(x) ⊆ 
R(y) or R(y) ⊆ R(x). Therefore, by the above theorem (℘(U) , ⊆) and (℘(U) , ⊆) 

are linearly ordered sets. 
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4   New Approaches in Defining the Rough Approximations 

We can define a new map 〉〈ϕ  induced from the map ϕ  as follows:  

〉〈ϕ (a) = )(
)(

b
ba

ϕ
ϕ
∧
≤

, for all a∈A(B). (2)

The idea behind the setting is the map 〉〈ϕ : U → ℘(U) by 〉〈ϕ (x) = Rx〉〈  may be 

considered to be of the form 〉〈ϕ : A(B) → B, where (B, ≤ ) equals (℘(U), ⊆ ) re-

sembles the definition of Rx〉〈  given in [1, 2, 3]. 
Now, we can define the lower and upper approximation operators on (B, ≤ ) with 

respect to the induced map 〉〈ϕ . 

Definition 3. Let (B, ≤ ) be a complete atomic Boolean lattice and ϕ : A(B) → B be 

any map. For any element x∈B, we define  

xˇ = ∨ {a∈A(B) / 〉〈ϕ (a) ≤ x} and  

xˆ = ∨ {a∈A(B) / 〉〈ϕ (a) ∧ x ≠ 0}.  
(3)

The elements xˇ and xˆ are the lower and upper approximations of x with respect to 
〉〈ϕ respectively, where the elements x  and x  are the lower and upper approxima-

tions of x with respect toϕ . 

According to lemma 3.3, 3.4 and proposition 3.5 in [7], the following results are 
true for any mapϕ . Since 〉〈ϕ  is also a map, the same results hold for the lower and 

upper approximations of x∈B with respect to 〉〈ϕ . So, we omit the proof for the fol-

lowing lemma and proposition.  

Lemma 1. Let B be a complete atomic Boolean lattice andϕ : A(B) → B be any map. 

Then for any element x, y∈B and a∈A(B), the following hold 

i) a ≤  xˆ ⇔ 〉〈ϕ (a) ∧ x ≠ 0 

ii) a ≤  xˇ ⇔ 〉〈ϕ (a) ≤ x 

iii) 0ˆ =0 and 1ˇ =1 
iv) x ≤ y⇒  xˇ ≤  yˇ  and xˆ ≤  yˆ 

For any S ⊆ B, denote by Sˆ = {xˆ/ x∈S} and Sˇ = {xˇ / x∈S}. 

Proposition 1. Let B be a complete atomic Boolean lattice andϕ : A(B) → B be  any 

map. Then the following hold 

i) The maps ˇ : B → B and ˆ : B → B are mutually dual.  
ii) For all S ⊆ B, ∨ Sˆ = ( ∨ S)ˆ  and ∧ Sˇ= ( ∧ S)ˇ. 
iii) (Bˆ, ≤ ) is a complete lattice with null element 0 and all element 1ˆ. 
iv) (Bˇ, ≤ ) is a complete lattice with null element 0ˇand all element 1. 
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Proposition 2. Let B be a complete atomic Boolean lattice andϕ : A(B) → B be any 

map. Then the following hold for every x∈B. 

i) xˆ  = x  
ii) xˇ = x  

Proof. i) Let a∈A(B) be such that a ≤  xˆ . Then, we have ϕ (a) ∧ xˆ ≠ 0. Then  

there exists b∈A(B) such that b ≤ ϕ (a) and b ≤ xˆ which implies 〉〈ϕ (b) ∧ x ≠ 0.  

Since b ≤ ϕ (a), we have 〉〈ϕ (b) ≤ ϕ (a). Thus, ϕ (a) ∧ x ≠ 0. Then ϕ (a) ∧ x ≠ 0 im-

plies a ≤ x . This implies ∨ {a∈A(B)/a ≤ xˆ } ≤ ∨ {a∈A(B)/a ≤ x } which implies 
xˆ ≤  x . 

Let a∈A(B) be such that a ≤ x . Then, we have ϕ (a) ∧ x ≠ 0. Then there exists 

b∈A(B) such that b ≤ ϕ (a) and b ≤ x. Since there exists b∈A(B) such that b ≤ ϕ (a), 

we have b ≤ 〉〈ϕ (b).  Also, we have b ≤ x implies 〉〈ϕ (b) ∧ x ≠ 0. Then, we have 

b ≤ xˆ. So, b ≤ ϕ (a) and b ≤ xˆ implies ϕ (a) ∧ xˆ ≠ 0. Then, we have a ≤ xˆ . Thus, 

∨ {a∈A(B) / a ≤  x } ≤ ∨ {a∈A(B) / a ≤  xˆ } which implies  x  ≤  xˆ . Hence xˆ  
= x , for all x∈A(B). 

ii) By (i), we have xˆ  = x , for all x∈A(B). Thus for x', we have x'ˆ  = x' . By dual-
ity of the maps ,  and ˆ, ˇ, we have xˇ'  = x' ⇒  xˇ '= x '⇒  xˇ = x .        
 

The following lemma shows that the map 〉〈ϕ  is always closed for any mapϕ . 

Lemma 2. Let B be a complete atomic Boolean lattice. For any mapϕ : A(B) → B, 

the induced map 〉〈ϕ is always closed. 

Proof. Let a, b∈A(B) be such that a ≤ 〉〈ϕ (b). Then by definition of 〉〈ϕ , we have  

a ≤ ϕ (c), for all c∈ A(B) such that b ≤ ϕ (c)                               (2.1) 

Let x∈A(B) be such that x ≤ 〉〈ϕ (a). Then by definition of 〉〈ϕ , we have  

x ≤ ϕ (d), for all d∈ A(B) such that a ≤ ϕ (d)                              (2.2) 

Let c∈A(B) be such that b ≤ ϕ (c). This implies a ≤ ϕ (c) (by (2.1)) which implies 

x ≤ ϕ (c) (by (2.2)). Therefore x ≤ ϕ (c), for all c∈A(B) such that b ≤ ϕ (c). Then 

x ≤ )(
)(

c
cb

ϕ
ϕ
∧
≤

implies x ≤ 〉〈ϕ (b). Thus{x∈A(B)/x ≤ 〉〈ϕ (a)} ⊆ {x∈A(B)/x ≤ 〉〈ϕ (b)} 

implies ∨ {x∈A(B)/x ≤ 〉〈ϕ (a)} ≤ ∨ {x∈A(B)/x ≤ 〉〈ϕ (b)} which implies 

〉〈ϕ (a) ≤ 〉〈ϕ (b). Thus a ≤ 〉〈ϕ (b) implies 〉〈ϕ (a) ≤ 〉〈ϕ (b), for all a, b∈A(B). 

Hence the map 〉〈ϕ  is closed.                                                                                       
 

Symmetry of ϕ  does not imply symmetry of 〉〈ϕ . But, obviously the extensiveness of 

ϕ  implies the extensiveness of 〉〈ϕ . Example 1 shows that, there exist maps ϕ  which 

are not extensive, but 〉〈ϕ are extensive.  
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Example 1. Let B = {0, a, b, 1}, the order ≤  be defined as in fig. 1 and let the map 
ϕ : A(B) → B be defined by ϕ (a) = b, ϕ (b) = a. 

                                          

   
 

Fig. 1. The ordered set (B, ≤ ) 

Now, 〉〈ϕ (a) = ϕ (b) = a, 〉〈ϕ (b) = ϕ (a) = b. We have, x ≤ 〉〈ϕ (x), for all x∈A(B). 

Hence the map 〉〈ϕ  is extensive, though ϕ  is not extensive. Hence for the extensive-

ness of the map 〉〈ϕ , a weaker condition, than the extensive condition on ϕ  is  

sufficient. 

Definition 4. Let (B, ≤ )  be a complete atomic Boolean lattice. A mapϕ : A(B) → B 

is said to be a cover if  ∨ {ϕ (a) /a∈A(B) }=1. 

Lemma 3. Let B be a complete atomic Boolean lattice. Then the following are 
equivalent: 

i) ϕ  is a cover;  

ii) for every a∈A(B), there exists b∈  A(B) such that a ≤ ϕ (b); 

iii) 〉〈ϕ is extensive.  

Proposition 3. Let B be a complete atomic Boolean lattice. Then the following are 
equivalent: 

i) ϕ  is a cover; 

ii) xˇ ≤ x, for all x∈B;  
iii) x ≤  xˆ, for all x∈B. 

Proof. The proof follows from the above lemma and proposition 4.2 in [8].               

Proposition 4. Let B be a complete atomic Boolean lattice. Then the following are 
equivalent: 

i) ϕ  is a cover;  

ii) xˇˇ = xˇ , for all x∈B; 
iii) xˆˆ = xˆ, for all x∈B. 

Proof. The proof follows by using lemma 2 and lemma 3 in proposition 4.4 of [8].   

Corollary 2. Let B be a complete atomic Boolean lattice. Then the following are 
equivalent. 

a

1

b

0
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i) ϕ  is a cover;  

ii)  ˇ : B → B is a Alexandrov interior operator; 
iii)  ˆ : B → B is a Alexandrov closure operator.  

Theorem 3.  Let B be a complete atomic Boolean lattice. Then x ≤ xˇ ≤ x ≤  xˆ ≤  x  

holds for all x∈B if and only if ϕ  is extensive. 

Proof. Let a∈A(B) be such that a ≤ x . Then we have ϕ (a) ≤ x. Since 

a ≤ ϕ (a), )(
)(

c
ca

ϕ
ϕ
∧
≤

≤ ϕ (a) ≤ x. Then 〉〈ϕ (a) ≤ x implies a ≤ xˇ. Thus, we have x ≤  

xˇ, for all x∈B.  Now for x', we have x' ≤  x 'ˇ.  By proposition 3.5(i) of [6] and 
proposition 1(i), we have x' = x ' and x'ˇ= xˆ'. Then x ' = x' ≤  x'ˇ = xˆ' implies xˆ ≤  
x . Combining proposition 3 with this we have x ≤ xˇ ≤ x ≤ xˆ ≤ x , for all x∈B. 
Other part is obvious.                                                                                                    

Example 2. Let us consider a complete atomic Boolean lattice B, the order ≤  be de-
fined as in the fig. 2. The mapϕ : A(B) → B be defined by ϕ (a)=c', ϕ (b)=b' and 

ϕ (c)=b'. Then obviously ϕ  is a cover but not extensive, for b ≤/ ϕ (b). 

1

a'

0

c
a 

b

c' b'

 

Fig. 2. The ordered set (B, ≤ ) 

Here we have that (b' ) ≤/ (b' )ˇ and  bˆ ≤/ b . Thus the chain of inequality in the 
above theorem does not hold if ϕ  is merely a cover.    

Lemma 4.  Let B be a complete atomic Boolean lattice. Then the following holds: 

i) If  ϕ  is extensive and closed, then 〉〈ϕ = ϕ . 

ii) If ϕ  is symmetric and closed, then 〉〈ϕ = ϕ . 

Proposition 5. Let B be a complete atomic Boolean lattice. If ϕ  is extensive and 

closed or ϕ  is symmetric and closed, then the rough approximations of the elements 

of B with respect to 〉〈ϕ and ϕ  are equal. 

Proof. The proof follows from the above lemma.                                                         
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The following proposition gives the necessary and sufficient condition for a cover 
map ϕ  to be equal to its induced map 〉〈ϕ . 

Proposition 6.  Let B be a complete atomic Boolean lattice.  Then the map ϕ : A(B) 

→ B is a cover and 〉〈ϕ =ϕ  if and only if ϕ  is extensive and closed. 

Proof.  If ϕ  is extensive and closed, then by lemma 4 〉〈ϕ =ϕ . Since ϕ  is extensive, 

ϕ  is a cover. Conversely, suppose the mapϕ : A(B) → B is a cover and 〉〈ϕ =ϕ . Then 

from lemma 3, we have ϕ  is extensive. Also, we have 〉〈ϕ  is always closed. This 

implies ϕ  is also closed. Hence ϕ  is extensive and closed.                                        
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Abstract. In this paper, rough set approximations based on labelled
blocks are explored. The concept of labelled blocks determined by a
function is first introduced. Lower and upper label-block approxima-
tions of sets are then defined. Properties of label-block approximation
operators are also examined. Finally, relationship between properties of
label-block approximation operators and some essential properties of the
corresponding function is characterized.

Keywords: Granular computing, Granules, Labelled blocks, Rough sets.

1 Introduction

Granular computing (GrC) is a basic issue in knowledge representation and
data mining. The purpose of GrC is to seek for an approximation scheme which
can effectively solve a complex problem, albeit not in the most precise way.
Ever since the introduction of the concept of “GrC” [8,22,23], we have wit-
nessed a rapid development of and a fast growing interest in the topic (see e.g.
[1,2,5,9,10,12,13,15,16,17,18,19,20,21]).

A granule is a primitive notion in GrC which is a clump of objects (points)
drawn together by the criteria of indistinguishability, similarity or functionality
[23]. A granule may be interpreted as one of the numerous small particles form-
ing a larger unit. Alternatively, a granule may be considered as a localized view
or a specific aspect of a large unit satisfying a given specification. The set of
granules provides a representation of the unit with respect to a particular level
of granularity. The process of constructing information granules is called infor-
mation granulation. It granulates a universe of discourse into a family of disjoint
or overlapping granules. Thus one of main directions in the study of GrC is to
deal with the construction, interpretation, and representation of granules.

Many models and methods of GrC concentrating on concrete models in special
contexts have been proposed and studied over the years. Rough set theory is one
of the most advanced areas popularizing GrC [5,6,7,9,14,18,19,20,21]. Rough set
theory was originally proposed by Pawlak [11] as a formal tool for modelling and
processing incomplete information. The basic structure of rough set theory is an
approximation space consisting of a universe of discourse and a binary relation

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 93–100, 2009.
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imposed on it. Based on the approximation space, the notions of lower and upper
approximation operators can be constructed. This model is very useful in the
analysis of data in complete information systems/tables [11,24]. The equivalence
relation in the Pawlak’s rough set model groups together entities which are in
some sense indiscernible or similar called equivalence classes. Thus equivalence
classes are the basic building blocks for the representation and approximation
of any subset of the universe. Based on this observation and by employing the
notion of labelled partition, Bittner and Smith [3] proposed the concept of a
granular partition. A granular partition can be seen as an extension of the con-
cept of equivalence relation. In [4], Bittner and Stell showed how the technique
of making rough descriptions of a subset with respect to an equivalence relation
can be extended to descriptions with respect to a granular partition.

A labelled partition of a universe of discourse is a surjective function from
the universe to a labelled set. We observe that each attribute in a complete
information system [11,24] can be taken as a labelled partition. In this paper,
we propose a concept of block-labelled rough set. We introduce the notion of
labelled blocks, define rough set approximations based on labelled blocks, and
examine their properties.

2 Functions and Labelled Blocks

Let U be a nonempty set, the class of all subsets of U will be denoted by P(U).
For X ∈ P(U), we denote by ∼ X the complement of X in U .

Let U denote a nonempty set of objects called the universe of discourse and
R ⊆ U ×U an equivalence binary relation on U . The equivalence relation R par-
titions the universe U into disjoint subsets. The equivalence classes in Pawlak’s
rough set model provide the basis of “information granules” for database anal-
ysis. It is well known that there exist a one-to-one mapping between the set of
equivalence relations on U and the set of partitions of U . Partitions of the set U
are often identified with functions of the form f : U → V which are surjective,
that is, for each v ∈ V , there exists some u ∈ U such that u = f(v).

Let U and V be two nonempty sets and consider a function f : U → V , denote
f−1(v) = {u ∈ U |f(u) = v}, then we can see that, for v1, v2 ∈ V,

v1 �= v2 =⇒ f−1(v1) ∩ f−1(v2) = ∅ (1)

and ⋃
v∈V

f−1(v) = U. (2)

If f is surjective, then {f−1(v)|v ∈ V } forms a partition of U .
For u ∈ U , denote [u]f = {x ∈ U |f(x) = f(u)}, it is easy to observe that

{[u]f |u ∈ U} is a partition of U . Moreover, if v = f(u), then [u]f = f−1(v), in
such a case, we say that [u]f is a block with the label v and we call that the pair
([u]f , v) = (f−1(v), v) is a labelled block induced from the function f : U → V.
In [4], a surjective function from U to V is called a V -labelled partition of U .
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One example of class of labelled blocks are maps in the cartographic rather
than the mathematical sense, in which a block is the location of a region whereas
the label is the name of the same region [4]. Labelled blocks can also be em-
ployed to represent the granular information of the object-attribute values in an
information system [11,24]. Consider an information system (U, A, F ) in which
U is a nonempty finite set of objects called the universe of discourse, A is a
nonempty finite set of attribute such that fa : U → Va for any a ∈ A, where
Va = {fa(u)|u ∈ U} is the domain of attribute a, and F = {fa|a ∈ A} is the
set of information functions. Then for each attribute a ∈ A, fa is a surjective
function from U to Va, ([u]fa , fa(u)) is a labelled block in (U, A, F ), the sets of
all labelled blocks reflect the information granules in the information system.

3 Block-Label Approximations of Sets

In this section, we defined two pairs of lower and upper approximations of a set,
one is in the sense of Pawlak which is constructed by blocks, and the other is
determined by labels.

Definition 1. Let U and V be two nonempty sets and f : U → V a function
from U to V . For X ∈ P(U), a pair of lower and upper block approximations,
denoted as f(X) and f(X), are subsets of U and are defined, respectively, as
follows

f(X) = {u ∈ U |[u]f ⊆ X}, f(X) = {u ∈ U |[u]f ∩X �= ∅}. (3)

(f(X), f(X)) is referred to as the block rough set of X with respect to (U, V, f),
and f and f : P(U) → P(U) are, respectively, called the lower and upper block
approximation operators. The lower and upper label approximations of X with
respect to (U, V, f), denoted as L(X) and L(X), are subsets of V and are, re-
spectively, defined as follows

L(X) = {v ∈ V |f−1(v) ⊆ X}, L(X) = {v ∈ V |f−1(v) ∩X �= ∅}. (4)

(L(X), L(X)) is referred to as the label rough set of X with respect to (U, V, f),
and L and L : P(U) → P(V ) are, respectively, called the lower and upper label
approximation operators. We call ((f(X), f(X)), (L(X), L(X))) the block-label
rough set of X with respect to (U, V, f).

According to Eq. (3), the lower block approximation, f(X), of X with respect
(U, V, f) is the collection of those objects which can be classified with full cer-
tainty as elements of X in the available knowledge (U, V, f), whereas the upper
block approximation f(X) is the collection of objects which can be possibly
classified as elements of X using the available knowledge (U, V, f). Since the
set of blocks, {[u]f |u ∈ U}, is a partition of U , it can yield an equivalence bi-
nary relation Rf on U , then by the definition, we can see that the pair of block
approximations are exactly set approximations in the sense of Pawlak [11], i.e.,

f(X) = ∪{[u]f |[u]f ⊆ X}, f(X) = ∪{[u]f |[u]f ∩X �= ∅}. (5)
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Hence, the lower block approximation f(X) is the union of blocks which are
subsets of X and the upper block approximation f(X) is the union of blocks
which have a nonempty intersection with X .

By Eq. (4), the lower label approximation of X with respect (U, V, f) is
the collection of those labels whose corresponding blocks can be classified with
full certainty as elements of X in the available knowledge (U, V, f), whereas
the upper label approximation is the collection of labels whose corresponding
blocks can be possibly classified as elements of X using the available knowledge
(U, V, f). Therefore, the block-label approximations have more semanteme than
the Pawlak approximations.

4 Properties of Block-Label Approximations

Since the block approximations are the same as the Pawlak approximations, the
block approximation operators satisfy the properties of Pawlak approximation
operators and we summarize as following

Theorem 1. [11] Let U and V be two nonempty sets and f : U → V a function
from U to V . Then the lower and upper block approximation operators defined
in Eq. (3) satisfy the following properties: ∀X, Y, Xi ∈ P(U), i ∈ I, I is an index
set,

(BL0) f(X) =∼ f(∼ X), (BU0) f(X) =∼ f(∼ X);
(BL1) f(U) = U, (BU1) f(∅) = ∅;
(BL2) f(

⋂
i∈I

Xi) =
⋂
i∈I

f(Xi), (BU2) f(
⋃
i∈I

Xi) =
⋃
i∈I

f(Xi);

(BL3) X ⊆ Y =⇒ f(X) ⊆ f(Y ), (BU3) X ⊆ Y =⇒ f(X) ⊆ f(Y );
(BL4) f(

⋃
i∈I

Xi) ⊇
⋃
i∈I

f(Xi), (BU4) f(
⋂
i∈I

Xi) ⊆
⋂
i∈I

f(Xi);

(BL5) f(X) ⊆ X, (BU5) X ⊆ f(X);
(BL6) f(∅) = ∅, (BU6) f(U) = U ;
(BL7) f(X) = f(f(X)), (BU7) f(f(X)) = f(X);
(BL8) f(X) = f(f(X)), (BU8) f(f(X)) = f(X);
(BL9) f(f(X)) ⊆ X, (BU9) X ⊆ f(f(X)).

The next theorem presents the basic properties of label approximation operators.

Theorem 2. Let U and V be two nonempty sets and f : U → V a function
from U to V . Then the lower and upper label approximation operators defined in
Eq. (4) satisfy the following properties: ∀X, Y, Xi ∈ P(U), i ∈ I, I is an index
set,

(LL0) L(X) =∼ L(∼ X), (LU0) L(X) =∼ L(∼ X);
(LL1) L(U) = V, (LU1) L(∅) = ∅;
(LL2) L(

⋂
i∈I

Xi) =
⋂
i∈I

L(Xi), (LU2) L(
⋃
i∈I

Xi) =
⋃
i∈I

L(Xi);
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(LL3) X ⊆ Y =⇒ L(X) ⊆ L(Y ), (LU3) X ⊆ Y =⇒ L(X) ⊆ L(Y );
(LL4) L(

⋃
i∈I

Xi) ⊇
⋃
i∈I

L(Xi), (LU4) L(
⋂
i∈I

Xi) ⊆
⋂
i∈I

L(Xi).

Proof. It is directly follows from Eq. (4).

For X ∈ P(U) and W ∈ P(V ), denote

f(X) = {f(x)|x ∈ X}, f−1(W ) = {x ∈ U |f(x) ∈ W} =
⋃

w∈W

{f−1(w)}. (6)

It can easily be verified that

f−1(f(X)) ⊇ X ∀X ∈ P(U). (7)

and
f(f−1(W )) = W ∀W ∈ P(V ). (8)

By Eq. (4), we can easily conclude that

L({u}) = {f(u)}, u ∈ U. (9)

Then, according to property (LU2), we have

L(X) =
⋃

u∈X

{f(u)} = f(X), X ∈ P(U). (10)

Theorem 3 below shows the relationship between the two types of approximations
defined in Definition 1.

Theorem 3. Let U and V be two nonempty sets and f : U → V a function
from U to V . Then, for X ∈ P(U),

f−1(L(X)) = f(X), f(f(X)) = L(X), (11)

and
f−1(L(X)) = f(X), f(f(X)) = L(X). (12)

Proof. For any u ∈ f−1(L(X)), let v = f(u), then f−1(v) = [u]f . Since f(u) =
v ∈ F (X), we have f−1(v) ∩X �= ∅, that is, [u]f ∩X �= ∅. Hence u ∈ f(X). It
follows that

f−1(L(X)) ⊆ f(X). (13)

On the other hand, for any x ∈ f(X), let w = f(x), then [x]f = f−1(w). From
x ∈ f(X), we have [x]f ∩X �= ∅, that is, f−1(w)∩X �= ∅, and in turn, w ∈ L(X),
hence f(x) ∈ L(X). It follows that x ∈ f−1(L(X)). Therefore,

f(X) ⊆ f−1(L(X)). (14)

Combining Eqs. (13) and (14), we conclude f−1(L(X)) = f(X). Furthermore,
by Eq. (8), we then obtain f(f(X)) = L(X).

Similarly, we can prove Eq. (12).
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The following Theorems 4 and 5 show that some properties of a function can be
characterized by the properties of label approximation operators.

Theorem 4. Let U and V be two nonempty sets and f : U → V a function
from U to V . Then the following statements are equivalent:

(1) f : U → V is surjective;
(2) L(X) ⊆ L(X) ∀X ∈ P(U);
(3) L(∅) = ∅;
(4) L(U) = V .

Proof
“(1) ⇒ (2)” For any X ∈ P(U) and v ∈ L(X), by Eq. (4), we have f−1(v) ⊆

X . Since f is surjective, we see that f−1(v) �= ∅. Then f−1(v) ∩X �= ∅, hence
v ∈ L(X). Thus we have proved that L(X) ⊆ L(X).

“(2) ⇒ (1)” If f : U → W is not surjective, there exists a v ∈ V such
that f−1(v) = ∅. Then for any X ∈ P(U), we have f−1(v) ⊆ X , by Eq. (4),
x ∈ L(X). However, f−1(v) ∩X = ∅, that is, v /∈ L(X), which contradicts that
L(X) ⊆ L(X). So f : U → V is surjective.

“(2) ⇔ (3) ⇔ (4)” For any X ∈ P(U), in terms of Theorem 2, we have

L(X) ⊆ L(X) ⇐⇒ L(X) ∩ (∼ L(X)) = ∅
⇐⇒ L(X) ∩ L(∼ X) = ∅
⇐⇒ L(X ∩ (∼ X)) = ∅
⇐⇒ L(∅) = ∅
⇐⇒ L(∼ U) =∼ V
⇐⇒ ∼ L(∼ U) = V
⇐⇒ L(U) = V.

Theorem 5. Let U and V be two nonempty sets and f : U → V a function
from U to V . Then f is injective and surjective (that is, one-to-one) if and only
if

L(X) = L(X) ∀X ∈ P(U). (15)

Proof. “⇒” Assume that f is one-to-one. For any X ∈ P(U) and v ∈ L(X), by
Eq. (4), we have f−1(v) ⊆ X . Since f is surjective, by Theorem 4, we conclude

L(X) ⊆ L(X). (16)

On the other hand, for any w ∈ L(X), by definition, f−1(w) ∩ X �= ∅. Notice
that f is one-to-one, then there exists a unique u ∈ U such that f(u) = w,
that is, f−1(w) = {u}. Hence {u} ∩X �= ∅, consequently, u ∈ X , and in turn,
f−1(w) ⊆ X, by the definition of lower label approximation, we have w ∈ L(X),
therefore,

L(X) ⊆ L(X). (17)

Combining Eqs. (16) and (17), we conclude Eq. (15).
“⇐” Assume that Eq. (15) holds. By property (LU1) in Theorem 2, we see that

L(∅) = ∅, then, by the assumption, we have L(∅) = ∅. According to Theorem 4,
we then conclude that f is surjective.
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Now we are to prove that f is injective. If f is not injective, then there
exists x1, x2 ∈ U and z ∈ V such that x1 �= x2 and f(x1) = f(x2) = z. Let
X = {x1}, obviously, x1 ∈ f−1(z), so f−1(z) ∩ {x1} �= ∅. Hence, by Eq. (9),
L(X) = {f(x1)} = {z}. On the other hand, notice that {x1, x2} ⊆ f−1(z), thus
f−1(z) ⊆ {x1} does not hold, alternatively, z /∈ L(X) which contradicts Eq. (15).
Therefore, f is injective.

5 Conclusion

In this paper, by using labelled blocks determined by a function, we have de-
veloped a new rough set model called block-labelled rough set model. A block-
labelled rough set includes two pairs of lower and upper approximations: one is
the lower and upper block approximations, and the other is the lower and up-
per label approximations. Alternatively, a block-labelled rough set include two
mechanisms of rough approximation schemes of set, one is represented by the
blocks which is exactly the Pawlak rough set, the other is determined by the
labels related to the blocks. Thus a block-labelled rough set has more seman-
teme or physical meanings than a Pawlak rough set. This model provides a new
approach to describe information granules. We have also examined properties
of the proposed approximation operators. We have further presented the rela-
tionship between the two pairs of lower and upper approximations. Since the
labelled blocks are induced by a function, at the same time, we have employed
the properties of label approximation operators to characterize properties of the
function. For further study, we will investigate block-labelled rough sets as well
as granular computing in complicated information systems.
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Abstract. In this paper, we introduce a criterion of similarity between
partitions. The proposed similarity criterion is a generalization of an eval-
uation criterion of relative reducts proposed by the authors and evaluates
the similarity of partitions by correctness and roughness with each other.
Moreover, for comparison of similarity scores between different universes,
we also propose a normalized similarity criterion.

1 Introduction

Constructing and evaluating partitions of the given universe are the most basic
and important concepts in rough set theory proposed by Pawlak [5,6]. In the
aspect of approximation in rough set theory, lower and upper approximations
are directly based on partitions on the given universe constructed by equivalence
relations. In the aspect of reasoning about data in rough set theory, calculation
of relative reducts is one of the most important concepts, which corresponds
indirectly to generating partitions that reproduce the positive region of decision
classes, i. e., lower approximations of decision classes based on the most finest
partition of the universe constructed from all condition attributes. The authors
have proposed an evaluation criterion of relative reducts based on roughness of
partitions constructed from the relative reducts [3,4].

In this paper, we introduce a criterion of similarity between partitions. The
proposed similarity criterion is a generalization of the evaluation criterion of
relative reducts [3,4] and evaluates the similarity of partitions by correctness
and roughness with each other. Moreover, for comparison of similarity scores
between different universes, we also propose a normalized similarity criterion.

2 Rough Set

We review the foundations of rough set theory based on mainly [8].
A decision table DT = (U, C, d) is a triple, where U is a finite and non-empty

set (called a universe) of objects, C is a set of condition attributes such that
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Table 1. An example of decision table

U c1 c2 c3 c4 c5 c6 c7 c8 d

x1 1 1 1 1 1 1 2 1 1
x2 2 3 1 3 1 2 2 1 3
x3 3 2 3 2 1 2 1 1 2
x4 4 2 2 2 2 2 1 1 2
x5 5 2 2 3 1 1 2 1 1
x6 6 3 2 1 1 2 2 1 3
x7 7 1 1 1 1 2 1 1 2
x8 8 2 3 1 1 1 2 1 1
x9 9 3 3 3 2 2 2 1 3
x10 10 1 3 3 1 1 2 1 1

each attribute a ∈ C is a function a : U → Va from U to the value set Va of a,
and d is a function d : U → Vd called the decision attribute.

The indiscernibility relation RB on U with respect to B ⊆ C is defined by

xRBy ⇐⇒ a(x) = a(y), ∀a ∈ B. (1)

The equivalence class [x]B of x ∈ U by RB is the set of objects which are not
discernible with x even though using all attributes in B. Any indiscernibility
relation provides a partition of U . In particular, the partition D = {D1, · · · , Dm}
provided by the indiscernibility relation Rd based on the decision attribute d is
called the set of decision classes.

For any decision class Di (1 ≤ i ≤ m)C the lower approximation B(Di) and
the upper approximation B(Di) of Di based on RB are defined by

B(Di) = {x ∈ U | [x]B ⊆ Di}, (2)
B(Di) = {x ∈ U | [x]B ∩Di �= ∅}. (3)

Table 1 presents an example of a decision table that consists of a set of ob-
jects U = {x1, · · · , x10}, a set of condition attributes C = {c1, · · · , c8}, and
a decision attribute d. For example, a condition attribute c2 ∈ C is a func-
tion c2 : U → {1, 2, 3}, and the value of an object x3 ∈ U at c3 is 3, i. e.,
c3(x3) = 3. The decision attributed d provides the following three decision
classes, D1 = {x1, x5, x8, x10}, D2 = {x3, x4, x7} and D3 = {x2, x6, x9}.

In this paper, we denote a decision rule constructed from a subset B ⊆ C of
condition attribute, the decision attribute d, and an object x ∈ U by (B, x) →
(d, x). Certainty and coverage are well known criteria for evaluating decision
rules. For any decision rule (B, x) → (d, x), the certainty Cer(·) and the coverage
Cov(·) of the decision rule are defined by

Cer((B, x) → (d, x)) =
|[x]B ∩Di|
|[x]B | , (4)

Cov((B, x) → (d, x)) =
|[x]B ∩Di|

|Di| , (5)

where Di is the decision class of x and |X | is the cardinality of the set X .
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Relative reducts are minimal subsets of condition attributes that provide the
same positive region based on the set C of all condition attributes. Formally, a
relative reduct for the partition D is a set of condition attributes A ⊆ C that
satisfies the following two conditions:

1. PosA(D) = PosC(D),
2. For any proper subset B ⊂ A, PosB(D) �= PosC(D),

where PosX(D) def=
⋃

Di∈D X(Di) is the positive region of decision classes based
on the partition constructed from X ⊆ C.

For example, there are the following six relative reducts of Table 1: {c1},
{c2, c6}, {c2, c7}, {c6, c7}, {c3, c4, c6}, and {c3, c4, c5, c7}.

3 Evaluation of Relative Reducts Using Partitions

In this section, we review an evaluation method of relative reducts by using
partitions constructed from the relative reducts [3,4].

We intend that rougher partitions constructed from relative reducts lead to
better evaluation of the relative reducts. From the viewpoint of rule generation,
rougher partitions constructed from relative reducts tend to generate decision
rules with higher coverage values rather than finer partitions. Following this in-
tention, we consider evaluating relative reducts by using the coverage of decision
rules constructed from relative reducts.

Theorem 1 below provides a theoretical basis of our intention.

Theorem 1 ([3,4]). For any non-empty subset B ⊆ C of condition attributes,
the average certainty value ACer(B) and the average coverage value ACov(B)
of all decision rules (B, x) → (d, x) (∀x ∈ U) constructed from B are calculated
by the following equations:

ACer(B) =
|U/RB|∑

[x]B∈U/RB
|{Di ∈ D | Di ∩ [x]B �= ∅}| , (6)

ACov(B) =
|D|∑

[x]B∈U/RB
|{Di ∈ D | Di ∩ [x]B �= ∅}| . (7)

Note that the denominators of (6) and (7) correspond to the number of decision
rules constructed from B.

In Theorem 1, if we use relative reducts as subsets of condition attributes in
the given decision table, it is clear that the smaller the number of equivalence
classes constructed from the relative reduct, the higher the average coverage
value of decision rules generated from the relative reduct. This indicates a pos-
sibility of using the average coverage of decision rules constructed from relative
reducts as an evaluation criterion for relative reducts [3,4].

Example 1. Let {c2, c6} be a relative reduct of Table 1. We can construct the
following five decision rules from {c2, c6}:
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Table 2. The average certainty and the average coverage of decision rules based on
relative reducts in Table 1

Relative reduct Number of rules Average coverage
{c1} 10 0.3

{c2, c6} 5 0.6
{c2, c7} 5 0.6
{c6, c7} 3 1

{c3, c4, c6} 10 0.3
{c3, c4, c5, c7} 10 0.3

– (c2 = 1) ∧ (c6 = 1) → (d = 1), Certainty= 1, Coverage= 1/2,
– (c2 = 2) ∧ (c6 = 1) → (d = 1), Certainty= 1, Coverage= 1/2,
– (c2 = 1) ∧ (c6 = 2) → (d = 2), Certainty= 1, Coverage= 1/3,
– (c2 = 2) ∧ (c6 = 2) → (d = 2), Certainty= 1, Coverage= 2/3,
– (c2 = 3) ∧ (c6 = 2) → (d = 3), Certainty= 1, Coverage= 1.

The average coverage is (1
2 + 1

2 + 1
3 + 2

3 + 1)/5 = 3
5 and it is equal to the value

“the number of decision classes / the number of decision rules” by Theorem 1.
Thus, we get the evaluation score 3

5 of the relative reduct {c2, c6}. Table 2 shows
the number of decision rules and the average coverage of the decision rules by
each relative reduct. By this result, we regard the relative reduct {c6, c7} as the
best one that provides the roughest and most correct approximation of decision
classes. Actually, the partition constructed from the relative reduct {c6, c7} is
identical to the set of all decision classes in Table 1.

4 A Criterion of Similarity between Partitions

Equations (6) and (7) are based on comparison of numbers of elements in two
partitions. Thus, as a generalization of (6) and (7), we then introduce a criterion
of similarity between partitions.

Let U(�= ∅) be a finite set. A partition X of U is a collection of subsets of U
that satisfies the following properties:

1. Xi ∩Xj = ∅ for every disjoint Xi, Xj ∈ X ,
2. U =

⋃
X∈X

X.

Let X and Y be any partitions on U . We say that X is a refinement of Y if
and only if, for every X ∈ X , there exists Y ∈ Y such that X ⊆ Y . Clearly,
|Y| ≤ |X | holds if X is a refinement of Y, and both X is a refinement of Y and
Y is a refinement of X hold if and only if X = Y holds.

We define the intersection X ∩ Y of X and Y by

X ∩ Y def= {X ∩ Y | X ∈ X , Y ∈ Y, X ∩ Y �= ∅}. (8)
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It is easy to confirm that X ∩Y is also a partition on U and X ∩Y is a refinement
of both X and Y.

From the viewpoint of identifying functional dependency by using partitions,
it is known that the number of elements in the intersection X ∩ Y satisfies the
following inequality (e.g. [1,2]):

max (|X |, |Y|) ≤ |X ∩ Y| ≤ min (|X ||Y|, |U |) . (9)

This inequality indicates that X is a refinement of Y if and only if |X | = |X ∩Y|.
From the viewpoint of comparison between two partitions, for each partition

U/RB constructed from a set B of condition attributes in a given decision table,
we can consider that the evaluation score ACov(B) of B defined by (7) compares
“similarity” of the intersection D ∩ U/RB with respect to D in the sense of
cardinality, and provides the highest score ACov(B) = 1 to B if and only if
|D ∩ U/RB| = |D|, i. e., D is a refinement of U/RB, and D ∩ U/RB is the most
“similar” partition with respect to D in the sense of cardinality. On the other
hand, the evaluation score ACer(B) of B defined by (6) becomes the highest
score ACer(B) = 1 when the partition U/RB is a refinement of D, that is,
the intersection D ∩ U/RB is the most “similar” partition with respect to the
partition U/RB in the sense of cardinality.

Thus, combining and generalizing two criteria ACer and ACov, we introduce
a criterion of similarity between two partitions X and Y defined on U through
comparisons of similarity between X and X ∩ Y, and Y and X ∩ Y as follows.

Definition 1. Let X and Y be any partitions on U . A criterion SimU (X ,Y) of
similarity between X and Y is defined by

SimU (X ,Y) =
|X |+ |Y|
2|X ∩ Y| . (10)

By this definition, it is clear that SimU(X ,Y) = SimU (Y,X ) holds. If we set
X = U/RB such that B ⊆ C and Y = D with respect to a given decision table
(U, C, d), the similarity SimU by (10) is

SimU(U/RB ,D) =
1
2

( |U/RB|
|U/RB ∩ D| +

|D|
|U/RB ∩ D|

)
=

1
2

(ACer(B) + ACov(B)) ,

i.e., the average of ACer(B) and ACov(B) with respect to B.
Proposition 1 below describes the range of scores of the similarity criterion

SimU (X ,Y) on U .

Proposition 1. Let X and Y be any partitions on U . The similarity SimU

defined by (10) has the following properties:

1.
|X |+ |Y|

2 min (|X ||Y|, |U |) ≤ SimU (X ,Y) ≤ 1.

2. SimU (X ,Y) = 1 if and only if X = Y.
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3. SimU (X ,Y) =
|X |+ |Y|

2 min (|X ||Y|, |U |) if and only if |X ∩Y| = min (|X ||Y|, |U |).

Note that the triangle inequality with respect to SimU , i. e., the following in-
equality

SimU (X ,Y) + SimU (Y,Z) ≤ SimU (X ,Z) (11)

is not satisfied in general.
Because the range of cardinality of any partition X on U is 1 ≤ |X | ≤ |U |,

Proposition 1 indicates that the minimum score of SimU (X ,Y) between parti-
tions X and Y on U is uniquely determined by

minSim(|U |) = min
1≤i≤|U|, 1≤j≤|U|

i + j

2 min (i× j, |U |) , (12)

where i and j are natural numbers. It is not hard to confirm that the minimum
score minSim(|U |) of the similarity criterion defined by (12) is monotone non-
increasing with respect to the cardinality |U |. This causes difficulty of direct
comparison of similarity scores between different universes because the minimum
scores by (10) on different universes U and U ′ such that |U | �= |U ′| may be
different.

Therefore, when we need to consider comparison of similarity scores between
different universes, we should consider the following normalized similarity.

Definition 2. Let X and Y be any partitions on U , SimU (X ,Y) be the crite-
rion of similarity between X and Y defined by (10), and minSim(|U |) be the
minimum score of the similarity between partitions defined by (12). A criterion
of normalized similarity between X and Y is defined by

NS(X ,Y) =
SimU (X ,Y)−minSim(|U |)

1−minSim(|U |) . (13)

From the definition of the normalized similarity by (13) and the range of the
similarity criterion SimU by Proposition 1, it is obvious that the range of the
normalized similarity NS satisfies the following properties.

Corollary 1. Let X and Y be any partitions on U . The normalized similarity
NS defined by (13) has the following properties:

1. 0 ≤ NS(X ,Y) ≤ 1.
2. NS(X ,Y) = 1 if and only if X = Y.
3. NS(X ,Y) = 0 if and only if SimU (X ,Y) = minSim(|U |).

Example 2 below describes necessity of using the normalized similarity for com-
paring similarity scores between different universes.

Example 2. Table 3 presents another decision table which is identical to Table 1
except for absence of two elements x9 and x10. For each condition attribute ci

(1 ≤ i ≤ 8) in Table 3 and Table 1, we construct a partition U/Rci and compare
with the partition U/Rd constructed from the decision attribute d.
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Table 3. Another example of decision table

U c1 c2 c3 c4 c5 c6 c7 c8 d

x1 1 1 1 1 1 1 2 1 1
x2 2 3 1 3 1 2 2 1 3
x3 3 2 3 2 1 2 1 1 2
x4 4 2 2 2 2 2 1 1 2
x5 5 2 2 3 1 1 2 1 1
x6 6 3 2 1 1 2 2 1 3
x7 7 1 1 1 1 2 1 1 2
x8 8 2 3 1 1 1 2 1 1

Table 4. The similarity and the normalized similarity of condition attributes

Attribute Sim. in Table1 N. S. in Table1 Sim. in Table3 N. S. in Table3
c1 0.65 0.475 0.69 0.5
c2 0.6 0.4 0.6 0.36
c3 0.33 0 0.375 0
c4 0.5 0.25 0.5 0.2
c5 0.5 0.25 0.625 0.4
c6 0.83 0.75 0.83 0.73
c7 0.83 0.75 0.83 0.73
c8 0.66 0.5 0.67 0.47

Table 4 describes the similarity and the normalized similarity between par-
titions U/Rci and U/Rd in Table 1 (|U | = 10) and Table 3 (|U | = 8), where
notations “Sim.” and “N.S.” in Table 4 are abbreviations of similarity and nor-
malized similarity, respectively. The row of the condition attribute c3 indicates
that the minimum scores of similarity in Table 1 and Table 3 are different, i. e.,
minSim(10) = 1

3 and minSim(8) = 3
8 . Thus, in both Table 1 and Table 3, the

similarity of partitions by c3 and d is identical to the theoretical minimum score
of similarity, which concludes that the normalized similarity by c3 and d is equal
to 0 in both Table 1 and Table 3.

On the other hand, the row of c4 indicates that comparison of the similarity
scores between different universes is not appropriate, i. e. the normalized similar-
ity scores are different between Table 1 and Table 3 even though the similarity
scores are identical. Thus, we can conclude that the partitions U/Rc4 and U/Rd

for Table 1 are relatively more similar than those partitions for Table 3.

5 Conclusion

In this paper, we introduced a criterion of similarity between partitions. The
similarity criterion proposed in this paper is a generalization of an evaluation
criterion of relative reducts proposed by the authors [3,4], and evaluates the sim-
ilarity of partitions from the viewpoint of correctness and roughness with each
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other. Moreover, for comparison of similarity scores between different universes,
we also proposed a normalized similarity criterion and illustrated the necessity
of using the normalized similarity for comparing the similarity scores between
different universes. More consideration and refinement of the proposed crite-
ria, and comparison of the proposed criteria with other methods, for example,
approximate entropy reducts [9] in the aspect of evaluation of relative reducts
based on comparison of partitions, and functional dependency analysis between
condition attributes and decision attributes [7] are interesting future issues.
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7. Pawlak, Z., S�lowiński, R.: Rough Set Approach to Multi-Attribute Decision Analy-
sis. European Journal of Operation Research 74, 443–459 (1994)

8. Polkowski, L.: Rough Sets: Mathematical Foundations. Advances in Soft Computing.
Physica-Verlag, Heidelberg (2002)
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Abstract. The Rough Sets paradigm is extended to the sets that have some struc-
ture (for example they are relations) and some properties (for example they are
transitive relations).

1 Introduction

Consider the following problem: we have a set of data that have been obtained in an
empirical manner. From the nature of the problem we know that the set should have
some structure and desired properties, for example it should be partially ordered, but
because the data are empirical it is not. In general case this might be just an arbitrary set
without the desired structure and properties. What is the “best” approximation that have
the desired structure and properties and how it can be computed? For the approximation
of arbitrary relations by partial orders this problem was discussed and some solutions
were proposed in [5] - within the standard theory of relations ([8,11]), and in [6] -
within both the standard theory of relations and Rough Sets paradigm ([9,10]). In [6]
some general Rough Sets settings for more general approximation of relations have also
been proposed and analysed.

In this paper we will generalise some ideas of [6] to more sophisticated data types.
While, in general, sets are just arbitrary collections of arbitrary elements [8], when

they are applied in other parts of mathematics or science, they usually have some struc-
teres - for example they are relations, and properties - for example transitivity. They
often resemble more abstract data types [1] than standard sets. Those structures and
properties are essential when it comes to the problem of approximation.

It appears that the concept of approximation has two different intuitions in mathe-
matics and science. The first one stem from the fact that all empirical numerical data
have some errors, so in reality we never have the value x but always some interval
(x− ε,x + ε), i.e. the upper approximation and the lower approximation. Rough Sets
exploit this idea for general sets. The second intuition can be illustrated by least square
approximation of points in two dimensional plane (c.f. [14]). Here we know or assume
that the points should be on a straight line and we are trying to find the line that fits the
data best. In this case tha data have a structure (points in two dimensional plane, i.e. a re-
lation that is a function) and should satisfied a desired property (be on the straight line).
Note that even if we replace a solution f (x) = ax + b by two lines f1(x) = ax + b + δ
� Partially supported by NSERC grant of Canada.
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and f2(x) = ax+b−δ, where δ is a standard error (c.f. [14]), there is no guarantee that
any point resides between f1(x) and f2(x). Hence this is not the case of an upper, or
lower approximation in the sense of Rough Sets. However this approach assumes that
there is a well defined concept of a metric which allows us to minimize the distance,
and this concept is not obvious, and often not even possible for non-numerical objects
(see for instance [4]).

The approach presented in this paper is a mixture of both intuitions, there is no
metric, but the concept of “minimal distance” is simulated by a sequence of property-
driven lower and/or upper approximations.

This paper is a substantial generalisation and refinement of the ideas presented in the
second half of [6].

2 Principles of Rough Sets Paradigm and Relations

To focus the intuition, in this section we will discuss only one special case of sets with
structures and properties, namely, the relations.

The principles of Rough Rets [9,10] can be formulated as follows. Let U be a finite
and nonepty universum of elements, and let E ⊆U ×U be an equivalence (i.e. reflex-
ive, symmetric and transitive) relation. For each equivalence relation E ⊆U ×U , [x]E
will denote the equivalence class of E containing x and U/E will donote the set of
all equivalence classes of E . The elements of U/E are called elementary sets and they
are interpreted as basic observable, measurable, or definable sets. The pair (U,E) is re-
ferred to as a Pawlak approximation space. A set X ⊆U is approximated by two subsets
of U , A(X) - called lower approximation of X , and A(X) - called upper approximation
of X , where:

A(X) =
⋃
{[x]E | x ∈U ∧ [x]E ⊆ X}, A(X) =

⋃
{[x]E | x ∈U ∧ [x]E ∩X �= /0}.

Since every relation is a set of pairs the approach can be used for relations as well
[12]. Unfortunately in the cases as our we want approximations to have some specific
properties as irreflexivity, transitivity etc., and most of those properties are not closed
under the set union operator. As it was pointed out in [16], in general one cannot expect
approximations to have desired properties (see [16] for details). It is also not clear how
to define the relation E for the cases as our.

However the Rought Sets can also be defined in orthogonal (sometimes called ‘topo-
logical’) manner [10,13,15]. For a given (U,E) we may define D(U) as the smallest set
containing /0, all elements of U/E and closed under set union. Clearly U/E is the set of
all components generated by D(U) [8]. We may start with defining a space as (U,D)
where D is a family of sets that contains /0 and for each x ∈U there is X ∈D such that
x ∈ X (i.e. D is a cover of U [11]). We may now define ED as the equivalence relation
generated by the set of all components defined by D (see for example [8]). Hence both
approaches are equivalent [10,13,16], however now for each A⊆U we have:

A(X) =
⋃
{Y | Y ⊆ X ∧Y ∈D}, A(X) =

⋂
{Y | X ⊆ Y ∧Y ∈D}.

We can now define D as a set of relations having the desired properties and then calcu-
late R and/or R with respect to a given D. Such approach was proposed and analysed in
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[16], however it seems to have only limited application. First it assumes that the set D
is closed under both union and intersection, and few properties of relations do this. For
instance transitivity is not closed under union and having a cycle is not closed under
intersection. Some properties as for instance “having exactly one cycle” are preserved
by neither union nor intersection. This problem was discussed in [16] and they pro-
posed that perhaps different D could be used for lower and upper approximations. The
approach of [16] assumes additionally that, for upper approximation there is at least
one element of D that contains R, and, for lower approximation there exists at least one
element of D that is uncluded in R. These are too strong assumptions for the cases like
those considered in [5,6], if R contains a cycle, there is no partial order that contains R!

The problem is even bigger when we consider structures more complex than rela-
tions. Hence we need to create a new setting.

3 Sets with Structures and Properties

A set with a structure X is a relational structure (c.f. [2,8]) X = (DX ,RX
1 , ...,RX

n ), where

DX is a set called the domain of X and each RX
i ⊆ ∏

kX
i

j=1 X is a kX
i -ary relation on DX .

The tuple (RX
1 , ...,RX

n ) is called the structure of X and denoted by S(X). The vec-
tor (kX

1 , ...,kX
n ) is called the arity of X . Two sets with structure X = (DX ,S(X)) and

Y = (DY ,S(Y )) are of the same type if they have identical arities. For example binary
relations are sets with structure of arity (2) (i.e. n = 1, kX

1 = 2).
For two sets with structure of the same type X = (DX ,RX

1 , ...,RX
n ), and Y = (DY ,RY

1 ,
...,RY

n ), we define X ⊕Y , where ⊕ ∈ {∪,∩,\}, component-wise as X ⊕Y = (DX ⊕
DY ,RX

1 ⊕RY
1 , ...,RX

n ⊕RY
n ). Similarly we define

⊕
j∈J Xj for any set of indices J. We

also define X ⊆ Y ⇐⇒ DX ⊆ DY ∧RX
1 ⊆ RY

1 ∧ ...∧RX
n ⊆ RY

n and the empty set with
properties /0{p} = ( /0, /0, ..., /0). We will usually write /0 instead of /0{p} if this will not lead
to any ambiguity. We also define 2X in the usual manner, 2X = {Z | Z ⊆ X}, but ⊆ is as
defined above for sets with a structure.

Let X = (DX ,RX
1 , ...,RX

n ) be a set with a structure and let α be any first-order pred-
icate (c.f. [3]) with the set of atomic formulae being a subset of {RX

1 , ...,RX
n } and all

variables over DX . Any predicate α of this kind will be called a property over X . The
predicete α is called a property of X if X is a model of α, i.e. α holds for any assignment
(c.f. [3]). We would like to point the difference between a property over R, i.e. just a
statement that may or may not be true, and a property of R, a statement that is true for
all assignments.

The question a reader might ask is “why to replace an established name as relational
structures by a new one as sets with structures?” As it was already mentioned, outside
pure set theory, elements of the sets usually have some structure and properties which
are often used in proofs, constructions and algorithms. Even if the integers are used
only as names of objects, in many algorithms the fact that they are totally ordered is
utilised to increase efficiency (c.f. [1,7]). While a collection that consists of, say, a white
elephant, computer mouse, empty set and a letter ‘a’, is a proper set (c.f. [8,11]), in most
applications the sets are more homogenous, as ‘sets of integers’, ‘vertices’, ‘variables’,
etc. In fact, when it comes to applications, the sets used resembles more abstract data
types (c.f. [1]) than pure sets with uninterpreted elements. Clearly each abstract data
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type can be represented as a relational structure, however usually the set terminology is
used and all the structure is used in an implicit manner.

4 Rough Approximations of Sets with Structures and Properties

Let U = (DU ,S(U)) be a finite set with a structure called universum (with a structure)
and let P be a set of properties over U . Any element α ∈ P is called an elementary
property1. We assume that for each α ∈ P there is a non-empty family of sets Pα ⊆ 2U

such that Pα �= { /0} and for every X ⊆U , if α is a property of X then X ∈ Pα. In other
words Pα is the set of all subsets of U that satisfy the property α.

Let P∩ be a subset of P such that α ∈ P∩ iff Pα is closed under intersection, and P∪
be a subset of P such that α ∈ P∪ iff Pα is closed under union.

We assume that P = P∩ ∪P∪ and the pair (U,P ) will be called an approximation
space2.

Let X ⊆U and α ∈ P . We say that:

– X has α-lower bound ⇐⇒ ∃Y ∈ Pα. Y ⊆ X ; and lbα(X) = {Y | Y ∈ Pα∧Y ⊆ X},
– X has α-upper bound ⇐⇒ ∃Y ∈ Pα. X ⊆ Y ; and ubα(X) = {Y | Y ∈ Pα∧X ⊆ Y}.

For every family of sets F ⊆ 2U , we define

– min(F ) = {X | ∀Y ∈ F .Y ⊆ X ⇒ X = Y},
– max(F ) = {X | ∀Y ∈ F .X ⊆ Y ⇒ X = Y}.

We are now able to provide the two main definitions of this chapter:

• If X has α-lower bound then we define its α-lower approximation as:

Aα(X) =
⋂
{Y | Y ∈ max(lbα(X))}.

• If X has α-upper bound then we define its α-upper approximation as:

Aα(X) =
⋃
{Y | Y ∈ min(ubα(X))}.

If X does not have α-lower bound (α-upper bound) then its α-lower approximation
(α-upper approximation) does not exist. The result below shows that the above two
definitions are sound when X ∈ Pα.

Proposition 1. If X ∈ Pα then Aα(X) = Aα(X) = X.

Proof. If X ∈ Pα then lbα(X) = ubα(X) = {X}. �

Directly from the definitions it follows that Aα(X) is well defined if α ∈ P∩ and Aα(X)
is well defined if α ∈ P∪. The result below shows that both concepts are well defined
for all α ∈ P = P∪ ∪P∩.

1 Even though any property can be called ‘elementary’, it is assumed that in any concrete case
the elemetary properties are ‘simple’ and ‘regular’. They are just atomic parts from which the
real more sophisticated properties are built.

2 This assumption is much weaker than it might appear as this is an assumption only about
elementary properties, not about compound more sophisticated properties (see next section).
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Proposition 2

1. If α ∈ P∪ then Aα(X) =
⋃{Y | Y ∈ lbα(X)} =

⋃{Y | Y ⊆ X ∧Y ∈ Pα}.
2. If α ∈ P∩ then Aα(X) =

⋂{Y | Y ∈ ubα(X)} =
⋂{Y | X ⊆Y ∧Y ∈ Pα}.

Proof
(1) If α ∈ P∪ then max(lbα(X)) = {⋃{Y | Y ∈ lbα(X)}}.
(2) If α ∈ P∩ then min(ubα(X)) = {⋂{Y | Y ∈ ubα(X)}}. �

The next result shows when this model is exactly the same as the classical Rough Sets
approach to relations (the version from [15,16]).

Corollary 1
If α ∈ P∪ ∩P∩ then Aα(X) = A(X) and Aα(X) = A(X), where A(X) and A(X) are
classical upper and lower rough approximations over the space (U,Pα). �

The next two results will show that our definitions of α-lower approximation and α-
upper upproximation are sound, and their properties pretty close (but not identical) to
those of standard rough set approximations as presented in for example [9,10]. We start
with the properties of α-lower approximation.

Proposition 3. If X ,Y ⊆U have α-lower bound then:

1. X ⊆ Y =⇒ Aα(X)⊆ Aα(Y ),
2. Aα(X)⊆ X,
3. Aα(x) = Aα(Aα(X)),
4. Aα(X ∩Y ) = Aα(Aα(X)∩Aα(Y )),
5. if α ∈ P∩ then Aα(X ∩Y ) = Aα(X)∩Aα(Y ),
6. if X has α-upper bound then Aα(X) = Aα(Aα(X)).

Proof
(1) Since X ⊆ Y =⇒ lbα(X) ⊆ lbα(Y ) =⇒ max(lbα(X)) ⊆ lbα(Y ), then for each
Z ∈max(lbα(X)) there is Z′ ∈max(lbα(Y )) such that Z⊆ Z′; and intersection preserves
inclusion.
(2) Since Z ∈ lbα(X) =⇒ Z ⊆ X , and and intersection preserves inclusion.
(3) From Proposition 1 as Aα(X) ∈ Pα.
(4) By (1) we have Aα(X ∩Y ) ⊆ Aα(X) and Aα(X ∩Y ) ⊆ Aα(Y ), so Aα(X ∩Y ) ⊆
Aα(X)∩Aα(Y ). Hence by (2) and (3) Aα(X ∩Y )⊆ Aα(Aα(X)∩Aα(Y )).

By the definition we have Aα(Aα(X) ∩Aα(Y )) =
⋂{Z | Z ∈ max(lbα(Aα(Y ) ∩

Aα(Y )))}. Let B ∈ lbα(Aα(Y )∩Aα(Y ))). This means B ∈ Pα ∧B ⊆ Aα(X)∩Aα(Y ),
hence B ∈ Pα∧B ⊆ X ∧B ⊆ Y , i.e. B ∈ Pα∧B⊆ X ∩Y . Therefore B ∈ lbα(X ∩Y ). In
this way we proved that lbα(Aα(Y )∩Aα(Y )) ⊆ lbα(X ∩Y ). Hence max(lbα(Aα(Y )∩
Aα(Y ))) ⊆ lbα(X ∩Y ), i.e. for each Z ∈ max(lbα(Aα(Y )∩Aα(Y ))) there exists Z′ ∈
max(lbα(X ∩Y )), such that Z ⊆ Z′. Since intersection preserves inclusion this means
that Aα(Aα(X)∩Aα(Y ))⊆ Aα(X ∩Y ).
(5) If α ∈ P∩ then Aα(X)∩Aα(Y ) ∈ Pα so by Proposition 1

Aα(X)∩Aα(Y ) = Aα(Aα(X)∩Aα(Y )).
(6) If X has α-upper bound then Aα(X) ∈ Pα so by Prop. 1, Aα(X) = Aα(Aα(X)). �



114 R. Janicki

The difference from the classical case is that intersection splits into two cases and mix-
ing lower with upper α-approximation is conditional.

We will now present the properties of α-upper approximation.

Proposition 4. If X ,Y ⊆U have α-upper bound then:

1. X ⊆ Y =⇒ Aα(X)⊆ Aα(Y ),
2. X ⊆ Aα(X),
3. Aα(x) = Aα(Aα(X)),
4. Aα(X ∪Y ) = Aα(Aα(X)∪Aα(Y )),
5. if α ∈ P∪ then Aα(X ∪Y ) = Aα(X)∪Aα(Y ),
6. If X has α-lower bound then Aα(X) = Aα(Aα(X)).

Proof
(1) Since X ⊆ Y =⇒ ubα(Y )⊆ ubα(X) =⇒ min(ubα(Y )) ⊆ ubα(X), then for each
Z′ ∈ min(ubα(Y )) there is Z ∈ min(ubα(X)) such that Z ⊆ Z′; and union preserves
inclusion.
(2) Since Z ∈ ubα(X) =⇒ X ⊆ Z, and and union preserves inclusion.
(3) From Proposition 1 as Aα(X) ∈ Pα.
(4) By (1) we have Aα(X)⊆Aα(X∪Y ) and Aα(Y )⊆Aα(C∪Y ), so Aα(X)∪Aα(Y )⊆
Aα(X ∪Y ). Hence by (2) and (3) Aα(Aα(X)∪Aα(Y ))⊆ Aα(X ∪Y ).

Since X ⊆ Aα(X) and Y ⊆ Aα(Y ) then X ∪Y ⊆ Aα(X)∪Aα(Y ), i.e. upα(Aα(X)∪
Aα(Y ) ⊆ upα(X ∪ Y ), and consequently min(upα(Aα(X) ∪ Aα(Y )) ⊆ upα(X ∪ Y ).
Hence for each Z′ ∈min(upα(Aα(X)∪Aα(Y )), there exists Z ∈min(upα(X ∪Y )) such
that Z ⊆ Z′. Since union preserves inclusion, we obtained Aα(X ∪Y ) ⊆ Aα(Aα(X)∪
Aα(Y )).
(5) If α ∈ P∪ then Aα(X) ∪Aα(Y ) ∈ Pα so by Proposition 1 Aα(X) ∪Aα(Y ) =
Aα(Aα(X)∪Aα(Y )).
(6) If X has α-lower bound then Aα(X) ∈ Pα so by Prop. 1, Aα(X) = Aα(Aα(X)). �

Here the difference from the classical case is that union splits into two cases and mixing
upper with lower α-approximation is conditional.

5 Compound Properties and Mixed Approximations

Most of the interesting properties are compound properties, like for instance transitivity
and reflexivity for relations, and they can be imposed in various orders [5,6]. In this
section we will propose a framework for doing this in a systematic way.

Let α,β ∈ P . We say that β is consitent with α iff for every X ∈ Pα:

– if X has β-lower bound then Aβ(X) ∈ Pα,
– if X has β-upper bound then Aβ(X) ∈ Pα.

We will say that α and β are consistent iff β is consitent with α and α is consitent with β.
We will also assume that for all α,β ∈ P , α and β are consistent.
From now on when writing a formula like Aβ(Aα(X)) we will assume that all nec-

essary conditions are satisfied, i.e. in this case, X has α-upper bound and Aα(X) has
β-lower bound.
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Proposition 5

1. Aα(Aβ(X)) ∈ Pα∩Pβ for Aα ∈ {Aα,Aα},Aβ ∈ {Aβ,Aβ},
2. Aα(Aβ(X))⊆Aβ(Aα(X)).

Proof
(1) Because all α and β from P are consistent.
(2) By Proposition 4(2), X ⊆ Aα(X), so Aβ(X) ⊆ Aβ(Aα(X)), and Aα(Aβ(X)) ⊆
Aα(Aβ(Aα(X))). By (1) of this proposition, Aβ(Aα(X)) ∈ Pα, so by Proposition 1,

Aα(Aβ(Aα(X))) = Aβ(Aα(X)). Therefore Aα(Aβ(X))⊆ Aβ(Aα(X)). �
Proposition 6. Assume that α, β and α∧β belong to P .

1. A(α∧β)(X)⊆ Aα(Aβ(X)),
2. Aα(Aβ(X))⊆A(α∧β)(X).

Proof
(1) Since obviously lb(α∧β)(X)⊆ lbβ(X) then A(α∧β)(X)⊆Aβ(X). Hence Aα(A(α∧β)
(X))⊆ Aα(Aβ(X)). Since A(α∧β)(X) ∈ Pα, then due to Proposition 1,
Aα(A(α∧β)(X)) = A(α∧β)(X), which ends the proof of (1).
(2) Since obviously ub(α∧β)(X) ⊆ ubβ(X) then min(ub(α∧β)(X)) ⊆ ubβ(X). This
means Aβ(X) ⊆ A(α∧β)(X). Hence Aα(Aβ(X)) ⊆ Aα(A(α∧β)(X)). Since A(α∧β)(X) ∈
Pα, then due to Proposition 1, Aα(A(α∧β)(X)) = A(α∧β)(X), which ends the proof
of (2). �
Proposition 6 suggest an important technique for the design of approximation schema. It
in principle says that using a complex predicate as a property result in worse approxima-
tion than when the property is decomposed into simpler ones, and then we approximate
all simpler properties. This means before starting an approximation process we should
think carefully how the given property could be decomposed into the simpler ones.

Define P̂ = P ×{0,1}. The elements of P̂ will be called labelled elementary prop-
erties. We will also write α(0) or α instead of (α,0) and α(1) or α instead of (α,1).

A sequence s = α(i1)
1 α(i2)

2 ....α(ik)
k of elements of P̂ such that αi �= αi+1, for i =

1, ...,k−1, is called a schedule.
For will also use A(0) instead of A and A(1) instead of A.

A schedule s = α(i1)
1 α(i2)

2 ....α(ik)
k is proper if for each X ⊆ U the following mixed

approximation

As(X) = A(i1)
α1 (A(i2)

α2 (...(A(ik)
αk

(X))...))

is well defined. Let PS denote the set of all proper schedules.

Each schedule s = α(i1)
1 α(i2)

2 ....α(ik)
k defines a composite property

π(s) = α1∧α2∧ ....∧αk.

A composite property α is approximable if there exists a proper sequence s∈PS such
that α = π(s). For example being a partial order [6] or pairwise comparison ranking data
[4] are approximable composite properties.

The proper schedules could be interpreted as different “metrics” used for approxi-
mation purposes.
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6 Final Comment
The approach presented in this paper can be called property-driven and it is a substan-
tial extension of the ideas presented for relations in [15,16] and specially recently in [6].
Technically some results of [6] are just special cases of what is proven here. When think-
ing in terms of properties, very often either only lower or only upper approximation does
make sense, and quite often neither of them if the property is too sophisticated. Due to
lack of space we did not discuss this issue in details, an interested reader is referred to
[6] for more on this subject. Proposition 6 might be the most useful result of this paper
as it indicates how properties should be dealt with to get the best approximations. Our
experience with non-numerical ranking [5] fully agrees with this result. We would like
to point out that all the assumptions from Section 4 relate only to elementary properties;
the requirements for compound properties are much weaker3. We believe the schedules
can often be interpreted as “property-driven non-numerical metrics”, and that finding a
good schedule means finding a good approximation; which appears to be more art than
science (see [5,6]). Some applications of the approach presented in this paper to the case
of binary relations can be found in [6].
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Abstract. In order to handle very large data bases efficiently, the da-
ta warehousing system ICE [5] builds so-called rough tables containing
information that is abstracted from certain blocks of the original table.
In this article we propose a formal description of such rough tables. We
also investigate possibilities of mining them for implicational knowledge.

1 Introduction

Consider a large data table. It has rows, describing certain objects, and columns
for attributes which these objects may have. The entry in row g and column
m gives the attribute value that attribute m has for object g. By “large” we
mean that the table has many rows, perhaps 109, or more. Even for a moderate
number of attributes the size of such a table may be in the terabytes.

Data analysis on such a table faces complexity problems and requires a good
choice of strategy. In the present paper we investigate an approach by Infobright
using rough objects and granular data, and combine it with methods from Formal
Concept Analysis.

Infobright Community Edition (ICE) [5,7] is an open source data warehousing
system which is optimized to obtain high compression rates and to process ana-
lytic queries very quickly. ICE chops the stream of rows into so-called rough rows,
each subsuming 65536 rows. The rough rows divide the columns into so-called
data packs. Each data pack gets stored in a compressed form. For processing
a query one does not want to decompress all data packs. Therefore ICE crea-
tes a so-called data pack node to every data pack. A data pack node contains
meta–information about the corresponding data pack. If for instance the column
contains numeric values, the data pack nodes could consist, e.g., of minimum,
maximum and the sum of the data pack values. The rough table is the data table
that has the rough rows as rows, the same attributes as the original large data
table, and the data pack nodes as values.

In order to sound the possibilities of getting interesting information about
the original data table from the rough table, Infobright offered a contest [6] for
which they provided a rough table with 15259 rough rows (the original table has
one billion rows) and 32 attributes. Furthermore, Infobright invited to propose
ways to do data mining in such rough tables.
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H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 117–126, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



118 B. Ganter and C. Meschke

Our approach is a systematic one. Our focus is on “what can be done” rather
than on “how to get quick results”. Although it is likely that a large data table
will contain erroneous and imprecise data, we first concentrate on the case of
precise data. Approximative and fault-tolerant methods shall later be build on
this basis. Please note that we had to leave out some proofs due to a lack of
space. A technical report containing all proofs is available upon request.

2 Partial Formal Contexts

We assume that the reader is familiar with the basic notions of Formal Concept
Analysis [4]. This theory will be used here to provide the basic data model. To
encode the above mentioned granulation process we use the notion of a partial
formal context. The information we are mining is in the form of implications or,
more loosely, of association rules. Our aim is to infer such rules in the full data
set from rules in the granulated data.

Definition 1. A partial formal context (G, M, i) consists of two sets G and
M together with a mapping i : G×M → {×, •, ?}. ♦
We call the elements of G the objects of the partial formal context, those of M
the attributes. We read i(g, m) as follows:

i(g, m) =

⎧⎪⎨⎪⎩
× the object g has the attribute m,

• the object g does not have the attribute m,

? it is unknown if object g has attribute m.

Partial formal contexts have been considered under different aspects by several
authors [1,2,3]. A partial formal context (G, M, j) is said to extend (G, M, i)
if one can build it from (G, M, i) by replacing question marks “?”, i.e., it holds
that

i−1({×}) ⊆ j−1({×}) and i−1({•}) ⊆ j−1({•}).
Partial formal contexts which are maximal w.r.t. to this extension order are
called complete. A formal context (G, M, I) in the usual sense, where I ⊆ G×M
is a relation, is called a completion of a partial formal context (G, M, i) iff

i−1({×}) ⊆ I ⊆ i−1({×, ?}).
We say that an implication A → B, where A, B ⊆ M , holds in a partial formal
context (G, M, i) iff it holds in every completion. An equivalent condition is that
the following holds for every object g ∈ G:

if i(g, m) ∈ {×, ?} for all m ∈ A then i(g, n) = × for all n ∈ B.

An implication A → B is refuted by the partial formal context (G, M, i) if it
holds in no completion. This is equivalent to the existence of an object g with

i(g, m) = × for all m ∈ A and i(g, n) = • for some n ∈ B.
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In order to better handle canonical formal contexts related to the partial context
(G, M, i) we define for S ⊆ {×, •, ?}

iS := {(g, m) ∈ G×M | i(g, m) ∈ S} = i−1(S).

We leave away the set brackets of S. For instance we write i×,? instead of i{×,?}.

Proposition 1. Let (G, M, i) and (G, M, j) be partial formal contexts such that
(G, M, j) extends (G, M, i). Then

– every implication that holds in (G, M, i) also holds in (G, M, j), and
– every implication that is refuted by (G, M, i) is also refuted by (G, M, j).

Proof. For every implication A → B that holds in (G, M, i) it follows for g ∈ G
that1

A ⊆ gj×,? =⇒ A� ⊇ gj• ⊇ gi• =⇒ A ⊆ gi×,? =⇒ B ⊆ gi× ⊆ gj× .

The second item follows immediately from the observation that every object that
refutes an implication in (G, M, i) also refutes this implication in (G, M, j). �

3 Partial Contexts Obtained from Streams

There is a natural way how partial formal contexts arise from complete ones.
Let (G, M, I) be a formal context and let F be a family of nonempty subsets of
the object set G, i.e. F ⊆ P>0(G) := P(G) \ {∅}. We obtain a partial formal
context (F , M, i) by defining for every block F ∈ F

i(F, m) :=

⎧⎪⎨⎪⎩
× if F ⊆ mI ,

• if F ∩mI = ∅,
? else.

We refer to (F , M, i) as the F-granulated partial context to (G, M, I). Note
that this reflects the situation of Infobright’s rough tables from the contest [6]
and is only formulated in a different language. For further details we refer the
reader to the following Section 4.

Proposition 2. Let (P>0(G), M, i) be constructed from (G, M, I) as defined
above, for the special case that F := P>0(G). Then

– an implication that holds in (P>0(G), M, i) also holds in (G, M, I) and
– an implication is refuted by (P>0(G), M, i) iff it does not hold in (G, M, I).

1 Let (G, M, R) be a formal context, i.e., R ⊆ G×M . For g ∈ G we define gR := {m ∈
M | gRm}. For X ⊆ G we define XR := {m ∈ M | xRm for all x ∈ X}. Dually one
defines mR and Y R for m ∈ M and Y ⊆ M , see [4]. Furthermore, Y � := M \ Y .
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Proposition 3. For every F ⊆ P>0(G) it is true that

– no implication refuted by (F , M, i) holds in (G, M, I).

If F is a covering of G then it is true that

– every implication that holds in (F , M, i) also holds in (G, M, I).

Proof. Let F ∈ F be a block that refutes A → B in (F , M, i). Then it holds
that A ⊆ F i× = F I and B � F i×,? . Hence, it follows B � F i× = F I which
implies that A → B cannot hold in (G, M, I), since F I is an intent containing
the premise A, but not containing B.

Let A → B be an implication that holds in (F , M, i) and let g ∈ G. Since F is
a covering there is a block F ∈ F containing g. Hence, it holds that gI ⊆ F i×,?

which implies

A ⊆ gI =⇒ A ⊆ F i×,? =⇒ B ⊆ F i× =⇒ B ⊆ gI . �#

Now suppose that (G, M, I) is given as a stream of rows, and is chopped into
data packs as described in the introduction. For each pack we take notes only if
each object in the pack does have the attribute, in which case we note an “×” for
the pack, or if no object in the pack has that attribute. We then note down “•”.
If some have and some do not, we note a question mark. This is a very strict rule,
and we refer to it as hard granulation. Its disadvantage is that its outcome can
drastically be changed by a single value in the pack. It shares this property with
logical analysis: If a given logical formula does or does not hold in the original
data, may be decided by a single counterexample. Proposition 3 above shows
our possibilities to argue about implicational information of (G, M, I) based
only on the granulated context (F , M, i). It is therefore necessary to investigate
the circumstances under which an implication holds in or is refuted by (F , M, i).
For both concerns it is sufficient to just take a look on implications of the form
A → b, where A ⊆ M and b ∈ M .

Proposition 4. For F ∈ F the following three statements are equivalent:

(a) F refutes A → b in (F , M, i),
(b) F ⊆ AI \ bI ,
(c) every single object g ∈ F refutes A → b in (G, M, I).

Proof. F refutes A → b iff it holds that A ⊆ F i× = F I and b ∈ F i• = F–I , which
again is equivalent to F ⊆ AI and F ⊆ bI�. The rest follows immediately. �#
The preceding propositions clarify under which conditions an implication A → b
is refuted by the granulated context (F , M, i). If we insist on a definite answer,
an answer that proves a refutation in the full data set on basis of the granulated
data, these seem to be the natural conditions. But how likely is it that these
conditions are satisfied? We attempt to give a first estimation. Obviously, the
number r := |AI \ bI | of all objects from the original data table (G, M, I) that
share all attributes from A but do not have attribute b has to be large enough.
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Let k be a fixed number and let n := |G| be the number of objects. For the
probability that a block F of cardinality k refutes A → b the following holds:

P (F refutes A → b) =

(
r
k

)(
n
k

) =
r · (r − 1) · ... · (r − k + 1)
n · (n− 1) · ... · (n− k + 1)

≤
( r

n

)k

. (1)

We now assume that all F ∈ F have the same cardinality k. With the inequality
from above we can conclude the following upper approximation of the probability
that a partial context (F , M, i) refutes A → b:

P ((F , M, i) refutes A → b) ≤
∑
F∈F

P (F refutes A → b) ≤ |F| ·
( r

n

)k

.

If we for instance assume that 95% of all objects in (G, M, I) refute A → b
and that F contains one million blocks, i.e., r

n = 95% and |F| = 1.000.000, we
get that already for relatively small block sizes of k ≥ 539 the probability that
(F , M, i) refutes A → b is smaller than one part of a million.

Proposition 5. For A, B ⊆ M the following four statements are equivalent:

(a) A → B holds in (F , M, i),
(b) for all F ∈ F the implication A ⊆ F i×,? =⇒ B ⊆ F i× holds,
(c) for all F ∈ F the implication A ⊆ ⋃

g∈F gI =⇒ B ⊆ ⋂
g∈F gI holds,

(d) for all F ∈ F the implication (∀a ∈ A : F � a–I ) =⇒ F ⊆ BI holds.

If one takes a look at the third condition it becomes obvious that the bigger the
block sizes |F | are, the more likely it becomes that the premisses are valid, and
the less likely it becomes that the conclusions hold. Hence, if the number of the
blocks and the sizes of the blocks are relatively large, we do not expect a lot of
attribute implications to hold in (F , M, i): The probability that a single block
F of cardinality k fulfills the implication from (d) is

P
(
(∃a ∈ A : F ⊆ a–I ) or F ⊆ BI

) ≤ ∑
a∈A

P (F ⊆ a–I ) + P (F ⊆ BI)

≤ |A| ·
(n− |AI |

n

)k

+
( |BI |

n

)k

.

Thereby the second inequation follows analogously to inequation (1). Let us
assume that A → B is a nontrivial implication that holds in (G, M, I), i.e.
∅ �= AI ⊆ BI �= G. Then for a large block size k this probability tends to be
very small. Hence, for a large number of blocks it is far more impropable that
A → B holds in (F , M, i).

4 The Contest Data Set

The Infobright data set does not come as a formal context right away, but needs
some (uncritical) transformation. The formalisation of a data table which we use
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is that of a many-valued context (G, M, W, J), where G is a set of objects, M
a set of many-valued attributes, W a set of attribute values and J is a ternary
incidence relation satisfying

(g, m, v) ∈ J and (g, m, w) ∈ J implies v = w.

The standard interpretation of (g, m, v) ∈ J is that the value of attribute m for
object g is v. The value the object g has regarding to attribute m is commonly
denoted with m(g). To better distinguish such many-valued contexts from the
formal contexts introduced first we shall refer to these sometimes as one-valued.

One of the standard techniques in Formal Concept Analysis expresses many-
valued contexts as one-valued ones by means of conceptual scales. With concep-
tual scaling, every many-valued attribute is represented by several one-valued
attributes, and the incidence to these depends on the respective attribute value.
Details can be found in [4], but for the moment it suffices to know that with
this technique, a data table can be transformed to a (one-valued) formal con-
text, and this transformation can be done object-wise, one after another. As a
consequence, we may transform a stream of objects with many-valued attributes
into a stream of objects in a formal context. To keep things simple, we summa-
rize: Conceptual scaling associates to each column m of the data table a set of
attributes (the “scale attributes for the many-valued attribute m”).

many-valued context formal context partial formal context

(G, M0, W, J) (G, M, I) (F , M, i)
scaling F-granulation

g
h

m

2
4

g
h

F

m
≤

2
m

≤
4

m
≥

2
m

≥
4

m
≥

6

× ×
×

×
× ×

m
≤

2
m

≤
4

m
≥

2
m

≥
4

m
≥

6

? × × ? •F

Fig. 1. A schematic illustration of interordinal scaling and F-granulation

In the case of Infobright’s contest data set we may think of the underlying,
very large data table as a many-valued context (G, M0, W, J) in which for every
attribute m ∈ M0 the set

Wm := m[G] := {w ∈ W | (g, m, w) ∈ J for some g ∈ G}
of all values occurring in the column of m are ordered linearly in a canonical way.
Depending on the data type of the attribute m this canonical order ≤m can for
instance be the natural order of numbers or the alphabetical order of character
strings. If one transforms this data table (G, M0, W, J) into the formal context



A Formal Concept Analysis Approach to Rough Data Tables 123

(G, M, I) via scaling every attribute from M0 interordinally, this formal context
(G, M, I) directly yields to the granulated partial formal context (F , M, i) which
contains exactly the same information as the contests rough table from [6].

We leave out the details about the interordinal scaling of the original data
table (G, M0, W, J). We refer the reader to Figure 1 to get an idea on how it
works. The problem with the contest data set is that for almost every attribute
m ∈ M0 it holds that for almost every rough row F ∈ F the minimal and
maximal m-values in F are exactly the overall minimal and maximal m-values,
i.e.,

min
f∈F

m(f) = min
g∈G

m(g) and max
f∈F

m(f) = max
g∈G

m(g).

This yields to the effect that (F , M, i) is almost full of question marks, which mi-
nimizes the chances to verify or to refute some interesting attribute implications.

5 Soft Granulation

There is a reason why the approach of the previous section led to rather dis-
appointing results: Our definition of the granulation process was too rigid. We
defined that a block has a certain object if all members of a pack have the at-
tribute, etc. As an example from the Infobright data, we mention the minimum
parameter: It expresses that all members of the pack have a value greater or
equal this one.

For a rough estimation, such parameters that can drastically be changed by a
single member of the block seem inappropriate. It seems more promising to work
with parameters which reflect the “tendency” of the data packs. The simplest
suggestion is counting: Let us record for each data pack (F, m) the number of
objects having the attribute. Formally:

supp(F, m) := |mI ∩ F |.
One calls supp(F, m) the support of the data pack (F, m). The number of
objects of a block F that do not have attribute m is called its negative support
and is defined as

nsupp(F, m) := |F \mI |.
Our granulation will now work as follows: The formal context (G, M, I) leads

us to the N0-valued context (F , M, i), i.e., i : F ×M → N0, with

i(F, m) := supp(F, m).

What we are trying to do is mining in (F , M, i) for association rules that hold
in (G, M, I). An association rule A → B consists of two attribute sets: the
premise A and the conclusion B. We call

supp(A) := |AI | the support2of A,
supp(A → B) := supp(A ∪B) the support of the rule A → B, and

conf(A → B) := supp(A∪B)
supp(A) the confidence of the rule A → B.



124 B. Ganter and C. Meschke

Furthermore, for given thresholds minsupp ∈ N0 and minconf ∈ [0, 1] we say
an association rule holds in (G, M, I) if its support exceeds minsupp and its
confidence exceeds minconf. Hence, association rules are a generalization of the
attribute implications: The implications that hold in a formal context are exactly
the association rules that hold with minsupp = 0 and minconf = 1. We say an
attribute set (or a rule) is frequent if its support is greater or equal minsupp.

From now on we assume that F is a partition of the object set G and that
the size of every block is known. Hence, for every data pack (F, m) we know
its support and its negative support. We define approximations of the above
mentioned measures just using these information:

supp(A) :=
∑
F∈F

max
{

0, |F | −
∑
a∈A

nsupp(F, a)
}

,

supp(A) :=
∑
F∈F

min
a∈A

supp(F, a),

conf(A → B) :=

∑
F∈F max

{
0, mina∈A supp(F, a) − ∑

b∈B\A nsupp(F, b)
}

supp(A)
.

Proposition 6. For A, B ⊆ M it holds that:

supp(A) ≤ supp(A) ≤ supp(A).

Furthermore, the inequality conf(A → B) ≤ conf(A → B) holds.

Even though these approximations are very coarse in most cases, they are tight
in the sense that there are cases where equality holds. We say an association
rule holds in the granulated partial context (F , M, i) if

minsupp ≤ supp(A ∪B) and minconf ≤ conf(A → B).

Corollary 1. Everyassociation rule thatholds in (F , M, i)alsoholds in (G, M, I).

For a singleton conclusion B = {b} we can further approximate the lower ap-
proximation conf(A → b) of the confidence of rule A → b (with b /∈ A) in the
following way3:

conf(A → b) ≥ 1− |b–I |
supp(A)

.

The right side of this inequality exceeds minconf iff the following holds:

|bI |
|G| ≥ 1− (1− minconf) · supp(A)

|G| .

2 It is more common to define the support of A as the quotient |AI |
|G| . We choose to

define it the absolute way since it makes the following formulas more readable.
3 By applying the inequality max{0, x} ≥ x to every summand in the numerator in

the definition of conf.
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Let us take for instance minconf = 70% and supp(A) = 0.6 · |G|. If in this case
82%(= 1−0.3 ·0.6) of all objects have attribute b, we can for sure read from the
granulated context (F , M, i) that the rule is frequent. By the way, the support

|bI | =
∑
F∈F

supp(F, b)

of the attribute b can be read from the granulated context (F , M, i). Hence,
we get that at least for association rules with very high support and with a
conclusion containing very frequent attributes, the chances that its conf value
exceeds the threshold minconf are not too bad. But when is the rule a frequent
rule? Let C be an attribute set (for instance C = A ∪ {b}). It holds that

supp(C) ≥ |G| −
∑
m∈C

|m–I |

≥ |G| − |C| · (|G| − supp(C))

The right side exceeds minsupp iff

supp(C) ≥ (|C| − 1) · |G|+ minsupp

|C| .

If we take for instance |C| = 4 and minsupp = 0.2 · |G|, we get that C can be
detected as frequent by just using the granulated context (F , M, i) if its actual
support (in (G, M, I)) is at least 80% of |G|. Note that the approximations of
supp(C) we made above were quite rigid. Hence, in practice we expect that supp
gives a much better lower approximation of the actual support supp in (G, M, I)
than our example may suggest.

Due to a lack of space we have to leave out the details on how to calculate
a basis of the association rules that hold in (F , M, i). We will do this in a fu-
ture paper. In summary our procedure will use the fact that supp yields to a
closure system on M . The frequent closed attribute sets will be used to build a
Luxenburger-type basis [8]. Furthermore, the following paper should investigate
how to improve the approximations conf and supp if one considers background
knowledge that can for instance be given by the scales used in the scaling process.

6 Conclusion

We proposed a way to describe the rough tables occurring at the data warehou-
sing system ICE. We did that from the standpoint of Formal Concept Analysis
and tried to mine these rough tables for implicational knowledge. We argued
that it is very unlikely that the very rigid minimum and maximum parameters
as for instance used in the contest data set [6] will yield to satisfying results.
We constituted that – having in mind the data mining in rough tables – in the
process of building the data pack nodes it is worth to create more sophisticated
parameters that allow to give a better estimation of the distribution of the values
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in the data packs (like counting the number of incidences in the data packs of
the scaled data table).

Ongoing work has to include the following issues: How can one efficiently
calculate a basis of the association rules in Section 5? One has to explain how
background knowledge can be used to improve data mining in the granulated
contexts. Furthermore, experimental results are needed to find out whether the
soft granulation described in Section 5 will lead to satisfying results in practice.
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1 Introduction

Pawlak’s rough set theory begins with an approximation space < U, R > where
U is a non empty set and R is an equivalence relation on U . So, the set U is
partitioned. Given any subset A of U , the lower and upper approximations A
and A are then defined by A = {x| [x] ⊆ A} and A = {x| [x] ∩A �= φ}.

One can immediately observe that the following properties of lower and upper
approximations hold.

(1a) U = U (Co-normality) (1b) U = U (Co-normality)
(2a) φ = φ (Normality) (2b) φ = φ (Normality)
(3a) X ⊆ X (Contraction) (3b) X ⊆ X (Extension)
(4a) X ∩ Y = X ∩ Y (Multiplication) (4b) X ∪ Y = X ∪ Y (Addition)
(5a) (X) = X (Idempotency) (5b) (X) = X (Idempotency)
(6) (∼ X) =∼ (X), (∼ X) =∼ (X) (Duality)
(7a) X ⊆ Y ⇒ X ⊆ Y (Monotone) (7b) X ⊆ Y ⇒ X ⊆ Y (Monotone)
(8a) A ⊆ (A) (8b) (A) ⊆ A

Almost from inception of the theory, various generalizations took place one such
being replacement of the partition of the set U by a covering. One starts with a
set and a covering on it, that is a collection of subsets such that its union is the
whole set U . A passage from partition to covering was natural from the point
of view of applications also. The equivalence relation R in U originates from an
attribute-value system (U, {Ai}, V ) where {Ai} is a set of attributes and V is a
set of values, each attribute Ai giving a unique value from V to each object in
the universe U . Thus a partition emerges, elements having the same attribute-
values being clustered together forms an equivalence class. Elements belonging

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 127–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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to the same class are indiscernible with respect to the given set of attributes.Now
indiscernibility relation is in general non-transitive - in attribute value systems
such an indiscernibility arises if there are some gaps in the information viz. for
some objects the value of some attribute may not be known. However, value-
gaps are not the only reason for generation of non transitive indiscernibility.
The clusters or granules are formed in this situation in various ways and the
granules are not generally disjoint. The overlapping granules form a covering of
the universe U . Since in the study we shall not be concerned with the process
of granule formation, for our present purpose, as mentioned before, the pair
< U, C > where C = {Ci} is a covering of U in a reasonable starting point.

Along with various methods of formation of granules, the lower and upper
approximations of a subset of U are also defined in various ways. The objective
of this paper is to present an account of various definitions of lower and upper
approximations proposed so far and to study their consequences. Consequences
will be marked in terms of implication latices, a notion first introduced in [3].

Given two sets A, B there are nine possible inclusions P ⊆ Q where P ∈
{A, A, A} and Q ∈ {B, B, B}. In case of partition on X we have the following
equivalences {A ⊆ B}, {A ⊆ B, A ⊆ B}, {A ⊆ B, A ⊆ B}, {A ⊆ B} and
{A ⊆ B, A ⊆ B, A ⊆ B} in the sense that inclusions belonging to the same
group are equivalent that is, each implies the other. These equivalence classes
form a lattice with respect to inclusion again. In the present paper this lattice is
the lattice for P4. For more detail of these implication lattices see [3]. However,
in case of covering based approximations, since all the relevant properties among
(1) to (8) are not available the equivalence classes of inclusions are different and
the implication lattices are different too.

The paper is divided into two broad sections. In the following section various
definitions of the lower and upper approximations shall be presented. All these
definitions are already present in rough-set literature; we have only compiled and
categorized them. Categorization shall be done in terms of usual set theoretic
properties. Many of these properties have already been mentioned in earlier
works. But many properties were not investigated before. These are our own
observations and marked with a ‘∗’ in the table in the next section.

Section two deals with the implication lattices and categorization with the
help of them.

This paper ends with some concluding remarks.

2 Various Types of Lower and Upper Approximations

Let C = {Ci} be a covering of U . The following various types of granulation
around an element x ∈ U are used in defining lower and upper approximations.

NC
x = ∪{Ci ∈ C : x ∈ Ci} = Friends(x) [5,8,12]

P C
x = {y ∈ U : ∀Ci(x ∈ Ci ⇔ y ∈ Ci)} (Partition generated by a covering)

[4,7,8,12,17]
N(x) = ∩{Ci : Ci ∈ C, x ∈ Ci} = Neighbour(x) [9,16,17]
Md(x) = {Ci : x ∈ Ci ∈ C ∧ (∀S ∈ C ∧ x ∈ S ⊆ Ci ⇒ Ci = S)} [10],
e.f(x) = U − Friends(x) [5]
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Except Md(x) all other constructs are subsets of U while Md(x) is a subset of
the power set of U .

Let X be a subset of U , where U is the universe. Then different types of lower
and upper approximations are defined as follows.

We have used P i, P
i

i = 1, 2, 3, 4 to recognize Pomykala, since to our knowl-
edge he first studied the lower and upper approximations with the exception P4

which was due to Pawlak. Ci, C
i
i = 1, 2, 3, 4, 5 are other covering based approx-

imations which are essentially duals. C and C with symbols are also covering
based, the symbols being taken from the respective papers straightway. This
group of pairs barring CGr and C

Gr
are non-duals.

P 1(X) = {x : NC
x ⊆ X}

P
1
(X) = ∪{Ci : Ci ∩X �= φ} [8,12,15]

P 2(X) = ∪{NC
x : NC

x ⊆ X}
P

2
(X) = {z : ∀y(z ∈ NC

y ⇒ NC
y ∩X �= φ)} [8,12]

P 3(X) = ∪{Ci : Ci ⊆ X}
P

3
(X) = {y : ∀Ci(y ∈ Ci ⇒ Ci ∩X �= φ)} [8,9,12,13,15,17]

P 4(X) = ∪{P C
x : P C

x ⊆ X}
P

4
(X) = ∪{P C

x : P C
x ∩X �= φ} [1,4,7,8,9,10,12,13,14,16,17]

C1(X) = ∪{Ci : Ci ∈ C, Ci ⊆ X}
C

1
(X) =∼ C1(∼ X) = ∩{∼ Ci : Ci ∈ C, Ci ∩X = φ} [10]

C2(X) = {x ∈ U : N(x) ⊆ X}
C

2
(X) = {x ∈ U : N(x) ∩X �= φ} [9,10]

C3(X) = {x ∈ U : ∃u(u ∈ N(x) ∧N(u) ⊆ X)}
C

3
(X) = {x ∈ U : ∀u(u ∈ N(x) → N(u) ∩X �= φ)} [10]

C4(X) = {x ∈ U : ∀u(x ∈ N(u) → N(u) ⊆ X)}
C

4
(X) = ∪{N(x) : N(x) ∩X �= φ} [10]

C5(X) = {x ∈ U : ∀u(x ∈ N(u) → u ∈ X)}
C

5
(X) = ∪{N(x) : x ∈ X} [10]

With the same lower approximation there are a few different upper approxima-
tions. In the following we have the symbols by corresponding authors.

C∗(X) = C−(X) = C#(X) = C@(X) = C+(X) = C%(X)
= ∪{Ci ∈ C : Ci ⊆ X} ≡ P 3(X) [5]
C

∗
(X) = C∗(X) ∪ {Md(x) : x ∈ X \X∗} [5,17]

C
−
(X) = ∪{Ci : Ci ∩X �= φ} [5]

C
#

(X) = ∪{Md(x) : x ∈ X} [5,17]
C

@
(X) = C@(X) ∪ {Ci : Ci ∩ (X \ C@(X)) �= φ} [5]

C
+
(X) = C+(X) ∪ {Neighbour(x) : x ∈ X \ C+(X)} [5,16]

C
%

(X) = C%(X) ∪ {∼ ∪{Friends(y) : x ∈ X \ C%(X), y ∈ e.f(x)}} [5]

Yet another type of lower and upper approximation is defined with the help of
covering.
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Let, Gr∗(X) = ∪{Ci ∈ C : Ci ⊆ X} ≡ P 3(X).
This is taken as lower approximation of X and is denoted by CGr(X).

Gr∗(X) = ∪{Ci ∈ C : Ci ∩X �= φ} ≡ P
1
(X).

The upper approximation is defined by C
Gr

(X) = Gr∗(X) \ NEGGr(X),
where, NEGGr(X) = CGr(∼ X), ∼ X being the complement of X [13].

We split 4(a)(multiplication), 4(b)(addition) each into two components
e.g. 4(a) is split as A ∩B ⊆ A ∩B and A ∩B ⊆ A ∩B. Similarly the other.

The reason for this split is that it will be observed that one of the components
may hold while the other may not.

Instead of 5(a) and 5(b) we have taken A ⊆ (A) and (A) ⊆ A for similar
reasons.

The following table shows that the entire Picture.

P1 P2 P3 P4 C1 C2 C3 C4 C5 CGr C∗ C− C# C@ C+ C%
Dual Y Y Y Y Y Y Y Y Y Y N N N N N N

φ = φ = φ Y Y Y Y Y Y Y Y Y Y Y Y Y Y∗ Y Y
U = U = U Y Y Y Y Y Y Y Y Y Y Y Y Y Y∗ Y Y

A ∩B ⊆ A ∩B Y Y Y Y Y Y Y Y Y Y Y Y Y Y∗ Y Y
A ∩B ⊆ A ∩B Y Y Y Y N Y N Y Y N N N N N∗ N N
A ∪B ⊆ A ∪B Y Y Y Y N Y N Y Y N Y Y N∗ Y N N
A ∪B ⊆ A ∪B Y Y Y Y Y Y Y Y Y N Y Y N∗ Y Y N
A ⊆ B ⇒ A ⊆ B Y Y Y Y Y Y Y Y Y Y Y Y Y Y∗ Y Y
A ⊆ B ⇒ A ⊆ B Y Y Y Y Y Y Y Y Y Y N Y Y N∗ Y Y

A ⊆ A Y Y Y Y Y Y N Y Y Y Y Y Y Y∗ Y Y
A ⊆ A Y Y Y Y Y Y N Y Y N Y Y Y Y∗ Y N
A ⊆ A Y Y Y Y Y Y N∗ Y Y Y Y Y Y Y∗ Y Y

A ⊆ (A) Y∗ N∗ Y∗ Y∗ N∗ N∗ N∗ Y N∗ N Y∗ Y∗ Y Y∗ N∗ N∗
(A) ⊆ A Y∗ N∗ Y∗ Y∗ N∗ N∗ N∗ Y N∗ N∗ N∗ N∗ Y Y∗ Y∗ N∗
A ⊆ (A) N Y Y Y Y Y N∗ N Y Y Y Y Y Y∗ Y Y

(A) ⊆ A N Y Y Y Y Y N∗ N Y Y Y Y N Y∗ Y Y
A ⊆ (A) N N N Y N∗ N∗ N N N N Y∗ Y Y Y∗ N N
(A) ⊆ A N N N Y N∗ N∗ N N∗ N N N∗ N∗ Y Y∗ Y N

Y : Yes, the property holds. N : No, the property does not hold.

As mentioned in the introduction properties that we have verified are marked
∗. The above table may be called the information system for the various ap-
proaches, the first row giving their names.

3 Implication Lattices

Implication lattices were first introduced in [3]. Their role in rough logics has
been discussed in the same paper. We shall now demonstrate various implication
lattices arising in the present context.
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Implication Lattice with respect to P1 and C4

• A ⊆ B

•A ⊆ B
•A ⊆ B
�

� • A ⊆ B
• A ⊆ B

�
��

• A ⊆ B�
�

�
�

• A ⊆ B

• A ⊆ B

Properties used :
A ⊆ B ⇒ A ⊆ B and A ⊆ B,
A ⊆ A, A ⊆ A, (A) ⊆ A and A ⊆ (A).

A ⊆ B ⇒ (A) ⊆ B ⇒ A ⊆ (A) ⊆ B ⇒ A ⊆ B

and A ⊆ B ⇒ A ⊆ (B) ⊆ B ⇒ A ⊆ B

So, A ⊆ B ⇔ A ⊆ B.

Implication Lattice with respect to P3

• A ⊆ B

•A ⊆ B �
�

• A ⊆ B�
��

• A ⊆ B�
�

�
�

• A ⊆ B

• A ⊆ B

Properties used :
A ⊆ B ⇒ A ⊆ B and A ⊆ B,
A ⊆ A, A ⊆ A, (A) ⊆ A, A ⊆ (A)
A ⊆ (A) and (A) ⊆ A.

A ⊆ B ⇒ (A) ⊆ B ⇒ A ⊆ (A) ⊆ B ⇒ A ⊆ B

and A ⊆ B ⇒ A ⊆ (B) ⊆ B ⇒ A ⊆ B.
So, A ⊆ B ⇔ A ⊆ B.
A ⊆ B ⇒ (A) ⊆ B ⇒ A ⊆ (A) ⊆ B ⇒ A ⊆ B.
Also, A ⊆ B ⇒ A ⊆ B ⊆ B ⇒ A ⊆ B. So, A ⊆ B ⇔ A ⊆ B.
Again, A ⊆ B ⇒ A ⊆ (B) ⇒ A ⊆ (B) ⊆ B ⇒ A ⊆ B.
Also, A ⊆ B ⇒ A ⊆ A ⊆ B ⇒ A ⊆ B. So, A ⊆ B ⇔ A ⊆ B.

Implication Lattice with respect to P4

• A ⊆ B

•A ⊆ B �
�

• A ⊆ B
�

��

• A ⊆ B�
�

�
�

• A ⊆ B

Properties used :
A ⊆ B ⇒ A ⊆ B and A ⊆ B,
A ⊆ A, A ⊆ A, (A) ⊆ A and A ⊆ (A),
A ⊆ (A) and (A) ⊆ A.

A ⊆ B ⇒ (A) ⊆ B ⇒ A ⊆ (A) ⊆ B ⇒ A ⊆ B

and A ⊆ B ⇒ A ⊆ (B) ⊆ B ⇒ A ⊆ B.
So, A ⊆ B ⇔ A ⊆ B.
Clearly, A ⊆ B ⇒ (A) ⊆ B ⇒ A ⊆ (A) ⊆ B ⇒ A ⊆ B.
A ⊆ B ⇒ A ⊆ B ⊆ B ⇒ A ⊆ B. So A ⊆ B ⇔ A ⊆ B.
A ⊆ B ⇒ (A) ⊆ B ⇒ A ⊆ (A) ⊆ B ⇒ A ⊆ B.
Also, A ⊆ B ⇒ A ⊆ B ⊆ B ⇒ A ⊆ B. So, A ⊆ B ⇔ A ⊆ B.
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Again, A ⊆ B ⇒ A ⊆ (B) ⇒ A ⊆ (B) ⊆ B ⇒ A ⊆ B.
Also, A ⊆ B ⇒ A ⊆ A ⊆ B ⇒ A ⊆ B. So, A ⊆ B ⇔ A ⊆ B.

Implication Lattice with respect to C@

• A ⊆ B

•A ⊆ B �
� • A ⊆ B

• A ⊆ B
�

��

• A ⊆ B�
�

• A ⊆ B

• A ⊆ B

Properties used :
A ⊆ B ⇒ A ⊆ B, A ⊆ A, A ⊆ A,
A ⊆ (A), (A) ⊆ A, and A ⊆ (A).

A ⊆ B ⇒ (A) ⊆ B ⇒ A ⊆ (A) ⊆ B⇒ A ⊆ B

and A ⊆ B ⇒ A ⊆ (B)
⇒ A ⊆ (B) ⊆ B ⇒ A ⊆ B.
So, A ⊆ B ⇔ A ⊆ B.
A ⊆ B ⇒ (A) ⊆ B ⇒ A ⊆ (A) ⊆ B ⇒ A ⊆ B.
Also, A ⊆ B ⇒ A ⊆ B ⊆ B ⇒ A ⊆ B. So, A ⊆ B ⇔ A ⊆ B.

Implication Lattice with respect to P2, C1, C2, C5, C , C+

• A ⊆ B

•A ⊆ B �
�

• A ⊆ B�
��

• A ⊆ B�
�

�
�

• A ⊆ B

•A ⊆ B •A ⊆ B

�
��

�
�

�
��

�
�

Properties used :
A ⊆ B ⇒ A ⊆ B and A ⊆ B,
A ⊆ A, A ⊆ A,
A ⊆ (A) and (A) ⊆ A.

A ⊆ B ⇒ (A) ⊆ B
⇒ A ⊆ (A) ⊆ B ⇒ A ⊆ B.

Also, A ⊆ B ⇒ A ⊆ B ⊆ B ⇒ A ⊆ B. So, A ⊆ B ⇔ A ⊆ B.
A ⊆ B ⇒ A ⊆ (B) ⇒ A ⊆ (B) ⊆ B ⇒ A ⊆ B.
Also, A ⊆ B ⇒ A ⊆ A ⊆ B ⇒ A ⊆ B. So, A ⊆ B ⇔ A ⊆ B.

Implication Lattice with respect to C∗

• A ⊆ B

•A ⊆ B �
�

• A ⊆ B

• A ⊆ B�
�

• A ⊆ B

•A ⊆ B •A ⊆ B

�
��

�
�

�
��

�
�

•A ⊆ B��
Properties used :
A ⊆ B ⇒ A ⊆ B, A ⊆ A, A ⊆ (A) .

A ⊆ B ⇒ (A) ⊆ B

⇒ A ⊆ (A) ⊆ B ⇒ A ⊆ B.
Also, A ⊆ B ⇒ A ⊆ B ⊆ B ⇒ A ⊆ B.
So, A ⊆ B ⇔ A ⊆ B.
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Implication Lattice with respect to C%, Gr

• A ⊆ B

•A ⊆ B • A ⊆ B

• A ⊆ B�
�

�
�

• A ⊆ B

•A ⊆ B •A ⊆ B

�
�

�
��

•A ⊆ B�
Properties used :
A ⊆ B ⇒ A ⊆ B and A ⊆ B,
A ⊆ A, A ⊆ (A) and (A) ⊆ A.

A ⊆ B ⇒ (A) ⊆ B

⇒ A ⊆ (A) ⊆ B ⇒ A ⊆ B.
Also, A ⊆ B ⇒ A ⊆ B ⊆ B ⇒ A ⊆ B.
So, A ⊆ B ⇔ A ⊆ B.

Implication Lattice with respect to C3 • A ⊆ B

•A ⊆ B • A ⊆ B

• A ⊆ B�
�

�
�

• A ⊆ B

•A ⊆ B •A ⊆ B

•A ⊆ B•A ⊆ BProperties used :
A ⊆ B ⇒ A ⊆ B and A ⊆ B

The study of implication lattices has the following significance.

• Given two Sets A and B, of the nine possible inclusions between the pairs
from {A, A, A} and {B, B, B} how many are independent is depicted by the
nodes of the diagrams.
• Which inclusion entails which one is shown.
• Any of the inclusion gives rise to a rough Modus Ponens rule [2] and a

corresponding rough logic [2]. Taken with 2 the hierarchy of the logics is obtained.

Underlying modal logical systems of various rough logics are also immediately
visible from the table. It may also be mentioned that it will be necessary to define
and investigate modal logic systems in which necessity and possibility operations
are not dual.

4 Concluding Remarks

Other issues of covering-based approaches e.g. topological and logical aspects
shall be our future work.
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Abstract. A paraconsistent annotated logic program called bf-EVALP-
SN has been developed for dealing with before-after relations between
time intervals (processes) and applied to real-time process order control.
In this paper, we introduce a logical before-after relation reasoning sys-
tem based on two inference rules for before-after relation with simple
examples.

Keywords: Before-after relation, EVALPSN, bf-EVALPSN, annotated
logic program, reasoning system.

1 Introduction

We have already developed a paraconsistent annotated logic program called
Extended Vector Annotated Logic Program with Strong Negation(abbr.
EVALPSN), which can deal with intelligent control and safety verification such
as pipeline process control [3,4,5]. We also have developed an EVALPSN called
bf(before-after)-EVALPSN to deal with before-after relations between time in-
tervals paraconsistently, which can be applied to real-time process order control
[6,7]. In this paper, we extend the result of Nakamatsu et al.[6] to a before-after
relation reasoning system based on bf-EVALPSN.

Suppose that festival A starts on Feb.10th and finishes on 14th, and festival B
starts on Feb.16th and finishes on 17th. Then, if we have a question, “Is festival
A held before festival B ?”, everyone has to answer “yes”. On the other hands,
if festival B starts on 11th and finishes on 12th, what about the answer for the
same question ? Some people may answer “yes” and other people may do “no”.
There is paraconsistency in the people’s knowledge. In bf-EVALPSN, a spe-
cial EVALP literal R(pi, pj , t) : [(m, n), µ] called bf-EVALP literal whose vector
annotation (m, n) paraconsistently represents the before-after relation between
two processes Pri and Prj at time t is introduced. The first/second components
m/n in the vector annotation (m, n) represent after/before degrees of the before-
after relation, respectively. For example, the first before-after relation beteween

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 135–143, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



136 K. Nakamatsu, J.M. Abe, and S. Akama

festivals A and B could be represented as R(fesA, fesB, t) : [(0, 12), α] 1, which
can be intuitively interpreted that it is a fact that nobody agrees “festival A
is held after festival B, and all other 12 people agree that festival A is held
before festival B”. Moreover, the second before-after relation of them could be
represented in the EVALPSN literal R(fesA, fesB, t) : [(4, 8), α], which can be
paraconsistently interpreted that it is a fact that 4 people agree “festival A is
held after festival B” and other 8 people agree “festival A is held before fes-
tival B”. We will introduce the before-after relation reasoning system to infer
the vector annotation (m, n) of the bf-literal in real time according to process
start/finish time information.

Suppose that we deal with n processes and their bf-relations in bf-EVALPSN,
then nC2 bf-relations should be considered, which requires much more computa-
tion cost. It is not so efficient to compute directly all nC2 before-after relations
based on all process start/finish time information. In order to avoid such in-
efficiency we also propose another before-after relation reasoning system that
can reason the vector annotation of R(pi, pk, t) from those of R(pi, pj , t) and
R(pj , pk, t) transitively. If we use the transitive before-after relation reasoning
system, only n− 1 before-after relations for n processes should be computed di-
rectly according to process start/finish time information and other before-after
relations can be computed by the transitive reasoning system. We will also in-
troduce the transitive before-after relation reasoning system.

This paper is organized as the following manner: first, EVALPSN and bf-
EVALPSN are reviewed briefly ; next, the basic and transitive before-after rela-
tion reasoning systems are introduced with simple examples ; last, the conclution
is provided.

2 Bf-EVALPSN

We review bf-EVALPSN. The details of them are refered to [3,8].
An annotation in EVALPSN has a form of [(i, j), µ] called an extended vector

annotation. The first component (i, j) is called a vector annotation and the set
of vector annotations constitutes the complete lattice, Tv(n) = {(x, y)|0 ≤ x ≤
n, 0 ≤ y ≤ n,x, y and n are integers}. The ordering(�v) of Tv(n) is defined as :
(x1, y1) �v (x2, y2) iff x1 ≤ x2 and y1 ≤ y2. For each extended vector anno-
tated literal p : [(i, j), µ], the integer i denotes the amount of positive information
to support the literal p, the integer j denotes that of negative information, and
the annotation µ ∈ {⊥, α, β, γ, ∗1, ∗2, ∗3, � } is an index of deontic notions such
as obligation. The set of the annotations constitutes the complete lattice, Td. The
ordering(�d) of Td is described by the Hasse’s diagram in Fig.1. Then, the com-
plete lattice Te(n) of extended vector annotations is defined as Tv(n) × Td. The
intuitive meaning of each member of Td is ⊥ (unknown), α (fact), β (obligation),
γ (non-obligation), ∗1 (fact and obligation), ∗2 (obligation and non-obligation),
∗3 (fact and non-obligation), and � (inconsistency).

1 α is interpreted as “it is a fact that · · ·”.
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Fig. 1. Lattices Tv(2) and Td Before/After
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Fig. 3. Joint Before/After S-included Before/After

There are two kinds of epistemic negation ¬1 and ¬2 in EVALPSN, which
are defined as mappings over lattices Tv(n) and Td, respectively. There also is
ontological(strong) negation(∼) in EVALPSN, which is defined by the epistemic
negations ¬1 or ¬2, and it works as classical negation. Let L0, · · · , Ln be weva-
literals 2, L1∧· · ·∧Li∧ ∼ Li+1∧· · · ∧ ∼ Ln → L0 is called an EVALPSN clause.
An EVALPSN is a finite set of EVALPSN clauses.

First of all, we introduce a literal R(pi, pj, t) whose vector annotation repre-
sents the before-after relation between processes Pri and Prj at time t, which
is called a bf-literal3. An extended vector annotated literal R(pi, pj , t) : [µ1, µ2] is
called a bf-EVALP literal, where µ1 is a vector annotation and µ2 ∈ {α, β, γ}.
If an EVALPSN clause contains bf-EVALP literals, it is called a bf-EVALPSN
clause or just a bf-EVALP clause if it contains no strong negation.

Now we introduce the following bf-relations represented in vector annotations
called bf-annotations. They are described in process time charts (Fig.1-4).

Before (be)/After (af): We define the most basic bf-relations before/after
based on the bf-relation between each start time of two processes, which are
represented by bf-annotations be/af, respectively. If one process has started be-
fore/after another one, then the bf-relations are defined as “before(be)/after(af)”

Disjoint Before (db)/After (da): Bf-relations disjoint before/after between
two processes Pri and Prj are represented by bf-annotations db/da

2 p : [(i, 0), µ] and p : [(0, j), µ] are called weva-literals, where i, j are non-negative
integers and µ ∈ { α, β, γ }.

3 Hereafter, the word “before-after” is abbreviated as just “bf” in this paper.
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Fig. 4. Included, F-included, Paraconsistent Before/After
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Fig. 5. Lattice Tv(12)bf Process Schedule Chart

Immediate Before (mb)/After (ma): Bf-relations immediate before/after be-
tween processes Pri and Prj are represented by bf-annotations mb/ma

Joint Before (jb)/After (ja): Bf-relations, joint before/after between pro-
cesses Pri and Prj are represented by bf-annotations jb/ja

S-included Before (sb)/After (sa): The bf-relations s-included before/after
between processes Pri and Prj are represented by bf-annotations sb/sa

Included Before(ib)/After(ia): Bf-relations included before/after between
processes Pri and Prj are represented by bf-annotations ib/ia

F-included Before(fb)/After(fa): The bf-relations f-include before/after be-
tween processes Pri and Prj are represented by bf-annotations fb/fa

Paraconsistent Before-after (pba): The bf-relation paraconsistent before-
after between processes Pri and Prj is represented by bf-annotation pba

If we take the before-after measure over the ten bf-annotations as the hori-
zontal order and the before-after knowledge amount of them as the vertical one,
we obtain the complete bi-lattice Tv(12)bf of bf-annotations (Fig.5). Then, there
is the following correspondence between bf-annotations and vector annotations,
be(0, 8)/af(8, 0), db(0, 12)/da(12, 0), mb(1, 11)/ma(11, 1), jb(2, 10)/ja(10, 2),
sb(3, 9)/sa(9, 3), ib(4, 8)/ia(8, 4), fb(5, 7)/fa(7, 5), pba(6, 6).

3 Bf-Relation Reasoning System

In this section, we introduce the basic and transitive bf-relation(annotation)
reasoning systems. Firstly we show a simple example for reasoning bf-annotations
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with three processes Pr0, Pr1 and Pr2 scheduled in Fig.5, and three bf-literals
R(p0, p1, t), R(p1, p2, t) and R(p0, p2, t).

At time t0, as no process has started, we have no knowledge of bf-relations.
Therefore, the bf-relations are unknown and the same tentative bf-annotation of
all the bf-literals is (0, 0).

At time t1, as only process Pr0 has started, it can be reasoned that both the
bf-annotations of R(p0, p1, t1) and R(p0, p2, t1) are members of a set {db(0, 12),
mb(1, 11), jb(2, 10), sb(3, 9), ib(4, 8)}. Therefore, the greatest lower bound (0, 8)
of the set is the tentative bf-annotation of them, which is the greatest knowledge
in terms of their bf-relations, and the tentative bf-annotation of R(p1, p2, t1) is
still unknown (0, 0).

At time t2, as process Pr1 has started before process Pr0 finishes, it can be
reasoned that the bf-annotation of R(p0, p1, t2) is a member of a set {jb(2, 10),
sb(3, 9), ib(4, 8)}. Therefore, the greatest lower bound (2, 8) of the set is the
tentative bf-annotation of it. Moreover, as process Pr2 has not started yet, the
tentative bf-annotation of others is the same (0, 8).

At time t3, as process Pr2 has started before both processes Pr0 and Pr1
finish, it can be reasoned that the tentative bf-annotation of all the bf-literals is
the same (2, 8) as well as the case of time t2.

At time t4, as only process Pr2 has finished, it can be reasoned that the ten-
tative bf-annotation of R(p0, p1, t4) is still (2, 8), however the final bf-annotations
of other bf-literals become ib(4, 8).

At time t5, as process Pr0 has finished before process Pr1 finishes, the bf-
annotation of R(p0, p1, t5) becomes jb(2, 10). Therefore, even though process
Pr1 has not finished yet, all bf-relations between processes Pr0, Pr1 and Pr2
have been determined at time t5.

As shown in the above example, bf-relations(annotations) can be determined
according to process start/finish time information. It is quite natural to adopt
the following bf-relation inference rules for the basic bf-relation reasoning system.

(0, 0)-rule-1: If process Pri has started and process Prj has not started yet, then
the tentative bf-annotation of R(pi, pj , t) becomes (0, 8) from (0, 0).

(0, 0)-rule-2: If both processes Pri and Prj have started at the same time, the
tentative bf-annotation of R(pi, pj , t) becomes (5, 5) from (0, 0). They are repre-
sented by the bf-EVALPSN clause with no deontic annotation,

R(pi, pj, t) :(0, 0) ∧ st(pi, t) :(1, 0)∧ ∼ st(pj , t) :(1, 0) → R(pi, pj , t) :(0, 8),
R(pi, pj, t) :(0, 0) ∧ st(pi, t) :(1, 0) ∧ st(pj , t) :(1, 0) → R(pi, pj , t) :(5, 5),

where two literals st(pi, t)/fi(pi, t) represent “process Pri starts/finishes at time
t”, and their vector annotations are members of {(1, 0)(true), (0, 1)(false) }.
(0,8)-rule-1: If process Pri has finished, and process Prj has not started yet,
then the bf-annotation of R(pi, pj, t) becomes db(0, 12) from (0, 8).

(0,8)-rule-2: If process Pri has finished and process Prj has started immediately
after it, then the bf-annotation of R(pi, pj , t) becomes ib(1, 11) from (0, 8).
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(0,8)-rule-3: If process Pri has started but not finished yet and process Prj has
also started after it, then the tentative bf-annotation of R(pi, pj, t) becomes (2, 8)
from (0, 8). They are represented by the bf-EVALPSN clause with no deontic
annotation,

R(pi, pj , t) :(0, 8) ∧ fi(pi, t) :(1, 0)∧ ∼ st(pj , t) :(1, 0) → R(pi, pj , t) :(0, 12),
R(pi, pj , t) :(0, 8) ∧ fi(pi, t) :(1, 0) ∧ st(pj, t) :(1, 0) → R(pi, pj , t) :(1, 11),
R(pi, pj , t) :(0, 8)∧ ∼ fi(pi, t) :(1, 0) ∧ st(pj , t) :(1, 0) → R(pi, pj , t) :(2, 8).

(5,5)-rule-1: If both processes Pri and Prj have started simultaneously and only
process Pri has finished, then the bf-annotation of R(pi, pj , t) becomes sb(5, 7)
from (5, 5).

(5,5)-rule-2: If both processes Pri and Prj have started simultaneously and
finished simultaneously, then the bf-annotation of R(pi, pj, t) becomes pba(6, 6)
from (5, 5).

(5,5)-rule-3: If both processes Pri and Prj have started simultaneously and only
process Prj has finished, then the bf-annotation of R(pi, pj, t) becomes sa(7, 5)
fom (5, 5). They are represented by the bf-EVALPSN clause with no deontic
annotation,

R(pi, pj , t) :(5, 5) ∧ fi(pi, t) :(1, 0)∧ ∼ fi(pj , t) :(1, 0) → R(pi, pj , t) :(5, 7),
R(pi, pj , t) :(5, 5) ∧ fi(pi, t) :(1, 0) ∧ fi(pj, t) :(1, 0) → R(pi, pj, t) :(6, 6),
R(pi, pj , t) :(5, 5)∧ ∼ fi(pi, t) :(1, 0) ∧ fi(pj , t) :(1, 0) → R(pi, pj , t) :(7, 5).

(2,8)-rule-1: If processes Pri and Prj have started sequentially, process Pri

has finished and process Prj has not finished yet, then the bf-annotation of
R(pi, pj , t) becomes jb(2, 10) from (2, 8).

(2,8)-rule-2: If processes Pri and Prj have started sequentially and they finished
at the same time, then the bf-annotation of R(pi, pj, t) becomes fb(3, 9) from
(2, 8).

(2,8)-rule-3: If processes Pri and Prj have started sequentially and process
Pri has not finished yet, though process Prj has already finished, then the
bf-annotation of R(pi, pj , t) becomes ib(4, 8) from (2, 8). They are represented
by the bf-EVALPSN clause with no deontic annotation,

R(pi, pj, t) :(2, 8) ∧ fi(pi, t) :(1, 0)∧ ∼ fi(pj, t) :(1, 0) → R(pi, pj, t) :(2, 10),
R(pi, pj, t) :(2, 8) ∧ fi(pi, t) :(1, 0) ∧ fi(pj, t) :(1, 0) → R(pi, pj, t) :(3, 9),
R(pi, pj, t) :(2, 8)∧ ∼ fi(pi, t) :(1, 0) ∧ fi(pj, t) :(1, 0) → R(pi, pj, t) :(4, 8).

We introduce another bf-relation(annotation) inference rule called the transitive
bf-relation inference rule that can infer the bf-annotation of R(pi, pk, t) from
those of R(pi, pj , t) and R(pj , pk, t) with three processes Pri,Prj and Prk start-
ing sequentially. We show only three simple cases for describing the transitive
reasoning.
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Table 1. Transitive Inference Rules

rules pi, pj pj , pk pi, pk rules pi, pj pj , pk pi, pk rules pi, pj pj , pk pi, pk

r1 (0,8) (0,0) (0,8) r11 (0,12) (0,0) (0,12) r12 (2,8) (0,8) (0,8)
r121 (2,10) (0,8) (0,12) r122 (4,8) (0,12) (0,8) r123 (2,8) (2,8) (2,8)
r1231 (2,10) (2,8) (2,10) r1232 (4,8) (2,10) (2,8) r1233 (2,8) (4,8) (4,8)
r1234 (3,9) (2,10) (2,10) r1235 (2,10) (4,8) (3,9) r1236 (4,8) (3,9) (4,8)
r1237 (3,9) (3,9) (3,9) r124 (3,9) (0,12) (0,12) r125 (2,10) (2,8) (1,11)
r126 (4,8) (1,11) (2,8) r127 (3,9) (1,11) (1,11) r13 (1,11) (0,8) (0,12)
r14 (2,8) (5,5) (2,8) r141 (4,8) (5,7) (2,8) r142 (2,8) (7,5) (4,8)
r143 (3,9) (5,7) (2,10) r144 (2,10) (7,5) (3,9) r2 (5,5) (0,8) (0,8)
r21 (5,7) (0,8) (0,12) r22 (7,5) (0,12) (0,8) r23 (5,5) (2,8) (2,8)
r231 (5,7) (2,8) (2,10) r232 (7,5) (2,10) (2,8) r233 (5,5) (4,8) (4,8)
r234 (7,5) (3,9) (4,8) r24 (5,7) (2,8) (1,11) r25 (7,5) (1,11) (2,8)
r3 (5,5) (5,5) (5,5) r31 (7,5) (5,7) (5,5) r32 (5,7) (7,5) (6,6)

Case 1. Suppose that only the first process Pri has started at time t, we ob-
tain the tentative bf-annotation (0, 8) of R(pi, pj, t) by (0, 0)-rule-1 and we have
the tentative bf-annotation (0, 0) of R(pj , pk, t), then the vector annotation of
R(pi, pk, t) can be infered deterministically as (0, 8), which is formalized,

R(pi, pj, t) :(0, 8) ∧ R(pj , pk, t) :(0, 0) → R(pi, pj, t) :(0, 8).

Case 2. Suppose that processes Pri and Prj have started simultaneously at
time t, we obtain the tentative bf-annotation (5, 5) of R(pi, pj , t) by the (0, 0)-
rule-2 and the tentative bf-annotation (0, 8) of R(pj, pk, t) by the (0, 0-rule-1,
then the vector annotation of R(pi, pk, t) can be also reasoned deterministically
as (0, 8), which is formalized,

R(pi, pj, t) :(5, 5) ∧ R(pj , pk, t) :(0, 8) → R(pi, pj, t) :(0, 8).

Case 3. Suppose that all processes Pri, Prj and Prk have started simultane-
ously at time t, we obtain the same tentative bf-annotation (5, 5) of R(pi, pj , t)
and R(pj , pk, t) by the (0, 0)-rule-2, then the vector annotation of R(pi, pk, t) can
be also reasoned deterministically as (5, 5), which is formalized,

R(pi, pj, t) :(5, 5) ∧ R(pj , pk, t) :(5, 5) → R(pi, pj, t) :(5, 5).

Only three rules have been shown though, Other transitive bf-relation inference
rules are listed in Table 1. For simplicity the inference rules are represented
by three vector annotations such as (n1, n2)|(n3, n4)|(n5, n6) instead of the bf-
EVALP clause with no deontic annotation,

R(pi, pj , t) :(n1, n2) ∧ R(pj, pk, t) :(n3, n4) → R(pi, pk, t) :(n5, n6).

The transitive bf-relation inference rule name (block font) indicates the appli-
cable order of the transitive inference rules. For example, if rule r1 has been
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applied, the next applicable rules are r11, r12, r13 or r14. Furthermore, if rule
r12 has been applied, one of rules r121,· · ·,r127, can be applied at the next
step ; on the other hand, if rule r11 has been applied, there is no applicable rule
that follows it and the final bf-annotation (0, 12) of R(pi, pk, t) can be derived.

Here we note that in terms of the inference rules r122, r1232, r126, r141,
r22, r232, r25 and r31, even though they have no following rules to be ap-
plied, they can not derive the bf-annotation of R(pi, pk, t). For example, by
rule r1232, even if both the bf-annotation (4, 8) of R(pi, pj, t), and the bf-
annotation (2, 10) of R(pj , pk, t) are obtained, the bf-annotation of R(pi, pk, t)
can not be determined and just a tentative bf-annotation (2, 8) is obtained, which
implies three possibilities {(2, 10), (3, 9), (4, 8)} as the final bf-annotation, thus
(2, 8)-rules have to be applied at the next step for determining the final bf-
annotation. Therefore, if the transitive inference rules r122 – r31 have been
applied, (0, 8),(2, 8),(5, 5)-rules have to be applied by way of exception.

4 Conclusions

In this paper, we have introduced the bf-relation reasoning system based on
bf-EVALPSN, which consists of the basic and transitive bf-relation inference
rules.

As a related work, interval temporal logic in which bf-relations are represented
in some special predicates such as Meets4 has been proposed by Allen et al.[1,2]
for representing knowledge of properties, actions and events. It is sure that the
interval temporal logic is a logically sophisticated tool to develop practical plan-
ning or natural language understanding systems though, it does not seem to
be so suitable for real-time processing because bf-relations cannot be deter-
mined until both of them have finished in the logical system. On the other hand,
bf-relations(annotations) are represented by paraconsistent vector annotations
more minutely in bf-EVALPSN, thus, they can be determined in real time by
the basic and transitive bf-relation inference rules according to start/finish infor-
mation of processes. Moreover, since Bf-EVALPSN is one of logic programs and
can be implemented as both software and hardware[5], The bf-relation reasoning
system can be practically applied to intelligent real-time process order control
and so on.5
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1 Introduction

In this paper we shall investigate some properties of graded consequence relation.
These properties are in some sense counterparts of proof theoretic assertions in
the classical, intuitionistic or other logics. Theory of graded consequence was
introduced by Chakraborty [1,2] in 1986 as a generalization of Gentzen’s no-
tion of consequence in many-valued context. Two main features of this theory
are (1) to lift many-valuedness also to the meta-level notions like consequence,
consistency, tautologihood etc. and (2) to make the logic context-dependent
where the context is given by a set of many-valued valuation functions {Ti}i∈I .
Any Ti is a mapping from the set of atomic formulae to a suitable algebraic
structure, constituting the truth set (L) for the given object language. Ti is
then extended over the whole set of wffs adopting truth functionality. A collec-
tion {Ti}i∈I can also be interpreted as the opinions of experts or information
about the atomic sentences. As this latest interpretation, a collection {Ti}i∈I

is an information system that initiates rough set theory [11] where the object
set is the set of wffs, Ti is an attribute and Ti(α) is the value of an wff α
with respect to Ti. Let us consider, for example, the following matrix where
aij = Ti(pj) ∈ L.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 144–151, 2009.
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Well-formed formula T1 T2 ... Ti .... Tn

Atomic p1 a11 a12 ... a1i .... a1n

p2 a21 a22 ... a2i .... a2n

... ... ... ... ... ... ...
pk ak1 ak2 ... aki .... akn

Non-atomic ... ... ... ... ... ... ...

Any such matrix is called the context. Whatever might be the interpretation,
given a set {Ti}i∈I , a logic may be defined with a fuzzy or graded consequence
relation that assigns a “degree” to the derivability of a wff α from a set X of
premises. This degree may be interpreted as the strength or confidence in which
α may be inferred from the information X given the context {Ti}i∈I . We shall
denote the consequence relation by |≈{Ti}i∈I

and the above mentioned degree or
grade by gr(X |≈{Ti}i∈I

α). One should observe the following:

– the consequence relation is a meta-logical notion and is here taken to be
many-valued in general.

– an implication operator which is not necessarily the implication operator of
the object language is required to define this consequence (see (Σ′) below)

– although the grade gr(X |≈{Ti}i∈I
α) is taken to be an element of L, the

logical operators for the defining clause of |≈{Ti}i∈I
are not necessarily the

same as those(if any at all) for the object language.

Thus, we need two sets of operators on the set L for computing the values of
the object- level and meta-level sentences. For the present paper we shall take a
complete residuated lattice (L, ∗m, →m, 0, 1) [8]for the meta-level language and
an algebraic structure (L, ∗0,→o , 0, 1) for the object level language. Operators
∗m and →m shall be needed to compute the meta-level ”and” and ”if-then”,
while ∗0, →o shall be used for corresponding object level-language.

The main objective of this paper is to investigate into the proof theoretic
results that arise out of various conditions imposed on the object and meta-level
operators and due to various interrelations among them. The rest of the paper
is organized as follows. In section 2, the graded consequence relation |≈{Ti}i∈I

shall be defined. In section 3, general study of the proof theoretic properties of
graded consequence relation will be presented. Besides, two specific cases taking
definite structures for object level and meta-level will be investigated. In section
4, we will discuss the significance of proof theoretic properties in the context
of graded consequence in contrast to classical situation. In section 5, there is
an example of finding out actual grade of a derivation in the context of graded
consequence. In the conclusion we indicate some ways of application.

2 Introduction to Graded Consequence

The notion |≈{Ti}i∈I
is a two-stage generalization of the notion of semantic

consequence in classical two-valued logic. The latter is defined by X |= α if and
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only if for all valuations T in the truth set {True, False} or {1, 0}, if every
member of X is true under T then α is also true under T . The first stage
generalization was proposed by Shoesmith and Smiley [12] through relativizing
the notion |= in terms of any arbitrary collection {Ti}i∈I of valuations instead of
the set of all valuations. So, one gets X |={Ti}i∈I

α if and only if for all valuations
T ∈ {Ti}i∈I , if every member of X is true under T then α is also true under T .
The second stage of generalization was accomplished by taking the valuations
Ti as many-valued functions [2] the range being a lattice.

Before proceeding to the actual definition, we shall rewrite the above defining
criterion of |={Ti}i∈I

in a form that would be followed throughout the paper.
Every valuation Ti may be identified with the set of wffs which are true under
Ti. So Ti may be considered to be a subset of the set of wffs. Thus the definition
of |={Ti}i∈I

can be given by

(Σ) X |={Ti}i∈I
α iff for all valuations T ∈ {Ti}i∈I , if X ⊆ T then α ∈ T .

To present the generalized version of (Σ)in many-valued context the required
modifications are as follows.

(i) The valuation function Ti
′
s are now many-valued - although the relationship

between the value-set structures for the object and meta-level are not important
at this stage. In fact, at this stage no particular object language is considered,
nor its value set structure.
(ii) In many-valued context to evaluate the defining sentence of the right hand
side of (Σ) a fuzzy implication operator for ‘if-then’ viz. →m is needed and hence
the value of the sentence (Σ) turns out to be

infi{gr(X ⊆ T ) →m gr(α ∈ Ti)}
= infi{infx∈F ((x ∈ X) →m (x ∈ Ti)) →m α ∈ Ti}
= infi{infx∈X(1 →m Ti(x)) →m Ti(α)}.
‘inf’ is used to compute the meta-linguistic ‘for all’ present in (Σ).

In particular, if the →m is taken as the residua of ∗m present in a residuated
lattice (L, ∗m, →m, 0, 1)then the value reduces to infi{infx∈XTi(x)) →m Ti(α)}
and is considered as the grade to which α follows from the premise set X . Hence

(Σ′) gr(X |≈{Ti}i∈I
α) = infi{infx∈XTi(x)) →m Ti(α)}

|≈{Ti}i∈I
is a graded consequence relation since it satisfies the following axioms

for any general graded consequence relation |∼, [3] viz.

GC1. If α ∈ X then gr(X |∼ α) = 1,
GC2. If X ⊆ Y then gr(X |∼ α) ≤ gr(Y |∼ α),
GC3. infβ∈Y gr(X |∼ β) ∗ gr(X ∪ Y |∼ α) ≤ gr(X |∼ α).

Naturally, |∼ is a fuzzy relation from the power set P(F) of the set of formulae F
to F. These are generalizations in the many-valued context of Gentzenian axioms
for consequence relation [5].
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3 Proof Theoretic Properties of Graded Consequence

We divide the results of this section into three categories: properties that depend
only on the conditions imposed on object level operators, properties that depend
only on the interrelation of the object and meta-level operators and the third, a
combination of the previous two. It is to be noted that the basic properties of →m

which constitute |≈{Ti}i∈I
play significant role in asserting the following results.

Results of the first category
Theorem 1. If a ∗0 b ≤ a, b then

(i) gr(X ∪ {α} |∼ γ) ≤ gr(X ∪ {α&β} |∼ γ),
gr(X ∪ {β} |∼ γ) ≤ gr(X ∪ {α&β} |∼ γ)

(ii) gr(X |∼ α&β) ≤ gr(X |∼ α)), gr(X |∼ α&β) ≤ gr(X |∼ β))
(iii) gr({α&β} |∼ α) = 1 and gr({α&β} |∼ β) = 1
(iv) gr({α, β} |∼ γ)≤ gr({α&β} |∼ γ)

In the object level language we have initially taken ⊃ and & as primitive con-
nectives. For the time being, let us add one more connective ∨ in the object
level language and ⊕ as the respective operator in the corresponding algebraic
structure.

Theorem2. If a, b ≤ a ⊕ b then

(i) gr(X |∼ α) ≤ gr(X |∼ α ∨ β), gr(X |∼ β) ≤ gr(X |∼ α ∨ β).
(ii) gr(X ∪ {α ∨ β} |∼ γ) ≤ gr(X ∪ {α} |∼ γ),

gr(X ∪ {α ∨ β} |∼ γ) ≤ gr(X ∪ {β} |∼ γ).
(iii) gr({α} |∼ α ∨ β) = 1 and gr({β} |∼ α ∨ β) = 1.

Theorem3. If a ∗0 (a →0 b) ≤ b then

(i) gr({α&(α ⊃ β)} |∼ β) = 1.
(ii) ∼ α ≡ α ⊃ 0 implies gr({α& ∼ α} |∼ β) = 1.

Notes: 1. 3(ii) gives a sufficient condition for gr({α& ∼ α} |∼ β) = 1. But ∼
needs not to be defined in terms of ⊃ always.

2. gr({α& ∼ α} |∼ β) = 1 does not imply gr({α,∼ α} |∼ β) = 1 and
similarly gr({α&(α ⊃ β)} |∼ β) = 1 does not imply gr({α, (α ⊃ β)} |∼ β) = 1
(see theorem 1(iv)). The converses hold for both the cases.

Proposition4. If (a →o b ) ∧ (b →o c) ≤ (a →o c) then
gr(X |∼ α ⊃ β) ∗m gr(Y |∼ β ⊃ γ) ≤ gr(X ∪ Y |∼ α ⊃ γ).

Proposition5. If a ∧ (a →o b) ≤ b then
gr(X |∼ α) ∗m gr(Y |∼ α ⊃ β) ≤ gr(X ∪ Y |∼ β).

Proposition6. If b ≤ a →o b then gr(|∼ β) ≤ gr(|∼ α ⊃ β).

Results of the second category
Theorem7. If →m ≤ →0 then

(i) gr(X ∪ {α} |∼ β) ≤ gr(X |∼ α ⊃ β). (ii)gr(|∼ α ⊃ α)= 1.
(iii)gr(|∼ β) ≤ gr(|∼ α ⊃ β). (iv) gr(|∼ β ⊃ (α ⊃ β) = 1.
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Results of the third category
Theorem8. If →m ≤ →0 and α ∨ β ≡ ∼ α ⊃ β then

(i)gr(X ∪ {∼ α} |∼ β)≤ gr(X |∼ α ∨ β). (ii)gr(X |∼ α∨ ∼ α)= 1.
Theorem9. If →o ≤ →m and (a →m b) ∗m (a →m c) ≤ a →m (b ∗m c) then

(i)gr(X |∼ α)∗m gr(Y |∼ α ⊃ β)≤ gr(X ∪ Y |∼ β)
(ii) ∼ α ≡ α ⊃ 0 implies gr({α,∼ α} |∼ β) = 1.

Note3 Usually, for ∗m = ∧ , (a →m b) ∗m (a →m c) ≤ a →m (b ∗m c) holds in
Heyting algebra.

Theorem10. If (a →o b) →o (b →o c) ≤ (a →o c)and →m ≤ →0 then

(i) gr(X |∼ α ⊃ β)∗m gr(Y |∼ β ⊃ γ)≤ gr(X ∪ Y |∼ α ⊃ γ)
(ii)∼ α ≡ α ⊃ 0 implies gr(X |∼ α ⊃ β)∗m gr(Y |∼ (∼ β))≤ gr(X∪Y |∼ (∼ α))
(iii) gr(X |∼ α ⊃ β)≤ gr(X ∪ {∼ β} |∼ (∼ α))
(iv)gr(X ∪ {α} |∼ β)≤ gr(X ∪ {∼ β} |∼ (∼ α))

From this general study, a picture of logics with graded notion of consequence can
be assessed. But in some cases, the particular structures, taken for the algebra
of object level as well as meta-level may add some new results. Let us see two
such cases.

(I) Meta-level algebra: A complete pseudo Boolean algebra. Let the primitive
connective of the object language be ⊃. Let ∼, &,∨ be defined by ∼ α ≡ α ⊃ 0,
α&β ≡ ∼(α ⊃∼ β)and α ∨ β ≡ ∼ α ⊃ β. Let the object level algebra be an
Wajsberg algebra (L,→0, 0). Then the following are obtained.

(i)gr(X ∪ {α} |∼ β) ≤ gr(X |∼α ⊃ β).
(ii) gr(|∼α) = 1 for any theorem α of �Lukasiewicz logic.
(iii)gr(|∼ β) ≤ gr(|∼ α ⊃ β).
(iv)gr(X ∪ {α} |∼ γ) ≤ gr(X ∪ {α&β} |∼ γ)
(v)gr(X |∼ α&β) ≤ gr(X |∼ α)
(vi)gr({α&β}|∼ α) = 1 and gr({α&β}|∼ β) = 1
(vii) gr({α, β} |∼ γ)≤ gr({α&β}|∼ γ)
(viii)gr(X |∼ α) ≤ gr(X |∼ α ∨ β)
(ix) gr(X ∪ {α ∨ β} |∼ γ) ≤ gr(X ∪ {α} |∼ γ)
(x) gr({α}|∼ α ∨ β) = 1 and gr({β} |∼ α ∨ β) = 1.
(xi) gr(X |∼ α) = gr(X |∼ (∼∼ α))
(xii) gr(X ∪{∼ α} |∼ β)≤ gr(X |∼ α ∨ β).
(xiii)gr(X |∼ α∨ ∼ α)= 1.

(II) Meta-level algebra: An MV-algebra. Object level algebra: A complete pseudo
Boolean algebra.Then the following are obtained.

(i)gr(|∼ β) ≤ gr(|∼ α ⊃ β)as b ≤ a →o b.
(ii)gr(|∼ α) = 1 for any theorem α of Godel logic.
(iii)gr(X |∼ α)∗m gr(Y |∼ α ⊃ β)≤ gr(X ∪ Y |∼ β)
(iv)gr({α, ∼ α} |∼ β) = 1. (from (iii))
(v)gr(X |∼ α ⊃ β)∗m gr(Y |∼ β ⊃ γ)≤ gr(X ∪ Y |∼ α ⊃ γ)
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(vi)gr(X |∼ α ⊃ β)∗m gr(Y |∼ (∼ β))≤ gr(X ∪ Y |∼ (∼ α))
(vii)gr(X |∼ α ⊃ β)≤ gr(X ∪ {∼ β} |∼ (∼ α))
(viii)gr(X |∼ α ⊃ β)≤ gr(X |∼ (∼ β ⊃ ∼ α)).
(ix)gr(X |∼ α) ≤ gr(X |∼ (∼∼ α))
(x)gr(X ∪ {α} |∼ γ) ≤ gr(X ∪ {α&β} |∼ γ)
(xi) gr(X |∼ α&β) ≤ gr(X |∼ α)
(xii)gr({α&β}|∼ α) = 1 and gr({α&β}|∼ β) = 1
(xiii)gr(X |∼ α) ≤ gr(X |∼ α ∨ β)
(xiv) gr(X ∪ {α ∨ β} |∼ γ) ≤ gr(X ∪ {α} |∼ γ)
(xv) gr({α}|∼ α ∨ β) = 1 and gr({β} |∼ α ∨ β) = 1.

4 Significance of Proof Theoretic Properties

Some remarks on some of the above results may be helpful in understanding
their significance.

Theorem1 contains the counterpart of the following properties of classical
logical consequence �.

X∪{α}�γ
X∪{α&β}�γ ,

X�α&β
X�α ,

X�α&β
X�β

Proposition 5 is a version of the rule Modus Ponens.

X � α, Y � α ⊃ β
X ∪ Y � β

While α & (α ⊃ β)� β, it does not necessarily imply α , (α ⊃ β)� β (Theorem 3,
Note) That is the meta-linguistic conjunction comma (,) and the object language
conjunction & should not be treated alike. This is not so in the classical case.

Theorem 7(i) is the counterpart of deduction theorem.

X ∪ {α} � β
X � α ⊃ β.

Theorem 10 (iii), (iv) are counterparts of

X � α ⊃ β , X ∪ {α} � β respectively.
X ∪ {∼ β} � ∼ α X ∪ {∼ β} � ∼ α.

Thus, some well known logical principles (rules) hold because of certain relations
hold among the operators of the truth-set algebras i.e. the semantics of the
languages at the object and meta-levels. In classical two-valued logic in both the
levels the two-point Boolean algebra {1, 0} is employed. In many-valued logics
the algebraic structure for the object level are varied but the algebra for the
meta-level is again the two-point Boolean algebra. Fuzzy logics in the narrow
[6,7,10]sense differ from the many-valued logics in the use of fuzzy premises and
fuzzy conclusion - these practically mean each wff is tagged with a value from
the truth set. The truth-set algebras are of wide variety but the algebra for the
meta-level is two-valued Boolean. It is in the case of graded consequence that
the meta-level algebra is considered non-Boolean in general.The main difference
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of the theory of graded consequence from other fuzzy logics lies precisely here.
While in fuzzy logics a degree is calculated to the conclusion given degrees to
the premises, in this theory given a set of premises X and a single formula α a
“degree of derivability of α from X” is obtained.

5 An Example

This is an example of applying the principle of graded consequence to a basic
rule of logic like Modus Ponens which can be repeatedly applied to obtain a
derivation in the theory of graded consequence.

Example: Let {p1, p2} be the propositional variables of a language and ∼ and ∨
be two connectives which are computed by ¬a = 1 − a and ‘max′ respectively.
Let ⊃ be defined by pi ⊃ pj ≡∼ pi ∨ pj(i = 1, 2). Let {T1, T2} be a collection
of fuzzy subsets over the set of formulae, generated from the above mentioned
alphabet and defined by

p1 p2 p1 ⊃ p2 p2 ⊃ p1 ∼ p1 ⊃ p2 ∼ p2 ⊃ p2 p1 ⊃ p1 p2 ⊃ p2 p1 ⊃ ∼ p2 p2 ⊃ ∼ p1

T1 .7 .8 .8 .7 .8 .8 .7 .8 .3 .3
T2 .8 .9 .9 .8 .9 .9 .8 .9 .2 .2

We have not considered the formulas ∼ p1 ⊃ ∼ p1, ∼ p2 ⊃ ∼ p2, ∼ p2 ⊃ ∼ p1,
∼ p1 ⊃ ∼ p2 in the above table as they have the same truth values as p1 ⊃ p1,
p2 ⊃ p2, p1 ⊃ p2, p2 ⊃ p1 respectively.

We now calculate the grade of MP taking ([0, 1],∗, →, 0, 1), ), an MV-algebra
as the meta-level algebraic structure where → is defined by

a → b = 1 if a ≤ b
= (1 - a + b) , otherwise.

One can observe that the implications used at the object level and meta-level are
distinct, the first one being that of Kleene-Dienes [9] and the second one that of
�Lukasiewicz [8] Now it can be easily shown that infα,βgr({α , (α ⊃ β)} |∼ β)=
infpi,pj gr({p′i , (p′i ⊃ p′j)} |∼ p′j) , where p′i denotes any one of pi and ∼ pi for i
= 1, 2, .......n.

Hence infα,βgr({α, (α ⊃ β)} |∼ β) = infpi,pj gr({p′i, (pi
′ ⊃ p′j)} |∼ pj ′)=

infpi,pj [infi{(Ti(pi′)∧ Ti(p′i ⊃ p′j)) → Ti(p′j)} = .9.

6 Conclusion

From the standpoint of use, theory of graded consequence may offer various
options that is various logics at the two levels. The following diagram will give
a hint.
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Object Level �Lukasiewicz Godel Product Kleene . . .
Meta Level Godel �Lukasiewicz �Lukasiewicz �Lukasiewicz . . .

The results of section 4 will show which properties of the consequence shall follow
for each choice of pairs of logics or equivalently, algebras. In the processing of
data or available information any of the algebras (or logic) of object level may be
used. After that while making a decision in the sense of inferencing from a set of
premises some other logic (algebra) which is not necessarily classical two-valued
may be used. This is the meta-level activity and depending on the necessities,
the corresponding logics (algebras) may be chosen.
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Abstract. Most of the Rough Sets applications are involved in conditional  
reduct computations. Quick Reduct Algorithm (QRA) for reduct computation  
is most popular since its discovery. The QRA has been modified in this paper 
by sequential redundancy reduction approach. The performance of this new  
improved Quick Reduct (IQRA) is discussed in this paper.  
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1   Introduction 

A good amount of data is getting compiled in experimental, exploratory and interactive 
environments. Data pertaining to several attributes/variables on each object results in 
production of voluminous data. To handle this data effectively and in the light of curse of 
dimensionality [1] a popular technique based on statistical arguments is in the practice 
known as Principle Component Analysis (PCA). The PCA transforms the observable 
space to a hypothetical space (which is a linear combination of observable variables). 
This brings effective dimensional reduction by retaining good amount of information 
whereas suffers from interpretation aspects. With the discovery of Rough Sets by Pawlak 
[2] it is possible to represent the data in lower dimensional subspace of the observable 
space. The advantages of Rough Sets for dimensionality reduction over PCA are given in 
[8,9]. Identification of attributes/variables for inducing the subspace with almost the 
information contained in the data is an interesting and complex activity.  

A minimal collection of set of attributes for meeting the above requirement is 
known as a Reduct which is the subject matter of several researchers. Reduct compu-
tation is one of the important activities in several Rough set based soft computing and 
Machine Learning systems. Reduct computation is relatively simpler whereas mini-
mal length reduct computation is NP hard [3]. Thus getting a minimal length reduct is 
handled by heuristic methods. 

Quick Reduct Algorithm (QRA) proposed in [4] is an efficient algorithm for finding 
reduct. This is widely used in several soft computing implementations using Rough 
Sets [12]. Some improvements to QRA are proposed in [5, 6]. But both accelerated 
Quick Reduct algorithm [6] and Improved Quick Reduct algorithm [5] has more time 
and space complexity than the QRA. QRA is aimed only at redundancy/dominancy 
among attributes but do not consider the redundancy/dominancy associated with the 
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objects. The present study develops theory and algorithm for IQuickReduct (IQRA) 
which is an improvement to QRA in both time and space complexity. 

Section 2 gives the overview of the QuickReduct algorithm. Section 3 discusses 
the limitations of QRA and gives the useful ness of Variable Precision Rough Sets in 
improving QRA. Section 4 gives the IQRA algorithm. Section 5 reports the experi-
mental results and illustrates the advantages of the proposed algorithm and the final 
section is about the conclusions and future work. 

2   QuickReduct Algorithm 

The basic concepts of Rough sets are given in [2]. The notations used for Rough sets 
are described here. DT denotes the decision table comprising of U a set of objects, C 
set of conditional attributes and D set of decision attributes. For a given concept 

X U⊆ , XB denotes lower approximation and XB denotes upper approximation 

with respect to set of attributes CB ⊆ . )(DPOSB  denotes the Positive region of 

B.  For a set R and CR ⊆ , )(DRγ  denote kappa measure which gives dependency 

of D on R.   
For a given dataset several reducts may exist. An important application of Rough 

Sets to Machine Learning is in dimensionality reduction wherein the decision system 
is built with using only a reduct attributes. In such applications finding one reduct 
would be sufficient. One of the popular algorithms to find reduct is Quick Reduct 
algorithm proposed by A. Chouchoulas and Q. Shen [4]. Quick Reduct algorithm is a 
step up approach and the outline of the algorithm is given below. 

Algorithm Quick Reduct(C,D) 
Input: C, the set of all conditional attributes; D, the set of decision attributes. 
Output: R, the attribute reduct, CR ⊆ . 

(1) Φ=R  
(2) do 
(3) T = R 
(4) for each x )( RC −∈  

(5) if )()(}{ DD TxR γγ >U  

(6)  T=RU{x} 
(7)       endfor 
(8)       R=T 

(9)until )()( DD CR γγ =  

(10) return R 

QuickReduct algorithm initially starts with an empty set and includes an attribute in 
an iteration that increases the kappa in a maximum way. As QuickReduct algorithm 
follows a greedy based approach it has been proved in [10] that QuickReduct may not 
yield a reduct all times but a super reduct some times. By super reduct we mean a set 
of attributes which contains a reduct as a subset of it. Still QuickReduct is used 
widely because of fastness with which one can arrive at a set near to a reduct. 

3   Limitations of Quick Reduct Algorithm and Relevance of VPRS 
Heuristic 

The QRA is developed with an assumption that Kappa will be strictly monotonically 
increasing from current iteration to the next.  It suffers when the Kappa is not  
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incremental or zero at any iteration since the algorithms has no directive for the 
choices of an attribute.  The arbiterization of selection of attribute for adding to the R 
leads to (i) Supper reduct and (ii) a reduct with more attributes. A knowledge driven 
approach is needed here to improve the performance of QRA. It is observed that QRA 
suffers in two cases. 

Case IA: The kappa in initial iteration(s) is zero: The problem QRA more often faces 
is in the first iteration if kappa values for all conditional attributes become zero. Here 
QRA needs to take an arbitrary choice i.e. include the first conditional attribute into 
R, and continue to the next iteration and most often resulting in a super reduct. 

Case IB: No increment in kappa in intermediate iterations: The other situation that 
arises while building a reduct by QRA is that the Kappa may not be strictly increasing 
in an intermediate iteration. This situation also leads to arbitrary choice in QRA and 
has the possibility of resulting in giving a super reduct. 

The principles of Variable precision Rough sets (VPRS) developed by Ziarko [11] 
will be handy in these two cases for giving heuristic information for the selection of 
attribute into R. VPRS allows calculation of Kappa with a tolerance β in the range 
from 1 to 0.5. So by gradually reducing  β  and finding the conditional attribute which 
gives kappa gain in both Case IA and IB, a specific selection can be made for inclu-
sion of attribute into R. The following notations are used for VPRS [7] concepts. 

Given X U⊆ and B C⊆ , )(XRB
β denotes β lower approximation and 

)(XRB
β denotes β upper approximation. )(DPOSB

β denote Positive region with  

β precision and )(B Dβγ denote kappa with β precision. 

Case II: Redundancy: While studying the various instances it is noted that QRA is 
ignoring the redundancy prevailing about the objects.  When a concept associated 
with an object happened to be in the POS region of a concept induced by D then that 
object will not contribute/add any more knowledge in further decision making i.e. in 
the rest of the iterations. Thus the set of objects of a POS region are redundant objects 
for futuristic purposes. Adoption of filtering the redundant objects in QRA algorithm 
would significantly influence the time and space complexity of QRA.  

The following Improved Quick Reduct Algorithm (IQRA) has been developed by 
embedding the variable precision concept and also by taking care of the redundant 
object filtering/removal for finding the Reduct as improvements on QRA. 

4   IQuickReduct Algorithm 

Algorithm IQuickReduct: 
Input: Decision table DT =(U,C ∪ D) where U is the set of objects and C is the set of 
conditional attributes and D is the set of decision attributes. 

Output: Set of attributes R preserving the property )()( 11 DD CR γγ = . 
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1. Calculate )(1 DCγ . 

2. Φ=R . 
3. Count=0. 

4. While )()( 11 DD CR γγ ≠ , 

5. do 
6.      AvailableSet= RC −  

7.      β =1, .1.0=ε  

i. T=R 
ii. foreach ,etAvailableSq ∈  

iii.  do 

iv. if ),()(}{ DpDp TqR
ββ γγ >∪  

v.   T= }{qR ∪  

vi.  endfor 
8.     if ,RT =   /* No kappagain*/

9.         εββ −=  

10.           if ,5.0≥β  

 

11.      goto 7i  
12.          else 
13.                  R=R ∪ {First attribute 

in AvailableSet} 
14.     else   /*for if in step 8*/ 
15.            R=T 
16.       Set POSPARTIAL to 

)(1 DPOSR for DT                 

/*For removal of redundant ob-
jects calculate Positive region 
with tolerance of 1*/ 

17. Reduce DT by removing the ob-
jects belonging to POSPARTIAL. 

18. Count=Count+ POSPARTIAL 

19.        UCountDR ÷=)(1γ   

20.   endwhile 
21.   Return R 

 

Note: In the above algorithm )(DpR
βγ is used to denote kappa value when calculated 

for reduced decision table and )(1 DRγ is used for denoting kappa value for original 

decision table. 
The working of IQRA is similar to QRA with necessary modifications to overcome 

the limitations of QRA such as arbiterization of choice when maximum kappa is zero 
or no kapa gain and redundancy involved in calculation of kappa as discussed in the 
previous section. IQRA starts with R initialized to empty set and AvailableSet set to C. 
At the beginning of the ith iteration β is set to 1. A step as is in QRA is performed to get 
the attribute SetAvalilablex ∈  which results in maximum positive value of 

)(1
}{ DxRUγρ  . In case such ‘x’ is available it is included in R. If there is no ‘x’ which 

increases the current kappa indicates the situation where an arbitrary choice needs to be 
made in QRA. Here IQRA incorporates the VPRS heuristic. In such situation the step 
‘7i’ is repeated with reduced β until an ‘x’ is found or β cannot be reduced. In later 
case, which would be a rare occurrence, we take an arbitrary decision to include the 
first available attribute in R. Otherwise the attribute ‘x’ which is resulting in maximum 

)(}{ DxRU
βγρ is included in R. After x is included in R the set of objects belonging to 

Positive region with tolerance of ‘1’ are calculated. VPRS heuristic is used only for 
selecting an attribute to get included in R and the positive region obtained with toler-
ance<1, is not used for the reduction of the Decision Table. After x is included in R the 
set of objects belonging to Positive region with tolerance of ‘1’ only is calculated. 
These set of objects are redundant for the next iterations. The rows corresponding to 
these objects are removed from DT before continuing for the next iteration. 
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U

POSPOSPARTIAL
D i

R
11 )( −+

=γ  (1)

If we denote the kappa value obtained in the reduced table as )(}{ DxRU
βγρ then we 

need to calculate the kappa value for the original Decision table after the updating of 
R with ‘x’. The formula in equation (1) (which can be supported by theory) is used in 
designing this algorithm.  In the above equation (1) POSi-1 denotes the Positive region 
obtained for the original decision table till i-1 iterations and POSPARTIAL is Positive 
region of reduced Decision table at ith iteration. In the algorithm Count variable de-
notes the cardinality of Positive region for the original decision table. At the end of 
the iteration Count is updated by adding the cardinality of POSPARTIAL and then 

used for the calculation of )(1 DRγ .  The theoretical analysis of the IQRA algorithm, 

the validity and the influence of reduction of the decision table by removal of Positive 
region on the solution as well as the time and space complexities are not included in 
the current work  here due to space constraint.  

5   Experiments and Results 

Both QuickReduct and IQuickReduct algorithms are implemented in Matlab [13] and 
are tested against standard discrete data sets available in UCI Machine learning  
 

Table 1. Results of the Experiments for QRA and IQRA  

Result 
 

Time taken  
(in Seconds) Dataset 

Name 

Number 
of  

Conditional 
attributes QRA IQRA QRA IQRA 

Time 
Gain 

in 
IQR

A 

Nature 
of the 
results 

Credit 20 C1 C1 151.84 23.97 84.21 * 
Australia 14 A1 A1 71.21 4.57 93.6 * 

Heart 13 H1 H1 9.21 2.22 75.9 * 
WDBC 9 WD WD 6.01 2.06 66.6 * 
Webtest 
(Website 
classifica-
tion data) 

2556 W1 W1 5902.9 230.48 96.09 * 

Mofn 
dataset 

13 
[1 2 
3 7 5 
9 11] 

[7 9 1 
3 5 
11] 

9.66 5.75 40.5 ** 

A1: [14 13 5 8 2 6 1];    C1: [1 4 13 5 7 12 9 16];  H1: [11 13 5 1 4 3 6];  WD: [2 6 1 7]; 
W1: [1025 1288 2484 1953 2487 2146 2211 865 1623 749 1222 725 347 443 465 595
631 398 520 197 624 238 36 175 21 86 292 702 1] 

* Reduct in both 
** Reduct in IQRA and Super Reduct in QRA 
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repository [14] and in particular Web test dataset and Mofn dataset are taken from the 
website of Richard Jensen[15]. In IQRA algorithm ε is set to 0.1. The following Table 
1 gives the detailed summary of the results obtained through the experiments. 

6   Conclusions and Future Work 

For all the datasets there are significant gains in time complexity for IQuickReduct 
algorithm over QuickReduct algorithm. Two significant advantages of IQRA over 
QRA are given below. 

1. Reduction in Time Complexity: This is seen in all the datasets and more 
significantly in large datasets. For example the webtest dataset is of the size (149 x 
2557). Time taken for finding the reduct using IQuickReduct algorithm is 230.48 
seconds where as for QuickReduct it turned out to be 5902.9 seconds. The time 
gain in IQRA is 96.09. The reduct found in both cases came out to be same. The 
Figure 1 gives below figure gives the estimate of the size of the space (No. of 
objects x No of attributes) involved in calculation of kappas in the iterations of 
QRA and IQRA for webtest dataset. Figure 2 illustrates the time involved in each 
iteration for QRA and IQRA. The large reduction in time is due to the fact that 
kappa values are calculated for modified DT in all iterations. 
2.  Ability to find a better attribute set: As long as all the kappa gain in any 
iteration is not zero then the results in IQRA and QRA are same except for time 
gain in IQRA over QRA. In case the kappa gain is zero in any iteration for all 
alternatives the IQRA will search for the best candidate to be included in Minimal 
set using an iterative procedure using VPRS heuristic. In many experiments it is 
found that this happens most of the time in first iteration itself. For example for the 
data set Mofn, in the first iteration kappas are zero for all the conditional attributes. 
The QRA without any heuristics will include the first attribute in the Minimal set 
and continue with the remaining iterations. Hence the minimal set found in this 
algorithm turned out to be [1 2 3 7 5 9 11] of size 7. IQRA using VPRS heuristic 
selects 7 as the attribute to be included in R and in turned out that  the minimal set 
is [7 9 1 3 5 11] of size 6. Figure 3 illustrates the use of VPRS heuristic in Mofn 
dataset by giving the kappa values obtained by completing iteration for both QRA 
and IQRA. In the first iteration for both QRA and IQRA kappa is zero. But 
because of the choice taken in IQRA there is a positive kappa occurring by third 
iteration in IQRA. But QRA needed to complete four iterations to get a positive 
kappa. This helped in IQRA in reaching the required kappa of ‘1’ by 6 iterations 
and QRA needed to take 7 iterations. Even though extra calculations are incurred 
for VPRS heuristic calculations in IQRA, the reduction in data set size in iterations 
compensates that and there is a significant time gain of 40.5% in IQRA compared 
to QRA. Using RSES [16] tool on Mofn dataset we calculated the reducts for Mofn 
and Mofn data set has only a single reduct [1 3 5 7 9 11], which is obtained by 
IQuickReduct algorithm. As the result of QRA is a super set of IQRA result, the 
set obtained in QRA is a super reduct.  

It is proposed to adopt apt heuristics for the ambiguity in the selection of the attribute 
which may be persistent in IQRA even reaching the lower limit of β = 0.5.  
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Fig. 1. Plot of Iteration 
Number vs. Size of the 
data used to calculate a 
Kappa Value in QRA and 
IQRA algorithms in 
webtest dataset 

Fig. 2. Time taken in sec-
onds for iteration in QRA 
and IQRA algorithms in 
webtest dataset 

Fig. 3. Kappa obtained by 
iteration in QRA and IQRA in 
Mofn dataset 
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Abstract. In this paper, we deal with the problem of attribute selec-
tion from a sample of partially uncertain data. The uncertainty exists in
decision attributes and is represented by the Transferable Belief Model
(TBM), one interpretation of the belief function theory. To solve this
problem, we propose dynamic reduct for attribute selection to extract
more relevant and stable features for classification. The reduction of the
uncertain decision table using this approach yields simplified and more
significant belief decision rules for unseen objects.

Keywords: Rough sets, belief function theory, uncertainty, dynamic
reduct.

1 Introduction

Feature selection is an important pre-processing stage in machine learning.
Rough set theory provides an attractive mechanism for feature selection [5,6,8].
The simplest approach is based on the calculation of reduct. Another issue in
real world applications is the uncertain, imprecise or incomplete data. Many
researches have adapted rough sets to such an uncertain environment. These
extensions do not deal with partially uncertain decision attribute values. In this
paper, we deal with the problem of attribute selection from partially uncertain
data based on rough sets. The uncertainty exists in decision attributes and is
represented by the Transferable Belief Model (TBM), one interpretation of the
belief function theory. However, computing reducts from uncertain and noisy
data make the results unstable, and sensitive to the sample data. All of these
limit the application of rough set theory. Dynamic reducts [1] can lead to better
performance in very large datasets, and also provide the ability to accommodate
noisy data. The rules calculated by means of dynamic reducts are better pre-
disposed to classify unseen cases, because these reducts are in some sense the
most stable reducts, and they appear most frequently in sub-decision systems
created by random samples of a given decision system. This paper is organized
as follows: Section 2 provides an overview of the rough set theory. Section 3
introduces the belief function theory as understood in the TBM. In Section 4,
we propose a new approach to feature selection based on dynamic reducts from
partially uncertain data.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 160–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Rough Sets

The idea of rough sets was introduced by Pawlak [6] to deal with imprecise and
vague concepts. Here, we introduce only the basic notations. A decision table is
an information system of the form A = (U, C ∪ {d}), where d /∈ C is a distin-
guished attribute called decision. The value set of d is called Θ ={d1, d2, ...ds}.
In this paper, the notation ci(oj) is used to represent the value of a condition
attribute ci ∈ C for an object oj ∈ U . Similarly, the notation d(oj) represents
the value of the decision attribute d for an object oj . The rough sets adopt the
concept of indiscernibility relation [6] to partition the object set U into disjoint
subsets, denoted by U/B or INDB. The partition that includes oj is denoted
[oj ]B.

INDB = U/B = {[oj ]B|oj ∈ U} (1)

Where
[oj ]B = {oi|∀c ∈ B c(oi) = c(oj)} (2)

The equivalence classes based on the decision attribute are denoted by U/{d}.

IND{d} = U/{d} = {[oj ]{d}|oj ∈ U} (3)

Let B ⊆ C and X ⊆ U . We can approximate X using only the information
contained in B by constructing the B − lower and B − upper approximations
of X , denoted B

¯
(X) and B̄(X), respectively, where

B
¯
(X) = {oj |[oj ]B ⊆ X} and B̄(X) = {oj |[oj ]B ∩ X �= ∅} (4)

The objects in B
¯
(X) can be classified with certainty as members of X on the basis

of knowledge in B, while the objects in B̄(X) can be only classified as possible
members of X on the basis of knowledge in B. PosC({d}), called a positive
region of the partition U/{d} with respect to C, is the set of all elements of U
that can be uniquely classified to blocks of the partition U/{d}.

PosC({d}) =
⋃

X∈U/{d}
C
¯
(X) (5)

A reduct is a minimal subset of attributes from C that preserves the positive
region and the ability to perform classifications as the entire attributes set C. A
subset B ⊆ C is a reduct of C with respect to d, iff B is minimal and:

PosB({d}) = PosC({d}) (6)

The core is the most important subset of attributes, it is included in every reduct.

Core(A, d) =
⋂

RED(A, d) (7)

Where RED(A, d) is the set of all reducts of A relative to d.
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If A = (U, C ∪ {d}) is a decision table, then any system B = (U ′, C ∪ {d})
such that U ′ ⊆ U is called a subtable of A. Let F be a family of subtables of
A [1].

DR(A, F ) = RED(A, d) ∩
⋂

B∈F

RED(B, d) (8)

Any element of DR(A, F ) is called an F -dynamic reduct of A. From the def-
inition of dynamic reducts, it follows that a relative reduct of A is dynamic if
it is also a reduct of all subtables from a given family F. This notation can be
sometimes too restrictive so we apply a more general notion of dynamic reduct.
They are called (F, ε)-dynamic reducts, where 1 ≥ ε ≥ 0. The set DRε(A, F )
of all (F, ε)-dynamic reducts is defined by

DRε(A, F ) =
{

R ∈ RED(A, d) :
|{B ∈ F : R ∈ RED(B, d)}|

|F | ≥ 1 − ε

}
(9)

3 Belief Function Theory

In this section, we briefly review the main concepts underlying the belief function
theory as interpreted in the Transferable Belief Model (TBM) [9,10]. Let Θ
be a finite set of elementary events to a given problem, called the frame of
discernment. All the subsets of Θ belong to the power set of Θ, denoted by 2Θ.
The impact of a piece of evidence on the subsets of the frame of discernment
Θ is represented by a basic belief assignment (bba). The bba is a function m :
2Θ → [0, 1] such that: ∑

E⊆Θ

m(E) = 1 (10)

The value m(E), called a basic belief mass (bbm), represents the portion of
belief committed exactly to the event E. The bba’s induced from distinct pieces
of evidence are combined by the rule of combination [11].

(m1 ∩©m2)(E) =
∑

F,G⊆Θ:F∩G=E

m1(F ) × m2(G) (11)

In the TBM, beliefs to make decisions can be represented by probability functions
called the pignistic probabilities denoted BetP and are defined as [10]:

BetP ({a}) =
∑
F⊆Θ

| {a} ∩ F |
| F |

m(F )
(1 − m(∅)) , for all a ∈ Θ (12)

4 Dynamic Reduct under Uncertainty

Our decision system is characterized by high level of uncertain and noisy data.
One of the issues with such a data is that the resulting reducts are not stable, and
are sensitive to sampling. The belief decision rules generated are not suitable for
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classification. The solution to this problem is to redefine the concept of dynamic
reduct in the new context as we have done in this paper. The rules calculated
by means of dynamic reducts are better predisposed to classify unseen objects,
because they are the most frequently appearing reducts in sub-decision systems
created by random samples of a given decision system. In this section, we will
adapt the basic concepts of rough sets such as decision system, indiscernibility
relation, set approximation and positive region in order to redefine the concept
of dynamic reduct in the uncertain context. The objective is to extract more
stable reducts from the uncertain decision system.

4.1 Basic Concepts of Rough Sets under Uncertainty

Uncertain Decision System. Our uncertain decision system is given by A =
(U, C ∪ {ud}), where U = {oj : 1 ≤ j ≤ n} is characterized by a set of certain
condition attributes C={c1, c2,...,ck}, and an uncertain decision attribute ud.
We represent the uncertainty of each object oj by a bba mj expressing beliefs on
decisions defined on the frame of discernment Θ={ud1, ud2,...,uds} representing
the possible values of ud. These bba’s are given by an expert.

Example. Let us use Table 1 to describe our uncertain decision system. It con-
tains eight objects, three certain condition attributes C={a, b, c} and an uncertain
decision attribute ud = e with two possible values {e1, e2} representing Θ.

Table 1. Uncertain decision table

U a b c e
o1 0 0 0 m1({e1}) = 0.95 m1({e2}) = 0.05
o2 0 1 1 m2({e2}) = 1
o3 0 0 2 m3({e1}) = 0.5 m3(Θ) = 0.5
o4 1 0 2 m4({e2}) = 0.6 m4(Θ) = 0.4
o5 1 0 2 m5({e2}) = 1
o6 0 1 1 m6({e2}) = 0.9 m6({Θ}) = 0.1
o7 1 0 0 m7({e1}) = 1
o8 1 0 1 m8({e1}) = 0.9 m8({Θ}) = 0.1

For the object o3, 0.5 of beliefs are exactly committed to the decision e1,
whereas 0.5 of beliefs is assigned to the whole of frame of discernment Θ (ig-
norance). With bba, we can represent the certain case, like for the objects o2,
o5 and o7. Besides, we can represent probability case, like the bba relative to
the object o1 and possiblitic case like the consonant bba relative to the object
o3. The decision rules induced from the partially uncertain decision system are
denoted belief decision rules where the decision is represented by a bba: If a=0
and b=0 and c=2 Then m3({e1}) = 0.5 m3(Θ) = 0.5.

Indiscernibility Relation. For the condition attributes, the indiscernibility
relation U/C is the same as in the certain case because their values are certain.
However, the indiscernibility relation for the decision attribute U/{ud} is not the
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same as in the certain case. The decision value is represented by a bba. So, we
need to assign each object to the right equivalence class. The idea is to use the
distance between two bba’s. Many distance measures between two bba’s were
developed [2,3,4]. We will choose the distance measure described in [2] which
satisfies properties such as non-negativity, non-degeneracy and symmetry.

For every udi, an uncertain decision value, we define:

Xi = {oj|dist(m(udi) = 1, mj) �= 1} (13)

IND{ud} = U/{ud} = {Xi|udi ∈ Θ} (14)

Where dist is a distance measure between two bba’s.

dist(m1, m2) =

√
1
2
(‖ m→

1 ‖2 + ‖ m→
2 ‖2 −2 < m→

1 , m→
2 >) (15)

Where < m→
1 , m→

2 > is the scalar product defined by:

< m→
1 , m→

2 >=
|2Θ|∑
i=1

|2N |∑
j=1

m1(Ai)m2(Aj)
|Ai ∩ Aj |
|Ai ∪ Aj | (16)

with Ai, Aj ∈ 2Θ for i, j = 1, 2, · · · , |2Θ|. ‖ m→
1 ‖2 is then the square norm of

m→
1 .

Example. Let us continue with the same example to compute the equivalence
classes based on condition attributes in the same manner as in the certain case:
U/C= {{o1}, {o2, o6}, {o3}, {o4, o5}, {o7}, {o8}} and to compute the equivalence
classes based on uncertain decision attribute U/{ud} as follows:

For the uncertain decision value ud1 = e1,

dist(m(e1) = 1, m1) �= 1
dist(m(e1) = 1, m2) = 1
dist(m(e1) = 1, m3) �= 1
dist(m(e1) = 1, m4) �= 1
dist(m(e1) = 1, m5) �= 1
dist(m(e1) = 1, m6) �= 1
dist(m(e1) = 1, m7) �= 1
dist(m(e1) = 1, m8) �= 1.

So, X1 ={o1, o3, o4, o5, o6, o7, o8}.
For the uncertain decision value ud2 = e2,

dist(m(e2) = 1, m1) �= 1
dist(m(e2) = 1, m2) �= 1
dist(m(e2) = 1, m3) �= 1
dist(m(e2) = 1, m4) �= 1
dist(m(e2) = 1, m5) �= 1
dist(m(e2) = 1, m6) �= 1
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dist(m(e2) = 1, m7) = 1
dist(m(e2) = 1, m8) �= 1.

So, X2 ={o1, o2, o3, o4, o5, o6, o8}.
U/{ud}={{o1, o3, o4, o5, o6, o7, o8}, {o1, o2, o3, o4, o5, o6, o8}}.

Set Approximation. To compute the new lower and upper approximations
for our uncertain decision table, we follow two steps:
1. For each equivalence class from U/C based on condition attributes C, com-

bine their bba using the operator mean. The operator mean is more suitable
in our case to combine these bba’s than the rule of combination in eq. 11
which is proposed especially to combine different beliefs on decision for one
object and not different beliefs for different objects.

2. For each equivalence class Xi from U/{ud} based on uncertain decision at-
tribute udi, we compute the new lower and upper approximations, as follows:

C
¯
Xi = {oj |[oj ]C ∩ Xi �= ∅ and dist(m(udi) = 1, m[oj]C ) ≤ threshold} (17)

In the lower approximation, we find all equivalence classes (subsets) from
U/C included in Xi such that the distance between the combined bba m[oj]C
and the certain bba m(udi) = 1 is less than a threshold. (In an uncertain
context, the threshold is needed to give more flexibility to the set approx-
imations). We compute the upper approximation in the same manner as in
the certain case.

C̄Xi = {oj |[oj ]C ∩ Xi �= ∅} (18)

Example. We continue with the same example to compute the new lower and
upper approximations. After the first step, we obtain the combined bba for
each equivalence class from U/C using operator mean. Table 2 represents the
combined bba for the equivalence classes {o2, o6} and {o4, o5}.

Table 2. The combined bba for the subsets {o2, o6} and {o4, o5}

Object m({e1}) m({e2}) m(Θ)
o2 0 1 0
o6 0 0.9 0.1

m2,6 0 0.95 0.05
o4 0 0.4 0.6
o5 0 1 0

m4,5 0 0.7 0.3

Next, we compute the lower and upper approximations for each equivalence
class U/{ud}. We will use threshold = 0.1.

For the uncertain decision value ud1=e1, let X1 ={o1, o3, o4, o5, o6, o7, o8}.
The subsets {o1}, {o3}, {o4, o5}, {o7} and {o8} are included in X1. We should
check the distance between their bba and the certain bba m(e1) = 1.

dist(m(e1) = 1, m1) < 0.1
dist(m(e1) = 1, m3) > 0.1
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dist(m(e1) = 1, m4,5) > 0.1
dist(m(e1) = 1, m7) < 0.1
dist(m(e1) = 1, m8) < 0.1
C
¯
X1={o1, o7, o8} and C̄X1={o1, o3, o4, o5, o7, o8}
For uncertain decision value ud2=e2, let X2 ={o1, o2, o3, o4, o5, o6, o8}.

C
¯
X2={o2, o6} and C̄X2={o2, o3, o4, o5, o6}

Positive Region. With the new lower approximation, we can redefine the
positive region:

UPosC({ud}) =
⋃

Xi∈U/{ud}
C
¯
Xi (19)

Example: Let us continue with the same example, to compute the positive
region of A. UPosC({ud})={o1, o2, o6, o7, o8}

Reduct and Core. Using the new formalism of positive region, we can redefine
the reduct of A as a minimal set of attributes B ⊆ C such that:

UPosB({ud}) = UPosC({ud}) (20)

UCore(A, ud) =
⋂

URED(A, ud) (21)

Where URED(A, ud) is the set of all reducts of A relative to ud.

Example. Using our example, we find that UPos{a,c}({ud})= UPos{b,c}({ud})
= UPosC({ud}). So, we have two possible reducts {a,c} and {b,c}. The attribute
c is the relative core.

4.2 Dynamic Reduct from Uncertain Data

Using the new definition of reduct in our uncertain context, we can redefine the
concept of dynamic reduct as follows:

UDR(A, F ) = URED(A, ud) ∩
⋂

B∈F

URED(B, ud) (22)

Where F be a family of subtables of A. This notation can be sometimes too
restrictive so we apply a more general notion of dynamic reduct. They are called
(F, ε)-dynamic reducts, where 1 ≥ ε ≥ 0. The set UDRε(A, F ) of all (F, ε)-
dynamic reducts is defined by:

UDRε(A, F )=
{

R ∈ URED(A, ud) :
|{B ∈ F : R ∈ RED(B, ud)}|

|F | ≥ 1 − ε

}
(23)

Example. To compute the dynamic reduct of the uncertain decision system A.
We divide our uncertain decision system into two subtables B and B′ to obtain
a family F of sub-decision system. B contains the objects o1, o2, o3, o4 and B′

contains the objects o5, o6, o7, o8. The two subtables have the same reducts
as the whole decision system A. So, the subsets {a,c} and {b,c} are dynamic
reducts relative to the chosen family F .
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5 Conclusion and Future Work

In this paper, we have adapted the basic concepts of rough sets such as decision
system, indiscernibility relation, set approximation and reduct in an uncertain
context. We handle uncertainty in decision attributes using the belief function
theory. We further propose dynamic reduct to address the problem of unstable
reducts in uncertain decision systems. As a future work, we will experiment with
many uncertain databases to evaluate the proposed feature selection based on
dynamic reducts.
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Abstract. We discuss the notion of risk in generally understood clas-
sification support systems. We consider the situation when granularity
is involved in information system we work with. We propose a method
for approximating the loss function and introduce a technique for assess-
ing the empirical risk from experimental data. We discuss the general
methodology and possible directions of development in the area of con-
structing compound classification schemes.

1 Introduction

While constructing a decision support (classification) system for research pur-
poses we usually rely on commonly used, convenient quality measures, such as
success ratio (accuracy) on test set, coverage (support) and versatility of the
classifier. While sufficient for the purposes of analysing classification methods
in terms of their technical abilities, these measures sometimes fail to fit into a
bigger picture.

In practical applications the classifier is usually just an element in a larger
system. The decision whether to construct and then use such system is taken by
the user on the of his/her assessment of the risk involved in making the decision.

The overall topics of risk assessment, risk management and decision making in
presence of risk constitute a separate field of science. Numerous approaches have
been developed so far in many areas of life, and vast literature dedicated to these
issues exist (see [1], [2]). In this article we restrict ourselves to a much narrower
topic of calculating (assessing) the risk associated with the use of classifier in a
decision-making process.

We focus on one commonly used method for calculating a risk of (using) a
classifier, which is known from the basics of statistical learning theory [3]. In this
approach the risk is measured as a summarised expectation for creating a loss
due to classifier error. It is quite common to make assessment of the involved
risk by hypothesising the situations in which the gain/loss can be generated in
our system, and then weighting them by the likelihood of their occurrence.
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We investigate the possibilities for approximating the risk in the situation
when the standard numerical, statistical learning methods cannot be applied to
full extent. The real life data is not always possible to be verified as represen-
tative, large enough or sufficiently compliant with assumptions of underlying
analytical model. Also, the information we posses about the amount of loss and
its probabilistic distribution may be expressed in granular rather than crisp,
numerical way.

The idea of granular systems and granular computing builds on general ob-
servation, that in many real-life situations we are unable to precisely discern be-
tween similar objects. Our perception of such universe is granular, which means,
that we are only able to observe groups of objects with limited resolution.

The existence of granularity and the necessity of dealing with it has led to
formation of the granular computing paradigm and research on granule-based
information systems (cf. [4]). The original ideas of Lotfi Zadeh (cf. [5]) has grown
over time. Currently the granular computing and the notion of granularity are
becoming a unifying methodologies for many branches of soft computing. Several
paradigms related to rough and fuzzy sets, interval analysis, shadowed sets as
well as probabilistic reasoning can be represented within granular framework, as
exemplified by the contents of the handbook [4].

In the paper put forward some ideas regarding the approximate construc-
tion of two crucial components in measuring risk, i.e., the loss function and
the summarisation method needed to estimate overall risk from the empirical,
sample-dependant one. Our focus is on systems that support classification and
decision making in the presence of vagueness, imprecision and incompleteness of
information. In this paper we only address a small portion of such systems and
the granules we are using are of rather basic type. We mostly address the case
when a granule corresponds to an abstraction (indescernibility) class or a simple
fuzzy set, without caring of its internal structure.

The paper starts with more formal introduction of risk functional, as known
from statistical learning theory. Then, we discuss the possible sources of problems
with such risk definition and suggest some directions, in particular an outline
for a loss function approximation method. We also extend the discussion to the
issue of finding the proper summarisation procedure for measuring the value of
empirical risk functional. We introduce a sketch for the methods of risk calcu-
lation in case of granular systems defined using rough and fuzzy sets, which by
no means represent the whole spectrum of granular systems. We conclude by
pointing out several possible directions for further investigation.

2 Risk in Statistical Learning Theory

In the classical statistical learning approach, represented by seminal works of
Vapnik [3,6], the risk associated with a classification method (classifier) α is
defined as a functional (integral) of the loss function Lα calculated over an
entire space with respect to probability distribution.
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Formally, let X∞ be the complete (hypothetical) universe of objects and X ⊂
X∞ - a finite sample.1 In this analytical model we assume that probability
distribution P is defined for entire σ-field of measurable subsets of X∞.

Definition 1. The risk value for a classifier α is defined as:

R(α) =
∫

X∞
LαdP

where Lα = L(x, fα(x)) is the real-valued loss function defined for every point
x ∈ X∞ where the classifier α returns the value fα(x).

The classical definition of risk, as presented above, is heavily dependent on assump-
tions regarding the underlying analytical model of the space of discourse. While
over the years several methods have been developed within the area of statistical
learning in pursuit of practical means for calculating risk, there are still some im-
portant shortcomings in this approach. In particular, one has to deal with sensi-
tivity to scarceness of the data sample, incomplete definition of loss function, and
incomplete knowledge of the distribution. Even with large data sample X we may
not be certain about its representativeness. The advantage of this model is that,
thanks to solidmathematicalgrounding, it is possible toprovideanswerswithprov-
able quality, as long as we can assure sufficient compliance with assumptions.

In practice, the empirical risk is usually measured as an average of loss function
on finite sample. For a labelled sample z = {x1, . . . , xl} of length l

Remp(α) =
∑l

i=1 L(xi, fα(xi))
l

.

It is visible, that the ability to calculate value of loss Lα, i.e., to compare the
answer of classifier with the desired one is a key element in risk calculation.

3 Approximation of Loss Function and Its Integral

The formal postulates regarding the loss function may be hard to meet, or even
verify in practical situations. Nevertheless, we would like to be able to asses the
loss. In this section we suggest a method for approximating the loss function
from the available, finite sample.

First, we will attempt to deal with the situation when the value of loss function
Lα for a classifier α is given as a set of positive real values defined for data points
from a finite sample z. Let z ∈ (X∞)l be a sample consisting of l data points, by
R+ we denote the set of non-negative reals (including 0). A function L̂α : z �→ R+
is called a sample of loss function Lα : X∞ �→ R+ if Lα is an extension of L̂α.
For any Z ⊆ X∞ × R+ we introduce two projection sets:

π1(Z) = {x ∈ X∞ : ∃y ∈ R+ (x, y) ∈ Z},
π2(Z) = {y ∈ R+ : ∃x ∈ X∞ (x, y) ∈ Z}.

1 Please, note that the hypothetical universe X∞ shall not be confused with the de-
notation for the set of infinite sequences from the set X, that can be found in some
mathematical textbooks.



Approximation of Loss and Risk in Selected Granular Systems 171

3.1 The Rough Set Case

We assume that we are also given a family C of neighbourhoods (granules),
i.e, non-empty, measurable subsets of X∞ × R+. These neighbourhoods shall
be defined for a particular application. In this section we will identify these
neighbourhoods with granules defined as indiscernibility classes.

Under the assumptions presented above the lower approximation of L̂α rela-
tive to C is defined by

CL̂α =
⋃

{c ∈ C : L̂α(π1(c) ∩ z) ⊆ π2(c)}. (1)

Note, that the definition of lower approximation given by (1) is different from
the traditional one, known from rough set theory [7,8]. Also, the sample z in
definition of approximations (formulæ (1),(2), and (3)) is treated as a set of its
elements, i.e., a subset of (X∞)l.

One can define the upper approximation of L̂α relative to C by

CL̂α =
⋃

{c ∈ C : L̂α(π1(c) ∩ z) ∩ π2(c) �= ∅}. (2)

For the moment we have defined the approximation of loss function as a pair of
sets created from the elements of neighbourhood family C. From this approxi-
mation we would like to obtain an estimation of risk. For that purpose we need
to define summarisation (integration) method analogous to Def. 1. We define
an integration functional based on the idea of probabilistic version of Lebesgue-
Stieltjes integral [3,9].

In order to define our integral we need to make some additional assumptions.
For the universe X∞ we assume that m is a measure on a Borel σ-field of
subsets of X∞ and that m(X∞) < ∞. By m0 we denote a measure on a σ-field
of subsets of R+. We will also assume that C is a family of non-empty subsets
of X∞ ×R+ that are measurable relative to the product measure m̄ = m×m0.
Finally, we assume that the value of loss function is bounded by some positive
real B. Please, note that none of the above assumptions is unrealistic, and that
in practical applications we are dealing with finite universes.

For the upper bound B we split the range [0, B] ⊂ R+ into n > 0 intervals
of equal length I1, . . . , In, where Ii = [ (i−1)B

n , iB
n ]. This is a simplification of the

most general definition, where the intervals do not have to be equal. For every
interval Ii we consider the sub-family Ci ⊂ C of neighbourhoods such that:

Ci =
{

c ∈ C : ∀x ∈ (z ∩ π1(c)) L̂α(x) >
(i − 1)B

n

}
. (3)

With the previous notation the estimate for empirical risk is given by:

Remp(α) =
n∑

i=1

B

n
m

(⋃
c∈Ci

π1(c)

)
(4)

In theoretical setting for the formula (4) above we shall derive its limit as n → ∞,
but in practical situation the parameter n does not have to go to infinity. It is
sufficient to find n such that for every pair of points x1 �= x2 taken from sample z
if L̂α(x1) < L̂α(x2) then for some integer i ≤ n we have L̂α(x1) < iB

m < L̂α(x2).
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3.2 The Fuzzy Set Case

If we consider another type of neighbourhoods, one defined with use of fuzzy
sets, we will find ourselves in slightly different position. In fact, we may use
fuzzy granules (neighbourhoods) in two ways:

1. We can define the family of neighbourhoods C as a family of fuzzy sets in
X∞ ×R+. This approach leads to more general idea of function approxima-
tion in fuzzy granular environment.

2. We restrict fuzziness to the domain of the loss function, i.e., X∞. The values
of Lα(.) remain crisp. That means that we have real-valued loss function that
has a set of fuzzy membership values associated with each argument.

While the former case is more general and could lead to nicer, more universal
definitions of approximation (see, e.g., [10]), it is at the same time less intuitive
if we want to discuss risk measures. For that reason we restrict ourselves to the
latter case. The family of neighbourhoods C is now defined in such a way that
each c ∈ C is a product of fuzzy set in X∞ and a subset of R+. The family C
directly corresponds to family of fuzzy membership functions (fuzzy sets) Cµ.
Each c ∈ C is associated with a fuzzy membership function µc : X∞ �→ [0, 1]
corresponding to the fuzzy projection of c onto X∞. Please note that at the
moment we assume nothing about the intersections of elements of C but, we
assume that the family C is finite.

Again, we start with a finite sample of points in the graph of loss function L̂α :
z �→ R+ for data points from a finite sample z. We will attempt to approximate
Lα by extending its finite sample L̂α. For c ∈ C we now introduce parameterised
projections. For 0 ≤ λ < 1, we have:

π1(c, λ) = {x ∈ X∞ : ∃y ∈ R+ ((x, y) ∈ c ∧ µc(x) > λ)},
π2(c, λ) = {y ∈ R+ : ∃x ∈ X∞ ((x, y) ∈ c ∧ µc(x) > λ)}.

The parameter λ is used to establish a cut-off value for membership. The inten-
tion behind introduction of this parameter is that in some circumstances we may
want to consider only those neigbourhoods which have sufficient level of confi-
dence (sufficiently high membership). In terms of risk approximation, we would
like to consider only these situations for which the argument of loss function
is sufficiently certain. Naturally, we can make projections maximally general by
putting λ = 0. The result of using projection π1(c, λ) is similar to taking an
alpha-cut known from general fuzzy set theory (see [11]).

With previous notation and under previous assumptions we now introduce an
approximation of L̂α w.r.t. the family of neigbourhoods C and a threshold λ.

CλL̂α =
⋃

{c ∈ C : L̂α(π1(c, λ) ∩ z) ⊆ π2(c, λ)} (5)

It is important to notice, that while projections π1(c, λ) and π2(c, λ) are classical
(crisp) sets, the resulting approximation CλL̂α is of the same type as the original
sample, i.e., it is a union of neigbourhoods (granules) which are products of fuzzy
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set in X∞ and a subset of R+. Please also note that the union operator used in
(5) is working dimension-wise, and that the resulting set CλL̂α does not have to
be a granule (neighbourhood), as we do not assume that this union operator is
a granule aggregation (fusion) operator.

With all the previously introduced notation, the empirical risk functional is
introduced by first defining the building blocks (strata, neighbourhoods) as:

Cλ
i =

{
c ∈ C : ∀x ∈ (z ∩ π1(c, λ)) L̂α(x) >

(i − 1)B
n

}
. (6)

That leads to the estimate for empirical risk functional:

Rλ
emp(α) =

n∑
i=1

B

n
m

⎛⎝ ⋃
c∈Cλ

i

π1(c, λ)

⎞⎠ (7)

The formulæ above, just as in the case of rough set risk estimates, are valid only
if some assumptions can be made about the family of neighbourhoods C. Again,
the assumptions that have to be met are rather reasonable, and quite possible to
met if we are dealing with finite sample z and a finite family of neighbourhoods
C. We have to assure that elements of C are measurable w.r.t m̄ = m×m0 - the
product measure on X∞ × R+.

As one can see, the risk estimator (7) is parameterised by the confidence level
λ. In fact the selection of proper value of λ in all steps of risk assessment in the
fuzzy context is a crucial step. Depending on value of λ we may get (radically)
different outcomes. This intuitively corresponds to the fact that we can get
different overview of the situation depending on how specific or how general we
want to be.

The notions of function approximations and risk functional that we have in-
troduced are heavily dependent on the data sample z and decomposition of our
domain into family of neighbourhoods C. It is not yet visible, how the ideas
we present may help in construction of better decision support (classification)
systems. In the following section we discuss these matters in some detail.

4 Classifiers, Neighbourhoods and Granulation

Insofar we have introduced the approximation of loss and the measure of risk.
To show the potential use of these entities, we intend to investigate the process
of creation and evaluation (scoring) of classifier-driven decision support systems.

The crucial component in all our definitions is the family of non-empty sets
(neighbourhoods) C. This family represents the granular nature of the universe
of discourse. We have to know this family before we can approximate loss or esti-
mate empirical risk. In practical situations the family of neighbourhoods have to
be constructed in close correlation with classifier construction. It is quite com-
mon, especially for rough sets approaches, to define these sets constructively by
semantics of some formulas. An example of such formula could be the condi-
tional part of decision rule or a template (in the sense of [12,13]). In case of
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fuzzy granules the neighbourhoods may be provided arbitrarily or imposed by
the necessity to instantiate a set of linguistic rules (a knowledge base).

Usually the construction of proper neighbourhoods is a complicated search and
optimisation task. The notions of approximation and empirical risk that we have
introduced may be used to express requirements for this search/optimisation. For
the purpose of making valid, low-risk decision by means of classifier α we would
expect the family C to possess the following qualities:

1. Precision. In order to have really meaningful assessment of risk as well as
good idea about the loss function we would like the elements of neighbour-
hood family to to be relatively large in terms of universe X∞, but at the
same time having possibly low variation.

2. Relevance. This requirement is closely connected withe previous one (preci-
sion). While attempting to precisely dissect the domain into neighbourhoods
we have to keep under control the relative quality (relevance) of neighbour-
hoods with respect to the data sample z. We are only interested in the
neighbourhoods that contain sufficient number of elements of z.

3. Coverage and adaptability. One of the motivations that steer the process of
creating the family of neighbourhoods and the classifier is the expectation
regarding its ability to generalise and adapt the solution established on the
basis of finite sample to a possibly large portion of the data domain.

As discussed in points 1–3 above, the task of finding a family of neighbourhoods
can be viewed as a multi-dimensional optimisation on meta-level. It is in par
with the kind of procedure that has to be employed in construction of systems
based on the granular computing paradigm [4,13].

Yet another is that so far we have followed the assumption made at the begin-
ning of Section 2, that the values of loss function are given as non-negative real
numbers. In real application we may face the situation when the value of loss is
given to us in less precise form. One such example is the loss function expressed
in relative, qualitative terms. If the value of loss is given to us by the human
expert, he/she may be unable to present us with precise, numerical values. We
may then be confronted with situation when the loss is expressed in qualitative
terms such as “big”,“negligible”, “prohibitive”,“acceptable”. Such imprecise de-
scription of the loss function may in turn force us to introduce another training
loop into our system, one that will learn how to convert the imprecise notions
we have into concrete, numerical values of loss function.

5 Conclusion

In this paper we have discussed the issues that accompany the assessment of
risk in classification systems on the basis of the finite set of examples. We have
pointed out some sources of possible problems and outlined some directions, in
which we may search for solutions that match our expectations sufficiently well.

In conclusion, we would like to go back to the more general issue of weighting
the risk involved in computer-supported decision making. As we have mentioned
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in the introduction to this paper, in the real-life situations the human user may
display various patterns in his/her risk assessment and aversion.

It is rather unrealistic to expect that it would be possible to devise and explic-
itly formulate a model, that sufficiently supports extensibility as well as adapt-
ability, and at the same time compliant with human perception and applicable
in many different situations. It is much more likely that in practical situation we
may need to learn (or estimate) not only the parameters, but the general laws
governing its dynamics, at the same time attempting preserve its flexibility and
ability to adapt to new cases.
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Abstract. Gene selection, a key procedure of the discriminant analy-
sis of microarray data, is to select the most informative genes from the
whole gene set. Rough set theory is a mathematical tool for further re-
ducing redundancy. One limitation of rough set theory is the lack of
effective methods for processing real-valued data. However, most of gene
expression data sets are continuous. Discretization methods can result in
information loss. This paper investigates an approach combining feature
ranking together with feature selection based on tolerance rough set the-
ory. Compared with gene selection algorithm based on rough set theory,
the proposed method is more effective for selecting high discriminative
genes in cancer classification task.

Keywords: Microarray data, gene selection, feature ranking, tolerance
rough set theory, cancer classification.

1 Introduction

DNA microarray is a technology to measure the expression levels of thousands of
genes, which is quite suitable for comparing the gene expression levels in tissues
under different conditions, such as healthy versus diseased.

Discriminant analysis of microarray data has been widely studied to assist
diagnosis. Because lots of genes in the original gene set are irrelevant or even
redundant for specific discriminant problem, gene selection is usually introduced
to preprocess the original gene set for further analysis.

There are two basic categories of feature selection algorithms, namely filter
and wrapper models. Filter methods select feature subsets independently of any
learning algorithm and rely on various measures of the general characteristics
of the training data. Some statistical tests (t-test, F-test) have been shown to
be effective. The idea of these methods is that features are ranked and the top
ones or those that satisfy a certain criterion are selected. Wrapper methods use
the predictive accuracy of a predetermined learning algorithm to determine the
goodness of the selected subsets and are computationally expensive.
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Features using existing feature selection such as filter and wrapper have redun-
dancy because genes have similar scores in similar pathways. Rough set theory
can be used to eliminate such redundancy. Rough set theory [1-6], proposed by
Pawlak in 1982, is widely applied in many fields of data mining such as classifica-
tion and feature selection. However, traditional rough set theory-based methods
are restricted to the requirement that all data must be discrete. Existing meth-
ods [7] are to discretize the data sets and replace original data values with crisp
values. This is often inadequate, as degrees of objects to the descretized values
are not considered. Discretization ignores their discrimination. This may cause
information loss. A better choice to solve the problem may be the use of tolerance
rough set theory.

This paper presents a gene selection method based on tolerance rough set the-
ory. By using tolerance relations, the strict requirement of complete equivalence
can be relaxed, and a more flexible approach to subset selection can be developed.
The proposed method is comprised two steps. In step 1, we rank all genes with
the t-test and select the most promising genes. In step 2, we apply tolerance rough
set theory-based method to the selected genes in step 1. The experimental results
demonstrate that the proposed algorithm is more effective than gene selection ap-
proach based on rough set theory for achieving good classification performance.

2 Preliminaries

2.1 Rough Set Theory

There is a classificatory feature in gene expression data sets. We can formalize
the gene expression data set into a decision system.

Definition 1. Decision table.
A decision table is defined as T = 〈U, C ∪ D, V, f〉, where U is a non-empty

finite set of objects; C is a set of all condition features (also called conditional
attributes) and D is a set of decision features (also called decision attributes);
V =

⋃
a∈C∪D Va, Va is a set of feature values of feature a; and f : U×(C ∪ D) →

V is an information function for every x ∈ U , a ∈ C ∪ D.
For any B ⊆ C ∪ D, an equivalence (indiscernibility) relation induced by B

on U is defined as Definition 2.

Definition 2. Equivalence relation.

IND (B) = {(x, y) ∈ U × U |∀b ∈ B, b (x) = b (y)} . (1)

The family of all equivalence classes of IND (B), i.e., the partition induced by
B, is given in Definition 3.

Definition 3. Partition.

U/IND (B) = {[x]B |x ∈ U} , (2)

where [x]B is the equivalence class containing x. All the elements in [x]B are
equivalent (indiscernible) with respect to B. Equivalence classes are elementary
sets in rough set theory.
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For any X ⊆ U and B ⊆ C, X could be approximated by the lower and upper
approximations.

Definition 4. Lower approximation and upper approximation.

BX = {x| [x]B ⊆ X} , (3)

BX = {x| [x]B ∩ X �= ∅} . (4)

Let B ⊆ C, the positive region of the partition U/IND (D) with respect to B
is defined as Definition 5.

Definition 5. Positive region.

POSB (D) = ∪X∈U/IND(D)BX, (5)

and it is the set of all samples that can be certainly classified as belonging to
blocks of U/IND (D) using B.

By employing the definition of the positive region it is possible to calculate
the rough set degree of dependency of a set of features D on B.

Definition 6. Degree of dependency of feature.

γB (D) = |POSB (D)| / |U | . (6)

2.2 T-Test

Feature subset selection is an important step to narrowing down the feature
number prior to data mining. We assume that there are two classes of samples
in a gene expression data set.

Definition 7. T-test.
The t-value for gene a is expressed by:

t (a) =
µ1 − µ2√

σ2
1

/
n1 + σ2

2

/
n2

, (7)

where µi and σi are the mean and the standard deviation of the expression levels
of gene a for i =1, 2. When there are multiple classes of samples, the t-value is
typically computed for one class versus all the other classes. The top genes ranked
by t-value can be selected for data mining. Feature set so obtained has certain
redundancy because genes in similar pathways probably all have very similar
score. If several pathways involved in perturbation but one has main influence it
is possible to describe this pathway with fewer genes, therefore feature selection
based on rough set theory is used to minimize the feature set.

2.3 Gene Selection Algorithm Based on Rough Set Theory

Gene selection algorithm based on rough set theory for gene expression data
is composed of t-test and feature selection based on rough set theory. T-test
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is helpful for reducing dimensionality. The algorithm without the t-test prepro-
cessing will get worse performance. After feature ranking, top ranked n genes
are selected to form the feature set. The values of all continuous features are
discretized. Rough set theory-based feature selection method starts with the full
set and consecutively deletes one feature at a time until we obtain a reduction.

Algorithm 1. Gene selection algorithm based on rough set theory (GSRS)

(1) Calculate t-value of each gene, select top ranked n genes to form the
feature set C

(2) Discretize the feature set C
(3) Set P = C
(4) do
(5) for each a ∈ P
(6) if γP−{a} (D) == γC (D)
(7) P = P − {a}
(8) until γ(P−{a}) (D) < γ(C) (D)
(9) return P

The loop continues to evaluate in the above manner by deleting conditional
features, until the dependency value of the current reduct is less than that of
the dataset.

3 Gene Selection Algorithm Based on Tolerance Rough
Set Theory

3.1 Similarity Measures

In this approach, suitable similarity measure, given in [2,3], is described in
Definition 8.

Definition 8. Similarity measure.

Sa (x, y) = 1 − |a (x) − a (y)|
|amax − amin| , (8)

where a ∈ C ∪D, and amax and amin denote the maximum and minimum values
respectively for feature a. When considering more than one feature, the defined
similarities must be combined to provide a measure of the overall similarity of
objects. For a subset of features, B, the overall similarity measure is defined as
Definition 9.

Definition 9. Overall similarity measure.

(x, y) ∈ SB,τ iff

∑
a∈B

Sa (x, y)

|B| ≥ τ, (9)

where τ is a global similarity threshold; it determines the required level of simi-
larity for inclusion within tolerance classes. This framework allows for the specific
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case of traditional rough set theory by defining a suitable similarity measure and
threshold (τ =1). From this, for any B ⊆ C ∪ D, 0 < τ ≤ 1, the so-called tol-
erance classes that are generated by a given similarity relation for an object are
defined as Definition 10.

Definition 10. Similarity relation.

SB,τ (x) = {y ∈ U | (x, y) ∈ SB,τ} . (10)

For any X ⊆ U , B ⊆ C and 0 < τ ≤ 1, lower and upper approximations are
then defined in a similar way to traditional rough set theory.

Definition 11. Modified lower approximation and upper approximation.

BτX = {x|SB,τ (x) ⊆ X} , (11)

BτX = {x|SB,τ (x) ∩ X �= ∅} . (12)

The tuple
〈
BτX, BτX

〉
is called a tolerance-based rough set. Based this, the

positive region and the dependency function can be defined as follows.
Let B ⊆ C and 0 < τ ≤ 1, the positive region is defined as Definition 12.

Definition 12. Modified positive region.

POSB,τ (D) = ∪X∈U/SD,τ
BτX. (13)

For B ⊆ C and 0 < τ ≤ 1, the tolerance rough set degree of dependency is given
in Definition 13.

Definition 13. Modified degree of dependency of feature.

γB,τ (D) = |POSB,τ (D)| / |U | . (14)

From these definitions, a feature selection method can be formulated that uses
the tolerance-based degree of dependency, γB,τ (D), to gauge the significance of
feature subsets.

3.2 Tolerance Rough Set Theory-Based Gene Selection Method

Gene selection algorithm based on tolerance rough set theory for gene expression
data combines feature ranking together with feature selection based on tolerance
rough set theory. Similarly, t-test can eliminate such redundant genes. T-test is
used to feature ranking as the first step and select top ranked n genes to form
the feature set. Tolerance rough set theory-based feature selection method can
judge every feature and delete the features that are superfluous.

Algorithm 2. Gene selection algorithm based on tolerance rough set theory
(GSTRS)

(1) Calculate t-value of each gene, select top ranked n genes to form the
feature set C

(2) Set P = C
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(3) do
(4) for each a ∈ P
(5) if γP−{a},τ (D) == γC,τ (D)
(6) P = P − {a}
(7) until γP−{a},τ (D) < γC,τ (D)
(8) return P

The stopping criteria is automatically defined through the use of the dependency
measure when the deletion of further features does not result in a decrease in
dependency.

3.3 A Simple Example

To illustrate the operation of feature selection algorithm based on tolerance
rough set theory, it is applied to a simple example dataset in Table 1, which
contains three real-valued conditional features and a crisp-valued decision fea-
ture. Set τ =0.8. C = {a, b, c}. D = {d}.

Table 1. Example dataset

Objects a b c d

1 0.3 0.4 0.2 R
2 0.3 1 0.6 A
3 0.4 0.3 0.4 R
4 0.9 0.4 0.7 R
5 0.9 0.7 0.7 A
6 1 0.4 0.7 A

The following tolerance classes are generated:

U/SD,τ = {{1, 3, 4} , {2, 5, 6}},
U/SC,τ = {{1} , {2} , {3} , {5} , {4, 6}},
U
/
SC−{a},τ = U

/
S{b,c},τ = {{1} , {2} , {3} , {5} , {4, 6}},

U
/
SC−{b},τ = U

/
S{a,c},τ = {{1} , {2} , {3} , {5} , {4, 6}},

U
/
SC−{c},τ = U

/
S{a,b},τ = {{1, 3} , {4, 6} , {2} , {5}},

U
/
SC−{a,b},τ = U

/
S{c},τ = {{1} , {2} , {3} , {4, 5, 6}},

U
/
SC−{a,c},τ = U

/
S{b},τ = {{1, 3, 4, 6} , {2} , {5}},

U
/
SC−{b,c},τ = U

/
S{a},τ = {{1, 2, 3} , {4, 5, 6}}.

Considering feature set , the lower approximations of the decision classes are
calculated as follows:

Cτ {1, 3, 4} = {a, b, c}τ {1, 3, 4} =
{
x|S{a,b,c},τ (x) ⊆ {1, 3, 4}} = {1, 3},

Cτ {2, 5, 6} = {a, b, c}τ {2, 5, 6} =
{
x|S{a,b,c},τ (x) ⊆ {2, 5, 6}} = {2, 5}.

Hence, the positive region can be constructed:

POSC,τ (D) = ∪X∈U/SD,τ
CτX = Cτ {1, 3, 4} ∪ Cτ {2, 5, 6} = {1, 2, 3, 5}.
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The resulting degree of dependency is:

γC,τ (D) = |POSC,τ (D)|
|U| = |{1,2,3,5}|

|{1,2,3,4,5,6}| = 4
6 .

For feature set C − {a}, the corresponding dependency degree is:

γC−{a},τ (D) = |POSC−{a},τ (D)|
|U| = |{1,2,3,5}|

|{1,2,3,4,5,6}| = 4
6 ,

γC−{a},τ (D) = γ{b,c},τ (D) = γC,τ (D) = 4
6 .

Feature a is deleted from feature set C. Similarly, the dependency degree of
feature set {b, c} − {b} is:

γ{b,c}−{b},τ (D) = |POS{b,c}−{b},τ (D)|
|U| = |{1,2,3}|

|{1,2,3,4,5,6}| = 3
6 ,

γ{b,c}−{b},τ (D) = 3
6 < γC,τ (D) = 4

6 .

Therefore, the algorithm terminates and outputs the reduct {b, c}.

4 Experiments

To evaluate the performance of the proposed algorithm, we applied it to two
benchmark gene expression data sets: Lymphoma data set (http://llmpp.nih.gov
/lymphoma) and Liver cancer data set (http://genome-www.stanford.edu/hcc/).
The Lymphoma data set is a collection of 96 samples. There are 42 B-cell and 54
Other type samples having 4026 genes. The Liver cancer data set is a collection
of gene expression measurements from 156 samples and 1648 genes. There are
82 cases of HCCs and 74 cases of nontumor livers.

GSRS and GSTRS are run on the two data sets. Firstly, t-test is employed as
a filter on Lymphoma and Liver cancer. The top ranked 50 largest t-test values
genes are selected. When there are missing values in data sets, these values are
filled with mean values for continuous features and majority values for nominal
features [8]. As two data sets are real-valued, for GSRS algorithm, discretization
of every feature of the two data sets is Equal Frequency per Interval [7]. For
GSTRS algorithm, set τ =0.9. The reduction results are listed in Table 2.

Two factors need to be considered for comparing GSRS and GSTRS. One is
the number of selected genes. From Table 2, we can find that the number of
selected genes by GSRS is equal to the number of selected genes by GSTRS.

The other considered factor is classification accuracy of the selected genes of
two data sets. Two classifiers, C5.0 and KNN, are respectively adopted. As there
are a relatively small number of samples, leave-one-out accuracy is adopted. The
results are shown in Table 3.

Table 2. Reduction results

Data sets Genes Samples GSRS GSTRS

Lymphoma 4026 96 7 7
Liver cancer 1648 156 6 6
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Table 3. The classification accuracy of two data sets

Data sets
Lymphoma Liver cancer

GSRS GSTRS GSRS GSTRS
KNN 93.5% 94.8% 89.6% 92.5%
C5.0 95.2% 97.4% 91.3% 94.3%

Experimental results show the selected genes by GSTRS have higher classifi-
cation accuracy than the selected genes by GSRS when we take KNN classifier.
While C5.0 classifier is adopted, the classification accuracy of selected genes
by GSTRS is highest of all. The reason may be that GSTRS can retain the
information hidden in the data.

5 Conclusions

In this paper, we address gene selection of tolerance rough set theory. By con-
structing an example, we show how the technique works. This paper extends the
research of traditional rough set theory and establishes one direction for seeking
an efficient algorithm for gene expression data. Our method is applied to the
gene selection of cancer classification. Experimental results show its validity.
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Abstract. Social networking is becoming necessity of the current generation 
due to its usefulness in searching the user’s interest related people around the 
world, gathering information on different topics, and for many more purposes. 
In social network, there is abundant information available on different domains 
by means of variety of users but it is difficult to find the user preference based 
information. Also it is very much possible that relevant information is available 
in different forms at the end of other users connected in the same network. In 
this paper, we are proposing a computationally efficient rough set based method 
for ranking of the documents. The proposed method first expands the user query 
using WordNet and domain Ontologies and then retrieves documents containing 
relevant information. The distinctive point of the proposed algorithm is to give 
more emphasis on the concept combination based on concept presence and its 
position instead of term frequencies to retrieve relevant information. We have 
experimented over a set of standard questions collected from TREC, Word-
book, WorldFactBook and retrieved documents using Google and our proposed 
method. We observed significant improvement in the ranking of retrieved 
documents. 

Keywords: Rough sets, Document Ranking, Concept Extraction, and Social 
Domain Networking. 

1   Introduction 

Today, the WorldWideWeb is growing very fast. Recently published article [1] says 
that the number of web pages on the internet increased tremendously and crossed 1 
trillion counts in 2008 which was only 200 billion in 2006 [18]. With the growth of 
the WorldWideWeb based applications, an advanced Web 2.0 framework was intro-
duced for a variety of applications such as blogging, online gaming, social network-
ing, knowledge sharing, chat rooms etc. Social networking is related to almost every 
domain from general to specific domains. [17] discusses about more than 150 popular 
social networking websites on a variety of topics. The famous social networking  
websites such as Orkut [10], Facebook [5], and Linkedln [8] are becoming essential 
for users ranging from school kids to qualified professionals. In a typical social net-
working website, Internet users are invited by the members of the social networking 
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website to join their interest related communities, groups, and peoples. The user has 
freedom to explore his interest related communities and can join those communities. 
Also, there is no limitation on expanding social network. One can join multiple com-
munities, groups, and peoples to get diversified information on different topics. At 
present, social networking websites do not have cross-website information and as a 
result, scattered information on different topics could be not processed together for 
effective use. Another important point is that sometimes the information needed by 
the user is not available in their network communities and it could be available in 
other networks as well as could be retrieved from WorldWideWeb. 

To make an efficient social network, Semantic Web plays an extra-ordinary role in 
exchanging information conceptually. Semantic Web represents WorldWideWeb data 
in the form of mesh and linked in such a way so that it could be easily processed by 
machines on a global scale. In this paper, we are presenting a document retrieval 
system which will take the user question as an input and expands them to retrieve 
documents from the WorldWideWeb containing relevant concepts and finally ranks 
retrieved results as per user relevance. The research paper is organized as follows: 
section 2 describes related research work while section 3 explains the proposed rough 
set based document ranking algorithms. Section 4 shows our experiment and results. 
In the last section, we have stated our conclusion and future directions. 

2   Related Work 

Social Networking was introduced in 2003 and becoming popular very rapidly. The 
available social networking websites as discussed in [3], [21], and [9] are using  
tagging approach to improve the search mechanisms as well as for personalized rec-
ommendations. However, tagging for any kind of information, particularly for user 
interest, might be done by different users using different vocabularies. So tagging 
approach is not useful to retrieve relevant information lying at the end of other users. 
Therefore, conceptually expanded user input may solve the term mismatch problem in 
building efficient document retrieval system in social networking domain. The use of 
semantic web tools such as ontologies and WordNet [19] has been a preferred choice 
of researchers to propose input expansion methods.  We have also used ontologies 
and WordNet combination to solve the term mismatch problem in document retrieval.  

There are number of document ranking models proposed such as extended Boolean 
model [13], Vector space model [7], and Relevance model [4]. These models are 
largely dependent on the query term frequency, document length etc to rank the 
documents. These methods are computationally fast.  However, they ignore the lin-
guistics features and the semantics of the query as well as the documents which in-
versely affects their retrieval performance. [16] and [12] propose conceptual models 
which map a set of words and phrases to the concepts and exploit their conceptual 
structures for retrieval. [15] proposes an ontology hierarchy based approach for  
automatic topic identification which can be further extended for automatic text cate-
gorization. These models are complicated but retrieve more precise information in 
comparison of other statistical models. However, these methods are not able to handle 
imprecise information which is necessary to fulfill users need. Therefore, rough set 
based methods [14] [2] were proposed for document classification to handle imprecise 
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and vague information. [6] proposes automatic classification of WWW bookmarks 
based on rough sets while [20] proposes extension of document frequency metric 
using rough sets. They have used indiscernibility relation for text categorization. In 
this paper, we have proposed a document ranking method which uses an extension of 
their research work.  

3   Social Networking Based Information Retrieval System –  
A Rough Set Based Approach 

The proposed social domain document retrieval system considers the user’s interest as 
an input and extracts important terms then finds the semantically related concepts 
using its query expansion module described in [11]. These conceptually related terms 
along with the user input are passed to the document retrieval phase. The document 
retrieval phase searches for the documents relevant to the user’s interests and presents 
a list of the document in the order of their relevancy using rough set based ranking 
algorithm. The proposed document ranking algorithm is not considering term fre-
quencies for ranking of retrieved documents as the algorithms based on term frequen-
cies tend to be more biased towards longer documents. This algorithm expands the 
user input, selects the relevant features from the set of documents returned by search 
engines and ranks extracted concept combinations according to their relevancy to the 
user’s input. Finally, the algorithm performs re-ranking of the documents based on the 
position of the concept combinations in the set of documents. We are explaining algo-
rithms in the following sections. 

3.1   Concept Combination Ranking Algorithm 

In this section, we are proposing an algorithm that uses the indiscernibility relation of 
the rough set theory to rank the concept combinations. The basic idea is based on the 
algorithm discussed in [20] which uses document frequency to extract the important 
features from a set of documents and categorizes them on the basis of their features 
(terms). We are extending their algorithm for ranking a concept combination. Let us 
assume that the user input contains concepts C1, C2,…Cn and the input is expanded 
using algorithm proposed in [11]. The key concepts in the expanded set are then 
grouped into concept combinations using Cartesian product and ranked according to 
the knowledge quantity contained in them. The complete algorithm for ranking the 
concept combinations is described below.   

Algorithm: Concept_Extraction(Q, D) 
Input: User input (Q) and set of documents (D) 
Output: Ranked concepts list (Gr)   
Step 1: Extract key concepts C1, C2, …, Cn from the  input. 
Step 2: Expand input using expansion algorithm [11]. The resulting set is 

nCCC ∪∪∪ ...21  where ikiii CCCC ∪∪∪= ...21 and ijC  indicates the jth 

semantically related word to concept iC . 

Step 3:  Let nCCCG ×××= ...21  where × indicates the Cartesian product.  
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Step 4: Define an information system I = (U, A, V, f), where { }DDDU ii ∈= , 

{ }GGGA ii ∈= , V is the domain of values of Gi, and f is an information func-

tion (U, A) →V such that: 

⎭
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ii

ii
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Step 5: Determine the “Knowledge Quantity” (KQ) of Gi using the equation (1) 

( )mnmKQi −=                                                    (1) 

where n and m represents cardinality of D and no. of documents in which concept 
group Gi occurs respectively. 
Step 6:  Repeat step 5 for all Gi. 
Step 7:  Sort G according to “Knowledge Quantity” and return Gr (Sorted G). 
Step 8:  END 

Consider the query “How far is Mars from our planet?” for example. Key concepts in 
the query are far, Mars, our, and planet. The expanded query as explained in step 2 of 
algorithm Concept_Extraction is “(far OR distant) AND (Mars OR “Red Planet”) 
AND our AND (Planet OR “terrestrial planet”)”. The concept combinations, G, ob-
tained after taking Cartesian product is:  

G ={(far, Mars, our, planet), (far, Mars, our, terrestrial planet), (far, Red planet, 
our, planet), (far, Red planet, our,  terrestrial planet), (distant, Mars, our, planet), 
(distant, Mars, our, terrestrial planet), (distant, Red planet, our, planet), (distant, Red 
planet, our,  terrestrial planet) }.  

An information system is defined using these concept combinations, documents re-
trieved for the expanded query and the f-values for the concept combinations as ex-
plained in step 4 of the algorithm. In step 5 and 6, knowledge quantity of the each 
element of G is computed using the equation 5.4. These concept combinations are 
then ranked according to the knowledge quantity contained in them. The ranked con-
cept combinations (in decreasing order) are as follows: 

Granked ={ (distant, Mars, our, planet,) (far, Red planet, our, planet), (distant, Red 
planet, our, planet), (far, Mars, our, planet), (far, Mars, our, terrestrial planet), (far, 
Red planet, our,  terrestrial planet), (distant, Red planet, our,  terrestrial planet), 
(distant, Mars, our, terrestrial planet) }. 

3.2   Document Ranking Algorithm 

The proposed document ranking algorithm considers ranked concept combination  
as discussed in section 4.1 and searches the document sets for these concept combina-
tions. The underlying intuition is that a document is more relevant if it contains  
combination of concepts together rather than containing individual concepts. The 
algorithm considers the most descriptive concepts of the document which are used to 
define title or subtitle. Secondly, we consider those sentences more relevant which 
contain more number of concepts. Algorithm Document_Ranking describes the pro-
posed document ranking algorithm.  
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Algorithm: Document_Ranking (Q, D) 
Input: User query (Q) and set of documents (D) 
Output: Ranked documents list (Dr)   
Step 1: Run Concept_Extraction (Q, D) to get ranked list of concept groups. 

Step 2:  For each document DDi ∈ and concept group Gj, compute document score 

(Wi1) using equation (2).  
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where p is the cardinality of the set G (step 3 of Concept_Extraction ) and rj is the 
rank of Gj obtained in step1. W0 is the initial weight assigned to each document.  
Step 3: For each document Di ∈ D and concept group Gj, re-compute document score 
(Wi2) using equation (3).  
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Here k1, k2, and k3 are the weights assigned for occurrence of concept combination in 
sentences, sub-titles, and titles within the documents. ats, ath and att are the cardinality 
of subset ‘t’ in sentences, sub-titles, and title respectively. bj is the cardinality of  Gj. 
Step 4:  Rank the document set according to the scores obtained in step 3.  
Step 5:  END 

4   Experimental Results and Discussion 

To test the efficiency of the proposed algorithm, we conducted an experiment over a 
set of 50 questions collected from social networking websites and further extracted 
key concepts. To enhance the recall of the document retrieval, terms semantically 
closer to the key concepts were determined using WordNet and domain using the 
query expansion algorithm [11]. These original key concepts and semantically related 
words were fed into Google in Boolean form and we downloaded 25 documents cor-
responding to each of these 50 questions separately. The retrieved documents were re-
ranked using Document_Ranking algorithm. It was observed that the average number 
of documents containing correct answers in top 10 documents increased from 3.56 to 
4.48. This indicates an improvement of 25% in the document retrieval.  

We also observed increased number of correct answers in top ranked documents. 
There were 17 questions whose answers were present in at least 5 documents out of 
top 10 documents using Google but using proposed algorithm, this count increased to 
25. These results reflect that the algorithm Document_Ranking is bringing more rele-
vant documents to higher ranks. We have summarized our results in table 1.  
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Table 1.  Comparative Performance Analysis 

S.N Performance Parameters Using 
Google 

Using 
Proposed   
Approach 

1 No. of questions whose answers were present in at least 5 docu-
ments (out of first 10 documents)  

17 25 

2 Average no. of documents containing correct answers (out of
first 10 documents) 

3.56 4.48 

3 Number of  questions with answer in the first document 22 23 

4 Average rank of the document containing first correct answer 2.78 2.44 
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Fig. 1. Comparison of Number of Documents Containing Correct Answers  
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Fig. 2. Information Retrieval Precision Graph 

Results of the experimental questions are shown in fig. 1. This shows the no. of 
documents containing correct answers is higher than original retrieval. Thus, our 
algorithm helps in improving the precision which is more explicitly shown in fig. 2 
which is derived from fig. 1 by using the formula for precision calculation (Precision= 



190 S.K. Ray and S. Singh 

 

ratio of the number of relevant documents retrieved to the total number of relevant 
documents that exist for a given question). Further, we represent document rank con-
taining first correct answer in Fig. 3. There are 28% questions for which rank of the 
first document with correct answer is same for Google and our proposed method. So 
there is no scope of improvement. While in 46% questions, the algorithm improved 
the ranks of the first document containing correct answer while rank of the same  
declined in case of 26% questions. Thus, it is clear from the fig. 3 that algorithm is 
improving the rank of relevant documents.    
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Fig. 3. Representing Documents’ Rank Containing First Correct Answer 

5   Conclusion and Future Scope 

Social networking domain is growing rapidly and millions of users are getting bene-
fits by sharing information on different matters. In this paper, we have presented two 
algorithms to rank documents conceptually. Our first algorithm ranks concept combi-
nation of the documents which is useful to find more conceptually relevant answers. 
Further, second algorithm ranks retrieved documents using position of concept com-
bination which improves the precision of the information retrieval system. Though 
this algorithm uses modern semantic tools such as rough set and ontologies but it is a 
simple and computationally efficient method. We have experimented on 1250 ques-
tions collected from popular social networking domains to judge the effectiveness of 
the proposed method and found favorable results.  
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Abstract. Information on the web is growing at a rapid pace and to satisfy the 
information need of the user on the web is a big challenge. Search engines are 
the major breakthrough in the field of Information Retrieval on the web. Re-
search has been done in literature to use the Information Scent in Query session 
mining to generate the web page recommendations. Low computational effi-
ciency and classification accuracy are the main problems that are faced due to 
high dimensionality of keyword vector of query sessions used for web page 
recommendation. This paper presents the use of Fuzzy Rough Set Attribute Re-
duction to reduce the high dimensionality of keyword vectors for the improve-
ment in classification accuracy and computational efficiency associated with 
processing of input queries. Experimental results confirm the improvement in 
the precision of search results conducted on the data extracted from the Web 
History of “Google” search engine.  

Keywords: Fuzzy Rough Set, Information Retrieval, Information Need,  
Information Scent, Fuzzy Similarity. 

1   Introduction 

This Information on the web is growing at a rapid pace. To find the relevant docu-
ments for a specific information need of the user from a big pool of information is a 
big challenge. The search query of the user to the search engine is not able to fetch the 
sufficient relevant documents [1, 9, 11]. Work in [2, 3, 4, 5] has been done using 
Information Scent in Query session mining to improve the Information Retrieval 
precision. Query session is defined as set of clicked URLs associated with the user 
Query. Information scent is the subjective sense of value and cost of accessing a page 
based on perceptual cues with respect to the information need of the user. Users tend 
to click URLs with high scent associated with them [6, 10, 15, 16]. These high Scent 
pages uniquely satisfy the information needs of the user whereas low scent pages are 
less relevant to the information need of the user. Web page recommendations based 
on past queries can help to satisfy the information need of the current user. Each 
query session is represented by keywords vector weighted using Information Scent. 
Query sessions represented by weighted keyword vector are clustered to get the set of 
query sessions with similar information need. Each cluster is represented by mean 
weighted keyword vector. In [5] during online processing the input query vector is 
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used to find the cluster which closely represent the information need of input query 
and recommend the high scent clicked web pages associated with the selected cluster. 
The problem that is observed is low computational efficiency and classification accu-
racy due to high dimensionality of keyword vector representing the clusters of query 
sessions. Attribute Selection is important for reducing computational cost of classifi-
cation. All the keywords of query sessions keyword vector are not equally important 
from the point of view of identifying the different information need represented by 
clusters. Classification assumes that all attribute are equally important when classify-
ing using nearest neighbour approach and is sensitive to sparse data representation 
which affects the classification accuracy. In [8] Research has been done for personal-
izing the web search using Rough Fuzzy method to personalize the web search more 
effectively by identifying the discerning keywords for focussed web search using 
Fuzzy set discretization of real valued term weight of document vector and attribute 
reduction using Rough set attribute reduction. In this paper Fuzzy Rough Set attribute 
reduction has been applied to reduce the keyword vectors representing the query ses-
sions to those keywords of keyword vector which are all imperative to identify the 
different information need associated with identified clusters. The reduced set of 
keyword vector representing each cluster of query sessions reduces the space com-
plexity due to reduction in memory requirement for storing the clusters mean 
weighted keyword vector. Time complexity will be improved in online processing in 
computing the clusters which best represent the information need associated with 
input query. Thus computational efficiency is improved with the reduction in time and 
space complexity. The Classification Accuracy of the input queries to the clusters of 
query sessions is improved with reduced relevant attribute set obtained using Fuzzy 
Rough Attribute Reduction which uniquely identifies the information need of the user 
associated with the input query after removing those attributes which were redundant 
and irrelevant from perspective of identifying the information need associated with 
the cluster. 

This paper is organized as follows section 2 explains the Computation of Informa-
tion Scent, section 3 explains Fuzzy Rough Approach for Attribute Reduction , 
section 4 explains the use of FRSAR in Information Retrieval, section 5 presents the 
Experimental study and section 6 concludes the paper.  

2   Information Scent Computation 

2.1   Information Scent Metric 

The Inferring User Need by Information Scent (IUNIS) algorithm provides various 
combinations of parameters to quantify the Information Scent  [6] [10].The factors 
that are taken are page access PF.IPF weight and TIME that are used to quantify the 
information scent associated with the clicked page in a query session. The information 
scent sid  is calculated for each page Pid in a given Query session i as follows. 

1..nd)P(Time*)P(PF.IPFs ididid ∈∀=                                        (1) 

1..nd   where)log(M/m*)/max(ff)PF.IPF(P PidPidPidid ∈=                       (2) 

where n is the number of unique clicked web pages in query session i. 
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PF.IPF(Pid) and Time(Pid) are defined as  follows.  
)PF.IPF(Pid : PF corresponds to the page Pid normalized frequency fPid in a given 

query session Qi and IPF correspond to the ratio of total number of query sessions  
M in the whole log to the number of query sessions mPid that contain the given page 
Pid.  

)Time(Pid : It is the ratio of time spent on the page Pid in a given session Qi to the 

total duration of session Qi.  

3   Fuzzy Rough Approach for Attribute Reduction 

3.1   Fuzzy Rough Set Attribute Reduction (FRSAR) 

Rough Set Attribute Reduction is well suited to discrete information system 
),(1 AUS = . In discrete information system all the objects in the table have discrete 

value for their data objects. However it is often the case that data object in the infor-
mation system have both real and crisp attribute. Rough set theory in RSAR fails to 
find the similarity of data object having real value attribute [12,13]. Fuzzy Rough 
approach is used in this paper for the keyword reduction of query sessions vectors 
representing the information needs of the query sessions on the web. The keyword 
vector of query sessions is weighted using Information Scent.  

In order to apply Fuzzy Rough set concept to the reduction of attribute in data set 
containing real attribute without loss of information, Fuzzy similarity relation Rp is 
used to determine the extent to which the two data object are similar having real val-

ued attribute. The crisp lower and upper approximation XP
−

and XP
−

becomes Fuzzy 

lower and upper approximation set with membership function   (x)µ XP
−

 and  (x)µPX
−

 

respectively. The P positive region of D, i.e. )(DPOSP  become Fuzzy set whose 

membership function is defined by  )(DPOSPµ  . The dependency of attribute set D on 

P is given by gemma’P(D). 
Consider class X represented by Fuzzy set X in U whose membership function is 

defined as Xµ , the lower approximation of X denoted by XP
−

and the upper approxi-

mation of X denoted by XP
−

 are the fuzzy sets of U whose membership functions are 
defined as below. 

       Ux'             
(y))))y)),,(x'(S(N( T),x'(x,min( S (x)µ XRp UyRpXP

∈∀
= ∈

−
µµµ                       (3) 

 U  x'            
(y))))y),,(x'(T( S),x'(x,min( S (x)µ XRp Uy RpPX
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The membership of an object x ∈ U to the fuzzy positive region can be defined  

 U/DX               
(x))S(µ )( XP)(

∈
=

−
xDPOS Pµ                                             (7) 

Using the definition of fuzzy positive region, the new dependency function can be 
defined as follows.  

gemma’P(D)= 
Ux

UxDPOSP

∈
∑ ||/))(( )(µ                                  (8)  

4   Use of FRSAR in Information Retrieval 

4.1   Query Sessions Representation 

Information need associated with the query session is modeled using Information 
Scent and content of clicked URLs. Each query session is represented by keyword 
vector weighted by information scent as given by the equation below. 

1
*∑

=
=

n

d
PsQ ididi

                                                            

(9) 

In above formula n is the number of distinct clicked pages in the session iQ  and ids  

(information scent) is calculated for each page idP in a given session iQ . idP  is a 

keyword vector describing the content of the page idP   using tf.idf (where tf repre-
sents term frequency and idf represents inverse document frequency).   

The query sessions vector are clustered using k-means Algorithm in [17,18]  
to generate clusters of query sessions optimized by criterion function. A score or 
criterion function measures the quality of resulting clusters. This is used by common 
vector space implementation of k-means algorithm [18]. The function measures the 
average similarity between vectors and the centroid of clusters that are assigned to. 
Let pC  be a cluster found in a k-way clustering process )..1( kp∈  and let pc  be the 
centroid of pth cluster. The criterion function I is defined as follows: 

∑
=

∑
∈

=
k

p Cv
cvsimMI

pi

pi

1
),(/1

                                            

(10) 
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where M is the total number of query sessions in all clusters and vi is the vector repre-
senting some query session belonging to the cluster Cp and centroid  cp of the cluster 
Cp is defined as given below. 

||/)( p

pi

ip C
Cv
vc ∑

∈
=                                                  (11) 

where || pC  denotes the number of query sessions in cluster pC . ),( pi cvsim  is calcu-
lated using cosine measure. 

Let U be a finite set of query sessions keyword vector called Universe and A be the 
set of attribute describing the query sessions where )( DCA ∪=   and (U,A)  is an 
information system S1. Decision column D represents the label of cluster to which 
query session belongs and each cluster uniquely represents the specific information 
need. The query sessions keyword vectors are stored in (U,A) . Each query session in 

clusters is stored as row in (U,A)  and C columns represent the keywords of weighted 
keyword vector of query sessions. A particular cell S1(row,col) represent the weight 
of  keyword represented by column col of query session vector which is labelled by 
row. The membership function of Fuzzy Similarity Relation pR to find the extent of 
similarity of query sessions keyword vector is defined below. 

  y)(x,µ pR = {cos(x,y): x,y ∈ U and  x,y are weighted keyword vector of  query ses-

sion with attributes in set P , cos(x,y) calculates the cosine similarity of x and  y vec-

tor such that pRµ  satisfies the following properties  

   U x  1  x)(x,µ pR ∈∀=    Uy x, x)(y,µ  y)(x,µ pp RR ∈∀= z)(y,µ  y)(x,µ  z)(x,µ ppp RRR ∧≥  
Fuzzy Rough Set Attribute Reduction algorithm operates on the (U,A)   information 

system to reduce the size of keyword vectors without loss of information represented 
by query sessions in (U,A) . 

4.2   Fuzzy Rough Set Attribute Reduction of Clustered Query Sessions Keyword 
Vector 

 The following algorithm is used to generate the reduct R which is a subset of C using 
dependency function gemma’R(D). gemma’R(D) is measure of dependency of decision 
attribute set D on R condition attribute set .  

 1. R= C  where C={k1,k2,k3,..,k|Keywords|} , D={1,2,..,|Clusters|}, gemma’prev=0, 
gemma’best = gemma’R(D),Y={ } 

    2. T=R 
    3. gemma’prev=gemma’best 
    4. gemma’best = -1 
    5. for all x ∈ C and x  ∉  Y 

if gemma’ R-{x} (D) > gemma’best 
T=R - {x} 
Temp={x} 

        gemma’best=gemma’T(D) 
end if 

    6. end for 
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7. if(round(gemma’best) = round(gemma’prev)) 
                   R=T  

        Y=Y ∪ Temp 
8. end if 
9. if round(gemma’best) = round(gemma’prev)) 
10. goto step 2 

    else 
11. return  R 

The above algorithm generates R by incrementally removing the least informative 
attribute from it till there is no change in the value of dependency function. The round 
function used in the algorithm returns the value rounded to the nearest integer. 
|Keywords| represent the count of all distinct keywords of clicked URLs present in the 
data set after all stopword removal and stemming using Porter Stemming Algorithm. 
|Clusters| represent the count of clusters obtained in Query sessions mining. 

4.3   High Scent Web Page Recommendations in Information Retrieval Using 
FRSAR 

The proposed method of High Scent Web page recommendations using Query ses-
sions keyword vector reduction with FRSAR in Query session mining is given below. 

Offline Processing     
1. Clustered Query sessions are represented in the form of information system 

),(1 AUS =  where )( DCA ∪=  where C are set of keywords of keyword vec-
tor representing all query sessions and D is the class label of the cluster to 
which query session belongs. 

2. Apply the Fuzzy Rough Set Attribute Reduction to reduce the dimensional-
ity of information system using Fuzzy similarity relation for query sessions 
keyword vector in FRSAR approach given in section 4.2. 

3. Use reduced set of attribute R to define each cluster mean keyword vector.  

Online processing 
1. The input query is represented in the keyword vector scaled to the dimen-

sion of   reduced set R. 
2. The input query similarity to each cluster mean term vector is calculated to 

classify the input query to the nearest cluster which best represent the in-
formation need similar to that of input query.  

3. The High Scent web pages associated with the selected cluster will be rec-
ommended for a given input query. 

5   Experimental Study 

Experiment was performed on the data collected from Web history of "Google" 
search engine. The data set was generated by users who had expertise in specific do-
mains mainly entertainment, academics and sports. The Web history of “Google” 
search engine contains the following fields for each clicked URLs. 

1.  Time of the Day           2.  Query terms             3.  Clicked URLs 
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On submission of input query, “Google” search engine returns a result page consists of 
URLs retrieved for a given query along with the content information about URLs. In 
the experiment only those query sessions in the data set were selected which had at 
least one click in their answer. Query sessions considered consists of query terms along 
with clicked URLs. The numbers of distinct URLs in the collected data set were found 
to be 3145. The data set was pre-processed to get 400 query sessions. The data set 
generated from web history was loaded into database format to be processed further.  

The experiment was performed on Pentium IV PC with 1 GB RAM under Win-
dows XP using JADE (Java Agent Development Environment) and Oracle database. 
Web Sphinx crawler was used to fetch the clicked documents of query sessions in the 
data set. Each query session was transformed into the vector representation using 
Information Scent and content of clicked URLs and stored in the database. The k-
Means algorithm was executed several times for different values of k and criterion 
function was computed for each value of k. The criterion function was found to have 
maximum value at k=8 where k is the number of clusters. The similarity of vectors 
was measured using cosine formula for weighted term vector. Clusters of 400 query 
sessions were stored in the form of information system ),(1 AUS = where )( DCA ∪= . 
The initial dimensionality of C was 1429 that is 1429 keyword attributes were repre-
senting each clustered query sessions vector in Information System S1. D was the 
class label of the clusters to which query sessions vector belongs. The dimensionality 
of reduced set of attributes obtained using Fuzzy Rough Attribute Reduction Algo-
rithm was 314 which is 21% of original set of attributes. 

In order to analyze the effectiveness of keyword reduction in query sessions min-
ing in satisfying the information need of the users in information retrieval, the per-
formance of both the approaches with and without using FRSAR was evaluated using 
randomly selected test input queries which were categorized as untrained queries set. 
The untrained queries were those queries which did not have sessions associated with 
them in data set and are categorised as unseen queries. Some of the queries in each of 
the category are given below in Table 1.   

Table 1. Sample List of Untrained Queries 

Category Queries 

Untrained 

Set  

Movie song, Space food, novels, magazine, movies ,Numbness, 

Nature, family play Games, movie pictures, software download, 

online tutorial, Free download mp3, skies of arcadia pictures. 

 
The experiment was performed using 46 untrained queries distributed in each of the 

domain. The precision was evaluated on untrained set of queries belonging to each of 
the domain considered for both without FRSAR and with FRSAR. The average preci-
sion was calculated for first 2 result pages and users mark the relevant documents 
within the list of URLs retrieved using “Google” search engine along with web page 
recommendation for a given query using both with and without FRSAR. The Fig 1 
shows the average precision calculated for untrained queries .The average precision is 
improved for untrained queries using keyword reduction with FRSAR. It is apparent 
that dimensionality reduction helps to identify those attributes which uniquely identify 
the different information need represented by clusters of query sessions. 
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Fig. 1. The Average precision of without 
FRSAR and with FRSAR on untrained set of 
input queries 

Fig. 2. The Average response time of search 
results with web page recommendation with 
FRSAR and without FRSAR on untrained set 
of input queries 

Fig 2 shows the dimensionality reduction also has the significant impact on the 
time complexity of online processing phase. The time to classify the input query is 
reduced significantly. This effect is reflected in the average response time of web 
page recommendations for input queries with FRSAR on Google Search engine. The 
online processing time decreases tremendously which is significant for a system like 
search engine which require quick response time. The storage requirement for clus-
tered data set has been reduced due to reduced keyword vector obtained using 
FRSAR. Fuzzy rough set attribute reduction is used for dimensionality reduction 
before online processing phase use the attributes belonging to the resultant reduct. 
The computational cost of Fuzzy Rough set Attribute Reduction has no impact on the 
run time efficiency of online processing phase of High Scent web page recommenda-
tion in Information Retrieval. 

6   Conclusion 

This paper presented an approach to improve the information retrieval precision by 
improving the identification of the past query sessions similar in information need to 
that of input queries coupled with the improvement in computational efficiency using 
Fuzzy Rough set Attribute Reduction (FRSAR). FRSAR reduce the large dimension-
ality of weighted keyword vector of clusters of query sessions using Fuzzy Similarity 
Relation without loss of information. Experiment was conducted on the data extracted 
from the Web History of “Google” search engine. Experiments used Fuzzy Rough Set 
Attribute Reduction in offline processing before online processing phase use the at-
tributes belonging to the resultant reduct. Experiments show the improvement in the 
Information Retrieval precision confirming that FRSAR reduces the dimensionality of 
clusters of query sessions vector without loss of information. 
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Abstract. The activity of facial recognition is routine for most peo-
ple; yet describing the process of recognition, or describing a face to be
recognized reveals a great deal of complexity inherent in the activity.
Eyewitness identification remains an important element in judicial pro-
ceedings. It is very convincing, yet it is not very accurate. We studied
how people sorted a collection of facial photographs and found that in-
dividuals may have different strategies for similarity recognition. In our
analysis of the data, we have identified two possible strategies. We apply
rough set based attribute reduction methodology to this data in order
to develop a test to identify which of these strategies an individual is
likely to prefer. We hypothesize that by providing a personalized search
and filter environment, individuals would be more adequately equipped
to handle the complexity of the task, thereby increasing the accuracy
of identifications. Furthermore, the rough set based analysis may help
to more clearly identify the different strategies that individuals use for
this task. This paper provides a description of the preliminary study, our
computational approach that includes an important pre-processing step,
discusses results from our evaluation, and provides a list of opportunities
for future work.

1 Introduction

Eyewitness identification holds a prominent role in many judicial settings, yet it
is generally not accurate. Verbal overshadowing [1] is an effect that can obscure
a witness’s recollection of face when she is asked to describe the face to create a
composite sketch. Alternatively, if the witness is asked to examine a large collec-
tion of photos, her memory may become saturated and she may mistakenly judge
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the current face similar to another she has examined examined (i.e., inaccurate
source monitoring) and not to the one she is trying to recall [2]. We hypothesize
that if the presentation of images can be personalized, the eyewitness may have
to deal with fewer images, minimizing both of the negative effects discussed.
This research takes the first steps along that path.

This paper discusses an analysis of data from a sorting study, which avoided
verbalization completely while sorting. Each participant was asked to group a
stack of 356 photos according to perceived similarity. As a participant encoun-
tered a photo, she could only place that photo and not disturb any existing
piles. Indirectly, each participant made 63,190 pairwise similarity judgements.
This quantity of data made it a good candidate for rough sets attribute reduction
methodology.

Section 2 describes in more detail the initial study and data analysis that
occurred. Section 3 describes the pre-processing developed to limit the number of
pairs (or objects) needed to apply the attribute reduction methodology. Section 4
presents results from an exploration of the selected pairs. Section 5 presents some
preliminary conclusions and avenues for future work.

2 Sorting Facial Photographs for Similarity

The stimulus photo set comprised equal numbers (n = 178) of Caucasian and
First Nation faces. Cross-race identification of faces is an important topic of
ongoing research [3], and our sorting study seeks to contribute to this body of
work. We have focused on similarity judgements as a way to understand the
way people perceive structure in the stimuli set. It may be that not everyone
perceives the same structure. Therefore, if a person’s preferred structure could
be ascertained easily, it could be used to improve identification accuracy.

Figure 1 shows two photos from the stimulus set. Photographs were of the head
and shoulders of each individual in a front facing pose wearing casual clothing.
Subjects for these photographs were positioned 5 feet from the camera and 2 feet
from the background wall. All distinguishing materials (e.g., glasses, piercing)
were removed for the purposes of the photograph. All photographs were edited
using Adobe Photoshop 7.0. Photographs for the facial recognition task were
cropped to include only the subject’s head and shoulders, while the background
colour was changed from white to grey. The photographs were laminated on
5 by 4 inch cards. Participants were asked to view photos one at a time and
place each photo on a pile with similar photos, without disturbing existing piles.
Therefore, not all participants would make this direct comparison only if one
photo was visible when the other was being placed. The number of piles was
not constrained. Within the 25 participants, the number of piles made ranged
between 4 and 38.

From a record of which photos each participant placed together, two things
were done:
– a list of all possible pairs (356 choose 2 = 63,190) was constructed along

with the judgement of similar (in the same pile) or dissimilar (in different
piles)
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Fig. 1. 2 photos from the collection which participants were asked to sort according to
similarity

– the classification of photos was summarized in the following way. The number
of Caucasian (C) and First Nations (F) photos in each pile was expressed as a
percentage. The CHITEST function in Microsoft Excel was used to compare
the ratio of C to F against an expected equal distribution. If p < 0.05 the
pile was classified as C, if C >F or as F if F > C. The pile was classified
as U (for undecided) if p ≥ 0.05. All pictures in that pile were then labelled
as C, F, or U. The numbers for all piles were totalled and expressed as a
percentage (shown in Figure 2).

Figure 2 shows all participants plotted according to their percentages of photos
classifed as C, F, and U. Many participants made only piles that could be iden-
tified as either C or F. These are found along the bottom line between vertices
1 and 3 in Figure 2. Other participants therefore had some number of unde-
cided piles (and photos), labelled U according to the procedure outlined above.
A threshold of 5% was set for the percentage of U and two groups were formed.
We hypothesize that these groups correspond to different strategies for facial
recognition, which we have labelled as “uses-race” (U < 5%, n = 14) and “uses-
not-race” (U ≥ 5%, n = 11), because we hypothesize that race is being used by
former group but not by the latter.

We seek to find a simple way to classify participants according to these groups,
which we hypothesize will allow for personalization of the eyewitness identifica-
tion process.

The strategy (uses-race or uses-not-race) then becomes the decision variable
as we begin to apply the rough set attribute reduction methodology [4]. The
objective is to reduce the number of pairs required as input to discriminate
between the two strategies, as the original number of pairs is impractical.

3 Pre-processing

If the two groups identified in the last section are meaningfully different, then we
hypothesize that we should be able to distinguish them with the help of pairs for
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Fig. 2. Distribution of participants based on their classification of photos. Each point
reflects the mix of C, F, and U photos identified by a participant. Vertex 1 is Caucasian,
Vertex 3 is First Nations, and Vertex 2 is Undecided. The lower rectangle identifies par-
ticipants in the “uses-race” group (with no or very few photos classified as undecided).
The upper rectangle identifies participants in the “uses-not-race” group (with many
photos classified as undecided).

Fig. 3. The two photos from Figure 1 are compared against all other photos. The top
graphs show results for the “uses-race” group and the bottom graphs show results for
the “uses-not-race” group. For both the left and right photos from Figure 1, the two
groups behave differently.
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which the similarity ratings differed between the groups. Figure 3, which shows
similarity ratings between the uses-race and uses-not-race groups, indicates that
this may be a fruitful course of action.

Following an approach similar to the feature extraction/selection phase in
knowledge discovery and data mining, we choose pairs with the following condi-
tion: that one group rated the pair very similar and the other group did not. We
parameterize this in the following way. The difference between ratings must be
greater than or equal to X (shown on the horizontal axis in Table 1) and that
one group’s rating of distance for the pair must be less than or equal to Y (show
on the vertical axis in Table 1).

Table 1. The results for varying parameters for pair selection. The horizontal axis
represents the absolute difference between the distances for a pair between the two
groups. It is most strict at the left. The vertical axis represents the maximum rated
distance for a pair by one of the groups. It is most strict at the top. For our study, we
considered values in the upper left quadrant of this table, and used RSES on each of
those sets of pairs. Results are shown in Table 2.

≥ 0.9 ≥ 0.8 ≥ 0.7 ≥ 0.6 ≥ 0.5 ≥ 0.4 ≥ 0.3 ≥ 0.2 ≥ 0.1 ≥ 0.0
≤ 0.1 0 0 0 1 2 3 5 6 6 6
≤ 0.2 0 0 0 7 11 28 35 37 38 38
≤ 0.3 0 0 17 82 197 350 467 556 585 605
≤ 0.4 0 0 17 130 401 840 1253 1584 1775 1881
≤ 0.5 0 0 17 130 798 2393 4536 6737 7825 8297
≤ 0.6 0 0 17 130 798 2925 6592 10450 12925 14488
≤ 0.7 0 0 17 130 798 2925 7480 13634 18241 22156
≤ 0.8 0 0 17 130 798 2925 7480 17371 28260 35903
≤ 0.9 0 0 17 130 798 2925 7480 17371 35398 47589
≤ 1.0 0 0 17 130 798 2925 7480 17371 35398 63190

4 Rough Set Attribute Reduction Methodology

Each of the parameter combinations in the upper left quadrant of Table 1 led
to a number of photo pairs being selected for processing. The number of pairs
processed in RSES (Rough Sets Exploration System) ranged from 2 to 798. For
each set of pairs, the following steps were undertaken.

1. Preprocessing: Split input file (50/50): Each file in the analysis was split with
approximately 50% of participants in a training set (data from 12 partici-
pants) and 50% of participants (data from 13 participants) in a testing set.
The files comprised objects each representing the result of a pairwise com-
parison of facial photographs (0 if similar, 1 if dissimilar). The decision class
was the group (either uses-race or uses-not-race), illustrated in Figure 2.
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2. Training: Calculate the reducts in training file using genetic algorithms in
RSES. The genetic algorithms procedure calculates the top N reducts pos-
sible for a given analysis. For the purposes of our analysis, we chose N = 10
in order to pick the top 10 reducts possible (if indeed 10 top reducts could
be found).

3. Testing: Using the reducts generated in step 2, test the results on the data
in the testing set.

4. Classification: Observe the classification accuracy of the train and test pro-
cedure in steps 1-3 and report the results.

All results had 100 percent coverage, which means that the classifier based on the
reducts generated from an ensemble of reducts was able to recognize everything,
which is valuable in itself.

Table 2. Results from running RSES on the pairs from the upper left quadrant of
Table 1. In the case of 1 object, accuracy was computed by direct comparison of
judgement on pair to decision variable.

Total Reducts by Size Global
Condition Objects Reducts 1 2 3 4 Accuracy
0.1v0.6 1 - - - - - 84*
0.1v0.5 2 1 1 62
0.2v0.6 7 3 1 2 85
0.2v0.5 11 10 3 7 69
0.3v0.7 17 10 8 2 92
0.3v0.6 82 10 3 4 3 92
0.3v0.5 197 8 1 4 3 92
0.4v0.7 17 10 10 100
0.4v0.6 131 10 6 4 85
0.4v0.5 401 8 3 2 3 85
0.5v0.7 17 10 1 9 92
0.5v0.6 131 9 8 1 92
0.5v0.5 798 8 4 3 1 92

The table for rough sets analysis is constructed in the following way: each
row in the table represents an individual participant each column in the table
(object) represents a pairwise photo distance. If two photos were said to be
similar (placed in the same pile) then the object value is 0 (the distance between
them is 0). If two photos were said to be dissimilar (placed in different piles)
then the object value is 1 (the distance between them is 1). The decision variable
is the value determined in Section 2, which indicates the decision of whether
the participant belongs to the “uses-race” group or the “uses-not-race” group.
It was anticipated that rough sets analysis could reduce the necessary pairwise
comparisons to classify a participant, and thereby aid personalization efforts.
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Table 3. A closer look at the solution with 100% global accuracy. Pair 1859a-1907a is
the one shown in Figure 1.

Unique Pairs
Reducts Pair Frequency

032-129, 1859a-1907a 1859a-1907a 6
0062a-4488a, 032-130 032-129 3
0003a-8230a, 032-129 059-128 2

023-116, 059-128 032-130 2
023-116, 1859a-1907a 023-116 2

032-129, 059-128 8230a-9265a 1
1859a-1907a, 4488a-9622a 4488a-9622a 1

046-087, 1859a-1907a 046-087 1
032-130, 1859a-1907a 0062a-4488a 1

1859a-1907a, 8230a-9265a 0003a-8230a 1

Fig. 4. These figures illustrate some interesting questions that remain unexplored.
On the left, are reducts that use popular photo pairs more useful than others? These
popular pairs are those where the dashed line is higher than the solid line. On the right,
even though we hypothesize that not all people are using race for similarity ratings,
very few mixed race pairs are rated as similar.

Amongst the results obtained from the RSES analysis, 117 unique pairs were
identified in various reducts. The most frequently occurring pair was present in
13 different reducts. 44 pairs appeared more than once. When examining the
solution with 100% global accuracy (condition 0.4v0.7), laid out in Table 3, one
also finds a number of repeated pairs.

5 Conclusion and Future Work

Through this effort, we have found a very succinct test to classify people into
one of two proposed strategy groups. Namely, we proved that rough sets can
help in accuracy and clarity of the results. Our plan is to examine the validity of
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this test with more participants. This test will also help to clarify the strategies
being used. It remains to be tested whether the 10 unique pairs listed in Table 3
are the minimum needed to achieve 100% global accuracy. Figure 4 illustrates
some other open questions. The amount of overlap of attributes in reducts is
particularly interesting. More than simply counting occurences, a more detailed
analysis of the correlations between attributes is also warranted.

We have explored this data with RSES. However, there are more advanced
rough set approaches and tools, with their own parameters, that can be used in
this situation. It may be indeed useful to experiment with ensembles of reducts,
approximate reducts, and so on, both within and outside RSES.

Also, although we have labelled the groups as uses-race/uses-not-race, it is
interesting to note that only 1 of the pairs used in the reducts is a mixed pair.
More work to understand the uses-not-race strategy especially is required. As
we improve our understanding of this data, we may also be able to find success
using other decision classes.
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Abstract. This paper presents a novel application of fuzzy-rough set-
based feature selection (FRFS) for Mars terrain image classification. The
work allows the induction of low-dimensionality feature sets from sample
descriptions of feature patterns of a much higher dimensionality. In par-
ticular, FRFS is applied in conjunction with multi-layer perceptron and
K-nearest neighbor based classifiers. Supported with comparative stud-
ies, the paper demonstrates that FRFS helps to enhance the effectiveness
and efficiency of conventional classification systems, by minimizing re-
dundant and noisy features. This is of particular significance for on-board
image classification in future Mars rover missions.

1 Introduction

The panoramic camera instruments on the MarsExplorationRovers have acquired
a large volume of high-resolution images, which provides substantial information
to characterize the Mars environment [1,4]. Automated analysis of such images has
since become an important task, especially for surveying places (e.g. for geologic
cues) in Mars [8,12]. Any progress towards automated detection and recognition of
objects within Mars images, including different types of rocks and their surround-
ings, will make a significant contribution to the accomplishment of this task.

Mars terrain images vary significantly in terms of intensity, scale and rotation,
and are blurred with noise. These factors make Mars image classification a chal-
lenging problem. One critical step to successfully build an image classifier is to ex-
tract and use informative features from given images [3,7,9]. To capture the essen-
tial characteristicsof such images,many features mayhave to be extractedwithout
explicit prior knowledge of what properties might best represent the underlying
scene reflected by the original image. Yet, generating more features increases com-
putational complexity and measurement noise, and not all such features may be
useful to perform classification. Thus, it is desirable to employ a technique that
can determine the most significant features, based on sample measurements, to
simplify the classification process, while ensuring high classification performance.

This paper presents an approach for performing large-scale Mars terrain im-
age classification, by exploiting the recent advances in fuzzy-rough set-based
� Work funded by the Daphne Jackson Trust and the Royal Academy of Engineering.
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feature selection techniques [6]. As such, fuzzy-rough sets are, for the first time,
applied to tasks relevant to space engineering. Experimental results show that
this application ensures rapid and accurate learning of classifiers. This is of great
importance to on-board image classification in future Mars rover missions. The
rest of this paper is organized as follows. Section 2 introduces the Mars ter-
rain images under investigation. Sections 3, 4 and 5 outline the key component
techniques used in this work, including feature extraction, (fuzzy-rough) feature
selection and feature pattern classification. Section 6 shows the experimental
results, supported by comparative studies. The paper is concluded in Section 7.

2 McMurdo Panorama Image

This work concentrates on the classification of the McMurdo panorama image,
which is obtained from the panoramic camera on NASA’s Mars Exploration
Rover Spirit and presented in approximately true color [4]. Such an image reveals
a tremendous amount of detail in part of Spirit’s surroundings, including many
dark, porous-textured volcanic, brighter and smoother-looking rocks, sand ripple,
and gravel (mixture of small stones and sand). Fig. 1 shows the most part of the
original McMurdo image (of a size 20480×4124). This image, excluding the areas
occupied by the instruments and their black shadows, is used for the work here,
involving five major image types (i.e. classes) which are of particular interest.
These image types are: textured or smoothed dark rock (C1), orange colored
bedding rock (C2), light gray rock (C3), sand (C4), and gravel (C5), which are
illustrated in Fig. 2. The ultimate task of this research is to detect and recognize
these five types of image over a given region.

Fig. 1. Mars McMurdo panorama image

3 Feature Extraction

Many techniques may be used to capture and represent the underlying charac-
teristics of a given image [3,10]. In this work, local grey level histograms and
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Fig. 2. Image classes (C1: rock1, C2: rock2, C3: rock3, C4: sand, C5: gravel)

the first and second order color statistics are exploited to produce a feature pat-
tern for each individual pixel. This is due to the recognition that such features
are effective in depicting the underlying image characteristics and are efficient
to compute. Also, the resulting features are robust to image translation and
rotation, thereby potentially suitable for classification of Mars images.

3.1 Color Statistics-Based Features

Color images originally given in the RGB (Red, Green and Blue) space are first
transformed to those in the HSV (Hue, Saturation and Value) color space [10].
These spaces are in bijection with one another, and the HSV space is widely
used in the literature. Six features are then generated per pixel, by computing
the first order (mean) and the second order (standard deviation, denoted by
STD) color statistics with respect to each of the H, S and V channels, from a
neighborhood of the pixel. The size of such neighborhoods is pre-selected by trial
and error (which trades off between the computational efficiency in measuring
the features and the representative potential of the measured features).

3.2 Local Histogram-Based Features

To reduce computational complexity, in extracting histogram-based features,
given color images are first transformed to grey-level (GL) images. For a certain
pixel, a set of histogram features Hi, i = 1, 2, ..., B, are then calculated within a
predefined neighborhood, with respect to a certain bin size B. Here, the neigh-
borhood size is for convenience, set to the same as that used in the above color
feature extraction, and Hi denotes the normalized frequency of the GL histogram
in bin i. To balance between effectiveness and efficiency, B is empirically set to
16 in this work. In addition, two further GL statistic features are also generated,
namely, the mean and STD (which are different from their color statistics-based
counterparts of course).

4 Fuzzy-Rough Set-Based Feature Selection
Let U be the set of pixels within a given image, P be a subset of features, and
D be the set of possible image classes. The concept of fuzzy-rough dependency
measure [6], of D upon P , is defined by
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γP (D) =

∑
x∈U

µPOSRP
(D)(x)

|U | (1)

where
µPOSRP

(D)(x) = sup
X∈U/D

µRP X(x) (2)

µRP X(x) = inf
y∈U

I(µRP (x, y), µX(y)) (3)

and U/D denotes the (equivalence class) partition of the image (i.e. pixel set)
with respect to D, and I is a fuzzy implicator and T a t-norm. RP is a fuzzy
similarity relation induced by the feature subset P :

µRP (x, y) = TA∈P {µR{A}(x, y)} (4)

That is, µR{A}(x, y) is the degree to which pixels x and y are deemed similar
with regard to feature A. It may be defined in many ways, but in this work, the
following commonly used similarity relation [5] is adopted:

µR{A}(x, y) = 1 − |A(x) − A(y)|
Amax − Amin

(5)

where A(x) and A(y) stand for the value of feature A ∈ P of pixel x and that of
y, respectively, and Amax and Amin are the maximum and minimum values of
feature A. The fuzzy-rough set-based feature selection (FRFS) method works by
greedy hill-climbing. It employs the above dependency measure to choose which
features to add to the subset of the current best features and terminates when
the addition of any remaining feature does not increase the dependency.

5 Image Classifiers

Multi-layer perceptron neural networks [11] and K-nearest neighbors (KNN) [2]
are used here to accomplish image classification, by mapping input feature pat-
terns onto the underlying image class labels. For learning such classifiers, a set of
training data is selected from the typical parts (see Fig. 2) of the McMurdo im-
age, with each pixel represented by a feature pattern which is manually assigned
an underlying class label.

6 Experimental Results

From the McMurdo image of Fig. 1, a set of 270 subdivided non-overlap images
with a size of 512 × 512 each are used to perform this experiment. 816 pixel
points are selected from 28 of them, which are each labeled with an identified
class index (i.e. one of the five image types: rock1, rock2, rock3, sand and gravel)
for training and verification. The rest of all these images are used as unseen
data for classification. Each training pixel is represented by a pattern of 24
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Table 1. Feature meaning and reference

No. Meaning No. Meaning No. Meaning No. Meaning No. Meaning
1 Mean(GL) 2 STD(GL) 3 Mean(H) 4 STD(H) 5 Mean(S)
6 STD(S) 7 Mean(V) 8 STD(V) 9-24 Hi

features (see Section 3). Of course, the actual classification process only uses
subsets of selected features. The performance of each classifier is measured using
classification accuracy, with ten-fold cross validation.

For easy cross-referencing, Table 1 lists the reference numbers of the original
features that may be extracted, where i = 1, 2, ..., 16. In the following, for KNN
classification, the results are first obtained with K set to 1, 3, 5, 8, and 10.
For the MLP classifiers, to limit simulation cost, only those of one hidden layer
are considered here with the number of hidden nodes set to 8, 12, 16, 20, or
24. Those classifiers which have the highest accuracy, with respect to a given
feature pattern dimensionality and a certain number of nearest neighbors or
hidden nodes, are then taken for performance comparison.

6.1 Comparison with the Use of All Original Features

This subsection shows that, at least, the use of a selected subset of features
does not significantly reduce the classification accuracy as compared to the use
of the full set of original features. For this problem, FRFS returns 8 features,
namely, STD(GL), Mean(H), STD(H), Mean(S), STD(S), Mean(V), H4, H15
(i.e. features 2, 3, 4, 5, 6, 7, 12 and 23 in Table 1), out of the original twenty-four.
That is, a reduction rate of two-third. Table 2 lists the correct classification rates
produced by the MLP and KNN classifiers with 10-fold-cross-validation, where
the number (N) of hidden nodes and that (K) of the nearest neighbors used by
these MLP and KNN classifiers are also provided (in the first column).

Table 2. FRFS-selected vs. full set of original features

Classifier Set Dim. Feature No Rate
MLP(N=20) FRFS 8 2, 3, 4, 5, 6, 7, 12, 23 94.0%
MLP(N=20) Full 24 1, 2, ..., 23, 24 94.0%
KNN(K=8) FRFS 9 2, 3, 4, 5, 6, 7, 12, 23 89.1%
KNN(K=5) Full 24 1, 2, ..., 23, 24 89.2%

The results demonstrate that the classification accuracy of using the eight
FRFS-selected features is the same as that of using the twenty-four original
features for MLP classifiers (94.0%), and is very close to that for KNN classifiers
(89.1% vs. 89.2%). This is indicative of the potential of FRFS in reducing not
only redundant feature measurements but also the noise associated with such
measurements. Clearly, the use of FRFS helps to improve both effectiveness and
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efficiency of the classification process. Note that although the number of original
features is not large, for on-board Martian application, especially in relation to
the task of classifying large-scale images, any reduction of feature measurements
is of great practical significance.

6.2 Comparison with the Use of PCA-Returned Features

Principal component analysis (PCA) [2] is arguably one of the most popular
methods for dimensionality reduction, it is adopted here as the benchmark for
comparison. Fig. 3 shows the classification results of the KNN and MLP clas-
sifiers using a different number of principal features. For easy comparison, the
results of the KNN and MLP that use 8 FRFS-selected features are also included
in the figure, which are represented by ∗ and ◦, respectively.
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Fig. 3. Performance of KNN and MLP vs. the number of principal components

These results show that the MLP classifier which uses FRFS-selected features
has a substantially higher classification accuracy amongst all those classifiers
using a subset of features of the same dimensionality (i.e. 8). This is achieved
via a considerably simpler computation, due to the substantial reduction of the
complexity in input patterns. The results also show the cases where PCA-aided
(MLP or KNN) classifiers each employ a feature subset of a different dimen-
sionality. However, these classifiers still generally underperform than the corre-
sponding FRFS-aided ones, whether they are implemented using MLP or KNN.
This situation only changes when almost the full set of PCA-returned features
is used where the MLP classifiers may perform similarly or slightly better (if 20
or 22 principal components are used). Yet, this is at the expense of requiring
many more feature measurements and much more complex classifier structures.
Besides, PCA-returned features lose the underlying meaning of the original.
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6.3 Classified and Segmented Images

The ultimate task of this research is to classify Mars panoramic camera im-
ages and to detect different objects or regions in such images. The MLP which
employs the 8 FRFS-selected features, and which was trained by the given 816
labeled feature patterns, is taken to accomplish this task: the classification of the
entire image of Fig. 1 (excluding those regions as indicated previously). As an
illustration, three classified images are shown in Fig. 4, numbered by (a), (b) and
(c) respectively, where five different colors represent the five image types (rock1,
rock2, rock3, sand and gravel). From this, boundaries between different class re-
gions can be identified and marked with white lines, resulting in the segmented
images also given in Fig. 4, numbered by (d), (e) and (f) correspondingly.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Classified and segmented image

From these classified images, it can be seen that the five image types vary in
terms of their size, rotation, color, contrast, shapes, and texture. For human eyes
it can be difficult to identify boundaries between certain image regions, such as
those between sand and gravel, and those between rock2 and sand. However, the
classifier is able to perform under such circumstances, showing its robustness
to image variations. This indicates that the small subset of features selected
by FRFS indeed convey the most useful information of the original. Note that
classification errors mainly occur within regions representing sand and gravel.
This may be expected since gravel is itself a mixture of sand and small stones.
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7 Conclusion

This paper has presented a study on Mars terrain image classification, sup-
ported by advanced fuzzy-rough set-based feature selection techniques. For the
first time, fuzzy-rough sets have been adopted to help solving problems in space
engineering. Although the real-world images encountered are large-scale and
complex, the resulting feature pattern dimensionality of selected features is man-
ageable. Conventional classifiers such as MLP and KNN that are built using such
selected features generally outperform those using more features or an equal
number of features obtained by classical approaches represented by PCA. This
is confirmed by systematic experimental investigations (though the influence of
parameter set-up for feature extraction, e.g. the number of pixels in neighbors
and that of bins in histograms, requires further investigation). The work helps to
accomplish challenging image classification tasks effectively and efficiently. This
is of particular significance for classification and analysis of real images on board
in future Mars rover missions.
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Abstract. Colour quantisation algorithms are essential for displaying true colour
images using a limited palette of distinct colours. The choice of a good colour
palette is crucial as it directly determines the quality of the resulting image.
Colour quantisation can also be seen as a clustering problem where the task is
to identify those clusters that best represent the colours in an image. In this paper,
we use a rough c-means clustering algorithm for colour quantisation of images.
Experimental results on a standard set of images show that this rough image quan-
tisation approach performs significantly better than other, purpose built colour
quantisation algorithms.

1 Introduction

Colour quantisation is a common image processing technique that allows the represen-
tation of true colour images using only a small number of colours. True colour images
typically use 24 bits per pixel resulting overall in 224, i.e. more than 16 million different
colours. Colour quantisation uses a colour palette that contains only a small number of
distinct colours (usually between 8 and 256) and pixel data are then stored as indices
to this palette. Clearly the choice of the colours that make up the palette is of crucial
importance for the quality of the quantised image. However, the selection of the optimal
colour palette is known to be an np-hard problem [1]. In the image processing literature
many different algorithms have been introduced that aim to find a palette that allows for
good image quality of the quantised image [1,2,3]. Soft computing techniques such as
genetic algorithms have also been employed to extract a suitable palette [4,5].

Colour quantisation can also be seen as a clustering problem where the task is to
identify those clusters that best represent the colours in an image. In this paper, we
use a rough c-means clustering algorithm for colour quantisation of images. The rough
c-means clustering algorithm utilises two sets for each cluster, a lower and an upper
approximation. Through iterative adjustment of the cluster centres, the algorithm con-
verges towards a good colour palette. Experimental results on a standard set of images
show that this rough image quantisation performs significantly better than other, pur-
pose built colour quantisation algorithms.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 217–222, 2009.
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2 Rough Colour Quantisation

Colour quantisation can be seen as a clustering problem where the task is to identify
those clusters that best represent the colours in an image. In this paper we employ a
rough c-means clustering algorithm for this purpose.

Lingras et al. [6] introduced a rough set inspired clustering algorithm based on the
well known c-means algorithm. In their rough c-means approach, each cluster ck is
described not only by its centre mk, but also contains additional information, in par-
ticular its lower approximation ck, its upper approximation ck, and its boundary area
cb
k = ck − ck. Lingras et al.’s algorithm proceeds in the following steps:

Step 1: Initialisation: Each data sample is randomly assigned to one lower approxima-
tion. As the lower approximation of a cluster is a subset of its upper approxi-
mation, this also automatically assigns the sample to the upper approximation
of the same cluster.

Step 2: Cluster centre calculation: The cluster centres are updated as

mk =

{
ωl

∑
xi∈ck

xi

|ck| + ωb

∑
xi∈cb

k

xi

|cb
k|

if cb
k �= {}

ωl

∑
xi∈ck

xi

|ck| otherwise
(1)

The cluster centres are hence determined as a weighted average of the samples
belonging to the lower approximation and the boundary area, where the weights
ωl and ωb define the relative importance of the two sets.

Step 3: Sample assignment: For each data sample the closest cluster centre is deter-
mined and the sample assigned to its upper approximation. Then, all clusters
that are at most ε further away than the closest cluster are determined. If such
clusters exist, the sample will also be assigned to their upper approximations.
If no such cluster exist, the sample is assigned also to the lower approximation
of the closest cluster.

Step 4: Termination: If the algorithm has converged (i.e., if the cluster centres do not
change any more, or after a pre-set number of iterations), terminate, otherwise
go to Step 2.

Strictly speaking, this algorithm does not implement all properties set out for rough
sets [7], and hence belongs to the reduced interpretation of rough sets as lower and
upper approximations of data [8].

Peters [9] noticed some potential pitfalls of the algorithm as proposed by Lingras et
al. in terms of objective function and numerical stability, and suggested some improve-
ments to overcome these. Equation 1 is revised to

mk = ωl

∑
xi∈ck

xi

|ck| + ωu

∑
xi∈ck

xi

|ck| (2)

with ωl + ωu = 1, i.e. as a convex combination of lower and upper approximation
means. In order to overcome the possibility of situations with empty lower approxi-
mations, Peters suggests two possible ways of addressing this, either by modifying the
calculation of cluster centres so that for empty lower approximations the cluster centre
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is calculated as the average of samples in the upper approximation, or by ensuring that
each lower approximation has at least one member. In our approach we choose the latter
by assigning the data sample closest to the cluster centre to its lower approximation.

In addition, we perform a different initialisation procedure than Lingras et al. and
Peters. Rather than randomly assigning samples to clusters, we generate random cluster
centres first and then proceed with Steps 3, 2 and 4 (i.e., steps 2 and 3 reversed) of the
algorithm.

3 Experimental Results

For our experiments we used six standard images commonly used in the colour quanti-
sation literature (Lenna, Peppers, Mandrill, Sailboat, Airplane, and Pool - see Figure 1)
and applied the our rough c-means colour quantisation algorithm to generate quantised
images with a palette of 16 colours.

Fig. 1. The six test images used in the experiments: (Lenna, Peppers, Mandrill, Sailboat, Pool,
and Airplane. (from left to right, top to bottom).

To put the results obtained into context, we have also implemented four popular colour
quantisation algorithms to generate corresponding quantised images with a palette size
of 16, namely Popularity algorithm [1], Median cut quantisation [1], Octree quantisa-
tion [2], and Neuquant [3]. For our rough c-means approach, we adopt the changes pro-
posed by Peter’s with parameters ωl = 0.7, ωu = 0.3, ε = 0.001 (image pixel values are
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Table 1. Quantisation results, given in terms of PSNR [dB]

Lenna Peppers Mandrill Sailboat Pool Airplane average
Popularity algorithm [1] 22.24 18.56 18.00 8.73 19.87 15.91 17.22
Median cut [1] 23.79 24.10 21.52 22.01 24.57 24.32 23.39
Octree [2] 27.45 25.80 24.21 26.04 29.39 28.77 26.94
Neuquant [3] 27.82 26.04 24.59 26.81 27.08 28.24 26.73
Rough c-means (mean) 28.63 26.67 25.02 27.62 29.40 30.50 27.98
Rough c-means (max) 28.77 26.81 25.10 27.82 30.17 31.03 28.28

normalised to [0; 1]3). For all algorithms, pixels in the quantised images were assigned to
their nearest neighbours in the colour palette to provide the best possible image quality.

The results are listed in Table 1, expressed in terms of peak signal to noise ratio
(PSNR) defined as

PSNR(I1, I2) = 10 log10
2552

MSE(I1, I2)
(3)

with MSE (the mean-squared error) calculated as

MSE(I1, I2) =
1

3nm

n∑
i=1

m∑
j=1

[(R1(i, j) − R2(i, j))2 + (4)

(G1(i, j) − G2(i, j))2 + (B1(i, j) − B2(i, j))2]

where R(i, j), G(i, j), and B(i, j) are the red, green, and blue pixel values at location
(i, j), and n and m are the dimensions of the images.

From Table 1 we can see that of the dedicated colour quantisation algorithms Oc-
tree and Neuquant clearly outperform the Popularity and Median Cut methods. For our
rough c-means approach we ran the algorithm 10 times (randomly initialising the clus-
ter centres) on each image and report both the average and the highest PSNR of these
10 runs in Table 1. Looking at the results, it is obvious that the rough c-means approach
achieves significantly better image quality than any of the other algorithms, including
Octree and Neuquant. In fact, on average, our colour quantisation approach provides an
increase in PSNR of about 1 (mean)/1.5 (max) which is quite remarkable.

An example of this performance is given in Figure 2 which shows the Airplane image
together with the images colour quantised by all algorithms. Error images (or image
distortion maps) are commonly employed for judging the difference between images or
the performance of competing algorithms [10]. For each quantised image, we therefore
also provide an error image that represents the difference between the original and the
palettised image (the squared error at each pixel location is calculated, the resulting
image then inverted and a gamma function applied to increase the contrast). It can be
seen that popularity based colour quantisation does not work very well. Median cut
performs better but not as well as Octree and Neuquant which provide much improved
image quality. However, our proposed rough c-means algorithm outperforms all other
approaches and clearly produces the image with the highest image fidelity.
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Fig. 2. Airplane image (top-left) and corresponding images quantised with (from left to right, top
to bottom): Popularity, Median cut, Octree, Neuquant, rough c-means. Also shown are the error
images of the quantised images compared to the original.
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4 Conclusions

In this paper we proposed a rough c-means based colour quantisation algorithm. Rough
c-means is applied to extract cluster centres corresponding to palette entries of colour
quantised images. Experimental results obtained on a set of common test images have
demonstrated that this approach can not only be effectively employed but clearly out-
performs dedicated colour quantisation algorithms.
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Abstract. The motivation behind this work stems from an earlier work where 
text was transformed into strings of syntactical structures and used in similarity 
calculations using sequence algorithm on a string generated by a POS tagger. 
The performance of computations was greatly affected by the size of the string 
which in itself is the result of the type of tags used. Generated tags range from 
several (minimum of nine) general ones to many more (hundreds) detailed tags. 
Figuring out which tags and what combination of tags affect the realization of 
meanings, dependencies or relationships that exist in the text is an important is-
sue. The resulting tag set reduction using rough sets and consequently string  
reduction has resulted in an improved efficiency in similarity calculations be-
tween documents while maintaining the same level of accuracy. Such finding 
was very encouraging. 

Keywords: Rough sets, POS tagging, Data reduction, String comparison,  
Similarity calculations. 

1   Introduction 

Work done and presented in this paper was motivated by previously conducted ex-
periments on the use of Part of Speech (POS) tags and Longest Common Sequence 
(LCS) algorithm in similarity calculations for Copy Detection [1,2]. In those experi-
ments, POS tagging was used to extract the document’s syntactical structures and 
represent the whole text as an ordered string of tags before it was passed for compari-
son by LCS algorithm. For large collections, accuracy and performance of computa-
tions using the produced string were greatly affected by the size of the string.  

Selection of different combinations of tags can have an inherent impact on the re-
alization of meanings manifested as dependencies and relationships that exist within 
the text. Data reduction through the discovery and analysis of such dependencies and 
relationships can be useful for similarity calculations and its applications. 

Techniques for discovering dependencies and relationships within data are gener-
ally categorized into statistical or machine learning fields [3,4]. Rough set based tech-
niques [5,6] are one of such methods that are useful in understanding the importance 
of different factors that contribute to dependencies and relationships in data as well 
data reduction. 
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It is the aim of this work to investigate the use of rough sets techniques in the dis-
covery and analysis of relationships that exit within POS tags and the reduction of 
factors (tags) that contribute to the overall build of text as a representation of meaning. 

The rest of the paper is organized as follows. Section 2 describes tagging and simi-
larity calculation. Section 3 contains a description of rough sets and the Rosetta 
[20,15] tool used in the analysis. Section 4 contains descriptions of the experiments 
and discussions. Finally, section 5 contains the conclusion. 

2   Similarity Calculation Using LCS and POS Tagging 

Document management and text analysis including copy detection, near-copy detec-
tion, and similarity-based techniques in general have become very important with the 
growth of the web and the emergence of digital libraries [7,8]. String representations 
and processing tasks are widely used in text analysis in many fields to help find and 
cluster similar documents [9, 10, 13, 16]. Genomic and protein sequence alignments 
heavily relied on string manipulation techniques to calculate similarity between new 
and existing sequences. Many of those techniques can be readily utilized in text simi-
larity calculation if suitable sequences could be produced. 

A major impediment to treating text sequences in a similar fashion as to biological 
sequences, is to do with the nature of the strings themselves, lack of an appropriate 
alphabet,  and the lack of a theory like that of evolution for biological sequences, 
which can be used to explain them. 

A chunk of text, however, can be viewed as a string made of some meaningful nu-
merable units (alphabets) allowing modified text to be handled and thought of as 
being a result of some intervention or application of some edit operations. Thus text 
can be considered as strings of syntactical unites derived from POS tagging instead of 
using actual characters or words as is commonly done [1]. The created strings capture 
syntactic and some of the semantics contained in the writing style of authors and the 
relationships defined by the grammar and order of POS tags. 

The use of syntactical structures instead of actual text greatly reduces the dimen-
sionality of documents while less information is lost. Still, however, among other 
things, the issue of selection of better tags to use for the creation of string for further 
reduction of those strings warrants more investigation. 

2.1   Similarity Calculation 

It is more common to use syntactical approaches when calculating similarities of text 
through fingerprinting [17], information retrieval [9] and hybrid techniques [21,25].  

Fingerprinting uses chunking of text into small chunks where each chunk is hashed 
using a hashing algorithm to produce a list of values representing the document. 
These values are then used to compare one document’s hash values to other docu-
ments’ values to detect similarities [13]. Information retrieval, on the other hand, 
focuses on representing documents based on their words and frequencies using in-
dexes with an appropriate model/technique to evaluate similarities between docu-
ments [9]. Attempts have been made to combine some of the above techniques 
[21,25]. 
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2.2   POS Tagging and Tag-Sets 

There are basic POS tags that are used by all taggers when annotating text. These 
basic parts are the verb, noun, pronoun, adjective, adverb, preposition, conjunction 
and interjection [12] with some taggers adding the article [14]. Many tagging systems 
extend these basic tags to describe additional grammatical features, such as, singu-
lar/plural, number, tense, gender and even punctuations [19]. 

The TreeTagger [2] is one such tagger and is used in this experiment. It has a tag 
set that contains about 55 tags. TreeTagger is able to cope with ungrammaticalities in 
the input. This tagger is reported to have achieved the highest accuracy in comparison 
to other taggers. Its accuracy reached up to 96.36%. [23,24]. 

3   Rough Sets 

Rough set theory was proposed by Pawlak [5,6] as a mathematical framework to deal 
with  incomplete and uncertain data. 

Given a finite non-empty set U of objects, called a universe. The limits of dis-
cernibility of objects are formally expressed by an equivalence relation over a set of 
objects. Each object of U is characterized by a description, in the form of a set of 
attribute-values represented in a tabular format referred to as Information System. 
Table 1 is an example from current work where objects are documents and attributes 
are the tags with tag frequencies as values. 

3.1   Approximation Space 

The equivalence relation is called an indiscernibility relation R(C), where C is a set of 
condition attributes used to represent objects belonging to the domain of interest U. 
The attributes are discrete and finite-valued properties of objects. Each attribute a 
belonging to C is a mapping a: U  Va, where Va is a finite set of values called the 
domain of the attribute a. 

The indiscernibility relation represents prior knowledge about the universe U ex-
pressed in terms of identity of values of the condition attributes C on objects. 

The pair (U, R) is called an approximation space and the equivalence classes of R 
are called elementary sets.   

3.2   Rough Approximations 

If we let R* be a collection of all elementary sets, then any definable subset of the 
universe U is a set union of some elementary sets. All other subsets are undefinable or 
rough. For any definable set X there exits an uncertainty free criterion for determining 
the membership status in the set of any object belonging to the universe U. The crite-
rion is referred to as a description of the set X, denoted as des(X). If the set X is 
rough, the defining description does not exist and the membership status of some 
objects with respect to the set X cannot be determined with certainty. Rough sets can 
be approximately characterized by two definable sets called lower and upper ap-
proximations respectively. 
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─ The lower approximation of X is a union of elementary classes totally included 
in X, that is, this is the largest definable set contained in the rough set X. Ob-
jects belonging to the lower approximation with certainty belong to the set X. 

─ The upper approximation is the smallest definable set containing the rough set 
X. Objects belonging to the upper approximation possibly belong to the set X.  

In addition, based on the upper and lower approximations, the boundary area consists 
of objects whose membership status with respect to the set X is uncertain. 

That is, the boundary area is a union of such elementary classes which have only 
partial overlap with the set X. The union of all elementary classes which are com-
pletely disjoint from the set X is called the negative region of X. The negative region 
is a largest definable collection of objects which with certainty do not belong to X. 
Readers are referred to [6,22] for more details. 

Table 1. Sample frequency table with few documents and tags 

Docs/Tags Articles Adjectives Verbs Adverbs Conjunctions Preposition Interjection Pronoun Noun 

42650 19 27 57 7 5 33 0 23 83 

42651 44 43 92 12 7 51 0 20 160 
95037 26 26 73 14 10 32 0 24 141 

 
Rosetta, a general-purpose tool for discernibility-based modeling [20,15], was used 

in this work. It is a toolkit for analyzing tabular data within the framework of rough 
set theory. 

4   Experiments and Discussions 

In the approach adopted in this work we used three tags-sets of 9, 19 and 55 tags, 
where a given document is processed to produce a string of tokens using TreeTagger. 
These tags are then mapped into single characters to reduce costs. 

 
Step 1: Convert each news document from XML format to text files. 

Step 2: Tag each document in the set using 9, 19 and 55 tag sets. 

Step 3: Map tags into single character tags.  

Step 4: Produce tables of tag frequencies of occurrence in documents for each set.  

Step 5: Divide the results, based on the writer and the general topics into tables that use the tags as condition attributes 
where Writer-based set used the respective writer of the article as decision attribute,           General topic-based set 
used the respective general topic category of the article as decision attribute and Specific topic based set used the  
respective specific topic of the article as decision attribute. 

Step 6: Run rough sets on total of 6 produced tables of frequencies. The results of each of the subsets are analyzed look-
ing for meaningful relationships and dependencies.  Johnson’s algorithm which invokes a variation of a simple 
greedy algorithm to compute a single reduct only was used. 

Fig. 1. The adopted procedure 
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The used documents were taken from Reuter’s corpus [18]. Reuter has defined a 
number of categories using writer, region, industry and topic as a bases for their 
manually classified documents. For purpose of validation, ease of analysis and consis-
tency with work already done [1], a total of 1512 pre-selected set of documents from 
the Reuter’s collection were used. The set was further divided into three data sets of 
333 documents each. Figure 1 illustrates the procedure used. 

4.1   Reuters’s Collection: 9-Tags Tag Set: Resulting Reducts and Validations 

The aim here was to see if what is considered by tagger as the minimum tag set is 
really a minimum and whether there can be any smaller sets that have the same data 
dependencies and relationships. The relationship of the 9 tags set relative to the three 
decisions of writer, general topic and specific topic using produced frequencies tables 
was carried out for the whole set of 1512 documents and was validated on the three 
pre-selected data sets documents. 

As is shown in Table 2, and through the use of Johnson algorithm [13], rough sets 
were able to suggest a much smaller subset (made of 4 tags) as an alternative to the 9 
tags set. The suggested subset is made of Articles, Adjectives, Verbs, and Nouns. 
This is an overall reduction of 56% as suggested by the data using writer, general and 
specific data collections. Same tags were suggested in all cases except for one differ-
ence where a conjunction was suggested instead of noun. 

Validations of results confirmed these suggestions when the suggested reduced 
subsets of tags were used along with the original 9 set, to detect duplication in Reut-
ter’s collection. The results based on new suggested reducts were compared to those 
of original 9-tag set looking top 90% score using the normalized Longest Common 
Subsequence (LCS) [1]. The two new reducts were able to get exact duplicate docu-
ments (23 in total) as original 9-tags tag set. As a matter of fact, even lower scores of 
80% contained same hits that are duplicates. 

4.2   Reuters’s Collection: 19-Tags Tag Set: Resulting Reducts and Validations 

The aim here was to see if a larger set of tags can contain smaller subsets that would 
be used to realize the dependencies in the data. This was done by analyzing the rela-
tionship of the 19-tags set relative to the three decisions of writer, general and specific 
topics using produced frequencies tables.  

As is shown in Table 2, rough sets, using the Johnson algorithm, suggested a much 
smaller subset (made of 4 tags) as an alternative to the original 19-tags. The suggested 
subset is made of Punctuation, Article, Adjective, Noun and Conjunction Subor-
dinating. As the table suggests all data sets have produced same reduct except for one 
where the noun is replaced by a Conjunction Subordinating tag. 

The proposed reducts constitute a reduction of 79%. It is worth noting that three of 
the suggested tags in this case are the same as those of the 9 tag set obtained in the 
previous experiment. 

To validate results, we looked the top 90% range of the normalized LCS score in  
the copy detection tested sets. The two new reducts were able to get exact duplicate 
documents (23 in total) as original 19-tags tag set. Lower scores of 70% and higher 
contained same results with only those in high end (80%) range being exact duplicates. 
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4.3   Reuters’s Collection: 55-Tags Tag Set: Resulting Reducts and Validations 

In this third experiment the TreeTagger’s largest possible tag set was used with the 
aim of confirming previous results obtained in duplicate detection experiments [1] 
and analyzing the effect of using an expended set of tags. This tag set is made of 55 
tags compromising of groups of tags ranging from usual variable and noun categories 
to punctuations and ordinals. The relationship of  a 55 tags  tag-set were analyzed 
using rough sets relative to the three decisions of writer, general and specific topic 
using frequencies tables of the sets of documents. 

As is shown in Table 2, rough sets was able to suggest a much smaller subset 
(made of 3 tags) as an alternative to the 55 tags set we have used as the bases for this 
experiment. The suggested subset is made of Conjunction Subordinating, Common 
noun singular, and Proper noun singular. As the table suggests all data sets have 
produced same reduct. 

The proposed reducts constitute a huge reduction of 95%. It is worth noting again 
that three of the suggested tags in this case do relate to the 9 and 19 tags sets reducts.  

Validations results confirmed these suggestions. Looking at the top 90% range of 
the normalized LCS score in the tested sets, with the new reduct was able to get exact 
documents (23 in total) as original 55-tags set with more matches in the lower scores 
of 80%.  

Table 2. List of Reducts from the 9, 19 and 55 tag sets 

  Reducts  Reducts 
9-1 

Articles, Adjective, Verb, Noun 
19-2 Punctuation, Article ,Adjective, Conjunction 

Subordinating 
9-2 Articles, Adjective, Verb, conjunction 55-1 
19-1 Punctuation, Article, Adjective, Noun  

Conjunction Subordinating, Common noun 
singular, Proper noun singular 

 
There was a total match of the top 90% results across all tag sets. These results 

compare well to the largest 55 set original results obtained in [1].  

5   Performance 

One of the motivations behind the above attempts of tag set reduction was to improve 
the performance of LCS time while still maintaining same or approximant accuracy. 
Above validation results did confirm the accuracy of the much reduced sets. 

Hence as a consequence of the huge string reductions; the system’s performance 
was improved. For example there was more than 42% and more than 87% savings in 
time comparing the 9 tags set to one of its reducts and the 19 tags set to one of its 
reducts respectively. This is considered to be a very favorable gain in performance. 

6   Conclusion 

Motivated by the need to improve performance while still maintaining the same accu-
racy when calculating similarity using POS tags and LCS algorithm for use in Copy 
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Detection [1,2], experiments were conducted to reduce the size of the string represen-
tative of documents. POS tagging was used to extract the document’s syntactical 
structures and represent the whole text as an ordered string of tags. Size of the string 
that is produced using the newly reduced set for large collection of document as well 
as the different combination of tags and their sizes can have an inherent impact on the 
realization of the text’s meaning. Discovery, analysis of dependencies and relation-
ships can lead to reduction of strings. 

Rough set based techniques were applied to tag set reduction. Results were investi-
gated and analyzed using three representative tag sets. 

There was a total match of the top 90% results not just when comparing the re-
ducts’ results to individual original tag sets but also across all tag sets. Results com-
pared well to original results obtained in pervious experiments [1]. The results were 
consistent across tags sets and on all the three data sets used. Results confirmed the 
accuracy of the reduced sets and improved system’s performance was improved. 
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Abstract. New operations on intuitionistic fuzzy soft sets have been introduced 
in this paper. Some results relating to the properties of these operations have 
been established. An example has also been introduced as an application of 
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1   Introduction 

Most of the real life problems in social sciences, engineering, medical sciences, eco-
nomics etc. the data involved are imprecise in nature. The solutions of such problems 
involve the use of mathematical principles based on uncertainty and imprecision. 
Some of these problems are essentially humanistic and thus subjective in nature (e.g. 
human understanding and vision system), while others are objective, yet they are 
firmly embedded in an imprecise environment. A number of theories have been pro-
posed for dealing with uncertainties in an efficient way. Some of these are the theory 
of probability, fuzzy set theory [12], intuitionistic fuzzy sets [1, 2], vague sets [5], 
theory of interval mathematics [2], rough set theory [11] etc. All these theories, how-
ever, are associated with an inherent limitation, which is possibly due to the inade-
quacy of the parameterization tool associated with these theories. Molodtsov [10] 
initiated a novel concept of soft sets theory as a new mathematical tool for dealing 
with uncertainties which is free from the above limitations. In many of real life prob-
lems it is very often observed that the parameters involved in the system are uncertain 
fuzzy in nature. On the basis of this point, we have some extensions of soft sets theory 
in [7, 8, 9]. In [6] we can find the further work of soft sets theory.  

In the present work, we have extended the intuitionistic fuzzy soft sets defining 
new operations on it. Some properties of these operations have also been studied. 
                                                           
* The work is supported by the University Grants Commission ( U G C ) as UGC Research 
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2   Theory of Soft Sets 

Molodtsov [ 10 ] defined the soft set in the following way: 
Let U be a universe set and E be a set of parameters. Let P ( U ) denotes the power 

set of U and A Õ E.  

Definition 2.1 [10]. A pair ( F, A ) is called a soft set over U, where F is a mapping 
given by F : A Ø P ( U ). In other words, a soft set over U is a parameterized family 
of subsets of the universe U. For e œ A, F (e ) may be considered as the set of e- ap-
proximate elements of the soft set ( F,A ). 

3   Intuitionistic Fuzzy Sets 

We recollect some relevant basic preliminaries, in particular, the works of Atanassov 
[1]. Let a set E be fixed.  An intuitionistic fuzzy set or IFS in E is an object having the 
form A = {<x, µA(x),  νA(x)>| x ∈ E } where, the function  
µA : E Ø [ 0, 1 ] and νA : E Ø [ 0, 1 ] define the degree of membership and the de-

gree of non-membership respectively of the element x (∈ E ) to the set A. For any x  
∈ E , 0 § µA(x) + νA(x) § 1. The indeterministic part for x denoted by pA(x), where 
pA(x) = 1 - µA(x) - νA(x). Clearly, 0 § pA(x) § 1. 

If A and B are two IFSs of the set E, then 

A Õ B iff " x ∈ E,  µA(x) § µB(x) and νA(x) ¥ νB(x) 
A Õ B iff  B   A; A = B iff " x ∈ E,  µA(x) = µB(x) and νA(x) = νB(x) 
Ac= { < x, νA(x), µA(x)  >| x ∈ E }; A » B = {<x, max (µA(x), µB(x)),min (νA(x), 
νB(x) )>| x ∈ E} 
A … B = {<x, min (µA(x), µB(x)), max (νA(x), νB(x) )>| x ∈ E } 
A . B = {<x, µA(x) . µB(x),  νA(x) + νB(x) - νA(x) . νB(x)>| x ∈ E }. 

Now we recollect some preliminaries from [4, 7, 9]. 

4   Intuitionistic Fuzzy Soft Sets 

Definition 4.1 [7]. Consider U and E as a universe set and a set of parameters respec-
tively. Let P(U) denotes the set of all intuitionistic fuzzy sets of U. Let A Õ E. A pair 
(F, A) is an intuitionistic fuzzy soft set over U, where F is a mapping given by F: A Ø 
P (U). 

Definition 4.2 [7]. For two intuitionistic fuzzy soft sets (F, A) and (G, B) over a com-
mon universe U, we say that (F, A) is an intuitionistic fuzzy soft subset of (G, B) if 

i. A Õ B, and 
ii. " e œ A, F (e ) is an intuitionistic fuzzy subset of G ( e ). 

Definition 4.3 [7]. Two intuitionistic fuzzy soft sets (F, A) and (G, B) over a common 
universe U are said to be fuzzy soft equal if (F, A) is an intuitionistic fuzzy soft subset 
of (G, B) and (G, B) is an intuitionistic fuzzy soft subset of (F, A). 



 More on Intuitionistic Fuzzy Soft Sets 233 

 

Definition 4.4 [7]. If (F, A) and (G, B) be two intuitionistic fuzzy soft sets then, “(F, 
A) AND (G, B)” is an intuitionistic fuzzy soft set denoted by (F, A) ⁄ (G, B) is de-
fined by 

(F, A) ⁄ (G, B) = (H, A µ B), where H (a, b) = F (a) … G (b), "(a, b) œ A µ B. 

Definition 4.5 [7]. If (F, A) and (G, B) be two intuitionistic fuzzy soft sets then,  
“(F, A) OR (G, B)” is an intuitionistic fuzzy soft set denoted by (F, A) ¤ (G, B) is 
defined by (F, A) ¤ (G, B) = (O, A µ B),   

where O ( a, b ) = F ( a ) » G (  b ), "( a, b ) œ A µ B. 

Definition 4.6 [9]. Dot of two intuitionistic fuzzy soft sets (F, A) and (G, B) over the 
common universe U is the intuitionistic fuzzy soft sets denoted by ‘(F, A).(G, B)’ and 
is defined as 

(F, A).(G, B) = (H, A…B), where, 
H(e) = {<m, µF(e)(m). µG(e)(m), νF(e)(m)+ νG(e)(m) - νF(e)(m). νG(e)(m)>|m∈U}, if e ∈ A » B, 

  = {<m, µF(e)(m). µF(e)(m), νF(e)(m)+ νF(e)(m) - νF(e)(m). νF(e)(m)>|m∈U}, if e ∈ A - B, 
  = {<m, µG(e)(m). µG(e)(m), νG(e)(m)+ νG(e)(m) - νG(e)(m). νG(e)(m)>|m∈U}, if e ∈ B - A. 

Definition 4.7 [4]. For any two intuitionistic fuzzy sets A and B of E , similarity 
measure S( A, B ) between A and B is defined by S (A, B) and is defined as, 

S (A, B) =

∑∑

∑

→→

→→

∨
y yy

y

yy
y

BA

BA

2
2

.
   , where 

→

xA is the vector ( mA(x),  pA(x)) and  

→

xB is the vector (mB(x),  pB(x)), ∀ x ∈ E. 

Now we define new operations on intuitionistic fuzzy soft sets. 
Let U be a universal set. E be a set of parameters and A be a subset of E. Let the 

intuitionistic fuzzy soft set (F, A) = {<m, µF(e)(m),  νF(e)(m)>|m∈U and e∈A}, where 
µF(e)(m),  νF(e)(m) be the membership and non-membership functions respectively. 

5   The Necessity Operation on Intuitionistic Fuzzy Soft Set 

Definition 5.1. The necessity operation on an intuitionistic fuzzy soft set ( F, A ) is 
denoted by ( F, A ) and is defined as (F, A) = {<m, µF(e)(m), 1 - µF(e)(m)>|m∈U and 
e∈A}. Here µF(e)(m) is the membership function of m for the parameter e and F is a 
mapping F : A → P(U), P(U) is the set of all intuitionistic fuzzy sets of U. 

Example 5.1. Let there are five objects as the universal set where U = { m1, m2, m3, 
m4, m5 }and the set of parameters as E = { beautiful, moderate, wooden, muddy, 
cheap, costly }and  
Let A = {beautiful, moderate, wooden}. Let the attractiveness of the objects repre-
sented by the intuitionistic fuzzy soft sets (F, A) is given as 
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F(beautiful) ={ m1/(.6,.4), m2/(.7,.2), m3/(.5,.4), m4/(.6,.3), m5/(.8,.1)}, F(moderate) ={ m1/(.7,.2), 
m2/(.8,.1), m3/(.7,.2), m4/(.8,.1), m5/(1,0)}and F(wooden) ={ m1/(.8,.1), m2/(.6,0), m3/(.6,.2), m4/(.2,.4), 
m5/(.3,.5)}. 

Then the intuitionistic fuzzy soft sets (F, A) becomes as 
F(beautiful) ={ m1/(.6,.4), m2/(.7,.3), m3/(.5,.5), m4/(.6,.4), m5/(.8,.2)}, F(moderate) ={ m1/(.7,.3), 

m2/(.8,.2), m3/(.7,.3), m4/(.8,.2), m5/(1,0)}and F(wooden) ={ m1/(.8,.2), m2/(.6,.4), m3/(.6,.4), m4/(.2,.8), 
m5/(.3,.7)}. 

Let ( F, A ) and ( G, B ) be two intuitionistic fuzzy soft sets over the same universe 
U and A, B be two sets of parameters. Then we have the following propositions: 

Proposition   5.1 

i. [( F, A )∩ ( G, B ) ] = ( F, A ) ∩ ( G, B ). 
ii. [( F, A )∪ ( G, B ) ] = ( F, A ) ∪ ( G, B ). 
iii.  ( F, A ) =  ( F, A ). 
iv. [( F, A )]n = [ ( F, A )]n, for any finite positive integer n. 
v. [( F, A )∩ ( G, B ) ]n = [ ( F, A ) ∩  ( G, B )]n. 
vi. [( F, A )∪ ( G, B ) ]n = [ ( F, A ) ∪ ( G, B )]n. 

Proof 

i.   [( F, A )∩ ( G, B ) ] 

= {<m, max (µF(e)(m), µG(e)(m)),  min(νF(e)(m), νG(e)(m))>|m∈U} 
= {<m, max (µF(e)(m), µG(e)(m)),  1- max (µF(e)(m), µG(e)(m)) >|m ∈U} 
= {<m, max (µF(e)(m), µG(e)(m)),  min(1- µF(e)(m), 1-µG(e)(m)) >|m ∈U} 
={<m, µF(e)(m), 1- µF(e)(m)>|m∈U}∩{<m,µG(e)(m), 1- µG(e)(m)>|m∈U} 
= ( F, A ) ∩  ( G, B). 

Hence the result is proved.  

ii.  [( F, A ) ∪ ( G, B ) ] 
= {<m, min (µF(e)(m), µG(e)(m)),  max(νF(e)(m), νG(e)(m))>|m∈U} 
= {<m, min (µF(e)(m), µG(e)(m)),  1- min (µF(e)(m), µG(e)(m)) >|m ∈U} 
= {<m, min (µF(e)(m), µG(e)(m)),  max(1- µF(e)(m), 1-µG(e)(m)) >|m ∈U} 
={<m, µF(e)(m), 1- µF(e)(m)>|m∈U}∪{<m,µG(e)(m), 1- µG(e)(m)>|m∈U} 
= ( F, A ) ∪  ( G, B). 

Hence the result. 

iii. Let (F, A) = {<m, µF(e)(m),  νF(e)(m)>|m∈U and e∈A}. 
Then (F, A) = {<m, µF(e)(m), 1 - µF(e)(m)>|m∈U and e∈A}. 
So (F, A) = {<m, µF(e)(m), 1 - µF(e)(m)>|m∈U and e∈A}. 

Hence the result follows. 

iv.  Let the intuitionistic fuzzy soft set ( F, A ) = {<m, µF(e)(m), νF(e)(m)>|m∈U 
and e∈A}.  

Then for any finite positive integer n 
(F, A)n = {<m, [µF(e)(m)]n, 1-[1 - νF(e)(m)]n>|m∈U and e∈A}   [ 8 ] 

So, (F, A)n = {<m, [µF(e)(m)]n, 1- [µF(e)(m)]n>|m∈U and e∈A}. 
Again,    [ (F, A)]n = {<m, [µF(e)(m)]n, 1- [µF(e)(m)]n>|m∈U and e∈A} as  

(F, A) = {<m, µF(e)(m), 1 - µF(e)(m)>|m∈U and e∈A}. 
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Hence the result. 

v.  As   ( F, A )n ∩ ( G, B )n  = [( F, A )∩ ( G, B ) ]n             [ 9 ] 
[( F, A ) ∩ ( G, B ) ]n = [ [( F, A ) ∩  ( G, B )]]n,         by the  proposition 5.1.iv 

    = [ ( F, A ) ∩  ( G, B )]n ,         by  the proposition  5.1.i 

vi. As ( F, A )n ∪ ( G, B )n = [ ( F, A ) ∪ ( G, B ) ]n [9]  
So, [( F, A ) ∪ ( G, B ) ]n = [ [( F, A ) ∪ ( G, B )]]n,          by the proposition 5.1.iv 

= [ ( F, A ) ∪ ( G, B ) ]n,          by  the proposition 5.1.ii 
The result is proved. 

Now we shall define another operation, the possibility operation on intuitionistic 
fuzzy soft sets. 

Let U be a universal set. E be a set of parameters and A be a subset of E. Let the 
intuitionistic fuzzy soft set  

(F, A) = {<m, µF(e)(m),  νF(e)(m)>|m∈U and e∈A}, where µF(e)(m), νF(e)(m) be the 
membership and non-membership functions respectively. 

Definition 5.2. Let U be the universal set and E be the set of parameters. The possibil-
ity operation on the intuitionistic fuzzy soft set ( F, A ) is denoted by ◊( F, A ) and is 
defined as 

◊( F, A )  = {<m, 1 - νF(e)(m),  νF(e)(m)>|m∈U and e∈A }. 

Example 5.2. Let there are five objects as the universal set where U = {m1, m2, m3, 
m4, m5}. Also let the set of  parameters as E = { beautiful, costly, cheap, moderate, 
wooden, muddy } and A = { costly, cheap, moderate}. 

The cost of the objects represented by the intuitionistic fuzzy soft sets (F, A) is 
given as 

F(costly) ={ m1/(.7,.2), m2/(.8,0), m3/(.8,.1), m4/(.9,0), m5/(.6,.2)}, F(cheap) ={ m1/(.5,.2), 
m2/(.7,.1), m3/(.4,.2), m4/(.8,.1), m5/(.4,.2)}and F(moderate) ={ m1/(.8,.2), m2/(.6,.3), m3/(.5,.1), m4/(.9,0), 
m5/(.7,.1)}. 

Then the intuitionistic fuzzy soft set ◊( F, A ) is as  
F(costly) ={ m1/(.8,.2), m2/(1,0), m3/(.9,.1), m4/(1,0), m5/(.8,.2)}, F(cheap) ={ m1/(.8,.2), m2/(.9,.1), 

m3/(.8,.2), m4/(.9,.1), m5/(.8,.2)}and F(moderate) ={ m1/(.8,.2), m2/(.7,.3), m3/(.9,.1), m4/(1,0), 
m5/(.9,.1)}. 

Let ( F, A ) and ( G, B ) be two intuitionistic fuzzy soft sets over the same universe 
U and A, B be two sets of parameters. Then we have the propositions: 

Proposition 5.2 

i. ◊ [( F, A ) ∩ ( G, B ) ] = ◊ ( F, A ) ∩ ◊ ( G, B ). 
ii. ◊ [( F, A ) ∪ ( G, B ) ] = ◊ ( F, A ) ∪ ◊ ( G, B ). 
iii. ◊◊ ( F, A ) = ◊ ( F, A ). 
iv. ◊ [( F, A )]n = [◊ ( F, A )]n, for any finite positive integer n. 
v. ◊ [( F, A ) ∩ ( G, B ) ]n = [◊ ( F, A ) ∩ ◊ ( G, B )]n. 
vi. ◊ [( F, A ) ∪ ( G, B ) ]n = [◊ ( F, A ) ∪ ◊ ( G, B )]n. 
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Proof 

i.   ◊ [( F, A ) ∩ ( G, B ) ] 

= ◊{<m, max (µF(e)(m), µG(e)(m)),  min(νF(e)(m), νG(e)(m))>|m∈U} 
= {<m, 1- min (νF(e)(m), νG(e)(m)),  min(νF(e)(m), νG(e)(m))>|m ∈U} 
= {<m, max (1- νF(e)(m), 1-νG(e)(m)),  min(νF(e)(m), νG(e)(m))>|m ∈U} 
={<m, 1-νF(e)(m), νF(e)(m)>|m∈U}∩{<m,1-νG(e)(m), νG(e)(m)>|m∈U} 
= ◊ ( F, A ) ∩ ◊ ( G, B ). 

Hence the result is proved.  

ii.    ◊ [( F, A ) ∪ ( G, B ) ] 

= ◊{<m, min (µF(e)(m), µG(e)(m)),  max(νF(e)(m), νG(e)(m))>|m∈U} 
= {<m, 1- max(νF(e)(m), νG(e)(m)), max(νF(e)(m), νG(e)(m) >|m ∈U} 
= {<m, min (1-νF(e)(m), 1-νG(e)(m)),  max(νF(e)(m), νG(e)(m)) >|m ∈U} 
={<m, 1-νF(e)(m), νF(e)(m)>|m∈U}∪{<m, 1-νG(e)(m), νG(e)(m)>|m∈U} 
= ◊ ( F, A ) ∪ ◊ ( G, B ). 

Hence the result is proved. 

iii.      ◊( F, A ) = {<m, 1 - νF(e)(m),  νF(e)(m)>|m∈U and e∈A}.  
So ◊◊( F, A ) = {<m, 1 - νF(e)(m),  νF(e)(m)>|m∈U and e∈A}. 
Hence the result. 

iv. For any positive finite integer n, ( F, A ) n = {<m, [µF(e)(m)]n,  1-[1-
νF(e)(m)]n>|m∈U } ∀ e∈A, by [ 9 ] 

So, ◊( F, A ) n = {<m, 1-[1-[1-νF(e)(m)]n],  1-[1-νF(e)(m)]n>|m∈U }  
  = {<m, [1-νF(e)(m)]n,  1-[1-νF(e)(m)]n>|m∈U } ∀ e∈A. 

Again [◊(  F, A )] n = {<m, [1-νF(e)(m)]n,  1-[1-νF(e)(m)]n>|m∈U } ∀ e∈A. 
Hence the result follows. 

v.      As [( F, A )∩ ( G, B ) ]n = ( F, A )n∩ ( G, B )n, by [ 9 ] 
          ◊[( F, A )∩ ( G, B ) ]n = ◊( F, A )n∩ ◊ ( G, B )n. 

The result is proved. 

vi.     As  [( F, A ) ∪ ( G, B ) ]n = ( F, A )n∪ ( G, B )n,  by [ 9 ] 
          ◊[( F, A ) ∪ ( G, B ) ]n = ◊( F, A )n∪ ◊ ( G, B )n. 

Hence the result follows. 
For any intuitionistic fuzzy soft set ( F, A ) we have the following propositions.  

Proposition   5.3 

i. (F, A) Ã (F, A) Ã ◊ (F, A) 
ii. ◊  (F, A)  =  (F, A)   
iii.  ◊ (F, A)  = ◊ (F, A) 

Proof 

i.   Let ( F, A ) be an intuitionistic fuzzy soft set over the universe U.  
Then ( F, A ) = { <m, µF(e)(m),  νF(e)(m)>|m∈U} where e ∈ A.  
So,  ( F, A )  = { <m, µF(e)(m),  1-µF(e)(m) >|m∈U}, and 
◊ ( F, A ) = { <m, 1-νF(e)(m), νF(e)(m)>|m∈U}.  
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Since 1 - µF(e)(m) > νF(e)(m) ( F, A )  Õ ( F, A ). [ as µF(e)(m)+ νF(e)(m)+pF(e)(m) = 1 ] 
Again  since 1 - νF(e)(m) > µF(e)(m),  ( F, A ) Õ ◊ ( F, A ). 
Hence the result follows. 

ii.  For the intuitionistic fuzzy soft set ( F, A ) = { <m, µF(e)(m),  νF(e)(m)>|m∈U}, 
where e ∈ A.   

     We have   ( F, A )  = { <m, µF(e)(m),  1-µF(e)(m) >|m∈U}. 
So ◊  ( F, A )  = { <m, 1-(1-µF(e)(m)),  1-µF(e)(m) >|m∈U}. 
                        = { <m, µF(e)(m),  1-µF(e)(m) >|m∈U}. 
                        =  ( F, A ). 

iii.    The proof is similar to the proof of the proposition 5.3.ii. 

Let ( F, A ) and ( G, B ) be two intuitionistic fuzzy soft sets over the common uni-
verse U, then we have the following propositions: 

Proposition   5.4 

i.   [ ( F, A ) Ÿ ( G, B ) ]    =   ( F, A ) Ÿ   ( G, B ).  
ii.   [ ( F, A ) ⁄ ( G, B ) ]    =   ( F, A ) ⁄   ( G, B ). 
iii.  ◊ [ ( F, A ) Ÿ ( G, B ) ]    =  ◊ ( F, A ) Ÿ  ◊ ( G, B ).  

iv.  ◊ [ ( F, A ) ⁄ ( G, B ) ]    =  ◊ ( F, A ) ⁄  ◊ ( G, B ). 

Proof 

i.    Let ( H, A µ B ) =  ( F, A ) ⁄ ( G, B ). 
Hence, ( H, A µ B ) = { <m, µH(a ,b)(m),  νH(a ,b) (m)>|m∈U },  
where mH(a, b)(m) = min { µF(a)(m), µG(b)(m) } and νH(a, b) (m) = max { νF(a)(m), 
νG(b)(m) }. 

So,  ( H, A µ B ) = { <m, µH(a, b)(m),  1 - µH(a, b)(m)>|m∈U }, for ( a,  b ) ∈ A µ B 

= { < m, min (µF(a)(m), µG(b)(m) ), 1 - min (µF(a)(m), µG(b)(m) ) > |m∈U } 
= { < m, min (µF(a)(m), µG(b)(m) ), max (1 - µF(a)(m),  1- µG(b)(m) ) > |m∈U } 
= { < m, µF(a)(m), 1- µF(a)(m) > |m∈U} AND {<m, µG(b)(m), 1- µG(b)(m)>|m∈U} 
=  ( F, A ) ⁄  ( G, B ). 

Hence the result is proved. 

ii.  Let ( O, A µ B ) =  ( F, A ) ¤ ( G, B ). 
Hence, ( O, A µ B ) = { <m, µO(a, b)(m),  νO(a, b) (m)>|m∈U },  
where mO(a, b)(m) = max { µF(a)(m), µG(b)(m) } and νO(a, b) (m) = min { νF(a)(m), 
νG(b)(m) }. 

So,  ( O, A µ B ) = { <m, µO(a, b)(m),  1 - µO(a, b)(m)>|m∈U }, for ( a,  b ) ∈ A µ B 

= { < m, max (µF(a)(m), µG(b)(m) ), 1 - max (µF(a)(m), µG(b)(m) ) > |m∈U } 
= { < m, max (µF(a)(m), µG(b)(m) ), min (1 - µF(a)(m),  1- µG(b)(m) ) > |m∈U } 
= { < m, µF(a)(m), 1- µF(a)(m) > |m∈U} OR {<m, µ G(b)(m), 1- G(b)(m)> |m∈U} 
=  ( F, A ) ¤  ( G, B ). 

Hence the result is proved. 
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iii.  Let ( H, A µ B ) =  ( F, A ) ⁄ ( G, B ). 
Hence, ( H, A µ B ) = { <m, µH(a, b)(m),  νH(a, b) (m)>|m∈U },  

where mH(a, b)(m) = min {µF(a)(m), µG(b)(m)} and νH(a, b) (m) = max {νF(a)(m), 
νG(b)(m)}. 

So, ◊ ( H, A µ B ) = { <m, 1 - νH(a, b) (m),  νH(a, b) (m) >|m∈U }, for ( a,  b ) ∈  
A µ B 

= { < m, 1 - max (νF(a)(m), νG(b)(m)), max ( νF(a)(m), νG(b)(m) ) > |m∈U } 
= { < m, min (1- νF(a)(m), 1- νG(b)(m)), max ( νF(a)(m), νG(b)(m) ) > |m∈U } 
= {< m, 1- νF(a)(m), νF(a)(m)> |m∈U} AND {<m, 1- ν G(b)(m), ν G(b)(m)> |m∈U} 
= ◊ ( F, A ) ⁄ ◊ ( G, B ). 

Hence the result is proved. 

iv.  The proof  is similar to the proof of the proposition 5.4.iii. 

6    An Application of Newly Defined Operation on IFSS 

Here we consider the problem of selecting the most suitable object out of n alterna-
tives based on m parameters where information available are intuitionistic fuzzy soft 
in nature. Suppose a person wants to select an object with certain characteristics. If all 
the objects are of similar quality, then it is very difficult to choose the appropriate 
object.  For the sake of completeness, let the characteristics in terms of parameter as E 
= {long, very long, short, costly, very costly, moderate}. Suppose that the person 
wants to select an object from the view point of its possible ‘size’ and ‘cost’. Let there 
are four objects with almost same quality as the universe, U = {o1, o2, o3, o4}. These 
four objects are chosen for the parameter long, very long and moderate. The ‘cost’ of 
these four objects are considered for the parameters costly and moderate. Since  
the data present are not crisp but intuitionistic fuzzy soft, it is difficult to select the 
appropriate object as usual. The decision for selection will be made with the help of 
‘similarity measurement method’. In this method we obtain that particular object ok 
dominates all the objects if  

S ( S, Fk ) ¥ S ( S, Fi ), " i, where Fk is the criteria value of ok. In case a tie occurs, 
we select that object corresponding to which the total indeterministic part is  
maximum. 

For a particular problem let the intuitionistic fuzzy soft sets (F, A) which represents 
the size of the objects is as  

F(long) ={ o1/(.6,.2), o2/(.7,.2), o3/(.8,.1), o4/(.6,.2)}, F(very long) ={ o1/(.7,.2), o2/(.8,.2), o3/(.6,.3), 
o4/(.7,.2)}and  

F(moderate) ={ o1/(.4,.3), o2/(.6,.2), o3/(.7,.1), o4/(.8,.2)}. 
Also let the cost of the objects represented by the intuitionistic fuzzy soft sets  

(G, B) is as 

G(moderate) ={ o1/(.5,.2), o2/(.4,.4), o3/(.6,.3), o4/(.5,.4)}, F(costly) ={ o1/(.6,.2), o2/(.7,.1), 
o3/(.8,.2), o4/(.5,.1)}. 
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Then the tabular representation of the IFSS (F, A) ⁄ (G, B) is as below: 

U (long,
moderate)

(long, costly) (very long,
moderate)

(very long, 
costly)

(moderate, moderate) (moderate, costly)

o1 (.5,.2) (.6,.2) (.5,.2) (.6,.2) (.4,.3) (.4,.3)
o2 (.4,.4) (.7,.2) (.4,.4) (.7,.2) (.4,.4) (.6,.2)
o3 (.6,.3) (.8,.2) (.6,.3) (.6,.2) (.6,.3) (.7,.2)
o4 (.5,.4) (.5,.2) (.5,.4) (.5,.2) (.5,.4) (.5,.2)  

Hence, the tabular representation of the IFSS ◊[(F, A) ⁄ (G, B)] is as below: 

U (long,
moderate)

(long, costly) (very long, 
moderate)

(very long, 
costly)

(moderate, moderate) (moderate, costly)

o1 (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.7,.3) (.7,.3)
o2 (.6,.4) (.8,.2) (.6,.4) (.8,.2) (.6,.4) (.8,.2)
o3 (.7,.3) (.8,.2) (.7,.3) (.8,.2) (.7,.3) (.8,.2)
o4 (.6,.4) (.8,.2) (.6,.4) (.8,.2) (.6,.4) (.8,.2)  

By similarity measurement we have  

S( S, F1 ) = 0.77,  
S( S, F2 ) = 0.70,  
S( S, F3 ) = 0.75,  
S( S, F4 ) = 0.70. 

Here, the maximum value is S( S, F1 ). Therefore, according to his choice parameter 
the object o1 will be the appropriate option for the person. 

7   Conclusion 

We have introduced new operations on intuitionistic fuzzy soft set and some proper-
ties of these operations have also been established. A simple example has been pre-
sented as an application of this mathematical tool. 
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Abstract. In this paper, we consider a new weak and strong forms of
fuzzy α-irresolute and fuzzy α-closure via the concept of Fgα-closed
sets, which we call fuzzy approximately α-irresolute maps, fuzzy
approximatelyα-closed maps and fuzzy contra α-irresolute maps.
Moreover, it turns out that we can use these notions to obtain a new
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1 Introduction

The concept of fuzzy set and fuzzy set operations were first introduced by
Zadeh in his classical paper [6]. Subsequently several authors have applied var-
ious basic concepts from general topology to fuzzy sets and developed the the-
ory of fuzzy topological spaces. The concept of fuzzy generalized α-closed
sets was introduced by R. K. Saraf and S. Mishra [5]. In 2004 M.Caldas [2]
defined and studied weak and strong forms of irresolute maps in general
topology.

In this paper we introduce the concept of irresoluteness called Fap α-
irresolute maps and Fap α-closed maps by using Fgα-closed sets and study
some of their basic properties , this definition enables us to obtain conditions
under which maps and inverse maps preserves gα-closed sets. Also, in this pa-
per we present a new generalization of irresoluteness called fuzzy contra α-
irresolute map. Finally, we also characteraize the class of fuzzy α-T1/2 spaces
in terms of Fap α-irresolute and Fap α-closed maps.
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2 Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, η) denote fuzzy topological spaces
(briefly, fts) in Chang’s [3] sense, on which no separation axioms are assumed
unless explicitly stated. For a fuzzy set A of a fuzzy topological space X , the no-
tion cl(A), int(A) and 1−A denote the closure, the interior and the complement
of A respectively. In order to make the concepts of the paper as self contained
as possible, we briefly describe certain definitions, notions and some properties.
A fuzzy set A of a space (X, τ) is called a fuzzy α-open (breifly, Fα-open)
set [3] if A ≤ int(cl(int(A))) and a fuzzy α-closed (breifly, Fα-closed) set if
cl(int(cl(A))) ≤ A. By FαO(X, τ), we denote the family of all Fα-open sets of
fts X .

Definition 2.1. A subset A of a topological space (X, τ) is called a fuzzy
generalizedα-closed (briefly Fgα-closed) set [5] if αcl(A) ≤ H whenever A ≤ H
and H is Fα-open in (X, τ). The complement of Fgα-closed set is called Fgα-
open set.

Definition 2.2. A map f : (X, τ) → (Y, σ) is called a Fuzzy pre α-closed
(resp. fuzzy pre α-open) if for every Fα-closed (resp. Fα-open) set B in (X, τ),
f(B) is Fα-closed (resp. Fα-open) in (Y, σ).

Definition 2.3. A map f : (X, τ) → (Y, σ) is called a fuzzy α-irresolute
[4] if for each V ∈ FαO(Y, σ), f−1(V ) ∈ FαO(X, τ).

3 On Fap α-Irresolute, Fap α-Closed and
Fc α-Irresolute Maps

Definition 3.1. A map f : (X, τ) → (Y, σ) is called a fuzzy approximately
α-irresolute (briefly, Fa α-irresolute) map if, αcl(A) ≤ f−1(H) whenever H
is a Fα-open subset of (Y, σ), A is Fgα-closed subset of (X, τ) and A ≤ f−1(H).

Definition 3.2. A map f : (X, τ) → (Y, σ) is called a fuzzy approximately
α-closed (briefly, Fa α-closed) map if, f(H) ≤ αint(A) whenever H is a Fgα-
open subset of (Y, σ), A is Fα-closed subset of (X, τ) and f(H) ≤ A.

Theorem 3.3

(i) A map f : (X, τ) → (Y, σ) is called a Fap α-irresolute if f−1(A) is Fα-
closed in (X, τ) for every A ∈ FαO(Y, σ).

(ii) A map f : (X, τ) → (Y, σ) is called a Fap α-closed if f(B) ∈ FαO(Y, σ) for
every Fα-closed subset B of (X, τ).

Proof

(i) Let F ≤ f−1(A), where A ∈ FαO(Y, σ) and F is a Fgα-closed subset
of (X, τ). Therefore, αcl(F ) ≤ αcl(f−1(A)) = f−1(A). Thus f is Fap α-
irresolute.
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(ii) Let f(B) ≤ A, where B is Fα-closed subset of (X, τ) and A is a Fgα-open
subset of (Y, σ). Therefore αint(f(B)) ≤ αint(A). Then f(B) ≤ αint(A).
Thus f is Fap α-closed.

Theorem 3.4. Let f : (X, τ) → (Y, σ) be a map from a space (X, τ) to a space
(Y, σ).

(i) If the Fα-open and Fα-closed sets of (X, τ) coincide, then f is Fap α-
irresolute if and only if f−1(A) is Fα-closed in (X, τ) for every A ∈ Fα
O(Y, σ).

(ii) If the Fα-open and Fα-closed sets of (Y, σ) coincide, then f is Fap α-closed
if and only if f(B) ∈ FαO(Y, σ) for every Fα-closed subset B of (X, τ).

Proof

(i) The sufficiency is stated in theorem 3.3.
Necessity. Assume that f is Fap α-irresolute. Let A be an arbitrary subset
of (X, τ) such that A ≤ Q where Q ∈ FαO(X, τ). Then by hypothesis
αcl(A) ≤ αcl(Q) = Q. Therefore all subsets of (X, τ) are Fgα-closed (and
hence all are Fgα-open). So for any A ∈ FαO(Y, σ), f−1(A) is Fgα-closed
in (X, τ). Since f is Fap α-irresolute, αcl(f−1(A)) ≤ f−1(A). Therefore
αcl(f−1(A)) = f−1(A), i.e. f−1(A) is Fα-closed in (X, τ).

(ii) The sufficiency is clear by theorem 3.3.
Necessity. Assume that f is Fap α-closed. As in (i), we obtain that all subsets
of (Y, σ) are Fgα-open. Therefore for any Fα-closed subset B of (X, τ), f(B)
is Fap α-closed f(B) ≤ αint(f(B)). Hence f(B) = αint(f(B)), i.e. f(B) is
Fα-open.

Corollary 3.5. Let f : (X, τ) → (Y, σ) be a map such that:

(i) If the Fα-open and Fα-closed sets of (X, τ) coincide, then f is Fap α-
irresolute if and only if f is Fα-irresolute.

(ii) If the Fα-open and Fα-closed sets of (Y, σ) coincide, then f is Fap α-closed
if and only if f is Fpre α-closed.

Theorem 3.6. If a map f : (X, τ) → (Y, σ) is surjective Fα-irresolute and Fap
α-open, then f−1(A) is Fgα-open whenever A is Fgα-open subset of (Y, σ).

Proof. Let A be Fgα-open subset of (Y, σ). Suppose that F ≤ f−1(A),
where F ∈ FαO(X, τ). Taking compliments, we obtain f−1(Ac) ≤ F c or Ac ≤
f−1(F c). Since f is an Fap α-open and αint(A) = A ∧ cl(int(cl(A))) and
αcl(A) = A∨ cl(int(cl(A))), then (αint(A))c = αcl(Ac) ≤ f(F c). It follows that
(f−1(αint(A)))c ≤ F c and hence F ≤ f−1(αint(A)). Since f is Fα-irresolute
f−1(αint(A)) is Fα-open. Thus, we have F ≤ f−1(αint(A)) = αint(f−1

(αint(A))) ≤ αint(f−1(A)). This implies that f−1(A) is Fgα-open in (X, τ).

Theorem 3.7. If a map f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be two
maps such that gof : (X, τ) → (Z, η), then
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(i) gof is Fap α-closed, if f is Fuzzy pre α-closed and g is Fap α-closed.
(ii) gof is Fap α-closed, if f is Fap α-closed and g is Fuzzy pre α-open and

g−1 preserves Fgα-open sets.
(iii) gof is Fap α-irresolute if f is Fap α-irresolute and g is Fα-irresolute.

Proof

(i) Suppose B is Fα-closed set in (X, τ) and A is Fgα-open subset of (Z, η)
for which (gof)(B) ≤ A. Then f(B) is Fα-closed in Y because f is
Fuzzy pre α-closed. Since g is Fap α-closed, g(f(B)) ≤ αint(A). This
implies that gof is Fap α-closed.

(ii) Suppose B is Fα-closed set in (X, τ) and A is Fgα-open subset of (Z, η) for
which (gof)(B) ≤ A. Hence f(B) ≤ g−1(A). Then f(B) ≤ αint(g−1(A)),
because g−1(A) is Fgα-open and f is Fap α-closed. Thus (gof)(B) =
g(f(B)) ≤ g(αint(g−1(A))) ≤ αint(g(g−1(A))) = g(f(B)) ≤ αint(A).
This implies that gof is Fap α-closed.

(iii) Suppose E is Fgα-closed subset of (X, τ) and H ∈ FαO(Z, η), for which
E ≤ (gof)−1(H). Then g−1(H) ∈ FαO(Y ) because g is Fα-irresolute.
Since f is Fap α-irresolute, αcl(E) ≤ f−1(g−1(H)) = (gof)−1(H). This
proves that gof is Fap α-irresolute.

Definition 3.8. A map f : (X, τ) → (Y, σ) is called a Fuzzy contra-α-irresolute
(briefly, Fc α-irresolute)if f−1(A) is Fα-closed in (X, τ) for each A∈FαO(Y, σ).

Definition 3.9. A map f : (X, τ) → (Y, σ) is called a Fuzzy contra-pre-α-
closed (briefly, Fcp α-closed) if f−1(B) ∈ FαO(Y, σ) for each Fα-closed set B
of (X, τ).

Definition 3.10. A map f : (X, τ) → (Y, σ) is called a perfectly fuzzy contra-
α-irresolute (briefly, Pfc α-irresolute)if the inverse image of every Fα-open set
in Y is Fα-clopen in X .

Every pfc-α-irresolute map is Fc-α-irresolute. Clearly, the following diagram
holds and none of its immplicatins are reversible.

Fc α − irresolute

↗ ↘
Pfc α − irresolute Fap α − irresolute

↘ ↗
F α − irresolute

The next two theorems establish conditions under which maps and inverse maps
preserve fuzzy generalized α-closed sets.

Theorem 3.11. If a map f : (X, τ) → (Y, σ) is Fap α-irresolute and Fuzzy
pre-α-closed then for every Fgα-closed set E of (X, τ), f(A) is Fgα-closed set
of (Y, σ).
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Proof. Let A be Fgα-closed set of (X, τ), let f(A) ≤ B where B ∈ FαO(Y, σ).
Then A ≤ f−1(B) holds. Since f is Fap α-irresolute, αcl(A) ≤ f−1(B) and
hence f(αcl(A)) ≤ B. Therefore, we have αcl(A) ≤ αcl(f(αcl(A))) = f(αcl(A))
≤ B. Hence f(A) is Fgα-closed in Y .

Theorem 3.12. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be two maps
such that gof : (X, τ) → (Z, η), then

(i) gof is Fc α-irresolute, if g is fuzzy irresolute and f is Fc α-irresolute.
(ii) gof is Fc α-irresolute, if g is Fc α-irresolute and f is fuzzy irresolute.

Proof. It is straight forward. Now we state the following theorems whose proof
is straight forward and hence omitted.

Theorem 3.13. Let f : (X, τ) → (Y, σ) be a map. Then the following con-
ditionds are equivalent.

(i) f is Fc α-irresolute.
(ii) The inverse image of each Fα-closed set in Y is Fα-open in X .

Theorem 3.14. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be two maps
and gof : (X, τ) → (Z, η), then

(i) gof is Fcp α-open, if f is Fuzzy pre-α-open and g is Fcp α-open.
(ii) gof is Fcp α-open, if f is Fcp α-open and g is Fuzzy pre-α-open.

Theorem 3.15. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be two maps
such that gof : (X, τ) → (Z, η) is a Fcp α-open map. Then

(i) gof is Fα-irresolute surjection, then g is Fcp α-open.
(ii) gof is Fα-irresolute injection, then f is Fcp α-open.

Proof.

(i) Suppose A is any arbitrary Fα-open set in Y . Since f is Fα-irresolute,
f−1(A) is Fα-open in X . Moreover, gof is Fcp α-open and f is surjective,
then (gof)(f−1(A)) = g(A) is Fα-closed in Z. This implies that g is a Fcp
α-open map.

(ii) Suppose A is any arbitrary Fα-open set in X . Since gof is Fcp α-open,
(gof)(A) is Fα-closed in Z. Since g is a Fα-irresolute injection, g−1(gof)(A)
= f(A) is Fα-closed in Y . This implies that f is a Fcp α-open map.

4 A Characterization of Fα-T1/2 Spaces

In the following result, we offer a characterization of the class of Fα-T1/2 spaces
by using the concepts of Fap α-irresolute and Fap α-closed maps.

Definition 4.1. A space (X, τ) is said to be Fuzzy α-T1/2 (briefly, Fα-T1/2)
space, if every Fgα-closed set is Fα-closed.

Theorem 4.2. Let (X, τ) be a fuzzy topological space, then the following state-
ments are equivalent:
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(i) (X, τ) is Fα-T1/2 space.
(ii) For every fuzzy topological space (Y, σ) and every map f : (X, τ) → (Y, σ),

f is Fap α-irresolute.

Proof. (i) ⇒ (ii) Let A be a Fgα-closed subset of (X, τ) and suppose that
A ≤ f−1(B), where B ∈ FαO(Y ). Since, (X, τ) is Fα-T1/2 space, A is Fα-closed
(i.e. A = αcl(A)). Therefore, αcl(A) ≤ f−1(B), then f is Fap α-irresolute.
(ii) ⇒ (i) Let B be a Fgα-closed subset of (X, τ) and let Y be the set X with
topology σ = {1, B, 0}. Finally let ff : (X, τ) → (Y, σ) be the identity map. By
assumption, f is Fap α-irresolute, since B is Fgα-closed in (X, τ) and Fα-open
in (Y, σ) and B ≤ f−1(B). It follows that αcl(B) ≤ B. Hence B is Fα-closed in
(X, τ) and therefore it is Fα-T1/2.

Theorem 4.3. Let (Y, σ) be a fuzzy topological space. Then the following state-
ments are equivalent:

(i) (Y, σ) is Fα-T1/2 space.
(ii) For every space (Y, σ) and every map f : (X, τ) → (Y, σ), f is Fap α-closed.

Proof. Analogous to theorem 4.2 making the obvious changes.
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1 Introduction

The notion of fuzzy α-open sets in fuzzy topological spaces was introduced and
investigated by A.S. Bin Shahna [1]. Ideals in fuzzy topological spaces have been
considered since 1997. In 2007, E.Hatir et al. [3] have introduced the concept of
fuzzy semi-I-open set via fuzzy ideals. The notion of fuzzy pre-I-open sets was
introduced and investigated by A. Nasef et al. [5]. Recently in [8], fuzzy α-I-open
sets has defined and using this sets proved decomposition of continuity in fuzzy
ideal topological spaces. In this paper, we introduce fuzzy strongly α-I-open sets
and establish a decomposition of continuity.

For a space A of a fuzzy topological space (X, τ), cl(A), int(A) is denoted
by closure of A and interior of A respectively. A non-empty collection of fuzzy
sets I of a sets X is called a fuzzy ideal [4,7] if and only if (i) if A ∈ I and
A ⊆ B, then B ∈ I (heredity) and (ii) if A, B ∈ I then A ∪ B ∈ I (finite
additivity). The triple (X, τ, I) means a fuzzy topological space with a fuzzy
ideal I and fuzzy topology τ . For (X, τ, I), the fuzzy local function A ≤ X
with respect to τ and I is denoted by A∗(τ, I) (briefly A∗) and is defined as
A∗(τ, I) = ∨{x ∈ X : A ∧ U /∈ I for everyU ∈ τ}. Fuzzy closure operator of a
fuzzy set A in (X, τ, I) is defined as cl∗(A) = A∨A∗. In (X, τ, I), the collection
τ∗(I) means an extension of fuzzy topological space than τ via fuzzy ideal which
is constructed by considering the class β = {U − E : U ∈ τ, E ∈ I} as a base.
A fuzzy subset A in (X, τ, I) is called fuzzy ideal open [6] if A ≤ int(A∗). The
collection of all fuzzy ideal open sets in (X, τ, I) will be denoted by FIO(X).
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2 Preliminaries

First we will recall some definitions used in sequel.

Definition 2.1. A subset A of a fuzzy ideal topological space (X, τ, I) is said
to be

1. fuzzy α-I-open [8] if A ≤ int(cl∗(int(A))),
2. fuzzy pre-I-open [5] if A ≤ int(cl∗(A)) and
3. fuzzy semi-I-open [3] if A ≤ cl∗(int(A)).

Definition 2.2. A function f : (X, τ, I) → (Y, σ) is said to be

1. fuzzy continuous [2] if for every V ∈ σ, f−1(V ) is fuzzy open,
2. fuzzy semi-I-continuous [3] if for every V ∈ σ, f−1(V ) is fuzzy semi-I-open

and
3. fuzzy pre-I-continuous [5] if for every V ∈ σ, f−1(V ) is fuzzy pre-I-open.

3 Fuzzy Strongly α-I-Open Sets

Definition 3.1. A subset A of a fuzzy ideal topological space (X, τ, I) is said
to be

1. t-I-set if int(cl∗(A)) = int(A),
2. B-I-set if A = U ∧ V , where U ∈ τ and V is a t-I-set,
3. C-I-set if A = U ∧ V , where U ∈ τ and int(cl∗(int(V ))) = int(V ) and
4. A-I-set if A = U ∧ V , where U ∈ τ and V = (int(V ))∗.

Definition 3.2. A subset A of a fuzzy ideal topological space (X, τ, I) is said
to be fuzzy strongly α-I-open set if A is fuzzy α-I-open as well as a B-I-set.

The family of all fuzzy strongly α-I-open sets (resp. fuzzy α-I-open sets)in
(X, τ, I) is denoted by FSαIO(X, τ) or FSαIO(X) (resp. FαIO(X, τ) or
FαIO(X)).

Theorem 3.3. Every fuzzy strongly α-I-open set is fuzzy α-I-open.

Proof. It is obvious.

Theorem 3.4. Every fuzzy strongly α-I-open set is fuzzy pre-I-open.

Proof. Let A be fuzzy strongly α-I-open set in (X, τ, I). Then A is fuzzy α-I-
open set, A ≤ int(cl∗(int(A))) ≤ int(cl∗(A)). Therefore A is fuzzy pre-I-open.

Definition 3.5. A subset A of a fuzzy ideal space (X, τ, I) is fuzzy ∗-dense
in itself if A ≤ A∗.

Theorem 3.6. Let (X, τ, I) be a fuzzy ideal topological space. If A is fuzzy
∗-dense in itself, then A∗ = cl∗(A).
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Proof. Since A is fuzzy ∗-dense in itself, A ≤ A∗. Then cl∗(A) = A ∨ A∗ = A∗.

Theorem 3.7. In (X, τ, I), A is fuzzy strongly α-I-open if and only if there
exists U ∈ τ such that U ≤ A ≤ int(cl∗(U)).

Proof. Let A ∈ FSαIO(X). Then we have A ≤ int(cl∗(int(A))). Take int(A) =
U . Then U ≤ A ≤ int(cl∗(U)).

Conversely, let U be a fuzzy open set such that U ≤ A ≤ int(cl∗(U)). Since
U ≤ A, U ≤ int(A) and hence int(cl∗(U)) ≤ int(cl∗(int(A))). Thus, we obtain
A ≤ int(cl∗(int(A))).

Theorem 3.8. If A is a fuzzy strongly α-I-open set in (X, τ, I) and A ≤ B ≤
int(cl∗(A)), then B is fuzzy strongly α-I-open in (X, τ, I).

Proof. Since A ∈ FSαIO(X), there exists a fuzzy open set U such that U ≤
A ≤ int(cl∗(A)). By Theorem 3.7., we obtain B ∈ FSαIO(X).

Lemma 3.9. [6] For any (X, τ) if U ≤ X and V ∈ τ then

(1) cl(U∗(I)) ≤ cl(U)
(2) V ∧ U∗(I) ≤ (V ∧ U)∗(I).

Theorem 3.10. The intersection of any fuzzy open set and fuzzy strongly α-I-
open set is fuzzy strongly α-I-open set.

Proof. Let U ∈ τ and V ∈ FSαIO(X) in a fuzzy ideal topological space
(X, τ, I), then

U ∧ V ≤ U ∧ int(cl∗(int(V )))
≤ U ∧ int(int(V ) ∨ (int(V ))∗)
= int(U ∧ (int(V ) ∨ (int(V ))∗))
= int(int(U ∧ V ) ∨ (int(U ∧ V ))∗) (by Lemma 3.9.)
= int(cl∗(int(U ∧ V )))

U ∧ V ∈ FαIO(X).

Theorem 3.11. Every B-I-set is a C-I-set.

Proof. Let A be a B-I set. Then A = U ∧ V , where U ∈ τ and V is a
t-I-set. Then int(V ) = int(cl∗(V )) ≥ int(cl∗(int(V ))) ≥ int(V ) and hence
int(V ) = int(cl∗(int(V ))). This shows that A is a C-I-set.

Definition 3.12. A subset A of a fuzzy ideal topological space (X, τ, I) is said
to be FI-locally closed set if A = U ∧ V , where U ∈ τ and V = V ∗.

Theorem 3.13. Let (X, τ, I) be a fuzzy ideal topological space. A subset A of X
is FI-locally closed set if A is both fuzzy open and A-I-set.
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Proof. Let A be a fuzzy open and A-I-set, then A = G ∧ V , where G ∈ τ
and V = (int(V ))∗ = V ∗. This shows that A is FI-locally closed set.

The following Theorem gives a characterization of fuzzy open sets in terms of
fuzzy strongly α-I-open sets and A-I-sets.

Theorem 3.14. Let (X, τ, I) be a fuzzy ideal topological space. A subset A of
(X, τ, I) is fuzzy pre-I-open and B-I-set if A is fuzzy strongly α-I-open.

Proof. Let A be fuzzy strongly α-I-open set. Since every fuzzy α-I-open set
is fuzzy pre-I-open, then A is fuzzy pre-I-open and B-I-set.

Theorem 3.15. Let (X, τ, I) be a fuzzy ideal topological space. A subset A of
(X, τ, I) is fuzzy strongly α-I-open if and only if it is fuzzy semi-I-open, fuzzy
pre-I-open and B-I-set.

Proof

Necessity. It follows from the fact that every fuzzy α-I-open set is fuzzy semi-
I-open and fuzzy pre-I-open.

Sufficiency. Let A be a fuzzy semi-I-open, fuzzy pre-I-open and B-I-set. Then,
we have A ≤ int(cl∗(A)) ≤ int(cl∗(cl∗(int(A)))) = int(cl∗(int(A))). This shows
that A is fuzzy α-I-open set and also A is B-I-set. Therefore A is fuzzy strongly
α-I-open set.

4 Fuzzy Strongly α-I-Continuous Maps

Definition 4.1. A function f : (X, τ, I) → (Y, σ) is said to be

(1) A-I-continuous if for every V ∈ σ, f−1(V ) is A-I-set,
(2) B-I-continuous if for every V ∈ σ, f−1(V ) is B-I-set,
(3) C-I-continuous if for every V ∈ σ, f−1(V ) is C-I-set and
(4) FI-locally continuous if for every V ∈ σ, f−1(V ) is FI-locally closed.

Definition 4.2. A mapping f : (X, τ, I) → (Y, σ) is said to be fuzzy strongly
α-I-continuous if for every V ∈ σ, f−1(V ) is fuzzy strongly α-I-open.

Theorem4.3.Every fuzzy strongly α-I-continuousmap is fuzzy pre-I-continuous.

Proof. It follows from Theorem 3.4.

Theorem 4.4. Let f : (X, τ, I) → (Y, σ) be any mapping. Then f is FI-locally
continuous map if f is both fuzzy continuous and A-I-continuous.

Proof. It follows from Theorem 3.13.
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Theorem 4.6. Let f : (X, τ, I) → (Y, σ) be any mapping. Then f is fuzzy pre-
I-continuous and B-I-continuous if f is fuzzy strongly α-I-continuous.

Proof. It follows from Theorem 3.14.

Theorem 4.7. Let f : (X, τ, I) → (Y, σ) be any mapping. Then f is fuzzy
strongly α-I-continuous if and only if it is fuzzy semi-I-continuous, fuzzy pre-I-
continuous and B-I-continuous.

Proof. It follows from Theorem 3.15.

Definition 4.8. A mapping f : (X, τ, I) → (Y, σ, I) is said to be fuzzy strongly
α-I-irresolute if f−1(V ) is fuzzy strongly α-I-open in X for every fuzzy strongly
α-I-open set V of Y .

Theorem 4.9. Let f : (X, τ, I) → (Y, σ) and g : (Y, σ) → (Z, η) be map-
pings. Then the composition g ◦ f : X → Z is fuzzy strongly α-I-continuous if g
is fuzzy continuous and f is fuzzy strongly α-I-continuous.

Proof. Let W be any fuzzy open subset of Z. Since g is fuzzy continuous,
g−1(W ) is fuzzy open in Y . Since f is fuzzy strongly α-I-continuous, then
(g ◦ f)−1(W ) = f−1(g−1(W )) is fuzzy strongly α-I-open in X and hence g ◦ f
is fuzzy strongly α-I-continuous.

Theorem 4.10. Let f : (X, τ, I1) → (Y, σ, I2) and g : (Y, σ, I2) → (Z, η, I3) be
mappings. Then the composition g ◦ f : X → Z is fuzyy strongly α-I-continuous
if g is fuzzy strongly α-I-continuous and f is fuzzy strongly α-I-irresolute.

Proof. Let W be any fuzzy open subset of Z. Since g is fuzzy strongly α-I-
continuous, g−1(W ) is fuzzy strongly α-I-open in Y . Since f is fuzzy strongly
α-I-irresolute, then (g ◦ f)−1(W ) = f−1(g−1(W )) is fuzzy strongly α-I-open in
X and hence g ◦ f is fuzzy strongly α-I-continuous.

Theorem 4.11. Let f : (X, τ, I1) → (Y, σ, I2) and g : (Y, σ, I2) → (Z, η, I3) be
mappings. Then the composition g ◦ f : X → Z is fuzzy strongly α-I-irresolute
if both f and g are fuzzy strongly α-I-irresolute.

Proof. Let W be any fuzzy strongly α-I-open subset of Z. Since g is fuzzy
strongly α-I-irresolute, g−1(W ) is fuzzy strongly α-I-open in Y . Since f is fuzzy
strongly α-I-irresolute, then (g ◦ f)−1(W ) = f−1(g−1(W )) is fuzzy strongly α-
I-open in X and hence g ◦ f is fuzzy strongly α-I-irresolute.
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Abstract. This paper studies lattice structure of the family of rough
fuzzy sets in a given approximation space. Our result is an extension of
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1 Introduction

A more general concept than that of Boolean algebra is that of a lattice. A
lattice is an important mathematical structure, lattice structures often appear
in computing and mathematical application such as models of information flow
and computer circuit.

Rough set theory was firstly proposed by Pawlak [10] in 1982. It is an ex-
tension of set theory for the study of intelligent systems characterized by un-
certain information. Since then Pawlak rough sets are extended by many au-
thors [1,4,6,7,8,9,13,14,15]. Work on lattice structure of rough sets is important,
much research has been done in lattice structure of rough sets, For example,
Dai [3] discussed rough 3-valued algebra. J.Pomykala and J.A.Pomykala [12]
studied the lattice structure of the family of rough sets in a given approximation
space and proved that the above family is a Stone algebra. In this paper, we con-
sider the similar problem for rough fuzzy sets, we give a similar lattice structure
in fuzzy environment, our result is an extension of [12] in fuzzy environment.
Finally, we gives the characterization of borderline region of rough fuzzy sets.

The paper is organized as follows. Section 2 introduces relevant definition
of rough fuzzy sets. Section 3 gives some basic properties of rough fuzzy sets.
Section 4 considers a lattice from rough fuzzy sets. Section 5 characterizes the
borderline region of rough fuzzy sets. Finally, Section 6 concludes the paper.

2 Rough Fuzzy Sets

Dubois and Prade [4] have proposed fuzzy generalizations of rough approxima-
tions. For any given universal set U , let X : U → [0, 1] be a fuzzy set [16],
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X(x), x ∈ U , giving the degree of membership of x in X . Power set, fuzzy
power set of U is denoted by P (U), F (U), respectively. If A, B ∈ F (U), then
A∩B, A∪B are the two fuzzy sets pointwise defined as (A∩B)(x) = A(x)∧B(x)
and (A ∪ B) = A(x) ∨ B(x) for each x ∈ U . where ∧ denotes minimum and ∨
maximum. If A ∈ P (U) or A ∈ F (U) we denote by −A the complement of
A. That is, for crisp subset A of U , −A = U − A, and for fuzzy set A in U ,
(−A)(x) = 1 − A(x). Let R be an equivalence relation on U , the quotient set
is denoted by U/R. We use [x] to denote an equivalence class in R containing

an element x ∈ U . For x, y ∈ U, R(x, y) is defined by R(x, y) =
{

1, (x, y) ∈ R
0, (x, y) /∈ R

.

Rough fuzzy set [4] can be rewritten as following:

Definition 2.1. Let U be a universal set and R be an equivalence relation
on U . The lower and upper approximations of the fuzzy set X ∈ F (U), denoted
RX and RX , respectively, are defined as fuzzy sets in U such that

(RX)(x) = ∨y∈U (R(x, y) ∧ X(y)), x ∈ U

and
(RX)(x) = ∧y∈U ((1 − R(x, y)) ∨ X(y)), x ∈ U

The pair RX = (RX, RX) is referred to as a rough fuzzy set. R, R : F (U) →
F (U) are respectively referred to as lower and upper rough fuzzy approximation
operators.

The following property is obvious:

Proposition 2.1. Let U be a universal set and R be an equivalence relation on
U . Then for x ∈ U

(RX)(x) = ∨y∈[x]X(y) and (RX)(x) = ∧y∈[x]X(y)

Note that if X is a crisp subset of U , then Definition 2.1 coincides with the
definition of Pawlak lower and upper approximations.

3 Properties of Rough Fuzzy Sets

In this section, we give some basic properties of rough fuzzy sets. Recall that for
fuzzy set X in U and λ ∈ [0, 1], the unit interval, the λ-cut of X is defined as
Xλ = {x ∈ U |X(x) ≥ λ}. We need a technical lemma.

Lemma 3.1. Let X, Y ∈ F (U), then X = Y if and only if Xα = Yα for all
α ∈ [0, 1].

Proof. By the decomposition theorem of fuzzy sets, X =
⋃

α∈[0,1] αXα =⋃
α∈[0,1] αYα = Y .
Using Lemma 3.1, the following theorem can be easily derived.
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Theorem 3.1. Let U be a universal set and R be an equivalence relation on U .
Then for X, Y ∈ F (U)

(1) (RX)α = RXα, (RX)α = RXα for all α ∈ [0, 1];
(2) if X ∈ P (U), then RX, RX ∈ P (U);
(3) RX ⊆ X ⊆ RX for all X ∈ F (U);
(4) R∅ = R∅ = ∅, RU = RU = U ;
(5) R(X ∪ Y ) = R(X) ∪ R(Y ), R(X ∩ Y ) = RX ∩ RY ;
(6) X ⊆ Y implies RX ⊆ RY, RX ⊆ RY ;
(7) R(X ∩ Y ) ⊆ R(X) ∩ R(Y ), R(X ∪ Y ) ⊇ RX ∪ RY ;
(8) R(−X) = −RX, R(−X) = −RX ;
(9) RRX = RRX = RX, RRX = RRX = RX ;
(10) for y, z ∈ [x], RX(y) = RX(z), RX(y) = RX(z), hence RX, RX are

fuzzy sets in quotient set U/R.
Proof. (1) By Proposition 2.1, x ∈ (RX)α ⇔ RX(x) ≥ α ⇔ ∨y∈[x]X(y) ≥ α
⇔ ∃y ∈ [x], X(y) ≥ α ⇔ ∃y ∈ [x], y ∈ Xα ⇔ ∃y ∈ [x] ∩ Xα ⇔ [x] ∩ Xα �= ∅ ⇔
x ∈ RXα. (RX)α = RXα can be proved in a similar way.

(9) By Lemma 3.1, we only need to prove (RRX)α = (RRX)α = (RX)α for
all α ∈ [0, 1]. By Proposition 2.1(7) and (1), (RRX)α = RRXα = RRXα =
(RRX)α = RXα = (RX)α.

(10) Since y, z ∈ [x], we have [x] = [y] = [z], hence RX(y) = ∨t∈[y]X(t) =
∨t∈[z]X(t) = RX(z) and RX(y) = ∧t∈[y]X(t) = ∧t∈[z]X(t) = RX(z).

The proofs of remaining parts can be found in [4] or [10,11].

4 Lattice from Rough Fuzzy Sets

Let U be a universal set and let R be an equivalence relation on U , [x] will
stand for the equivalence class of the relation R determined by x ∈ U . For each
equivalence class [x] we choice an element in [x] called a representative element,
the set of the all representative elements is denoted by I.

The rough equality between sets is defined in the following way [11,12]:
X ≈ Y if and only if RX = RY and RX = RY for any X, Y ∈ P (U).
Obviously ≈ is an equivalence relation on P (U) [12] and the induced quotient

set will be denoted by P (U)/ ≈. Any equivalence class [X ] of relation ≈ can be
written as follows:

[X ] = {Y ∈ P (U)|RX = RY, RX = RY } ≡ (RX, RX) = RX
Rough set intersection &, union ', and complement - are defined by set opera-
tions as follows: for two rough sets RX = (RX, RX), RY = (RY, RY ),

(1) (RX, RX) & (RY, RY ) = (RX ∩ RY, RX ∩ RY );
(2) (RX, RX) ' (RY, RY ) = (RX ∪ RY, RX ∪ RY );
(3) −(RX, RX) = (−RX,−RX).

The system (P (U)/ ≈,&,',−, R∅, RU) is a complete distributive pseudocom-
plemented lattice [12]. We will show that this result can be extended to the case
of rough fuzzy sets. The rough equality between fuzzy sets can also be defined
as follows:
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X ≈ Y if and only if RX = RY and RX = RY for any X, Y ∈ F (U).
It is easy to verify that rough equality ≈ of fuzzy sets is also an equivalence

relation on F (U), and the induced quotient set will be denoted by F (U)/ ≈. For
X ∈ F (U), any equivalence class [X ] of relation ≈ on F (U) can be written as
follows:

[X ] = {Y ∈ F (U)|RX = RY, RX = RY } ≡ (RX, RX) = RX.

Now, our main goal in this section is to show that the F (U)/ ≈, the family of
all rough fuzzy sets, is also a distributive lattice. We need a lemma.

Lemma 4.1. Let U be a universal set and R be an equivalence relation on
U . I is the set of the all representative elements in equivalence classes of R.
Then for all X, Y ∈ P (U)

(1) R(RX ∪ Y ) = RX ∪ RY ;
(2) R(RX ∩ Y ) = RX ∩ RY ;
(3) R(RX ∩ I) = RX ;
(4) R((RX ∪ RY ) ∩ I) ⊆ RX ∪ RX ;
(5) R(RX ∪ RY ∪ ((RX ∪ RY ) ∩ I)) = RX ∪ RY ;
(6) R(RX ∪ RY ∪ ((RX ∪ RY ) ∩ I)) = RX ∪ RY ;
(7) R((RX ∩ RY ) ∪ (RX ∩ RY ∩ I)) = RX ∩ RY ;
(8) R((RX ∩ RY ) ∪ (RX ∩ RY ∩ I)) = RX ∩ RY .

Proof. (1) If x ∈ R(RX ∪ Y ), then [x] ⊆ RX ∪ Y , hence [x] ⊆ RX or [x] ⊆ Y ,
that is, x ∈ RX or x ∈ RY which is to mean that R(RX ∪ Y ) ⊆ RX ∪ RY .

By Theorem 3.1(6),R(RX ∪ Y ) ⊇ RX ∪ RY . Thus R(RX ∪ Y ) = RX ∪RY .
(3) If x ∈ R(RX ∩ I), then [x] ∩ RX ∩ I �= ∅, hence [x] ∩ RX �= ∅, thus

x ∈ RX , and R(RX ∩ I) ⊆ RX . Conversely, if x ∈ RX , then [x] ⊆ RX �= ∅, but
∅ �= [x] ∩ I = [x] ∩ RX ∩ I, and x ∈ R(RX ∩ I), i.e., R(RX ∩ I) ⊇ RX .

(5) By (4), R(RX∪RY ∪((RX∪RY )∩I)) = RX∪RY ∪R((RX∪RY )∩I) =
RX ∪ RY .

(6) Using (3), R(RX∪RY ∪((RX∪RY )∩I) = RX∪RY ∪R((RX∪RY )∩I) =
RX ∪ RY . The proofs of remaining parts are similar.

Lemma 4.1 can be extended to the case of rough fuzzy set. That is, we can
obtain the following lemma.

Lemma 4.2. Let U be a universal set and R be an equivalence relation on
U . I is the set of the all representative elements in equivalence classes of R.
Then for all X, Y ∈ F (U)

(1) R(RX ∪ Y ) = RX ∪ RY ;
(2) R(RX ∩ Y ) = RX ∩ RY ;
(3) R(RX ∩ I) = RX ;
(4) R((RX ∪ RY ) ∩ I) ⊆ RX ∪ RX ;
(5) R(RX ∪ RY ∪ ((RX ∪ RY ) ∩ I)) = RX ∪ RY ;
(6) R(RX ∪ RY ∪ ((RX ∪ RY ) ∩ I)) = RX ∪ RY ;
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(7) R((RX ∩ RY ) ∪ (RX ∩ RY ∩ I)) = RX ∩ RY ;
(8) R(RX ∩ RY ∪ ((RX ∩ RY ) ∩ I)) = RX ∩ RY .

Proof. We only prove Property (3) here. Continue using Lemma 3.1 and Lemma
4.1, for each λ ∈ [0, 1], (R(RX ∩ I))λ = R(RX ∩ I)λ = R(RXλ ∩ I) = RXλ.
This proves Property (3). The proofs of remaining Properties are similar.

In order to prove that the F (U)/ ≈ is a distributive lattice, we introduce the
intersection &, union ', and complement - operations as follows: for two rough
fuzzy sets RX = (RX, RX), RY = (RY, RY ), X, Y ∈ F (U),

(1) (RX, RX) & (RY, RY ) = (RX ∩ RY, RX ∩ RY );
(2) (RX, RX) ' (RY, RY ) = (RX ∪ RY, RX ∪ RY );
(3) −(RX, RX) = (−RX,−RX) = (R(−X), R(−X)).

Theorem 4.1. Let U be a universal set and R be an equivalence relation on U .
I is the set of the all representative elements in equivalence classes of R. Then
for all X, Y ∈ F (U)

(1) RX ∪ RY ∪ ((RX ∪ RY ) ∩ I) ∈ (RX ∪ RY, RX ∪ RY );
(2) (RX ∩ RY ) ∪ (RX ∩ RY ∩ I) ∈ (RX ∩ RY, RX ∩ RY ).

Proof. By Lemma 4.2(1),(4), R(RX ∪ RY ∪ ((RX ∪ RY ) ∩ I)) = RX ∪ RY ∪
R((RX ∪RY ) ∩ I)) = RX ∪RY . Similarly, R(RX ∪RY ∪ ((RX ∪RY ) ∩ I)) =
RX ∪RY , this prove Part (1). The proof of Part (2) is analogous to that of Part
(1) and we omit it.

By Theorem 4.1, since the conclusions are independence on the choice of rep-
resentative element of the equivalence classes [x], the intersection, union, and
complement operations are well-defined.

Theorem 4.2. Let U be a universal set and R be an equivalence relation on
U . Then the (F (U)/ ≈,&,',−, R∅, RU) is a distributive pseudocomplemented
lattice with the least element R∅ and the greatest element RU .

Proof. For all X, Y ∈ F (U), (RX ∪ RY, RX ∪ RY ) �= ∅, and (RX ∩ RY, RX ∩
RY ) �= ∅.

It is obvious that &,' are commutative, associative, and idempotent opera-
tions. We show one of distributive identities, e.g. RX & (RY ' RZ) = (RX &
RY ) ' (RX & RZ), for all X, Y, Z ∈ F (U). Indeed

RX & (RY ' RZ) = (RX, RX) & ((RY, RY ) ' (RZ, RZ))
= (RX, RX) & (RY ∪ RZ, RY ∪ RZ)
= (RX ∩ (RY ∪ RZ), RX ∩ (RY ∪ RZ))
= ((RX ∩ RY ) ∪ (RX ∩ RZ), (RX ∩ RY ) ∪ (RX ∩ RZ))
= (RX ∩ RY, RX ∩ RY ) ' (RX ∩ RZ, RX ∩ RZ)
= (RX & RY ) ' (RX & RZ).

As for the pseudocomplement of RX = (RX, RX), using Lemma 7 of [7], there
exists a pseudocomplement ((RX)α)∗ = (RX∗

α, RX∗
α) of (RX)α = RXα for all
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α ∈ [0, 1]. Thus Y = ∪α∈[0,1]α((RX)α)∗ = (∪α∈[0,1]α(RXα)∗,∪α∈[0,1]α(RX∗
α))

is the pseudocomplement of RX .

The following property is straightforward:

Lemma 4.3. Let U be a universal set and R be an equivalence relation on
U . for all X, Y ∈ F (U), α ∈ [0, 1]

(1) (RX & RY )α = RXα & RYα;
(2) (RX ' RY )α = RXα ' RYα.

Theorem 4.3. Let U be a universal set and R be an equivalence relation on U .
Then the (F (U)/ ≈,&,',−, R∅, RU) is a Stone algebra.

Proof. Using Lemma 8 of [12] and Lemma 4.3, the Stone identity is valid,
hence F (U)/ ≈ is a Stone algebra.

Because of theorem 4.1, the intersection, union, and complement operations can
be also rewritten as follows:

(1) RX & RY = R(RX ∪ RY ∪ ((RX ∪ RY ) ∩ I)),
(2) RX ' RY = R(RX ∩ RY ∪ ((RX ∩ RY ) ∩ I)), and
(3)−RX = R(−X).

From the Theorem 4.2, it is obvious that lattice (P (U)/ ≈,&,',−, R∅, RU) is a
sublattice of the distributive lattice (F (U)/ ≈,&,',−, R∅, RU).

5 Characterization of Borderline Region

Banerjee and Pal [1] provided a measure of roughness of a fuzzy set. For X ∈
U , the borderline region BNR(X) = RX − RX of X is [11], in a sense, the
undecidable area of the universal set U , i.e., none of the objects belonging to the
boundary can be classified with certainty into X or −X as far as knowledge R
is concerned. In this section, we consider the borderline region in the complete
distributive lattice (P (U)/ ≈,&,',−, R∅, RU). For class [X ] ∈ P (U)/ ≈, the
borderline region BNR[X ] of class [X ] is defined as follows:

BNR[X ] = RX − RX

It is obvious that this definition is independence on the choice of representatives
of the equivalence class [X ]. Now we prove a relation between the borderline
region of classes [X ], [Y ], [X ] & [Y ], and [X ] ' [Y ].

Theorem 5.1. Let R be an equivalence relation on finite universal set U ,
(P (U)/ ≈,&,',−, R∅, RU) the corresponding complete distributive lattice. Then
for all [X ], [Y ] ∈ P (U)/ ≈

|BNR([X ] ' [Y ])| = |BNR[X ]|+ |BNR[Y ]| − |BNR([X ] & [Y ])|
Where |X | denote the cardinality of a set X .
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Proof. |BNR([X ] ' [Y ])| = |RX ∪ RY | − |RX ∪ RY |
= (|RX | − |RX |) + (|RY | − |RY |) − (|RX ∩ RY | − |RX ∩ RY |)
= |BNR[X ]| + |BNR[Y ]| − |BNR([X ] & [Y ])|.

Analogous to the crisp situation, we extend the Theorem 5.1 to the case of fuzzy
sets. We introduce the borderline region in the distributive lattice (F (U)/ ≈
,&,',−, R∅, RU).

Definition 5.1. The borderline region of class [X ] ∈ F (U)/ ≈, denoted by
BNα,β

R [X ], with respect to parameters α, β, where 0 < α ≤ β ≤ 1, is defined as
follows:

BNα,β
R [X ] = RXβ − RXα

By Theorem 3.1, we have

BNα,β
R [X ] = (RX)β − (RX)α

If X ≈ Y , then BNα,β
R [X ] = BNα,β

R [Y ]. Similar to the crisp situation, we prove
a relation between the borderline regions of fuzzy set classes [X ], [Y ], [X ] & [Y ],
and [X ] ' [Y ].

Theorem 5.2. Let R be an equivalence relation on finite universal set U ,
(F (U)/ ≈,&,',−, R∅, RU) the corresponding distributive lattice. Then for all
[X ], [Y ] ∈ F (U)/ ≈ and parameters α, β, 0 < α ≤ β ≤ 1

|BNα,β
R ([X ] ' [Y ])| = |BNα,β

R [X ]|+ |BNα,β
R [Y ]| − |BNα,β

R ([X ] & [Y ])|

Proof. By Definition 5.1, we have

|BNα,β
R ([X ] ' [Y ])| = |RXβ ∪ RYβ | − |RXα ∪ RYα|

= (|RXβ| − |RXα|) + (|RYβ | − |RYα|) − (|RXβ ∩ RYβ | − |RXα ∩ RYα|)

= |BNα,β
R [X ]| + |BNα,β

R [Y ]| − |BNα,β
R ([X ] & [Y ])|.

This completes the proof.

6 Conclusions

Rough fuzzy sets is the generalization of Pawlak rough sets, we study lattice
properties of rough fuzzy sets. J.Pomykala and J.A.Pomykala [12] proved that
the family of rough sets is a Stone algebra. We extend this result to the case of
rough fuzzy sets. That is, analogous to standard rough set theory, we proved that
the family of rough fuzzy sets with the union, intersection and pseudocomple-
mentation operations is also a Stone algebra. We also give the characterization
of borderline region of rough fuzzy sets.
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Abstract. Performing ergodicity analysis is essential to study the long
realization of a model. In this paper we analyze the ergodicity, i.e.,the
existence of the limiting fuzzy transition possibility matrix with identical
rows for the fuzzy transition possibility matrix H̃ of a fuzzy possibilistic
Markov model which contains a state j such that the transition from
every state to the state j is a sure event.

Keywords: Triangular fuzzy number, fuzzy possibilistic Markov model,
max-min composition, fuzzy graph, equivalence class, ergodicity.

1 Introduction

Fuzzy Markov chains are the frequently used Mathematical models in fuzzy
reliability theory. There are considerable amount of works have been done on
fuzzy Markov Models [1],[2], [3], [5]. In [1], Avrachenkov and Sanchez defined
ergodicity of a fuzzy Markov model and left out the problem of finding the more
general conditions ensuring the ergodicity of fuzzy Markov model as an open
problem. In [6], we have defined the fuzzy possibilistic Markov model whose fuzzy
transition possibilities are triangular fuzzy numbers on [0,1] and the rows of its
fuzzy transition possibility matrix are possibility distributions. We have studied
the properties of the fuzzy possibilistic Markov model with n states. And we
have given the necessary conditions for the ergodicity (existence of the limiting
fuzzy transition possibility matrix with identical rows) of a fuzzy possibilistic
Markov model with three states among which there is a state j such that the
fuzzy transition possibility of reaching the j from every state i is (1,1,1). In this
paper, we are extending the above mentioned work for n states.

Consider a system with various components in which the control transfers
between the components follow Markovian property. If its behavior, the control
transfer is characterized using fuzzy possibility measures, then this system can
be modeled as FPMM. Suppose the system consists a component such that the
event of reaching that component from every component is an sure event, then
the long term behavior of the system can be obtained through the ergodicity
analysis as given in the preceding section.
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The formation of this paper is as follows. In the next section, we see some
already defined definitions which are used in this work. Section three contains a
few theorems and corollaries about the existence of the limiting fuzzy transition
possibility matrix with identical rows. And we end up with some conclusions.

2 Preliminaries

Definition 2.1 (Fuzzy Possibilistic Markov model - FPMM [6]). Consider a
fuzzy possibilistic stochastic process {X(t), t = 0, 1, . . .} with discrete state space
S={1,2,3, . . .}. If it possesses the Markov property (the given present and future
states are independent of the past states),

π̃(X(t + 1) = j | X(t) = i, X(t − 1) = k, . . . , X(0) = m)
= π̃(X(t + 1) = j | X(t) = i) = π̃ij

where π̃ij is the triangular fuzzy number on [0, 1] and it represents the fuzzy
possibility of control transfers from state ‘i’ at tth step to state ‘j’ at (t+1)th

step, then this fuzzy possibilistic stochastic process is called the fuzzy possibilis-
tic Markov Model (FPMM).

These fuzzy transition possibilities form a square fuzzy matrix which is called
the fuzzy transition possibility matrix. And its rows are fuzzy possibility distri-
butions. i.e each row maximum is (1,1,1).

Definition 2.2 (Limiting fuzzy transition possibility matrix). We can say that
the powers of the fuzzy transition possibility matrix H̃n×n will converge if there
exists a positive integer t so that H̃m = H̃m+1 for m ≥ t. Then H̃m is called
the limiting fuzzy transition possibility matrix of H̃ as follows.

Definition 2.3 (Fuzzy Graph by Fuzzy Matrix). A fuzzy matrix Ã = (aij) can
be regarded as a fuzzy graph G̃Ã, where the edge (i, j), i, j ∈ {1,2,. . .,n}, has a
weight aij ∈ [0,1]

Hence our fuzzy matrix H̃ = (h̃ij) can be viewed as a fuzzy graph G̃H̃ whose
edges (i,j), i, j belongs to the state space of the corresponding FPMM, have the
weight h̃ij which are the triangular fuzzy numbers on [0,1]. And the definitions,
results given for G̃Ã [4], can also be true for G̃H̃ .

Definition 2.4 (Cycle, Length and Strength). A cycle C in G̃H̃ is a sequence
of distinct vertices i0, i1, . . ., iq−1, i0 where i0, i1, . . ., iq−1 belong to the state
space. The length of the cycle |C| is q. The strength of C is M(C) = min{h̃i0i1 ,
h̃i1i2 , . . ., h̃iq−1i0}. And a loop is a cycle with length 1.

Definition 2.5 (Mutually Linked Cycles). Let C1 and C2 be two cycles in G̃H̃ .
If C1 ∩ C2 �= ∅, the the cycles C1 and C2 are mutually linked.

Definition 2.6 (Strongest Cycle). A strongest cycle is a cycle C1, if there exist
no sequence of cycles C1, . . ., Cr, r ≥ 2, satisfying

1. Ci and Ci+1 are mutually independent
2. M(C1) = M(C2) = . . . = M(Cr−1) < M(Cr)
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Definition 2.7 (Equivalent Class). Let Ω be the set of all strongest cycles in
a fuzzy graph. The equivalence relation (Ω ∼) is defined as follows:

C ∼ C� ⇔ there exist a sequence C1(=C ), . . ., Cr(=C�), such that Ci and Ci+1
are mutually linked. And [C] denotes the equivalent class by the equivalence
relation (Ω ∼). σ[C] denotes the greatest common divisor of the length of all
strongest cycles belonging to [C].

Theorem 1. Let H̃ = (h̃ij) be a fuzzy matrix and [C1], [C1], . . ., [Cm] be all
equivalent classes where Ci is a strongest cycle of the fuzzy graph G̃H̃ . Thus the
period of a fuzzy matrix is the least common multiple of σ[C1], σ[C2], . . ., σ[Cm].

Corollary 1. A fuzzy matrix H̃ converges if and only if σ[C] = 1 for all strongest
cycles G̃H̃ .

3 Ergodicity of a FPMM

In classical Markov model, the tth step transition probabilities pij(t) of finite,
irreducible, aperiodic Markov chains become independent of i as t → ∞. That
is all the entries in the jth column of the tth step transition probability matrix
become equal as t → ∞. Hence, the limiting transition probability matrix will
have identical rows. For FPMM, the limiting fuzzy transition possibility matrix
H̃ need not have identical rows, even though it is recurrent. Hence using the
ergodicity definition given in [1], we define the same for FPMM as follows. A
FPMM is said to be ergodic if it is aperiodic and has limiting fuzzy transition
possibility matrix with identical rows.

Let us discuss the existence of the limiting fuzzy transition possibility matrix
with identical rows for a FPMM with n states among which there is a state j
such that the events of reaching the state j from every other states 1, 2, . . .,n are
sure events. That is its fuzzy transition possibility matrix H̃ of order n contains
a column j such that its entries are equal to (1, 1, 1).

Let us consider the column maximum of each column of H̃t by excluding the
jth row and the jth column of H̃t, t = 1,2,. . .,n. And H̃1 = H̃ . Suppose h̃jk is
greater than or equal to kth column maximum in H̃ . Since each rows jth entry
is (1,1,1), while doing the max min composition between each row of H̃ and kth

column of H̃t, t = 1,2, . . ., n, the resultant kth column entries are equal to h̃jk.
i.e ., for z = 1,2, . . ., n and t = 1, 2, . . . ,n,
h̃t+1

zk = max { min(h̃z1, h̃
t
1k), min(h̃z2, h̃

t
2k), . . ., min(h̃zj , h̃

t
jk), . . ., min(h̃zn, h̃t

nk)}.
= min(h̃zj , h̃

t
jk) [ ∵ h̃jk ≥ the kth column maximum in H̃ ⇒ h̃t

jk = h̃jk ].
= h̃t

jk = h̃jk [ ∵ h̃zj = (1,1,1) ].
Hence to get the entries of a column k in H̃t equal, kth entry of jth row(h̃jk)
should be greater than or equal to the kth column maximum in H̃ .

Thus, the existence of the identical rows in the limiting fuzzy transition pos-
sibility matrix of H̃ depends on the entries of the jth row of H̃ which is dis-
cussed in the preceding lemma, theorem and corollaries. Let a0 = min {column
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maximums of H̃} and consider the column maximum of each column of H̃t by
excluding the jth row and the jth column of H̃t, t = 1,2,. . .,n.

Lemma 1. Let G̃H̃ be the fuzzy graph defined by H̃ and H̃ be contain a column
j with all its entries equal to (1,1,1). Suppose its jth row entries are less than
or equal to a0 except h̃jj and G̃H̃ contains a strongest cycle C with M(C) ≥
a0. Then in H̃t, t ≥ |C|, the column maximum of each column a ∈ C will be
equal to M(C).

Proof. Let C = (e, p, l, k, e) be the strongest cycle G̃H̃ . Then
h̃2

kp = max {min(h̃k1, h̃1p ), min (h̃k2, h̃2p ), . . ., min(h̃ke, h̃ep ), . . .,
min(h̃kn, h̃np )}.

If there is a min term min(h̃kt, h̃tp) such that min(h̃kt, h̃tp) > min(h̃ke, h̃ep),
then G̃H̃ will have a cycle C2 = (k, t, p, l, k) and M(C2) ≥ M(C ). If M(C2) =
M(C ), then C2 is an element of the equivalent class [C ]. If M(C2) > M(C ),
then there exist a sequence C, C2 where C, C2 are mutually linked and M(C) <
M(C2). And C2 is the strongest cycle. But we have considered that G̃H̃ contains
the strongest cycle C. Hence, there is no other min terms which are greater than
min (h̃ke, h̃ep) and

h̃2
kp = min(h̃ke, h̃ep) ≥ M(C) [∵ M(C) = min{h̃ep, h̃pl, h̃lk, h̃ke}]. (1)

Similarly

h̃3
lp = min(h̃lk, h̃2

kp) = min(h̃lk, h̃ke, h̃ep) ≥ M(C), (2)

h̃4
pp = min(h̃lk, h̃ke, h̃ep, h̃pl) = M(C). (3)

And in higher powers,
h̃4

pp = h̃4
ee = h̃4

kk = h̃4
ll = h̃8

pp = h̃8
ee = h̃8

kk = h̃8
ll = . . . = M(C)

h̃5
ep = h̃5

ke = h̃5
lk = h̃5

pl = h̃9
ep = h̃9

ke = h̃9
lk = h̃9

pl = . . . = M(C)
h̃6

kp = h̃6
le = h̃6

pk = h̃6
el = h̃10

kp = h̃10
le = h̃10

pk = h̃10
el = . . . = M(C)

h̃7
lp = h̃7

pe = h̃7
ek = h̃7

kl = h̃11
lp = h̃11

pe = h̃11
ek = h̃11

kl = . . . = M(C)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (4)

Now let us see about the entries of the column p other than its entries kp, lp,
ep, pp in higher powers of H̃ .

Let f ∈ S − C and the entries of the columns k, e, p, l in H̃ other than lk,
ke, ep, pl be less than M(C). For t ≥ 2,

h̃t
fp = max{min(h̃f1, h̃t−1

1p ), min(h̃f2, h̃t−1
2p ), . . ., min(h̃fb, h̃t−1

bp ), . . .,

min(h̃fn, h̃t−1
np )}.

h̃t
fp will be greater than M(C ), only if there is a min term min(h̃fa, h̃t−1

ap ) such
that its value is greater than M(C ). From equations (1),(2),( 3),(4), it is clear
that h̃t−1

ap ≥ M(C ) only if a ∈ C and for other a, h̃t−1
ap is less than M(C ). h̃fa

cannot be greater than M(C ), because the entries of the columns k, e, p, l in H̃
other than lk, ke, ep, pl are less than M(C). Hence there is no min term such
that min(h̃fa, h̃t−1

ap ) > M(C ) and

h̃t
fp < M(C) , t ≥ 2. (5)
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Similarly in H̃t, t ≥ 2 the entries of the columns e, k, l other than the entries
occurred in (4) will become less than M(C ). Then in H̃t, t ≥ 2, the column
maximum of the columns k, e, p, l will be M(C ).

Suppose at least one of the pth column entries say h̃dp ≥ M(C ) where d ∈
S − C. Then

h̃2
dl = max{min(h̃d1, h̃1l), min(h̃d2, h̃2l), . . ., min(h̃dp, h̃pl), . . .,

min(h̃dn, h̃nl)}.
h̃2

dl = min(h̃dp, h̃pl)≥ M(C ) [ ∵ in H̃ the entries of the lth column other
than h̃pl are less than M(C ) and h̃dp ≥ M(C )].

Similarly, h̃3
dk and h̃4

de are greater than or equal to M(C ). The preceding steps
imply that the value of h̃t

da depends only min(h̃dp, h̃t−1
pa ) where a ∈ C. Hence,

from equation (4), it is clear that for a ∈ C,

h̃t
da = M(C) , t ≥ 4. (6)

By equations (5, 6), in H̃t, t ≥ 4, the entries of the columns a ∈ C other than
the entries occurred in (4) become less than or equal to M(C ). Hence in H̃t, t
≥ |C| the column maximum of each column a ∈ C is M(C ). �

Remark 1. From the above lemma, it is observed that since the columns fv ∈
S − C, (v - the index number), should not form any strongest cycle C1 with
M(C1) ≥ a0, in H̃ the columns corresponding to fv ∈ {S− C} should be either
h̃afv ≥ a0 or both h̃afv , h̃fvfw are greater than or equal to a0 where v �= w and a ∈
C. And in H̃t, t ≥ |C| the column maximum of each column corresponding to the
states in {S − C} will be either min(h̃afv , M(C)) or min(h̃afv , h̃fvfw , M(C)).

Example 1. Let H̃ be⎛⎜⎜⎜⎜⎜⎜⎝
(1, 1, 1) (0, 0.1, 0.3) (0.1, 0.2, 0.3) (0.1, 0.3, 0.5) (0.2, 0.4, 0.6) (0, 0.1, 0.3)
(1, 1, 1) (0.1, 0.2, 0.3) (0.1, 0.3, 0.5) (0.1, 0.2, 0.3) (0.1, 0.3, 0.5) (0.1, 0.2, 0.3)
(1, 1, 1) (0.1, 0.3, 0.5) (0, 0.1, 0.3) (0.2, 0.7, 0.8) (0.1, 0.3, 0.5) (0, 0, 0)
(1, 1, 1) (0, 0, 0) (0.3, 0.6, 0.7) (0.1, 0.3, 0.5) (0, 0.1, 0.3) (0.2, 0.7, 0.8)
(1, 1, 1) (0.2, 0.4, 0.6) (0.2, 0.4, 0.6) (0.3, 0.6, 0.7) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3)
(1, 1, 1) (0.3, 0.6, 0.7) (0, 0, 0) (0.2, 0.4, 0.6) (0.1, 0.5, 0.6) (0.2, 0.4, 0.6)

⎞⎟⎟⎟⎟⎟⎟⎠
a0 = (0.1, 0.5, 0.6) and it has the strongest cycle C = (4, 3, 4) with M(C) =
(0.3, 0.6, 0.7). In H̃t, t ≥ 2, the 3rd, 4th column maximum will be (0.3, 0.6,
0.7). Since the 6th column maximum is h̃46 = (0.2, 0.7, 0.8), 4 ∈ C and h̃62 =
(0.3, 0.6, 0.7), h̃65 = (0.1, 0.5, 0.6), in H̃t, t ≥ 2, the 6th column maximum will
be min{(0.2, 0.7, 0.8), M(C)}, the 2nd column maximum will be min{(0.3, 0.6,
0.7), M(C)} and the 5th column maximum will be min{(0.1, 0.5, 0.6), M(C)}.
It oscillates with period two for t ≥ 6.

Theorem 2. Let the fuzzy graph G̃H̃ defined by H̃ contain a strongest cycle C
with M(C) ≥ a0 and F = {b | h̃ba ≥ M(C), a ∈ C}. If at least one of { h̃jd |



266 B. Praba, R. Sujatha, and V. Hilda Christy Gnanam

d ∈ (C ∪ F) } ≥ M(C), then in higher powers of H̃ the entries of each column
a ∈ C will become equal and they are greater than or equal to M(C). And the
limiting fuzzy transition possibility matrix with identical rows will exist.

Proof. Let C = (e, p, l, k, e) be a strongest cycle with M(C ) ≥ a0 and F =
{b | h̃ba ≥ M(C), a ∈ C}. Suppose at least one of {h̃jd | d ∈ (C ∪ F ) } is greater
than or equal to M(C ) say h̃jl ≥ M(C). Then there exist cycle C1 = (j, l, j)
with M(C1) ≥ M(C), because h̃lj is (1,1,1) and h̃jl ≥ M(C). Since the cycle C2
= (j, j) has strength M(C2) = (1,1,1) which is greater than M(C), there exist a
sequence C, C1, C2 such that each pair (C, C1), (C1, C2) is mutually linked and
M(C) ≤ M(C1) < M(C2). Hence C2 is the strongest cycle with σ[C2] = 1. By
corollary (1), H̃ converges. Thus the limiting fuzzy transition possibility matrix
of H̃ exists.

Since h̃jl ≥ M(C) and each rows jth entry in H̃ is (1 1 1), there is an integer
m ≥ t, t = 2 such that for z = 1, 2, . . . , n

h̃m
zl = max { min(h̃z1, h̃m−1

1l ), min(h̃z2, h̃m−1
2l ), . . . , min(h̃zj , h̃m−1

jl ), . . . ,
min(h̃zn, h̃m−1

nl )}.
Suppose min(h̃zg, h̃m−1

gl ) > M(C). That is both h̃zg, h̃m−1
gl should be greater

than M(C). By lemma (1), in H̃t, t ≥ |C|, the column maximum of each column
a ∈ C will be M(C). Hence h̃m−1

gl cannot be greater than M(C) and there is no
min term other than min(h̃zj , h̃m−1

jl ) whose value is greater than M(C). And h̃m
zl

= min(h̃zj , h̃m−1
jl ) = h̃m−1

jl = h̃jl [ ∵ h̃zj = h̃jj = (1,1,1) and h̃jl ≥ M(C)]. i.e.,
in H̃m, m ≥ t, t = 2 all the lth column entries become equal to h̃jl. Then,

h̃2
jk = max {min (h̃j1, h̃1k ), min (h̃j2, h̃2k ), . . ., min (h̃jl, h̃lk ),. . .,

min (h̃jn, h̃nk )}.
h̃2

jk ≥ M(C) [ ∵ M(C) = min{h̃ep, h̃pl, h̃lk, h̃ke} ⇒ h̃lk ≥ M(C) ⇒
min (h̃jl, h̃lk) ≥ M(C) ].

Since h̃2
jk ≥ M(C) and in H̃ each rows jth entry is (1 1 1), there exist m ≥ t, t =

3 such that h̃m
zk = h̃2

jk for z = 1, 2, . . ., n. Also h̃2
le, h̃3

je, h̃4
jp become greater than

or equal to M(C). Consequently, h̃t
ze = h̃3

je for t ≥ 4 and h̃t
zp = h̃4

jp t ≥ 5, z = 1,
2, . . ., n. Thus the entries of each column a ∈ C become equal in H̃t, t ≥ |C|.

Let fv ∈ {S − C}, v = 1, 2, . . ., the index number. Then the remark (1)
implies that in H̃ , at least one entry of the columns corresponding to the states
of {S−C} should be in the form either h̃afv ≥ a0 or both h̃afv , h̃fvfw are greater
than or equal to a0 and their column maximum in H̃t, t ≥ |C| will be less than
or equal to M(C ). If h̃afv ≥ a0, then for some integer m where 2 ≤ m ≤ |C|,
in H̃m, h̃m

lfv
will be greater than or equal to min{h̃afv , M(C )}. In H̃m+1, h̃m+1

jfv

will be equal to h̃m
lfv

, since h̃jl is greater than or equal to M(C ) and min{h̃afv ,
M(C )} is less than or equal to M(C ). Then in H̃t, t ≥ |C|, the entries of the
column fv will be equal to h̃m

lfv
, because the column maximum of fv is min{h̃afv ,

M(C )}, h̃m
lfv

≥ min{h̃afv , M(C )} and in H̃ each rows jth entry is (1,1,1).



Analysis of Ergodicity of a Fuzzy Possibilistic Markov Model 267

If h̃afv and h̃fvfw ≥ a0, then h̃2
afw

= min{h̃afv , h̃fvfw } which is greater than
or equal to a0. As explained above, there exist an integer m where 3 ≤ m ≤ |C|,
in H̃m, h̃m

lfw
will be greater than or equal to min{h̃afv , h̃fvfw , M(C )}. And h̃m+1

jfw

will be equal to h̃m
lfw

, since h̃jl ≥ M(C ) and min{h̃afv , h̃fvfw , M(C )} ≤ M(C ).
Then in H̃t, t ≥ |C|, the entries of the column fw will become equal to h̃m

lfw
,

because the column maximum of fw is min{h̃afv , h̃fvfw , M(C )}, h̃m
lfv

is greater
than or equal to min{h̃afv , M(C )} and in H̃ each rows jth entry is (1,1,1). Hence
in H̃t, t ≥ |C|, the entries of the columns fv ∈ {S − C} becomes equal and the
limiting fuzzy transition possibility matrix exists with identical rows. �

Example 2. Let

H̃ =

⎛⎜⎜⎜⎜⎝
(0.1, 0.2, 0.3) (1, 1, 1) (0.3, 0.6, 0.7) (0.1, 0.2, 0.3) (0.2, 0.7, 0.8)
(0.1, 0.3, 0.5) (1, 1, 1) (0, 0.1, 0.3) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3)
(0.1, 0.2, 0.3) (1, 1, 1) (0.1, 0.2, 0.3) (0.1, 0.3, 0.5) (0.1, 0.3, 0.5)
(0.2, 0.4, 0.6) (1, 1, 1) (0.1, 0.3, 0.5) (0, 0.1, 0.3) (0.1, 0.5, 0.6)
(0, 0.1, 0.3) (1, 1, 1) (0.2, 0.4, 0.6) (0.1, 0.5, 0.6) (0.1, 0.2, 0.3)

⎞⎟⎟⎟⎟⎠
a0 = (0.2, 0.4, 0.6) and G̃H̃ contains strongest cycle C = (4,5,4). And its strength
M(C) = (0.1, 0.5, 0.6). Since σ[C] = 2, it oscillates with period 2 at t ≥ 5. Suppose
h̃24 = (0.3, 0.6, 0.7). Then by theorem 2, the limiting fuzzy transition possibility
matrix will exist with identical rows equal to [(0.2, 0.4, 0.6), (1,1,1), (0.2, 0.4,
0.6), (0.3, 0.6, 0.7), (0.1, 0.5, 0.6)] at t = 4.

Corollary 2. Let the fuzzy graph G̃ defined by H̃ contain a strongest cycle
C1 and its equivalent class be [C1]. Let S(C1) =

⋃ r
i=1 Ci and F = {b | h̃ba ≥

M(C1), a ∈ S(C1)}. If at least one of {h̃jd | d ∈ [S(C1)∪ F] } ≥ M(C1), then in
higher powers of H̃ the entries of each column corresponding to the states of S
will become equal and they are greater than or equal to M(C1). Also the limiting
fuzzy transition possibility matrix exists with identical rows.

Corollary 3. Let the fuzzy graph G̃ defined by H̃ contain the equivalence classes
[C1], [C2],. . . and Fi = {b | h̃ba ≥ M(Ci), a ∈ S(Ci)}.
– If at least one of {h̃jd | d ∈ [S(Ci) ∪ Fi] } ≥ M(Ci), then in higher powers

of H̃ the entries of each column corresponding to the states of S(Ci) will
become equal and they are ≥ M(Ci).

– If Fi ∩ S(Cf ) �= φ and at least one of h̃jx ≥ max {M(Ci), M(Cf )}, x ∈ [Fi ∩
S(Cf )], then in higher powers of H̃ the entries of the columns corresponding
to the states of S(Ci), S(Cf ) will become equal.

Example 3. Let

H̃ =

⎛⎜⎜⎜⎜⎝
(0.1, 0.3, 0.5) (1, 1, 1) (0.1, 0.3, 0.5) (0.1, 0.2, 0.3) (0.2, 0.4, 0.6)
(0.1, 0.2, 0.3) (1, 1, 1) (0, 0.1, 0.3) (0.1, 0.3, 0.5) (0.1, 0.2, 0.3)
(0.1, 0.3, 0.5) (1, 1, 1) (0.1, 0.2, 0.3) (0.3, 0.6, 0.7) (0.1, 0.3, 0.5)
(0, 0.1, 0.3) (1, 1, 1) (0.3, 0.6, 0.7) (0, 0.1, 0.3) (0, 0.1, 0.3)

(0.2, 0.4, 0.6) (1, 1, 1) (0.1, 0.3, 0.5) (0.2, 0.7, 0.8) (0.1, 0.2, 0.3)

⎞⎟⎟⎟⎟⎠
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a0 = (0.2, 0.4, 0.6) and G̃H̃ contains strongest cycles C1 = (3, 4, 3) with
M(C1) = (0.3, 0.6, 0.7) and C2 = (1, 5, 1) with M(C2) = (0.2, 0.4, 0.6).
And F1 = {b / h̃ba ≥ M(C1), a ∈ C1} = {5} has intersection with C2. If h̃25
= (0.3,0.6,0.7), then the limiting fuzzy transition possibility matrix exists with
identical rows [(0.2, 0.4, 0.6), (1,1,1), (0.3, 0.6, 0.7), (0.3, 0.6, 0.7), (0.3, 0.6, 0.7)]
at t = 4.

4 Conclusions

In crisp case, a Markov chain is said to be ergodic if it is irreducible and aperi-
odic. But a FPMM is ergodic if it is aperiodic and the limiting fuzzy transition
possibility matrix exist with identical rows. In this paper, we have analyzed the
existence of the limiting fuzzy transition possibility matrix with identical rows
for a FPMM which contains a state j such that the fuzzy transition possibility
of control transfers from every state i to state j is (1,1,1) ( h̃ij = (1,1,1) for i =
1,2,. . .,n) which ensures its ergodicity.

By the theorem 2 and corollaries (2, 3), it is concluded that the ergodicity of
the FPMM depends on the entries of the jth row of H̃ . The long term behavior
of a system which could be modeled as a FPMM and contains a component such
that the event of reaching that component from every component is an sure
event, can be obtained by analyzing its ergodicity using the above mentioned
theorem and corollaries. Our future work is to extend the above results for a
general FPMM.
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Abstract. Usually it is hard to classify the situation where randomness
and fuzziness exist simultaneously. This paper presents a method based
on fuzzy random variables and statistical t-test to restructure a rough
set. The algorithms of rough set and statistical t-test are used to dis-
tinguish whether a subset can be classified in the object set or not. The
expected-value-approach is also applied to calculate the fuzzy value with
probability into a scalar value.

Keywords: Rough Sets, Fuzzy t-test, Restructuring, Fuzzy Random
Variable.

1 Introduction

We often have problems in classifying data under hydride uncertainty of both
randomness and fuzziness. For example, linguistic data always have these fea-
tures. However, as the meaning of each linguistic datum can be interpreted by a
fuzzy set and the variability of the individual meaning may be understood as a
random event, fuzzy random variable is a concept which can be applied to such
a situation. In this research linguistic data are obtained randomly as a fuzzy
random variable and after the fuzzy random variables are defined, the expected-
value-approach will be applied to calculate them into some scalar values. Finally
the subset, using its expectation values of ransom samples, will be distinguished
whether to be classified into the object set or not by applying the method of
rough set and statistical t-test.

Fuzzy random variable has been a basic tool in constructing the framework
of decision making models under fuzzy random environment, and a number of
practical optimization problems have been studied based on fuzzy random vari-
ables, such as inventory, risk management, portfolio selection, renewal process,
and regression analysis (see [9,10]). Nevertheless, the reliability and redundancy
optimization models under fuzzy random environment have not been well estab-
lished in the literature.

The remainder of this paper is organized as follows. We give an overview of
rough set theory and fuzzy random variables in Sections 2 and 3, respectively.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 269–277, 2009.
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The expected-value-approach, which can calculate the fuzzy random variables
into scalar values, will also be explained in Section 3. In Section 4, the statistical
t-test model which is built according to the rough sets theory will be explained
including its principles and features. In the end, we will summarize this paper
in conclusions.

2 Preliminaries

In this section, we recall some basic concepts on fuzzy variable and fuzzy random
variable which make it easier to follow further discussions on the models. Assume
that (Γ,P(Γ ), Pos) is a possibility space, where P(Γ ) is the power set of Γ , X is
a fuzzy variable defined on (Γ,P(Γ ), Pos) with membership function µX , and r
is a real number. As a well-known fuzzy measure, possibility measure of a fuzzy
event X ≤ r is defined as

Pos{X ≤ r} = sup
t≤r

µX(t). (1)

A self-dual set function, named credibility measure, is formed by [3] as follows

Cr{X ≤ r} =
1
2

(
1 + sup

t≤r
µX(t) − sup

t>r
µX(t)

)
. (2)

A fuzzy variable X is said to be positive if the credibility of X ≤ 0 is zero,
i.e., Cr{X ≤ 0} = 0. Furthermore, fuzzy variable X is said to be convex if
all the α-cut sets of X are convex sets on (. In addition, for an n-ary fuzzy
vector X = (X1, X2, · · · , Xn), where each individual coordinate Xk is a fuzzy
variable for k = 1, 2, · · · , n, the membership function of X is given by taking
the minimum of the individual coordinates as follows

µX (t) =
n∧

i=1

µXi(ti), (3)

where t = (t1, · · · , tn) ∈ (n.

Definition 1 ([4]). Suppose that (Ω, Σ, Pr) is a probability space, Fv is a col-
lection of fuzzy variables defined on possibility space (Γ,P(Γ ), Pos). A fuzzy ran-
dom variable is a map ξ : Ω → Fv such that for any Borel subset B of (,
Pos{ξ(ω) ∈ B} is a measurable function of ω.

Example 1. Let X be a random variable defined on probability space (Ω, Σ, Pr).
We call ξ a triangular fuzzy random variable, if for every ω ∈ Ω, ξ(ω) is a
triangular fuzzy variable defined on some possibility space (Γ,P(Γ ), Pos), e.g.,

ξ(ω) =
(
X(ω) − 1, X(ω), X(ω) + 1

)
.

We say ξ is a normal fuzzy random variable, denoted by NF (X, b), b > 0, if for
every ω ∈ Ω, the membership function of ξ(ω) is

µξ(ω)(r) = exp
(−(r − X(ω))2

b

)
.
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In addition, a fuzzy random variable ξ is said to be positive if for almost every
ω ∈ Ω, ξ(ω) is a positive fuzzy variable. For example, we can construct a positive
normal fuzzy random variable ξ as

µξ(ω)(r) =
{

exp
(−(r − X(ω))2/b

)
, r ≥ 0

0, r < 0.
(4)

In this paper, the above positive normal fuzzy random variable ξ is denoted by
N+

F (X, b).
In order to measure an event ξ ∈ B induced by fuzzy random variable ξ, where

B is any Borel subset of (, the mean chance measure (see [5]) is defined as

Ch {ξ ∈ B} =
∫

Ω

Cr {ξ(ω) ∈ B}Pr(d ω). (5)

Example 2. Consider a triangular fuzzy random variable ξ with ξ(ω) = (X(ω)+
2, X(ω) + 3, X(ω) + 4), where X is a discrete random variable, which takes on
values X1 = 2 with probability 0.4, and X2 = 4 with probability 0.6. Now we
calculate the mean chance of event ξ ≤ 7.

3 Fuzzy Random Variables and the Expected-Value
Approach

Given some universe Γ , let Pos is a possibility measure defined on the power set
P (Γ ) of Γ . Let ( be the set of real numbers. A function Y : Γ → ( is said to be
a fuzzy variable defined on Γ [6]. The possibility distribution µY of Y is defined
by µY (t) = Pos{Y = t}. For fuzzy variable Y with possibility distribution µY ,
the possibility, necessity and credibility of event {Y ≥ r} are given, as follows:

Pos{Y ≤ r} = sup
t≤r

µY (t), (6)

Nec{Y ≤ r} = 1 − sup
t>r

µY (t), (7)

Cr{Y ≤ r} =
1
2
(1 + sup

t≤r
µY (t) (8)

It should be noted that the credibility measure is an average of the possibility
and the necessity measure, i.e. Cr{·} = (Pos{·}+Nec{·})/2, and it is a self-dual
set function for any A in P (Γ ). The motivation behind the introduction of the
credibility measure is to develop a certain measure which is a sound aggregate
of the two extreme cases such as the possibility (expressing a level of overlap
and being highly optimistic in this sense) and necessity. Based on credibility
measure, the expected value of a fuzzy variable is presented as follows.

Definition 2 ([3]). Let Y be a fuzzy variable. The expected value of Y is defined
as:

E[Y ] =
∫ ∞

0
Cr{Y ≥ r}dr −

∫ 0

−∞
Cr{Y ≤ r}dr (9)

provided that the two integrals are finite.
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Example 3. Assume that Y = (c, al, ar)T is a triangular fuzzy variable whose
possibility distribution is

µY (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − al

c − al
, al ≤ x ≤ c

ar − x

ar − c
, c ≤ x ≤ ar

0, otherwise.

Making use of (9), we determine the expected value of Y to be

E[Y ] =
al + 2c + ar

4
. (10)

Next the definitions of fuzzy random variable and its expected value and vari-
ance operators will be explained. For more theoretical results on fuzzy random
variables, one may refer to Liu and Liu [1], and Wang and Watada [7], [8].

Definition 3 ([1]). Suppose that (Ω, Σ, Pr) is a probability space, Fν is a col-
lection of fuzzy variables defined by possibility space (Γ, P (T ), Pos). A fuzzy ran-
dom variable is a mapping X : Ω → Fν such that for any Borel subset B of (,
Pos{X(ω) ∈ B} is a measurable function of ω.

Let X be fuzzy random variable on Ω. From the above definition, we can know
for each ω ∈ Ω, X(ω) is a fuzzy variable. Furthermore, a fuzzy random variable
X(ω) is said to be positive if for almost every ω, fuzzy variable X(ω) is positive
almost surely.

Example 4. Let V be a random variable defined on probability space (Ω, Σ, Pr).
Define that for every ω ∈ Ω, X(ω) = (V (ω)+ 2, V (ω)− 2, V (ω)+6)T which is a
triangular fuzzy variable defined on some possibility space (Γ, P (T ), Pos). Then
X is a triangular fuzzy random variable.

For any fuzzy random variable X on Ω, for each ω ∈ Ω, the expected value of
the fuzzy variable X(ω) is denoted by E[X(ω)], which has been proved to be a
measurable function of ω. Given this, the expected value of the fuzzy random
variable X is defined as the mathematical expectation of the random variable
E[X(ω)].

Definition 4. Let X be fuzzy random variable defined on a probability space
(Ω, Σ, Pr). The expected value of X is defined as:

E[ξ] =
∫

Ω

[
∫ ∞

0
Cr{ξ(ω) ≥ r}dr −

∫ 0

−∞
Cr{ξ(ω) ≤ r}dr]Pr(dω) (11)

Example 5. Consider the triangular fuzzy random variable X as defined in Ex-
ample 4. Suppose that V is a discrete random variable, which takes values V1 = 3
with probability 0.2, and V2 = 6 with probability 0.8. The expected value of X
can be calculated.
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From the distribution of random variable V , we know that the fuzzy random
variable X takes fuzzy variables X(V1) = (5, 1, 9)T with probability 0.2 and
X(V2) = (8, 4, 12)T with probability 0.8. We need to compute the expected
values of fuzzy random variables X(V1) and X(V2). That is , E[X(V1)] = (1 +
2×5+9)÷4 = 5 and E[X(V2)] = (4+2×8+12)÷4 = 8. Finally, by Definition 3,
the expected value of X is E[X ] = 0.2 × E[X(V1)] + 0.8 × E[V2] = 7.4.

Definition 5 ([1]). Let X be a fuzzy random variable defined on a probability
space (Ω, Σ, Pr) with expected value e. The variance of X is defined as

V ar[X ] = E[(X − e)2] (12)

where e = E[X ] is given by Definition 4.

Example 6. Consider the triangular fuzzy random variable X defined in Ex-
ample 4. Let us calculate the variance of X . From the distribution of random
variable V , we know that the fuzzy random variable X takes fuzzy variables
X(V1) = (5, 1, 9)T with probability 0.2, and X(V2) = (8, 4, 12)T with probabil-
ity 0.8. From Example 4, E(X) = 7.4. Then V ar(X) = E[(X(V1)− 7.4)2] · 0.2+
E[(X(V2) − 7.4)2] · 0.8.

Therefore, from Definition 1, we obtain E[(X(V1)−7.4)2] = E[Y 2
1 ] as E

[
Y 2

1
]

=
12.08.

Similarly, we obtain E[(X(V2) − 7.4)2] = E[Y 2
2 ]=4.25. Thus, V ar(X) = 0.2 ·

E(X(V1) − 7.4)2 + 0.8 · E(X(V2) − 7.4)2 = 0.2 × 12.08 + 0.8 × 4.25 = 5.81.

4 Confidence Intervals

Table 1 illustrates a format of data to be dealt with here, where independent
attributes Xik and decision attribute Yi, for all i = 1. · · · , N and k = 1, · · · , K
are fuzzy random variables, which are defined as

Yi=
MYi⋃
t=1

{(
Y t

i , Y t,l
i , Y t,r

i

)
T

, pt
i

}
, (13)

Xik=
MXik⋃
t=1

{(
Xt

ik, Xt,l
ik , Xt,r

ik

)
T

, qt
ik

}
, (14)

respectively. This means that all values are given as fuzzy numbers with prob-
abilities, where fuzzy variables (Y t

i , Y t,l
i , Y t,r

i )T and (Xt
ik, Xt,l

ik , Xt,r
ik )T are as-

sociated with probability pt
i and qt

ik for i = 1, 2, · · · , N , k = 1, 2, · · · , K and
t = 1, 2, · · · , MYi or t = 1, 2, · · · , MXik

, respectively.
Before discussing the restructuring of rough sets using fuzzy random attributes

with confidence interval, we define the confidence interval which is induced by
the expectation and variance of a fuzzy random variable. When we consider the
one sigma confidence (1 × σ) interval of each fuzzy random variable, we can
express it as the following interval

I[eX , σX ] �
[
E(X) −

√
V ar(X), E(X) +

√
V ar(X)

]
, (15)
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Table 1. Data given for fuzzy random
attributes

Decision Independent
Sample Attribute Attributes
i Y X1 X2 · · · Xk · · · , XK
1 Y1 X11 X12 · · · X1k · · · , X1K
2 Y2 X21 X22 · · · X2k · · · , X2K

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
i Yi Xi1 Xi2 · · · Xik · · · , XiK

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
N YN XN1 XN2 · · · XNk · · · XNK

Table 2. Confidence intervals calculated
for attributes

Decision Independent
Sample Attribute attributes

i I[eY , σY ] I[eX1
, σX1

] · · · I[eXK
, σXK

]

1 I[eY1
, σY1

] I[eX11
, σX11

] · · · I[eX1K
, σX1K

]
2 I[eY2

, σY2
] I[eX21

, σX21
] · · · I[eX2K

, σX2K
]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
i I[eYi

, σYi
] I[eXi1

, σXi1
] · · · I[eXiK

, σXiK
]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
N I[eYN

, σYN
] I[eXN1

, σXN1
] · · · I[eXNK

, σXNK
]

which is called a one-sigma confidence interval. Similarly, we can define two-
sigma and three-sigma confidence intervals. All of these confidence intervals are
called σ-confidence intervals. Table 3 shows the data with one-sigma confidence
interval.

5 An Example

In this section, we present a simple example to visualize how to use the proposed
CI-FRRM. Assume that the data of fuzzy random independent and decision at-
tributes (4 samples and 2 attributes) are given in the Tables 3 and 4, respectively.

First of all, we need to calculate all the I[eXik
, σXik

] and I[eYk
, σYk

] for i =
1, 2, 3, 4, k = 1, 2. By using the calculation in Example 6, we obtain all the pairs(
eXik

, σXik

)
and

(
eYk

, σYk

)
as shown in Table 5.

Hence, the confidence intervals for the input data and output data can be
calculated in the form

I[eXki
, σXki

] = [eXki
− σXki

, eXki
+ σXki

] (16)

Table 3. Independent attributes

No. X1

1 X11 =
(
(3, 2, 4)T , 0.5; (4, 3, 5)T , 0.5

)
2 X21 =

(
(6, 4, 8)T , 0.5; (8, 6, 10)T , 0.5

)
3 X31 =

(
(12, 10, 14)T , 0.25; (14, 12, 16)T , 0.75

)
4 X41 =

(
(14, 12, 16)T , 0.5; (16, 14, 18)T , 0.5

)
No. X2

1 X12 =
(
(2, 1, 3)T , 0.1; (4, 3, 5)T , 0.9

)
2 X22 =

(
(3, 2, 4)T , 0.5; (4, 3, 5)T , 0.5

)
3 X32 =

(
(12, 10, 16)T , 0.2; (14, 12, 16)T , 0.8

)
4 X42 =

(
(18, 16, 20)T , 0.2; (21, 20, 22)T , 0.8

)
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Table 4. Decision attribute

No. Y

1 Y1 =
(
(14, 10, 16)T , 0.4; (18, 16, 20)T , 0.6

)
2 Y2 =

(
(17, 16, 18)T , 0.8; (20, 18, 22)T , 0.2

)
3 Y3 =

(
(22, 20, 24)T , 0.3; (26, 24, 28)T , 0.7

)
4 Y4 =

(
(32, 30, 34)T , 0.4; (36, 32, 40)T , 0.6

)

Table 5. Expectation and standard deviation of the data

i
(
eXi1 , σXi1

) (
eXi2 , σXi2

) (
eYi , σYi

)
1

(
3.5, 0.56

) (
3.8, 0.75

) (
16.2, 7.68

)
2

(
7.0, 2.25

) (
3.5, 0.56

) (
17.6, 2.41

)
3

(
13.5, 1.87

) (
13.7, 4.20

) (
24.8, 4.68

)
4

(
15.0, 2.25

) (
20.4, 2.00

) (
34.4, 8.24

)
Table 6. Confidence intervals of the input data

i I [eXi1 , σXi1 ] I [eXi2 , σXi2 ]

1 [2.94, 4.06] [3.05, 4.75]
2 [4.75, 9.25] [2.94, 4.06]
3 [11.63, 15.37] [9.50, 17.90]
4 [12.75, 17.25] [18.40, 22.40]

Table 7. Confidence intervals of the output data

i I [eYi , σYi ]

1 [8.52, 23.88]
2 [15.19, 20.01]
3 [20.12, 29.48]
4 [26.16, 42.64]

Table 8. Restructuring of fuzzy random data

i Xi1 Xi1 Yi

1 0 0 0
2 1 0 0
3 1 1 1
4 1 1 1
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and
I[eYi , σYi ] = [eYi − σYi , eYi + σYi ], (17)

respectively, for i = 1, 2 and k = 1, 2, 3, 4. They are listed in the Tables 6 and 7,
respectively.

6 T-Testing Procedure

After we obtained the expected value of the fuzzy random variables through
the mathematical approach mentioned in Section 3, a new algorithm applying
statistical t-test is designed to identify the inclusion efficiency of the upper ap-
proximation in rough set theory.

Suppose 30 subsets are included in the collectivity set and each subset has 50
sample values. A discrimination ratio for the collectivity set also exists which
means when the classification result of each subset is larger than the discrimina-
tion ratio, the subset will be included into the object set. The statistical t-test
is applied to verify the result of each subset in order to make out whether the
result of samples accords with the result of the whole subset.

In this study, one-side testing is applied and the testing equation is shown as
follows:

T =
X − µ0

S0
n√
n

(18)

where Xis the average of each subset µ0 is the threshold set for each subset. S∗
n

is the modified sample variance of each subset, and n is the number of the subset
values. The significance level used in this study is 5%. The sequence of the test
is shown as follows:

– Calculate the modified sample variance and the value T .
– Comparing the value T and t1−α

2
(n − 1).

– If the value T < t1−α
2
(n − 1), then accept the result of sampling.

– If the value T >= t1−α
2
(n − 1), then reject the result of sampling.

7 Conclusions

This research aims to solve the problem of classification when the object contains
vagueness, randomness and fuzziness. At first, we proposed a rough set approach
because rough set deals well with the vagueness. Secondly we apply the concepts
of fuzzy random variable as well as the method of expected-value-approach to
handle the problem of randomness and fuzziness. After we obtained the expected
value of fuzzy random variables through the above method, the algorithm of
statistical t-test is adopted to reach the goal of classification. Furthermore, to
apply this approach with some real data is also considered in the near future.
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Abstract. In conventional maximal flow problems, it is assumed that decision 
maker is certain about the flows between different nodes. But in real life situa-
tions, there always exist uncertainty about the flows between different nodes. In 
such cases, the flows may be represented by fuzzy numbers. In literature, there 
are several methods to solve such type of problems. Till now, no one has used 
ranking function to solve above type of problems. In this paper, a new algo-
rithm is proposed to find fuzzy maximal flow between source and sink by using 
ranking function. To illustrate the algorithm a numerical example is solved and 
result is explained. If there is no uncertainty about the flow between source and 
sink then the proposed algorithm gives the same result as in crisp maximal flow 
problems. 

Keywords: Fuzzy maximal flow problem, Ranking function, Triangular fuzzy 
number. 

1   Introduction 

A network consists of a set of nodes linked by arcs [9]. Network flow problems have 
many applications in the most diverse fields, such as: telecommunications, transporta-
tions, computation, manufacturing etc. The maximal flow problem is an important 
problem in the network flow problems, it consists of sending the biggest amount of 
flow between two nodes (source S and sink N), holding the capacity restrictions of 
each arc. In the literature, there are some efficient algorithms to solve the crisp prob-
lems [1]. But, there are problems that have uncertainties in their parameters (e.g.: 
costs, capacities and demands). This problem is called fuzzy maximal flow problem, 
where the graph has a crisp structure and fuzzy parameters.  

In the literature, the number of papers dealing with fuzzy maximal flow problem is 
short [3,4,5,11]. The paper by Kim and Roush [11] is one of the first on this subject. 
The authors developed the fuzzy flow theory, presenting the conditions to obtain a 
optimal flow, by means of definitions on fuzzy matrices. But there were Chanas and 
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Kolodziejczyk [3,4,5] who introduced the main works in the literature involving this 
subject. They approached this problem using the minimum cuts technique. Chanas 
and Kolodziejczyk [3] presented an algorithm for a graph with crisp structure and 
fuzzy capacities, i.e., the arcs have a membership function associated in their flow. 
This problem was studied by Chanas and Kolodzijczyk [4] again, in this paper the 
flow was a real number and the capacities have upper and lower bounds with a satis-
faction function. Chanas and Kolodzijczyk [5] also studied the integer flow and pro-
posed an algorithm. In this paper, a new algorithm is proposed to solve the fuzzy 
maximal flow problem occurring in real life. To illustrate the algorithm a numerical 
example is solved and result is explained. If there is no uncertainty about the flow 
between source and sink then the proposed algorithm gives the same result as in crisp 
maximal flow problem.   

2   Preliminaries 

In this section some basic definitions and arithmetic operations are reviewed.  

2.1   Basic Definitions 

Definition 2.1.1 [10] 

The characteristic function Aµ  of a crisp set XA ⊆  assigns a value either 0 or 1 to 

each member in X . This function can be generalized to a function 
A
~µ  such that the 

value assigned to the element of the universal set X  fall within a specified range 
]1,0[  

 i.e. ]1,0[:~
 →X

A
µ . The assigned values indicate the membership grade of the 

element in the set .A   
The function 

A
~µ  is called the membership function and the set 

}:))(,{(
~

~ XxxxA
A

∈= µ  defined by 
A
~µ   for each Xx ∈  is called a fuzzy set.  

Definition 2.1.2 [10] 

A fuzzy number ),,,(
~

cbaA =  shown in Fig. 1, is said to be a triangular fuzzy number 

if its membership function is given by 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤
−
−

=

≤≤
−
−

=
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where Rcba ∈,,  
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2.2   Arithmetic Operations on Triangular Fuzzy Numbers 

Let  ),,(
~

111 cbaA =  and  ),,(
~

222 cbaB =  be two triangular fuzzy numbers then  

(i) ),,(
~~

212121 ccbbaaBA +++=⊕    

(ii) A
~ Ө B

~
),,( 212121 acbbca −−−=    

3   Ranking Function  

A convenient method for comparing fuzzy numbers is by the use of ranking function 
[2,7,10,12]. A ranking function R: F(R) →  R, where F(R) set of all fuzzy numbers 
defined on set of  real numbers, maps each fuzzy number into a real number.                  

Let A
~

 and B
~

 be two triangular fuzzy numbers, then 

                                      BA
R

~~
)i( ≥    if and only if )

~
()

~
( BRAR ≥  

                                      BA
R

~~
)ii( ≤   if and only if )

~
()

~
( BRAR ≤   

                                      BA
R

~~
)iii( =  if and only if )

~
()

~
( BRAR =  

For a triangular fuzzy number ),,,(
~

cbaA =  ranking function R is given by   

)2(
4

1
)

~
( cbaAR ++= . 

4   Fuzzy Maximal Flow Algorithm 

The proposed algorithm is a labeling technique. The idea of fuzzy maximal flow algo-
rithm is to find a breakthrough path with positive net flow that connects the source and 

sink nodes. Take an arc ),( ji  with initial approximate capacities )
~

,
~

( jiij cfcf . As the 

computations of the algorithm proceed, portions of these approximate capacities are 

0           a             b          c            R                              

 
 
1 

                              Fig. 1. 
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committed to the flow in the arc, the residuals of the arc are updated. We use the nota-

tion )
~

,
~

( jiij dfdf . The fuzzy network with the updated excess approximate capacities 

will be referred to as the residual fuzzy network.  

For a node j that receives flow from node i, attach a label ],
~

[ iaf j , where jaf
~

is the 

approximate flow from node i  to j .  

The source node is numbered 1 and the algorithm proceeds as follows: 

Step 1  

Let the index  j  refer to all nodes that can be reached directly from source node 1 by 

arc with positive excess capacities, i.e. 0)
~

( 1 >jcfR  and rank of jcf 1
~

 is maximal for 

all j . On the diagram of the network, the node j  is labeled with two num-

bers ]1,
~

[ jaf , where jaf
~

 is the approximate positive excess capacity, and 1 means 

flow is coming from node 1. If in doing this the sink N is labeled, so that there is a 
branch of approximate positive excess capacity from source to the sink, then the ap-

proximate maximal flow along the path is given by Ncff 11
~~

= , and the excess capacity 

due to this breakthrough path is decrease by 1
~
f   in the direction of the flow and is 

increased by 1
~
f  in the reverse direction. This means that for source nodes 1 and sink 

node N  the excess flow is changed from the current   

)
~

,
~

( 11 NN dfcf   to Ncf 1
~

( Ө )
~~

,
~

111 fdff N ⊕  

Step 2  

In case in step 1, the sink is not labeled then again find all the nodes k that can be 

reached from node j and label these nodes as ],
~

[ jaf k . Repeat this step until sink is 

labeled after that compute 1

~
f .  

=1
~
f minimum of the excess approximate capacities on the path to the sink. 

Subtract 1
~
f  from excess approximate capacities on the arc in the direction of path 

and add 1
~
f  from the excess approximate capacity in reverse direction. In this way 

the fresh excess approximate capacities are obtained. 

Step 3 

Step 1 or 2 gives first breakthrough. Compute freshly excess approximate capacities 
of all arcs which are changed due to first breakthrough. The process is repeated until, 
in a finite number of steps, we reach the state so that no additional nodes can be la-
beled to reach sink. The approximate maximal flow is computed by  

pfffff
~

...
~~~~

321 ⊕⊕⊕⊕=  

where p is the number  of iteration to get no breakthrough. 
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The approximate optimal flow in the arc ),( ji  is computed as 

ijcf
~

()
~

,~( =βα  Ө jiij cfdf
~

,
~ ' Ө )

~ '
jidf  

where ijcf
~

 and jicf
~

 are the initial approximate capacities, and '~
ijdf , '~

jidf  are the 

final approximate excess capacities. If 0)~( >αR , the approximate optimal flow from 

i to j  is α~ .  Otherwise, if 0)
~

( >βR , the approximate optimal flow from  j to i  is 

β~ . Note that )~(αR  and )
~

(βR  can not be positive together. 

5   Illustrative Example 

Consider the network shown in Fig. 2. The bidirectional approximate capacities are 
shown on the respective arcs. For example, for arc (3,4) the flow limit is approxi-
mately 10 say (5,10,15) units from 3 to 4 and approximately 5 units from 4 to 3 say 
(0,5,10) units. Determine the approximate maximal flow in this network between 
source 1 and sink 5. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. 

The algorithm is applied in the following manner. 

Iteration 1 

At the first step, find the nodes that can be reached directly from the source by arc of 

positive excess approximate capacity 0)
~

( >ijcfR . These nodes are 2, 3, 4. Label 

these nodes with the ordered pair of numbers ]1,
~

[ jaf , where jj cfaf 1
~~

= and 1 

means we have reached from node 1. Firstly we will choose the path having approxi-
mate maximal flow limit.  

Since the rank of )45,30,15(  is maximum so we will choose the path form node 1 

to 3. Node 3 is labeled as ]1),45,30,15([ . Still sink is not labeled. Again we will 

choose the path having maximal approximate flow limit i.e. ]3),30,20,10([  from 

node 3 to node 5. Now, sink is reached and labeling process stops as we have got first 
breakthrough. The approximate flow in the network can be increased by 
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)}30,20,10(),45,30,15({min
~
1 =f  

The value of 1
~
f  indicates that increase of approximately 20  i.e. )30,20,10(  units 

can be made along the path traced out in a move from source to sink. We can easily 
work backward to find the path. The label on the sink shows that we came from node 
3. From node 3 it is seen that we came from node 1. The path is 531 →→ . After 
first iteration arc )3,1(  has fuzzy residual in direction of flow 

)45,30,15( Ө )35,10,15()30,20,10( −=  and )30,20,10()30,20,10()0,0,0( =⊕  in 

opposite direction. Similarly, arc )5,3(  has )20,0,20( − and )30,20,10(  in the direc-

tion of flow and in opposite direction.               
 
 
 
 
 
 
 
 
 
 
 
 
                            

Fig. 3. 

Iteration 2 

We repeat the procedure described in the first iteration, at the starting node 1, the 

breakthrough path obtained is 54321 →→→→  and )15,10,5(
~

2 =f . 
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Iteration 3 

Repeat the procedure. The breakthrough path obtained is 521 →→  and  
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Iteration 4 
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Iteration 5 
A breakthrough path is 541 →→  and ).15,10,5(
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5 =f  
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More iterations are not possible after 5th iteration a there is no way out to reach at 

sink from source. The approximate maximal flow is 
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6   Result and Discussion 

The obtained result can be explained as follow: 

1) The flow between source and sink is greater than 0 and less than 120. 
2) Maximum number of persons are in favour that flow will be 60. 
3) The percentage of person increases when flow varies from 0 to 60 and decreases 

from 60 to 120. 
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7   Conclusion 

In this paper, a new algorithm is proposed to solve the fuzzy maximal flow problem 
occurring in real life. To illustrate the algorithm a numerical example is solved and 
result is explained. If there is no uncertainty about the flow between source and sink 
then the proposed algorithm gives the same result as in crisp maximal flow problem. 
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Abstract. Ongoing development in nanotechnology and bioinformatics will en-
able the construction of nanorobot which will work at nano-scale. Nanorobot 
development has many challenges and limitations such as its control and behav-
iour in different environments. In this proposed work we present DNA nanoro-
bot design, methodology for detection of Helicobacter pylori (H. Pylori)  
infection and DNA nanorobot control techniques for its movement in dynamic 
environment are described using Fuzzy Logic (FL) rules. Propose model will 
detect the CagA protein in blood and subsequently indicates towards H.  pylori 
infection.  

Keywords: ATP, DNA Nanorobot, Fuzzy Logic, Nanomedicine, Nanorobotics, 
Nanotechnology, Helicobacter pylori. 

1   Introduction 

According to A. Cavalcanti “One of the major factors for successfully developing 
nanorobot is to bring together professionals with interdisciplinary views of science 
and technologies”. Today, nanorobots have a wide application in medical treatment. 
However conventional techniques of robotics can’t help in the cell or molecular scale 
diseases like gastric ulcers and other duodenal diseases. This needs the development 
of nanoscale robots to perform the operation at nanoscale precision. Just as biotech-
nology extends the range and efficacy of treatment options available from nanomate-
rials, the advent of molecular nanotechnology will again expand enormously the  
effectiveness, precision and speed of future medical treatments while significantly 
reducing their risk, cost, and invasiveness at the same time. H. pylori is a Gram-
negative, microaerophilic bacterium that inhabits various areas of the stomach and 
duodenum. It causes a chronic low-level inflammation of the stomach lining and is 
strongly linked to the development of duodenal and gastric ulcers and stomach cancer. 
More than 50% of the world's population harbour H. pylori in their upper gastrointes-
tinal tract. The main objective of our paper is to propose a detection methodology for 
H. pylori infection at molecular level using DNA Nanorobot. Here, DNA nanorobot 
movement uses fuzzy approach. Fuzzy decision making deals with uncertainty and 
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vagueness in the dynamic environment. Fuzzy logic allows defining behaviour deci-
sion rules through linguistic terms that simplify expert knowledge encoding. 

2   Literature Review 

M. Hamdi et. al [2] in his paper, presents a molecular mechanics study of nanorobot-
ics structures using molecular dynamics (MD) simulations coupled to virtual reality 
(VR) techniques. U. A. Dubbey et.al [3] in his paper describe, that Nanorobots would 
constitute any active structure (nano-scale) capable of actuation, sensing, signaling, 
information processing, intelligence, and swarm behavior at nano-scale. The idea of 
using DNA to build nanoscale objects has been pioneered by Nadrian Seeman at U.S. 
He reported the construction of a mechanical DNA-based device that might serve as 
the basis for a nanoscale robotic actuator [2] [3] [5]. The H. pylori infection is associ-
ated with the presence of a 145 KD immunodominant, cytotoxin-associated antigen 
known as CagA protein coded by CagA gene. H. Pylori injects CagA protein into the 
host gastric epithelial cells through its needle-like structure. Injected CagA hijacks 
physiological signal transduction and causes pathological cellular response such as 
increased cell proliferation, motility, apoptosis and morphological change through 
different mechanisms [6]. There are different conventional techniques to diagnose H. 
pylori infection like blood antibody test, carbon urea breath test, biopsy etc. but none 
of these tests are failsafe [7]. So detecting the H. pylori infection with the DNA nano-
robot would be a fast and new method and since CagA protein is present in almost all 
cases of H. pylori infection, this method can be trusted. 

3   DNA Nanorobot Design 

A DNA nanorobot design is comprised of components such as DNA, ATP motor, 
CNT and Rhodopsin sensor. Nanorobot is a kind of molecular machine, which in-
cludes embedded and integrated device that can comprise the main sensing, actuation,  
 

 

Fig. 1. Architecture of DNA Nanorobot design 
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data transmission, remote control uploading, and coupling power supply subsystem as 
given in Fig. 1. If all these different components were assembled together in the 
proper proportion and orientation, they would form DNA nanorobot with multiple 
degrees of freedom, able to apply forces and manipulate objects in the nano-scale 
world. Main goal of DNA nanorobot is ensuring sufficient biocompatibility for  
the nanorobot to avoid immune system attack. The control system must ensure a suit-
able performance. It can be demonstrated by giving some rules for the movement of 
DNA Nanorobot when it enters to the small vessel. In our work, we consider all DNA 
nanorobots will enter in small blood vessel for finding a small target area and will be 
controlled by means of Fuzzy control. The components DNA, ATP, CNT, Rhodopsin 
and Peptide limb are described below.   

3.1   DNA 

There has been a great interest and many reports in use of DNA specifically to actuate 
and assemble micro and nano sized system. Here, DNA could be act as motors, me-
chanical joints, transmission elements, sensors and information carrier.  

3.2   ATP 

ATP synthesis is the process within the mitochondria of a cell by which a rotary en-
gine uses the potential difference across the lipid bilayer to power a chemical trans-
formation of Adenosine Di-Phosphate (ADP) into Adenines Tri Phosphate (ATP). 
Therefore   it can be used as a motor in DNA nanorobotics. Here α and β units are 
opened they take in ADP, and a phosphate group. As the rotor continues to turn the 
section closes and the phosphate is chemically bound to the ADP to form ATP. 

3.3   CNT 

Carbon Nano Tubes (CNT) are cylindrical sheets of carbon. They can have tensile 
strength as high as sixty times larger than steel. They also show electronic stability. In 
DNA nanorobotics, CNT could be used as structural element while the passive/active 
joints are formed by appropriate designed DNA elements. 

3.4   Rhodopsin 

The DNA nanorobot uses sensors allowing it to detect nearby objects in the environ-
ment or its target region. Rhodopsin is a light sensor. Nanosensors include long dis-
tance sensor and short distance sensor, the former navigate the nanorobot to the target 
tissue, other nanorobots or obstacle. Biochemical sensors can perceive chemical 
grads, pH, temperature and radiation of the environment. 

3.5   Peptide Limb 

In above DNA nanorobot model, the arm of nanorobot is made of helical peptide 
which can be used for locomotion and object manipulation. Because our aim is to find 
the ulcer cell, so we discussed only those components which will applicable to this 
specific task.  
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4   Methodology for Detection of H. Pylori Infection 

Main objective of our work is to detect H. pylori infection in body which gives a clue 
about occurrence of gastro duodenal diseases. Here we detect a protein produced by 
the bacteria called as cytotoxin associated geneA protein or CagA protein in blood. 
We will adopt SELEX or systematic evolution of ligands by exponential enrichment 
technique through which high affinity nucleotides will be synthesized [8] [1]. These 
oligonucleotides are called Aptemer (see fig. 2). In this technique first the pool of 
random sequences of DNA would be constructed as a molecular library corresponding 
to ‘spontaneous mutation’. The library obtained would then be subjected to asymmet-
ric PCR using only the forward primer for yielding a single-stranded DNA pool. Each 
single-stranded oligonucleotide would fold to form an independent three-dimensional 
structure according to the intra-molecular hydrogen bonds and hydrophobic interac-
tions in each molecule. The specific oligonucleotide that could recognize the target 
molecule would then be selected, through the process of ‘natural selection’. The next 
step which is ‘proliferation’ would be performed by PCR enrichment. Repeating the 
above three mentioned steps of spontaneous mutation, natural selection and prolifera-
tion, an oligonucleotide with a higher affinity for the target CagA protein would be 
obtained. This Aptemer is then attached with protein arm of Nanorobot and send to 
the Human body.  

 

Fig. 2. SELEX technique for producing high affinity Aptamers 

5   Nanorobot Movement 

DNA nanorobot movement in unknown dynamic environment is one of the important 
factors for avoiding collision with obstacle or other DNA nanorobot. Here, we con-
sider DNA nanorobots flowing in a blood vessel with small target area to avoid the 
collision with obstacle as in Fig. 3. The DNA nanorobots, designed with sensors must 
be capable of detecting other Nanorobots or obstacle. Basically, the DNA Nanorobot 
can go to these two paths. (A) Global Path: It is carried out based on the coverage of 
the particles. (B) Local Path: It is found for each nanorobot when obstacle or other 
DNA nanorobot is encountered on its currently selected path. Even though obstacle 
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can be of different sizes, for simplicity, we have considered here both DNA nanorobot 
and the obstacle are circular type with radius r of same size [4]. Fig. 4 depicts two 
nanorobots Si & Sj from a set of nanorobots S with radius r and coverage area пr2. 
When a DNA nanorobot moves, if any obstacle or other DNA nanorobot comes in its 
coverage area, it detects the distance according to time t. Suppose other DNA nanoro-
bot or obstacle has a certain position (xi, yi). We assume that both the DNA nanorobot 
and the obstacle having the same fluid velocity vf (vfxi, yfyi), now new position within 
time ∆t can be calculated as follows:  

xj = xi + vf xi * ∆t,        yj = yi + vf yi * ∆t                                 (1) 

The distance ∆d between a DNA nanorobot and other DNA nanorobot or obstacle can 
be calculated within time ∆t 

∆d = √((xj + vf xj * ∆t - xi + vf xi * ∆t)2  + (yj + vf yj * ∆t - yi + vf yi * ∆t)2)         (2) 

DNA nanorobot movement control Algorithm: 

1. Inject all Nanorobots into the blood vessel. 
2. Each Nanorobot will move to new location based on fluid velocity and the 

conditional statements checks if it has enough coverage based its neighbour. 
3. For each neighbour Si, Sj Є S, where i, j=1..n checks for the distance information. 
4. If the coverage value < threshold value then 

4.1 It will find the new position based on Fuzzy Rules. 
5. If DNA nanorobot finds the new position then 

5.1 Change the angle,  
5.2 Move to new position. 

6. If nanorobot does not find any other nanorobot or obstacle then 
6.1 It will move to its path ahead until it does find the target protein.  

Initially each DNA nanorobot will choose the Global Path, but when any obstacle is 
encountered at its path, it will change its direction and will move to Local Path. In 
DNA nanorobot movement control strategy, coverage area for each nanorobot has to 
be considered. Suppose there are two DNA nanorobots Si, Sj with position Si (xi, yi) 
and Sj (xj, yj) with radius ri and rj of sensor with coverage area пr2. In the given algo-
rithm we have applied Fuzzy Rules for the movement of DNA nanorobot when obsta-
cle or other DNA nanorobot encountered at its path and come in DNA nanorobot 

 

  

Fig. 3. DNA Nanorobots movement in small 
blood vessel 

Fig. 4. Coverage Area of DNA nanorobot 
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Fig. 5. DNA nanorobot movement angle 

Table 1. Set of Fuzzy rule for Deviation 

 

 
coverage area. DNA nanorobot’s sensor will detect the distance of the obstacle or 
other nanorobot when those come in the coverage area of DNA nanorobot. The obsta-
cle or other DNA nanorobot could be at Near (N) or Very Near (VN) distance, and 
this distance will be given by ∆d as in (2). DNA nanorobot makes decision for devia-
tion on the basis of fuzzy rules only when obstacle or other DNA nanorobot is coming 
toward or at its path. Possible angle can be Left (L), Ahead Left (AL), Ahead (A), 
Ahead Right (AR), and Right (R) as given in Fig. 5. 

6   Simulation and Result 

A solution to the DNA nanorobot movement when obstacle is encountered at its path 
is based on Fuzzy Rules. Here each Fuzzy Rule has basically three conditions naming 
Distance, Angle and Deviation. 1.  Distance- The distance ∆d is calculated when 
other nanorobot or obstacle is come in DNA nanorobot’s coverage area. Distance will 
have two fuzzy values VN and N as given in Fig. 6.  2.  Angle- This is defined as the 
angle between the DNA nanorobot and other DNA nanorobot or obstacle. There are 
five fuzzy values considered here for the parameter angle L, AL, A, AR, and R as 
given in Fig. 7.  3.  Deviation- Deviation shows the movement in angle, when fuzzy 
rule is applied to the DNA nanorobot. Here each function is assumed as triangular 
membership function. When DNA nanorobot detects any obstacle in its coverage 
area, it calculates the distance in between DNA nanorobot and other nanorobot or 
obstacle, then DNA nanorobot deviate according to fuzzy rules. For deviation, there  
 
 

 

Fig. 6. Membership function for Distance Fig. 7. Membership function for Angle 
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are five fuzzy values L, AL, A, AR, and R. In our experiment, there are two fuzzy 
values for Distance and five fuzzy values for Angle, so possible set of rules will be 
2 x 5 or 10 combination as given in Table 1. For each combination we have given a 
rule. Based on these rules, DNA nanorobot will deviate its angle when obstacle will 
encounter in its coverage area. In the above Table 1, we can interpret, for example: If 
(distance is VN and angle is AL (-45°). In this condition according to fuzzy rules, 
deviation will be AR (45°) as given in Fig. 8. We have simulated our solution of DNA 
nanorobot movement with dynamic environment in MATLAB. For the deviation of 
DNA nanorobot, we can mention here that distance as well as angle membership 
functions play important roles for the deviation of DNA nanorobot.  

 

Fig. 8. Deviation using Fuzzy Rules 

7   Conclusion 

In this report we have proposed a method to detect H. pylori infection and 
subsequently any duodenal ulcer within human body using DNA nanorobot, and 
DNA nanorobot movement control algorithm for 2D dynamic environment. The 
simulations results have proved that the proposed scheme effectively construct an 
obstacle free self organized trajectory. 
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Abstract. Selection of the appropriate automated guided vehicle (AGV) for a 
manufacturing company is a very important but at the same time a complex 
problem because of the availability of wide-ranging alternatives and similarities 
among AGVs. Although, the available studies in the literature developed vari-
ous fuzzy models, they do not propose any approaches to measure the benefits 
generated by incorporating fuzziness in their selection models. This paper aims 
to fill this gap by trying to quantify the level of benefit provided by employing 
the fuzzy numbers in the multi attribute decision making (MADM) models. 
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is 
used as the MADM approach to rank the AGV in this paper. In the paper, by 
increasing the fuzziness level steadily in the fuzzy numbers, the obtained AGV 
rankings are compared with the ranking obtained with the crisp values. The sta-
tistical significance of the differences between the ranks is calculated using 
Spearman’s rank-correlation coefficient. It can be observed from the results that 
as the vagueness and imprecision increases, fuzzy numbers instead of crisp 
numbers should be used. On the other hand, in situations where there is a low 
level of fuzziness or the average value of the fuzzy number can be guessed, us-
ing crisp numbers will be more than adequate. 

Keywords: AGV selection, Multi Attribute Decision Making (MADM),  
Fuzzy numbers, Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS). 

1   Introduction 

AGVs are among the fastest growing classes of equipment in the material handling 
industry. They are battery-powered, unmanned vehicles with programming capabili-
ties for path selection and positioning. They are capable of responding readily to fre-
quently changing transport patterns and they can be integrated with fully automated 
intelligent control systems. These features make AGVs a viable alternative to other 
material handling methods, especially in flexible environments where the variety of 
products processed results in fluctuating transport requirements [1,2].  



296 V.B. Sawant and S.S. Mohite 

The decision to invest in AGVs and other advanced manufacturing technology has 
been an issue in the practitioner and academic literature for over two decades. An 
effective justification process requires the consideration of many quantitative and 
qualitative attributes. AGV selection attribute is defined as a factor that influences the 
selection of an automated guided vehicle for a given application. These attributes 
include: costs involved, floor space requirements, maximum load capacity, maximum 
travel speed, maximum lift height, minimum turning radius, travel patterns, pro-
gramming flexibility, labor requirements, expansion flexibility, ease of operation, 
maintenance aspects, payback period, reconfiguration time, company policy, etc.  

Kim and Eom [3] introduced a material handling selection expert system. Fisher  
et al. [4] introduced MATHES, the ‘material handling equipment selection expert 
systems’, for the selection of material handling equipment from 16 possible choices. 
Chan et al. [5] described the development of an intelligent material handling equip-
ment selection system called material handling equipment selection advisor (MHE-
SA). Fonseca et al. [6] developed expert decision support systems for the selection of 
material handling equipments. Kulak [7] developed a decision support system called 
FUMAHES-fuzzy multi-attribute material handling equipment selection. Chakrabor-
thy and Banik [8] focused on the application of the analytic hierarchy process (AHP) 
technique in selecting the optimal material handling equipment for a specific material 
handling equipment type. 

However, the studies mentioned above mostly used crisp data except [7] and do not 
take into account the uncertainties and imprecision that may be associated with the 
decision-maker’s judgments. Fuzzy MADM approaches are proposed for selection 
problems where vagueness and imprecision are involved in the literature. Although 
detailed descriptions are provided in the literature, various issues of the fuzzy MADM 
approaches are not explored yet. Such a key issue is the justification for the usage of 
fuzzy versions of the MADM approaches. A study that compares usage of the fuzzy 
and crisp numbers or one that provides recommendations about when one is preferred 
over the other is not available in the literature. This paper tries to fill this gap by de-
termining a level of fuzziness (a threshold value) that warns the users to start using 
fuzzy MADM approach instead of its crisp version. It is expected that above the cal-
culated threshold value, the level of uncertainties and imprecision is high enough to 
justify the usage of fuzzy MADM approaches. On the other hand, a fuzziness level 
below the threshold value indicates that the benefit of the usage of fuzzy numbers is 
minimal. The benefit of using fuzzy numbers instead of crisp ones can be measured 
with the statistical significance of the difference between the rankings obtained using 
fuzzy numbers and crisp values. When the statistical significance of the difference is 
above a pre-defined value, it is recommended to use the fuzzy numbers instead of 
crisp ones. In this study, the measure of fuzziness level is first defined and then vari-
ous cases are developed by varying (steadily increasing) the level of fuzziness and 
compared with the ranking obtained using crisp numbers.  

Although there are many different fuzzy MADM approaches to calculate the rating 
scores and rankings of the AGVs, the technique for order preference by similarity to 
ideal solution, developed by Hwang and Yoon [9], will be used as the ranking method 
in this paper. The advantage of this method is its simplicity and ability to yield an 
indisputable preference order Sen and Yang [10]. Steps and application details of the 
fuzzy TOPSIS approach are presented in [10, 11, 12, 13]. The rankings are obtained 
with the application of the TOPSIS approach for various cases. For each case, the 
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statistical significance of the difference between the ranking obtained for the fuzzy 
criteria weights and the one obtained for the crisp weight values is determined using 
Spearman’s rank-correlation test. Spearman’s rank-correlation test, which is a special 
form of correlation test, is used when ‘the actual values of paired data are substituted 
with the ranks which the values occupy in the respective samples [14]. In this study, 
Spearman’s test evaluates the similarity of the outcomes (rankings of the AGVs for 
various cases) of the TOPSIS approach. In its application in the paper, to test the null 
hypothesis (H0: there is no similarity between the two rankings), a test statistic, Z, is 
calculated using Eqs. (1) and (2) and compared with a pre-determined level of signifi-
cant α value. For example, if 3.5, which corresponds to the critical Z-value at the level 
of significance of α = 0.0002 is selected and the test statistic computed by Eqs. (2) 
exceeds 3.5, the null hypothesis is rejected and it is to be concluded that ‘H1: the two 
rankings are similar’ is true. Z-value itself can also be used as a measure of similarity 
of rankings. A higher Z-value shows a higher similarity between any two rankings. 

                                        
(1) 

                                                        (2)
 

In Eqs. (1) and (2), dj is the difference in alternative ranks for the jth AGV and K is the 
number of alternatives to be compared. rs represent the Spearman’s rank-correlation 
coefficient. 

2   Application of the Fuzzy TOPSIS and Spearman’s  
Rank-Correlation Approaches for Different Levels of Fuzziness 

An example is developed to explain and illustrate the analysis of fuzziness. Nine 
AGVs and six criteria are selected for the example, and the AGVs’ performance val-
ues at the selected criteria are provided in Table 1. TOPSIS approach requires the 
weights of criteria and AGV performance values at the criteria as inputs. It should  
be noted that, in the application of the TOPSIS approach, since the AGVs’ perfor-
mance values at criteria are crisp values (see Table 1), only criteria weights are re-
quired to be the fuzzy numbers. 

2.1    Analysis of the Fuzziness in Terms of Spread Only While Keeping the 
Center of the Fuzzy Numbers Constant 

In the first part of section 2, six cases (cases B–G) are developed by varying the lower 
and upper values of fuzzy numbers while keeping their centers (mean  or average) 
constant at their crisp values given in case A (see Table 2). The level of fuzziness is 
determined with the ‘spread’ in the developed cases. In this study the spread is de-
fined as the number of units that the lower and upper values apart in a trapezoidal or 
triangular fuzzy number and takes the values 0, 1, 2, . . ., 6. It is assumed that as the 
level of imprecision and uncertainty increases, this increase translates into an increase 
in the spread (difference) between the lower and upper values of the fuzzy number. 
For each case, the criteria weights are readjusted by equaling the number of units.  
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Table 1. AGV Selection Attribute data 

Alternative 
AGV 

MLC MS LH PC TR PF 

1 50 148 20 105 400 0.335 
2 65 197 20 120 600 0.5 
3 300 131 20 130 400 0.590 
4 681 300 20 160 500 0.665 
5 1815 300 0.5 140 1000 0.665 
6 5443 525 20 180 1219 0.745 
7 9072 350 20 190 1219 0.745 
8 13,608 350 40 210 1219 0.865 
9 22,680 350 30 235 1219 0.865 

Max Load Capacity in Kg (MLC), Max Travel Speed in ft/min (MS), Maximum Lift 
Height in ft (LH), Purchasing Cost in 100x$ (PC), Minimum turning radius in mm 
(TR), Programming flexibility(PF).  

For each case, the ranking scores and rankings are obtained for AGVs using the 
criteria weights (see Table 2) and AGV performance values at the selection criteria 
(see Table 1) and provided in Table 3. The obtained rankings for cases B–G are com-
pared with the ranking obtained for case A (see Table 4). The comparison is per-
formed by taking the difference of the ranks of the AGVs (the columns under the 
headings ‘A–B’, ‘A–C’, . . .., ‘A–G’ in Table 4) and then calculating spearman’s 
correlation coefficients (Z-values) for each difference (last row in Table 4).  

The calculated Z-values are further illustrated in Fig. 1. It can be observed from the 
figure that as the level of fuzziness increases, the similarity of the rankings does not 
show any changes. However, even the lowest Z-value in Fig. 1, 2.781, corresponds to 
the level of significance = 0.0003 and indicates that using fuzzy numbers instead of 
crisp values does not provide any meaningful differences in the rankings of cases B–
G compared to case A. This observation is supported by checking the differences of 
the ranks of the AGVs provided in Table 4. Cases D, E, F and G provided the exact 
ranking with case A. For case C the highest difference in rankings is 1 for AGV 7. To 
conclude the benefit resulted from changing the spread without changing the center of 
the fuzzy number is statistically insignificant; in such cases the user can use crisp 
values as the criteria weights confidently. 

2.2    Analysis of the Fuzziness in Terms of Spread and Center (Average Value)  
Together in the Fuzzy Numbers 

In the cases developed so far, it is assumed that the average values are known with 
certainty but the users are not sure about the spreads of the numbers. However, in 
different situations, the average values may also be unknown along with the spread of 
the fuzzy number which implies increased uncertainties and imprecision.  
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Table 4. The differences and correlation values of the Cases B–G compared with Case A 

Alternative 
AGV 

A-B 
 

A-C 
 

A-D 
 

A-E 
 

A-F 
 

A-G 
 

1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 0 0 0 0 0 0 
4 0 0 0 0 0 0 
5 0 0 0 0 0 0 
6 0 -1 0 0 0 0 
7 0 1 0 0 0 0 
8 0 0 0 0 0 0 
9 0 0 0 0 0 0 

(dk)2 0 2 0 0 0 0 
rs 1.0 0.983 1.0 1.0 1.0 1.0 
Z 2.828 2.781 2.828 2.828 2.828 2.828 

 
To incorporate the shift in the average values of the fuzzy numbers, new cases are 

developed. In the new cases, the fuzzy numbers are shifted to either left (Cases H–M) 
or right (Cases N–S) or both directions (Cases T–Y) while the spread is again in-
creased steadily. New cases are again compared with Case A whose crisp criteria 
weights are not changed from the values provided in Table 2. The calculated Z-values 
along with the Z-values for the Cases B–G are provided in Fig. 1.  

The comparisons of the Z-values obtained for ‘shifted to left’, ‘shifted to right’ and 
‘shifted to both directions’ with the ‘no-shift’ criteria weights (Cases A–G) show that 
as the fuzziness, which is represented with the shift of the average and the spread 
together, increases, the similarity of the ranking with the one obtained with the crisp 
numbers has no effect.  

It can be concluded that the statistical significance of the benefit, which is defined 
in terms of the difference between the ranking obtained with the fuzzy numbers and 
the one obtained with the crisp values, is minimal. Especially the user can use crisp 
criteria weights confidently at low fuzziness levels. On the other hand, the magnitude 
of benefit of using fuzzy numbers increases when the decision maker is not sure about 
the spread and the mean of the fuzzy number at the same time. In such a case, al-
though the statistical significance values of the differences in AGV rankings are still 
very small, using fuzzy numbers are recommended to quantify the criteria weights. 
Even small changes in the rankings may lead to the elimination of the best AGV and 
selection of a less qualified AGV. 

3   Results and Discussions 

This paper aims to measure the benefits of using fuzzy numbers instead of crisp ones 
in a TOPSIS AGV selection model. In the model, the fuzziness level is presented in 
terms of the spread (the difference between the lower and upper values) and shift of 
the mean of the fuzzy numbers. Various cases are developed by increasing the spread 
and shifting the mean of fuzzy numbers for criteria weights. The benefit, which is 
defined in terms of the ranking differences, is measured as the statistical significance 
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of the difference between the rankings obtained with the ranking obtained using crisp 
numbers. Fig. 1 clearly shows that as the fuzziness level increases, the similarity of 
the ranking has no effect in this problem. The calculated Z-values clearly show that 
the ranking differences are not statistically significant even when the level of fuzzi-
ness increased. It can be concluded that when the fuzziness level is low and especially 
when the mean value of the fuzzy number can be approximately guessed, the benefit 
of using fuzzy numbers is minimal.  

 

Fig. 1. Graphic illustration of Spearman rank-correlation test results for Cases A–Y 

4   Conclusions 

In this paper a method to determine benefits obtained by using fuzzy numbers in 
TOPSIS model for AGV selection problem has been presented. However, the problem 
considered for analysis does not reveal any major benefit of fuzzy number variation; 
different problems have to be analyzed so that study can be used in the real life deci-
sion making process. 
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Abstract. The Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) method, evaluation of alternatives based on weighted attributes play 
an important role in the best alternative selection. Practically it is difficult to 
precisely measure the exact values to the relative importance of the attributes 
and to the impacts of the alternatives on theses attributes. Therefore, the TOP-
SIS method has been extended for interval-valued intuitionistic fuzzy data in 
this paper, to tackle this problem. In addition, supplier selection problem a 
multi-criteria group decision making problem involving several conflicting cri-
teria is solved with the proposed methodology. 

Keywords: Interval-valued intuitionistic fuzzy set, TOPSIS, Decision making. 

1   Introduction 

Multi-criteria decision making (MCDM) is the most well-known branch of decision 
making. It is a branch of a general class of operations research models that deals with 
decision problems under the presence of a number of decision criteria. The MCDM 
approach requires that the selection be made among decision alternatives described by 
their attributes. MCDM problems are assumed to have a predetermined, limited num-
ber of decision alternatives. Solving a MCDM problem involves sorting and ranking. 
MCDM approaches can be viewed as alternative methods for combining the informa-
tion in a problem’s decision matrix together with additional information from the de-
cision maker to determine a final ranking or selection from among the alternatives. 
Besides the information contained in the decision matrix, all but the simplest MCDM 
techniques require additional information from the decision maker to arrive at a final 
ranking or selection. 

MCDM problems and their evaluation process usually involve subjective assess-
ments, resulting with imprecise data in qualitative manner. Engineering or manage-
ment decisions are generally made through available data and information that are 
mostly vague, imprecise, and uncertain by nature. The decision-making process in 
engineering schemes, developed in the concept-designing phase, is one of these typi-
cal occasions, which usually need some methods to deal with uncertain data and  
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information that are hard to define. In designing phase, designers usually present 
many alternatives. However, the subjective characteristics of the alternatives are gen-
erally uncertain and need to be evaluated through decision maker’s insufficient 
knowledge and judgments. The nature of this kind of vagueness and uncertainty is 
fuzzy rather than random, especially when subjective assessments are involved in the 
decision-making process. Fuzzy set theory [18] offers a possibility for handling these 
sorts of data and information involving the subjective characteristics of human nature 
in the decision-making process.  

There, exist several methods to solve MADM problems, out of which the Tech-
nique for Order Preference by Similarity to Ideal Solution (TOPSIS) developed by 
Hwang and Yoon [7], is one of the well-known method. The basic principle of the 
TOPSIS method is that the chosen alternative should have the shortest distance from 
the positive ideal-solution and the farthest distance from the negative ideal- solution. 
There exist a large amount of literature involving TOPSIS theory and applications. In 
classical Multi Criteria Decision Making (MCDM) methods, the ratings and the 
weights of the criteria are known precisely. A survey of the methods has been pre-
sented in Hwang and Yoon [7]. In the process of TOPSIS the performance ratings and 
the weights of the criteria are given exact values. Jahanshahloo et al [8, 9, 10] ex-
tended the concept of TOPSIS to develop a methodology for solving MCDM problem 
with interval data. Triantaphyllou and Lin [11] develop a fuzzy version of the TOP-
SIS method based on fuzzy arithmetic operations. Wang and Elhag [12] extended 
TOPSIS to provide a fuzzy form of closeness co-efficient through α-cuts propagation. 
Guangtao Fu [6] proposed a fuzzy optimization method based on TOPSIS and dem-
onstrated a case study of reservoir flood control operation. Most of the fuzzy versions 
of TOPSIS method are efficient in tackling the impreciseness and vagueness present 
in MCDM problems, but their results are not able to include the hesitation present in 
the information provided by the decision maker.  

In real life, there exist many situations when available information is not sufficient 
for the exact definition of degree of membership for certain elements. There may be 
some hesitation degree between membership and non-membership. Atanassov [1] intro-
duced intuitionistic fuzzy sets (IFSs) to tackle this hesitation degree, which is a gener-
alization of the concept of fuzzy sets. IFSs has received a lot of attention. Gau and 
Buehrer [5] introduced the concept of vague sets (VSs), which is another generalization 
of fuzzy sets. But Bustince and Burillo [4] point out that the notion of VSs is the same 
as that of IFSs. Xu and Yager [16] developed some geometric aggregation operators, 
such as the intuitionistic fuzzy weighted geometric (IFWG) operator, the intuitionistic 
fuzzy ordered weighted geometric (IFOWG) operator and the intuitionistic fuzzy hybrid 
geometric (IFHG) operator, and gave an application of the IFHG operator to multicrite-
ria decision-making problems with intuitionistic fuzzy information. Xu [14] developed 
some arithmetic aggregation operators, such as the intuitionistic fuzzy weighted averag-
ing (IFWA) operator, the intuitionistic fuzzy ordered weighted averaging (IFOWA) 
operator and the intuitionistic fuzzy hybrid aggregation (IFHA) operator. Later, 
Atanassov and Gargov [2] introduced the concept of interval-valued intuitionistic fuzzy 
sets (IVIFSs) as a further generalization of that of IFSs. Atanassov [3] defined some 
operational laws of the IVIFSs. Recently, Xu and Chen [17]developed some arithmetic 
aggregation operators, such as the interval-valued intuitionistic fuzzy weighted averag-
ing (IIFWA) operator, the interval-valued intuitionistic fuzzy ordered weighted  
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averaging (IIFOWA) operator and the interval-valued intuitionistic fuzzy hybrid aggre-
gation (IIFHA) operator, and gave an application of the IIFHA operator to multicriteria 
decision-making problems with interval-valued intuitionistic fuzzy information by using 
the score function and accuracy function of interval-valued intuitionistic fuzzy numbers. 

This paper proposes an interval-valued intuitionistic fuzzy multi- criteria group  
decision making with TOPSIS method for supplier selection problem. The importance 
of the criteria and the impact of alternatives on criteria provided by decision makers 
are difficult to precisely express by crisp data in the selection of supplier problem. 
IVIFSs are efficient to deal this challenge and applied in many decision making prob-
lem under uncertain environment.In group decision making problems, aggregation of 
expert opinions is very important to appropriately perform evaluation process. There-
fore, IIFWA is utilized to aggregate all individual decision makers opinions for rating 
the importance of criteria and the alternatives. TOPSIS method combined with 
IVIFSs has enormous chance of success for supplier selection process. In this paper 
we have developed TOPSIS with IVIFSs to solve MCDM problems in which the per-
formance rating values as well as the weights of criteria are taken as IVIFSs. The re-
maining of this paper is organised as follows. In the next section, definition, notations 
and some arithmetical operations of IVIFSs sets are briefly introduced. TOPSIS 
method based on IVIFSs sets is then proposed in section3. A numerical example and a 
short conclusion are given in sections 4 and 5, respectively.   

2   Interval Valued Intuitionistic Fuzzy Set 

Let X be a non empty set of the universe, and ]1,0[D  be the set of all closed subin-

tervals of ]1,0[ , an interval-valued intuitionistic fuzzy set (IVIFS)  A  in X  is de-

fined by 

}|)(),(,{ XxxvxxA AA ∈><= µ  (1)

where ]1,0[:],1,0[: DXvDX AA →→µ , with the condition 

1)(sup)(sup0 ≤+≤ xvx AAµ  for any Xx ∈ . The intervals )(xAµ  and 

)(xvA denote, respectively, the degree of membership and non-membership of the 

element x  to the set A . Here for each Xx ∈ , )(xAµ   and )(xvA  are closed inter-

vals and their lower and upper end points are denoted by )(xALµ , )(xAUµ , 

)(xvAL and  )(xvAU , respectively. Therefore, now with these end points IVIFS A  

can be expressed as 

{ }XxxvxvxxxA AUALAUAL ∈= )](),([)],(),([, µµ  (2)

Also for each element x  we can compute the unknown degree (hesitancy degree) of 
an IVIFS A   defined as follows: 
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)].()(1),()(1[

)()(1)(

xvxxvx

xvxx

ALALAUAU

AAA

−−−−=
−−=

µµ
µπ

 (3)

Let IVIFS (X) is the set of all the IVIFSs in X . For any given x  , the pair 

( ))(),( xx AA νµ  is called an interval valued intuitionistic fuzzy number (IVIFN) 

[15]. For convenience the pair is often denoted by ]),[],,([ dcbaA = , where 

]1,0[],[],1,0[],[ DdcDba ∈∈ and 1≤+ db . Let ]),[],,([ 1111 dcbaA =  and 

)],[],,[( 2222 dcbaB =  be any two IVIFNs, then some of their arithmetic opera-

tions are as follows: 

(1) ( )],[],,[ 212121212121 ddccbbbbaaaaBA −+−+=+  (4) 

(2) ( )],[],,[. 212121212121 ddddccccbbaaBA −+−+=  (5) 

(3) 0,)],[],)1(1,)1(1[( 1111 >−−−−= λλ λλλλ dcbaA  (6) 

3   Interval-Valued Intuitionistic Fuzzy TOPSIS 

Suppose mAAA .,..,, 21  are m possible alternatives among which decision makers 

have to choose, nCCC ,...,, 21  are criteria with which alternative performance are 

measured. The decision problem is to select a most preferred alternative from given 
alternatives or obtain a ranking of all alternatives. More specifically, let 

]),[],,([ ijijijij dcba  be the interval-valued intuitionistic fuzzy number, where 

],[ ijij ba indicates the degree that alternative iA  satisfies the criterion jC given by 

the decision maker, ],[ ijij dc  indicates the degree that alternative iA  does not satis-

fies the criterion jC , further ]1,0[],[ Dba ijij ⊂ , ]1,0[],[ Ddc ijij ⊂ , and 

mjnidb ijij ,...,2,1,,...,2,1,1 ==≤+ . Here ],[ ijij ba is the lowest satisfaction 

degree of iA with respect to jC  as given in the membership function and 

]1,1[ ijij dc −−  is the highest satisfaction degree of iA  with respect to jC , in the 

case that all hesitation is treated as membership or satisfaction. 
Assume that decision group contains l  decision makers. The importance/weights 

of the decision makers are considered as crisp terms. Now, aggregated interval-valued 
intuitionistic fuzzy decision matrix constructed based on the opinions of decision 

makers. Let ( )
nm

k
ij

k rD
×

= )(  is an interval-valued intuitionistic fuzzy decision matrix 
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for ),...,2,1( lkk th = decision maker and },..,,{ 21 lλλλλ =  is the weight for 

each decision matrix and ]1,0[,1
1

∈=∑
=

k

l

k
k λλ . In group decision-making process, 

all the individual decision opinions need to be fused into a group opinion to construct 
aggregated interval-valued intuitionistic fuzzy decision matrix. In order to do that, 

IIFWA operator proposed by Xu and Chen [17] is used.  ( )
mnijrD

×
= , where  

( ))()2()1( ,...,, l
ijijijij rrrIIFWAr λ=  

( ) ( ) ⎟⎟
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⎜⎜
⎝
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⎥
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k
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kkkk dcba
1
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1
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1
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1

)( ,,,)1(1,)1(1
λλλλ  

(7)

The aggregated intuitionistic fuzzy decision matrix can be defined as follows: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎣

⎡

=

mnmmm

n

n

n

rrrr
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rrrr

rrrr

D

321

3333231

2232221

1131211

 

All criteria may not be assumed to be of equal importance. Let W represents a set of 

grades of importance for given criteria’s. In order to obtainW , all the individual deci-
sion maker opinions for the importance of each of criteria need to be combined. Let 

[ ] [ ]( ))()()()()( ,,, k
j

k
j

k
j

k
j

k
j dcbaw =  be an IVIFN assigned to criterion jC by the 

thk decision maker. Then the weights of the criteria are calculated by using IIFWA 
operator: 

( ))()2()1( ,...,, l
jjjj wwwIIFWAw λ=  

( ) ( ) ⎟⎟
⎠
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⎝
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kkkk dcba
1
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1
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1
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1

)( ,,,)1(1,)1(1
λλλλ

(8)

[ ]lwwwwW ,...,,, 321= , here [ ] [ ]( ) njdcbaw jjjjj ,...,2,1,,,, == . After 

the weights of criteria (W ) and the aggregated interval valued intuitionistic fuzzy 
decision matrix are determined, the aggregated weighted interval-valued intuitionistic 
fuzzy decision matrix is constructed according to the definition [17]. The aggregated 
weighted interval-valued intuitionistic fuzzy decision matrix can be represented as 
follows: 
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( )
nmijrWDD

×
=⊗= ''  (9)

( )],[],,[ '''''
ijijijijij dcbar =  is an element of the aggregated weighted interval-valued 

intuitionistic fuzzy decision matrix. Let I be the collection of benefit attributes and O 
be the collection cost attributes. The interval-valued intuitionistic fuzzy positive-ideal 

solution, denoted as +A , and the interval-valued intuitionistic fuzzy negative-ideal 

solution, denoted as −A , are defined as follows: 

( ) ( ) ( )( )],[],,[,...,],[],,[,],[],,[ 22221111
+++++++++++++ = nnnn dcbadcbadcbaA  (10)

( )
[ ] [ ]
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⎟
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=++++ (11)

( ) ( ) ( )( )],[],,[,...,],[],,[,],[],,[ 22221111
−−−−−−−−−−−−− = nnnn dcbadcbadcbaA  (12)
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(12)

The separation between alternatives will be found according to the Euclidean distance 
measure as follows: 

( ) ( ) ( ) ( )[ ] 2

1

1

2222

4
1

),(
⎭
⎬
⎫

⎩
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⎧
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j
jijjijjijjijii ddccbbaaAAS  (13) 
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j
jijijjijjijii ddccbbaaAAS  (14) 

The relative closeness of an alternative iA  with respect to the interval-valued in-

tuitionistic fuzzy positive ideal solution +A  is defined by the following general  
formula: 

+−

−
+

+
=

ii

i
i SS

S
RC  (15)

where 10 ≤≤ +
iRC  and mi ,...,2,1= . Then the preference order of alternatives 

can be ranked according to descending order of +
iRC ’s. 
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4   Numerical Example 

A high-technology manufacturing company desires to select a suitable material sup-
plier to purchase the key components of new products. After preliminary screening, 

four candidates ( 4321 ,,, AAAA ) remain for further evaluation. A committee of three 

decision-makers 1D , 2D and 3D ,with weight vector ')30.0,35.0,35.0(=λ , has 

been formed to select the most suitable supplier. Four criteria are considered: 

1C : Product quality,  

2C : Relationship closeness,  

3C : Delivery performance,  

4C : Price. 

The proposed method is currently applied to solve this problem, the computational 

procedure is as follows: The decision makers )3,2,1( =kDk compare each pair of 

the criteria’s )4,3,2,1( =iCi , and construct, the following three interval-valued 

intuitionistic fuzzy judgment matrices, respectively: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

]5.0,5.0[],5.0,5.0[]4.0,3.0[],6.0,5.0[]7.0,6.0[],3.0,1.0[]5.0,3.0[],4.0,2.0[

]6.0,5.0[],4.0,3.0[]5.0,5.0[],5.0,5.0[]6.0,4.0[],2.0,1.0[]6.0,5.0[],3.0,2.0[

]3.0,1.0[],7.0,6.0[]2.0,1.0[],6.0,4.0[]5.0,5.0[],5.0,5.0[]7.0,6.0[],2.0,1.0[

]4.0,2.0[],5.0,3.0[]3.0,2.0[],6.0,5.0[]2.01.0[],7.0,6.0[]5.0,5.0[],5.0,5.0[

1D
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

]5.0,5.0[],5.0,5.0[]6.0,4.0[],4.0,1.0[]6.0,3.0[],3.0,2.0[]4.0,2.0[],3.0,1.0[

]4.0,1.0[],6.0,4.0[]5.0,5.0[],5.0,5.0[]8.0,5.0[],2.0,1.0[]7.0,5.0[],2.0,1.0[

]3.0,2.0[],6.0,3.0[]2.0,1.0[],8.0,5.0[]5.0,5.0[],5.0,5.0[]3.0,2.0[],6.0,5.0[

]3.0,1.0[],4.0,2.0[]2.0,1.0[],7.0,5.0[]6.05.0[],3.0,2.0[]5.0,5.0[],5.0,5.0[

2D
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

]5.0,5.0[],5.0,5.0[]7.0,6.0[],3.0,1.0[]8.0,7.0[],2.0,1.0[]7.0,5.0[],3.0,2.0[

]3.0,1.0[],7.0,6.0[]5.0,5.0[],5.0,5.0[]6.0,5.0[],4.0,2.0[]7.0,6.0[],2.0,1.0[

]2.0,1.0[],8.0,7.0[]4.0,2.0[],6.0,5.0[]5.0,5.0[],5.0,5.0[]5.0,4.0[],3.0,2.0[

]3.0,2.0[],7.0,5.0[]2.0,1.0[],7.0,6.0[]3.02.0[],5.0,4.0[]5.0,5.0[],5.0,5.0[

3D
 

Now the aggregated interval-valued intuitionistic fuzzy decision matrix based on the 
opinions of decision makers is constructed using IIFWA operator, as described in the 
section 3. 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

]5.0,5.0[],5.0,5.0[]55.0,4.0[],5.0,3.0[]7.0,5.0[],3.0,14.0[]51.0,3.0[],3.0,17.0[

]4.0,2.0[],6.0,4.0[]5.0,5.0[],5.0,5.0[]7.0,5.0[],3.0,13.0[]66.0,5.0[],2.0,14.0[

]3.0,1.0[],7.0,6.0[]25.0,1.0[],7.0,5.0[]5.0,5.0[],5.0,5.0[]47.0,4.0[],4.0,29.0[

]3.0,2.0[],5.0,3.0[]23.0,1.0[],7.0,5.0[]3.02.0[],5.0,42.0[]5.0,5.0[],5.0,5.0[

D
 

The importance of the criteria provided by decision makers can be linguistic terms. 
These linguistic terms can be represented as interval-valued intuitionistic fuzzy  
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numbers and can be aggregated by the operator IIFWA, as mention in section3. Let 
the interval-valued intuitionistic fuzzy weight of each criterion after aggregation of 
opinions of decision makers is: 

( )
( )
( )
( )⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

]95.0,60.0[],90.0,55.0[

]85.0,45.0[],55.0,30.0[

]75.0,65.0[],45.0,35.0[

]80.0,50.0[],45.0,25.0[

W  

After the weights of the criteria and the rating of the alternatives has been determined, 
the aggregated weighted interval-valued intuitionistic fuzzy decision matrix is con-
structed as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

]98.0,80.0[],45.0,28.0[]93.0,67.0[],25.0,08.0[]92.0,82.0[],12.0,05.0[]90.0,65.0[],15.0,04.0[

]97.0,67.0[],52.0,24.0[]93.0,73.0[],28.0,15.0[]92.0,81.0[],12.0,05.0[]93.0,76.0[],11.0,03.0[

]96.0,65.0[],64.0,30.0[]89.0,52.0[],38.0,14.0[]88.0,83.0[],23.0,18.0[]89.0,68.0[],18.0,07.0[

]97.0,66.0[],49.0,19.0[]88.0,52.0[],37.0,16.0[]83.0,73.0],24.0,15.0[]90.0,75.0[],23.0,13.0[

'D
 

Product quality, relationship closeness, and delivery performance are benefit criteria 

{ }32,1 ,CCCI =  and price is cost criteria { }3CO = . Then interval-valued intuition-

istic fuzzy positive-ideal solution and interval-valued intuitionistic fuzzy negative-
ideal solution were obtained. 

( ) ( ) ( ) ( ){ }]98.0,80.0[],45.0,19.0[,]88.0,52.0[],38.0,16.0[,]83.0,73.0[],24.0,18.0[,]89.0,65.0[],23.0,13.0[=+A  
( ) ( ) ( ) ( ){ }]97.0,67.0[],52.0,28.0[,]93.0,73.0[],25.0,08.0[,]92.0,82.0[],12.0,05.0[,]93.0,76.0[],11.0,03.0[=−A  

Negative and positive separation measures based on Euclidean distance for each al-
ternative were calculated in table1. 

Table 1. The distances from ideal-solution and negative-ideal solution 

Alternatives +S  −S  

1A  0.0893 0.1864 

2A  0.1489 0.1766 

3A  0.2033 0.0413 

4A  0.1730 0.0998 

Finally, using eq.(16), the value of  relative closeness of each alternative for final 
ranking is: 

3658.0

1688.0

5426.0

6762.0

4

3

2

1

=

=

=

=

+

+

+

+

RC

RC

RC

RC
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Thus, the preference order of alternatives is 421 ,, AAA and 3A according to decreas-

ing order of +
iRC . 

5   Conclusions 

This study presents a multi-attribute group decision making for evaluation of supplier 
using interval-valued intuitionistic fuzzy TOPSIS. Interval-valued intuitionistic fuzzy 
sets are more suitable to deal with uncertainty than other generalised forms of fuzzy 
sets. In the evaluation process, the ratings of each alternative with respect to each cri-
terion are taken as interval-valued intuitionistic fuzzy number. Also interval-valued 
intuitionistic fuzzy weighted averaging operator is utilised to aggregate the opinions 
of decision makers. After Interval-valued intuitionistic fuzzy positive-ideal solution 
and Interval-valued intuitionistic fuzzy negative-ideal solution are calculated based on 
the Euclidean distance measure, the relative closeness coefficients of alternatives are 
obtained and alternatives were ranked. 

TOPSIS method combined with Interval-valued intuitionistic fuzzy set has enor-
mous chance of success for multi-criteria decision-making problems due to containing 
vague perception of decision makers opinions. Therefore, in future, Interval-valued 
intuitionistic fuzzy set can be used for dealing with uncertainty in multi-criteria deci-
sion-making problems such as project selection, manufacturing systems, personnel 
selection, and many other areas of management decision problems. 

References 

[1] Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–97 (1986) 
[2] Atanassov, K., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets and  

Systems  31, 343–349 (1989) 
[3] Atanassov, K.: Operators over interval-valued intuitionistic fuzzy sets. Fuzzy Sets and 

Systems 64, 159–174 (1994) 
[4] Bustince, H., Burillo, P.: vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Sys-

tems 79, 403–405 (1996) 
[5] Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Trans. on Systems, Man and Cybernetics 23, 

610–614 (1993) 
[6] Guangtao, F.: A fuzzy optimization method for multi criteria decision making: An appli-

cation to reservoir flood control operation. Expert System with Application 34, 145–149 
(2008) 

[7] Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications. 
Springer, Heidelberg (1981) 

[8] Jahanshahlo, G.R., Hosseinzade, L.F., Izadikhah, M.: An algorithmic method to extend 
TOPSIS for decision making problems with interval data. Applied Mathematics and 
Computation 175, 1375–1384 (2006) 

[9] Jahanshahloo, G.R., Hosseinzaadeh, F.L., Davoodi, A.R.: Extension of TOPSIS for deci-
sion-making problems with interval data: Interval efficiency. Mathematical and Computer 
Modelling, 49, 1137–1142 (2009) 



312 Kavita, S.P. Yadav, and S. Kumar 

[10] Jahanshahlo, G.R., Hosseinzade, L.F., Izadikhah, M.: Extension of the TOPSIS method 
for decision making problems with fuzzy data. Applied Mathematics and Computa-
tion 181, 1544–1551 (2006) 

[11] Triantaphyllou, E., Lin, C.T.: Development and evaluation of five fuzzy multi attribute 
decision-making methods. International J. of Approximate Reasoning 14, 281–310 (1996) 

[12] Wang, Y.M., Elhag, T.M.S.: Fuzzy TOPSIS method based on alpha level sets with an ap-
plication to bridge risk assessment. Expert Systems with Applications 31, 309–319 
(2006) 

[13] Xu, Z.S.: Methods for aggregating interval-valued intuitionistic fuzzy information and 
their application to decision making. Control and Decision 22, 215–219 (2007) 

[14] Xu, Z.S.: Intuitionistic fuzzy aggregation opterators. IEEE Transaction of Fuzzy Sys-
tems 15, 1179–1187 (2007) 

[15] Xu, Z.S., Yager, R.R.: Dynamic intuitionistic fuzzy muti-attribute decision making. In-
ternational journal of Approximate Reasoning 48, 246–262 (2008) 

[16] Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic 
fuzzy sets. International J. of General System 35, 417–433 (2006) 

[17] Xu, Z.S., Chen, J.: Approach to group decision making based on interval-valued in-
tuitionistic judgment matrices. System Engineering – Theory & Practice 27, 126–133 
(2007) 

[18] Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965) 



The Lower System, the Upper System and Rules
with Stability Factor in Non-deterministic

Information Systems

Hiroshi Sakai1, Kohei Hayashi1, Michinori Nakata2, and Dominik Ślęzak3,4

1 Mathematical Sciences Section, Department of Basic Sciences,
Faculty of Engineering, Kyushu Institute of Technology

Tobata, Kitakyushu 804, Japan
sakai@mns.kyutech.ac.jp

2 Faculty of Management and Information Science,
Josai International University

Gumyo, Togane, Chiba 283, Japan
nakatam@ieee.org

3 Institute of Mathematics, University of Warsaw
Banacha 2, 02-097 Warsaw, Poland

4 Infobright Inc., Poland
Krzywickiego 34 pok. 219, 02-078 Warsaw, Poland

slezak@infobright.com

Abstract. A rule in a Deterministic Information System (DIS) is
often defined by an implication τ such that both support(τ ) ≥ α and
accuracy(τ ) ≥ β hold for the threshold values α and β. In a Non-
deterministic Information System (NIS), there are derived DISs due
to the information incompleteness. A rule in a DIS was extended to ei-
ther a rule in the lower system or a rule in the upper system in a NIS.
This paper newly introduces a criterion, i.e., stability factor, into rules
in a NIS. Rules in the upper system are classified according to the sta-
bility factor.

Keywords: Rough sets, Non-deterministic information, Incomplete
information, Rule generation, Apriori algorithm, Stability factor.

1 Introduction

We follow rule generation in DISs [8,12], and we describe rule generation in
NISs. NISs were proposed by Pawlak [8], Orłowska [7] and Lipski [6] in order
to handle information incompleteness in DISs, like null values, unknown values,
missing values. Since the emergence of incomplete information research [3,5,6,7],
NISs have been playing an important role. We have also focused on the seman-
tic aspect of incomplete information, and proposed Rough Non-deterministic
Information Analysis (RNIA) [9]. This paper continues the framework of rule
generation in NISs [9,10,11], and we introduce stability factor into the upper
system in NISs.
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2 Decision Rule Generation and Apriori Algorithm

A Deterministic Information System (DIS) is a quadruplet (OB, AT, {V ALA|
A ∈ AT }, f) [8]. We usually identify a DIS with a standard table. A rule (more
correctly, a candidate of a rule) is an appropriate implication in the form of
τ : Condition_part ⇒ Decision_part generated from a table. We usually em-
ploy two criteria, support(τ) and accuracy(τ) for the appropriateness [1,8].

A definition of a rule generation in DISs
Find all implications τ satisfying support(τ) ≥ α and accuracy(τ) ≥ β for the
threshold values α and β (0 < α, β ≤ 1).

Agrawal proposed Apriori algorithm [1] for such rule generation, and Apriori
algorithm is now a representative algorithm for data mining [2].

Fig. 1. A pair (support,accuracy) corresponding to the implication τ is plotted in a
coordinate plane

3 Decision Rule Generation in NISs

A Non-deterministic Information System (NIS) is also a quadruplet (OB,
AT, {V ALA|A ∈ AT }, g), where g : OB × AT → P (∪A∈AT V ALA) (a power set
of ∪A∈AT V ALA). Every set g(x, A) is interpreted as that there is an actual value
in this set but this value is uncertain. For a NIS=(OB, AT, {V ALA| A ∈ AT }, g)
and a set ATR ⊆ AT , we name a DIS=(OB, ATR, {V ALA|A ∈ ATR}, h)
satisfying h(x, A) ∈ g(x, A) a derived DIS (for ATR) from a NIS. In a NIS,
there are derived DISs due to the information incompleteness.

In Table 1, we can pick up τ1 : [Temperature, high] ⇒ [Flu, yes] from objects
1, 2, 3, 4 and 8. We may use the notation τx from object x, for example, τ1

1 (τ1
from object 1) and τ8

1 (τ1 from object 8). Furthermore, we consider a set of
derived DISs with τx, and let DD(τx) denote this set. For a set of attributes
{Temperature, F lu}, there are 144 (=24×32) derived DISs, |DD(τ1

1 )|=144 and
|DD(τ8

1 )|=48 hold. If τx (for an object x) satisfies the condition of the criterion
values, we see this τ is a rule.
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Table 1. A Non-deterministic Information System (An artificial table data)

OB Temperature Headache Nausea F lu

1 {high} {yes, no} {no} {yes}
2 {high, very_high} {yes} {yes} {yes}
3 {normal, high, very_high} {no} {no} {yes, no}
4 {high} {yes} {yes, no} {yes, no}
5 {high} {yes, no} {yes} {no}
6 {normal} {yes} {yes, no} {yes, no}
7 {normal} {no} {yes} {no}
8 {normal, high, very_high} {yes} {yes, no} {yes}

A definition of a rule generation in NISs (A revised definition in [10])
Let us consider the threshold values α and β (0 < α, β ≤ 1).
(The lower system) Find all implications τ in the following: There exists
an object x such that support(τx) ≥ α and accuracy(τx) ≥ β hold in each
ψ ∈ DD(τx).
(The upper system) Find all implications τ in the following: There exists
an object x such that support(τx) ≥ α and accuracy(τx) ≥ β hold in some
ψ ∈ DD(τx).

In a DIS, DD(τx) means a singleton set, therefore the lower and the upper sys-
tems define the same implications in a DIS. Namely, the above definition is a
natural extension from rule generation in DISs. Intuitively, the lower system de-
fines rules with certainty, and the upper system defines rules with possibility.
Especially, if DD(τx) is equal to the set of all derived DISs and τ is a rule in
the lower system, this τ is the most reliable.

4 The Minimum and the Maximum Criterion Values,
and NIS-Apriori Algorithm

In Table 1, let us consider τ1
1 : [Temperature, high] ⇒ [Flu, yes], again. In this

case, support(τ1
1 ) and accuracy(τ1

1 ) take several values according to the derived
DISs. We define minsupp(τx) (minimum support), minacc(τx) (minimum accu-
racy), maxsupp(τx) (maximum support) and maxacc(τx) (maximum accuracy)
for each implication τx. For such criterion values, we have proved the next results.

Result 1 [10]. In a NIS=(OB, AT, {V ALA|A ∈ AT }, g), we can calculate these
values by the next classes, i.e., Descinf([Ai, vali,j ]) and Descsup([Ai, vali,j ]).
(1) Descinf([Ai, ζi,j ])={x ∈ OB|g(x, A)={ζi,j}}.
(2) Descinf(∧i[Ai, ζi,j ])=∩iDescinf([Ai, ζi,j ]).
(3) Descsup([Ai, ζi,j ])={x ∈ OB|ζi,j ∈ g(x, A)}.
(4) Descsup(∧i[Ai, ζi,j ])=∩iDescsup([Ai, ζi,j ]).
For example, if every attribute value is definite in τx : [CON, ζ] ⇒ [DEC, η],
minsupp(τx)=|Descinf([CON, ζ]) ∩ Descinf([DEC, η])|/|OB|,
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minacc(τx)= |Descinf([CON,ζ])∩Descinf([DEC,η])|
|Descinf([CON,ζ])|+|OUTACC| ,

(OUTACC=[Descsup([CON, ζ]) − Descinf([CON, ζ])] − Descinf([DEC, η]),
maxsupp(τx)=|Descsup([CON, ζ]) ∩ Descsup([DEC, η])|/|OB|,
maxacc(τx)= |Descinf([CON,ζ])∩Descsup([DEC,η])|+|INACC|

|Descinf([CON,ζ])|+|INACC| .
(INACC=[Descsup([CON, ζ]) − Descinf([CON, ζ]) ∩ Descsup([DEC, η])).

Result 2 [10]. For each implication τx, there is a derived DISworst, where both
support(τx) and accuracy(τx) are minimum in Table 2. Furthermore, there is a
derived DISbest, where both support(τx) and accuracy(τx) are maximum.

Table 2. Derived DISworst from Table 1, which causes the minimum support 1/8 and
the minimum accuracy 1/4 of τ 1

1 , and derived DISbest which causes the maximum
support 5/8 and the maximum accuracy 5/6 of τ 1

1 to the right

OB Temperature F lu

1 high yes

2 very_high yes

3 high no

4 high no

5 high no

6 normal no

7 normal no

8 normal yes

OB Temperature F lu

1 high yes

2 high yes

3 high yes

4 high yes

5 high no

6 normal yes

7 normal no

8 high yes

According to the above two results, we can handle the next definition.

An equivalent definition of a rule generation in NISs
Let us consider the threshold values α and β (0 < α, β ≤ 1).
(The lower system) Find all implications τ in the following: There exists an
object x such that minsupp(τx) ≥ α and minacc(τx) ≥ β.
(The upper system) Find all implications τ in the following: There exists an
object x such that maxsupp(τx) ≥ α and maxacc(τx) ≥ β.

In the first definition, we needed to examine support and accuracy in all de-
rived DD(τx), however we can examine the same results by comparing (minsupp,

Fig. 2. A distribution of pairs (support,accuracy) for an implication τx
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minacc) and (maxsupp,maxacc) with the threshold α and β. Like this, we ex-
tended rule generation in DISs to rule generation in NISs, and realized a soft-
ware tool NIS-Apriori [10,11]. This is an adjusted Apriori algorithm to NISs,
and it can handle not only deterministic information but also non-deterministic
information. NIS-Apriori algorithm does not depend upon the number of de-
rived DISs, and the complexity is almost the same except the following:

(1) Instead of the large item sets in Apriori algorithm, we need to manage
Descinf and Descsup.

(2) support(τx) and acuracy(τx) are the same for each x in a DIS, however
they are slightly different for x in a NIS. If there exists τx satisfying the
criterion values, we see this τ is a rule. Therefore, we need to examine cri-

terion values for each τx.

We are now coping with SQL-NIS-Apriori on Infobright ICE system [13],
and we are discussing on Data Mining in Warehousing and Various Types of
Inexact Data [4].

5 Introducing Stability Factor into the Upper System

Now, we consider the next two cases related to rules in the upper system.
(CASE 1) If there is just a DIS in DD(τx) satisfying the condition, this τ is

picked up as a rule in the upper system.
(CASE 2) If most of the DISs in DD(τx) satisfy the condition, this τ is also

picked up as a rule in the upper system.
Due to this example, the definition of the upper system seems weak. In order to
distinguish two cases, we add another criterion, i.e., stability factor of τ .

Definition 1. Let us suppose τ : [CON, ζ] ⇒ [DEC, η] is a rule in the upper
system for α and β, and let OBJ(τ)=Descsup([CON, ζ])∩Descsup([DEC, η]).
If support(τx) ≥ α and accuracy(τx) ≥ β hold in ψ ∈ DD(τx), we say τ is
stable in ψ. Let

DD(τ)=∪x∈OBJ(τ)DD(τx),
ST (τ, α, β)={ψ ∈ DD(τ)| τ is stable in ψ}.

Stability factor of τ is STF (τ, α, β)=|ST (τ, α, β)|/|DD(τ)|.
Let us consider τ2 : [Nausea, yes] ⇒ [Flu, no] in Table 1. In reality, for α=0.3
and β=0.7, τ2 is not picked up as a rule by the lower system, but τ2 is picked up as
a rule by the upper system. Here, DD(τ2)=DD(τ4

2 )∪DD(τ5
2 )∪DD(τ6

2 )∪DD(τ7
2 )

holds. Since τ5
2 is definite, DD(τ2)=DD(τ5

2 ) and there are 64 derived DISs. In
Fig.3, 64 pairs of (support,accuracy) are plotted in a coordinate plane, and
“• : number” implies the number of derived DISs. For example, 4 derived
DISs cause a pair (3/8,0.5) in Fig.3. As for τ2, |ST (τ2, 0.3, 0.7)|=8 + 2=10 and
STF (τ2, 0.3, 0.7)=10/64 (about 16%) hold. According to this stability factor, we
can assign the probability (of the reliability) to rules in the upper system.
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Fig. 3. A distribution (support,accuracy) of τ2 : [Nausea, yes] ⇒ [F lu, no] in Table 1

This stability factor seems useful, but the number of elements in DD(τ) in-
creases in exponential order. Therefore, the calculation of the stability factor
will generally be hard. Even though, it will be possible to calculate this factor,
if the next assupmtions hold.

(Assumption 1) Descinf([CON, ζ]) ∩ Descinf([DEC, η]) �= {}.
(Assumption 2) The sizes of both |DIFF[CON,ζ]| and |DIFF[DEC,η]| are small.

Here, DIFF[CON,ζ] denotes Descsup([CON, ζ]) − Descinf([CON, ζ]).

Due to (Assumption 1), there is a definite implication [CON, ζ] ⇒ [DEC, η],
and DD(τ) is equal to the derived DISs for attributes CON ∪DEC. According
to (Assumption 2), the number of derived DISs is restricted to small.

6 A Method for Calculating Stability Factor

In order to calculate STF (τ, α, β), we propose a method using Descinf and
Descsup in Result 1. In a NIS=(OB, AT, {V ALA|A ∈ AT }, g), let

OBJ[A,val],M=Descinf([A, val]) ∪ M (M ⊂ DIFF[A,val]).

We define the next attribute values of x in {A} related to OBJ[A,val],M :

(Assignment 1) If x ∈ OBJ[A,val],M , the value (of x for the attribute {A}) is val.
(Assignment 2) If x ∈ Descsup([A, val])−OBJ[A,val],M , the value is except val.
(Assignment 3) If x �∈ Descsup([A, val]), the value is any value in g(x, A).

Like this, it is possible to define derived DISs for an attribute {A}. The (As-
signment 3) occurs in each OBJ[A,val],M , therefore it is enough to consider the
cases defined by (Assignment 2).

Proposition 1. OBJ[A,val],M causes

NUM[A,val],M :
∏

y∈Descsup([A,val])−OBJ[A,val],M
(|g(y, A)| − 1)

cases of derived DISs. For a conjunction of descriptors ∧i[Ai, ζi,j ], it is possible
to define the same result.
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It is possible to calculate the following by OBJ[CON,ζ],M and OBJ[DEC,η],M ′ .

support(τ)=|OBJ[CON,ζ],M ∩ OBJ[DEC,η],M ′ |/|OB|,
accuracy(τ)=|OBJ[CON,ζ],M ∩ OBJ[DEC,η],M ′ |/|OBJ[CON,ζ],M |,

and the same values occur in NUM[CON,ζ],M × NUM[DEC,η],M ′ derived DISs.
Finally, we have the next method to calculate STF (τ, α, β).

An overview of the caluculation method for stability factor
According to the (Assumption 1), there is a definite τx : [CON, ζ] ⇒ [DEC, η]
for an object x. DD(τ) is a set of derived DISs for attributes CON ∪ DEC.

(1) Obtain Descinf([CON, ζ]), Descsup([CON, ζ]), DIFF[CON,ζ],
Descinf([DEC, η]), Descsup([DEC, η]) and DIFF[DEC,η].

(2) For each pair OBJ[CON,ζ],M and OBJ[DEC,η],M ′ , examine the condition by
support and accuracy. If a pair satisfies the condition, count the number of
derived DISs for CON ∪ DEC.

(3) STF (τ, α, β) is a ratio, (totally counted number of derived DISs)/|DD(τ)|.
Now, we simulate the above calculation. Let us consider a rule τ5

2 : [Nausea,
yes] ⇒ [Flu, no] in the upper system (α=0.3 and β=0.7). At first, we obtain
Descinf and Descsup, i.e.,

Descinf([Nausea, yes])={2, 5, 7}, Descsup([Nausea, yes])={2, 5, 7, 4, 6, 8},
DIFF[Nausea,yes]={4, 6, 8}, Descinf([Flu, no])={5, 7},
Descsup([Flu, no])={5, 7, 3, 4, 6}, DIFF[Flu,no]={3, 4, 6}.

Then, the conditions support and accuracy are examined for each pair

OBJ[Nausea,yes],M (={2, 5, 7} ∪ M) (M ⊂ {4, 6, 8}),
OBJ[Flu,no],M ′ (={5, 7} ∪ M ′) (M ′ ⊂ {3, 4, 6}).

For example, OBJ[Nausea,yes],{4} and OBJ[Flu,no],{4} satisfy the conditions, and
the following is calculated.

NUM[Nausea,yes],{4}=(|g(6, Nausea)| − 1)| × (|g(8, Nausea)| − 1)=1,
NUM[Flu,no],{4}=(|g(3, F lu)| − 1)| × (|g(6, F lu)| − 1)=1.

Like this, we examine the number of derived DISs where τ2 is stable. Finally, we
obtain |ST (τ2, 0.3, 0.7)|=10 and STF (τ2, 0.3, 0.7)=|ST (τ2, 0.3, 0.7)|/|DD(τ2)|=
10/64 ≈16%.

Generally, the number of distinct M is 2 power DIFF[CON,ζ]. In this example,
we handled 8 cases for M . We are now considering another method without
(Assumption 2), but it seems difficult. We have also realized a simple program
for calculating the stability factor. In reality, we obtained the following two
implications in the upper system for α=0.3 and β=0.7.

τ2 : [Nausea, yes] ⇒ [Flu, no], STF (τ2, 0.3, 0.7)=10/64 ≈16%.
τ3 : [Headache, yes] ⇒ [Flu, yes], STF (τ3, 0.3, 0.7)=16/32=50%.

From this result, we may conclude τ3 is more reliable than τ2.
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7 Concluding Remarks

This paper proposed stability factor of a rule in the upper system. Due to this
ratio, we obtained another criterion for rules in the upper system. We have al-
ready proposed two kinds of rule generation in NISs. The one is the consistency
based rule generation, and the other is the criterion based rule generation [9,10].
This paper coped with the criterion based rule generation, and presented NIS-
Apriori, the lower system, the upper system and the stability factor in the upper
system.
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13. Ślȩzak, D., Sakai, H.: Automatic extraction of decision rules from non-deterministic
data systems: Theoretical foundations and SQL-based implementation. In: Proc.
of DTA 2009, Jeju, Korea, December 10-12 (in print, 2009)

http://www.infobright.org/Forums/viewthread/288/
http://www.infobright.org/Forums/viewthread/621/


 

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 321–327, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Learning Player Behaviors in Real Time Strategy 
Games from Real Data 

P.H.F. Ng, S.C.K. Shiu, and H. Wang 

Department of Computing 
The Hong Kong Polytechnic University 

Hum Hom, Kowloon, Hong Kong, P.R. China 
{cshfng,csckshiu,cshbwang}@comp.polyu.edu.hk 

Abstract. This paper illustrates our idea of learning and building player behav-
ioral models in real time strategy (RTS) games from replay data by adopting a 
Case-Based Reasoning (CBR) approach. The proposed method analyzes and 
cleans the data in RTS games and converts the learned knowledge into a prob-
abilistic model, i.e., a Dynamic Bayesian Network (DBN), for representation 
and predication of player behaviors. Each DBN is constructed as a case to rep-
resent a prototypical player’s behavior in the game, thus if more cases are con-
structed the simulation of different types of players in a multi-players game is 
made possible. Sixty sets of replay data of a prototypical player is chosen to test 
our idea, fifty cases for learning and ten cases for testing, and the experimental 
result is very promising. 

Keywords: Case-based Reasoning (CBR), Real Time Strategy (RTS) Games, 
Dynamic Bayesian Network (DBN), Junction Tree. 

1   Introduction 

DFC Intelligence which is a market research organization forecasts the online game 
market will reach of US$57 billion in 2009. Players enjoy interacting with other real 
players in the virtual world. However, it is very difficult for game companies to main-
tain a huge number of players, with varied styles, online at the same time. Therefore, 
to improve attractiveness, many avatars and characters in the game or virtual commu-
nity need to be controlled by AI techniques. Developing many different behavioral 
styles from scratch to simulate real players is difficult and time consuming. To help 
accomplish this goal, we develop a method to learn them from real data. We used the 
Blizzard Warcraft III Expansion: The Frozen Throne (W3X) which is a well known 
and best selling RTS game in recent years to test our idea. Experimental result is 
shown and discussed in this paper. 

2   Related Work 

Case-based reasoning has been studied for many years. Its application to computer 
games is becoming more popular recently. For example, Hsieh [1] used professional 
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game players’ data of up to 300 replays to train a case-based decision system in one 
single battlefield. Ontanon [2] introduced similar case-based reasoning framework for 
RTS game. Aha [3] and Ponsen [4] focused on strategies of building sequence in their 
case-based planning model. In general, the prediction accuracy in CBR systems de-
pends largely on the number of learned cases and their quality, i.e., the more the qual-
ity cases, the better the accuracy. However, since in RTS games, response time is 
critical, thus there is always a tradeoff between accuracy and efficiency.  

Bayesian network (BN) can be viewed as a mathematical model that describes the 
relationships between antecedents and consequences using conditional probabilities. 
Dynamic Bayesian network (DBN) is one form of BN that represents sequences of 
variables, and is usually time-invariant. Some related work of using DBN for user 
modeling is by Ranganathan [5] and Montaner [6]. They implemented BN into their 
SMART Agents and proved its possibility to analyze user behaviors. Kuenzer [7] and 
Schiaffino [8] also did similar user behavior modeling work on web applications 
using BN. Furthermore, Gillies [9] combined BN with finite-state machine to improve 
the use of motion capture data. Other uses of BN on games, include Albrecht’s  [10] 
BN structure to adventure games and Yeung’s [11] BN technique to detect cheats in 
first person shooting games. In this research, we use DBN and junction tree algorithm 
as a case and similarity calculation respectively for predicting user behaviors. We 
believed that this is a promising direction for game developers, and publishers that 
require varied styles of avatar behaviors.  

3   Proposed Approach 

First, sets of replay data are collected over the internet. Information inside these re-
plays will be filtered, cleaned and summarized. The information will be then used to 
build the DBN structure. Prediction of user behaviors will be carried out afterwards. 
The framework is shown as Fig. 1. We will use an example of a typical player called 
“Player A” to illustrate our approach. 

50 Replays 
of Player A

Data cleaning / filtering

Summarize in every time slice
Bayesian Network 

of Player A behavior

E.g. :2,1,2,2,2,2,1,1,1,1,1,...

Behavior
 Generator

E.g. : AB = true : 0.62024  AB = false : 0.37976

Warcraft 3 BattleEnemy & Environment

Behavior acquisition Behavior simulation

Player Behavior Model

 

Fig. 1. Work flow of player behavior simulation model 

3.1    Behavior Acquisition in Replay Data 

Hundreds of thousands W3X replays can be collected on the Internet. All the player’s 
actions are recorded in the replay data. In this research, Solo Ladder (1 versus 1)  
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battle in Battlen.net is chosen. It is the official game site and provides a fair environ-
ment for the players to fight against each other. Fifty replays of a player called 
“Player A” (name is removed) are collected. They describe the behavior of Player A 
against different opponents in different maps. For the purpose of reuse the player 
behavior model in different maps and games, the data is analyzed with meanings as 
described in Table 1.  

Table 1. Selected data for DBN structure 

Player Action

Set Name Description

Attack (A) All kinds of attack commands with target data. Data of player A (A) and 
opponent (A’) will be both collected. For example: attack unit (AU, A’U), attack 
base (AB, A’B), etc. Each element of A [True, False].

Create Building (B) All kinds of create building commands and their numbers in the same time slice.
Data of player A (B) and opponent (B’) will be both collected. For example: 
build base (BB, B’B), build research centre (BR, B’R), etc.  Each element of B 
[0, 1, 2 … Upper Limit] where upper limit is the maximum number of buildings 
that are created in the same time slice.

Create Unit (U) All kinds of create unit command and their numbers in the same time slice. Data 
of player A (U) and opponent (U’) will be both collected. For example: create 
piercing unit (UP, U’P), create siege unit (US, U’S), etc. Each element of U [0, 1, 
2 … Upper Limit] where upper limit is the maximum number of units that are 
created in the same time slice.

Demographic Information

Node Name Description

Race (R) There are 4 races that are provided by W3X, where R [1, 2, 3, 4]. Player A (R) 
and Opponent (R’) will be both collected

Alive Unit Number 
(N)

Alive units in time slice t, rounding to the nearest 10, where N [10, 20 …
Upper Limit], where upper limit is the maximum number of units that are created
in the replays. Player A (N) and Opponent (N’) will be both collected

Map (M) Official battle fields that are provided by Battle.net, where M [1, 2, 3, …, 13]
 

As an observation, professional players in W3X usually focus on a few types of 
units in the battles. They seldom create many different kinds of unit because they 
wanted to save the resources for upgrading. Therefore, to reduce the complexity of 
DBN, all unused commands of player A are filtered, i.e., if player A does not create 
any siege unit in 50 replays, the field of siege unit (US) will be neglected and will not 
become a component of the DBN. Moreover, different from the research done by Aha 
[3] and Ponsen [4], resource (gold and lumber) is neglected in our model as it does 
not have a significant impact on prediction accuracy. The reason is because profes-
sional players in W3X usually used up all resources to create units or buildings. So, 
we suggest using alive unit number (N) to estimate the player current situation.  

Then, actions of Player A are summarized in every fixed time slice (∆t). In this 
study, ∆t is set to 15 seconds which is the minimum time to create a unit in W3X. 
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Selected fields for each ∆t will become components in DBN and will be represented 
as a set of numeric data (e.g.: 2,1,2,2,2,2,1,1,1,1,1,5,2,2,2,2,2,2,1,1,1,1,10,6… ). The 
average time of Player A’s replay is 20 minutes. Therefore, there are around 80  
instances in each replay. Upper limit for field (B), (U) and (N) will also be set accord-
ing to the maximum number of productions in ∆t. It can reduce the parameters of the 
tabular nodes in the DBN. 

3.2   Dynamic Bayesian Network Structure and Parameters Learning 

A DBN consists of a structure and a number of parameters. The analyzed fields in the 
previous process will become the tabular nodes of the DBN structure. Intra-slice to-
pology (within a slice) and inter-slice topology (between two slices) are defined ac-
cording to the game play of W3X. For example, if the player wants to create certain 
units, he needs to build certain buildings first. The relationship is shown in Fig. 2.  

M

RNt

At Ut

Bt

R’N’t B’t

A’t U’t

RNt+1

At+1 Ut+1

Bt+1

R’N’t+1 B’t+1

A’t+1 U’t+1
M

Player A

Opponent

Set of Nodes

Time slice t = 0

Node

Time slice t +1

 
Fig. 2. Structure of a DBN 

Parameters of DBN are represented as conditional probability distribution (CPD). 
It defines the probability distribution of a node given its parents, i.e., P(At+1, Ut+1, …) 
= P(At+1 | Parents of (At+1)) P(Ut+1 | Parents of (Ut+1))…. All instances from 50 replays 
will be used to perform parameters learning. As the data from the replays are fully 
observed and the structure is known, maximum likelihood estimation algorithm is 
used to compute a full DBN. A DBN that contains multidimensional CPD in each 
node is considered as a “case” to represent player A’s behavior. 

3.3    Prediction in Dynamic Bayesian Network 

Having created the DBN of Player A, it can be used for prediction. In this research, 
junction tree algorithm is used. Its purpose is to find out the probability of attack 
(P(At+1)), create building (P(Bt+1)) and create unit command (P(Ut+1)) of Player A based 
on his previous behavior. The calculation of probabilities is based on all the previous 
time slices of their parent. In every ∆t, enemy and environment situation information 
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( M, R, R’, N, N’, A’ B’ U’) will be summarized and sent to the DBN as a fact to com-
pute the marginal distribution for each node (A, B, U). Marginal distribution contains 
the probabilities of all parameters in each node. For example the attack base command 
(AB) only contains 2 parameters (A ∈ [True, False]).  Therefore, the marginal distribu-
tion of AB will be represented as AB = true : 0.62024 and AB = false : 0.37976. The 
parameters with the highest probability will be chosen as the Player A’s behavior and 
passed to the behavior generator, i.e.: attack base command. 

4   Experimental Result 

To calculate the predication accuracy, ten new cases of Player A are prepared for 
testing. The simulation was run using Matlab version 2008b with the BN toolbox that 
was written by Kevin Murphy. The machine used is a Core 2 Duo 2.13GHz with 4 
GB Ram PC. In this simulation, 18 nodes (8 in (B), 5 in (U) and 5 in (A)) of Player A 
is required to be predicted in every ∆t. The running times for the learning and the 
average prediction for each ∆t are shown in Table 2. The prediction time is nearly 
unchanged as it only depends on the complexity of the DBN structure (Dimensions of 
the CPD) and is independent of the number of learning instances. The constant  
performance of this prediction time fits the game implementation requirement. 

Table 2. Running time of Learning and Prediction in DBN 

Number of cases 10 20 30 40 50
Learning Time (S) 245.15 516.35 649.90 770.38 968.72
Prediction Time (S) 0.1143 0.1373 0.1025 0.1033 0.1038

 

The highest prediction probability of each node will be taken as the predicted 
command. Predicted command was compared with the actual command of Player A. 
The accuracy is calculated in every ∆t using equation (1) which is similar to 
Albrecht’s [10] approach. 

1
n

1
N

1 Predicted commad = actual command of Player A
0 Otherwise

N

j=1

n

i=1  

(1)

Where n is number of testing replays, i.e., n = 10 and N is the number of nodes that is 
required to be predicated in every ∆t, i.e., N = 18. The accuracy against time slices 
with different numbers of learning instances are plotted in Fig. 3. We observed that if 
the number of learning instances are insufficient, the probabilities of computed mar-
ginal distribution would be closed to 1/(number of choices in the node). (For example: 
AB = true : 0.51, AB = false : 0.49 where AB ∈ [True, False]). As a result, the accu-
racy decreases. We suggested do not take this command, and only executes the pre-
dicted command if the probability reaches a certain threshold level. For example: 20  
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% increment (P(AB) > 0.6) or 40 % increment (P(AB) > 0.7). However, in this  
case, the behavior generator may not perform fast enough responses according to  
the situation. Accuracy could be improved if the number of learning instances in-
creases. As shown in Fig 3b, the curves are similar in shape and closer to higher 
threshold. 

 

(a) 

 

(b) 

Fig. 3. a) Accuracy of 10 learning instances b) Accuracy of 50 learning instances 

5   Conclusion 

In this paper, we presented a CBR framework to learn players’ behavior in RTS. The 
advantage of applying DBN and junction tree technique to RTS games is shown. Many 
players in multiplayer online games are not looking for challenging AIs but varied AIs. 
Our approach shows a possibility to develop varied AIs by converting different  
players’ replays. It is efficient and useful. Future work of our research will focus on a 
larger scale of learning of many different types of replays and construction of a useful 
case library for simulating various players of different styles. We plan to combine 
DBN with other soft computing techniques, such as artificial neural networks and 
genetic algorithms for faster learning, indexing and similarity calculations in player 
models. 
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Abstract. Organizations aim at harnessing predictive insights, using
the vast real-time data stores that they have accumulated through the
years, using data mining techniques. Health sector, has an extremely
large source of digital data - patient-health related data-store, which can
be effectively used for predictive analytics. This data, may consists of
missing, incorrect and sometimes incomplete values sets that can have a
detrimental effect on the decisions that are outcomes of data analytics.
Using the PIMA Indians Diabetes dataset, we have proposed an efficient
imputation method using a hybrid combination of CART and Genetic
Algorithm, as a preprocessing step. The classical neural network model is
used for prediction, on the preprocessed dataset. The accuracy achieved
by the proposed model far exceeds the existing models, mainly because
of the soft computing preprocessing adopted. This approach is simple,
easy to understand and implement and practical in its approach.

1 Introduction

Real time information, based on transactional data store, differentiated the com-
petitive business organizations from others in their field, enabling them to make
timely and relevant business decisions. This no longer holds good. Today, the
ability to forecast the direction of the business trends, to predict the effect of the
various variables involved in the complex situations, allowing business organiza-
tions to make proactive, knowledge driven decisions, is what differentiates the
leaders in the business organizations. Gartner, Inc. has revealed that by 2012,
business units will devote at least 40 % of their total budget for business intelli-
gence. This is so, as they foresee the impact of the current economic turndown,
to result in under-investment of information infrastructure and business tools,
required to make informed and responsive decisions. Predictive modeling is a
part of business intelligence.

Data Mining refers to knowledge discovery in large and complex volumes of
data. Soft computing involves information processing, with methods aimed to
exploit the data tolerance for imprecision, uncertainty, approximate reasoning
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and partial truth, in order to achieve tractability, robustness and low cost so-
lutions. Neural networks, rough sets, fuzzy logic, genetic algorithm are a few of
the methods that are termed as soft computing methods. Combining the two
technologies, synergetically, the flexibility in processing information, from large
volumes of data, which have all the limitations of the data collected in real-life
ambiguous situations, can be harvested. This paper discusses a prediction model
which works on real-life data, specifically the data from the medical field, which
contains both numeric and textual data, often redundant attributes, where the
domain of values contain erroneous, misspelled, incomplete and sometimes even
missing values.

Predictive models have been used even before the advent of data mining, but
with large data stores available, the demand for an accurate prediction model
which works on the extremely large data store has led to predictive data mining,
a goal based, supervised approach. Sample cases stored over time with known
results, having unseen characteristic patterns for achieving or not achieving the
outcome, form the representative data set for the model. The objective of pre-
diction mining is to find patterns in the data that gives correct and accurate
outcomes on the newer, unseen cases.

The model, based on the sample data will work well, when ideally, the data the
model builds itself on, is complete, accurate and valid in the domain of values.
Of all the factors that affect the accuracy of the prediction model, research has
identified that the handling of missing and outlier values does play a crucial
role. Prediction models have been built, after eliminating or ignoring the tuples
with missing values (termed case deletion method). But when the data used to
build the model, does contain null or zero, instead of just missing value(s) for an
attribute, the proposed model will have a detrimental effect on the prediction of
the outcome(s). This is because, the null or zero value, may be representing any
value in the data domain for that attribute.

This paper is focused on building a prediction model, which uses a combina-
tion of classification-regression-genetic-neural network, to ensure a higher degree
of accuracy as compared with the earlier works in this field. As the first step,
it handles the missing and outlier values in the dataset, efficiently, by replacing
the missing values with appropriate values from the data domain of the corre-
sponding attribute, evaluating the accuracy of the replaced value, by minimizing
the error function, using the genetic algorithm. The dataset thus preprocessed,
is input to build the neural network model, for prediction.

2 Motivation

Healthcare information systems today, amass a large amount of digital data
in various forms, but are hardly used for effective preventive diagnosis, disease
transmission and outbreaks, cost effective patient care or even for tracking the
patients critical parameters and medicine intake for long term effects. An intelli-
gent and robust prediction model can also help in the identification of long-term
probable health issues. This can help the attending doctors or nurse care co-
ordinators to work with the patient to give quality treatment and also help to
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identify the lifestyle changes required in the patients routine, to prevent short
and long tem ill-health complexities.

3 Related Work

Predictive modeling in health sector is a valuable research area as it focuses
on real-time application and solutions. The industry is keen to model, develop
and adopt prediction models for its strategic decision making, enabling it to be
highly effective. Prediction models have been developed for diagnosis of fileria,
heart disease, thyroid tracking, melanoma, asthma etc. Paper [6] has discussed
an intelligent heart disease prediction model, using three data mining techniques
Decision Trees, Nave Bayes and Neural Network, from a historical heart disease
database.

Any dataset in real-time data store contains missing values as well as out-
liers, which affect the prediction accuracy of the model, developed based on the
dataset. The three categories of missing values, identified by statisticians [2] are
MCAR: Missing Completely At Random where the probability of missing a
value is the same for all the variables; MAR: Missing At Random where the
probability of missing a value is only dependent on other variables and NMAR:
Not Missing At Random where the probability of missing a value is depen-
dent on the value of the missing variable. Depending on the categorization of
the missing value and the application/context, imputation methods have been
researched [9]. The three broad categories of handling missing data are case
deletion, parameter estimation (maximum likelihood method, mean/mode Im-
putation, all possible values imputation, regression methods, cold/hot deck im-
putation) and imputation techniques (k-nearest neighbor imputation, multiple
imputation, internal treatment method for C4.5, Bayesian iteration imputation)
[7]. Imputation techniques use the present information in the dataset, recognize
the relationship between the values in the dataset and to estimate and replace
the missing values.

Imputation methods are further categorized into three groups: global impu-
tation based on missing attribute-where known value(s) are used to impute the
missing data of the attribute, global imputation based on non-missing attribute-
where the relationship between the missing and the non-missing attributes are
used to predict the missing data and the third category local imputation where
the sample data is divided into clusters and the missing data is estimated. The
presence of missing values in rates of less than 1% is generally considered as triv-
ial, 1-5% manageable. However, 5-15% require sophisticated methods to handle,
and more than 15% may severely impact any kind of interpretation. The selected
dataset for our work has a missing/incorrect value range of upto 48% [11]. Our
model, with a view to give a cost effective imputation method, uses pre-placing
method of imputation, assesses the accuracy of the imputed values and then
builds the prediction model, using the now-corrected dataset, with no missing
values and incorrect zero values. The accuracy of the model is also established.
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4 Implementation

We have adapting the SEMMA methodology from SAS Enterprise Miner for
our model, mapping our process as Sample, Explore, Modify, Model and Access
which refers to the core process of conducting data mining, to build and evaluate
the predictive data mining model. Fig. 1 illustrates the features of the proposed
model.

4.1 Sample

The dataset selected for building the predictive model is PIMA Indians Diabetes
data set from the Machine Learning Database Repository at the University of
California, Irvine. As per previous studies, the Pima Indians may be genetically
predisposed to diabetes and it was noted that their diabetic rate was 19 times
that of any typical town. The National Institute of Diabetes and Digestive and
Kidney Diseases of the NIH originally owned the Pima Indian Diabetes Database
(PIDD). In 1990 it was received by the UC-Irvine Machine Learning Repository
and can be downloaded at www.ics.uci.edu/ mlearn/MLRepository. The dataset
contains 768 patient data records and each record is described by 8 attributes,
while the 9th attribute associates the class attribute - the onset of diabetes within
5 years, with a zero indicating the onset and one indicating the non-occurrence.
All the patients considered here are females and at least 21 years old of Pima
Indian heritage. The population lives near Phoenix, Arizona, USA.

4.2 Explore

Data in a database or data warehouse is usually explored either graphically or
analytically. The quality of data being explored is an important requirement for
data mining. The presence of missing values, outliers obstruct the pattern of
the data mined. Various methods are used to handle the noisy and missing data
like replacing the incorrect values with the means, medians or even user defined
values. Adopted the visualization methodology for data exploration, the boxplot
as indicated in Fig. 2, obtained from the data indicates the quartiles, median as
well as the outlier values for each of the attributes.

The dataset, when examined manually, is seen to contain some incorrect values
for specific attributes, as listed in Table 1. There are 500 non-diabetic patients
(class = negative) and 268 diabetic ones (class = positive) for an incidence rate
of 34.9%. Thus if you simply guess that all are non-diabetic, your accuracy
rate is 65.1% (or error rate of 34.9%). Using the simple strategy of selecting
tuples that contain complete and correct data values, we statistically represented
the dataset selected, using the boxplot to study the dataset. The selected data
tuples, is the base on which the regression model is built to predict the incorrect
values. The tuples containing the erroneous/incorrect values are then fed to the
regression model and the values are predicted, as a part of our approach for the
preprocessing of the data.
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Table 1. Attribute-value study outcome, indicating attributes with incorrectly present
‘zero‘ value

Sl.No. Attribute Name No. of Zero value instances
for attributes listed,

present out of 768 tuples.
1. Plasma glucose concentration, in 2 hours, 5

in an oral glucose tolerance test
2. Diastolic blood pressure (mm Hg) 35
3. Triceps skin fold thickness (mm) 227
4. 2-hour serum insulin (mu U/ml) 374
5. Body mass index (weight in kg/(height in m)2) 11

4.3 Model

An Approach to Handle Missing Values
A regression model, using Classification and Regression Trees (CART), is de-
veloped, using tuples, which have complete correct values for all the attributes.
These tuples form the training set for the model. The records that need values to
be imputed, are then input to the model. The outlier set of the original dataset is
compared with the generated values outlier set. A second order quadratic error
function is generated.

Genetic Algorithms is used to optimize the error function in any given domain.
Using a Genetic Algorithm function call,

x = ga(fitnessfcn, nvars) (1)

we find a local unconstrained minimum, x, to the objective function, fitnessfcn.
nvars is the dimension (number of design variables) of fitnessfcn. The objective
function, fitnessfcn, accepts a vector x of size 1-by-nvars, and returns a scalar

Fig. 1. Architecture of the proposed prediction model
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evaluated at x. The predicted value for the incorrect/missing value is corrected
using this optimization through genetic algorithms. A box-plot is once again
used to inspect the mean and the outliers in the dataset, for any improvement
shown.

Fig. 2. Boxplots of the attribute values before and after soft computing preprocessing

Prediction Model
The model selected for the prediction study is the neural network supervised
model. The completely preprocessed data is then input to the model. Our re-
search shows that the neural network model works best with this data and the
output statistics from the proposed model, based on our preprocessing approach
is discussed in the performance section.

4.4 Assess

The model is then assessed using the test dataset, which is the randomly selected
20% part of the preprocessed, completed dataset. The proposed model gave an
average of 80.22% as against a prediction model built on the un-preprocessed
data. The random split used in the selection of the training dataset and the test
dataset is the cause for the variance in the accuracy of the prediction model
proposed in this work. The accuracy of the model is discussed in detail in the
performance section.
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5 Performance Analysis

The PIMA database, was used as it is available at the Machine Learning Database
Repository at the University of California, Irvine, with no preprocessing step
at all, to model the neural network prediction model. This means that the
dataset contains a missing/incorrect value range comprising of 4% (taking only
the records containing zero values to the attribute -diastolic blood pressure) to
48% (taking only the records containing zero values to the attribute - 2 hour
serum insulin presence). The prediction accuracy of this neural network model
is 75.816%. On implementing our architecture comprising of extensive data pre-
processing and prediction, the prediction - neural network model is built on the
completed, error optimized dataset, by splitting the dataset, using the random
split, of 80-20 split where 80% (615 records) is the training dataset volume and
20% (153 records) is the testing dataset volume, thus validating the model. To
avoid bias, the records for each set was selected randomly. This splitting of data
facilitates easy validation of the model with the focus on reliability.

The performance for the 4 runs are as indicated in Table 2. The sensitivity (the
true positive rate), specificity (the true negative rate) and correctness calculated
from the confusion matrix is shown in Table 3., which emphasizes that the higher
the sensitivity, specificity and correctness is, the more accurate is the prediction
model.

Table 2. Prediction Accuracy details

Sl.No. Accuracy Sensitivity Specificity Correctness
1. 79.084% 69.64% 85% 79.49%
2. 81.046% 70% 86.41% 79.49%
3. 78.431% 84.31% 75.49% 76.92%
4. 82.353% 73.77% 88.04% 80.77%

6 Conclusions

This work proposes a fresh approach for preprocessing real-time data, used to
build prediction models, with practical application, specifically taking a dataset
from the health sector. The preprocessing, which involves imputation using
CART along with optimization of the error function using a Genetic Algorithm,
takes care to map imputed values in the valid domain of values for each attribute.
The accuracy of proposed model is higher, by a maximum of 82.33%, as against
the accuracy of a neural network prediction model, build on the unprocessed
data which is 75.816%.

This model is to be tested on other similar health sector data, which tracks
ailments and the factors that influence the occurrence or recurrence of the dis-
ease. We can test out this model, in the Indian diabetes patients context and
predict the possibility of the patient to be affected by diabetes, in which case,
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changes required in the routine or life style can be adopted, to postpone the
immediate chance of the disease.

The prepossessing steps that have been discussed here can be used on any
prediction model development framework, to impute missing, incorrect and even
incomplete values. As the approach is simple to implement, and the results easy
to comprehend, real-time decision making or any other categories of applications
that require imputation, can adopt these steps effectively.
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Abstract. In a vendor-buyer supply chain, the buyer’s economic order quantity 
and the vendor’s optimal number of deliveries are derived either independently 
or collaboratively. In this paper, we establish a two-stage vendor-buyer 
inventory system decision model by using bi-level decision making approach. 
The experimental result shows that the proposed bi-level decision model can 
effectively handle two-stage vendor-buyer inventory problems and obtain better 
results than the existing methods. 

Keywords: Bi-level decision-making, two-stage supply chain, vendor–buyer 
inventory system, optimization. 

1   Introduction 

Supply chain activities transform natural resources, raw materials and components 
into a finished product that is delivered to the end customer. A two-stage vendor-
buyer inventory system is a typical supply chain system of organizations, people, 
technology, activities, information and resources involved in moving a product or 
service from vendor to buyer. In a two-stage supply chain problem, both vendor and 
buyer aim to minimize their individual costs in the inventory system but their 
decisions are constrained with each other. Researchers have developed various 
models to describe this problem and tried to find optimized solutions. For example, 
Yang et al. [17] presented a global optimal policy using classical optimization 
technique for vendor–buyer integrated inventory systems with a just-in-time 
environment. Banerjee [2] derived a joint economic lot size model for a single vendor 
-- single buyer system where the vendor has a finite production rate. Goyal [5] 
extended Banerjee’s model by relaxing the lot-for-lot production assumption. There 
are some other methods to solve the inventory system models such as the algebraic 
optimization approach popularized by Grubbström and Erdem [6], Yang and Wee 
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[16], and Wee and Chung [14]. Although these methods can model the two-stage 
supply chain problem, they didn’t consider the hierarchical relationship between the 
decisions of the vendor and the buyer when they aim to minimize their individual 
costs in an inventory system. That is, in most previous researches of two-stage supply 
chain, the buyer’s economic order quantity and the vendor’s optimal number of 
deliveries are derived either independently or collaboratively. We have found that in 
fact, the two-stage supply chain problem reflects the features of two level decision 
making: non-cooperative, two-player. In the problem, both buyer and vendor 
considered other party’s decision variable but cannot control it.  

Bi-level programming (BLP) aims at solving decentralized decision problems 
within a bi-level hierarchical organization [1, 7]. The decision entity at the upper level 
is termed as leader, and the lower level, follower. Each decision entity tries to 
optimize their own objective functions but any of their decisions will affect the 
objective value of the other level [9, 15]. Since the two-stage supply chain problem in 
the vendor–buyer inventory systems involves two hierarchical optimizations (buyer 
and vendor), obviously, bi-level programming is naturally suitable for modeling the 
features of the problem, in which the buyer is as the leader and the vendor as the 
follower, or vice versa.  

We therefore established a two-stage vendor-buyer inventory system decision 
model using bi-level programming method. As both vendor and buyer’s objectives are 
nonlinear functions, the two-stage vendor–buyer inventory system decision model 
becomes a nonlinear bi-level programming problem. This study has two main 
contributions. First, we apply bi-level programming technique to establish a vendor–
buyer inventory system decision model. The second is the results obtained using the 
model is much better than using existing methods.  

The rest of our paper is organized as follows: Section 2 gives a general bi-level 
decision making model. Section 3 proposes a two-stage vendor–buyer inventory 
system decision model by using bi-level programming. Experiment of solving the 
two-stage supply chain problems using the proposed model is presented in Section 4. 
Experiment results are very positive to support the proposed bi-level vendor–buyer 
inventory system decision model. Finally, conclusions and further studies are 
highlighted in Section 5. 

2   Bi-level Decision Making Model 

A bi-level decision problem can be viewed as a static version of the non-cooperative, 
two-player (decision entity) game. The decision entity at the upper level is termed as 
leader, and the lower level, follower. The control for the decision variables is 
partitioned amongst the decision entities who seek to optimize their individual 
objective function [1, 3, 4, 15]. 

Bi-level programming typically models bi-level decision problems, in which  
the objectives and the constraints of both the upper and the lower level decision 
entities (leader and follower) are expressed by linear or nonlinear functions, as 
follows [1, 3, 4, 8]:  
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where the variables x, y are called the leader and the follower variables respectively, 
and F(x, y) and f(x, y) the leader’s and the follower’s objective functions. 

This model aims to find a solution to the upper level problem ),(min yxFXx∈
subject 

to its constraints 0),( ≤yxG  where, for each value of leader’s variable x, y is the 

solution of the lower level problem ),(min yxfYy∈
under its constraints 0),( ≤yxg .  

Under the general bi-level programming model, there are some special situations. 
For example, in the leader’s objective function ),( yxF and/or constraint 

function ),( yxG , y can be absent.  

There have been many approaches and algorithms proposed for solving BLP 
problems since the field caught the attention of researchers in the mid-1970s, 
including the well-known Kuhn-Tucker approach [3], the Branch-and-bound 
algorithm [7], penalty function approach [15], and the Kth-best approach [1, 3, 4],. 
Furthermore, some fuzzy BLP approaches [10, 12, 18, 19], multi-follower BLP 
approaches [8,9], and multi-objective BLP approaches [11, 13, 19] have been recently 
developed to deal with more complex cases of bi-level decision problems in a real-
world. 

However, most of them mainly deal with linear bi-level programming, but there are 
less research results reported for non-linear bi-level programming and less 
applications in two-stage vendor-buyer inventory system. 

3   A Bi-level Vendor-Buyer Inventory System Decision Model 

In a two-stage supply chain problem of a vendor–buyer inventory system, both vendor 
and buyer aim to minimize their costs in the inventory system but their decisions are 
related with each other in a hierarchical way. We first assume to give the priority to 
the buyer’s decision. Therefore, the buyer is assigned as leader and the vendor as 
follower in a bi-level model. The buyer attempts to optimize his/her objective, i.e.: 
minimize cost, the vendor, under the constraint of the leader, tries to find his/her 
minimized cost, based on the decisions made by the buyer. We therefore have two 
decision variables to consider in the problem: 

(1) the number of deliveries from vendor to buyer; 
(2) the number of buyer’s lot size per delivery.  

In Order to Compare the Results with Yang et al. [17], We Use the Same 
Nomenclature as Follows.  
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Yang et al.[17] proposed the following total cost of the integrated two-stage inventory 
system for the vendor-buyer as: 
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The buyer’s total cost is: 
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In Equation (2), the buyer controls Q, the number of order quantity. In Equation (3), 
the vendor controls n, the number of delivery. All other parameters are known for a 
specific problem. 

As we assume that the buyer is the leader and the vendor the follower, by 
combining Equations (2) and (3), we establish a bi-level decision model where 
Equations (2) and (3) can be re-written as: 
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 subject to Q > 0, n > 0,   
     
In this model, both the buyer and the vendor try to adjust their controlling variable, 
wishing to minimize their respective cost under specific constraints. The buyer is the 
leader who tries to minimize his/her total cost by taking the derivative of Equation (2) 
with respect to Q and setting it to zero; one can obtain the expression for the 
economic order quantity Q as: 
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Once the buyer has made his/her decision, the vendor will optimize his/her strategy 
base on the buyer’s decision. Substitute the information from Equation (5) into 
Equation (3), and then take the derivative with respect to n and setting it to zero, one 
can obtain the expression to the global minimum of the decision variable n as: 
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Substitute the optimal values of n and Q into Equation (3), the following optimal 
condition of Equation (3) occurs: 

When ≥− )1*(nTC )1*(*)( +≤ nTCnTC , the optimal delivery number of n is 
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where ⎣ ⎦  is the integer operation where the integer value is equal or less than its 

argument. 
For each 1≥n , there is a feasible and optimal solution to the lot size (Q). 
All feasible values of Q and n are derived by the vendor. Optimal value of Q and n 

are chosen after considering the benefit to both the buyer and the vendor.  
Now we assume that the vendor is the leader and the buyer the follower. By 

combining Equations (2) and (3), we establish another bi-level decision model where 
Equations (2) and (3) can be re-written as: 
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4   Experiment Analysis 

This section presents a numerical example to validate the effectiveness and working 
process of the proposed bi-level decision models. 

We consider a two-stage vendor-buyer inventory problem with the following 
parameters: 

Annual demand rate, D = 1000. 
Annual production rate, P = 3200. 
Buyer’s ordering cost, A = $25 per order. 
Vendor’s setup cost, S = $400 per setup. 
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Buyer’s unit purchase cost, Cb = $25. 
Vendor’s unit production cost, Cv = $20. 
Annual inventory carrying cost per dollar, r = 0.2. 
Using (4), the optimal value of Q =100 units. 
Using (5), the value of n =5.39. 

We first consider that the buyer is the leader and establish a two-stage vendor-buyer 
inventory system decision model.  

Since TC(n = 5)-TC(n = 6) = 1412.5-1416.7 < 0; the optimal number of deliveries 
is 5. Since condition (8) is satisfied, there is a solution for the problem. Using 
conditions (2) and (3), one can obtain the optimal values for Q* and n*, as 100 units 
and 5 deliveries, respectively. Substituting the optimal values of Q* = 100 units and 
n* = 5 deliveries into equation (2) and (3), the optimal value for the total cost for the 
buyer and vendor is $500 and $1412.5 per year respectively. The lot size for the 
vendor is (n*) × (Q*) = 500 units, and the total vendor-buyer cost is $1912.5 per year. 
Table 1 shows these values.   

We can obtain similar results when the roles of the buyer/vendor are interchanged 
as shown in Table 1. 

We also compare the results of the analysis with those of Yang et al. [17], Banerjee 
[2] and Goyal [5]. 

From Table 1 we can see that we propose two alternatives in business dealings: 

(1) The traditional supply chain arrangement where the buyer is fully responsible 
for the lot size decision and the vendor is fully responsible for the number of 
deliveries.  

Table 1. Summary of results 

Models 
Banerjee 

(lot for lot 
assumption) 

Goyal 
(relaxed lot 

for lot 
assumption)

Yang & 
Wee 

(integrated 
model) 

This Study
(buyer as 
leader) 

This Study 
(vendor as 
leader) 

n 1 2 5 5 5 

Buyer’s 
order size 

369 198 110 100 106 

Vendor’s 
lot size 

369 396 550 500 530 

Buyer’s 
annual cost 

$ 990.3 $621.3 $ 502.4 $ 500 $ 500.8 

Vendor’s 
annual cost 

$1314.6 $1653.6 $1400.9 $1412.5 $1406.2 

Total 
vendor -

buyer cost 
$2304.9 $2274.9 $1903.3 $1912.5 $1907 
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(2) When the vendor is responsible to the lot size and the number of deliveries 
which will result in optimal inventory and delivery costs. The alternative is usually 
termed vendor-management-inventory (VMI).  

In our two-stage vendor-buyer inventory system decision model, we also try to 
consider the other player’s benefit. After deriving all possible solutions using VMI, 
we finalize the vendor’s decisions, in term of lot size and the number of delivery that 
will be beneficial to the buyer as well. 

From our experimental data, we see that the vendor as leader outperforms the 
buyer as leader. This is because vendor as leader improves the actual consumption 
rates; the lot size decision by the vendor ensures production matches demand more 
closely, reduces inventory and improves business performance. This is why the VMI 
has become very popular in recent years. The total costs for the vendor-buyer system 
from our study are more than the optimal integrated model by Yang and Wee. This is 
understandable because the model by Yang and Wee is a global solution that 
minimizes the total costs for the vendor-buyer system, and in practice this is difficult 
for implementation. Obviously, our results have lower costs than those of Banjeree 
and Goyal’s studies, and it is easily acceptable by both buyer and vendor in practice. 

5   Conclusion and Further Study 

This paper presents the development of an inventory system for a supply chain with 
bi-level decision making model. The results obtained using the model is much better 
than using existing methods. Due to the relative simple experiment data in this study, 
we can derive optimal global solution quite easily. For more complex problems, 
evolutionary methods such as genetic algorithms and swam optimization methods are 
suggested. These meta-heuristic methods do not guarantee a global solution, and few 
algorithms have been published in literature. Moreover, there is no commercial solver 
to do the job. Our results provide insights into how firms can choose the best supply 
chain arrangement to optimize supply chain efficiency.  

Future research includes (1) to handle more complex vendor-buyer inventory 
system decision problems where multiple followers (multi-buyers) appear and they 
may have different objectives and variables; (2) to extend the proposed bi-level 
vendor-buyer inventory system decision model to a tri-level model to deal with three 
level supply chain; (3) to improve the developed bi-level decision support software to 
implement the multi-follower tri-level programming algorithms and apply it in more 
real-world supply chain management applications.   
 
Acknowledgment. The work presented in this paper was supported by Australian 
Research Council (ARC) under discovery project DP0557154. 
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Abstract. The main purpose of this paper is to propose the use of Group Method 
of Data Handling (GMDH) to predict software reliability. The GMDH algorithm 
presented in this paper is a heuristic self-organization method. It establishes the 
input-output relationship of a complex system using multilayered perception type 
structure that is similar to a feed forward multilayer neural network. The effec-
tiveness of GMDH is demonstrated on a dataset taken from literature. Its per-
formance is compared with that of multiple linear regression (MLR), back 
propagation trained neural networks (BPNN), threshold accepting trained neural 
network (TANN), general regression neural network (GRNN), pi-sigma network 
(PSN), dynamic evolving neuro-fuzzy inference system (DENFIS), TreeNet, 
multivariate adaptive regression splines (MARS) and wavelet neural network 
(WNN) in terms of normalized root mean square error (NRMSE). Based on ex-
periments conducted, it is found that GMDH predicted reliability with least error 
compared to other techniques. Hence, GMDH can be used a sound alternative to 
the existing techniques for software reliability prediction. 

Keywords: Software reliability forecasting, Group method of Data handling, 
Intelligent Techniques. 

1   Introduction 

Reliability is the important factor in accessing the software quality. It is related with 
defects and faults. If more faults are encountered, the reliability of software decreases. 
Therefore, Reliability is defined as the probability of a system or component to work 
properly for a particular period of time under certain conditions.  According to Lyu 
[1], Software reliability consists of three main activities viz. error prevention, fault 
detection and recovery and measurement criteria. Software reliability is an important 
factor which affects system reliability. It differs from hardware reliability in that it 
reflects the design perfection, rather than manufacturing perfection. Software  
                                                           
* Corresponding author. 
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modeling techniques can be divided into two categories viz. prediction modeling and 
estimation modeling. But both modeling techniques are based on observing and ac-
cumulating failure data and analyzing it with statistical inference. In the past few 
years much research work has been carried out in software reliability and forecasting. 
But none of the models could give accurate prediction about software reliability. All 
those models are data driven.  In recent years, neural network (NN) approaches have 
proven to be universal approximators for any non-linear continuous function with 
arbitrary accuracy [1, 2, 3]. Many papers published in the literature observe that neu-
ral network could offer promising approaches to software reliability estimation and 
modeling [2-18]. For example, Karunanithi et al. [20, 21] first applied neural network 
architecture to estimate the software reliability and used the execution time as input 
and cumulative number of detected faults as desired output, and encoded the input 
and output into the binary bit string. Furthermore, they also illustrated the usefulness 
of connectionist models for software reliability growth prediction and showed that the 
connectionist approach is capable of developing models of varying complexity. 
Sherer [19] employed neural networks to predict software faults in several NASA 
projects. She found that identification of fault-prone modules through initial testing 
could guide subsequent testing efforts provided software faults tend to cluster. Be-
sides, Sitte [16] compared predictive performance of ‘neural networks’ and ‘recalibra-
tion for parametric models’ for software reliability. She found that neural networks 
are much simpler to use than the recalibration method.  

Khoshgoftaar et al. [11], Khoshgoftaar and Szabo [11] used the neural network for 
predicting the number of faults in programs. They introduced an approach for static 
reliability modeling and concluded that the neural networks produce models with 
better quality of fit and predictive quality. The neural networks used for software 
reliability modeling can be classified into two classes. One used cumulative execution 
time as inputs and the corresponding accumulated failures as desired outputs. This 
class focuses on modeling software reliability modeling by varying different kind of 
neural network such as recurrent neural network [20, 21], Tian and Noore, [17, 22] 
and Elman network [16]. The other class models the software reliability based on 
multiple-delayed input single-output neural network. Cai et al. [2, 4] employed neural 
network to predict the next failure time by using 50 inter-failure times as the multiple- 
delayed-inputs. Tian and Noore [17] proposed software cumulative failure time pre-
diction on multiple-delayed-input single-output architecture by using an evolutionary 
neural network. However, there is a problem in this kind of approaches. We have to 
predetermine the network hidden architecture in terms of the number of neurons in 
each layer and the numbers of hidden layers. Cai’s [2, 4] experimented the effect of 
the number of input neurons, the number of neurons in hidden layer and the number 
of hidden layers by independently varying the network architecture. Another problem 
is that since several fast training algorithms are investigated for reducing the training 
time, these advanced algorithms focus on the model fitting and this will cause the 
over-fitting. Pai and Hong [23] have applied Support Vector Machines (SVMs) for 
forecasting software reliability where Simulated Annealing (SA) algorithm was used 
to select the parameters of the SVM model. Su and Huang [24] applied neural net-
works to predict software reliability and built a dynamic weighted combinational 
model (DWCM). Recently, Rajkiran and Ravi [25] proposed an ensemble model to 
forecast software reliability. They used MLR, MARS, dynamic evolving neuro-fuzzy 
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inference system (DENFIS) and TreeNet to develop the ensemble. They found that 
non-linear ensemble outperformed all other ensembles and intelligent techniques. 
Later, Rajkiran and Ravi [26] employed Wavelet Neural Networks (WNN) to predict 
software reliability.  They used two kinds of wavelets – More wavelet and Gaussian 
wavelet as transfer function resulting in two variants of WNN.  It was found that 
Wavelets Neural Networks based on normalized root mean square error (NRMSE) 
obtained on test data outperformed all other techniques. Most recently, Ravi et al. [27] 
proposed the use of Threshold accepting trained wavelet neural network (TAWNN) to 
predict operational risk in banks and firms by predicting software reliability. They 
employed two types of TAWNN as transfer function viz. Morlet wavelet and Gaus-
sian wavelet. They compared the performance of TAWNN variants with that of mul-
tiple linear regression (MLR), Multivariate adaptive regression splines (MARS), Back 
propagation trained neural network (BPNN), Threshold accepting trained neural net-
work (TANN), Pi-sigma network (PSN), General regression neural network (GRNN), 
Dynamic evolving neuro-fuzzy inference system (DENFIS) and TreeNet  in terms of 
normalized root mean square.  From the experiments, they found that WNN based 
models outperformed all the individual techniques over all the lags. 

In this paper, we explore the usefulness of GMDH in predicting software reliability 
and compare its performance with that of several intelligent methods. 

The rest of the paper is organized in the following manner. A brief discussion 
about overview of GMDH is presented in section 2. Section 3 presents the experimen-
tal methodology. Section 4 presents a detailed discussion of the results. Finally,  
Section 5 concludes the paper.  

2    Overview of GMDH 

GMDH [28] is a heuristic self organizing method that models the input-output rela-
tionship of a complex system using a multilayered Rosenblatt’s perception-type net-
work structure. Each element in the network implements a non-linear equation of two 
inputs and its coefficients are determined by a regression analysis. Self selection 
thresholds are given at each layer in the network to delete those useless elements 
which can not estimate the correct output. Only those elements whose performance 
indices exceed the threshold are allowed to pass to succeeding layers, where more 
complex combination is formed. These steps are repeated until the convergence crite-
rion is satisfied or a predetermined number of layers are reached. GMDH approach 
can be useful because:  

• A small training set of data is required.   
• The computational burden is reduced. 
• The procedure automatically filters out input properties that provide little    

information about the location and shape of hyper surface. 
• A multilayer structure is a computationally feasible way to implement 

multinomials of high degree. 
 

The concept of GMDH algorithm [28] used in this paper is described as follows: 
GMDH algorithm can be represented as a set of neurons in which different pairs of 
them in each layer are connected through a quadratic polynomial and thus produce 
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new neuron in the next layer. Such representation can be used to map inputs to output. 
The formal definition of the identification is to find a function f in order to predict 

output Y for a given input vector 1, 2, 3 )( ,.........., nx x x x x= as close as possible to its 

actual output Y. Therefore, assume the output variable Y is a function of the input 

variable 1, 2, 3( ,............. )nx x x x , as in the following equation 

1 2( , ,......., )nY f x x x=                                         (1) 

At each layer, GMDH will build a polynomial like the following: 
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Where 0a  is a constant 

1, 2, 3a a a ……………….are coefficients, 

and , ,i j kx x x ….are input variables. 

In the first layer, the input neurons are the problem input and the second layer neuron 
consists of polynomials like in Eqn. (3). When third layer is built, the input to the 
third layer polynomials can either be the original problem inputs, the polynomial from 
the second layer, or both. If inputs are polynomial, then a much more complicated 
polynomial will be built.  Successive layers take inputs from either the original inputs 
or the polynomials from immediately from proceeding layer.  

In general, The Kolmogorov-Gabor polynomial [28] can simulate 
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…         (3) 

The input-output relationship perfectly and has been widely used as a complete de-
scription of the system model. By combining the so called partial polynomial of two 
variables in the multilayer, the GMDH can easily solve these problems. In fact, the 
GMDH network is not like regular feed forward network and was not originally rep-
resented as a network. In Neuroshell2 [21], the GMDH network is implemented with 
polynomial terms in the links and a genetic component to decide how many layers are 
built. The result of training at the output layer can be represented as a polynomial 
function of all or some of inputs Ivakhnenko [29].  The main idea behind GMDH is 
that it is trying to build a function (called a polynomial model) that would behave in 
such a way that the predicted value of the output would be as close as possible to the 
actual value of output [31].  
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3   Experimental Design 

In our experiment, we followed general time series forecasting model because soft-
ware reliability forecasting has only one dependent variable and no explanatory vari-
ables in strict sense. The general time series can be presented as  

( )tX f X ′=                   (4) 

Where 'X  is vector of lagged variables { pttt xxx −−− ,.....,, 21 }. Hence the key to 

finding the solution to the forecasting problems is to approximate the function ‘ f ’. 

This can be done by iteratively adjusting the weights in the modeling process. 
Below is an illustration of how training patterns can be designed in the neural network 
modeling process [3]. 
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Where p denotes the number of lagged variables and )( pt − denotes the total num-

ber of training samples. In this representation, X is a set of )( pt − vectors of di-

mension p and Y is a vector of dimension )( pt − . X and Y represent the vector of 

explanatory variables and dependent variable in the transformed datasets respectively.  
In this paper, the software failure data obtained from Musa [30]. It is used to dem-

onstrate the forecasting performance of GMDH. The data contains 101 observations 

of the pair ),( tYt pertaining to software failure. Here tY represents the time to failure 

of the software after the tht modification has been made. We created five datasets viz. 
lag # 1,2,3,4 and 5 in view of the foregoing discussion on generating lagged data sets 
out of a time series. The experiments are performed by dividing the data into training 
and test set in the ratio of 80:20. The value of Normalized Root Mean Square Error 
(NRMSE) is used as the measurement criteria. 
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4   Results and Discussions 

We employed GMDH available in Neroshell2 tool [31] to predict software reliability 
on datasets taken from literature [30]. NeuroShell2 includes a very powerful architec-
ture, called Group Method of Data Handling (GMDH) or polynomial nets. The pa-
rameters used in GMDH are: Scale Function-[0, 1], GMDH type - Advanced, Optimi-
zation - Full, Maximum variable - X1, X2, X3, Selection Criteria-Regularly, Missing 
values to be  - Error Condition for obtaining the results. 

We compared the performance of GMDH with that of BPNN, TANN, PSN, 
MARS, GRNN, MLR, TreeNet, DENFIS, Morlet based WNN and Gaussian based 
WNN [26, 27].  

Table 1. NRMSE values on test data for different techniques 

Techniques Lag1 Lag2 Lag3 Lag4 Lag5 

BPNN 0.171375 0.166086 0.151429 0.144949 0.145541 

TANN 0.179309 0.183735 0.158407 0.152008 0.150355 

PSN 0.186867 0.176708 0.165935 0.164855 0.157922 

MARS 0.170584 0.17091 0.161343 0.154821 0.15267 

GRNN 0.210247 0.211408 0.176769 0.179869 0.166883 

MLR 0.171448 0.167776 0.156537 0.151152 0.147881 

TreeNet 0.168286 0.167865 0.168105 0.156998 0.161121 

DENFIS 0.170907 0.167306 0.15425 0.148379 0.147641 

Morlet based 

WNN 
0.119402 0.118788 0.122810 0.115742 0.116238 

Gaussian based 
WNN 

0.124162 0.120630 0.118937 0.118610 0.111520 

GMDH 0.150875 0.152475 0.107226 0.103601 0.098616 
 

 
Table 1 illustrates the NRMSE values of different lags of data obtained over differ-

ent techniques. The parameters of all the algorithms are tweaked until the least 
NRMSE values could be obtained and the same are presented in Table 1. We ob-
served from Table 1 that the NRMSE value of different techniques is gradually de-
creasing with increase in lag number and also we can clearly deduce from Table 1 that 
GMDH yielded better NRMSE values compared to BPNN, TANN, PSN, MARS, 
GRNN, MLR, TreeNet, and DENFIS. But GMDH could not predict well in lag1 and 
lag2 as compared to Morlet based WNN and Gaussian based WNN. However, 
GMDH outperformed all techniques in case of Lag3, Lag4 and Lag5. In fact, GMDH 
yielded the best result of NRMSE value of 0.098616 in Lag5.  We further observe 
here that the Morlet/Gaussian based WNN yielded the best result in literature so far. 
However, this study shows that GMDH outperformed even them in lag3,   lag4, and 
lag5 by a good margin.  Further, we observe that Pai and Hong [23] used the same 
data set to test the efficacy of their support vector machine simulated annealing 
(SVMSA) method. However, our results cannot be compared with theirs since they 
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did not use the lagged data in their experimentation. They divided the data set of 101 
observations into training (33 observations), validation (8 observations) test (60 ob-
servations, which is not standard method of splitting the data set for experimentation. 
So we did not compare our results with theirs. 

5   Conclusions 

In this paper, Group Method of Data Handling (GMDH) is proposed first time to 
predict software reliability. We compared GMDH with that of MLR, PNN, TANN, 
GRNN, PSN, DENFIS, TreeNet, MARS, Morlet and Gaussian wavelet Neural net-
work (WNN) in terms of normalized root mean square error (NRMSE). Based on the 
normalized root mean square error (NRMSE) values, we conclude that GMDH 
yielded better results compared to MLR, PNN, TANN, GRNN, PSN, DENFIS, 
TreeNet, MARS  but GMDH could not yield better results compared to Morlet and 
Gaussian wavelet neural network (WNN) in lags 1 and 2. However, in lags 3, 4 and 5, 
GMDH yielded the best results so far in literature. 
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Abstract. In this paper, we have projected an efficient mining method for a tem-
poral dataset of humanoid robot HOAP-2 (Humanoid Open Architecture Plat-
form). This method is adequate to discover knowledge of intermediate patterns 
which are hidden inside different existing patterns of motion of HOAP-2 joints. 
Pattern-growth method such as FP (Frequent Pattern) growth, unfolds many un-
predictable associations among different joint trajectories of HOAP-2 that can 
depict various kinds of motion. In addition, we have cross-checked our method-
ology over Webots, a simulation platform for HOAP-2, and found that our  
investigation is adjuvant to predict new patterns of motion in terms of temporal 
association rules for HOAP-2.  

Keywords: Temporal Association Rules, HOAP-2, Pattern growth 
method, FP-Growth, Webots. 

1   Introduction 

Since late 90’s, the field of data mining is emerging very fast and till today it has 
exploded many research areas by merging itself in various areas[1]. As day-by-day 
size of the databases increases, data analysis takes higher domain of complexity. If the 
data is real-time and containing many unknown hidden patterns inside it, which are 
almost impossible to extract manually due to its increased volume, the major need 
arises to develop some technique which can automatically figure out the pattern in the 
data and also comprehend some meaning from it. For such purpose data mining pro-
vides various statistical and intelligent paradigms which can handle large and bulky 
databases. Some of its major capabilities are: associations, classifications, clustering 
etc [2]. 

Through past researches in [3, 4, 5], association rule mining has proved itself to be 
most prominent technique to disclose effective hidden patterns from bulky databases. 
One of the complex category of dataset is temporal dataset which contains time unit 
as one of its attribute and some associations w.r.t.  time. Thus, it would be interesting 
if those associations can be captured and then further be used purposefully.  

Temporal database is a dynamic dataset which is generated on the basis of time [6]. 
According to [7], the time can be in terms of any granularity like month, day, hour, 
minute or second or it could be millisecond also. In such datasets, each transaction is 
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basically an event at a particular instant of time. Since the dataset is temporal, the 
associations should be in terms of several kinds of rules such as: calendar association 
rules[8], sequential association rules[9], episode or periodic association rules[10], 
cyclic association rules [11] etc. and thus the ruleset is called temporal association 
rules or simply temporal patterns. It generally depends on the nature of dataset that 
which kind of rule is to be generated. 

Till today, various researches like [12, 13] follow apriori-based method for gener-
ating temporal association rules. In our method we have proposed pattern-growth-
based association rules which have used FP(Frequent Pattern) Growth algorithm, an 
esteemed pattern-growth method, to overcome the limitations of apriori-based method 
by avoiding candidate generations for impenetrable datasets [4]. Section 2 demon-
strates various steps necessitated for applying the proposed method and then Section 3 
explained the experimental application of the method over the real time dataset. Sec-
tion 4 concludes the objective of the investigation followed by future perspectives.   

2   Temporal Association Rule Mining 

For mining temporal association rule in temporal datasets we have divided our 
method into following parts which can be shown in fig. 1. Step-by-step functioning of 
each part is explained as:  

Input in 
the form 
of text 
files

Preprocessed 
Data

Pattern 
Growth 

Methods

Frequent 

Patterns

Output in 
the form of 
temporal 

association 
rules

 

Fig. 1. Temporal Association Rule Mining method 

Step 1. Take the input dataset in .txt format.  
 

Step 2. Preprocess the data to convert it into readable form. It means that if some 
attributes are not contributing in associations then those attributes are eliminated and 
also if the attribute is numeric then it should be converted into string so as to generate 
some meaningful information in terms of association rule.  

 
Step 3. Apply any pattern growth method to it in order to obtain frequent patterns. 
This is the vital part of the method as it contains one of the fastest algorithm of data 
mining such as FP-growth or H-Mine for mining frequent pattern. According to [4, 5] 
these algorithms are found to be quickest w.r.t. time and space efficient for generating 
frequent patterns. 

 
Step 4. This step is the initial phase of temporal association rule mining, which is to 
develop frequent patterns w.r.t. minimum support threshold. These patterns will be in 
the form of maximum occurring associations of the attributes within the dataset. 
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Step 5. This step holds the final phase of temporal association rule mining which is to 
mine that association rule from frequent patterns which is based on certain measures: 
minimum temporal support and minimum temporal confidence threshold.  

3   Experimental Results and Discussion 

3.1   Data Description 
 
We have tested aforesaid methodology over the temporal dataset of Humanoid Robot 
HOAP-2. In this dataset we have several files for several motions of HOAP-2. These 
files contain 25 attributes. These attributes store the value of 25 joints of HOAP-2. 
Each value has certain maximum and minimum range. Their values and other infor-
mations are taken from [14].  In the dataset, one transaction (or record) represents the 
movement of 25 joints in 1 millisecond. We are considering the dataset of Walk pat-
tern which contains 26000 records. It means, it is representing a walk pattern for 26 
seconds. All this information is gathered from [14] and Webots [15], a simulated 
platform for HOAP-2. This platform provides various user-friendly frameworks of 
robotics. The walk pattern in Webots for HOAP-2 is shown as in fig. 2. In this figure 
three windows are cascaded. The leftmost window shows the simulated HOAP-2 
which is programmed in C taking .csv (comma separated value) file as an input. That 
csv file is shown in the rightmost window. It contains decimal value of 25 joints. At 
the bottom window, the position of sensors per movement of HOAP-2 is displayed.   

Through association rule mining, we aimed to find out some intermediate pattern 
w.r.t. time that helps us to generate some new pattern. Intermediate patterns could be 
movement of hands, movement of legs etc. for a particular instant of time.       

 

 

Fig. 2. Simulated Model of HOAP-2 in Webots 
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3.2   Implementation 

The method given in section 3 can be implemented for HOAP-2 dataset as: 

3.2.1   Input 
Initially the dataset was in terms of .csv format. But since for pattern-growth methods, 
text formats are most feasible, so we have converted that data into .txt formats. 

3.2.2   Preprocessing 
The input file contains 27 attribute from which we have analysed that 6 attributes are 
of no use as those values remained constant, thus we have eliminated those attributes 
from the dataset as they would not be contributing in associations. The remaining 
attribute set is  

{rleg _joint_1, rleg _joint_2, rleg _joint_3, rleg _joint_4, rleg _joint_5, rleg _joint_6, 
rarm_joint_1, rarm_joint_2, rarm_joint_3, rarm_joint_4, lleg _joint_1, lleg _joint_2, 
lleg _joint_3, lleg _joint_4, lleg _joint_5, lleg _joint_6, larm_joint_1, larm_joint_2, 
larm_joint_3, larm_joint_4, body_joint_1} 

Also the data is in the form of numeric values. Seeing the raw data one couldn’t find 
any meaning in its associations and thus we have converted it into meaningful form 
by appending attribute name with its value. The resulting input file for finding pat-
terns is given in fig. 3. In this file we have 21 attributes, but for applying FP-growth 
algorithm we have appended transaction ID and time attribute in the transactional 
dataset.   

The finalized input file will be taken as given in table 1. It has 23 attributes which 
includes 21 attributes (mentioned above), transaction ID and time respectively.  

In this dataset, the time factor is taken on the basis of timestamps. We have consid-
ered two files for capturing different patterns, Walk-pattern and Sumo-pattern. For 
walk-pattern, one interval is of 50 timestamps i.e. 50 transactions. The time attribute  
 

-90-902

-60-601

-30-300

rleg_joint_3_-90rleg_joint_2_-90rleg_joint_1_2

rleg_joint_3_-60rleg_joint_2_-60rleg_joint_1_1

rleg_joint_3_-30rleg_joint_2_-30rleg_joint_1_0

 

Fig. 3. Data Transformation 

Table 1. Input Transactional dataset 

T1 time1 rleg_joint_1_0 rleg_joint_2_0 rarm_joint_1_0 …. 

T2 time1 rleg_joint_1_1 rleg_joint_2_0 rarm_joint_1_0 …. 

T3 time1 rleg_joint_1_2 rleg_joint_2_0 rarm_joint_1_0 …. 

T4 time1 rleg_joint_1_3 rleg_joint_2_0 rarm_joint_1_0 …. 

T5 time1 rleg_joint_1_4 rleg_joint_2_0 rarm_joint_1_0 …. 

. . . . . …. 
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Fig. 4. Thigh-joint (Leg Joint 4) trajectory for walk-pattern 
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Fig. 5. Knee-joint (Leg Joint 2) trajectory for walk-pattern 
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Fig. 6. Shoulder-twist-joint (Arm Joint 3) trajectory for Sumo-pattern 

has the values time1, time2, time3…………so on. In original dataset one record repre-
sents 1 millisecond and likewise the simulation model of Webots defined ‘control-
step’ unit which is of 50 milliseconds, so on that basis we have defined our time  
interval. Similarly for sumo-pattern, one interval is of 64 timestamps since in Webots 
model one control-step is of 60 milliseconds. Also we assume the trajectory, formed 
from some joints which create associations in joint space for walk-pattern and sumo-
pattern respectively. Each trajectory is obtained with repeated sequences of joint  
values for associated joints. In fig.4, Left_Thigh_joint and Right_Thigh_joint are 
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associated with each other with some repeated sequences of their joint values. By 
seeing figure only one cannot judge that what values of joints are responsible to create 
this pattern and up to what time a particular association is being repeated so as to 
follow this pattern. Similar queries are there for fig.5 and fig.6 respectively. Thus, in 
order to see the repeated sequences for each association of joints for particular instant 
of time, there is a need to generate some frequent pattern which tells most frequently 
occurred sequence w.r.t. time in terms of temporal association rule. 

3.2.3   Pattern Growth Methods 
One of the most important aspect of the overall method is to apply pattern-growth 
method. In order to dredge frequently occurred association of sequences we have 
applied FP growth method over the dataset given in Table 2. This method finds fre-
quent patterns on the basis of minimum support threshold which usually represents 
the minimum possible frequency of any sequence w.r.t. time.  

Table 2. Input Transactional dataset for leg-Joint 4 

T1 Time1 rleg_joint_4_8357 lleg_joint_4_-8360 

T2 Time1 rleg_joint_4_8357 lleg_joint_4_-8360 

T3 Time1 rleg_joint_4_8357 lleg_joint_4_-8360 

T4 Time1 rleg_joint_4_8357 lleg_joint_4_-8360 

T5 Time1 rleg_joint_4_8357 lleg_joint_4_-8360 

. . . . 

Thus, for the dataset given in Table 2, we have defined any temporal sequence as 

Definition 1: A sequence is said to be a temporal sequence iff: 

For Sequence S1:(A,B,T)  
If ((Support(A)>= Minimum Support Threshold)>(Support(B)>= Minimum Support 
Threshold)>(Support(T)>= Minimum Support Threshold)) 
Then Support(S1)=P(AUBUT) 

where Support(A)=n(A), Support(B)=n(B), Support(T)=n(T) since for every attribute 
value the support of that value is its frequency in that dataset; Minimum Support 
threshold is provided by the user. 
 

Following above definition we have temporal sequences as frequent patterns which 
are generated after applying FP-growth algorithm. In the resultant format the frequent 
pattern is represented as: 

lleg_joint_2_-3 : 886  rleg_joint_2_-3 : 762  time521 : 50  *   

It represents that left leg joint 2 having value -3 with support 886 is associated with 
right leg joint 2 having value -3 with support 762 in the time interval 521 with support 
50 when the minimum support threshold value is 2. Also ‘*’ denotes the end of the 
pattern.  In this way we have several frequent patterns for walk-pattern trajectory are 
created and shown in fig. 7 (a) and (b) respectively.  
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(a) (b) 

Fig. 7. (a) Frequent Temporal sequences for Thigh-Joint trajectory, (b) Frequent Temporal 
sequences for Knee-Joint trajectory 

  

(a) (b) 

Fig. 8. (a) Temporal Association Rules for Thigh-Joint trajectory, (b) Temporal Association 
Rules for Knee-Joint trajectory 

3.2.4   Temporal Association Rule Generation 
Finalized output of Hoap-2 dataset is in terms of temporal association rule which is 
generated by taking frequent temporal sequences as an input. For our dataset, we can 
define temporal rules as: 

Definition 2: A rule R is said to be temporal association rule iff: 

For any frequent temporal sequence SF:(A, B, T) when 
Support(SF )=P(TUAUB) 
Conf(SF )= P((TUAUB)/T)*100 

If (Support(SF) ≥ Minimum temporal support & Conf(SF) ≥ Minimum temporal confi-
dence ) 
Then Rule R : T → (A,B) is a Temporal association Rule 

where T is a time interval in which the sequence (A,B) is occurred. Minimum tempo-
ral support and Minimum temporal confidence is provided by the user.   

Thus following aforesaid, the temporal association rule is formatted as: 

time520 : 50 → lleg_joint_2_-3 : 886  rleg_joint_2_-3 : 762   Supp: 0.191924 %  
Conf: 100 % 
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It means that for time interval 520 which has support 50, the sequence (lleg_joint_2_-
3, rleg_joint_2_-3) is frequent temporal sequence in that time interval with support 
0.191924% and confidence 100%. Here the minimum temporal support is .001% and 
minimum temporal confidence is 50%. Similarly we can generate similar kind of rules 
for all the frequent temporal sequences of every trajectory. Some of the rules for 
walk-pattern trajectories are shown in Fig. 8 (a) and (b) respectively. Due to space 
construct we have not shown sumo-pattern results here, but the criteria of dredging 
frequent temporal sequences and then generating temporal association rules remains 
same for every joint-trajectories. 

4   Conclusion and Future Work 

The proposed demonstration highlights key features of pattern growth method for 
real-time temporal datasets. Observational analysis show that the contribution of FP-
growth algorithm is very useful and productive for Hoap-2 dataset as it generates 
temporal sequence associations of joints in terms of temporal association rules. In 
furtherance these rules can be used to classify variety of patterns in terms of associa-
tion based temporal classifications. 
 
Acknowledgments. We thank our summer trainee Anuj Singh, pursuing B.Tech from 
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Abstract. In this paper, we propose a multiscale comparison method for three-
dimensional trajectories based on the maxima on the curvature scale space. We
define a segment as a partial trajectory between two adjacent maxima where cur-
vature becomes locally maximal. Then we trace the place of maxima across the
scales in order to obtain the hierarchy of segments. By applying segment-based
matching technique, we obtain the best correspondences between partial trajecto-
ries. We demonstrate in a preliminary experiment that our method could success-
fully capture the structural similarity of three-dimensional trajectories.

1 Introduction

Recent advances in hospital information systems enable us to collect huge amount of
time-series medical data used for diagnosis and treatment of diseases. For example, our
university hospital stores more than 150,000 records of laboratory tests per year, usually
including dozens items for each test. These multivariate time-series data can be viewed
as multidimensional trajectories containing temporal information about health status of
patients; therefore, through the cross-patient analysis, i.e. clustering of the trajectories,
it may be able to obtain interesting knowledge such as temporal relationships between
examination items, common course of disease progress, and characteristics of excep-
tional cases. However, it is still difficult to perform such a large-scale analysis due to
the following problems: (1) both acute and chronic changes may coexist in time series;
therefore multiscale observation scheme is required. (2) in order to recognize implicit
correlation among variables that may reflect some related phenomena in human body,
comparison of multidimensional trajectory is needed.

Multiscale comparison of time series or planar curves has been widely studied since
80’s mainly in the area of pattern recognition. Based on the Witkin’s framework of scale
space filtering [1], many methods have been proposed [2]. Ueda et al. [3] enabled the use
of discrete scales and comparison of largely distorted curves by introducing a segment-
based matching scheme, where a segment corresponds to a subsequence between two
adjacent inflection points. Based on these methods, we have developed multiscale com-
parison and clustering methods for one-dimensional time-series and two-dimensional
trajectories of medical data [4,5]. However, comparison of trajectories grater than three-
dimension is still a challenging problem because the zero-crossing of curvature (inflec-
tion point), that plays an important role in recognizing segment hierarchy, is difficult to
be determined for space curves as curvature is always positive.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 361–368, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we propose a multiscale comparison method for three-dimensional tra-
jectories based on the maxima on a curvature scale space. We define a segment as a
partial trajectory between two adjacent maxima where curvature becomes locally max-
imal. Then we trace the place of maxima across the scales in order to obtain the hier-
archy of segments. By applying segment-based matching technique, we obtain the best
correspondences between partial trajectories. We demonstrate in a preliminary experi-
ment that our method could successfully capture structural similarity in simple three-
dimensional trajectories.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
conventional segment-based matching method for two-dimensional trajectories. Section
3 describes the method for comparing three-dimensional trajectories. Section 4 shows
the results of matching experiments, and Section 5 is a conclusion of this paper.

2 Multiscale Comparison of Two-Dimensional Trajectories

2.1 Multiscale Representation

Let us denote by c(t) = {x(t), y(t)} two-dimensional trajectories composed of two
time series x(t) and y(t). Also let us denote by σ an observation scale of the trajectory.
Time series x(t) at scale σ, X(t, σ), is then derived by the discrete convolution of x(t)
and smoothing kernel In(σ) as follows [6].

X(t, σ) =
∞∑

n=−∞
e−σIn(σ)x(t − n)

where In(σ) denotes the modified Bessel function of order n, which has better prop-
erties for dealing with discrete scales than a sampled Gaussian kernel [6]. By applying
this convolution independently to x(t) and y(t), we obtain the trajectory at scale σ as
C(t, σ) = {X(t, σ), Y (t, σ)}. By changing σ, we can represent the trajectory at vari-
ous observation scales. Figure 1 shows an example of multiscale representation of two-
dimensional trajectories. An increase of σ causes an increase of weights for temporally
distant points, together with the decrease of weights around the neighbors. Therefore it
produces a more smoothed trajectories with less inflection points.

2.2 Hierarchy of Inflection Point

For each trajectory we locate the curvature zero-crossings (inflection points) and rep-
resent the trajectory as a set of convex/concave segments. A segment is defined as a
partial trajectory between adjacent inflection points. Next, we chase the cross-scale cor-
respondence of inflection points successively from top scale to bottom scale. It defines
the hierarchy of segments and guarantees the connectivity of segments across scales.
Details of the algorithm for checking segment hierarchy is available in ref. [3]. In order
to apply the algorithm to an open trajectory, we modified it to allow the replacement
of odd number of segments at start and end, since cyclic property of a set of inflection
points can be lost. In Figure 1, segments are represented by {a(k)

i | i = 1, 2, · · · , n},
where k and n denotes the scale and the number of segments at k, respectively.
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Fig. 1. An illustrative example of multiscale comparison for 2D trajectories

2.3 Matching

The main procedure of multiscale matching is to search the best set of segment pairs
that satisfies both of the following conditions: (1) Complete match: By concatenating
all segments, the original trajectory must be completely formed without any gaps or
overlaps. (2) Minimal difference: The sum of segment dissimilarities over all segment
pairs should be minimized.

The search is performed throughout all scales. For example, in Figure 1, three con-
tiguous segments a

(0)
3 − a

(0)
5 at the lowest scale of case A can be integrated into one

segment a
(2)
1 at upper scale 2, and the replaced segment well matches to one segment

b
(0)
3 of case B at the lowest scale. Thus the set of the three segments a

(0)
3 − a

(0)
5 and

one segment b
(0)
3 will be considered as a candidate for corresponding segments. On the

other hand, segments such as a
(0)
6 and b

(0)
4 are similar even at the bottom scale without

any replacement. Therefore they will be also a candidate for corresponding segments.
In this way, if segments exhibit short-term similarity, they are matched at a lower scale,
and if they present long-term similarity, they are matched at a higher scale.

2.4 Segment Dissimilarity

The dissimilarity between segments can be defined alternatively. In [5], we used three
shape parameters: (1) Gradient at starting point g(a(k)

m ), (2) Rotation angle θ(a(k)
m ),

and (3) Velocity v(a(k)
m ), and defined the local dissimilarity d(a(k)

m , b
(h)
n ) between two

segments a
(k)
m at scale k and b

(h)
n at scale h as

d(a(k)
m , b(h)

n ) =

√(
g(a(k)

m ) − g(b(h)
n )

)2
+
(
θ(a(k)

m ) − θ(b(h)
n )

)2

+
∣∣∣v(a(k)

m ) − v(b(h)
n )

∣∣∣ + γ
{
cost(a(k)

m ) + cost(b(h)
n )

}
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where cost() denotes a cost function for suppressing excessive replacement of segments
[3], and γ is the weight of costs.

3 Multiscale Comparison of Three-Dimensional Trajectories

Curvature zero-crossings is widely used in the applications of scale-space filtering [1,7],
because it constitutes a fundamental feature of a planar curve [8] and preserves the
monotonicity against the change of scale [9]. However, approaches based on the cur-
vature zero-crossings may not be directly applied to three-dimensional trajectories. For
space curves, curvature takes only positive value; therefore it is difficult to determine
inflection points. Mokhatarian et al. [10] focused on torsion, which is another major
property of the space curve, and proposed multiscale comparison of three-dimensional
object shapes using torsion scale space. But it involves a problem that the zero-crossings
of torsion may not necessarily satisfy the monotonicity; hence it is difficult to trace the
hierarchy of partial trajectories across scales.

In this work, we focus on the maxima of curvature that also satisfies the monotonic-
ity against the change of scale [6], and propose a multiscale comparison method that
utilizes maxima on curvature scale space for splitting partial trajectories (segments)
and recognizing their hierarchy. Its matching procedure is basically similar to the two-
dimensional case, but different in following points:

1. A segment is defined as a partial trajectory not between adjacent inflection points
but between adjacent maxima.

2. Polarity of a segment (the sign of curvature) is no longer taken into account when
matching two segments because every segment has positive sign.

3. Not only odd number of segments, but also even number of segments can be re-
placed into one segment when scale increases.

In the followings we describe the way of constructing multiscale representation of three-
dimensional trajectories, making segments and tracing segment hierarchy based on the
maxima of curvature, and defining dissimilarity between segments. By incorporating
these procedure with the matching algorithm described in Section 2.3, we finally obtain
the best correspondence between segments.

3.1 Multiscale Representation of Three-Dimensional Trajectories

Let us denote by c(t) = {x(t), y(t), z(t)} a three-dimensional trajectory constituted of
three time series x(t), y(t) and z(t). Similarly to the two-dimensional case, the trajec-
tory C(t, σ) at scale σ is derived by the discrete convolution of each time series and the
modified Bessel smoothing kernel In(σ) as C(t, σ) = {X(t, σ), Y (t, σ), Z(t, σ)}.

3.2 Derivation of Curvature Maxima

Next, for each trajectory we compute the curvature of each point and locate their local
maxima. Curvature κ(t, σ) of C(t, σ) is defined by

κ(t, σ) =

√
(Z ′′Y ′ − Y ′′Z ′)2 + (X ′′Z ′ − Z ′′X ′)2 + (Y ′′X ′ − X ′′Y ′)2

(X ′2 + Y ′2 + Z ′2)3/2
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where X ′ and X ′′ respectively denote the first- and second-order derivatives of X(t, σ)
about t that are defined as follows. Similar treatment applies to Y (t, σ) and Z(t, σ).

X ′(t, σ) =
∞∑

n=−∞

−n

σ
e−σIn(σ) · x(t − n)

X ′′(t, σ) =
∞∑

n=−∞
e−σ(In+1(σ) − 2In(σ) + In−1(σ)) · x(t − n)

3.3 Construction of the Maxima Scale Space and Trace of Segment Hierarchy

Curvature maxima are then plotted on a two-dimensional plane of time and scale. We
call this plane curvature maxima scale space. Figure 2 shows an example of the maxima
scale space for three-dimensional trajectory T 2n1 used in our experiments. The hori-
zontal axis denotes time t, the vertical axis denotes scale σ, and ’+’ denotes a point of
maximal curvature. For each scale, a segment is defined as a set of data points separated
by two adjacent curvature maxima. The number of maxima will decrease when scale
increases because of the smoothing, and segments at a fine scale will be merged into
one segment at a coarse scale. Maxima are successively linked from the top scale to the
bottom scale based on the minimal distance criterion for forming segment hierarchy.

3.4 Matching

After constructing segments and recognizing their hierarchy across scales, segment
matching is performed in the same way with the two-dimensional case. Since struc-
tural feature points are changed from zero-crossings (inflection points) to curvature
maxima, the shape of a segment also changes from convex/concave shape to ’s’ shape.
We model this shape as a straight vector connecting both ends of the segment and de-
fine the dissimilarity between segments as follows. First, let us denote by a

(k)
m and b

(h)
n

two segments to be compared. Next, let us denote by v(a(k)
m ) a three-dimensional vec-

tor connecting both ends of a
(k)
m , and similarly denote v(b(h)

n ) for b
(h)
n as shown in
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Fig. 4. Multiscale representations of test trajectories T1 (left) and T2 (right). The red curves
represent the original shapes. Maxima points are denoted by ’+’. Two sub-figures located at the
bottom show the views from y − z and x − z planes respectively.
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Fig. 5. Matching results. Matched segments are represented in the same color.

Figure 3. Then we define the dissimilarity between a
(k)
m and b

(h)
n by

d(a(k)
m , b(h)

n ) = |v(a(k)
m )||v(b(h)

n )| × cosdist(v(a(k)
m ),v(b(h)

n )) + γ
{

cost(a(k)
m ) + cost(b(h)

n )
}

where cosdist() denotes the cosine distance between two vectors. It quantifies the dif-
ference of directions of segments weighted by their lengths. The difference between
large segments is more emphasized than that of small segments. The cost of segment
replace is added similarly to the two dimensional case.

4 Experimental Results

We have conducted a preliminary matching experiment for checking the basic function-
ality of the proposed method. We generated two simple three-dimensional trajectories
T1 and T2 by using triangular functions as follows.
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The parameters used for matching were: starting scale = 1.0, scale interval = 1.0, num-
ber of scales = 40, weight for replacement cost = 3.0. Figure 4 shows the shapes of
trajectories T1 and T2 and their multiscale representation. They were divided into seg-
ments by the curvature maxima denoted by ’+’. Figure 5 shows the matching result.
Matched segments are represented in the same color. The original T1 and T2 were dif-
ferent around z = 0 in terms of their y-direction changes, but they were successfully
matched according to the structural similarity of the entire shapes.

Next, we conducted a matching experiment for noisy trajectories. We generated
two noisy trajectories denoted by T2n1 and T2n2 by adding Gaussian noise to T2.
Figure 6 shows multiscale representations of their shapes and Figure 7 shows their
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Fig. 6. Multiscale representations of noisy test trajectories T2n1 (left) and T2n2 (right). The red
curve represents their original shapes.
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Fig. 7. Matching results. Matched segments are represented in the same color.
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matching results. We could confirm that their structural similarity was successfully cap-
tured in a global scale if there existed local differences at fine scales caused by noise.

5 Conclusions

In this paper we have presented a multiscale comparison method for three-dimensional
trajectories. In order to deal with the problem that zero-crossings of curvature cannot
be determined for space curve, we focused on the maxima of curvature. The hierarchy
of partial trajectories was recognized by tracing the positions of maxima across scales.
Then we performed segment-by-segment matching across the scales, and obtained the
best correspondence of segments. In the experiments we could observe that reasonable
correspondences were obtained on the simple but noisy trajectories.

This work is still at an early stage and there are lots of work to be done. We will con-
tinue to tackle the following issues: (1) investigation of the characteristics of maxima on
the curvature scale space, (2) refinement of the segment dissimilarity, (3) quantitative
evaluation of the performance, (4) application to the real medical data.
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Abstract. During the past few decades various time-series forecasting methods 
have been developed for financial market forecasting leading to improved deci-
sions and investments. But accuracy remains a matter of concern in these fore-
casts. The quest is thus on improving the effectiveness of time-series models. 
Artificial neural networks (ANN) are flexible computing paradigms and univer-
sal approximations that have been applied to a wide range of forecasting prob-
lems with high degree of accuracy. However, they need large amount of histori-
cal data to yield accurate results. The real world situation experiences uncertain 
and quick changes, as a result of which future situations should be forecasted 
using small amount of data from a short span of time. Therefore, forecasting in 
these situations requires techniques that work efficiently with incomplete data 
for which Fuzzy sets are ideally suitable. In this work, a hybrid Neuro-Fuzzy 
model combining the advantages of ANN and Fuzzy regression is developed to 
forecast the exchange rate of US Dollar to Indian Rupee. The model yields 
more accurate results with fewer observations and incomplete data sets for both 
point and interval forecasts. The empirical results indicate that performance of 
the model is comparatively better than other models which make it an ideal can-
didate for forecasting and decision making.    

Keywords: Artificial neural networks, Fuzzy regression, Fuzzy time-series, 
Neuro-Fuzzy model, Exchange rate forecasting. 

1   Introduction 

Time series forecasting is a key element of financial and managerial decision making. 
It is highly utilized in predicting economic and business trends for improved decisions 
and investments. Financial data presents challenging and complex problem to fore-
cast. Many forecasting methods have been developed to study financial data in last 
few decades. Artificial neural networks (ANN) serve as powerful computational 
framework have gained much popularity in business applications. ANN have been 
successfully applied to loan evaluation, signature recognition, time series forecasting, 
and many other pattern recognition problems [TF]. The major advantage of ANN is 
their flexible non-linear modeling capability and no need to specify particular model 
form. Rather, the model is adaptively formed based on features presented in data. This 
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data-driven approach is suitable for many empirical data sets where no theoretical 
guidance is available to suggest an appropriate data generating process. However, 
ANN require large amount of data in order to yield accurate results. No definite rule 
exists for sample size requirement. The amount of data for ANN training depends on 
network structure, training method and problem complexity or amount of noise in 
data. With large enough sample, ANN can model any complex structure in data. ANN 
can thus benefit more from large samples than linear statistical models. Forecasting 
using Fuzzy sets are suitable under incomplete data conditions and require fewer ob-
servations than other forecasting models, but their performance is not always satisfac-
tory. Fuzzy theory was originally developed to deal with problems involving linguis-
tic terms [Zad1, Zad2, Zad3] and have been successfully applied to various applica-
tions such as university enrollment forecasting [CH1, CH2, Ch], financial forecasting 
[HTW, HY1, HY2, Yu], temperature forecasting [CH1] etc. Tanaka et al. [Tan, TI, 
TUA] have suggested Fuzzy regression to solve fuzzy environment and to avoid 
modeling error. The model is an interval prediction model with the disadvantage that 
prediction interval can be very wide if some extreme values are present. Watada 
[Wata] gave an application of Fuzzy regression to fuzzy time-series analysis. 

Combining strengths of ANN and Fuzzy sets leads to the development of hybrid 
Neuro-Fuzzy model which improves forecasting accuracy. The basic idea of the 
model in forecasting is to use each model’s unique feature to capture different pat-
terns in data. Theoretical and empirical findings suggest that combining different 
techniques can be an effective and efficient way to improve forecasts [AMM, LRS, 
KHB]. The notable works on time series forecasting include Fuzzy auto regressive 
integrated moving average (FARIMA) method by Tseng et al. [TTYY] hybrid Ge-
netic algorithm and high-order Fuzzy time-series approach for enrollment forecasting 
by Chen et al. [CC] and Huarng et al. [HY3] combined methodology using ANN to 
forecast fuzzy time-series. In this work, a hybrid Neuro-Fuzzy model is developed 
based on the concepts of ANN and Fuzzy regression models to time-series forecasting 
under incomplete data conditions. The time-series data considered here is exchange 
rate of US dollar to Indian rupee. ANN is used to preprocess raw data and provide 
necessary background to apply Fuzzy regression model. The Fuzzy regression model 
eliminates the disadvantage of large requirement of historical data. The effectiveness 
of method is demonstrated by applying it to an important problem in financial markets 
viz. exchange rate forecasting. The performance of method is empirically compared 
with other forecasting models such as auto regressive integrated moving average, 
Chen’s fuzzy time-series (first and higher order) [Ch, CC], Yu’s fuzzy time-series 
[Yu1], FARIMA [TTYY] and ANN which gives improved forecasting results for the 
present method. This paper is organized as follows. In section 2, ANN approach to 
time series is given. This is followed by brief discussion on Fuzzy regression in sec-
tion 3. In the next section, Neuro-Fuzzy forecasting model is presented. Section 5 
illustrates the simulation results. Finally, in section 6 conclusions are given.  

2   Artificial Neural Networks Approach to Time Series 

ANN flexibly models wide range of non-linear problems [WVJ]. They are universal 
approximators approximating large class of functions with accuracy. Their power lies 
in parallel processing of information. No prior assumption of model form is required; 
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instead the network model is largely determined by characteristics of data. Single hid-
den layer feed forward network is most widely used form for time-series modeling 
and forecasting [ZM], which is characterized by network of three layers of simple 

processing units connected by acyclic links (figure 1). The output ty and inputs 
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model parameters called connection weights and biases, p is number of input nodes 
and q is number of hidden nodes. The logistic function used as hidden layer transfer 
function is  

xe
xSig −+

=
1

1
)(

                                                          
(2)  

Thus, Equation (1) performs non-linear functional mapping from past observations to 

future values ty , i.e. 
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(3)  

where, w is vector of all parameters and )(⋅f is a function determined by network 

structure and connection weights. Hence, ANN is equivalent to a non-linear autore-
gressive model. The Equation (1) implies that one output node in output layer is used 
for one step ahead forecasting and is able to approximate the arbitrary function as 
number of hidden nodes when q is sufficiently large [SJ]. The simple network struc-
ture that has small number of hidden nodes performs well in out of sample forecasting 
which is primarily due to over-fitting effect.  The choice of q is data dependent and 

 

Fig. 1. Neural Network Structure ][ )1( −−qpN  
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there is no systematic rule in determining this parameter. Alongwith choosing an ap-
propriate number of hidden nodes, an important task of ANN modeling of time-series 
is selection of number of lagged observations p and dimension of input vector [TE].  

3   Fuzzy Regression Model 

The Fuzzy sets introduced by Zadeh [Zad1, Zad2, Zad3] provides a powerful frame-
work to cope with vague or ambiguous situations and expresses linguistic values and 
human subjective judgments of natural language. Fuzzy sets were applied to time-
series leading to Fuzzy time-series by Song and Chissom [SC1, SC2]. Among the 
notable Fuzzy time-series model where calculations are easy and forecasting perform-
ance is good is by Chen [Ch]. Statistical models use the concept of measurement error 
to deal with difference between estimators and observations. These data are precise 
values and is identical to Fuzzy regression model suggested by Tanaka et al. [TI]. In 
Fuzzy regression residuals between estimators and observations are not produced by 
measurement errors, rather by parameter uncertainty in the model. The generalized 
Fuzzy linear regression is  
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where, 'x denotes transpose of vector of independent variables, n is number of vari-

ables and iβ~ the fuzzy sets representing ith parameter of the model which is of form of 

L-type Fuzzy numbers [DP], possibility distribution for which is given by  
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Fuzzy parameters in form of triangular Fuzzy numbers are used,  

⎪⎩

⎪
⎨

⎧ +≤≤−
−

−
=

otherwise

cc
c iiii

i

ii

i
i

,0

,
||

1
)(~

αβαβα
βµβ

                      

(6) 

where, )(~ i
i

βµβ is membership function of Fuzzy set is represented by iβ , iα is 

centre of Fuzzy number and ic is spread around centre of Fuzzy number. By Exten-

sion Principle, membership function of Fuzzy number β~~ '
tt xy = can be defined us-

ing pyramidal Fuzzy parameter β  as follows: 
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where, α and c denote vectors of model values and spreads for all model parame-

ters respectively, kt ,........,2,1= . Finally, the method uses criterion of minimizing 

total vagueness, S defined as sum of individual spreads of Fuzzy parameters of model, 
such that Minimize  

∑
=

=
k

t
txcS

1

' ||
                                                         

(8)  

Here the membership value of each observation ty is greater than an imposed thresh-

old level ]1,0[∈h . The h level value influences widths c of Fuzzy parameters 

 hyty ≥)(~µ for kt ,........,2,1=                                         (9)  

Index t refers to number of non-fuzzy data. The problem of finding Fuzzy regression 
parameters was formulated by Tanaka et al. [TI] as linear programming problem as 

follows: Minimize ∑
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where )..,,.........,( 21
'

nαααα = and )..,,.........,( 21
'

ncccc = are a vector of 
unknown variables and S is total vagueness. 

4   Neuro-Fuzzy Forecasting Model 

Due to uncertainty from environment, forecasting is performed using little data over 
short span of time. Thus, efficient forecasting methods under incomplete data con-
ditions are required. Fuzzy regression model is suitable for interval forecasting 
where historical data is inadequate. The parameters of ANN model viz. weights 

jiw , and biases jw are crisp in nature. Now, Fuzzy parameters in form of 2π  

Fuzzy numbers for weights ),.......,2,1,,.......,2,1,0;~( , qjpiw ji ==  and biases 

),.......,2,1,0;~( qjw j = are used for related parameters of layers. Considering the 

methodology formulated by Isibuchi and Tanaka [IT] which includes wide spread 
of forecasted model, proposed model uses Fuzzy function with Fuzzy parameters: 
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where ty are observations. Equation (1) is rewritten as: 
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where, )( ,~ jiw wµ  is membership function of Fuzzy set. By using Extension Principle 

[MD, MK, MVG], membership of )~~(
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where, 
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Considering 2π fuzzy numbers jtX ,

~
with membership function given by Equation 

(14) 2π Fuzzy parameters jw~ are: 
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where, 1A , 1B , 2A , 2B , 1C  , 2C are functions of variables given in Equations (14) 

and (15).  Considering threshold level h for all membership function values of obser-
vations, the non-linear programming problem is given as: 

∑∑ ∑∑
= = ==

⋅⋅−⋅⋅
k

t

q

j

p

i
itjij

p

i
itjij yagdycgfMin

1 0 0
,,

0
,, ))(())(( subject to 

 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=>≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

≤≤

=<≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−

−
−

−

−
−

ktCyfh
A

yfC

A

B

A

B

CyfC

ktCyfh
A

yfC

A

B

A

B

t
t

t

t
t

..,,.........2,1,)(,
)(

22

)(,1

.,,.........2,1,)(,
)(

22

2
1

2/1

2

1
2

2

2

2

2

2

2
1

1

1
1

2/1

1

1
1

2

1

1

1

1

 

(17) 

The nature of 2π Fuzzy numbers are symmetric, output neuron transfer function is 

taken to be linear and connected weights between input and hidden layers are of crisp 

form. The membership function of ty is transformed as follows:  
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Parameter ty represents the degree to which the model should be satisfied by all data 

points kyy ...,,.........1 . The h value influences widths of fuzzy parameters: 

hyt
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The procedure of the model comprises of three phases. 

 Phase I: Train network using available information. The parameters 

qjww j ,.......,2,1,0;( ** == , ),.......,2,1,0,,.......,2,1,0;*
, qjpiw ji == and output 

value of hidden neuron serves as input data sets for next phase.  

Phase II: Determine minimal fuzziness using Equation (7) and 

qjww j ,.......,2,1,0;( ** == , ),.......,2,1,0,,.......,2,1,0;*
, qjpiw ji == .  

Phase III: The data around model’s upper bound and lower bound when proposed 
model has outliers with wide spread are deleted in accordance with Isibuchi’s recom-

mendations. To make the model include all possible conditions jc  has wide spread 

when data set includes significant difference. Ishibuchi and Tanaka [IT] suggested 
that data around model’s upper and lower boundaries are deleted so that the model 
can be reformulated. 
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5   Simulation Results 

This section demonstrates efficiency of the proposed method considering exchange 
rate data of US dollar (US $) against Indian national rupee (INR) and comparing it 
with other forecasting models. The information used here consists of 50 daily obser-
vations of exchange rates of US $ versus INR from 8th May to 15th October, 2008. 
Here, 40 observations are first used to formulate the model and last 10 observations to 
evaluate performance of method. Considering the three phases as illustrated in previ-
ous section, Phase I trains the neural network model using [RBE]. The best fitted 
network architecture which presented best forecasting accuracy with test data com-
posed of two inputs, three hidden and one output neurons, whose weights and biases 
are given in table 1. Phase II determines the minimal fuzziness considering weights 

),,,( 3210 wwww = )2787.0,33.985,5947.0,2.985(− .Fuzzy parameters are 

obtained from Equation (17) with )0( =h . From the results plotted in figure2, actual 

values are located in Fuzzy intervals but string of Fuzzy intervals is wide enough for 
smooth macro-economic environment. This problem is resolved using method of 
Isibuchi and Tanaka [IT] to provide narrower interval for the decision maker. Phase 
III deletes the outliers around the model’s upper bound and lower bounds. From the 
results it is evident that observation of 22nd August, 2008 is located at lower bound, so 
linear programming constrained equation that is produced by this observation is de-
leted to renew phase II (figure 3). The future values of exchange rates for next ten 
transaction days are also forecasted (table 2). The results of forecast are satisfactory 
and Fuzzy intervals are narrower. The performance can be improved with larger data 
sets.      

Now we give a comparison of performance of the discussed model using single 
time-series viz., exchange rate (US $/INR) with other forecasting models such as 
ARIMA, Chen’s fuzzy time-series (first-order) [Ch], Chen’s fuzzy time-series (high-
order) [CC], Yu’s fuzzy time-series [Yu1], FARIMA [TTYY] and neural networks. 
To measure forecasting performance, MAE (mean absolute error) and MSE (mean 
squared error) are employed as performance indicators, computed as:  
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where, ie is individual forecast error and N is number of error terms. Based on re-

sults in Table 3, it is seen that predictive power of discussed model is rather encourag-
ing and that possible interval by the model is narrower than 95 % of confidence  
interval of ANN.  The width of forecasted interval by Neuro-Fuzzy model is 1.9 Ru-
pees which indicates an 86.9 % improvement upon the 95 % of confidence interval of 
ANN. However, model requires fewer observations than ANN and is an interval fore-
caster that yields more information. Evidence shows that performance of Neuro-
Fuzzy model is better than that of other models and interval obtained is narrower than 
that obtained by FARIMA. Its performance is superior to FARIMA by the 42.6 %. 
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Neuro-Fuzzy model is also better than other models such as [Ch], [CC] and [Yu1] as 
given in table 4. Thus, Neuro-Fuzzy model obtains accurate results under incomplete 
data conditions, forecasts where little historical data are available and provides best 
and worst possible situations for decision makers.  

Table 1. Weights and biases of the neural network
)132( −−N  

Input weights Hidden weights Biases 

1,iw  2,iw  3,iw  jw  jw ,0  0w  

3.786 2.3752 4.5530 0.59466 -6.5937 -
985.1925 

42.1044 -11.4969 -26.0886 985.3296 11.4486 
-155.2669 172.2537 158.1926 0.27868 -27.1696 

 

 
 

  

Fig. 2. Results obtained from Neuro-Fuzzy 
model (Series1 denote Upper bound of Ex-
change Rate; Series2 denote Actual value of 
Exchange Rate; Series3 denote Lower 
bound of Exchange Rate) 

Fig. 3. Results of Neuro-Fuzzy Model after de-
leting the 22nd August, 2008 Lower bound (Se-
ries1 denote Upper bound of Exchange Rate;
Series2 denote Actual value of Exchange Rate;
Series3 denote Lower bound of Exchange Rate) 

Table 2. Results of Neuro-Fuzzy model for the test data  

Date Actual Lower Bound Upper Bound 
1st October, 2008 46.47 44.30 48.50 
2nd October, 2008 46.63 44.50 48.66 
3rd October, 2008   47.01 45.00 49.09 
6th October, 2008 47.77 45.28 49.79 
7th October, 2008 47.78 45.65 49.80 
8th October, 2008 48.00 45.96 50.10 
9th October, 2008 48.00 45.99 50.40 

10th October, 2008 48.41 46.36 50.46 
14th October, 2008 47.93 45.80 49.97 
15th October, 2008 48.53 46.36 50.57 
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Table 3. Comparison of forecasted interval widths by the Neuro-Fuzzy model with other fore-
casting models 

Related performance  
Model 

Forecasted  
interval width 

ANN Fuzzy ARIMA Neuro-Fuzzy Model 

ANN 
(95% 

confidence 
interval) 

 

 
 

15.4 

 
 

0 

 
 
- 

 
 

- 

Fuzzy 
ARIMA 

 
3.7 

 
75.7 % 

 
0 

 
- 

Neuro-Fuzzy 
Model 

 
1.9 

 
86.9 % 

 
42.6 % 

 
0 

Table 4. Comparison of the performance of Neuro-Fuzzy model with other forecasting models 

Model Exchange Rate 
. MAE MSE 

Auto Regressive Integrated Moving Average 0.925 1.242 
Chen’s Fuzzy time-series  

(first order) 
0.750 0.778 

Chen’s Fuzzy time-series  
(second order) 

0.750 0.778 

Yu’s Fuzzy time-series  0.750 0.778 
Artificial Neural Networks (ANN) 0.690 0.684 

Neuro-Fuzzy Model 0.580 0.521 

6   Conclusion 

In today’s competitive scenario, quantitative techniques have become important tool 
for financial market forecasting and for improving decisions and investments. One of 
the most important factors in choosing forecasting technique is its accuracy. The 
thrust is on improving the effectiveness of time series models. The real world envi-
ronment experiences uncertain and quick changes, such that future situations should 
be forecasted using small amount of data from short span of time. This work proposes 
a Neuro-Fuzzy model combining advantages of ANN and Fuzzy regression to fore-
cast exchange rate of US dollar to Indian national rupee. The disadvantage of large 
volume of historical data is removed through investing on advantages of fuzzy regres-
sion models. The Neuro-Fuzzy model requires fewer observations to obtain accurate 
results and also obtains narrower possible intervals than other interval forecasting 
models by exploiting advantage of ANN. The empirical results indicate that model is 
suitable for use in incomplete data conditions. Results indicate that the model per-
forms better than other models. It is also suitable for both point and interval forecasts 
with incomplete data. Thus, Neuro-Fuzzy model makes good forecasts under best  
and worst situations which make it more suitable for decision making over other  
techniques.  
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Abstract. Although SVM have shown potential and promising performance in 
classification, they have been limited by speed particularly when the training data 
set is large. In this paper, we propose an algorithm called the fast SVM classi-
fication algorithm based on Karush-Kuhn-Tucker (KKT) conditions. In this al-
gorithm, we remove points that are independent of support vectors firstly in the 
training process, and then decompose the remaining points into blocks to accel-
erate the next training. From the theoretical analysis, this algorithm can re-
markably reduce the computation complexity and accelerate SVM training. And 
experiments on both artificial and real datasets demonstrate the efficiency of this 
algorithm. 

Keywords: Support Vector Machine, Karush-Kuhn-Tucker (KKT) conditions, 
Agglomerative hierarchical clustering algorithm, Remove samples. 

1   Introduction 

Support vector machine (SVM) is developed by Vapnik and his co-workers in Russia. It 
is based on the theory of the VC dimension and the structural risk minimization principle 
[1]. Recently SVM have shown promising performance in many applications. How-
ever, they require the use of an iterative process such as quadratic programming (QP) to 
identify the support vectors from the labeled training set. When the number of samples 
in the training set is huge, sometimes it is impossible to use all of them for training, so 
some heuristic methods have to be used to speed up the process. 

A typical solution to accelerate SVM training is to decompose the QP into a number 
of sub-problems so that the overall SVM training complexity can be reduced from 
O(N3) to O(N2) [3,4]. However, when the number of data points N is very large, the 
time complexity is still unsatisfactory and needs further improvement. 

In the literature [9], a new incremental learning algorithm based on the Ka-
rush-Kuhn-Tucker (KKT) conditions was proposed. The whole learning process is 
divided into the initial learning process and the incremental learning process in this 
method. It is according to that the optimal solution of the QP allows each sample to 
satisfy the KKT conditions. The incremental sample set and the initial sample set are 
equal in status in this algorithm.  



 A Fast SVM Classification Algorithm Based on KKT Conditions 383 

 

Based on the above ideas, we proposed the block-learning algorithm based on the 
KKT conditions (B-KKT), which is similar to the incremental learning algorithm de-
scribed in [9], and the difference is the training process is carried out in the training data 
set in one time but not an incremental learning process. And mainly, a new algorithm 
called the fast support vector machine classification algorithm based on the KKT 
conditions (FC-KKT) is proposed in this paper. Experimental results show that it re-
markably reduce the computation complexity and accelerate SVM training. 

The rest of the paper is organized as follows. Section 2 briefly introduces the opti-
mization problem involved in training SVM, followed by the theory of the B-KKT 
algorithm. In section 3, the FC-KKT algorithm is introduced in detail. In section 4�the 
experimental results were reported on both the artificial data and the real data. Finally, 
Section 5 gives the conclusions of the paper. 

2   Support Vector Machine and the B-KKT Algorithm 

2.1   Support Vector Machine 

Given l training points ( , ), , ( , )1 1x y x yl lL , where nx Ri ∈ is an input vector labeled 

by { 1, 1}yi ∈ + − for 1, ,i l= L , support vector machine searches for a separating hyper-

plane with largest margin, which is called the optimal hyperplane 0Tw x b+ = . This 
hyperplane can classify the input pattern x according to the following function 

( ) sgn( )Tf x w x b= +                                                 (1) 

In order to maximize the margin, we find the solution for the following QP problem 

Min   
2

1

1

2

l

i
i

w C ξ
=

+ ∑  

Subject to ( ) 1 , 1, ,T
i i iy w x b i lξ⋅ + ≥ − ∀ = L                                 (2) 

0iξ ≥  

Where 0, 1, ,i i lξ ≥ = L are slacking variables. The non-zero 0, 1, ,i i lξ ≥ = L  are the 

training patterns that do not satisfy the constraints in (2).  
The problem is usually posed in its Wolfe dual form involved the Lagrange multi-

pliers [0, ], 1, ,i C i lα ∈ = L , which can be solved by standard quadratic optimization 

packages. The bias b can easily be calculated by the vectors ix satisfying 0 i Cα< < . 

The decision function is therefore given by  

( ) sgn( ) sgn( )
l

T T
i i i

i

f x w x b y x x bα= + = +∑                                (3) 

In a typical classification task, only a small number of the Lagrange multipliers iα  tend 

to be greater than zero, and the corresponding training vectors are called support vec-
tors. The hyperplane ( )f x depends on these points. 
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The basic idea of nonlinear SVM is to map points from the input space to a 
high-dimensional feature space using a nonlinear mapping Φ , and then to proceed 
pattern classification using linear SVM. The mapping Φ is performed by employing 
Kernel functions ( , )iK x x , which obeys Mercer conditions [6], to compute the inner 

products between support vectors ( )ixΦ and the pattern vector ( )xΦ in the feature 

space. For an unknown input pattern x , we have the following decision function [6], 

( ) sgn( )
l

T
i i i

i

f x y x x bα= +∑                                           (4) 

2.2   The B-KKT Algorithm 

Suppose that 1 2[ , , , ]lα α α α= L is the optimal solution of the dual problem. The KKT 

conditions which make each sample satisfy the QP problem is 

0 ( ) 1i i iy f xα = ⇒ ≥ ； 0 ( ) 1i i iC y f xα< < ⇒ = ； 

( ) 1, 1, ,i i iC y f x i lα = ⇒ ≤ = L                                         (5) 

When iα tend to be greater than zero, the corresponding ix are called support vectors. 

Theorem 1: Q is the Hession Matrix in the linear constrained QP, if Q is semi-definite, 

the QP is convex. Supposeα is a feasible solution of the QP, if and only if every 
point x satisfies the KKT conditions, α is the optimal solution of the QP [6]. 

From Theorem 1, we know that, if the additional sample x violates the KKT condi-
tions obtained in the initial learning process, the correspondingα is not the overall 
optimal solution after the addition of new samples. According to the relationship 
ofα and the points x , we have the following Theorem 2. 

Theorem 2: Suppose ( )f x is the decision function of the SVM classifier, and{ , }i ix y is 

an additional sample. The additional samples that violate the KKT condition will 
change the support vectors set training in the initial data set. 

The samples that violate the KKT condition are divided into three categories:  

(1) The samples that is between the two boundary lines and could be correctly classi-
fied by the initial SVM classifier are the samples which satisfy 0 ( ) 1i iy f x≤ < ;  

(2) The samples that is between the two boundary lines but are wrongly classified by 
the original SVM classifier are the samples which satisfy 1 ( ) 0i iy f x− ≤ ≤ ; 

(3) The samples that are outside the two boundary lines and are wrongly classified by 
the original SVM classifier are the samples which satisfy ( ) 1i iy f x < − . 

In summary the samples that violate the KKT conditions satisfy ( ) 1i iy f x < . 

Based on the above theories, in the literature [9], a new incremental learning  
algorithm based on the Karush-Kuhn-Tucker (KKT) conditions is proposed. The 
B-KKT algorithm is similar to the algorithm proposed in literature [9], it is described as 
follow: 
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(1) The entire training data is divided into two subsets 0X , 1X , 0 1X X = ΦI ; 0T is 

trained in subset 0X , and the corresponding support vector set is 0
SVX ; 

(2) Test whether exists samples violating the KKT conditions of 0T in subset 1X , if not; 

the algorithm stops, and 0T is the classifier in the whole training data. Otherwise, 

according to the test results, 1X is divided into two subsets 1
SX and 1

NSX , where 

1
SX is the set of samples satisfying the KKT conditions obtained in 

subset 0X and 1
NSX is set of samples violating the KKT conditions obtained in 

subset 0X ; 

(3) 1T is obtained by training in subset 1X , and the corresponding support vector set 

is 1
SVX ; 

(4) Test whether exists samples violating the KKT conditions of 1T in subset 0X , if not; 

the algorithm stops, and 1T is the classifier in the whole training data. Otherwise, 

according to the test results, 0X is divided into two subsets 0
SX and 0

NSX , 

where 0
SX is the set of samples satisfying the KKT conditions and 0

NSX is the set of 

samples violating the KKT conditions; 
(5) 0 1 0 1

SV SV NS NSX X X X X= U U U , the set X is trained, the final training classifier T is 

obtained, which is the classifier in the overall training data set. 

The B-KKT algorithm decomposes the QP problem into a number of sub-problems so 
that the overall SVM training is accelerated. However, when the number of training 
dataset is very large, the time complexity is still unsatisfactory and needs further im-
provement, as follows, we propose the new fast algorithm to further accelerate the 
SVM training under the premise of no loss of the classification accuracy. 

3   The FC-KKT Algorithm 

The theoretical basis of this algorithm is the hyperplane constructed by SVM is de-
pendent on support vectors that lie closed to the decision boundary (hyperplane). Thus, 
removing any training samples that are not relevant to support vectors may have no 
effect on building the hyperplane. In this method, we remove non-relevant samples 
from the training set and then decompose the remaining samples into blocks to train. 

The algorithm is described as follows: 

1) Using the agglomerative hierarchical clustering [10] on training data set to extract 
the underlying data structure. The distance metric we use is called the Average 

Linkage distance. The cluster number is ( )k round n+ += in positive class and the 

cluster number is ( )k round n− −= in negative class, where n+ is the number of 

samples in positive class of the training data and n− is the number of samples in 
negative class in two-class classification problem; 
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2) Find the nearest point to the center point in each cluster respectively, and then use 
these points to represent points of the whole cluster. 

   
1 2

1
( ) arg min

i

i

n
p

i k
x D ki

x D x x
n∈ =

= − ∑                                               (6) 

where
2

⋅ means 2-norm and in is the number of points in the cluster iD . An initial 

SVM classifier 0T is obtained by training in the points ( )p
ix D ; 

3) The points in positive class are divided into two subsets NSVX + and SVX + by the classi-

fier 0T , where the points satisfy ( ) 1i iy f x > belonging to the set NSVX + and the points 

satisfy ( ) 1i iy f x ≤ belonging to the set SVX + , likewise, the points in negative class is 

divided into two parts NSVX − and SVX − , where the points satisfy ( ) 1i iy f x < − belonging 

to the set NSVX − and the points satisfy ( ) 1i iy f x ≥ − belonging to the set SVX − . The 

points in the sets NSVX + and NSVX − are removed, respectively; 

4) The remaining points are divided into two subsets 1X and 2X , 1 2X X = ΦI , and 

then to train in the two subsets 1X and 2X ,respectively;  

5) 1T is obtained by training in subset 1X , and the corresponding support vector set 

is 1
SVX ; 

6) Test whether exists samples violating the KKT conditions of 1T in subset 2X , if not; 

the algorithm stops, and 1T is the classifier in the whole training data set. Otherwise, 

according to the test results, 2X is divided into two subsets 2
SX and 2

NSX , where 2
SX is 

the samples satisfying the KKT conditions and 2
NSX is the samples violating the KKT 

conditions; 
7) 2T is obtained by training in subset 2X , and the corresponding support vector set 

is 2
SVX ; 

8) Test whether exists samples violating the KKT conditions of 1T in subset 2X , if not; 

the algorithm stops, and 2T is the classifier in the whole training data set. Otherwise, 

according to the test results, 1X is divided into two subsets 1
SX and 1

NSX , where 1
SX is 

the set of samples satisfying the KKT conditions and 1
NSX is the set of samples vio-

lating the KKT conditions; 
9) 1 2 1 2

SV SV NS NSX X X X X= U U U , the set X is trained, the final training classifier T is 

obtained, which is the classifier in the overall training data set. 

4   Experiments and Results 

Experiments on both artificial and real datasets demonstrate the effectiveness of this 
algorithm. The experiment is carried out under the hardware of PC (Pentium (R) 4 CPU 
2.93GHz DDR512MB RAM) and the software environment is Windows XP/Matlab 
7.1.  
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4.1   The Experiment Results in Artificial Datasets 

In artificial data experiments, we proved that the method to remove points referred in 
this paper is feasible and effective. A part of points are removed and the training ac-
curacy is improved in this method, which is shown in Fig.1 (by comparing the classi-
fication of points near the hyperplane after removing points with before). In particular, 
most of the non-support vectors are removed in the data set that is clear, which is shown 
in Fig.2.  

  
Fig. 1. (a). Before removing. (b). After  
removing. 

Fig. 2. (a). Before removing. (b). After
removing. 

Fig. 1. A part of points are removed and the training accuracy is improved in this method of 
removing points.  

Fig. 2. Most of the non-support vectors can be removed in the data set that is clear under the 
premise of no loss of the classification accuracy in this method of removing points. 

4.2   The Experiment Results in Real Datasets 

The standard SVM algorithm (SVM), the B-KKT algorithm and the FC-KKT algo-
rithm are compared through the experiments in two real datasets: bupa and pima. From 
the number of training samples (TRS), the number of support vectors (SV), the training 
time (TT), and the testing accuracy (TA), the efficiency of FC-KKT is verified in these 
experiments. In experiments of B-KKT, the number of training samples is the number 
of points in each block after decomposing the whole training data set into blocks, and in 
experiments of FC-KKT, it is the number of points in each block of the remaining 
training data set after removing points. From Table 1 and Table 2, we know that the 
 

Table 1. The experiment results on the bupa data set 

Algorithm TRS SV TES TT(s) TA
SVM 276 172 69 0.85938 62.32%
B-KKT X1 138 93

X2 138 96
X 218 181

69 0.71876 63.22%

X1 82 51
X2 83 49

FC-KK
T

X 128 106

69 0.53117 63.88%
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Table 2. The experiment results on the pima data set 

Algorithm TRS SV TES TT(s) TA 
SVM 614 309 154 5.9375 72.73% 

X1 307 142
X2 307 151

B-KKT

X 388 301

154 4.0469 74.03% 

X1 178 107
X2 177 102

FC-KKT

X 261 212

154 1.5993 75.43% 

 

training time is reduced remarkably especially in the larger data set by using this 
method FC-KKT. The test accuracy is also improved, because we use the agglomera-
tive hierarchical clustering algorithm to extract the underlying data structure of the 
training data in the training process. 

5   Conclusions 

Support Vector Machine (SVM) have gained wide acceptance because of the high 
generalization ability for a wide range of classification applications. Although SVM 
have shown potential and promising performance in classification, they have been 
limited by speed particularly when the training data set is large. The hyperplane con-
structed by SVM is dependent on only a portion of the training samples called support 
vectors that lie close to the decision boundary (hyperplane). Thus, removing any 
training samples that are irrelevant to support vectors might have no effect on building 
the proper decision function. Based on the above theories, we propose an algorithm 
called the fast SVM classification algorithm based on the KKT conditions. This algo-
rithm can remarkably reduce the computational complexity and accelerate SVM 
training. Experiments on both artificial and real datasets demonstrate the efficiency of 
this algorithm. 
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Abstract. In this work, an eclectic procedure for rule extraction from Support 
Vector Machine is proposed, where Tree is generated using Naïve Bayes Tree 
(NBTree) resulting in the SVM+NBTree hybrid. The data set analyzed in this 
paper is about churn prediction in bank credit cards and is obtained from Busi-
ness Intelligence Cup 2004. The data set under consideration is highly unbal-
anced with 93.11% loyal and 6.89% churned customers. Since identifying 
churner is of paramount importance from business perspective, sensitivity of 
classification model is more critical. Using the available, original unbalanced 
data only, we observed that the proposed hybrid SVM+NBTree yielded the best 
sensitivity compared to other classifiers.  

Keywords: Churn prediction in credit cards, Support Vector Machine, Rule Ex-
traction, Naive Bayes Tree. 

1   Introduction 

Data mining (also called as Knowledge Discovery in Database) is a process that con-
sists of applying data analysis and discovery algorithms that produce particular enu-
meration of pattern (or model) over the data [1]. Data mining has been efficiently used 
in wide range of profiling practices, such as manufacturing [2], fraud detection [3]. 

Increasing number of customers has made the banks conscious of the quality of the 
services they offer. The problem of customers shifting loyalties from one bank to 
another has become common. This phenomenon, called ‘churn’ occurs due to reasons 
such as availability of latest technology, customer-friendly staff and proximity of 
geographical location, etc. Hence, there is a pressing need to develop models that can 
predict which existing ‘loyal’ customer is going to churn out in near future [4]. 

Research shows that customers with longer relationships with the firm have higher 
prior cumulative satisfaction ratings [5] than online bank customers [6]. It is more 
profitable to segment and target customers on the basis of their (changing) purchase 
                                                           
* Corresponding author. 



 Data Mining Using Rules Extracted from SVM 391 

behavior and service experiences rather than on the basis of their (stable) demograph-
ics [7]. Churn management consists of developing techniques that enable firms to 
keep their profitable customers and aims at increasing customer loyalty [8]. Churn 
prediction and management is one of the important activities of Customer Relation-
ship Management. 

Credit Card Database and PBX Database with Data Mining by Evolutionary Learn-
ing (DMEL) [9], emphasize on the natural differences between Savings and Invest-
ment (SI) products in banks to cross-sell in terms of both maximizing the customers’ 
retention proneness and their preferences [10]. Chu et al., [11] reported that manage-
ment should prepare an anti-churn strategy that is usually far less expensive than 
acquiring new customers.  

In this paper we address an important issue of rule extraction from SVM and inves-
tigate its usefulness in credit card churn prediction in banks. The proposed approach 
is carried out in two major steps. (1) Extraction of support vectors and obtaining pre-
dictions for training instances and support vectros. (2) Rule generation. Incidentally, 
by using the predictions of SVM for training set and support vectors, we ensure that 
the rules generated are basically mimicking the behavior of SVM. 

The rest of the paper is organized as follows. Section 2 presents the literature re-
view of rule extraction from SVM approaches. Section 3 describes the data set used. 
Section 4 presents the proposed hybrid rule extraction approach. Section 5 presents 
results and discussion. Finally section 6 concludes the paper. 

2   Rule Extraction from SVM 

SVM [13] recently became one of the most popular classification methods. They have 
been used in wide variety of applications such as Text classification [14], Facial ex-
pression recognition [15], and Gene analysis [16] so on. Despite superior performance 
of SVM, they are often regarded as black box models. Converting this black box, high 
accurate models to transparent model is “Rule Extraction” [17]. 

Recently attempts have been made to extract rules from SVMs [18]. Intensive work 
has been done towards developing rule extraction techniques for neural networks but 
less work has been done for extracting rules from SVM. Some of the approaches pro-
posed towards rule extraction from SVM are; SVM+Prototype [19], RulExtSVM [20], 
Extracting rules from trained support vector machines [21], Hyper rectangle Rules 
Extraction (HRE) [22], Fuzzy Rule Extraction (FREx) [23], Multiple Kernel-Support 
Vector Machine (MK-SVM) [24], SQRex-SVM [25], sequential covering approach 
[26] and Recently a new Active Learning-Based Approach (ALBA) [27] are some of 
the approaches proposed towards rule extraction from SVM. 

Incidentally Farquad et al. [28, 29] also proposed a hybrid rule extraction approach 
using SVM and the extracted rules are tested for bankruptcy prediction in banks.  
They first extracted the support vectors then they used these support vectors to train 
Fuzzy Rule Based System (FRBS), Decision Tree and Radial Basis Function Net-
work. They concluded that the hybrid SVM+FRBS outperformed the stand-alone 
classifiers.  
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3   Data Set Description 

The dataset is from a Latin American bank that suffered from an increasing number of 
churns with respect to their credit card customers and decided to improve its retention 
system. Two groups of variables are available for each customer: sociodemographic 
and behavioural data, which are described in Table 1. The dataset comprises 22 vari-
ables, with 21 predictor variables and 1 class variable. It consists of 14814 records, of 
which 13812 are nonchurners and 1002 are churners, which means there are 93.24% 
nonchurners and 6.76% churners. Hence, the dataset is highly unbalanced in terms of 
the proportion of churners versus non-churners [30]. 

Table 1. Feature description of churn prediction data set 

Feature Description Value 
Target 
CRED_T 
CRED_T-1 
CRED_T-2 
NCC_T 
NCC_T-1 
NCC_T-2 
INCOME 
N_EDUC 
 
 
 
AGE 
SX 
 
E_CIV 
 
T_WEB_T 
T_WEB_T-1 
T_WEB_T-2 
MAR_T 
MAR_T-1 
MAR_T-2 
MAR_T-3 
MAR_T-4 
MAR_T-5 
MAR_T-6 

Target Variable 
Credit in month T 
Credit in month T-1 
Credit in month T-2 
Number of credit cards in months T 
Number of credit cards in months T-1 
Number of credit cards in months T-2 
Customer’s Income 
Customer’s educational level 
 
 
 
Customer’s age 
Customers sex 
 
Civilian status 
 
Number of web transaction in months T 
Number of web transaction in months T-1 
Number of web transaction in months T-2 
Customer’s margin for the company in months T 
Customer’s margin for the company in months T-1 
Customer’s margin for the company in months T-2 
Customer’s margin for the company in months T-3 
Customer’s margin for the company in months T-4 
Customer’s margin for the company in months T-5 
Customer’s margin for the company in months T-6 

0-NonChurner  1-Churner 
Positive real number 
Positive real number 
Positive real number 
Positive integer value 
Positive integer value 
Positive integer value 
Positive real number 
1 - University student 
2 - Medium degree 
3 - Technical degree 
4 - University degree 
Positive integer 
1 - male 
0 - Female 
1-Single  2-Married 
3-Widow 4-Divorced 
Positive integer 
Positive integer 
Positive integer 
Real Number 
Real Number 
Real Number 
Real Number 
Real Number 
Real Number 
Real Number 

4   Proposed Rule Extraction Approach 

In this research work we propose a hybrid rule extraction procedure for solving large 
scale classification problem in the framework of data mining using rules extracted 
from support vector machine. In the churn prediction problem, sensitivity alone is the 
important criteria, higher the sensitivity better is the model. The proposed hybrid is 
composed of two major steps (i) support vector extraction and obtaining the predic-
tions of the training instances and support vectors extracted (ii) rule generation using 
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NBTree [12]. The data set used in this study is highly unbalanced. However, we did 
not employ any balancing technique to balance the data. 

The current approach in this paper is distinct from earlier studies where this data 
set was analyzed [4, 31] in the following ways: 

 Extraction of the support vectors makes the sample size very much small. 
 Application of the approach is extended to a data mining problem. 

Also, the hybrid approach presented here is different from [28, 29] in the following 
ways: 

 Dealing with unbalanced large scale data set. 
 Using the predictions of support vectors using SVM model i.e. Case-SP to 

generate rules with NBTree. 

4.1   Support Vectors Extraction and Predictions of SVM 

Figure 1 depicts the extraction of support vectors and the resulting 3 variants of the 
hybrid. The predictions for training set and support vectors are obtained from the 
developed SVM model. Here Case-A and Case-SA are two sets viz. Training and SVs 
set with their corresponding actual target values respectively. Predictions of SVM are 
obtained for Case-A and Case-SA and the actual target values are then replaced by the 
predicted target values to get Case-P and Case-SP respectively. By using the newly 
generated Case-P and Case-SP we ensure that the rules extracted are actually from 
SVM. 

 

Fig. 1. Support vectors extraction and predictions of SVM 

4.2   Rule Generation 

During rule generation phase, depicted in Fig. 2, we analyzed 4 different data sets, (i) 
Case-A, (ii) Case-P, (iii) Case-SA and (iv) Case-SP separately. Rules are generated 
using NBtree hybrid [12]. NBTree attempts to utilize the advantages of both decision 
trees (i.e. segmentation) and naïve bayes (evidence accumulation from multiple at-
tributes). A decision tree is built with univariate splits at each node, but with Navie-
Bayes classifiers at the leaves. Rules are generated under 10-fold cross validation 
method and the average sensitivity is presented.  

 

 

Fig. 2. Rule generation phase 

Case-A/Case-P/     
Case-SA / Case-SP NBtree Tree (Rules) 

Case- A SVM

Case-SACase-P Case-SP
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4.3   Experimental Setup 

The available large scale unbalanced dataset is first divided into two parts of 70:30 
ratios. 70% of the data is then used for 10-Fold Cross Validation (10-FCV) and 30% 
of the data is named as validation set and stored for evaluating the efficiency of the 
rules generated using 10-FCV at later point of time. The class distribution in the train-
ing and validation data sets is as same as that in the original data i.e. 93.11% for loyal 
customers and 6.89% for churned customers. The accuracy and validity of the rules 
generated during 10-FCV are then tested against the validation set. 

5   Results and Discussions 

We used the SVM library viz., LibSVM [32] for building SVM model and support 
vector extraction. LibSVM is integrated software for support vector classification and 
is developed in MATLAB.  RapidMiner4.5 community edition [33] is used for gener-
ating NBTree. Many business decision makers, dealing with churn prediction prob-
lem, place high emphasis on sensitivity alone because higher sensitivity leads to 
greater success in identifying potential churners correctly and thereby contributing to 
the bottom-line of the CRM viz., retaining extant loyal customers. Consequently in 
this paper, sensitivity is accorded top priority ahead of specificity. The results of hy-
brid in various cases (Case-A, Case-P, Case-SA and Case-SP) are presented in  
Table. 2. 

Table 2. Average results of 10-fold cross validation 

Test under 10-FCV Validation 
Classifier 

Sens* Spec* Acc* Sens* Spec* Acc* 
SVM (Case-A) 64.2 74.86 74.13 60.17 74.92 73.92 
NBTree (Case-A) 55.5 98.99 96.06 61.21 99.02 96.46 
SVM + NBTree (Case-P) 68.62 78.45 77.78 68.52 78 77.07 
SVM + NBTree (Case-SA) 0 100 93.11 0 100 93.11 
SVM + NBTree (Case-SP) 68.33 74.38 75.18 68.04 75.34 75.11 
Kumar and Ravi(2008) [9] 62.07 98.51 96.05 NA NA NA 
Naveen et al. (2009) [10] 41.62 79.6 77.03 NA NA NA 

  Note: * Sens = sensitivity; Spec = specificity; Acc = accuracy 

It is observed from the results that the hybrid SVM+NBTree using Case-P yielded the 
average sensitivity under 10-FCV and against validation set is 68.62% and 68.52% 
respectively. The hybrid SVM+NBTree using Case-SP obtained the average sensitiv-
ity under 10-FCV and against validation set is 68.33% and 68.04% respectively. 
Stand alone SVM and NBTree using Case-A yielded the average sensitivity of 64.2% 
and 55.5% respectively.   

Working on the same data set, Kumar and Ravi [5] reported 62.07% average  
sensitivity achieved using decision tree classifier, whereas, Naveen et al. [31] reported 
41.62% average sensitivity obtained using FuzzyARTMAP. Our results are not 
strictly comparable to their results as they performed 10-FCV without partitioning the  
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Table 3. Rule set extracted by SVM+NBTree hybrid using Case-SP 

# Rule Antecedents Consequent 
1 CRED_T<=598.1 and MAR_T-2<=14.045  Churner 
2 CRED_T<=598.1 and MAR_T-2<=14.045 and INCOME<=1035 and 

MAR_T-4<=15.135 and T_WEB-T<=7.5 
Churner 

3 CRED_T>598.1 and T_WEB_T-2<=2.5 Non-Churner 
4 CRED_T<=598.1 and MAR_T-2<=14.045 and E_CIV>1.5 and  

NCC_T-2>0.5 and T_WEB-T>7.5 
Non-Churner 

5 CRED_T<=598.1 and MAR_T-2<=14.045 and E_CIV>1.5 and  
NCC_T-2>0.5 

Non-Churner 

6 CRED_T<=598.1 and MAR_T-2<=14.045 and MAR_T-5<=9.73 Churner 
7 CRED_T<=598.1 and MAR_T-2<=14.045 and E_CIV>1.5 and  

NCC_T-2>0.5 and INCOME>1035 and N_EDUC<=3.5 
Non-Churner 

original data set into training and validation set. From the above discussions, it is 
observed that the proposed hybrid SVM+NBTree using Case-P and Case-SP stand as 
the best performers compared to other classifiers evaluated in this study. The example 
rule set obtained by the hybrid SVM+NBTree using Case-SP is presented in Table 3. 

The tree obtained using NBTree has naïve bayes classifiers at leaf nodes that indi-
cates the probability of each class available in the data set used, instead of prediction 
of any single class. For better understanding of the tree we modified the rules and the 
class with higher probability assigned by the naïve bayes classifier at leaf node is 
considered the consequent of the rule. The number of rules extracted using our ap-
proach i.e. SVM+NBTree is very much less and rule length is smaller when compared 
to those of Kumar and Ravi [4]. 

It is observed that the number of SVs extracted is 67.8% less than the actual num-
ber of training instances. Still, we got a decent sensitivity of 68.52% in Case-SP 
which is a significant outcome of the present study. Hence it is recommended to use 
support vectors instead of using all the training instances to generate rules. 

6   Conclusions 

In this paper, we present a rule extraction approach from SVM using NBTree to solve 
customer churn prediction problem concerning bank credit cards. The data set is 
highly unbalanced data with 93.11% loyal customers and 6.89% churned customers. 
We did not employ any balancing technique for balancing the data. Instead we ana-
lyzed the original data. We infer that the proposed approach SVM+NBTree using 
Case-P and Case-SP outperformed all other classifiers tested and achieved best aver-
age sensitivity of 68.52% and 68.03% respectively. The following recommendations 
are offered from this work. (i) it is better to extract support vectors and use Case-SP 
to generate rules because the number of instances is drastically reduced in the form of 
support vectors, (ii) the resultant sensitivity yielded by Case-SP is almost similar to 
that of the sensitivity yielded by Case-P, (iii) time taken for generation of rules is cut 
short by more than 60% and (iv) the number of rules extracted and the antecedents per 
rule are small thereby improving the comprehensibility of the rules. 
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Abstract. A new clustering strategy is proposed based on interval sets,
which is an alternative formulation different from the ones used in the
existing studies. Instead of using a single set as the representation of a
cluster, each cluster is represented by an interval set that is defined by
a pair of sets called the lower and upper bounds. Elements in the lower
bound are typical elements of the cluster and elements between the upper
and lower bounds are fringe elements of the cluster. A cluster is therefore
more realistically characterized by a set of core elements and a set of
boundary elements. Two types of interval set clusterings are proposed,
one is non-overlapping lower bound interval set clustering and the other
is overlapping lower bound interval set clusterings, corresponding to the
standard partition based and covering based clusterings.

1 Introduction

Cluster analysis focuses on grouping objects of similar kind into categories and
organizing data into meaningful structures [1]. Objects are sorted into groups
so that objects in the same group show a high degree of association and objects
in different group show a low degree of association. A common assumption un-
derlying many cluster analysis methods is that a cluster can be represented by
a set with crisp boundary. The requirement of a sharp boundary leads to easy
analytical results, but may be too restrictive for some practical applications.
Several proposals have been made to remove such a stringent assumption.

In fuzzy cluster analysis, it is assumed that a cluster is represented by a fuzzy
set that models a gradually changing boundary [3]. However, a fuzzy cluster-
ing provides a quantitative characterization of the unsharp cluster boundary
at the expense of losing the qualitative characterization that better shows the
structures provided by a clustering. To resolve this problem, Lingras and his as-
sociates [6,7,8,9] propose and systematically study rough clustering and interval
set clustering. The basic idea is to derive and describe a cluster by a pair of
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lower and upper approximations. By describing a cluster in terms of a pair of
crisp sets, one recovers the qualitative characterization of a cluster.

There exists a semantic gap in the studies by Lingras and his associates. On
the one hand, rough clustering algorithms are explained in rough set terminology.
On the other hand, an equivalence relation that is needed for defining approxi-
mations is not explicitly referred to. The main objective of this paper is to fill
in such a semantic gap by representing a cluster as an interval set defined by
a pair of bounds. This leads to the introduction of interval set cluster analy-
sis. Elements in the lower bound of an interval set are typical elements of the
cluster and elements between the upper and lower bounds are fringe elements of
the cluster. That is, a cluster is more realistically characterized by a set of core
elements and a set of fringe elements.

The strategy of interval set cluster analysis does not require an equivalence re-
lation. A set of properties of an interval set clustering is proposed and examined.
Based on these properties, two types of interval set clusterings are proposed, one
is non-overlapping lower bound interval set clustering and the other is over-
lapping lower bound interval set clusterings. They correspond to the standard
partition based and covering based clusterings.

2 Overview of Interval Sets

In cluster analysis, a cluster may be interpreted as the extension of a concept,
that is, the set of objects that are instances of the concept. In some situations,
an object may actually be either an instance or not an instance of a concept.
On the other hand, due to a lack of information and knowledge, one can only
express the state of instance and non-instance for some objects, instead of all
objects. That is, one has a partially known concept defined by a lower bound
and upper bound of its extension. This leads to the interval set representation
of a partially known set [16].

Interval sets are defined and interpreted in a similar way that interval num-
bers are introduced in interval analysis [10]. The notion of interval sets repre-
sents a new kind of sets, defined by a pair of sets, namely, its lower and upper
bounds [13,16]. Mathematically, interval sets are defined as follows. Let U be a
finite set, called the universe or the reference set, and 2U be its power set. A
subset of 2U of the form,

A = [Al, Au] = {A ∈ 2U | Al ⊆ A ⊆ Au}, (1)

is called a closed interval set, where it is assumed that Al ⊆ Au. Being an
interval of the power set lattice 2U , an interval set A is also a lattice, with the
minimum element Al, the maximum element Au, and the standard set-theoretic
operations. The set of all closed interval sets is denoted by:

I(2U ) = {[Al, Au] | Al, Au ⊆ U, Al ⊆ Au}. (2)

A degenerate interval set of the form [A, A] is equivalent to the ordinary set A.
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Semantically, an interval set, when interpreted as a family of sets of objects, pro-
vides an appropriate means to represent a partially known concept [5,12,13,16,19].
Although the extension of a concept is actually a subset of U , a lack of knowl-
edge makes us unable to specify this subset. We can only provide a lower bound
Al and an upper bound Au. Any subset A that lies between Al and Au, namely,
Al ⊆ A ⊆ Au, can be the actual extension of the concept. The set,

BND([Al, Au]) = Au − Al, (3)

is called the boundary of the interval set [Al, Au]. For those elements, we are
unable to tell if they are instances or non-instances of the concept.

Interval sets are subsets of the universe U . The symbols ∈,⊆, =,∩,∪ may
be used, in their usual set-theoretic sense, to represent relationships between
elements of 2U and an interval set, and between different interval sets. Thus,
A ∈ [Al, Au] means that A is a subset of U such that Al ⊆ A ⊆ Au. We write
[Al, Au] ⊆ [Bl, Bu] if the interval set [Al, Au] as an ordinary set is contained in
[Bl, Bu] as an ordinary set. In other words, by [Al, Au] ⊆ [Bl, Bu] we mean that
Bl ⊆ Al ⊆ Au ⊆ Bu. Similarly, two interval sets are equal, written A = B, if
they are equal in set-theoretic sense, that is A = B if and only if Al = Bl and
Au = Bu.

Let ∩,∪ and − be the usual set intersection, union and difference defined on
2U , respectively. Following the results of power algebras [2] and interval analy-
sis [10], we can lift set operations into interval set operations. Specifically, for
two interval sets A = [Al, Au] and B = [Bl, Bu] we have:

A & B = {A ∩ B | A ∈ A, B ∈ B},
A ' B = {A ∪ B | A ∈ A, B ∈ B},
A \ B = {A − B | A ∈ A, B ∈ B}. (4)

These operations are referred to as interval set intersection, union and difference.
They are closed on I(2U ), namely, A & B, A ' B and A \ B are interval sets.
They can be explicitly computed by using the following formulas [13,16]:

A & B = [Al ∩ Bl, Au ∩ Bu],
A ' B = [Al ∪ Bl, Au ∪ Bu],
A \ B = [Al − Bu, Au − Bl]. (5)

Interval set complement ¬[Al, Au] of [Al, Au] is defined as [U, U ] \[Al, Au]. It is
equivalent to [U − Au, U − Al] = [Ac

u, Ac
l ], where Ac = U − A denote the usual

set complement operation. Clearly, we have ¬[∅, ∅] = [U, U ] and ¬[U, U ] = [∅, ∅].

3 Interval Sets, Fuzzy Sets and Rough Sets

Interval sets model concepts that are partially known; they are related to, but
different from, fuzzy sets [18] and rough sets [11]. A brief comparison of the three
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notions will provide an argument supporting the proposed framework of interval
set cluster analysis.

Fuzzy sets model concepts with gradual memberships [18]. Suppose µA :
U −→ [0, 1] is a fuzzy membership function. Given a number α ∈ [0, 1], an
α-cut of µA is defined by:

µα
A = {x ∈ U | µA(x) ≥ α}. (6)

For a pair of numbers 0 ≤ β ≤ α ≤ 1, the pair of (α, β)-cuts of µA gives rise to
an interval set [µα

A, µβ
A] with µα

A ⊆ µβ
A. Thus, an interval set may be used as a

qualitative approximation of a fuzzy set [13].
Rough sets model the approximations of concepts under indiscernibility [11].

Suppose an equivalence relation on U is used to formally represent the indis-
cernibility of elements in U . The pair apr = (U, E) is called an approximation
space [11]. The equivalence relation E induces a partition of U , denoted by
U/E. The equivalence class containing x is given by [x] = {y ∈ U | xEy}. The
equivalence classes of E are the basic building blocks to construct rough set
approximations. For a subset A ⊆ U , its lower and upper approximations are
defined by [11]:

apr(A) = {x ∈ U | [x] ⊆ A};
apr(A) = {x ∈ U | [x] ∩ A �= ∅}. (7)

The pair (apr(A), apr(A)) is referred to as a rough set generated by A. For
a subset A ⊆ U , we have apr(A) ⊆ A ⊆ apr(A). It follows that A induces
an interval set [apr(A), apr(A)]. By applying the ideas of (α, β)-cuts of a fuzzy
set, one can define probabilistic rough set approximations in a decision-theoretic
rough set model [15,17].

Consider now the reverse process of constructing a fuzzy set or a rough set
from an interval set. Given an interval set [Al, Au], we can define a fuzzy set as
follows:

µA(x) =

⎧⎨⎩
0, x ∈ U − Au,
0.5, x ∈ Au − Al,
1, x ∈ Al.

(8)

If min, max and 1 − () are used to define fuzzy set intersection, union, and
complement, respectively, we express interval set operations in terms of such
three-valued fuzzy sets.

In the case of rough sets, given an interval set [Al, Au], in general we may
not be able to find a set A so that Al = apr(A) and Au = apr(A). Iwiński [4]
suggests another formulation of rough sets, which is closely related to interval
sets [14]. Let Def(U) denote the family of all definable subsets of U given by:

Def(U) = {A ⊆ U | A = apr(A) = apr(A)}. (9)

For a pair of sets A, A ∈ Def(U) with A ⊆ A, Iwiński refers to the pair 〈A, A〉 as
a rough set. By definition, it corresponds to the interval set [A, A]. Conversely,
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for an interval set [Al, Au] with Al, Au ∈ Def(U), we have an Iwiński rough set
〈Al, Au〉. Thus, the family of all Iwiński rough sets corresponds to a sub-family of
all interval sets. Furthermore, their set-theoretic operations are the same [4,14].

Although an interval set may be induced from either a fuzzy set or a rough
set, and the reverse is also true under certain conditions, it does have to be
interpreted in this way. The interpretation of an interval set as the bounds of
a partially known set makes it different from fuzzy sets and rough sets. This
interpretation seems to be appropriate for the task of clustering. A cluster may
be considered to be a partially known set; we know that certain elements must
be in the cluster (e.g., elements in a small neighborhood), and certain elements
may be in the cluster (e.g., elements in a large neighborhood).

4 Strategies of Interval Set Clustering

A main task of cluster analysis is to group objects in a universe so that objects in
the same cluster are more similar to each other and objects in different clusters
are dissimilar. There are two basic strategies of clustering that produce flat non-
overlapping and overlapping clusters, respectively.

Suppose
C = (C1, C2, . . . , Cm) (10)

is a family of clusters of U , that is, C is a clustering of the universe. Formally,
a non-overlapping clustering is defined by the properties:

(i) Ci �= ∅, 0 ≤ i ≤ m,

(ii)
⋃

Ci∈C

Ci = U,

(iii) Ci ∩ Cj = ∅, i �= j.

Property (i) requires that each cluster cannot be empty. Property (ii) states
that every x ∈ U belongs to at least one cluster, and property (iii) states that x
belongs to at most one cluster. Together they require that every x ∈ U belongs
to exactly one cluster. In this case, C is a partition of the universe. On the
other hand, an overlapping clustering only requires properties (i) and (ii). For
overlapping clustering, it is possible that an element belongs to more than one
cluster. The family C is only a covering of the universe.

An underlying assumption of such a clustering is that one can precisely form
a family of clusters with well defined boundary. A questioning of this assumption
has led to other clustering strategies. For example, fuzzy clustering produces a
family of fuzzy sets, where each cluster is a fuzzy set with gradually changing
boundary. Given a pair of numbers 0 ≤ β ≤ α ≤ 1, the (α, β)-cuts of a fuzzy set
can be viewed as an interval set [16]. This immediately motivates the introduc-
tion of interval set clustering, although in general an interval set clustering can
be interpreted without direct reference to a fuzzy clustering.
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We assume that each cluster Ci is partially known based on the available infor-
mation. One may use an interval set to represent such a partially known cluster,
namely, Ci is represented by an interval set [Ci

l , C
i
u] satisfying the constraint:

Ci
l ⊆ Ci ⊆ Ci

u. (11)

The constraint reflects the fact that we do not know the exact cluster Ci but
a pair of lower and upper bounds within which Ci lies. Any set in the family
[Ci

l , C
i
u] = {X | Ci

l ⊆ X ⊆ Ci
u} may be the actual cluster Ci. The elements in Ci

l

may be interpreted as typical elements of the cluster Ci and elements in Ci
u−Ci

l

as fringe elements. With respect to the family of clusters C = (C1, C2, . . . , Cm),
we have the following family of interval set clusters:

IC = ([C1
l , C1

u], [C2
l , C2

u], . . . , [Cm
l , Cm

u ])
= {(C1, C2, . . . , Cm) | Ci

l ⊆ Ci ⊆ Ci
u, 1 ≤ i ≤ m}.

That is, an interval set cluster is interpreted as a pair of bounds of a family of
possible crisp clusters and an interval set clustering is interpreted as bounds of
a family of crisp set clusterings.

Based on interval set operations, corresponding to properties (i)-(iii), we adopt
the following properties for an interval set clustering:

(I) Ci
l �= ∅, 0 ≤ i ≤ m,

(II)
⋃

[Cl,Cu]∈IC

Cu = U,

(III) Ci
l ∩ Cj

l = ∅, i �= j.

Property (I) requires that the lower bound must not be empty. It implies that
the upper bound is not empty, namely, Ci

u �= ∅. Thus, Ci
l �= ∅ may be viewed as

a strong version and Ci
u �= ∅ as a weak version. It is reasonable to assume that

each cluster must contain at least one typical element and hence its lower bound
is not empty. We therefore adopt the strong version, instead of the weak version,
in order to make sure that an interval set clustering is physically meaningful.
Property (II) states that any element of U belongs to the upper bound of a
cluster, which ensures that every element is properly clustered. Property (III)
demands that the lower bounds of clusters are pairwise disjoint; a typical element
of one cluster cannot, as the same time, be a typical element of another cluster.

Additional support for adopting properties (I), (II), and (III) is given by the
following theorem that shows the connection of a standard clustering and an
interval set clustering.

Theorem 1. Suppose IC = ([C1
l , C1

u], [C2
l , C2

u], . . . , [Cm
l , Cm

u ]) is an interval set
clustering. If IC satisfies properties (I), (II), and (III), then there exists a family
of clusters C = (C1, C2, . . . , Cm) that satisfies the constraint Ci

l ⊆ Ci ⊆ Ci
u

and properties (i), (ii), and (iii). If IC satisfies properties (I) and (II), there
exists a family of clusters C = (C1, C2, . . . , Cm) that satisfies the constraint
Ci

l ⊆ Ci ⊆ Ci
u and properties (i) and (ii).
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Proof. The theorem can be proved constructively by building a family of clusters
C from IC. Assume that IC satisfies properties (I), (II), and (III), one can
construct a C as follows. We first construct a family of clusters {Ci = Ci

l | 1 ≤
i ≤ m} based on typical elements of clusters. For each element x in the set of
the fringe elements, F =

⋃{Ci
u − Ci

l | 1 ≤ i ≤ m}, we assign it to only one of
the clusters Ci’s that satisfies the condition x ∈ Ci

u − Ci
l . By the property (I),

it follows that C satisfies property (i); by the properties (II) and (III) and the
construction procedure, it follows that C satisfies properties (ii) and (iii). To
prove the second part of the theorem, we follow the same procedure except that
we may assign each fringe element to a set of clusters instead of one. It can be
easily seen that the resulting C satisfies properties (i) and (iii).

Based on the results from the theorem, an interval set clustering IC is called a
lower bounds non-overlapping interval set clustering if it satisfies properties (I),
(II), and (III); it is called a lower bounds overlapping interval set clustering if it
only satisfies properties (I) and (II). They suggest different interval set clustering
algorithms.

There are several differences between rough set clustering and interval set
clusterings. Rough set clustering requires an underlying equivalence and hence
is only applicable to non-overlapping clustering. In general, one may use a non-
equivalence relation to obtain an overlapping clustering. In this case, it is neces-
sary to refer to this underlying relation in order to properly interpret the rough
set lower and upper approximations. In contrast, interval set clustering does not
require such an underlying relation. In some earlier studies of rough set cluster
analysis, it is assumed that a fringe element must belong to the upper bounds of
at least two clusters [6,7,8,9], which is motivated by properties of the upper ap-
proximations in the rough set theory. With interval set clustering, we no longer
need to impose such a constraint. It is possible that a fringe element belongs to
the upper bound of only one cluster.

5 Conclusion

There is a growing interest in rough set cluster analysis. An important issue that
has not received enough attention is a semantic interpretation of the derived
clusters. Since rough set approximations must satisfy certain properties, their
directly application to cluster analysis may be unnecessarily restrictive. In this
paper, we outline a framework of interval set cluster analysis, which is motivated
by, and different from, rough set cluster analysis.

The clarification of rough set cluster analysis and interval set cluster analy-
sis have both theoretical and practical values. Although the results from both
clustering methods are intervals in the power set of a set, they have different se-
mantic interpretations. Rough set approximations are approximation of known
sets in an approximation space defined by an underlying equivalence or non-
equivalence relation. In order to explain rough set cluster analysis, we need to
refer to the relation. In contrast, interval sets are approximations of partially
known sets; interval set cluster analysis does not require such a relation. With



Interval Set Cluster Analysis: A Re-formulation 405

interval set clustering, an object can belong to the upper bound of one cluster,
which is different from rough set clustering where an object, if in the upper ap-
proximation of one cluster, must be in the upper approximation of at least one
more cluster.
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5. Marek, V.W., Truszczyński, M.: Contributions to the theory of rough sets. Funda-

menta Informaticae 39, 389–409 (1999)
6. Lingras, P.: Rough K-Medoids clustering using GAs. In: Proceedings of the 8th

IEEE International Conference on Cognitive Informatics, pp. 315–319 (2009)
7. Lingras, P., Hogo, M., Snorek, M.: Interval set clustering of web users using mod-

ified Kohonen self-organizing maps based on the properties of rough sets. Web
Intelligence and Agent Systems: An International Journal 2, 217–230 (2004)

8. Lingras, P., Hogo, M., Snorek, M., West, C.: Temporal analysis of clusters of su-
permarket customers: conventional versus interval set approach. Information Sci-
ences 172, 215–240 (2005)

9. Lingras, P., West, C.: Interval set clustering of web users with rough K-Means.
Journal of Intelligent Information Systems 23, 5–16 (2004)

10. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
11. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-

ences 11, 341–356 (1982)
12. Wang, Y.Q., Zhang, X.H.: Some implication operators on interval sets and rough

sets. In: Proceedings of 2009 IEEE International Conference on Cognitive Infor-
matics, pp. 328–332 (2009)

13. Yao, Y.Y.: Interval-set algebra for qualitative knowledge representation. In: Pro-
ceedings of the Fifth International Conference on Computing and Information, pp.
370–374 (1993)

14. Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International
Journal of Approximation Reasoning 15, 291–317 (1996)

15. Yao, Y.Y.: Probabilistic rough set approximations. International Journal of Ap-
proximation Reasoning 49, 255–271 (2008)

16. Yao, Y.Y.: Interval sets and interval-set algebras. In: Proceedings of the 8th IEEE
International Conference on Cognitive Informatics, pp. 307–314 (2009)

17. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating con-
cepts. International Journal of Man-machine Studies 37, 793–809 (1992)

18. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
19. Zhang, X.H., Jia, X.Y.: Lattice-valued interval sets and t-representable interval

set t-norms. In: Proceedings of 2009 IEEE International Conference on Cognitive
Informatics, pp. 333–337 (2009)



Rough Entropy Based k-Means Clustering

Dariusz Ma�lyszko and Jaros�law Stepaniuk

Department of Computer Science
Bialystok University of Technology

Wiejska 45A, 15-351 Bialystok, Poland
{malyszko,jstepan}@wi.pb.edu.pl

Abstract. Data clustering algorithmic schemes receive much careful re-
search insight due to the prominent role that clustering plays during data
analysis. Proper data clustering reveals data structure and makes possi-
ble further data processing and analysis. In the application area, k -means
clustering algorithms are most often exploited in almost all important
branches of data processing and data exploration. During last decades, a
great deal of new algorithmic techniques have been invented and imple-
mented that extend basic k-means clustering methods. In this context,
fuzzy and rough k -means clustering presents robust modifications of ba-
sic k -means clustering that are aimed at better apprehension of data
structure that advantageously incorporate notions from fuzzy and rough
set theories. In the paper, an extension of rough k-means clustering into
rough entropy domain has been introduced. Experimental results sug-
gest that proposed algorithm outperforms standard k -means clustering
methods applied in the area of image segmentation.

Keywords: Data clustering, image clustering, k -means clustering, rough
k -means clustering, rough entropy k -means clustering.

1 Introduction

In image analysis the problem of robust, proper and optimal data grouping in
the form of image data segmentation, presents the most important stage upon
that quality of image analysis systems is primarily dependent.

In image segmentation routines, data clustering with k -means algorithm has
been widely used in almost great majority of applications. Image segmentation
presents process of partitioning image data into disjoint regions that exhibit
within group similarity according to some predefined criteria and exhibit be-
tween group dissimilarity. Image segmentation presents difficult combinatorial
problem and exact optimal segmentations are of high computational cost that
is not practically attainable in real applications. In this context, image seg-
mentation is based on some predefined criteria that make them feasible. High
demand on robust image segmentation routines springs from the development
of new emerging technologies, their accessibility, their higher complexity and
dimensionality.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 406–413, 2009.
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Fuzzy set theory assumes that data objects do not belong to one group, con-
cept or other notion but that they may participate in certain number of groups
or concepts. Rough set theory represents a new paradigm in dealing with uncer-
tainty, vagueness, and incompleteness. The spectrum of rough set based practical
applications during last decade has extended into rough–fuzzy rule extraction,
reasoning with uncertainty, rough–fuzzy modeling, image analysis. In [2] authors
have introduced a new clustering method, called rough k -means, which proto-
types each cluster by center and a pair of lower and upper approximations. The
lower and upper approximations are weighted different parameters to compute
the new centers. In [1] authors propose extended version of rough k -means algo-
rithm not requiring prior specification of the number of clusters.

In the paper, extension of the rough k -means algorithm has been proposed
that incorporates the notion of rough entropy of the cluster lower and upper
approximations. Rough entropy framework in image segmentation has been pri-
marily introduced in [6] in the domain of image thresholding routines. Authors
proposed rough entropy measure for image thresholding into two objects: fore-
ground and background object. This type of thresholding has been extended into
multilevel thresholding for one-dimensional and two-dimensional domain in [4].
Further, rough entropy thresholding has been employed in image data clustering
setting in [5].

The paper material consists of outlined in Section 2 rough k -means cluster-
ing algorithmic approaches. In Section 3 rough entropy k-means clustering is
investigated. Experimental setup and results have been presented in Section 4.
Algorithm summarization and concluding remarks are given in Section 5.

2 Rough k-Means Clustering Framework

2.1 Rough Set Theory

An information system is a pair (U, A) where U represents a non-empty finite set
called the universe and A a non-empty finite set of attributes. Let B ⊆ A and
X ⊆ U and ASB is an approximation space (see e.g [7], [9]). Taking into account
these two sets, it is possible to approximate the set X making only the use of
the information contained in B by the process of construction of the lower and
upper approximations of X and further to express numerically the roughness
R(ASB, X) of a set X with respect to B by assignment

R(ASB, X) = 1 − Card(LOW (ASB , X))
Card(UPP (ASB , X))

. (1)

In this way, the value of the roughness of the set X equal 0 means that X is crisp
with respect to B, and conversely if R(ASB , X) > 0 then X is rough (i.e., X is
vague with respect to B). Detailed information on rough set theory is provided
in [7], [8], [9].

Shannon entropy notion describes uncertainty of the system and is defined
as follows E(p1, . . . , pk) =

∑k
l=1 −pl · log(pl) where pl represents probability of
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the state l and l = 1, . . . , k. In this context, combined rough entropy formula is
given as

RE(ASB, {X1, . . . , Xk}) =
k∑

l=1

−e

2
· R(ASB, Xl) · log(R(ASB, Xl)) (2)

where R(ASB, Xl) represents roughness of the cluster Xl, l ∈ {1, . . . , k} indexes
the set of all clusters (

⋃k
l=1 Xl = U and for any p �= l and p, l ∈ {1, . . . , k}

Xp∩Xl = ∅). Fuzzy membership value µCl
(xi) ∈ [0, 1] for the data point xi ∈ U

in cluster Xl (equivalently Cl) is given as

µXl
(xi) =

d(xi, Xl)−2/(µ−1)∑k
j=1 d(xi, Xj)−2/(µ−1)

(3)

where a real number µ represents fuzzifier value that should be greater than 1.0
and d(xi, Xl) denotes distance between data object xi and cluster (center) Xl.

2.2 Rough k-Means Clustering

In rough k-means algorithm proposed in [2], the data objects assigned to the
given cluster are divided into two sets, lower and upper approximation. Lower
and upper approximation have assigned weights that determine the importance
of the approximations. If the upper bound of each cluster is equal to its lower
bound then the cluster is standard conventional crisp cluster. After cluster ap-
proximations have been determined for all clusters, approximation weights are
assigned and new cluster centers are calculated. The procedure is iteratively
repeated until predefined criteria are met.

2.3 Adaptive Rough k-Means Clustering

In [10] authors proposed the method of adaptive parameter selection during
algorithm run. Adaptive parameter selection is based on the assumption that
during iterative data partitioning and subsequent assigning to clusters, initially
upper approximations contribute more to cluster formation as data objects are
not strongly uniform. During subsequent cluster center recalculation, the weight
of the lower approximation increases with simultaneous decreasing the impor-
tance - weight for upper approximations. The author proposed the formulae for
the lower and upper approximation weights.

2.4 Rough Fuzzy k-Means Clustering

In [3] authors proposed extension of the rough k-means algorithm into rough
fuzzy k -means domain that considers lower and upper approximations as fuzzy
sets as opposed to rough approximations in rough k -means clustering. Authors
have incorporated both fuzzy and rough sets in k -means clustering algorithmic
setting referred to as rough - fuzzy k -means (or rough - fuzzy k -means RFCM).
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In this solution the concept of fuzzy membership of fuzzy sets, and lower and
upper approximations of rough sets has been extended into k -means algorithm.
The notion of the membership of fuzzy sets present the tool in efficient han-
dling of overlapping partitions, and the rough sets are aimed at interpretation
of uncertainty, vagueness, and incompleteness in class definition. The proposed
rough-fuzzy k -means clustering method partitions a set of n objects into k clus-
ters by minimizing the objective function.

3 Rough Entropy k-Means Clustering

3.1 Rough Measures

Crisp measure, crisp threshold, difference metric. Standard rough en-
tropy calculation as proposed in [5] incorporates determination of lower and
upper approximations for the given cluster centers and considering these two
set cardinalities during calculation of roughness and further rough entropy clus-
tering measure. Rough measure general calculation routine has been given in
Algorithm 1. In all presented algorithms, before calculations, cardinalities of the
lower and upper cluster approximations should be set to zero. For each data
point xi, distance to the closest cluster Cl is denoted as dmin

dist = d(xi, Cl) and
approximations are increased by value 1 of clusters Cm that satisfy the condition:

|d(xi, Cm) − d(xi, Cl)| ≤ εdist.

3.2 Rough Entropy k-Means Clustering

Proposed clustering algorithm takes as input data objects and number of clus-
ters and k. After creation of initial data clustering, predefined number of weight
pairs is created, for each weigh pair a new offspring clustering Ci is determined.
For each clustering Ci, rough entropy is calculated. From offspring clusterings
a partition is selected with the highest rough entropy measure for further algo-
rithm iterations. The procedure are repeated predefined number of iterations or
until other termination criteria are met. Proposed solution does take into ac-
count lower and upper approximations during recalculation of cluster centers as
opposed to standard rough k -means clustering methods that consider lower ap-
proximations and boundary regions. The formulae for calculation of new cluster
centers based on lower and upper cluster approximations is given as

vl = Wl × Ll + Wu × Ul

where vl denotes new center for cluster Cl, Wl, Wu - weights for lower and up-
per approximations, lower approximation and upper approximation centers are
denoted as

Ll =
1

Card(LOW (Cl))

∑
xj∈LOW (Cl)

xj , Ul =
1

Card(UPP (Cl))

∑
xj∈UPP (Cl)

xj
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Algorithm 1. Crisp - Crisp Difference Rough Entropy
foreach Data object xi do

Determine the closest cluster Cl for xi

Increment LOW(Cl) and UPP(Cl) by 1.0
foreach Cluster Cm �= Cl with |d(xi, Cm) − d(xi, Cl)| ≤ εdist do

Increment UPP(Cm) by 1.0
end

for l = 1 to k (number of data clusters) do
roughness(Cl) = 1 − LOW (Cl)/UPP (Cl)

Fuzzy RE = 0
for l = 1 to number of data clusters do

Fuzzy RE = Fuzzy RE − e
2
· roughness(Cl) · log(roughness(Cl))

Algorithm 2. Rough Entropy k -means Clustering Algorithm
Assign initial cluster centers vi, i = 1, 2, . . . , k.

for l = 1 to I (number of ierations) do
For each cluster determine cluster lower and upper
approximations.
Create weights Wi for lower and upper approximations e.g.
(0, 1), (0.1, 0.9), (0.2, 0.8), . . . , (1, 0).
for l = 1 to number of weight pairs do

Recalculate cluster centers Determine lower and upper
approximations Calculate and remember rough entropy
measure

end
Select clustering with the highest rough entropy measure by
taking its cluster centers as current solution vi, i = 1, 2, . . . , k.

end

Time complexity of rough entropy k -means clustering is comparable to other
rough k -means clustering algorithms.

4 Experimental Setup and Results

4.1 Image Datasets

In this Section experimental setup and experimental results have been presented.
In the experiments, three color images from Berkeley image dataset have been
chosen. The images identifiers are 27059, 86000 and 78004. In the paper im-
ages have been segmented in R − B, R − G, G − B and R − G − B bands.
Additionally, ground truth images are appended in the Berkeley database that
have been considered during computation of maximized Vinet index in order
to assess segmentation quality. The three examined images are presented in
Figure 1.
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a b c

Fig. 1. Berkeley dataset images: (a) 27059 image, (b) 78004 image, (c) 86000 image

4.2 Segmentation Validity Indices

Quantitative Measure: β-index. Measure in the form of β-index denotes the
ratio of the total variation and within-class variation. Define ni as the number
of pixels in the i-th (i = 1, 2, . . . , k) region from segmented image. Define Xij as
the gray value of j-th pixel (j = 1, . . . , ni) in the region i and Xi the mean of ni

values of the i-th region. The β-index is defined in the following way

β =

∑k
i=1

∑ni

j=1 (Xij − X)
2∑k

i=1
∑ni

j=1 (Xij − Xi)
2 (4)

where n is the size of the image and X represents the mean value of the image
pixel attributes. This index defines the ratio of the total variation and the within-
class variation. In this context, important notice is the fact that index-b value
increases as the increase of k number. The value of β-index should be maximized.

Vinet index. The Vinet index compares two different segmentations on the
basis of the Hamming distance between non-maximally intersecting regions.
Given S1 and S2 considered to be two segmentations of the same image, and
S1 = C1

1 , . . . , C1
m and S2 = C2

1 , . . . , C2
n where Cj

i corresponds to the set of pixels
in region i from segmentation Sj - j = 1, 2. Each region C1

i generates a re-
gion C2

k such that the area |C1
i / C2

k | is maximal. The Vinet index between two
segmentations has been defined as

Vs(S1 => S2) =
∑

C1
i ∈S1

∑
C2

j �=C2
k

|C1
i /C2

j |

which denotes the sum of areas of intersection for all non-maximally intersecting
regions. The measure is in the range [0, 1], where N denotes the number of
data objects. In this context, index values that are closer to one denote a better
segmentation compared to segmentations with lower index values.
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4.3 Experimental Results

In the first experiment rough entropy k -means algorithm - RKM has been com-
pared to three standard k -means algorithms: hard k -means clustering - KM,
fuzzy k -means clustering - FKM and possibilistic k -means clustering - PKM. All
algorithms have been performed independently for 100 runs. Average from all
runs have been presented in Table 1 for three selected datasets in two and three
bands.

Table 1. Rough entropy clusterings against standard k -means clusterings for three
selected datasets image measured by β-index values - averaged values over 100 inde-
pendent runs

27059 78004 86000
Bands KM FKM PKM RKM KM FKM PKM RKM KM FKM PKM RKM
RB 13.22 13.37 13.37 13.73 36.04 35.95 35.94 35.73 9.23 9.14 9.22 9.27
BG 13.50 13.35 13.38 13.71 45.65 45.61 45.61 43.48 16.15 15.87 15.97 15.91
RG 25.82 25.77 25.78 24.20 48.83 48.76 48.74 48.42 9.37 9.51 9.55 9.78
RGB 13.47 13.77 13.79 13.87 40.57 40.53 40.52 39.44 8.76 8.46 8.45 8.78

In the second experiment rough entropy k -means algorithm - RKM has been
examined and compared to three standard k -means algorithms: hard k -means
clustering - KM, fuzzy k -means clustering - FKM and possibilistic k -means clus-
tering - PKM. All algorithms have been performed independently for 100 runs.
Average Vinet index values calculated on the basis of Berkeley database ground
truth segmentations for all runs have been presented in Table 2 for three selected
datasets in two and three bands.

Table 2. Rough entropy clusterings against standard k -means clusterings for three
selected images compared on the basis of ground truth Vinet index - averaged values
over 100 independent runs

27059 78004 86000
Bands KM FKM PKM RKM KM FKM PKM RKM KM FKM PKM RKM
RB 0.874 0.906 0.909 0.893 0.970 0.967 0.967 0.971 0.980 0.979 0.980 0.982
BG 0.889 0.922 0.923 0.914 0.971 0.971 0.971 0.974 0.984 0.984 0.984 0.895
RG 0.921 0.919 0.919 0.925 0.969 0.967 0.966 0.970 0.982 0.982 0.982 0.983
RGB 0.892 0.920 0.924 0.898 0.969 0.967 0.967 0.972 0.986 0.986 0.896 0.986

5 Future Research

In the paper, a new algorithmic clustering method based on rough entropy k -
means algorithm has been presented. The algorithm has been precisely defined
and compared relative to standard k -means clustering algorithms on the basis of
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β-index values as segmentation quality and independently on the basis of ground
truth segmentations from Berkeley image database. Experimental results sug-
gest that proposed algorithm yields high quality segmentations and outperforms
existing k -means methods giving possible area for future applications in real
image segmentation systems.
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Abstract. The single-link (SL) clustering method is not scalable with the size of
the dataset and needs many database scans. This is potentially a severe problem
for large datasets. One way to speed up the SL method is to summarize the data
efficiently and subsequently apply the SL method to the summary of the data. In
this paper, we propose a summarization scheme based on a tolerance rough set
theory called data-sphere (DS). The SL method is modified to work with data
spheres. The proposed clustering method takes considerably less time compared
to the classical single-link method which is applied to the dataset directly. The
clustering results produced by the proposed method is very close to that of the SL
method. We also show that proposed summarization scheme outperforms recently
introduced data bubbles (DB) as a summarization scheme when single-link is
applied to it at clustering quality. Experiments are conducted with two synthetic
and two real world datasets to show effectiveness of the proposed method.

1 Introduction

Clustering problem appears in many different fields like Data Mining, Pattern Recog-
nition, Bio-informatics, etc. The Clustering problem can be defined as follows. Let
D = {x1, x2, x3, . . . , xn} be the set of n patterns, where each xi is a N -dimensional
vector in the given feature space. The clustering activity is to find groups of patterns,
called clusters of data in such a way that patterns in a cluster are similar to each other
than patterns in distinct clusters. The clustering methods are mainly divided into two
categories viz., partitional and hierarchical method [1].

Partitional clustering methods create a single partition of the dataset optimizing a
criterion function. Hierarchical clustering methods create a sequence of nested parti-
tions of the dataset. The hierarchical clustering methods (eg: OPTICS [2], Single-link
(SL) [3], Complete-link) do not scale well with the size of the dataset and scan the
dataset several times. One remedy to these problems is to create a summary of the data
first which subsequently is used to find the clusters present in the dataset.

Rough set theory [4] has been extensively used in many applications in recent years
[5]. Tolerance rough set model is a generalization of the rough set theory. In this paper,
we propose a summarization scheme which is based on the tolerance rough set model
(TRSM). The proposed summarization scheme is called data-sphere (DS) . This scheme
uses the leaders clustering method to collect the statistics of each data sphere. Subse-
quently, these data spheres are used with the single-link clustering method to derive the
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clusters of data. The proposed clustering method is called the data sphere single-link
(DS-SL) method. Various empirical evidences are shown to establish the effectiveness
of the DS-SL method over the classical single-link method. We also show that our
proposed clustering method outperforms in clustering results compared to single-link
which uses a recently proposed data bubble (DB) [6] as a summarization scheme. The
proposed method produces consistent clustering unlike DB based single-link method.
The proposed method is especially a suitable one to work with large datasets.

The rest of the paper is organized as follows. Section 2 discusses some background
of the proposed clustering method. Section 3 describes a summary of related research
works. Section 4 describes the proposed summarization scheme (called the DS scheme)
and the proposed clustering method (called the DS-SL method). Experimental evalua-
tions and conclusion are discussed in Section 5 and Section 6, respectively.

2 Background of the Proposed Method

In this section we discuss briefly the rough set theory and tolerance rough set model
(TRSM) for clustering methods. Leaders clustering and single-link clustering method
are discussed in this section. We propose our clustering method exploiting these two
clustering methods and TRSM model.

The fundamental idea of rough set theory is based on an approximation space A =
(U, R), where U is a nonempty set of objects and R is an equivalence relation called in-
discernibility relation on U [4]. R creates a partition U/R of U , i.e. U/R =
{X1, . . . , Xi, . . . , Xp} where each Xi is an equivalence class of R. These equivalence
classes and the empty set are considered as the elementary sets in A. These elemen-
tary sets form the basic granules of knowledge. Any arbitrary set X ⊆ U can be de-
fined by two crisp sets called lower and upper approximation of X . More formally,
one can define the lower and upper approximation as follow. R(X) =

⋃
Xi⊆X Xi;

R(X) =
⋃

Xi∩X �=∅ Xi. The set BND(X) = R(X) − R(X) is called boundary of X

in A. Sets Edg(X) = X − R(X) and Edg(X) = R(X) − X are called internal and
external edge of X in A, respectively.

It is found that the transitive property does not hold in certain application domains
(e.g. document clustering). In that case, a tolerance relation (reflexive, symmetric) is
used [7,8]. In tolerance relation based rough set model (TRSM), the basic granules of
knowledge are the tolerance classes, which are intermingled. Therefore, the tolerance
relation T does not create a partition of U . A set X ⊆ U, can be characterized by the
lower and upper approximations as follow.

T (X) = {x ∈ X : T (x) ⊆ X}; T (X) = {x ∈ U : T (x) ∩ X �= ∅}

where T (x) is a tolerance class. In accordance with the classical rough set theory, we
can define the set TBND = T (X) − T (X) as tolerant boundary. The sets TEdg =
X−T (X) and TEdg = T (X)−X are termed as tolerant internal and tolerant external
edge of X , respectively.

The leaders clustering [9] is a single data-scan partitional clustering method. For a
given threshold distance τ , leaders method produces a set of leadersL = {l1, l2, . . . , lm},
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where li ∈ D, incrementally. Each leader can be seen as a representative for the cluster
of patterns which are grouped with it. The time and space complexity of this method
are O(mn), O(m), respectively, where m = |L|, n = |D|. However, it can find only
convex type clusters. The single-link (SL) [3] is an agglomerative hierarchical cluster-
ing method. In single link, distance between two clusters C1 and C2 is the minimum
of distances between all pairs in C1 × C2. The time and space complexity of the SL
method are O(n2). The SL method scans the dataset many times. These are the serious
drawback while working with the large dataset.

3 Related Work

Different data summarization schemes have been evolved to compress the large data and
apply the existing clustering methods only to the compressed data. One of the widely
used compression schemes is to use the CF tree constructed by the BIRCH [10] clus-
tering method. However, it is suitable only for the k-means type of clustering methods.
For hierarchical clustering methods there exist a very few data compression schemes
which can speed them up. Breunig et al [11] proposed a data summarization scheme
called Data Bubble (DB) to speed up the hierarchical clustering (OPTICS) method.
Subsequently, Zhou and Sander [6] introduced “directional” notion to the data bubble
in order to measure distance between data bubbles more accurately and to handle the
’gaps’ in a data bubble. In this approach, patterns of a data bubble are divided in the
directions of all other data bubbles and statistics of patterns are stored w.r.t. all other
data bubbles. They showed that this approach of DB outperformed other approaches of
DB [11] when the OPTICS method is applied to it.

T. Ho et al. [12] introduced a document clustering method which is based on TRSM
of a tolerance class of the index terms of all documents. P. Kumar et al. [13] introduced
a fast hierarchical agglomerative clustering method based on the TRSM for sequential
data. They showed that their method outperformed the complete-link method. However,
all these clustering methods assume that entire dataset remains in main memory of the
machine. This assumption might not be feasible for large datasets.

3.1 Application of Single-Link Method to the DB

As a summarization scheme DB works fine when OPTICS is applied to it. However, it
is not clear whether it can produce consistent clusterings when SL is applied to it. We
tested the DB with a dataset (Spiral) of size 3330. The clustering results of DB based
single-link are compared with the classical single-link using the Rand Index [14]. We
found that clustering results are very much inconsistent (Table 1). This is due to the
following facts.

– DB selects patterns randomly. Selected patterns do not cover all clusters.
– DB may detect gaps present in a data bubble. However, reassignment of some pat-

terns (restructing the data bubble) are not suggested. Therefore, a cluster loses some
patterns to other clusters.
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Table 1. Results produced by DB based SL method

Dataset #DB Rand Index
Spiral 266 0.499-1.000

208 0.503-0.767

4 The Proposed Summarization and Clustering Method

To overcome the deficiencies of DB when SL is applied to it, we propose a summariza-
tion scheme, which is based on the TRSM. This new summarization scheme is called
data sphere (DS). We have used DS to speed up the single link clustering method.

4.1 The Summarization Scheme

The new summarization scheme utilizes the leaders clustering method and tolerance
rough set theory. Let the leaders threshold distance be τ and L = {l1, l2, . . . , lm} be the
set of all leaders of the dataset D. For a pattern x and leader l1, l2 (||l1−l2|| <= 2τ), we
may observe a scenario such that ||l1 − x|| <= τ, ||l2 − x|| <= τ . Then x is eligible
to be the follower of both leaders. However, leaders clustering method assigns it to a
leader which one is observed first (say l1). The through study shows that clapping of
pattern x with leader l1 may restrict to have proper cluster-structure in data. If we allow
x to be the member of l2 also, we may recover the cluster-structure in further analysis.
Therefore, we virtually allow l1, l2 to share pattern x. Let Lr = {lr1, lr2, . . . , lrm} be
the set of leaders where a leader can share patterns with others. We call lri ∈ Lr as
a rough leader and the Lr as a set of rough leaders. Note that there is a one to one
correspondence between the set L and Lr.

Now we can apply the TRSM to the dataset D. We consider dataset D = U for our
TRSM. Let T ⊆ D ×D be a tolerance relation. One can define a tolerance class based
on the proximity of the patterns in the dataset.

Definition 1 (Tolerance class). If x ∈ D, then the tolerance class of x is
T (x) = {xj ∈ D | ||x − xj || <= δ}δ∈R+ �

Therefore, tolerance class of a pattern x is a set of patterns whose distance from x is
less than a given threshold δ. We assume the value of δ = τ/2. One can define lower
approximation and tolerant internal edge of a leader {lr} ⊆ D are as follow.

Definition 2 (Lower approximation). Let T be a tolerance relation on D and lr be
a leader obtained by leader threshold distance τ . The lower approximation of {lr} is
T ({lr}) = {xj ∈ D | ||lr − xj || <= δ} �

Definition 3 (Tolerant internal edge). Let T be a tolerance relation on D and lr be a
leader obtained using threshold distance τ . The tolerant internal edge of {lr} is defined
as TEdg({lr}) = {xj ∈ D | τ/2 < ||lr − xj || <= τ} �
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Definition 4. Let l1 and l2 be the two leaders. The set of followers of l1 in the direction
of l2 and set of followers of l2 in the direction of l1 are l

(l2)
1 and l

(l1)
2 , respectively.

l
(l2)
1 = {x ∈ {l1} : ||l2−x|| ≤ ||l1− l2||}; l(l1)2 = {x ∈ {l2} : ||l1−x|| ≤ ||l1− l2||}�

We modified the leaders clustering in such a way that each leader stores the statistics of
its followers in the direction of (w.r.t.) all other leaders. The leader l1 stores statistics w.
r. t. l2 in the form

(k(l2), l1, ld
(l2), sd(l2), T (l2)({lr1}), |T (l2)

Edg({lr1})|, |Com
(l2)
l1

|, ld(l2)
Edg, sd

(l2)
Edg)

where k(l2) = |l(l2)1 |,
ld(l2) =

∑k(l2)

j=1 dj , sd(l2) =
∑k(l2)

j=1 d2
j , dj = ||l1 − xj ||, where xj ∈ l

(l2)
1

T (l2)({lr1}) = {xj ∈ T ({lr1}) : ||lr2 − xj || ≤ ||l1 − l2||}.
T

(l2)
Edg({lr1}) = {xj ∈ TEdg({lr1}) : ||lr2 − xj || ≤ ||l1 − l2||},

Com
(l2)
l1

= {x ∈ D : τ/2 < ||x − l1||, ||x − l2|| ≤ τ}; ld
(l2)
Edg =

∑
i=1 di;

sd
(l2)
Edg =

∑
i=1 d2

i , di = ||l1 − xi||, where xi ∈ l
(l2)
1 , ||l1 − xi|| > τ/2.

The set of shared patterns Com
(l2)
l1

between (lr1, l
r
2) are actually grouped with leader

l1 ∈ L as l1 is observed prior to l2. A leader l with statistics of its followers w.r.t. all
other leaders is termed as data sphere (DS), l being the representative pattern. The set
S is the summary of the whole dataset. It is noted that followers of leader l ∈ L are also
the members of a data sphere S ∈ S, whose representative is l. In the next section, we
discuss how this summary of the data can be clustered using the single-link method.

4.2 The Proposed Clustering Method

To apply the single-link clustering method to the set S, we need to define a distance
function dist : S × S → R≥. Let the average and standard deviation of distances

from l1 to its followers w.r.t. l2 be µ
(l2)
l1

and σ
(l2)
l1

, respectively. Similarly, µ
(l1)
l2

and

σ
(l1)
l2

be the average and standard deviation of distances from l2 to its followers w.r.t.

l1, respectively. The µ
(l2)
l1

and σ
(l2)
l1

are calculated as follow.

µ
(l2)
l1

= ld(l2)

k(l2) ; σ
(l2)
l1

=
√

sd(l2)

k(l2) − (µ(l2)
l1

)2; Similarly, one can calculate µ
(l1)
l2

and

σ
(l1)
l2

for the data sphere S2.

Definition 5 (Distance between two data spheres). The distance between a pair of
data spheres S1 and S2 is defined as
dist(S1, S2) = max(||l1 − l2|| − (µ(l2)

l1
+ 2σ

(l2)
l1

) − (µ(l1)
l2

+ 2σ
(l1)
l2

), 0).

We have few cases while finding the effective distance between a pair of data spheres
S1, S2 (S1 appears prior to S2) as follow.
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1. dist(S1, S2) = 0, if ||l1 − l2|| < 2τ and the following conditions are satisfied
simultaneously,
(a) If lower approximation of lr1 intersects with lr2 and vice-versa.
(b) If there is any pattern in tolerant internal edge of lr2 except the patterns in lower

approximation of lr1.
2. If ||l1 − l2|| < 2τ , then one data sphere (say S1) may contain patterns from two

different clusters. As a result, S1 may have gap (a region having no patterns) in the
direction of l2 ∈ S2 or vice versa (Fig. 1). We handle these gaps reassigning correct
position of patterns from one DS to other DS. We have few scenarios as follow.

(a) S1 contains gap in the direction of S2 if the following conditions are satisfied
simultaneously, (i) If lower approximation of lr1 does not intersect with lr2.
(ii) If lower approximation of lr2 intersect with lr1. (iii) If there is no pattern
in the tolerant internal edge of lr1 except the shared pattern pattern Coml2

l1
.

In this case, the region of lr2 is having more patterns towards lr1 than lr1 w.r.t.
lr2. Therefore, the shared patterns (Coml2

l1
) should be with S2. The method

removes the shared patterns from S1 and adds to S2. Update the statistics.
ldl2 = ldl2 − |Com

(l2)
l1

| ∗ ( ldl2

kl2 ); sdl2 = sdl2 − |Com
(l2)
l1

| ∗ ( ldl2

kl2 )2; ldl1 =

ldl1+|Com
(l2)
l1

|∗(||l1−l2||− ldl2

kl2 ); sdl1 = sdl1+|Com
(l1)
l2

|∗(||l1−l2||− ldl2

kl2 )2.
(b) S2 contains gap in the direction of S1, if the converse of the above conditions

((a)(i), (ii), (iii)) hold simultaneously (Fig 1b). However, re-assignment is not
required as shared pattern (Coml2

l1
) are already grouped with S1.

(c) S1 contains gap in the direction of S2 if the following conditions hold (Fig. 1c)
(i) If only tolerant edges of lr1 and lr2 intersect. (ii) Let number of patterns of
internal edge of lr1 and lr2 excluding the shared patterns (Coml2

l1
) be c1 and c2,

respectively. If the ratio of c1 and c2 is not more than a given threshold h(0.5).
In this case re-assignment is necessary. The proposed method removes shared
patterns from S1 and adds to S2. It updates the corresponding statistics (Same
as 2(a)).

Therefore, dist(S1, S2) = max(||l1 − l2|| − (µ(l2)
l1

+ 2σ
(l2)
l1

) − (µ(l1)
l2

+ 2σ
(l1)
l2

), 0).
Having calculated the all-pair distances of data sphere and subsequently re-structed

the data spheres, we apply the single-link clustering method to the data spheres. This
gives a set of clusterings of the data spheres. Next we replace each data sphere by its

Tolerant internal edge

lower approximationpatterns

τ

τ/2

Gap in l2

a)
b)

c)

lr2 lr1 lr2lr1
Densed region in l2, gap in l1

lr1 lr2

Fig. 1. (a) Lower approx. of lr1 and tolerant internal edge of lr2 intersect each other.; (b) Lower
approx. of lr1 intersects with tolerant internal edge of lr2, T (l1)(lr2) ∩ T

(l2)
Edg({lr1}) = ∅; (c)

Intersection of two tolerant internal edges.
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Algorithm 1. DS-single-link(D, τ )
Apply leaders clustering method to D. Let L = {l1, l2, . . . , lm}. be the set of leaders.
Compute the statistics of each leader l1 w. r. t. to every other leader l2
for each leader lr1 ∈ S do

for each leader lr2 ∈ S : l1 �= l2 do
if (||lr1 − lr2|| ≤ 2τ ) then

if (lower approx. of lr1(lr2) intersects with lr2(lr1) and intersection of internal edges �= ∅)
then

dist(S1, S2) = 0 ; {Two data spheres are part of a cluster.}
else if (lower approx. of lr1 intersects with lr2 and (lr1∩ common edges) �= ∅ ) then

dist(S1, S2) = 0; {No reassignment of patterns}
else if (lower approx. of lr1 not intersect with lr2 but lower of lr2 does and (lr2∩ common
edges) �= ∅) then

Add Com
(l2)
l1

and lower approx. of lr2 to S2; Remove these from S1.

Update ldl2 , sdl2 , ldl1 , sdl1 , k(l1), k(l2); {There is a gap in S1 w.r.t. l2}
end if

if (Com
(l2)
l1

�= ∅ and (
|T (l2)

Edg
({lr1})\Com

(l2)
l1

|

|T (l1)
Edg

({lr2})\Com
(l2)
l1

|
) <= h ) then

Add Com
(l2)
l1

to S2 and remove from S1; Updates ldl2 , sdl2 , ldl1 , sdl1 , k(l1), k(l2)

end if
end if
Calculate µ

(l2)
l1

, σ
(l2)
l1

, µ
(l1)
l2

, σ
(l1)
l2

dist(S1, S2) = max(||l1 − l2|| − (µ(l2)
l1

+ 2σ
(l2)
l1

) − (µ(l1)
l2

+ 2σ
(l1)
l2

), 0)
end for

end for
Apply SL to S . Let the result be πS = {π1, π2, . . . , π|S|}, set of clusterings of S .
Expand each Si ∈ πi ∈ πS . Therefore, πD={πD1 ,πD2 ,...,πD|S|}. Output πD

members. Finally, we get a set of clustering of the dataset D. The whole scheme of
summarization and subsequently the clustering method are noted as in Algorithm 1.
The overall time and space complexity of DS-SL are O(mn) and O(m2), respectively,
m = |L|. The proposed method scans the dataset twice.

5 Experimental Results

Experiment are conducted with two synthetic and two real world datasets (UCI) after
removing the class labels. To show the effectiveness of our proposed summarization,
we implemented three clustering method namely, classical SL, DB based single-link
(DB-SL) and our proposed DS-SL method in Intel Xeon CPU (3.6GHz) with 8GB
RAM Server. Table 2 shows the detailed performance of the three clustering methods
for different datasets. The Compression Ratio (CR) is defined as CR = n/m where, m
is the cardinality of the representative set of the data. We used Rand Index (RI) [14] to
compare the clusterings produced by the three methods. For this purpose, we considered
the clustering of each method in which number of clusters are same as number of classes
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Table 2. Results for different datasets

Dataset Size #Feature #Class CR Method Time Rand Index
(n) n

m (in sec.) (RI)
Spiral 3330 2 2 12.5 DS-SL 0.1 1.000

(Synthetic) DB-SL 0.1 0.499-1.000
SL 40.1 –

Circle 28000 2 4 50.9 DS-SL 1.5 1.000
(Synthetic) DB-SL 0.9 1.000-1.000

SL 36,415.3 –
Pendigits 7494 16 10 12.2 DS-SL 1.6 0.985

DB-SL 1.5 0.742-0.985
SL 692.90 -

a8a 32561 123 2 12.4 DS-SL 145.5 0.998
DB-SL 141.6 0.849-0.866

SL 74,108 -

Table 3. Results for Circle dataset

#cluster Method Rand Index
(RI)

2 DS-SL 1.000
DB-SL 1.000

3 DS-SL 0.749
DB-SL 0.745

4 DS-SL 1.000
DB-SL 1.000

5 DS-SL 0.973
DB-SL 0.968

6 DS-SL 0.958
DB-SL 0.946

7 DS-SL 0.928
DB-SL 0.913

of the datasets. RI (Table 2) is computed between the partitions produced by SL, DS-
SL and SL, DB-SL methods. The results produced by the proposed method are same or
very close to that of the SL method. The clustering quality (RI) at different levels of
hierarchy produced by DS-SL is also superior than that of the DB-SL method(Table 3).

6 Conclusion

The single-link is not scalable method and scans the dataset many times. DB could not
produce a consistence results if SL is applied to it. In this paper we studied thoroughly
the shortcoming of the DB as a summarization scheme. We proposed a TRSM based
summarization scheme to overcome the shortcoming of the DB. Our proposed (DS-
SL) method produces a good clusterings consistently. It takes considerably less time
compared to that of the classical SL method. The clustering results produced by the
DS-SL method is very close to that of the SL method. The DS-SL method outperforms
DB based SL method at clustering quality.
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Abstract. The clusters tend to have vague or imprecise boundaries in
some fields such as web mining, since clustering has been widely used.
Fuzzy clustering is sensitive to noises and possibilistic clustering is sen-
sitive to the initialization of cluster centers and generates coincident
clusters. Based on combination of fuzzy clustering and possibilistic clus-
tering, a novel possibilistic fuzzy leader (PFL) clustering algorithm is
proposed in this paper to overcome these shortcomings. Considering the
advantages of the leader algorithm in time efficiency and the initializa-
tion of cluster, the framework of the leader algorithm is used. In addition,
a λ-cut set is defined to process the overlapping clusters adaptively. The
comparison of experimental results shows that our proposed algorithm
is valid, efficient, and has better accuracy.

Keywords: Fuzzy clustering, possibilistic clustering, leader clustering,
possibilistic fuzzy leader clustering.

1 Introduction

Cluster analysis has been widely applied in many areas such as data mining,
web mining, geographical data processing, medicine, classification of statistical
findings in social studies and so on. When talking about web mining, clustering
faces several additional challenges, compared to traditional applications [5]. The
clusters tend to have vague or imprecise boundaries. There is a likelihood that
an object may be a candidate for more than one cluster. In addition, due to noise
in the recording of data and incomplete logs, the possibility of the presence of
outliers in the data set is quite high.

Some researchers have focused on solving the uncertain clustering with fuzzy
sets theory, and one of the most popular and efficient clustering algorithms in
conventional applications is Fuzzy C-Means clustering (FCM) algorithm pro-
posed by Bezdek [3], and most fuzzy clustering approaches are derived from the
FCM algorithm. The FCM uses the probabilistic constraint that the member-
ship of a data point across classes sum to 1. The constraint is used to generate
the membership update equations for an iterative algorithm. The memberships
resulting from the FCM and its derivatives, however, do not always correspond
to the intuitive concept of degree of belonging or compatibility. Moreover, the
algorithms have considerable trouble in noisy environments.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 423–430, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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To overcome the shortcoming, Krishnapuram and Keller propose a Possi-
bilistic C-Means clustering (PCM) algorithm [6] based on possibilistic theory,
where they construct an appropriate objective function instead of the inherently
probabilistic constraint used in the FCM. Noise points will have low degrees of
compatibility in all clusters in the PCM, which makes their effect on the cluster-
ing negligible. However, the PCM is very sensitive to the initialization of cluster
centers and generates coincident clusters [2].

To combat the shortcomings of the FCM sensitive to noises and the PCM
sensitive to the initialization of cluster centers, a Possibilistic Fuzzy c-Means
Clustering (PFCM) Algorithm is proposed [8], where the number of the cluster
centers are decided by the fields experts. However, it is difficult to know there
are how many clusters in many complicated and uncertain fields in advance. In
this paper, we will focus on the uncertain clustering problem where clusters have
vague or imprecise boundaries.

Some algorithms [1,4,7,11] have been proposed to cluster uncertain data sets.
Lingras [7] proposes a k-means cluster algorithm based on the rough sets theory.
Asharaf and Murty [1] proposes an adaptive rough fuzzy leader algorithm based
on the rough sets theory, where the upper and lower approximates are expressed
by the threshold values which are decided by the experiential experts. Wu and
Zhou [11] proposes a possibilistic fuzzy algorithm based on c-means clustering,
and Chen [4] proposes a possibilistic fuzzy algorithm based on the uncertainty
membership. However, the efficiency of the methods are not satisfied because
there are more than one scan the data set and there are too many iterations.

Considering that the leader clustering algorithm [9] makes only a single pass
through the data set and finds a set of leaders as the cluster representatives,
we will use the framework of leader cluster in our work to improve the time
efficiency. In order to process the vague or imprecise boundaries, a λ-cut set is
defined to partition the recorders “soft”. In short, based on combination of fuzzy
clustering and possibilistic clustering, a novel Possibilistic Fuzzy Leader (PFL)
cluster method will be studied in this paper. The PFL solves the noise sensitivity
defect of the FCM, and overcomes the coincident clusters problem of the PCM.

The rest of this paper is structured as follows. First, we introduce some basic
concepts about clustering. A novel possibilistic fuzzy leader (PFL) clustering
algorithm is proposed in Section 3. The experiment results in Section 4 show
that the PFL algorithm is valid, efficient, and better accuracy. Some conclusions
will be given in Section 5.

2 Basic Concepts

Firstly, let us review the concept of clustering. Clustering labeled data set X =
{CP1, . . . , CPi, . . . , CPn} is the partitioning of X into c ∈ [1, n] subgroups such
that each subgroup represents “natural” substructure in X. This is done by
assigning labels to the vectors in X. A c-partition of X is a set of (cn) values
uik that can be conveniently arrayed as a matrix U = [uik]c×n. Generally, we
use L = {L1, . . . , Lc} to denote a vector of (unknown) cluster centers (weights
or prototypes).
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The popularity of the leader clustering method [9] is due to the fact that the
algorithm makes only a single pass through the data set and finds a set of leaders
as the cluster representatives. Here, a cluster is also called a leader.

The leader clustering algorithm uses a user specified threshold τ and the
framework of the algorithm can be stated as follows:

1. Start with any of the patterns as the initial leader
2. For each pattern in the data set do

(1) Find the nearest leader Lj for the current pattern CPi from the set of
all currently available Leaders

(2) If the distance d(CPi, Lj) < τ assign CPi to the cluster represented by
Lj , else add CPi as a new leader

At any step, the algorithm assigns the current pattern(feature points) CPi to
the most similar cluster (leader) or the pattern itself may get added as a leader
if its similarity with the current set of leaders does not qualify it to get added to
any of the clusters based on a user specified threshold. The found set of leaders
acts as the prototype set representing the clusters and is used for classifying the
test data.

3 Possibilistic Fuzzy Leader Clustering Algorithm

This section explains some ideas and notations used in the possibilistic fuzzy
leader (PFL) clustering algorithm, which divides the data set into a set of over-
lapping clusters.

3.1 Membership Function

Generally speaking, the similarity between the current pattern CPi and the
cluster Lk is more likelihood to measure the membership (in sense of “belonging”
or “typicality”) of CPi to cluster {Lk}. Hence we extend the equation used in
[3] to define the membership function.

Definition 1. Let sim(CPi, Lk) is the similarity of the current pattern CPi to
the cluster {Lk}. The similarity can be user-defined according to the fields. Nl

is the number of the current clusters(leaders), and 1 ≤ k ≤ Nl ≤ c. m ∈ [1,∞)
is a weighting exponent called the fuzzifier. Then the membership function is:

uik =

⎛⎝ Nl∑
j=1

(sim(CPi, Lk)/sim(CPi, Lj))2/(m−1)

⎞⎠−1

(1)

The membership function can help the patterns group to the cluster center,
which is a good clustering.
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3.2 Possibility Distribution Function

As we have discussed, the possibility theory is combined here. To extend the
equation used in [6], we have the following definition.
Definition 2. The possibility distribution function is

tik =

[
1 +

(
sim2(CPi, Lk)

ηi

) 1
p−1

]−1

(2)

Here, the value of p determines the fuzziness of the final possibilistic c-partition
and the shape of the possibility distribution. A value of 2 for p yields a very
simple equation for the membership updates. Fortunately, p = 2 seems to give
good results in practice.

The value of ηi needs to be chosen depending on the desired bandwidth of
the possibility distribution for each cluster. According to the theorem in [6], we
define the ηi as followed.

ηi = K

∑Nl

k=1 um
iksim2(CPi, Lk)∑Nl

k=1 um
ik

(3)

Eq.(3) makes ηi proportional to the average fuzzy intra-cluster distance of cluster
{Li}. Here K > 0, typically K is chosen to be 1.

3.3 λ-Cut Set

In order to process the overlapping feature points(pattern), the concept of a λ-
cut set is used here. Let A be a fuzzy set on universe X, given a number λ in [0, 1],
an λ-cut, or λ-level set, of a fuzzy set is defined by[12]: Aλ = {x ∈ X | uA ≥ λ},
which is a subset of X.

Let uic1 = max{uik}, tic2 = max{tik}. Obviously, the CPi is most likely
belonging to the leader Lc1 or Lc2 . Hence, in the PFL algorithm, we assign the
current pattern CPi to the Lc1 or Lc2 determinately. Then, we meet the following
questions. Does the CPi belong to others cluster? What clusters are they?

According to the quality of the λ-cut set of a fuzzy set, uik ≥ λ means that
the current pattern CPi is likelihood belonging to the cluster {Lk}, so the CPi

can be assigned to the cluster {Lk}.
To reduce the number of thresholds, we define the adaptive λ formula as

followed.

Definition 3. The adaptive threshold efficiency λ is defined as:

λ =
(

1 − Sim(CPi, Lc∗)
AU

)
× min(uic1 , uic2) (4)

Here, uic∗ = min(uic1 , uic2), AU =
∑Nu

s=1 Sim(CPi, Ls), and Lc∗ means the
cluster which have the smaller uik. Nu means the number of unvisited lead-
ers(clusters) after the CPi is assigned to Lc1 or Lc2 determinately. That is:

Nu =
{

Nl − 1 if c1 = c2, CPi is assigned to cluster {Lc1}
Nl − 2 if c1 �= c2, CPi is assigned to cluster {Lc1} and {Lc2}
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3.4 Description of the PFL Algorithm

The framework of the leader clustering is used here to improve the time efficiency,
since there are only one single scanning the data set.

In order to process the vague or imprecise boundaries, namely, to divide the
data set into a set of overlapping clusters, there are more thresholds used in
the literatures mentioned above, which makes the results more depending on
experience. In contrast, there is only one threshold τ used in the framework of
the PFL just because it is used in the framework of the leader clustering. An
adaptive method is proposed to reduce the number of thresholds.

Firstly, according to the values of membership function and possibility dis-
tribution function, we decide the current pattern CPi whether assign to one
or two exist clusters determinately. Then, to decide the CPi go to the clusters
represented by the λ-cut sets, where the threshold λ is adaptive decided. The
description of the PFL algorithm is as following.

PFL Algorithm : Possibilistic Fuzzy Leader Clustering Algorithm
Input : X = (CP1, CP2, . . . , CPi, . . . , CPn).
Output: the result of clustering L = {L1, . . . , Lk, . . . , Lc}.
begin
Produce a random number r ∈ [1, n], exchange CP1 and CPr;
Initially, the leader {L1} = {CP1};
Nl = 1; //the number of leaders
for (i = 2; i ≤ n; i + +) do

for (k = 1; k ≤ Nl; k + +) do Compute Sim(CPi, Lk);
for (k = 1; k ≤ Nl; k + +) do Update the uik according to Eq.(1);
Update the value of ηi according to Eq.(3);
for (k = 1; k ≤ Nl; k + +) do Update the tik according to Eq.(2);
uic1 = max({uik}); tic2 = max({tik});
if Sim(CPi, Lc1) < τ && Sim(CPi, Lc2) < τ then

if c1 = c2 then {Assign CPi to the leader {Lc1}; Nu = Nl − 1;}
else {Assign CPi to the leader {Lc1} and {Lc2}; Nu = Nl − 2;}
if Nu > 1 then

Compute the λ according to Eq.(4);
for (k = 1; k ≤ Nu; k + +) do

if uik ≥ λ then Assign CPi to the leader {Lk};
end

end
end
else

Nl = Nl + 1;
CPi to be a new Leader, namely, {LNl

} = {CPi};
end

end
Output all the {Lk}.
end
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4 Experimental Results

In this section, we show several experiments to illustrate the ideas presented in
the previous section.

The first experiment is on a simple manual data set, which involves four-
separated clusters of 50 points (patterns) each. The FCM algorithm and PFL
algorithm are implemented and used here. The results are shown in Fig.1, part
(a) describes the data set.

Parts (b) and (c) of Fig.1 show the final clustering results obtained from
the FCM algorithm and the PFL algorithm, respectively. Obviously, the FCM
algorithm is difficult to label the vague boundaries correctly, and there are 10
points classed incorrectly, which are presented by the circles in the figure. But
for the PFL algorithm, there are no points classed incorrectly. We can see, some
boundary points are put into the different clusters, which is more reasonable in
some cases such as web mining.

Part (d) of Fig.1 shows the manual data set when noise is added, and the
noise points are denoted by asterisk. Parts (e) and (f) of Fig.1 show the final
partition obtained from the FCM algorithm and the PFL algorithm when noise
is added, respectively. In part (e), the elliptical areas are the resulting from the

(a)

(b)

(c)

(e)

(d)

(f)

Fig. 1. Results on a manual data set: (a) the manual data set; (b) clustering result
from the FCM algorithm; (c) clustering result from the PFL algorithm; (d) the manual
data set when noise is added; (e) clustering result from the FCM algorithm when noise
is added; (f) clustering result from the PFL algorithm when noise is added
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noise points, and the rectangular areas are the inaccurate clustering results. In
part (f), the elliptical areas are the resulting from the noise points, and the
rectangular areas are the overlapping area for the boundaries. In fact, the noise
points added are vague and uncertain, it is more reasonable to divide them into
more than one cluster.

To compare the parts (e) with (f), the FCM increases the error rate of clus-
tering, and there are some error labels in the noise areas. But there are no points
labeled incorrectly in the PFL algorithm. The PFL algorithm divides the noise
points to more than one cluster just as the reality.

In order to compare the algorithms, we have done another experiment, where
some data sets from UCI repository [10] are used. The Iris data set contains 3
classes of 50 instances each, where each class refers to a type of iris plant. The
Optdigits data set, optical recognition of handwritten digits data set, contains
10 classes and 64 dimensions. The K-Means algorithm, FCM algorithm, PFL
algorithm are implemented and used here, and the CPU time and the accuracy
rate are tested. The results of the experiments are shown in Table 1.

Table 1. Comparison of the CPU time and Results of the Algorithms

Database |X| Algorithm K-Means Algorithm FCM Algorithm PFL
Accuracy rate CPU(s) Accuracy rate CPU(s) Accuracy rate CPU(s)

MD 1 200 0.93 1.754 0.95 1.721 1.00 1.651
MD 2 200 0.92 1.723 0.94 1.712 1.00 1.661
Iris 150 0.87 2.725 0.89 2.734 0.99 2.239

Optdigits 500 0.69 5.532 0.74 5.334 0.82 3.506

In Table 1, |X| is the number of samples in the database, MD 1 is the manual
data set, and MD 2 is the MD 1 when noise is added, which are used in the
previous experiment and denoted in Fig.1.

From Table 1, we can find that Algorithm PFL developed in this paper are fea-
sible to cluster. Algorithm PFL has the highest accuracy rate and the least CPU
running time. Algorithm PFL not only improves the performance of clustering,
but also decreases the time expense.

5 Conclusion

The clusters tend to have vague or imprecise boundaries in some fields such as
web mining. There is a likelihood that an object may be a candidate for more
than one cluster. Fuzzy clustering is sensitive to noises and possibilistic cluster-
ing is sensitive to the initialization of cluster centers and generates coincident
clusters. Hence, based on combination of fuzzy clustering and possibilistic clus-
tering, a novel possibilistic fuzzy leader (PFL) clustering algorithm is proposed
in this paper, which can divide the data set into a set of overlapping clusters. To
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combat the time efficiency, the framework is based on leader clustering, there are
much less iteration. In addition, a λ-cut set is defined to process the overlapping
clusters adaptively. The comparison of experimental results shows that the new
method is also more immune to noise and has better accuracy.
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Abstract. Fuzzy techniques have been used for handling vague bound-
aries of arbitrarily oriented cluster structures. However, traditional clus-
tering algorithms tend to break down in high dimensional spaces due
to inherent sparsity of data. In order to model the uncertainties of
high dimensional data, we propose modification of objective functions
of Gustafson Kessel algorithm for subspace clustering, through auto-
matic selection of weight vectors and present the results of applying the
proposed approach to UCI data sets.

Keywords: Gustafson Kessel algorithm, High dimensional data, Sub-
space clustering, Validity Measures.

1 Introduction

Clustering is a useful tool for analyzing data by quantitative determination of
underlying structures [12]. Various similarity measures such as probability dis-
tributions, regression, correlation, hypothesis testing and distance methods have
been used for discovering patterns. However, real world data sets often suffer
from curse of dimensionality due to inherent sparsity of high dimensional data
[17]. Traditional clustering algorithms fail in identifying hidden relationships
of underlying structure due to the reason that the nearest neighbor of a pat-
tern may be nearly as close as farthest neighbor, if distance is computed in full
dimensional space[15]. To cope with the problem of high dimensional feature
spaces, feature reduction and feature selection techniques have been used in the
literature [12]. Feature reduction techniques project the whole feature space to a
lower dimensional subspace so that cluster structures become apparent. However,
feature reduction techniques cannot demonstrate patterns clustered differently
in varying subspaces. Traditional feature selection techniques such as principal
component analysis (PCA) have been used in multivariate statistics, methods
based on singular value decomposition have been used in information retrieval
to transform the attributes. Feature selection suffers from usability problem as
it becomes hard to interpret the results intuitively [17]. Hence, there is a need
for more generalized techniques that can be used to obtain meaningful clusters.
Agrawal et al. introduced the concept of projective clustering [19] to generate
clusters in distinctive subspaces of multidimensional space so that intra cluster
similarity is maximized and inter cluster similarity is minimized. Elke et al. pro-
posed an algorithm to discover cluster in arbitrarily oriented subspaces [5]. The
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pioneering approaches to projected clustering can be classified into three cate-
gories: grid based approaches such as CLIQUE [19] and MAFIA [9], approaches
based on density connectivity such as SUBCLU [17], and partitioning and/or
hierarchical approaches like PROCLUS [3]. CLIQUE is a grid based algorithm
that partitions the whole data space into non-overlapping rectangular units. It
uses an apriori-like method to recursively navigate through the set of possible
subspaces in a bottom up way. It works on the principle that if a k-dimensional
unit is dense, then all (k-1)-dimensional units will also be dense. It merges the
dense units to form clusters over large subspaces. SUBCLU is a greedy algo-
rithm that computes all density connected sets. It detects arbitrarily shaped
and positioned clusters in subspaces. PROCLUS is based on the concept of k-
medoid clustering. It explores the locality of space near medoids to determine
relevant dimensions. It uses a greedy hill climbing technique to iteratively search
for medoids. SCHISM[18] extends CLIQUE using a variable threshold in order
to cope up with varying number of dimensions and makes use of grid based dis-
cretization for pruning. FIRES[16] is a generic framework based on approximate
subspace cluster computation. EDSC[11] is a multi step filter and refinement
algorithm meant for density based subspace clustering. DUSC[10]introduces the
concept of dimensionality bias and performs density based clustering using sta-
tistical techniques for pruning. Classically, the clustering has been based on the
disjointness condition that no two patterns belong to same cluster[9]. However,
in real data sets a pattern may belong to various clusters and a dimension may
be relevant to various clusters with varying degree of membership [1]. Hence,
such situations require weakening of disjointness condition. Ruspini[6] devel-
oped the first fuzzy clustering algorithm based on least-squares optimization.
Dunn[14] developed a fuzzy extension of this approach to clustering and pro-
posed the fuzzy k-means algorithm. Bezdek [13] extended Dunn’s formulation
and proposed a generalization of conventional hard c-means clustering by fuzzy
partitioning of data. However, fuzzy c-means cannot detect arbitrarily oriented
clusters[12]. Gustafson and Kessel[4] proposed GK algorithm based on adaptive
distance measure. In [2] Babuka et. al proposed Improved covariance estimation
for Gustafson-Kessel clustering. We extend the Gustafson Kessel objective func-
tion for projective clustering which automatically detects the relevant cluster
dimensions of high dimensional data set. Experimental results indicate that it
enhances the efficiency of clustering solution by simultaneously pruning away
the irrelevant subspaces. The structure of this paper is as follows: in section 2,
we extend the Gustafson Kessel algorithm for subspace clusterting. In section
3 results based on UCI and synthetic data are presented, and finally section 4
contains conclusions and suggestions for future work.

2 Projected Gustafson Kessel Clustering

In this section, we introduce the necessary notations, review the GK algorithm
[4] and formulate a new objective function for adapting it to subspace clustering.
Fuzzy c-means[13] is subject to the constraint that it can detect only spherical
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clusters. The Gustafson-Kessel algorithm [4] associates each cluster with the
cluster centre and its covariance. The main feature of Gustafson Kessel clus-
tering is the local adaption of distance matrix in order to identify ellipsoidal
clusters. Given a data set X = {x1, x2, ..., xN} in the d-dimensional space and
the number of clusters k, the objective is to determine the cluster prototype
Z = {z1, z2, ..., zk} and to partition the data set X into clusters. A fuzzy parti-
tion of the data set X can be represented by a k × N matrix U = [µij ], where
µij denotes the degree of membership with which jth pattern belongs to the ith

cluster, for 1 < i ≤ k, 1 ≤ j ≤ N . The matrix U is called the fuzzy partition
matrix. It satisfies the following conditions:

µij ∈ [0, 1], 1 ≤ j ≤ N, 1 ≤ i ≤ k, (1)

k∑
i=1

µij = 1, 1 ≤ j ≤ N, (2)

The above constraints express the fact that the sum of memberships of a pattern
over the set of clusters must be equal to 1. The fact that the number of clusters
is at least two, is expressed by the following constraint:

0 <

N∑
j=1

µij < N, 1 ≤ i ≤ k. (3)

The constraints expressed in (1), (2), (3) lead to the following fuzzy partition
space for (X, k):

Mfk = {U = [µij ]k×N ∈ (k×N |µij ∈ [0, 1] ∀ i, j;
∑k

i=1 µij = 1, ∀ j; 0 <∑N
j=1 µij < N, ∀ i} The GK algorithm uses the following objective function:

Jm =
∑N

j=1
∑k

i=1 µm
ij d2

ij

where,
d2

ij = (xj − zi)Ai(xj − zi)T

Ai being a symmetric, positive definite matrix. The exponent m ∈ (1,∞) is
a fuzzification parameter. The above objective function is constrained to find
the clusters in the the entire feature space and therefore cannot determine the
respective natural subspaces of each cluster in high dimensional data set.

We associate with each cluster ı a weight vector ωi. Thus W = [ωir]k×d matrix
where, ωir denotes the contribution of rth dimension to ith cluster. The sum of
contributions from all dimensions adds to 1 for any cluster. This is expressed by
the constraint, where

d∑
r=1

ωir = 1, 1 ≤ i ≤ k, (4)

ωir ∈ [0, 1] , 1 ≤ i ≤ k, 1 ≤ r ≤ d, (5)
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Also, as there should be at least two dimensions, we get the constraint:

0 <

k∑
i=1

ωir < k, ∀ r (6)

Incorporating (4), (5), (6) in the fuzzy partition space for (X,d) we obtain
the fuzzy partitioning space for (X,d) as follows: Mfd = {W = [ωir]k×d ∈
(k×d |ωir ∈ [0, 1] ∀ i, r;

∑d
r=1 ωir = 1, ∀ i; 0 <

∑k
i=1 ωir < k, ∀ r} Now, we

formulate a new objective function as:

Jα,β =
∑N

j=1
∑k

i=1
∑d

r=1 µα
ijω

β
ird

2
ijr

where,
d2

ijr =
∑d

s=1(xjr − zir)ars(xjs − zis)
Ai = [ars]d×d

Parameters α ∈ (1,∞) , β ∈ (1,∞) are weighting components. These parameters
control the fuzzification of µij and ωir. The necessary condition for minimization
of the Projected Gustafson Kessel objective function yields the following update
equations:

Ai = ((det(Fi)ρi))1/dF−1
i

µij = 1/
∑k

l=1

[∑d
r=1(ωir)βd2

ijr∑d
r=1(ωlr)βd2

ilr

]1/α−1

ωir = 1/
∑d

l′=1

[ ∑N
j=1(µij)αd2

ijr∑N
j=1(µij)αd2

ijl
′

]1/β−1

3 Experimental Results

For evaluating the accuracy and efficiency of clustering, we compared PGK al-
gorithm with PROCLUS and GK algorithms. We implemented these algorithms
in MATLAB. Both real and synthetic datasets have been used. In order to mini-
mize the effect of initial points in clustering, we repeated the experiments several
times. The parameters for each method are optimized to achieve a fair compari-
son. In order to find the usefulness of clusters found by the proposed algorithm,
an experimental study on UCI real datasets has been carried out. Four datasets
from UCI machine repository have been chosen: Forest Fire, Alzehmir, Breast
Cancer, Parkinson(www.ics.uci.edu/ mlearn/MLRepository.html ). Chosen data
sets have class labels assigned to instances. The class labels were removed dur-
ing clustering and used later to measure the accuracy of clustering. Each of the
chosen data sets comprises of real instances with no missing value.

To measure the cluster purity, we use clustering accuracy measure defined as
follows[8]: r =

∑c
i=1 xi/n where xi is the number of instances in cluster ı and

n is the number of instances in data set as measures based on distance are not
relevant in the case of high dimensional data. In order to compare the cluster
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Table 1. Data Sets

Data Sets Instances Attributes Classes
Forest Fire 517 13 3
Alzehmir 45 8 3
Parkinson 197 23 2
Breast Cancer 569 32 2

Table 2. Comparison of PGK and GK on
basis of Accuracy Measure

Data Sets PGK PROCLUS GK
Forest Fire 0.7943 0.6941 0.5342
Alzehmir 0.8173 0.6324 0.5914
Parkinson 0.7492 0.7132 0.6498
Breast Cancer 0.8019 0.7302 0.6913

Table 3. Dimensions found by PGK
and PROCLUS

# Forest Fire Alzehmir

PGK PROCLUS PGK PROCLUS
1 3 2,3,4,12 5,6,7,8 1,5,6,7,8
2 12 2,4,12 1,5,6 1,5,7,6,8
3 2,3,12 1,2,3,4, 5,6,7 2,4,5,

5,8,11,12 6,7,8

Table 4. Dimensions found by PGK
and PROCLUS

# Breast Cancer Parkinson

PGK PROCLUS PGK PROCLUS
1 7,12,17 4,7,9,10 4,5,6,7 4,5,6,7,

11,12,21 8, 9, 10, 11
2 4,7,17 4,7,9, 5,6,7 5,6,7,8,

12,14,19 12,13,14

purity results of hard PROCLUS and soft partitioning PGK algorithms, we
converted fuzzy assignments into hard ones by choosing the cluster with highest
degree of membership for each data point. A data point xi is said to belong
to cluster Cl if: l = arg max1≤j≤k µij . GK is a full dimensional clustering
algorithm, i.e it computes clusters giving each dimension equal weight. As all
real data sets are labeled, we could determine the number of clusters for each data
set. We also examined how well each of the algorithms determined the correct
subspaces of each cluster by measuring their accuracy. We present the accuracy
results for above UCI data. Table 2 shows that the PGK algorithm achieves
highest accuracy when different algorithms are applied on UCI datasets. Tables
3and 4 gives the subspace dimensions associated with each cluster for Forest
Fire, Alzehmir, Breast Cancer and Parkinson datasets respectively. PGK gives
better clustering results as it forms the clusters in lower dimensional space with
higher accuracy.

Column 1 of tables 3 and 4 represents number of clusters.
Cluster validity measures have been used to find whether a given fuzzy par-

tition is the best fit of data with respect to various parameters[7][12]. There are
various validity measures which helps in correctly determining the appropriate
number of clusters. As no validity measure is perfect by itself, it is preferable
to use these measures simultaneously or in combinations[12]. We have used Par-
tition Coefficient, Classification Entropy and SSE in our experiments. Sum of
the squared errors(SSE) is used as measure of compactness. Lower values of
the measure indicate compact clusters. As we are looking for clusters in sub-
spaces of the entire set of dimensions we modify the notion of sum of squared
errors by considering the distance using only the dimensions relevant to a cluster
as follows: SSE is defined as: SSE =

∑k
i=1

∑
xj∈ci

d(xj , zi) Table 6 shows the
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Table 5. PC and PE comparison

PGK GK

PC PE PC PE
1 0.9310 0.1239 0.5275 0.6651
2 0.9964 0.0107 0.5918 0.7022
3 0.7236 0.2258 0.6031 0.5833
4 0.8327 0.4691 0.5107 0.6824

Table 6. SSE

PGK PROCLUS GK
1 12.3579 25.4373 32.76534
2 2.9321 6.4598 8.4721
3 2.3579×103 5.0973×103 7.9432×103

4 3.5791×103 6.4972×103 9.5432×103

Fig. 1. Scalability as a function of number
of instances

Fig. 2. Scalability as a function of number
of dimensions

Fig. 3. Scalability as a function of number of clusters

modified SSE values on applying the different algorithms to various data. We
obsereved that PGK algorithm achives lower SSE value and hence, more com-
pact clusters in comparison to other algorithms. We also used cluster validity
measures Partition Coefficient(PC) and Coefficient of entropy (PE)[20] in our
experiments. Table 5 shows the values of these measures obtained for different
UCI data sets on applying PGK and GK algorithm. It clearly shows that for
each data set PGK achieves higher values for PC and lower values for PE as
compared to GK. Thus, PGK scores over GK in the experiments we carried out.

Column 1 of Table 5 and 6 represents data sets: 1. Forest Fire, 2: Alzehmir,
3: Breast Cancer and 4:Parkinson.

We studied the scalability of PGK, GK and PROCLUS clustering algorithm
on increasing number of data instances, clusters and dimensions. In the
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experiment on scalability we used synthetic data sets so that various parameters
can be controlled. As in [19] relevant dimensions follow normal distribution and
irrelevant dimensions follow uniform distribution. We tried various parameters
and we discovered that parameters of PGK set as α=2, β=2,ε = 1e − 5 gives
the best results. We observe that in all the experiments carried out the PGK
scales significantly better than the PROCLUS however it is somewhat slower by
a linear factor as compared to GK algorithm. For measuring the scalability of
algorithm with increasing number of instances various datasets having 10,000 to
80,000 instances are generated with each data set having 5 clusters. Each data
set has 15 dimensions out of which 10 follows the normal distribution. The results
are presented in Figure 1. Scalability with the increasing number of attributes is
measured using datasets containing 50,000 instances with 5 clusters and having
10 to 50 dimensions respectively. In each case 5 dimensions follows normal dis-
tribution and others follow uniform distribution. The results of experiment are
presented in Figure 2. We consider datasets containing 50,000 instances with 15
dimensions from which 10 follow normal distribution and 5 follow uniform dis-
tribution. The number of clusters is varied from 2 to 10. The results are shown
in Figure 3.

4 Conclusion and Future Work

We considered the problem of clustering for high dimensional dataset. Existing
projected clustering algorithms do hard partitioning of the feature set which
leads to loss of information. In this paper, we have addressed the issue of soft
partitioning of feature space. Our main contribution is the adaptation of GK al-
gorithm for subspace clustering in such a way that each dimension has a weight
associated with each cluster. This algorithm searches for those subsets of feature
vectors which are having high membership weights along one or more attributes.
Different clusters may have different subspace preference weights. PGK deter-
mines the best feature weights for each cluster. It discovers soft partitions of data
set in soft subspaces. It minimizes the objective function to determine prototype
parameters, weight matrix and membership matrix, for each cluster. We tested
the algorithm using various real world datasets from UCI Machine Learning
Repository. For each data set chosen, the algorithm is able to discover clusters
in appropriate subspace with high degree of accuracy. In the future work, we pro-
pose to investigate the extension of PGK for categorical data. By taking outliers
into account, present model can be further improved.
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5. Achtert, E., Böhm, C., David, J., Kröger, P., Zimek, A.: Robust Clustering in
Arbitrarily Oriented Subspaces. SDM, 763–774 (2008)

6. Ruspini, E.H.: A New Approach to Clustering Information and Control, pp. 22–32
(1969)

7. Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis: Methods
for Classification, Data Analysis, and Image Recognition. John Wiley & Sons,
Chichester

8. Gan, G., Wu, J., Yang, Z.: PARTCAT: A Subspace Clustering Algorithm for High
Dimensional Categorical Data. IJCNN, 4406–4412 (2006)

9. Nagesh, H., Goil, S., Choudhary, A.: MAFIA: Efficient and Scalable Subspace
Clustering for Very Large Data Sets, Technical Report, Northwestern Univ. (1999)

10. Assent, I., Krieger, R., Müller, E., Seidl, T.: DUSC: Dimensionality Unbiased Sub-
space Clustering. In: ICDM 2007 (2007)

11. Assent, I., Krieger, R., Müller, E., Seidl, T.: EDSC: efficient density-based sub-
space clustering. In: Proceeding of the 17th ACM conference on Information and
knowledge management (2008)

12. Abonyi, J.: Balazas Feil, Cluster Analysis for Data Mining and System Identifica-
tion, Birkhauser

13. Bezdek, J.C.: Pattern recognition with Fuzzy Objective Function Algorithm.
Plenum Press, New York (1981)

14. Dunn, J.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters. J. Cybernetics 3, 32–57 (1974)

15. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is ”nearest neighbor”
meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1998)
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Abstract. Interactive visual clustering allows the user to be involved into the 
clustering through visualizing process via interactive visualization. In order to 
perform effective interaction in the visual clustering process, the efficient fea-
ture selection methods are required to identify the most dominating features. 
Hence, in this paper an improved visual clustering system is proposed using an 
efficient feature selection method. The relevant features for visual clustering are 
identified based on their contribution to the entropy. Experimental results show 
that the proposed method works well in finding the best cluster. 

Keywords: Data Mining, Contribution to Entropy, Feature Selection, Visual 
Clustering.  

1   Introduction 

Clustering is a common technique used for unsupervised learning, for understanding 
and manipulating datasets [6]. It is a process of grouping the data into classes or clus-
ters so that the objects within clusters have high similarity in comparison to one an-
other, but are very dissimilar to objects in other clusters. Cluster analysis is based on a 
mathematical formulation of a measure of similarity. Generally the clustering algo-
rithms deal with the following issues: 

(i) The definition of similarity of data items  
(ii) The characteristics of clusters including size, shape and statistical properties 
(iii) The computation cost and error rate of the result. 

Many clustering algorithms are proposed regarding these issues [3]. Most of earlier 
clustering research have been focused on automatic clustering process and statistical 
validity indices. All the clustering algorithms such as K-Means almost exclude human 
interaction during the clustering process. Human experts do not monitor the whole 
clustering process and the incorporation of domain knowledge is highly complicated. 
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In reality, no clustering algorithm is completed, until it is evaluated, validated and 
accepted by the user.  

Visualization is known to be most intuitive method for validating clusters, espe-
cially clusters in irregular shape and it can improve the understanding of the cluster-
ing structure. Visual representations can be very powerful in revealing trends,  
highlighting outliers, showing clusters and exposing gaps [6, 7]. To incorporate visu-
alization techniques, the existing clustering algorithms use the result of clustering 
algorithm as the input for visualization system. The better solution is to combine two 
processes together, which means to use the same model in clustering and visualiza-
tion. This leads to the necessity of interactive visual clustering. 

Interactive visual clustering has demonstrated great advantage in data mining, 
since it allows the user to participate in the clustering process by providing the do-
main knowledge and making better decisions based on his visual perception. This 
makes “clustering – analysis/evaluation” process to be efficient. VISTA, an interac-
tive visual cluster rendering system, is known to be an effective model, which in-
volves human in the clustering process. It allows the user to observe potential clusters 
interactively in a series of continuous visual tuning by the parameter called α. The 
change of α in dominating dimensions resulting in good cluster distribution. When the 
dimensionality of the dataset increases, identification of the dominating dimensions 
for visual tuning and visual distance computation process becomes tedious. One 
common approach to solve this problem is dimensionality reduction.  

Dimension reduction or attribute selection aims at choosing a small subset of at-
tributes that is sufficient to describe the data set. It is the process of identifying and 
removing as much as possible the irrelevant and redundant attributes. Sophisticated 
attribute selection methods have been developed to tackle the following three prob-
lems: (i) reduce classifier cost and complexity, (ii) To improve model accuracy (at-
tribute selection), (iii) improve the visualization and comprehensibility of induced 
concepts [10].  

At the pre-processing and post-processing phase, feature selection/extraction (as 
well as standardization and normalization) and cluster validation are as important as 
the clustering algorithms. The benefits of feature selection are twofold: it considera-
bly decreases the computation time of the induction algorithm and increases the accu-
racy of the resulting mode [2]. All feature selection algorithms fall into two  
categories: (i) the filter approach and (ii) the wrapper approach [2, 11]. The filter 
approach basically pre-selects the dimensions and then applies the selected feature 
subset to the clustering algorithm. The wrapper approach incorporates the clustering 
algorithm in the feature search and selection. The wrapper approach divides the task 
into three components (i) feature search (ii) clustering algorithm and (iii) feature sub-
set evaluation.  

In this paper, we propose a framework to improve the visual clustering by applying 
“filter” based dimensionality reduction. In this approach, the most relevant features 
are identified for visual tuning according to its contribution to the entropy (CE), 
which is calculated on a leave-one-out basis. Then VISTA has been applied for visual 
clustering with reduced data.  

The rest of the paper is organized as follows. In section 2, the background study is 
described. The related work is explored in section 3. The overview of visual cluster 
rendering system is discussed in section 4. The proposed work is discussed in  
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section 5. The experimental analysis is presented in section 6. Section 7 concludes the 
paper with directions for future research work. 

2   Related Work 

Clustering of large data bases is an important research area with a large variety of 
applications in the data base context. Missing in most of the research efforts are 
means for guiding the clustering process and understand the results. Visualization 
technology may help to solve this problem since it allows an effective support of 
different clustering paradigms and provides means for a visual inspection of the re-
sults [4]. Since a wide range of users for different environment utilize the visualiza-
tion models for clustering, it is essential to ease the human computer interaction.  One 
way to ease the human computer interaction is to provide minimum number of fea-
tures for clustering and analysis. There is large variety of visualization models are 
proposed during the past decade, but very few are deals with exploring the dataset 
with minimum features. 

The goal of feature selection for clustering is to find the smallest feature subset that 
best uncovers “interesting natural” grouping (clusters) from data set. Feature selection 
has been extensively studied in the past two decades. Even though feature selection 
methods are applied for traditional automatic clustering, visualization models are not 
utilizing them much. This motivates to the proposed framework.  

The issues related to feature selection for unsupervised learning can be found in [2, 
11, 13]. Jennifer G. Dy and Broaley [2] proposed a wrapper based feature selection 
for unsupervised learning, which wraps the search around Expectation-Maximization 
clustering algorithm. Roy Varshavsky, et. al., [12] proposed a novel unsupervised 
feature filtering of Biological data based on maximization of Singular Value Decom-
position (SVD) entropy. The features are selected based on, (i) simple ranking accord-
ing to Contribution to the Entropy (CE) values (SR), (ii) forward selection by  
accumulating features according to which set produces highest entropy (FS1), (iii) 
forward selection by accumulating features through the choice of the best CCE out of 
the remaining ones (FS2), (iv) backward elimination (BE) of features with the lowest 
CE. This proposed work involves the feature selection based on simple ranking.  

Interactive clustering differs from traditional automatic clustering in such a way 
that it incorporates user’s domain knowledge into the clustering process. There are 
wide variety of interactive clustering methods are proposed in recent years [4, 6, 8]. 
while a very few of them concentrates on feature selection. Keke Chen and Liu, L. [6, 
7] proposed VISTA model, an intuitive way to visualize clusters. This model provides 
a similar mapping such as star coordinates [5], where a dense point cloud is consid-
ered a real cluster or several overlapped clusters. 

3   VISTA – Visual Cluster Rendering System 

Chen and L. Liu [6], [7] proposed a dynamic visualization model; VISTA provides an 
intuitive way to visualize clusters with interactive feedbacks to encourage domain 
experts to participate in the clustering revision and cluster validation process. 
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The VISTA model adopts star coordinates [5].  A k-axis 2D star coordinates is de-
fined by an origin ),( oo yxo and k coordinate S1, S2 , S3 , . . . , Sk which represents the 

k dimensions in 2D spaces. The k coordinates are equidistantly distributed on the 
circumference of the circle C, where the unit vectors are  

kikikiSi  ,  .  .  .  ,3 ,2 ,1  )),2sin( ),2(cos( == ππ  (1) 

The radius c of the circle C is the scaling factor to the entire visualization. Chang-
ing c will change the effective size and the detailed level of visualization. Let a 2D 
point Q(x, y) represent the mapping of a k-dimensional max-min normalized (with 
normalization bounds [-1, 1]) data point P (x1, x2, x3, . . . , xk) on the 2D star coordi-
nates. Q(x, y) is determined by the average of the vector sum of the k vectors   αi xi iS , 
(i = 1, 2, . . . , k), where αi are the k adjustable parameters. This sum can be scaled by 
the radius c. The VISTA mapping is adjustable by αi. By tuning αi continuously, we 
can see the influence of ith dimension on the cluster distribution through a series of 
smoothly changing visualizations, which usually provides important clustering clues.  
The dimensions that are important for clustering will cause significant changes to the 
visualization as the corresponding α values are continuously changed [7]. Even 
though the visual rendering is completed within few minutes, the sequential rendering 
becomes tedious when the number of dimensions is large. In most of the cases, the 
continuous change of α leads to different patterns, may resulting in incorrect clusters. 

4   Improved Visual Clustering Framework 

The block diagram of the proposed frame work is demonstrated in Fig .1. The basic 
idea of the proposed method is to identify important dimensions according to its con-
tribution to the entropy (CE) by a leave-out basis. Features with high CE lead to en-
tropy increase; hence they are assumed to be very relevant to our proposed method. 
The features of the second group are neutral. Their presence or absence does not 
change the entropy of the dataset and hence they can be filtered out without much 
information loss. The third group includes features that reduce the total Singular 
Value Decomposition (SVD) - entropy (usually C < 0). Such features may be expected 
to contribute uniformly to the different instances, and may just as well be filtered out 
from the analysis. The relevant features are then applied to VISTA model for cluster-
ing process. The step-by-step process of the proposed algorithm is mentioned here 
under, 

 

Fig. 1. Improved Visual Clustering Framework  
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Input : n Data set with underlying Distribution 
Output :  K Partitions of  Data sets 

--------------------------------------------------------------------------------------------------------------- 
Step 1:  Find the Contribution to the entropy [12, 14] of the ith feature as  
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            Where 2
jS  is the eigen values of the  nXn  matrix iAA     

   
Step 2:  Sort the features based on their contribution to the entropy.. 
 
Step 3:  Group the features as 

i). iCE > C, features with high contribution 

ii). C > iCE > C features with average contribution 

iii). iCE < C features with low (usually negative) contribution  

Where C = Average )(CE   

 
Step 4:  Eliminate the dimensions with average and negative contribution, since they are irrelevant. 

 
Step 5:  Explore only the selected dimensions in VISTA. 
 
Step 6: Perform interactive visual clustering with α- tuning until satisfactory results.  

 

Fig. 2. Improved Visual Clustering method  

5   Experimental Results and Discussion 

Five well known dataset UCI machine learning datasets are used to show the effec-
tiveness of the proposed work (http://www.ics.uci.eedu/~mlearn/). The quality of 
clusters is assessed by Jaccard coefficient proposed in [1]. The Jaccard coefficient 
validations are based on the agreement between clustering results and the “ground 
truth”. The experiments are performed based on the domain knowledge obtained from 
automatic clustering results. The domain knowledge plays a critical role in the cluster-
ing process, which is the semantic explanation to the data groups. It often indicates a 
high level cluster distribution, which may be different from the structural clustering 
results.  Initially the dataset is explored in VISTA. The initial alpha values are set as -
0.5. For experimental purpose alpha variation is set as 0.01.  
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(a) Before Feature selection (b) After Feature Selection 

Fig. 3. Visualization of Breast Cancer Data Set  
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(a) Before Feature selection (b) After Feature Selection 

Fig. 4. Visualization of Hepatitis Data Set 

The visualization of Breast Cancer data with the entire set of dimensions is shown 
in Fig. 3 a) and the visualization of dataset with selected features based on CE is 
shown in Fig. 3 b) with αi = 0.5. From the visualization results, it is observed the dis-
tribution of points obtained by the proposed method is quite different to that of the 
original data distribution obtained with original sample. The distribution of points 
with feature selection shows the cluster distribution effectively than original visuali-
zation. Since the number of features selected is very less, this eases the visual distance 
computation process and makes the human – computer interaction process to be more 
effective. Fig. 4 a) and b) shows the visualization of Hepatitis data set before and after 
feature selection. From the visualization results, it is observed that feature selection 
makes the data visualization be more effective than the entire dimension and the clus-
ter distribution is also clearly identified. Similarly Fig. 5 a) and b) and Fig. 6 a) and b) 
show the visualization of Australian data set and Ionosphere dataset before and after 
feature selection respectively. 

The visual clustering is performed by the user with domain knowledge. Even 
though the visual rendering performed sequentially the user may vary the α, which 
leads to different point distribution. And another important issue is every rendering 
may result in different point distribution. Hence, the visual clustering on each data set 
performed several times and the best and average results are considered for analysis. 
The results of visual clustering with entire set of dimensions and with selected fea-
tures are represented in Table 1. From the results, it is observed that proposed method 
resulting in better cluster quality compared with clustering using the entire dimension 
for Breast cancer data set. For the other two data sets it shows similar results before 
and after feature selection. 
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(a) Before Feature selection (b) After Feature Selection 

Fig. 5. Visualization of Australian Data Set 
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Fig. 6. Visualization of Ionosphere Data Set 

Table 1.  Comparison of number of features and Cluster quality 

No.  
of Features 
 

 
VISTA with 
Entire dimension 
 
 

 
VISTA with 
Selected Fea-
tures Datasets No. of 

Records 

No.  
of 
Clusters 

Before 
Selection 

After 
Selection 

Best Avg Best 
 

Avg 
 

Hepatitis 155 2 19 4 57.24 54.30 65.97 63.24 

Australian 690 2 14 13 60.50 60.50 60.50 60.50 

Breast 
Cancer 

569 2 32 5 53.21 53.21 53.23 53.18 

Dermotology 366 6 34 33 25.65 23.65 31.28 23.65 

Ionosphere 351 2 34 16 45.10 43.39 46.15 44.06 

6   Conclusion 

Most of the feature selection process for clustering is focused on wrapper method. In 
this proposed feature selection method based on the filter model individual attributes 
are selected based on their CE value. The features that contain low contribution are 
considered as irrelevant features, and they are eliminated. The interactive clustering is 
performed only with the relevant features, thus reduces the number of iterations in the 
process of computing visual distance and eases the interactive process. The experi-
mental result shows that, the proposed feature selection method for interactive visual 
cluster rendering system improves the performance of the clustering results. The iden-
tification of relevant features with different criteria needs further research. 
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Abstract. In this paper, an improved cluster oriented decision trees algorithm 
shortly named ICFDT is presented. In this algorithm, fuzzy C-means clustering 
algorithm (FCM) without instance labels is used to split the nodes and two novel 
node expanding criteria are proposed. One criterion uses the ratio of homogenous 
samples in the node to split; the other splits the node by membership degree 
without labels. The experimental results in artificial and machine learning data-
sets show that our method can achieve better performance comparing to standard 
decision tree named C4.5. 

Keywords: Decision tree, FCM, Cluster oriented decision trees, Node splitting 
criteria. 

1  Introduction  

Decision tree is a greedy algorithm which originating from conceptional learning the-
ory. It is organized from up-to-down, and utilizes divide-and-conquer strategy. The 
main propose of decision tree is dividing the features space or attributes space of 
dataset into many small parts in which data are similar with each others. That is the 
similar data are put together, and then give them labels to illustrate their features. 
Therefore, decision trees are widely applied in machine learning, expert systems and 
other fields. Aiming at classifying the dataset and forming decision rules, decision trees 
algorithm may be one of the most suitable technologies [1]. 

Traditional decision tree algorithms operate on discrete attributes that assume a fi-
nite number of values. In the construction of tree, an attribute is chosen at a time. 
What’s more, a most discriminative attribute is selected and then the tree grows by 
adding the node whose attribute’s values are located at the branches starting from this 
node. The discriminative power is quantified by some criterion such as entropy, Gini 
index, etc[2,3]. The fundamental decision trees are predominantly applied in discrete 
class problems. And the continuous class problems are handled by regression trees[4].  

In practical, the attribute’s values are continuous, so the discretization of attributes is 
a must.  However, the discretization mechanism should affect the accuracy of tree. 
According to the defects of traditional decision tree, some methods have been presented 
to solve this problem. Since L.A.Zadeh first presented the rough set theory in 1965[5], 
many researchers have combined the rough set theory and decision tree algorithm 
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together, such as fuzzy ID3[6]and so on [7]. In order to solve the discretization prob-
lem[8]. Witold Pedrycz first presented clustered-oriented decision tree in 2005 [9]. 
Because fuzzy clustering is the central concept behind the generalized tree, they will be 
referred to C-fuzzy decision tree [10,11]. 

In the development of cluster oriented decision trees, at first we choose the leaf node 
with the highest heterogeneous value and treat it as a candidate for further refinement. 
Then the candidate is split into some clusters by clustering algorithm. The process 
repeats until the decision tree is accomplishment. 

This paper is organized in the following manner. Section 2 is an introduction of 
fuzzy clustering algorithm named fuzzy C-means clustering algorithm. Section 3 pro-
vides a new type of cluster oriented decision tree algorithm. In this algorithm, two 
novel nodes expanding criteria and splitting stopping condition are introduced. A series 
comparative experiment is presented in Section 4. Section 5 summarizes the primary 
work of this paper. 

2   Fuzzy C-Means Clustering Algorithm 

Fuzzy C-means clustering algorithm (FCM) is a typical objective oriented clustering 
algorithm presented by Bezdek in 1981[12]. It expands from K-means algorithm and 
divides data set into C clusters by fuzzy logic. In K-means algorithm, each instance is 
only completely belongs to one cluster. However in FCM, the relationship between 
each instance and cluster is denoted by a membership function. The membership 
function is quantified by the similarity degree between sample and the prototype of 
cluster. This similarity degree is defined with the distance between sample and proto-
type. Accordingly, the clustering accuracy can be farther improved by the concept of 
fuzzy logic. 

Let { }NxxxX ,,, 21 L=  be a training set which consists of N instances { }N
inx 1=  with 

n dimensions. As to the format of the dataset, it comes as a family of input-output 

pair { }( ), ( ) 1,2,X x k y k k N= = K , in which nT
n Rkxkxkxkx ∈= )](),(),([)( 21 K . 

The data points are clustered into C clusters by FCM, each cluster is characterized by 
prototype ( )f i . Thus, the similarity degree between each data point and cluster are 

denoted by a partition matrix, NkCiuU ik ,,2,1,,,2,1],[ LL === where iku denotes 

the similarity between kth data point and ith prototype (here U denotes a family of 
C-by-N matrices). Likewise, iku denotes the membership degree between kth data 

point and ith prototype. The partition matrix U satisfies the following conditions:  
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FCM can achieve best clustering result by minimizing the objective function. In each 
iteration, the minimization of objective function is obtained through updating the par-
tition matrix U and prototype vector of clusters f until satisfies the stopping condi-
tions. The standard objective function J assumes the format 
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with m is a fuzzification factor and is contained in the range of [ ]1,∞ , typi-

cally m 2= .The purpose of FCM is allocating the similar data points into a uniform 
cluster, and giving the cluster a score to illustrate its similarity degree higher than 
others. The value of objective function J is in inverse proportion to the clustering result. 
That is the lower value of objective function J , the better clustering result. In order to 
satisfying the condition that the minimization of objective function J , updating the 
partition matrix U assumes the format  
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The update of prototype is as follows: 
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The series of iterations is started from a randomly initiated partition matrix and in-
volves the calculations of the prototypes and partition matrices. 

3   An Improved Cluster Oriented Decision Trees  

3.1   Overall Architecture of Cluster Oriented Decision Trees 

Cluster oriented decision trees utilize fuzzy clustering to classify the data points instead 
of entropy which is commonly used in traditional decision trees. The architecture of 
decision trees is clustering dataset X into c clusters. So that the dataset X are divided 
into c groups. Locating the dataset as the root node and putting c prototypes in c leaf 
nodes of tree. The process of clustering is assigning the every data in the c clusters. That 
is putting the data in the c leaf nodes. So each cluster is the subset of dataset X. The 
development of tree is guided by a settled heterogeneity criteria, which quantifies the 
variance of data points in node. And it is denoted by V . In each of iteration, choosing 
the leaf node with the highest value of V , clustering this node into to c clusters. This 
process is repeated until the stopping criteria are meet. The development of cluster 
oriented decision tree is shown in Fig.1. 
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Fig. 1. Architecture of growing a cluster oriented fuzzy decision tree 

3.2   Node Expanding Criteria 

Clustering algorithm is one of unsupervised learning algorithm. The development of 
cluster oriented fuzzy decision trees is guided by fuzzy clustering. C-fuzzy decision 
tree is built with whole attributes and label which is treated as an attribute[9]. So the 
development of traditional C-fuzzy decision trees contains the target attribute. How-
ever, the improved cluster oriented decision trees don’t contain the target attribute into 
the process of FCM. So, in the iteration, the label is removed. Thus, the computation 
time is lower than traditional C-fuzzy decision trees.  

The improved cluster oriented decision tree has two novel node splitting criteria. 
One criterion considers the label of instance when splitting the nodes. The other crite-
rion does not take the label in count, just splits the node based on the attributes. The two 
node expanding criteria are described as follows.  

A. Assume a threshold ρ as the judgment of whether splitting the node. The hetero-

geneity criterion is denoted byV . The value ofV is big, that is the data points in the 
node are not homogenous. So the node is inclined to expand. For ith node, there 
are in data points in this node. If the most of data points in this node are homogenous 

and the amount of these data is im , then the heterogeneity of ith node assumes the 

format  

i

i
i n

m
V =                                                                (4) 

If ρ≥iV , it is shown that the data points in ith node are homogenous. This node is not 

to expand. Otherwise, the node is to split with FCM. Thus it can be seen that iV  denotes 

the ratio of homogenous instances in this node. This criterion should be understood 
easily.  
B. FCM is one of unsupervised algorithm which is used during the process of splitting 

nodes. So the node expanding criterion which without target attribute is taken into 
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account. In this criterion, the membership degree of data points in ith node is con-
sidered. The heterogeneity of ith node by the expression  
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Where in denotes the number of data points in ith node, c denotes the number of clus-

ters, iju denotes the numerical value of partition matrix. When the heterogeneity  

criteria are generalized to classical set, that is the instance is completely belongs to 
clusters or not. The value of iju is 1or 0, and the iV is inclined to 0. The instances are 

most homogenous in node. Therefore, in fuzzy set, the value of iV is bigger; the samples 

in this node are more heterogeneous. This node is subjected to expand.  

3.3   Splitting Stopping Condition 

There are two splitting stopping conditions of cluster oriented decision tree which are 
same to C-fuzzy decision trees[9]. One is stopping before splitting; the other is stopping 
after splitting. The condition of stopping before splitting denotes stopping expanding 
the node when amount of data points in this node is lower than c. This idea is easy to 
comprehend. Obviously, we expect the number of data is the multiple of c, such as  
2c, 3c.  

Stopping after splitting criterion estimates the structure of leaf node (the clusters by 
splitting the node) to decide whether expanding the node. There should be an index to 
represent the structure of leaf node. If the data obviously belong to the leaf node, the 
index should be high. It shows the structure of leaf node is better. Otherwise, if the 
membership degrees of a data point to c clusters are approximately equal, such as 1/c, 
the index would be low. It shows the structure of leaf node is worse. As mentioned 
above, we chooseϕ as the index of structure. For kth data point, the index of this data 

by the expression 
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When the data are completely belong to a cluster, the value of kϕ is 1. But when the 

membership degrees of data to each cluster are equal to 1/c, the value of kϕ is 0. As-

suming the amount of data point in node is n1, and then the index of structure is as 
follows  
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Threshold of structure index assumes the format 
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Growing the trees is constrained by these two conditions. When expanding a node with 
FCM, it must meet the first condition. The efficiency of splitting is judged by the 
second condition. If it doesn’t satisfy the second stopping condition, we should return 
to the previous step. 

When the nodes expanding are accomplished, the leaf nodes of trees are formed. 
Now we should give classified labels to the leaf nodes to represent the data in the node. 
We put the most general classified label as the label of leaf node. The leaf node is 
labeled by the most of instances with the same label.  

4   Experiments  

In this section, a series of experiments on an artificial dataset and two machine learning 
datasets have been conducted. In the experiment, we choose the second node splitting 
criterion as heterogeneity criterion. So in the whole development of decision trees, the 
instances labels don’t take into account. This process is same to clustering algorithm. 
The experimental results illustrate that the effectiveness of the improved cluster ori-
ented decision trees. 

A. Experiment 1 

This experiment concerns two-dimensional (2-D) artificial dataset. The dataset is 
generated random generator and visualized in Fig.2. 

In this artificial dataset, 59 data are labeled by 3 classes. There are 19 1-class, 17 
2-class and 13 3-class data in artificial dataset. And all data are linearly separable. The 
comparative analysis is detailed in Table 1. 

From Table 1, we can learn that the improved cluster oriented fuzzy decision trees 
algorithm has better accuracy and smaller tree size comparing to C4.5. C4.5 could not 
 

 

Fig. 2. Two-dimensional (2-D) artificial dataset 

Table 1. The comparative analysis on artificial dataset 

Decision trees Accuracy Depth Leaf nodes 
C4.5 98.3051% 3 3 

ICFDT 100% 2 3 
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divide the dataset completely however our method can be effectiveness. Because of the 
FCM which we used in splitting the node is effective to cluster distribution. 

B. Experiment 2 

The following experiments are conducted on two machine learning dataset, Iris and 
Pima. The comparative experimental results are shown in Table 2 and Table 3. 

Table 2. The comparative analysis on Iris 

Decision trees Accuracy Depth Leaf nodes 
C4.5 96% 5 5 

ICFDT 96% 4 5 

Table 3. The comparative analysis on Pima 

Decision trees Accuracy Depth Leaf nodes 
C4.5 73.83% 10 20 

ICFDT 78.78% 5 15 

As Table 2 and Table 3 reveals, we can learn that the improved cluster oriented 
fuzzy decision trees without target attribute has the better performance comparing to 
C4.5. And the tree size is smaller than C4.5.  

5   Conclusion 

This paper presents an improved cluster oriented fuzzy decision tree shortly named 
ICFDT. The basic ingredient of proposed decision tree model is fuzzy clustering 
without instances labels. The construction of cluster oriented tree is guided by succes-
sive refinements of the clusters forming the nodes of tree. To illustrate the effectiveness 
of improved cluster oriented fuzzy decision tree, it is implement on artificial and ma-
chine learning dataset. The experimental studies show the ICFDT has better perform-
ance and smaller tree size comparing to C4.5. And a lot of experiments should be 
conducted in future to show the improvement of ICFDT comparing to traditional 
cluster oriented fuzzy decision trees. 
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Abstract. Network Intrusion detection systems have become unavoidable with 
the phenomenal rise in internet based security threats. Data mining technique 
based Intrusion Detection System, have the added advantage of processing large 
amount of data speedily. However, success rate is dependent on selecting the 
optimal set of features here. Given an optimal set of features and a good train-
ing data set, Bayesian classifier is known for its simplicity and high accuracy. 
On the other hand, clustering techniques have the flexibility to detect novel at-
tacks even when training set is not present. Therefore, combining the results of 
both classification and clustering techniques can improve the performance of 
Intrusion Detection systems greatly. Our project aims at building flexible Intru-
sion Detection system by combining the advantages of Bayesian classifier and 
the genetic clustering algorithm. It was tested with KDD Cup 1999 dataset by 
supplying it with a good training set and a minimal one. In the first case, it pro-
duced excellent results, while in the second case it gave consistent performance. 

Keywords: NIDS, intrusion detection, Anomaly, Genetic Algorithm, Feature 
selection, Naïve Bayesian classifier, Genetic clustering. 

1   Introduction 

There are two categories of intrusion detection systems – Misuse and anomaly. Mis-
use intrusion detection systems are signature-based systems and can detect only 
known attacks. Anomaly detection systems report deviation from normal profile as an 
attack. They have the ability to find novel attacks at the expense of high false positive 
rate. Data mining approaches, which can handle the large amount of data required by 
both these IDSs, have been used to increase the success rate of both these IDSs. Both 
supervised and unsupervised learning techniques have been used for designing IDSs.  

Supervised techniques have high accuracy, but require a good training set.  
However, for detecting intrusions obtaining a training set is very difficult. As a com-
promise, in most cases a training set containing well-known attacks is obtained and 
used. Clearly, novel attacks cannot be detected in such cases. Applying unsupervised 
learning technique to IDSs has a major advantage as they do need a training set.  
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Nevertheless, these techniques have low accuracy when compared to supervised 
learning techniques. Thus it can be inferred that supervised learning techniques pro-
vide better prediction rate when relevant data present in the training set. On the other 
hand, in cases where relevant information is absent in the training set and in cases 
where novel attacks have to be detected unsupervised learning techniques perform 
better. 

In this paper, we define architecture for an IDS that combines the advantages of 
Naive Bayesian Classifier and Genetic Clustering algorithm. Furthermore, to increase 
efficiency, Feature selection using genetic algorithm is done to prune the feature set. 
Simulations were carried out to test the efficiency of our model by comparing it with 
the efficiency of each of the individual supervised and unsupervised technique. Re-
sults show that, our IDS performs better even in the absence of a good training set. 

The rest of this paper is organized as follows. Section 2 explains various researches 
related to our IDS. Section 3 defines the architecture of our IDS and its significance. 
Section 4 discusses results obtained when tested with KDD Cup 1999 dataset. Section 5 
concludes our work with suggestions on future work. 

2   Related Work 

Data mining techniques are widely used in IDS as it can handle large data set and 
allows automation of IDS. Minnesota intrusion detection system [6] efficiently used 
data mining techniques like outlier detection for anomaly detection. But, the major 
disadvantage of the MINDS system is that it requires a human analyst to verify net-
work connections.  

Pedro Domingos and Michael Pazzani in their comparative research [8] proved that 
the performance of Bayesian classification does not improve much by removing at-
tribute dependencies. Following this research, our system uses the simple Bayesian 
classifier, which does not consider attribute dependencies. In Bayesian anomaly de-
tection[2],  if the value of maximum posterior probability for a data tuple is too low, it 
is considered as an anomaly. Such tuples are grouped based on the similarities in their 
attribute values and each group is given a label. The anomalous class used in our 
anomaly detection module is a simplification of this approach. 

Among the many clustering techniques in vogue, Hae-sang-Park et al.‘s k-means-
like clustering for medoids [3] is very efficient. This clustering technique is similar to 
k-means clustering except that it uses medoids instead of centroids. Outliers will af-
fect the results of k-means clustering, which is prevented in k-medoid clustering. Our 
IDS system uses this clustering technique and the clusters formed are further opti-
mized by genetic algorithm. 

Leonid Portnoy et al. [7] were the first to use an unsupervised (clustering) tech-
nique for detecting intrusions based on two assumptions. These assumptions form the 
basis for all clustering based intrusion detection. Liu et al. proposed a further im-
provement by using Genetic algorithm[5] for determining the number of clusters (k). 
But both these techniques have less accuracy when applied to intrusion detection, as 
these assumptions can go wrong in many cases. 

Feature subset selection is an important part of IDS because it prunes irrelevant 
features and improves efficiency. Fuzzy-genetic approach for IDS by Fries in [1], 
selects an optimal subset of features using Genetic algorithm. In their feature selec-
tion, the number of features selected can be ignored while calculating fitness because 
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it does not contributes much to the efficiency. Research on Feature subset Selection 
Bias [4], advocates that the usage of same dataset for feature selection and learning 
does not have adverse effects on classification. Hence, we intend to use the same 
dataset for both training and feature selection. 

3   Architecture of Our IDS 

The Fig. 1 shows the complete architecture of our IDS. There are three major phases 
in our Intrusion Detection System. In the first phase, the relevant features are selected 
using Genetic algorithm. These set of features are used by both Bayesian classifica-
tion and Genetic clustering modules. In the second phase, clusters are formed by the 
Genetic clustering module and the Bayesian learns from the training set.  In the third 
phase, the Bayesian classification module is given with packets from test data. Bayes-
ian classifier classifies the input packet either under normal or known-attack classes 
or under anomalous class (if Mp < 0.1). If the input packet is classified under anoma-
lous class, clustering results are considered for intrusion detection.  

Our Intrusion Detection System has three main modules: 

• Feature selection that selects relevant features. 
• Bayesian classification module 
• Genetic clustering technique- forms clusters of both training and test set. 

3.1   Feature Selection Using Genetic Algorithm 

The KDD cup 1999 dataset [9] we used has 41 features for each connection in the 
network. A possible solution can be obtained by choosing a subset of these 41 fea  
 

 

Fig. 1. Architecture of our IDS 
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Table 1. Thirteen Features selected by genetic algorithm 

Feature name Description 
protocol_type  Type of protocol  
service  Network service on destination  
flag  Status of connection: normal or error                   
src_bytes  Number of data bytes from source to destination 
land  1 if connection is from/to same port 
num_compromised  number of “compromised” conditions 
su_attempted  1 if “su root” command attempted  
num_file_creations  number of file creation operations  
num_shells  number of shell prompts  
num_outbound_cmds number of outbound commands in an ftp session
is_host_login  1 if login belongs to hot list  
rerror_rate  % of connections with REJ errors  
diff_srv_rate  % of connections to different services 

 
tures. Thus, each chromosome to be used for Genetic Algorithm should have 41-bits 
each bit representing the selection of a feature. Fitness function for the feature selec-
tion for a chromosome ‘s’ is, accuracy of naïve Bayesian classifier. Genetic algorithm 
selected the thirteen features in Table 1. 

3.2   Bayesian Classification Module 

Although Bayesian classification is simple, its performance is comparable with state-
of-the-art classification techniques [8]. The predefined set of classes used in our 
Bayesian classification is the normal class and a set of known-attacks class. Further, a 
new class called anomalous class is added for Anomaly detection. If the maximum 
posterior probability is less than a threshold value, it is classified as anomalous class. 

3.3   Genetic Clustering Module 

This module is based on the IDBGC algorithm in [5]. The genetic clustering tech-
nique has two stages. In the first stage, clusters are formed using k-medoid algorithm. 
In the second stage, clusters formed are optimized using genetic algorithm. These 
stages are explained below. 

K-medoid clustering algorithm. Park et al developed K-medoid clustering technique 
in [3]. The algorithm is given below: 

Input: dataset (training set + test set) and K 
Step 1: Select K random packets from dataset as K initial set of medoids 
Step 2: Form K clusters by assigning each packet in the dataset to its nearest medoid 
Step 3: For each of clusters formed, find the packet which if selected as medoid 
minimizes cluster distance. 
Step 4: Repeat steps 2 and 3 until the new medoids obtained are the same. 
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Genetic Optimization Step. As the number of possible attacks in the network is un-
known, determining the value of K is not possible. So the clusters formed are opti-
mized by combining some of them to form clusters with lesser intra-cluster distance 
and with greater inter-cluster distance [5] using genetic algorithm. 

A chromosome contains K bits each representing one of the K clusters. If ith bit is 
‘1’ then it means that ith cluster is selected and if the bit is ‘0’ then the cluster is not 
selected. The packets in the unselected clusters are assigned to the nearest medoid of 
the selected clusters. Thus, some clusters are combined to form a new set of clusters. 
Fitness is based on inter-cluster distance and intra-cluster distance. The fitness func-
tion we used for l clusters (c1,c2,..cl) formed for a chromosome is given by, 

 
 

In the above fitness function, c_dis (cluster distance) stands for the sum of distance of 
every point in cluster to the medoid and is considered as intra cluster distance. Also, 
min_dis (minimum distance) stands for the minimum distance between given two 
clusters and is considered as the inter cluster distance.  

3.4   Detecting Attacks from Clusters Formed 

After cluster formation using the above genetic clustering method, each cluster is 
categorized as normal or as an attack based on assumptions introduced by Leonid 
Portnoy et. al. in [7] it can be inferred that: 

• Largest cluster formed contains only normal packets 
• Other clusters contains only attack packets 

3.5   Combining Results of Clustering and Classification 

First, each data tuple is given as input to both Bayesian anomaly detection module 
and k-medoid clustering module. When Bayesian anomaly detector classifies the cur-
rent tuple to any of the predefined set of classes (known attack set and normal) the 
tuple is assigned to that class. Otherwise, if Bayesian anomaly detector classifies a 
data tuple as anomalous class, unsupervised learning results are used. Thus if a packet 
is classified under anomalous class and is present in the largest cluster, then it is as-
sumed to be normal. Similarly, if a packet is classified under anomalous class and is 
not present in the largest cluster it is considered as an attack. 

3.6   Significance of IDS Architecture 

The IDS architecture is more flexible. The basis for this IDS is the Bayesian classifi-
cation module. A simple Bayesian classifier can classify the input data tuple only to 
any of the predefined set of classes (known attacks and normal). However, it fails to 
in the following two cases:  

• The data tuple under consideration belongs to predefined set of classes but the 
Bayesian learner is given with insufficient training data to classify it. 

• The current data tuple does not belong to any of the predefined set of classes. 
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In the above cases, our Bayesian classifier classifies the current tuple under anoma-
lous class and the results of genetic clustering are considered. Thus our IDS is able to 
detect cases where relevant information is absent in training data and intelligently use 
results of genetic clustering technique in such cases. 

Also, the results of genetic clustering are not used when relevant information is 
present in the training set (Maximum posterior probability > 0.1). This is because: 

• Simple Bayesian classification is more accurate [8]. 
• Clustering has low accuracy than supervised learning techniques.  

As a scope for further improvement, both the training set and the test data are given as 
input to clustering module. This increases the accuracy of clustering. The threshold 
value 0.1for Mp was assigned as threshold for Mp empirically.  

4   Experimental Results and Discussion 

To prove the efficiency of our IDS we compare the accuracy of IDS with individual 
Bayesian classification and the genetic clustering techniques. Several small datasets 
were obtained from KDD Cup dataset each containing about 10000 packets.  Each 
dataset contains tuples of all attack types present in the dataset. 

4.1   Results of Clustering and Bayesian Classification 

Bayesian classification was tested using ten datasets by giving a good training set. 
Similarly, genetic clustering was also tested with ten datasets. Operating characteristic 
of the both these tests are shown in Fig. 2. The average accuracy for Bayesian classi-
fication with good training set is 99.4 % and the average accuracy of Genetic  
clustering is 60%. 

4.2   Overall Performance of Our IDS 

The overall performance of our IDS is very much dependent on the training set given 
as input. If the training set contains enough data, the performance of Bayesian 
 

 

Fig. 2. Operating characteristic for Bayesian classification and genetic clustering for ten datasets 
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Fig. 3. Operating characteristic for our IDS for 10 datasets 

classification is enough to detect attacks. Otherwise, the influence of clustering mod-
ule is greater. 

Ten datasets containing both known and novel attacks were obtained to test our 
IDS(Fig. 4) Operating Average accuracy of our IDS was about 97% and average false 
positive rate was about 0.3%. 

5   Conclusion and Future Work 

Obtaining a sound training set for IDS is fast becoming an impossible challenge and 
with the advent of newer and more virulent attacks in the network a flexible IDS is 
required. We have developed such an IDS by combining two popular techniques – 
Bayesian classification and Genetic clustering. Satisfactory results which substantiate 
its flexibility were obtained. Also, the use of both training set and test set for the clus-
tering technique has led to a significant improvement in its accuracy. 

Clustering techniques still require improvements to be used more effectively with 
IDS. Attacks like smurf involve large number of similar packets which are often cate-
gorized along with normal packets by clustering techniques. A more problem-specific 
distance metric with slackened assumptions about network packets must be used to 
increase the accuracy of these techniques. 
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Abstract. Microarray studies and gene expression analysis have received much
attention over the last few years and provide promising avenues towards the un-
derstanding of fundamental questions in biology and medicine. In this paper we
investigate the application of ant colony optimisation (ACO) based classification
for the analysis of gene expression data. We employ cAnt-Miner, a variation of
the classical Ant-Miner classifier, to interpret numerical gene expression data.
Experimental results on well-known gene expression datasets show that the ant-
based approach is capable of extracting a compact rule base and provides good
classification performance.

1 Introduction

Microarray expression studies measure, through a hybridisation process, the levels of
genes expressed in biological samples. Knowledge gained from these studies is deemed
increasingly important due to its potential of contributing to the understanding of funda-
mental questions in biology and clinical medicine. Microarray experiments can either
monitor each gene several times under varying conditions, or analyse the genes in a
single environment, but in different types of tissue. In this paper, we focus on the latter
where one important aspect is the classification of the recorded samples. This can be
used to categorise different types of cancerous tissues as in [1] where different types of
leukemia are identified, or to distinguish cancerous tissue from normal tissue as done
in [2] where tumor and normal colon tissues are analysed.

One of the main challenges in classifying gene expression data is that the number of
genes is typically much higher than the number of analysed samples. Also, is it not clear
which genes are important and which can be omitted without reducing the classification
performance. Many pattern classification techniques have been employed to analyse
microarray data. For example, Golub et al. [1] used a weighted voting scheme, Fort and
Lambert-Lacroix [3] employed partial least squares and logistic regression techniques,
whereas Furey et al. [4] applied support vector machines. Dudoit et al. [5] investigated
nearest neighbour classifiers, discriminant analysis, classification trees and boosting,
while Statnikov et al. [6] explored several support vector machine techniques, nearest
neighbour classifiers, neural networks and probabilistic neural networks. In several of
these studies it has been found that no one classification algorithm is performing best
on all datasets (although for several datasets SVMs seem to perform best) and that
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hence the exploration of several classifiers is useful. Similarly, no universally ideal gene
selection method has yet been found as several studies [7,6] have shown.

In our previous work [8] we presented a fuzzy rule-based classification system to
analyse microarray expression data. Gene expression data was described by fuzzy sets,
and rules of combinations of these sets were employed to arrive at a classification. In
our experiments, we showed our approach to afford good classification performance
for this type of problem and outperforming CART [9], a classical rule-based classifier.
However, similar to many rule-based approaches this method suffers from the course
of dimensionality leading to a rule base consisting of a large number of rules. This was
addressed through a rule splitting stage leading to a smaller number of simpler rules,
but only partially so. In further work [10], we derived a more compact rule base using a
genetic algorithm that assesses the fitness of individual rules and selects a rule ensemble
that maximises classification performance.

In this paper we show how a classification system based on ant colony optimisation
can be applied to the problem of analysing gene expression data. We employ cAnt-
Miner [11], a variation of the classical Ant-Miner classifier [12], which is inherently
capable of interpreting the numerical gene expression data. Experimental results on
various well-known gene expression datasets show that the ant-based approach is ca-
pable of extracting a compact rule base for classifying gene expression levels while
providing good classification performance.

2 Ant Colony Based Classification

2.1 Ant Colony Optimisation

Ant colony optimisation (ACO) [13] is a relatively recent computational intelligence
paradigm that is inspired by the collective behaviour of natural ants. In ant colonies,
each individual ant performs its own task independently, yet the various individual
tasks are related, and through collaboration it is possible to solve complex problems.
In particular, ants are capable of finding the shortest path between their nest and a
food source based only on local information. They are furthermore capable to adapt
to changes in the environment. To achieve this, ants communicate with each other by
means of pheromone trails. Ants leave pheromone as they move around in the environ-
ment, while other ants can follow pheromone paths. Therefore, the more ants follow a
certain trail, the more attractive this trail becomes to other ants, hence leading to the
equivalent of a positive feedback loop where the probability of following a certain path
is proportional its ‘quality’.

Essentially ACO can be seen as an agent-based system that simulates ants in order
to solve real world optimisation problems. Each agent represents an ant and acts in an
environment which defines the search space. Each path followed by an ant describes
one candidate solution in that search space. Once such a candidate solution is evaluated
using an objective funtion, the amount of pheromone that is associated with the corre-
sponding trail is modified according to the quality of the candidate solution. When ants
decide which path to follow, a path with a higher amount of associated pheromone is
more likely to be chosen. Using this strategy, ants will eventually converge towards the
optimal solution (i.e. the shortest path) of the given problem.
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Ant colony optimisation has been successfully applied to a variety of real world
problems and has been shown to provide a robust and versatile method for optimisa-
tion [13].

2.2 ACO-Based Classification

Ant colony optimisation can also be employed for pattern classification as has been
shown in [12] with the introduction of the Ant-Miner algorithm. The basic idea is to
perform classification using a rule base and to optimise this rule base through ant colony
optimisation. In Ant-Miner, each path constructed by an ant represents one rule of the
rule base. Each such rule has the following form:

IF <term1 AND term2 AND ...>
THEN <class>

with each term being defined by a triple

<attribute, operator, value>

such as <Day = Monday> and class representing the consequent class, i.e. one of a
set of predefined categories.

Algorithm 1 presents a high-level overview of the Ant-Miner algorithm. Ant-Miner
starts with an empty rule base and successively adds rules one by one. To construct a
new rule, an ant is initialised with an empty rule (i.e. no terms in the antecedent part)
and adds one term at a time to the antecedent. Terms are added until a term would
cause the rule to cover fewer than a preset number of training samples, or all possible
attributes have been added. Once the rule has been constructed, a pruning step is applied
to remove any irrelevant terms. Then, the consequent class of the rule is determined as
the most frequent class of the covered training samples. Rule construction is continued
until a predefined number of rules has been built or an already existing rule is recreated.
Of the created rules, the best one is chosen based on a quality measure which is often
defined as the product of sensitivity and specificity. This rule is then added to the rule
base and the process is repeated until all but a predefined number of training samples
are covered by the rule base.

2.3 cAnt-Miner

While Ant-Miner has been shown to provide good classification performance coupled
with a compact rule base [12], one downside of the algorithm is that it is only capable of
processing nominal data, i.e. data that can be described by a finite number of nominal or
discrete values. Therefore as such it cannot be applied to handle continuous numerical
data directly. The only way to cope with continuous data is hence to discretise them in
a pre-processing step, e.g. using the C4.5-Disc method [14].

The cAnt-Miner algorithm [11] takes a different, integrated approach to ant-based
classification. Discrete intervals are created on-the-fly, and hence no pre-processing
step is required. This dynamic discretisation is directly incorporated into the rule con-
struction stage of the Ant-Miner algorithm and consequently supports also terms that
include < and ≥ operators. The discretisation itself is based on an entropy measure that
describes the impurity of a collection of samples.
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Algorithm 1. Pseudo-code of Ant-Miner algorithm
Initialise training set
Reset rule base
repeat

Initialise all paths
repeat

Use ant to construct a rule
Prune rule
Determine consequent class of rule
Update pheromones

until (stopping criterion)
Select best rule from constructed rules
Add selected rule to rule base
Eliminate training samples covered by selected rule

until (stopping criterion)

3 ACO Classification of Gene Expression Data

In our work, we apply the ant-based cAnt-Miner classifier to the problem of analysing
gene expression data. In particular, we perform experiments on two popular gene ex-
pression datasets and compare the performance of our approach with the results ob-
tained using the fuzzy rule-based classfier from [8] and the hybrid fuzzy/GA classifier
from [10]. We found that cAnt-Miner is rather robust with respect to chosen parame-
ters; we typically employ 3000 ants for rule discovery, and select the minimum number
of samples covered per rule from the range [3;5], the maximum number of uncovered
training samples from [1;3], while the number of rules used for testing convergence was
set to 5.

The first dataset we inspect is the Colon dataset from [2]. This dataset is derived from
colon biopsy samples. Expression levels for 40 tumor and 22 normal colon tissues were
measured for 6500 genes using Affymetrix oligonucleotide arrays. The 2000 genes with
the highest minimal intensity across the tissues were selected. We pre-process the data
following [5], i.e. perform a thresholding [floor of 100 and ceil of 16000] followed
by filtering [exclusion of genes with max/min < 5 and (max-min) < 500] and log10
transformation. We then select the top 50 respectively the top 100 genes as input to the
classifiers.

The results on this datasets are given in Table 1, in terms of correctly classified sam-
ples (CR), falsely classified samples (FR), and classification accuracy. It can be seen
that our ACO-based classifier matches the classification accuracy of the fuzzy classifier
for the case of 100 selected genes, and outperforms the hybrid fuzzy/GA classifier for
this configuration. Based on the top 50 genes, both the fuzzy and the hybrid fuzzy clas-
sifier perform slightly better than our cAnt-Miner approach. However, it should also be
noted, that as reported in [8], CART [9], a conventional rule-based classifier, performs
rather poorly on this dataset with a classification accuracy of only 77.42% respectively
72.58% based on 50 respectively 100 genes, and cAnt-Miner clearly outperforms this.

Also given in Table 1 is information on the complexity of the derived rule base
in terms of the number of rules and the number of attributes per rule. For the fuzzy



Ant Colony Optimisation Classification for Gene Expression Data Analysis 467

Table 1. Classification performance on Colon dataset given in terms of number of correctly clas-
sified samples (CR), falsely classified or unclassified samples (FR), and classification accuracy.
Also given are the number of rules in the rule base and the number of terms of each rule. Results
are presented based on 50 and 100 gene expressions respectively.

n method CR FR Accuracy #rules #attributes/rule

50
fuzzy classifier [8] 53 9 85.48 32 ·

(
50
2

)
= 11025 2

fuzzy/GA classifier [10] 52 10 83.87 20 up to 50
ACO classifier 51 11 82.26 5 2

100
fuzzy classifier [8] 51 11 82.26 32 ·

(
100
2

)
= 44550 2

fuzzy/GA classifier [10] 50 12 80.11 20 up to 100
ACO classifier 51 11 82.65 5 2

classifier from [8] these are fixed; each rule has 2 attributes while the number of rules
in the rule base depends on the number of fuzzy sets employed and the number of to-
tal attributes (i.e. the number of genes). With more than 10,000 respectively more than
40,000 rules, the generated rule bases are vast and hence the advantage of rule-based
systems, namely interpretability, is clearly lost. The hybrid fuzzy/GA classification sys-
tem has a fixed rule based size of 20 rules, however the number of attributes employed
in each rule is variable and can reach the total number of attributes. Again, such rules
are not easily interpreted and it is hence questionable whether useful insights can be
inferred from such a rule base.

In contrast, our ACO-based classifier produces very compact rule bases with most
instances consisting of only 5 rules of 2 attributes each. This is clearly much simpler
than those generated by the other approaches, and hence, despite the slightly lower
classification rate, represents the only system where true insights about the analysed
data can be inferred from the generated rule base. An example of such a rule base in
given in Figure 1.

IF geneexp002 < 2.8888973 AND geneexp011 >= 2.5680682
AND geneexp052 >= 2.2540251 THEN 1

IF geneexp003 >= 2.5163602 AND geneexp059 < 2.5732967 THEN 0
IF geneexp094 >= 2.4165843 AND geneexp022 < 3.7536059 THEN 1
IF geneexp031 < 2.9691642 THEN 0
IF <empty> THEN 1

Fig. 1. Example of rule base generated by the ACO classifier

The second gene expression dataset we analysed is the Leukemia dataset reported
in [1]. Here, bone marrow or peripheral blood samples were taken from 47 patients
with acute lymphoblastic leukemia (ALL) and 25 patients with acute myeloid leukemia
(AML). The ALL cases can be further divided into 38 B-cell ALL and 9 T-cell ALL
samples and it is this 3-class division that we are basing our experiments on rather
than the simpler 2-class version which is more commonly referred to in the literature.
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Table 2. Classification performance on Leukemia dataset. The table is laid out in the same fashion
as Table 1.

n method CR FR Accuracy #rules #attributes/rule

50
fuzzy classifier [8] 68 4 94.44 32 ·

(
50
2

)
= 11025 2

fuzzy/GA classifier [10] 69 3 96.29 20 up to 50
ACO classifier 67 5 93.06 4 2

100
fuzzy classifier [8] 71 1 98.61 32 ·

(
100
2

)
= 44550 2

fuzzy/GA classifier [10] 68 4 94.44 20 up to 100
ACO classifier 66 6 91.67 4 2

Each sample is characterised by 7129 genes whose expression levels where measured
using Affymetrix oligonucleotide arrays. The same preprocessing steps as for the Colon
dataset are applied, and again the top 50 respectively top 100 genes are extracted.

Results on the Leukemia dataset are given in Table 2, in the same form as for the Colon
dataset. Again, the ACO classifier affords slightly lower classification performance com-
pared to the fuzzy rule-based classifier and the fuzzy/GA classification system. However,
compared to the CART classifier, which is reported to achieve a classification accuracy
of only 65.28% based on 50 respectively 62.50% based on 100 genes [8], ant-based clas-
sification is clearly superior. With a rule base of typically only 4 rules with 2 attributes,
our approach is clearly producing the most interpretable rule bases. Compared to this,
the fuzzy/GA classifier has 20 rules with a varying number of attributes, while the pure
fuzzy classifier relies on tenths of thousands of individual rules.

4 Conclusions

In this paper we have proposed the use of an ant colony optimisation-based classifier for
the analysis of gene expression data. In particular, we employ the cAnt-Miner classifi-
cation algorithm to interpret the continuous real number data of gene expression levels
and show that our approach produces very compact rule bases of only a few short rules
while providing classification performance similar to other, more complex classification
systems. These small rule bases could then form a starting point to gain further insight
into the analysis of the inspected datasets.
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Abstract. In this paper we present an empirical , comparative performance, 
analysis of fourteen variants of Differential Evolution (DE) and Multiple Trial 
Vectors Differential Evolution algorithms to solve unconstrained global optimi-
zation problems. The aim is (1) to compare Multiple Trial Vectors DE, which 
allows each parent vector in the population to generate more than one trial vec-
tor, against the classical DE and (2) to identify the competitive variants which 
perform reasonably well on problems with different features. The DE and Mul-
tiple Trial Vectors DE variants are benchmarked on 6 test functions grouped by 
features – unimodal separable, unimodal nonseparable, multimodal separable 
and multimodal non-separable. The analysis identifies the competitive variants 
and shows that Multiple Trial Vectors DE compares well with the classical DE. 

Keywords: Differential Evolution, Multiple Trial Vectors Differential Evolu-
tion, differential mutation strategies, probability of convergence, performance 
analysis, unconstrained global optimization. 

1    Introduction 

Differential Evolution (DE), proposed by Storn and Price [1,2], is a very simple but 
very powerful stochastic global optimizer for continuous search domain. It has been 
proven a robust global optimizer and has been successfully applied to many global 
optimization problems [3,4] and real-world applications. Like all Evolutionary Algo-
rithms (EA’s), DE is a stochastic population-based search method that employs  
repeated cycles of recombination and selection to guide the population towards the 
vicinity of global optimum. However, unlike other members of EA family, DE uses a 
differential mutation operation based on the distribution of parent solutions in the 
current population, coupled with recombination with a predetermined parent to gener-
ate a single trial vector followed by a one-to-one greedy selection scheme between the 
trial vector and the parent. Depending on the way the parent solutions are perturbed to 
generate a trial vector, there exists many trial vector generation strategies and conse-
quently many DE variants. 
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Population Initialization X(0) ← {x1(0),...,xNP(0)}
g ←0 
Compute { f(x1(g)),...,f(xNP(g)) } 
 while the stopping condition is false do 

 for i = 1 to NP do 
      for j = 1 to nt do 
      MutantVector:yi,j ← generatemutant(X(g)) 
      TrialVector:zi,j←crossover(xi(g),yi,j)    
      end for      
      Survivori←Tournament(zi,1...zi,nt,xi(g)) 
      xi(g+1) ←Survivor 

 end for 
g ← g+1 

Compute{ f(x1(g)),...,f(xNP(g))} 
   end while 

Fig. 1. Description of mtvDE algorithm

The conceptual and algorithmic simplicity of DE has attracted many researchers 
who are actively working on its various aspects. Adaptive mixing of perturbation 
techniques, multi-objective optimization, high dimensional optimization, diversity 
enhancement, to cite but a few examples, are some of the recent advances and ideas in 
DE literature [5]. Of particular interest is the generation of multiple trial vectors in 
place of single trial vector using differential mutation and recombination [6] followed 
by a tournament selection between the trial vectors and the predetermined parent, with 
an aim to increase the probability of the parent vector to generate a fitter trial vector. 

Little research effort has been devoted to understand multiple trial vectors DE. In 
this paper we extend the idea of multiple trial vectors generation to fourteen variants 
of classical DE and have carried out an empirical analysis of the performance of these 
14 variants of multiple trial vectors DE on six benchmark problems grouped by their 
modality and decomposability. A comparative performance analysis between the mul-
tiple trial vectors DE variants and their classical counterparts on the benchmark func-
tions has also been carried out. Henceforth, in this paper we adopt an acronym mtvDE 
to refer the multiple trial vectors DE. Despite the fact that a very limited set of 6 
benchmark problems will not guarantee reliable conclusion, the analysis indeed give 
insights about the efficacy of mtvDE variants and identifies competitive variants 
which perform reasonably well on problems with different features. 

The remainder of the paper is organized as follows. Section 2 describes the mtvDE. 
Section 3 briefly reviews related works and Section 4 details the design of experi-
ments. Section 5 discusses the simulation results and finally Section 6 concludes the 
paper. 

2    Multiple Trial Vectors Differential Evolution 

In the classical Differential Evolution algorithm, repeated cycles of differential muta-
tion and crossover generate a single trial vector Zi. A one-to-one tournament selection 
between the predetermined parent and trial vector is carried out after each differential 
mutation and crossover operation and the winner is placed in the new population. 

To increase the probability of generat-
ing fitter trial vector by each parent, mul-
tiple trial vectors generation scheme has 
been proposed in [6,7]. The mtvDE 
works as follows. At each generation, 
each parent vector will create nt trial vec-
tors by repeated nt cycles of differential 
mutation and crossover. After that, a 
tournament selection between nt trial 
vectors and their corresponding parent 
vector is carried out and the winner is 
placed in the new population. The algo-
rithmic description of mtvDE is depicted 
in “Fig. 1”. 

By extending the idea of multiple trial 
vectors generation to the seven com-
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monly used differential mutation strategies viz. rand/1, best/1, rand/2 , best/2, cur-
rent-to-rand/1, current-to-best/1 and rand-to-best/1  and combining them with two 
commonly used crossover schemes (binomial and exponential), we get fourteen pos-
sible variants of mtvDE. Following the standard DE nomenclature used in the litera-
ture, the fourteen mtvDE variants can be written as follows. mtvDE/rand/1/bin, 
mtvDE/rand/1/exp, mtvDE/best/1/bin, mtvDE/best/1/exp, mtvDE/rand/2/bin, mtvDE/ 
rand/2/exp, mtvDE/best/2/bin, mtvDE/best/2/exp, mtvDE/current-to-rand/1/bin, mtvDE/ 
current-to-rand/1/exp, mtvDE/current-to-best/1/bin, mtvDE/current-to-best/1/exp, 
mtvDE/rand-to-best/1/bin and mtvDE/rand-to-best/1/exp. In this paper, an empirical 
comparative performance analysis between DE and mtvDE variants has been  
carried out. 

3    Related Works 

In [7], Storn explored the idea of multiple trial vectors generation for each parent, but 
the trial vectors were generated and compared with parent vector one after another till 
a better trial vector than its parent vector was found. Once a fitter trial vector was 
found, the differential mutation and recombination operations end. 

Efren Menzura-Montes et. al. used multiple trial vectors generation in DE to solve 
constrained optimization problems in engineering design [6]. Five trial vectors were 
produced by each parent using /rand/1/bin variant. Through a pre-selection mecha-
nism, the best of the trial vectors was identified (based on feasibility or lowest sum of 
constraint violation) and made to compete against its corresponding parent vector. 

Efren Menzura-Montes et. al. [8] empirically compared the performance of eight 
DE variants, involving arithmetic recombination along with binomial and exponential, 
on unconstrained optimization problems. They concluded rand/1/bin, best/1/bin, cur-
rent-to-rand/1/bin and rand/2/dir as the most competitive variants. However, the po-
tential variants like best/2/*, rand-to-best/1/* and rand/2/* were not considered in 
their study. 

Babu and Munawar [9] compared the performance of ten variants of DE (excluding 
the current-to-rand/1/* and current-to-best/1/* variants of our variants suite) to solve 
the optimal design problem of shell-and-tube heat exchangers. They concluded 
best/*/* strategies to be better than rand/*/* strategies. 

4    Design of Experiments 

In this paper, we investigate the performance of mtvDE variants and compare them 
against classical DE variants, by implementing fourteen variants on a set of benchmark 
problems with high dimensionality and different features. We have chosen six test 
functions [8,10], of dimensionality 30, grouped by features - unimodal separable, uni-
modal nonseparable, multimodal separable and multimodal nonseparable. All the test 
functions have an optimum value at zero except for f03. The details of the benchmark 
functions are described in Table 1. In order to show the similar results, the description 
of f03 was adjusted to have its optimum value at zero by just adding the optimal value  
for the function with 30 decision variables (12569.486618164879) [8].  



A Comparative Performance Analysis of Multiple Trial Vectors Differential Evolution 473 

Table 1. Description of the benchmark functions  

f01 - Schwefel’s Problem 2.21 f04 – Generalized Restrigin’s Function

f02 – Schwefel’s Problem 1.2 f05 - Generalized Rosenbrock's Function

f03 – Generalized Schwefel’s Problem 2.26
;

f05 - Generalized Rosenbrock's Function

 

The parameters for all the DE and mtvDE variants are: population size NP = 60 and 
maximum number of generations = 3000 (consequently, the maximum number of 
function evaluations calculate to 180,000 in case of DE and 360,000 in case of 
mtvDE). The moderate population size and number of generations were chosen to 
demonstrate the efficacy of both DE and mtvDE variants in solving the chosen prob-
lems. The variants will stop before the number of generations is reached only if the 
tolerance error (which has been fixed as an error value of 1 x 10-12 ) with respect to 
the global optimum is obtained. Following [8,11], we defined a range for the scaling 
factor, F  [0.3,0.9] and this value is generated anew at each generation for all vari-
ants. We use the same value for K as F. In case of mtvDE , for all the variants , we set 
nt to be 2 (i.e. 2 trial vectors are produced by each parent vector).  

The crossover rate, CR, was tuned for each variant-test function combination. 
Eleven different values for the CR viz. {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
1.0} were tested for each variant-test function combination for DE and mtvDE sepa-
rately. For each combination of variant-test function-CR value, 50 independent runs 
were performed. Based on the obtained results, a bootstrap test was conducted in or-
der to determine the confidence interval for the mean objective function value. The 
CR value corresponding to the best confidence interval, of 95%, was chosen to be 
used in our experiment. The CR values obtained for each variant-test function combi-
nation for DE and mtvDE are listed as follows. In case of DE for  f01{0.5, 0.9, 0.2, 
0.9, 0.2, 0.9, 0.2, 0.9, 0.2, 0.9, 0.2, 0.9, 0.4, 0.9},  for f02{0.9, 0.9, 0.5, 0.9, 0.9, 0.9, 
0.7, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9} for f03{0.5, 0.0, 0.1, 0.7, 0.2, 0.3, 0.7, 0.3, 0.4, 
0.3, 0.8, 0.2, 0.8, 0.4} for f04{0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 
0.1, 0.9} for f05{0.9, 0.9, 0.8, 0.8, 0.9, 0.9, 0.6, 0.9, 0.1, 0.9, 0.1, 0.9, 0.8, 0.9} and for 
f06{0.1, 0.9, 0.1, 0.8, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.2, 0.9, 0.1, 0.9 } and in case of  
mtvDE for f01{0.3, 0.9, 0.3, 0.9, 0.2, 0.9, 0.2, 0.9, 0.1, 0.9, 0.2, 0.9, 0.3, 0.9}, for 
f02{0.9, 0.9, 0.4, 0.8, 0.9, 0.9, 0.7, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9}, for f03 {0.1, 0.3, 
0.1, 0.7, 0.4, 0.8, 0.1, 0.3, 0.5, 0.3, 0.3, 0.1, 0.3, 0.1}, for f04 {0.1, 0.9, 0.1, 0.9, 0.1, 
0.8, 0.2, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9 }, for f05 { 0.8, 0.9, 0.7, 0.8, 0.9, 0.9, 0.6, 0.9, 
0.1, 0.9, 0.1, 0.9, 0.8, 0.9 }, and for f06 {0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 
0.2, 0.9, 0.1, 0.9}. 

As EA’s are stochastic in nature, 100 independent runs were performed per variant 
per test function (by initializing the population for every run with uniform random 
initialization within the search space). For the sake of performance analysis among 
the variants, we present the mean objective function value (MOV) and the probability 
of convergence [12] for each variant-test function combination. 
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5    Results and Discussion 

The simulation results for all the test functions are presented in Table 2. For the func-
tion f01, the result shows that the best results were provided by */rand/1/bin, 
*/best/2/bin, */rand-to-best/1/bin, mtvDE/rand/2/bin and mtvDE/best/2/exp variants. 
The worst performance was provided by */best/1/exp, */current-to-best/1/exp, 
*/current-to-rand/1/exp and DE/rand/2/exp variants. It is interesting to note that the 
best and worst performance for f01 were provided by similar set of DE and mtvDE 
variants. 

For the unimodal non separable function f02. The best performance was shown by 
*/best/2/bin, */best/2/exp, mtvDE/rand/*/bin, mtvDE/rand/1/exp and mtvDE/rand-to-
best/1/* variants. The worst performing variants were */best/1/*, DE/rand/2/exp, 
*/current-to-best/* and */current-to-rand/*. The top 4 variants for f01 displayed simi-
lar high performance in the case of f02 too as can be seen in Table 2. 

In case of f03 the best performance is provided by */best/1/bin and 
mtvDE/best/1/exp variants. In case of f04 */rand/1/bin and */rand-to-best/1/bin have 
once again emerged as best performing variants along with */rand/2/bin. Similarly 
 

Table 2. MOV values obtained for DE and mtvDE variants  

Sno Variant
Unimodal functions Multimodal functions

f01- DE/
mtvDE

f02 -DE
/mtvDE

f03 -DE
/mtvDE

f04-DE /
mtvDE

f05-DE /
mtvDE

f06-DE
/mtvDE

1 rand/1/bin
0.00 /
0.00

0.07 /
0.00

0.13 /
0.07

0.00 /
0.00

21.99 /
5.77

0.00 /
0.00

2 rand/1/exp
3.76 /
0.92

0.31 /
0.00

0.10 /
0.21

47.93 /
0.00

25.48 /
6.23

0.05 /
0.02

3 best/1/bin
1.96 /
11.99

13.27 /
44.32

0.00 /
0.00

4.33 /
0.00

585899.88/
727417.29

3.72 /
4.74

4 best/1/exp
37.36 /
50.54

57.39 /
178.88

0.01 /
0.00

50.74 /
1.16

64543.84 /
37552.84

5.91 /
13.09

5 rand/2/bin
0.06 /
0.00

1.64 /
0.00

0.22 /
0.10

0.00 /
3.73

19.01 /
0.66

0.00 /
0.00

6 rand/2/exp
32.90 /
13.28

269.86 /
1.47

0.27 /
0.10

101.38 /
10.72

2741.32 /
204.31

0.21 /
0.08

7 best/2/bin
0.00 /
0.00

0.00 /
0.00

0.17 /
0.04

0.69 /
10.80

2.32 /
0.84

0.00 /
0.00

8 best/2/exp
0.05 /
0.00

0.00 /
0.00

0.08 /
0.02

80.63 /
13.56

1.12 /
0.84

0.03 /
0.02

9 current-to-rand/1/bin
3.68 /
0.59

3210.36 /
139. 42

0.14 /
0.06

37.75 /
14.28

52.81 /
28.84

0.00 /
0.00

10 current-to-rand/1/exp
57.52 /
49.20

3110.90 /
227.42

0.12 /
0.06

235.14 /
38.98

199243.32/
47153.21

1.21 /
0.36

11 current-to-best/1/bin
3.71 /
0.23

3444.00 /
132.64

0.19 /
0.05

37.04 /
51.49

56.91 /
30.88

0.00 /
0.00

12 current-to-best/1/exp
56.67 /
49.68

2972.62 /
268.08

0.10 /
0.10

232.80 /
121/26

119685.68/
41046.61

1.21 /
0.38

13 rand-to-best/1/bin
0.00 /
0.00

0.07 /
0.00

0.22 /
0.06

0.00 /
207.22

17.37 /
5.68

0.00 /
0.00

14 rand-to-best/1/exp
3.38 /
0.97

0.20 /
0.00

0.12 /
0.07

48.09 /
207.61

24.54 /
8.00

0.05 /
0.03  
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Table 3. Number of successful runs and probability of convergence for DE and mtvDE variants 

DE / mtvDE 

Variant f01 f02 f03 f04 f05 f06 Pc (%) 
best/2/bin 100/100 100/100 1/19 47/32 38/79 100/96 64.33/71.00 
rand-to-best/1/bin 100/100 79/100 0/8 100/100 0/4 100/100 63.17/68.67 
rand/1/bin 100/100 73/100 4/4 100/100 0/7 100/100 62.83/68.50 
best/1/bin 79/0 86/88 88/93 3/3 0/0 1/0 42.83/30.67 
rand/2/bin 0/100 0/100 1/4 100/100 0/5 100/100 33.50/68.17 
best/2/exp 1/100 100/100 17/40 0/0 29/79 44/32 31.83/58.50 
best/1/exp 0/0 58/0 85/93 0/0 0/0 0/0 23.83/15.50 
current-to-best/1/bin 0/0 0/0 3/11 0/0 0/0 96/100 16.50/18.50 
current-to-rand/1/bin 0/0 0/0 2/5 0/0 0/0 96/100 16.33/17.50 
rand-to-best/1/exp 0/0 10/100 6/15 0/0 0/6 69/71 14.16/32.00 
rand/1/exp 0/0 4/100 7/12 0/0 0/7 68/76 13.17/32.50 
rand/2/exp 0/0 0/4 2/4 0/0 0/0 3/0 0.83/1.33 
current-to-best/1/exp 0/0 0/0 5/7 0/0 0/0 0/0 0.83/1.17 
current-to-rand/1/exp 0/0 0/0 3/7 0/0 0/0 0/0 0.50/0.83 

 
*/rand/2/exp, */current-to-rand/1/exp , */current-to-best/1/exp and */best/1/exp have 
once again displayed poor performance, as in the case of f01 and f02, along with 
*/best/2/exp. The variants mtvDE/best/2/bin, mtvDE/best/1/exp and 
mtvDE/rand/2/exp  have performed poorly than their counterparts.  

Test function f05 was not solved by any variant. However, */best/2/*  and 
mtvDE/rand/2/bin variants have displayed relatively better performance. 
*/rand/2/exp, */current-to-rand/1/exp and */current-to-best/1/exp  were the consistent 
poor performing variants. Interestingly */best/1/* variants have also shown the worst 
performance in both the cases (DE and mtvDE). However in case of f06, 6 variants 
displayed best performance. */rand/*/bin, */rand-to-best/1/bin and */best/2/bin were 
the consistent best performing variants. This best performance is also shared by 
*/current-to-best/1/bin and */current-to-rand/1/bin variants. As with f05, */best/1/* 
variants have shown a relatively poor performance. 

Based on the overall results in Table 2 the most competitive variants were */rand-
to-best/1/bin,*/best/2/bin and */rand/1/bin. The variants */rand/2/bin and */best/2/exp 
variants also showed good performance consistently. On the other hand, the worst 
overall performance were consistently displayed by variants */current-to-best/1/exp 
and */current-to-rand/1/exp. The variants */best/1/bin and */rand/2/exp were also 
displaying poor performance. */best/1/* variants show good performance for multi-
modal separable function. It is worth noting that binomial recombination showed a 
relatively better performance over the exponential recombination. It is also worth not-
ing that the relatively better performance of mtvDE over DE in all the test functions 
may largely be attributed to the increased number of function evaluations available to 
mtvDE. As a matter of fact, when in some representative runs, both DE and mtvDE 
were allowed precisely the same number of fitness evaluations, both displayed similar 
high performance capability. 

Next in our experiment, the probability of convergence (Pc), i.e. the percentage of 
successful runs to total runs, is calculated for each variant-function combination. This 
measure identifies variants having higher convergence  capability to global optimum. 
It is calculated as the mean percentage of number of successful runs out of total num-
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ber of runs i.e. Pc=(nc/nt)% where nc is  total number of successful runs made by 
each variant for all the functions and nt is total number of runs, in our experiment nt = 
6 * 100 = 600. 

The convergence probability for both DE and mtvDE variants were calculated 
separately and the results are shown in Table 3. The table presents the number of suc-
cessful runs made by each variant for each function, the total number of successful 
runs and the probability of convergence. As can be seen from the table, the competi-
tive variants identified earlier viz. */best/2/bin, */rand-to-best/1/bin and */rand/1/bin 
have higher probability of convergence. Similar trend could be observed for 
*/rand/2/bin and */best/2/exp variants.  The worst performing variants */current-to-
best/1/exp, */current-to-rand/1/exp and */rand/2/exp were found to have the least 
probability of convergence.  

6    Conclusion 

In this paper, we have extended the idea of multiple trial vector generation to fourteen 
variants of classical DE and presented an empirical comparative performance analysis 
of these fourteen variants of mtvDE against those of classical DE. The variants were 
tested on 6 test functions of dimension 30, grouped by their modality and decomposa-
bility. The experiments identified */best/2/bin, */rand-to-best/1/bin and */rand/1/bin 
variants as the most competitive variants in terms of the mean objective function val-
ues. The worst performing variants were */current-to-best/1/exp, */current-to-
rand/1/exp and */rand/2/exp. In fact the calculation of probability of convergence 
reiterated the observation about the performance of above said variants. Our future 
work would involve validating above observations by testing DE and mtvDE variants 
on a larger suite of test functions and also testing mtvDE for performance variation 
with respect to the number trial vectors, nt. 
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Abstract. As an emerging computational methodology, granular com-
puting provides an effective strategy for solving many real world prob-
lems such as mining latent relationships from text. This paper examines
the relationship between granular computing and text mining from a
theoretical perspective. Firstly, we analyzes the granular structure of
text data which is the key step for textual data representation. Secondly,
some granule-based computational methods are described, especially on
term-document and document-document similarity calculations. Finally,
we highlight several potential research areas where the performance of
text mining could be enhanced by applying the concepts of granular
computing.

1 Introduction

With the rapid development of the Internet, the volume of semi-structured
and unstructured textual data such as XML documents, e-mail messages, blog
posts, academic papers has been under an exponential growth. Discovering use-
ful knowledge from such huge volume of data has become a very challenging
problem. Text mining, as a hot research topic, tries to extract knowledge from
unstructured data by using techniques from data mining, machine learning, nat-
ural language processing, information retrieval, and knowledge management [1].
Text mining is a knowledge-intensive process in which a user interacts with a
document collection by a suit of analysis tools, and finally identifies and explores
some interesting patterns.

Because of the complexity of text data, say large volume, content diversity and
complicated semantic, text mining is a tough research area. Recently, more and
more techniques have been developed to address the research challenges, such
as, text clustering, classification algorithms, and information extraction methods.
Although, these techniques perform well at their corresponding step, a good text
mining strategy should consider not only the mining analysis performance but
also the information related to other steps, i.e., text preprocessing and results

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 478–485, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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visualization steps. In this case, granular computing is helpful to open our eyes
on systemically identifying patterns from text data.

Granular computing is a newly developed computational methodology which
has been drawn much attention by researchers [2,3]. It concerns the processing
of complex information entities called granules, which arises in the process of
data abstraction and knowledge derivation from information. Generally speak-
ing, information granules are collections of entities that originate at the numeric
level and are arranged together due to their similarity, functional or physical
adjacency, indistinguishability, coherency and etc. [3]. Granular computing has
two stages: granule representation and computation with granules. Granule rep-
resentation is a primitive part of the whole granular computing process; at this
stage, granular computational method exploits structures in terms of granules,
levels, and hierarchies based on multilevel and multiview representations. Each
representation level can be viewed as a representation of a problem at a specific
level of granularity. The relationship between levels can be interpreted in terms
of abstraction, control, complexity, detail, resolution [2]. The ideas of granular
computing, therefore, can be used to reexamine many classical problems in order
to obtain new understandings and more insights.

In this paper, we apply the concept of granular computing to text mining for
effective addressing text mining problems. For example, text data can be repre-
sented on different levels, say, character-level, word-level, phrase-level and even
concept-level. Each level can be regarded as a granule in granular computing.
Next, the structured information processing of granular computing can be used
to efficiently mine the textual data. We focus on the computations of granules in
the form of similarity calculations between term and document, or between doc-
uments. This kind of computations play an important role in text mining. For
example, the similarity between query term and document collections is the basis
of information retrieval, and the similarity between documents is the criterion
of text classification. Several research challenges and opportunities by applying
the ideas of granular computing to enhance text mining are also discussed.

The rest of this paper is organized as follows. Section 2 gives a granular struc-
ture of text data. The relationship between text mining and granular computing
is analyzed in detail in Section 3. The future research challenges and opportuni-
ties of text mining with granular computing are given in Section 4. Finally, we
provide a conclusion of our work in Section 5.

2 Granular Structures of Text

Heeman [4] pointed out that textual data has granular structures, for example, a
document had low-level and high-level structures. A low-level structure reflects
the hierarchical structure of the language content including characters, words,
phrases, concepts, clauses, sentences, paragraphs, as shown in Fig.1(a). Char-
acters are the individual component-level letters, numerals, special characters
and even space. Words are the basic level of semantic richness. Phrases con-
sist of words and can be extracted by using phrase-extraction techniques. Con-
cepts are extracted by complex preprocessing routines and may be single words,
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 Document 

Title 
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References 
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 Document 

Front Body Back 
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Subsection  … Subsection  
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Sentence … Sentence 

(a) (b)

Fig. 1. The Granules in Text data in the view of (a) content and (b) local organization

multiword expressions, whole clauses or even larger units which are related to
specific concepts identifiers (say, dictionaries, ontologies, and some knowledge
resources). Each representation has its advantages and disadvantages. For ex-
ample, Character-level includes useful and common positional information of
document, however, it can not often be handled by text mining techniques be-
cause the feature space is fairly unoptimized. Meanwhile, concept-level has a
good performance when handling synonymy, polysemy, and even hyponym and
hypernym, so that it can support very sophisticated concept hierarchies and
leverage the domain knowledge, but it is to large extent dependent on the do-
main knowledge and a complicated processing to apply such heuristics.

A high-level structure reflects the organization of a document. Subsections are
made up by paragraphs, sections by subsections, and a document by sections,
as shown in Fig.1(b). A book is made up by chapters and each chapter is made
up by sections. A structured document or markup languages focus on a high-
level representation of a document based on its logical organization. That is,
a document is no longer treated as a stream of characters in a linear order.
Typically, a markup language is used to label and to tag different parts of a
document and, furthermore, to link different parts by hyperlinks.

3 Granular Computing for Text Mining

The goal of text mining is to extract key elements from large unstructured data
sets, discover relationships and summarize the information. Text mining can be
taken as an inference process via a pipeline of steps including preparing, parsing,
representing, analyzing text data and visualizing analysis result, where each step
may result in the failure of the mining process. These steps can be projected to
the granular computing according to the text granular structure. For instance,
a document can be represented in terms of characters, words, phrase, concepts
or even topics. Different levels may indicate different meanings.
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3.1 Granular Text Representation

A document collection X with n documents, in text mining, is usually rep-
resented as a vector set X = {X1, X2, · · · , · · · , Xn}, and each vector Xi =
{xi1, xi2, · · · , · · · , xim} represents a document in m-dimensional space, i.e., there
are total m terms in the whole collection [17]. xij gives the weight of the jth
term in the ith document. Here, terms can be words, phrases or concepts. Also,
a document can be represented as a sequence of small units (e.g., characters,
words, phrases and sentences) in duplicate detection application [12].

The simplest approach obtaining terms from documents is to segment the
whole document into smaller units according to space, comma or other tags.
However, this approach can not exploit the real semantic information of the doc-
uments. Recently, researchers considered the document granular structure and
extract more rich and flexible representation models. In this case, Information
extraction (IE) [24] plays an important role. For example, IE can derive taxon-
omy by extracting phrases and their relationships [23,18], also such taxonomy
patterns were used to represent document collection [8]. With the IE techniques,
the document can be represented in different granular levels, say, phrase-level,
concept-level and even taxonomy-level. Moreover, the document local organiza-
tion in Fig.1(b), was used in structural IE. Structured IE uses a two-stage to
finish structure IE tasks, so that, a plain text document can be structured into
different target fields which makes the subsequent text analysis become easier.

3.2 The Computation of Granules

Similarity calculating is a main step in text mining, such as similarity between
term and document in information retrieval, similarity between documents in
text clustering/classification. Meanwhile, such similarity values are effected to a
large extent by the document granular structures.

1)Term-Document Similarity
Scoring the similarity between a query and a document is a key component of
information retrieval. Usually, information retrieval (e.g., search engine) only
considers whether the query terms appear in the corresponding documents and
then ranks the searched documents according to their static information, like,
Google with PageRank [10]. Robertson et al. [9] firstly added query term impor-
tance information among the corresponding relevant documents in the search
engine model BM25. [9] used Simterm(Q, D) = αG(D, Q) + β

∑
t∈Q ωt · T (D, t) to

calculate the similarity, where G(D, Q) is the static Pagerank of the document
D, and

∑
t∈Q ωt · T (D, t) is used to evaluate how the importance of the query

terms in the corresponding document.
Recently, Zhu et al. [6] introduced term position information into the similar-

ity calculating for information retrieval, Simpos(D, Q) = αG(D, Q) + β1

∑
t∈Q ωt ·

T (D, t)+β2 ·X(D, Q). Among them, term-proximity term X(D, Q) indicates how
close query terms appear in a document. Similarly, Lv and Zhai [5] considered
the term positional information in language model building.
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Meanwhile, a document, intuitively, should be more relevant to a query if they
share more concepts, and these concepts are recorded in the ontologies or other
knowledge resource. Such concept-level information was recently used in infor-
mation retrieval by Lau et al. [7] with Simconcept(D, Q) = S(D, Q) − ϕ|DC(D) −
QC(Q)|, where S(D, Q) is the popular similarity value. |DC(D) −QC(Q)| is used
to estimate the concept-level distance between D and Q according to ontology.

All these similarity measures demonstrate that different document representa-
tions (i.e., granularity, or levels) may provide the users with different perspectives
of the document contents. Therefore, integrating these different-level represen-
tations can handle the document information as much as possible.

2) Document-Document Similarity
Evaluating document similarity plays an important role in text mining. For ex-
ample, text clustering groups together similar documents and separate dissimilar
ones based on some similarity functions which take a pair of documents and pro-
duce a real value that is a measure of the documents’ proximity.

In document duplication detection, each document is first chunked into smaller
units, then each textual chunk is hashed down to a fingerprint with the at-
tributes: fprint (the hashed fingerprint) and docID (the document ID). Finally,
the document similarity can be approximated by comparing the fingerprint sets
of documents for overlap using min-wise independent permutations as Simdoc

(D1, D2) = (F1

⋂
F2)/(F1

⋃
F2), where F1 and F2 are the fingerprint sets for doc-

ument D1 and D2 respectively. The fingerprint technique was early used in web
page duplicate detection by Broder [11] based on character-level chunk, subse-
quently, word-level [12], phrase-level [13] and document-level [14] were developed.

For text clustering,document-document similarity is the basic criterion to group
the document collection. Term-level vector, Xi = {xi1, xi2, · · · , xij , · · · , xim} is a
typical document representation, where xij usually means the TF · IDF weight
of the jth term in the ith document. Here, cosine similarity Simcosine(D1, D2) =

X1·X2
||X1||·||X2|| is usually used, in which, the semantic relationship between terms is ig-
nored because it assumes that all terms are independent. Before [16], unique words
were treated as the vector terms. In this case, different words are assumed inde-
pendent to each other, which is not true in real world. Later, some researchers
introduced phrase-level document-document similarity measure [16,15], where a
multi-word phrase is treated as one term in data representation. Meanwhile, on-
tology (say, GO (www.geneontology.org/) and etc.) or other knowledge resources
(say, Wikipedia (en.wikipedia.org/wiki/) and etc.) are used to extract concepts for
document concept-level representation [19,20,21,22].

4 New Research Challenges and Opportunities

From the computational perspective, granular computing can solve a problem
by systematically exploring the granular structures. This involves moving the
perspective upwards and downwards along a hierarchy of granules. Such hier-
archical analysis also can be applied in text mining, like Fig.2. Based on the
content granular structures of text data (Fig.1(a)), the document collection can
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be represented in different content levels. So far, researches only focus on in-
dividual level, i.e, they do not consider mapping connections between granules
or levels. Actually, there should be some connection between different granules,
say, a phrase is consistent of several words.

One granular computing approach solving this problem is to integrate these
different-level document representations, so that the final document represen-
tation can capture more rich and meaningful information, like the framework
circled in dash rectangle (the lower section) in Fig.2, and then the general text
analysis methodologies can be applied. The another method is to analyze the
text data on different levels with the existing methodologies and then combine
the analysis results, like the framework circled in red sold rectangle (the upper
section) in Fig.2.

Fig. 2. Granular Computing Framework of Text Mining

Recently, mining precious knowledge from multi-resources becomes a hot re-
search topic in many fields, so does in text mining [19,21,22]. In this case,
how to effectively make use of multi resources is the key problem. Granular
computing provides a reasonable strategy to integrate these multi resources
by taking them as different granules. Here, we gave an example for identify-
ing protein protein interaction (PPI) from bioinformatics literature, GO, UMLS
(www.nlm.nih.gov/research/umls/), and other thesaurus. Proteins can be repre-
sented with terms in the bioinformatics literature, meanwhile, some terms may
be related to one concept recorded in UMLS, therefore, we can use this concept
replace the individual terms. One reason to do this is that concept can capture
more information, the other reason is dimensional reduction because more than
one terms can be replaced by one concept. Furthermore, the functional informa-
tion of parts of proteins is annotated in GO, such strong protein relationships
can be used as prior information to supervise PPI identification process.

Another main problem for text mining is to reasonably explain and show the
mining results. Granular computing is helpful here. For example, in digital library,
a large listof papersor booksmaybe returnedwithaquery,which isvery terrible for
a user if he or she is only interested in part of the results. A simple way is to provide
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a granule option so that the user can select which part he or she is interested in. For
instance, the searched documents can be sorted by different granules (Title, Ab-
stract, Full Text, etc.) in PubMed(www.ncbi.nlm.nih.gov/sites/entrez), or grouped
by different topics in Vivisimo(vivisimo.com). Furthermore, combining concepts
thesaurus and structures to exploit the mining results is an emergent and inter-
esting research area. Finally, new methods should be explored to compute the se-
mantic granularity (e.g., levels of specificity) of text.

5 Conclusions

In this paper, we provide a theoretical analysis of applying the concepts of granu-
lar computing to address the research challenges presented in text mining. Future
research challenges and opportunities of conducting text mining with the help of
granular computing are discussed. As a matter of fact, the ideas of granular com-
puting have been applied to text mining research for some time. For example, re-
searchers began to realize that it was helpful to represent document collection with
different levels of abstraction such as words, phrases, and even concepts. Each level
of abstraction is essentially a granule. However, the relationships among different
granules have not been investigated fully. Granular computing will help researchers
develop a more effective method for text mining by exploring different levels of in-
formation, and even the relationships among granules. Moreover, granular com-
puting can offer a sound methodology of integrating multiple sources of data to
enhance distributed text mining in the future.
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Abstract. Semantic orientation of a word indicates whether the word
denotes apositive or anegative evaluation.Wepresent an approach to com-
pute semantic orientation of words using machine-interpretable common-
sense knowledge. We employ ConceptNet (a large semantic network of
commonsense knowledge) for determining the polarity or semantic orien-
tation of a sentiment expressing word. We apply heuristics on certain pre-
defined predicates expressing semantic relationship between two concepts
for classifying words that have a positive or negative polarity and finding
words that have similar polarity. The advantages of the proposed approach
are that it does not require any pre-annotated training dataset or man-
ually created seed list. The proposed solution relies on a lexical resource
which is created by volunteers on the Internet and not by trained or spe-
cialized knowledge engineers. We test our approach on publicly available
pre-classified sentiment lexicon and present the results of our experiments
and also examine the tradeoffs and limitations of the proposed solution.
We conclude that it is possible to determine polarity of words with high
accuracy by exploiting amachine-understandable layman’s knowledge and
basic facts that ordinary people know about the world.

Keywords: Word-Level Polarity Classification, Common-Sense Knowl-
edge Base, Sentiment Analysis, Opinion Mining.

1 Introduction

Semantic orientation of a word indicates whether the word denotes a positive
evaluation (such as praise or positive opinion) or a negative evaluation (such
as criticism or negative opinion) [8][7]. Semantic orientation of a word is also
referred as the valence or polarity of a word and systems to automatically de-
termine semantic orientation of a word has applications in the area of sentiment
analysis, opinion mining, multi-perspective question and answering and filtering
abusive messages. Opinion mining and sentiment analysis of a product review
or any subjective statement is an area which has received significant interest in
recent times and polarity determination of a word is fundamental to the problem
of sentiment analysis (refer to a detailed survey on opinion mining and sentiment
analysis by Bo Pang and Lillian Lee [5]). Polarity determination at world level
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(fine-grained analysis) forms a component of a larger system wherein polarity
determination at sentence, paragraph or document level needs to be performed.
There are two sub-problems within the problem of determining semantic orien-
tation of a word. One sub-problem consists of computing the direction (positive
or negative) and the other sub-problem consists of computing the intensity or
strength (weak or strong) within the computed direction. For example, the word
good is a weak positive word whereas excellent or fabulous or astonishing is a
strong positive word. Similarly, the word bad is a weak negative word whereas
horrible or terrible is a strong negative word. Automatically determining the
semantic orientation of word is required for developing sentiment lexicon as it is
tedious and time consuming to manually label all the words in a language with
its polarity and intensity.

The earliest work to solve the problem of automatically determining the seman-
tic orientation of a word was done by Hatzivassiloglou et al [8]. The basis of the ap-
proach by Hatzivassiloglou et al is that adjectives conjoined by words such as and
or or share the same polarity whereas adjectives conjoined by words such as but
will have opposite polarity or orientation. The methods consists of extracting pairs
of adjectives using conjunctions like and, or, but, either-or, or neither-nor from
1987 Wall Street Journal Corpus (a document set consisting of 21 million words)
and assigning similar or different polarities to adjectives based on the type of con-
juctions. Turney et al. proposed a general strategy for inferring semantic orienta-
tion of a word based on their hypothesis that the semantic orientation of a word
tends to correspond to the semantic orientation of its neighbors [7]. Neighborhood
between words is determined using statistical association or statistical dependence
between words (word co-occurrence). Kamps et al. use WordNet to measure se-
mantic orientation of adjectives by exploiting the graph-theoretic model of Word-
Net’s synonym relations [3]. Esuli et al. present a technique for determining the
semantic orientation of terms through gloss classification (performs quantitative
analysis of the glosses or definitions of terms given in on-line dictionaries) [1]. Wil-
son et al. presents an approach to recognizing contextual polarity of phrases (a
two-step process that employs machine learning that begins with a large stable
of clues marked with prior polarity and then identifies the contextual polarity of
the phrases that contain instances of those clues in a corpus) [9].Takamura et al.
present a technique that consists of construcing a lexical network by connecting
similar or related words and adopting the Potts model for the probability model
of the lexical network [6].

1.1 Paper Contributions

We propose a novel technique for determining the polarity of a word by mak-
ing use of a semantic network of common-sense knowledge. Previous approaches
compute semantic orientation of words in a corpus-driven manner by performing
statistical analysis on a corpus or rely on lexical resources created by experts and
trained knowledge engineers. Previous approaches also rely on a pre-annotaed
training dataset or a seed list of pre-classified sentiment words for performing
its task. In this paper, we present a new approach that differs from the previous
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approaches and has the following advantages. The main advantages of our solu-
tion is that it relies on a lexical resource (called as ConceptNet) that represents
common-sense knowledge created by volunteers on the Internet (14,000 contrib-
utors from around the world as mentioned in the paper by Liu et al. [4]) and
not by trained or specialized knowledge engineers. Also, the proposed approach
does not require any pre-annotated training dataset or manually created seed
list to perform its tasks. Creating training dataset of pre-classified words and
manually building specialized lexical resources for sentiment analysis application
requires trained and specialized people and can be a time-consuming as well as
tedious process. The proposed solution overcomes the dependency on experts by
automatically creating sentiment lexicon and computing semantic orientation of
words based on common-sense knowledge created by ordinary people as volun-
teers and not specialized knowledge engineers. The proposed approach performs
polarity classification of sentiment word belonging to any lexical category (ad-
jective, adverb noun and verb) unlike some approaches that are able to perform
polarity classification of words belonging to just adjectives. We present empirical
results (based on experiments performed on publicly available test dataset and a
standard benchmark for this task) which prove that it is possible to predict with
good accuracy the polarity of a word by using laymans common-sense knowl-
edge. The limitation of our approach is that the accuracy and coverage of the
words is a function of the number of concepts, assertions, relations and quality of
data in the common-sense knowledge-base. The work presented in this paper is
a step in the direction of our research on investigating the usefulness of machine
understandable commonsense knowledge in the application domain of sentiment
analysis and opinion mining.

2 Solution Approach

We leverage ConceptNet (which is machine-interpretable semantic network rep-
resenting common-sense knowledge) for polarity classification of words. The
common-sense knowledge present in ConceptNet is collected from volunteers on
the Internet since the year 2000 and represents facts that ordinary people knows
about the world [2]. The data present in ConceptNet is contributed by ordinary
people unlike lexical resources such as WordNet and FrameNet which are mainly
created by trained and specialized knowledge engineers. As ConceptNet is a se-
mantic network, it consists of nodes connected by edges. The nodes represent
the concepts and the edges represent predicates. Predicates express semantic
relationships between two concepts. Some relationships between concepts in the
ConceptNet semantic network are: IsA, MadeOf, UsedFor, CapableOf, DesireOf,
CreatedBy, InstanceOf, PartOf, PropertyOf and EffectOf [2]. In ConceptNet, an
assertion is uniquely defined by five properties: language, relation, concept1, con-
cept2 and frequency. The Language property defines the language an assertion is
expressed in (such as English). The Relation property defines the relation or the
name of the predicate that connects the two concepts in the assertion (such as
IsA, PartOf). Concept 1 and Concept 2 define the first and the second argument
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Table 1. Pre-defined pattern over assertions belonging to the Desires relation

Assertion Property Value of the Assertion Property

Language English
Relation Desires
Concept 1 a person or human or everyone
Concept 2 Word whose polarity needs to be determined
Assertion Type +1 or -1

of the relation (words and phrases). The Frequency property expresses how often
the given concepts would be related by the given relation, ranging from never to
always. Also for each assertion, there is a field which defines the assertion type.
The value of the assertion type is +1 if the assertion makes a positive statement
(such as Diamonds are pretty) and -1 if it makes a negative statement (such as
a person doesn’t want anxiety).

(Step 1). The first step of the proposed solution consist of checking if the
word matches the pattern or structure defined in Table 1. The pattern is based
on our hypothesis that if a person or human or everyone (as Concept 1) desires
(Relation type as Desires) something (represented as Concept 2), then Concept 2
(in our case a sentiment expressing word whose polarity needs to be determined)
will have positive connotation if the assertion type is positive (i.e. has a value
of +1) and will have negative connotation if the assertion type is negative (i.e.
has a value of -1). This step does not require any seed list or pre-classified
sentiment word and has an advantage over approaches that depend on having
a training dataset or manually created seed list. We validated our hypothesis
by entering few terms on the web-based interface provided at the ConceptNet
website. For example, some of the words which are expressed as Concept 2 and
where the Concept 1 is person, Relation is Desires, Assertion Type is +1 are:
accomplish (verb), admiration (noun), affection (adjective), beautiful (adjective),
bliss (noun), clever (adjective), comfort (verb) etc. Similarly, some of the words
which are expressed as Concept 2 and where the Concept 1 is person, Relation
is Desires, Assertion Type is -1 are: agonize (verb), annoyance (noun), anxiety
(noun), bad (adjective), boredom (noun), cancer (noun), confuse (verb), criminal
(noun), criticism (adjective), damaging (adjective) etc. We noticed that some
words fall into a category where Concept 1 is person (or human or everyone),
Relation is Desires and Assertion Type is both +1 and -1. Since, there is a
conflict in assertion type, we do not predict the polarity of such words and leave
it blank to be computed in the next steps of the overall process.

(Step 2). The second step of the solution consists of checking a pattern based
on DefinedAs relationship. The pattern is based on the hypothesis that two con-
cepts connected to each other using a DefinedAs relation in the same assertion will
have the same polarity (synonym or semantically similar relationship). Hence, if
the polarity of one of the concept is known in such a relation then the polarity of
the connected work can also be computed. This step uses the classifications from
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the previous step to perform classifications of unclassified words. The seed for this
step comes from previous step and hence this step as well as the subsequent steps
does not require any pre-created seed list or training dataset. Unlike Step 1 (which
is applied once), Step 2 is executed repeatedly until there is no additional coverage
between two consecutive steps. This is done because the first run of Step 2 may
result in polarity determination of certain words that can help in predicting po-
larities of words which could not be determined during the first run of Step 2. For
example, let us say that there are two assertions ”A DefinedAs B” & ”B DefinedAs
C” where A,B & C are three concepts in the ConceptNet semantic network. If the
polarity of A is known and B is unknown after Step 1, then at the end of the first
run of Step 2, polarity of B can be determined. The polarity of concept C can be
determined after the second run of Step 2. Thus, Step 2 is repeated as long as the
coverage is increasing. We validated our hypothesis by entering few terms on the
web-based interface provided at the ConceptNet website. Some illustrative exam-
ples of two concepts connected to each other using DefinedAs relation: (blossom,
flower), (devil, Satan), (eliminate, exclude), (grotesque, bizarre), (indelicate, in-
decent), (savage, vicious), (advance, progress), and (whip, beat). The concepts
in ConceptNet are natural language fragments and we noticed that often the re-
lationship is of the type A DefinedAs Same B” and ”A DefinedAs Opposite B”
where A and B are concepts. For example, one of the assertions in ConceptNet
is: ”Advance DefinedAs same Progress” (can be interpreted as synonyms). Some
illustrative examples on concepts having the same polarity that we have provided
belong to the assertion type A DefinedAs Same B”. This can be handled by lo-
cating the word same in the concept and removing it from the concept string for
extracting the word whose polarity needs to be determined. We noticed several as-
sertions of type A DefinedAs Opposite B (can be interpreted as antonyms). Such
assertions can be handled by extracting the term opposite from the concept string
and flipping the polarity of B i.e. applying the inference that concept Bs polarity
is opposite to the polarity of concept A. Some illustrative examples of two con-
cepts connected to each other using DefinedAs relation and where the assertion
is of type ”A DefinedAs Opposite B” are: (dawn, dusk) (selfishness, selflessness),
(slow, fast), (abnormal, normal), (bad, good), (clean, dirty), (cruel, kind), (evil,
good), (evil, nice), (happiness, sadness), (hard, soft), and (yes, no).

(Step 3 and Step 4). Similar to Step 2, the third and fourth step consists
of classifying a word using the polarity of words computed from previous steps
(viewed as pre-annotated dataset or seed list for this step) and exploiting the
IsA and HasProperty predicate of ConceptNet. This is based on the hypoth-
esis that Concepts (in our case sentiment expressing nouns, verbs, adverbs or
adjectives) connected to each other using IsA relationship are semantically re-
lated (may not be similar as in the case of DefinedAs predicate) and share the
same polarity. Similar to the previous Step, we check the value of assertion type
(+1 or -1) and the presence of terms like same and opposite in the concept for
computing the semantic orientation of an unclassified word connected to a word
(whose polarity is known) through the IsA and HasProperty predicate. Step
2,3 and 4 are executed repeatedly (DefinedAs analysis followed by IsA analysis
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followed by HasProperty analysis) to traverse the semantic network and assign
polarities of connected words by exploiting properties of pre-defined predicates.
Some illustrative examples of words connected to each other in the Concept-
Net semantic netowrk through IsA predicate and having posistive polarity are:
(cleanliness, good), (faith, trust), (happiness, bliss), (heart, love), (urge, desire),
(virtue, good) and (honor, virtue). Some illustrative examples of words having
negative polarity and connected through IsA predicate are: (assault, crime), (die,
tragedy), (fraud, deception), (fraud, cheat), (injury, damage), (kill, crime), (slay,
kill) and (war, conflict).

3 Empirical Evaluation

The test data for validating our approach consists of the publicly available sub-
jectivity lexicon which can be freely downloaded from the ”MPQA Releases -
Corpus and Opinion Recognition System” website of the University of Pitts-
burgh 1. The subjectivity lexicon has been used in [9] as well several other work.
The subjectivity lexicon consists of 2007 words that have an entry in the Con-
ceptNet. The 2007 words belonging to our test dataset have been pre-classified
as positive or negative in the subjectivity lexicon (a benchmark for the task of
polarity classification of subjective words). Thus, the actual polarity of all the
2007 words is known in advance which can be compared to the predicted polarity
from our approach to determine the accuracy of the proposed solution. Amongst
a total of 2007 distinct words in the test dataset, 830 words have positive polarity
and 1177 words have negative polarity.

After executing Step 1, we obtained the results presented in Table 2. As
mentioned in Step 1, we assign polarities to words where there is no conflict of
polarities i.e. words that have been assigned a single polarity only. For example,
after executing Step 1, we noticed that there were 22 words which had both
positive and negative assertion types. The words are: busy, dance, death, drunk,
dying, enlightenment, fairness, faith, free, happiness, hunger, laugh, less, little,
live, rich, ridicule, scared, screw, shelter, truth and war. Table presents total
and category-wise coverage after executing Step 1. We noticed that our system
was able to classify 550 words out of 2007 (coverage of 27.4%) after removing
22 words that had a conflict of polarity. Table 3 presents the confusion matrix.
As shown in Table 3, the classification accuracy that we obtained was 95.45%.
Step 1 resulted in good coverage (able to classify 27.40% of the words) and
high classification accuracy (correctly predicted the polarity of 95.45% of the
words that it was able to classify). The results obtained after Step 1 validates
our hypothesis that the assertion in ConceptNet in which the relation type is
Desires and the first concept is person, human and everyone can be used to
infer the polarity of the second concept (the second argument of the Desires
predicate).

After executing Step 2 once (i.e. applying DefinedAs predicate), we were able
to correctly classify (with 100% accuracy) nine more words. The pair of words
1 URL: http://www.cs.pitt.edu/mpqa/
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Table 2. Total coverage and category-wise coverage after executing Step 1

Positive & Negative Positive Negative

Test Data 2007 830 1177
Coverage Absolute 550 245 305
Coverage Percentage 27.40% 29.51% 25.91%

Table 3. Confusion matrix and classification accuracy after executing Step 1

Predicted

Positive Negative

Actual Positive 227 7
Actual Negative 18 298

Correct Classification (227+298)/550 = 95.45%
Incorrect Classification (7+18)/550 = 4.54%

Table 4. Confusion matrix and accuracy after executing Step 2,3 and 4

Predicted

Positive Negative

Actual Positive 288 23
Actual Negative 51 398

Correct Classification (288+398)/760 = 90.26%
Incorrect Classification (23+51)/760 = 9.74%

connected to each other using DefinedAs predicate and having same polarity
were: (fancy, like), (gratitude, thank), (liberal, generous), (murky, dark), (para-
noia, fear). The polarity of like, thank, generous, dark and fear were computed
from previous step which resulted in correctly classifing the polarity of words
fancy, gratitude, liberal, murky and paranoia in Step 2. In this step, the system
was also able to correctly classify (with 100% accuracy) words connected using
DefinedAs relationship but having opposite polarity (as implied by the presence
of the word opposite in the concept): (cold, warm), (cruel, kind), (hard, easy)
and (rich, poor). We noticed that in this step, the accuracy was 100% but the
coverage was low. Table 4 presents the final results obtained after executing
Steps 2,3 and 4 repeatedly (Step 2 followed by Step 3 followed by Step 4) until
no further classifications were observed. As shown in Table 4, the approach cor-
rectly predicted 686 words from a total of 760 words that it could classify (an
accuracy of 90.26%). The system was able to create a sentiment lexicon of 760
words from a common-sense knowledge base without using any training dataset
or a seed list with an accuracy of around 90%.

4 Conclusions

This paper investigates the usefulness of commonsense knowledge for classifying
polarity of sentiment expressing words as positive or negative. Evaluation on test
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data consisting of publicly available pre-annotated subjectivity lexicon shows
that leveraging common-sense knowledge that is shared by the vast majority of
people for determining semantic orientation determination of words is feasible.
The main advantage of the system is that it does not require any training data,
hand-crafted seed list or any external resource that is created by trained and
specialized knowledge engineers. The accuracy and coverage of the words is a
function of the number of concepts, assertions, relations and quality of data in
the common-sense knowledge-base.
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Abstract. Result merging of search engine results for metasearch is a well 
explored area. However most result merging models try to collate document 
rankings from the search engines whose results are being merged into a single 
ranking using some mathematical function. However, only a few models 
compare documents in pair wise comparisons during the process of result 
merging. In this paper, we propose a Weighted Hybrid Fuzzy Result Merging 
model that comprehensively compares search engines and documents in pairs 
before applying the result aggregation function. We compare and contrast the 
performance of our model with existing models for result merging. 

1   Introduction 

Before discussing our model, let us delve briefly into the metasearch environment. 
Metasearch engines are tools to carry out parallel and integrated searches through 
multiple databases/data repositories. Functionally, a metasearch engine dispatches a 
user query to search engines selected using a search engine selection strategy, select 
documents from result sets returned by the latter, using a document selection strategy 
and then returns the documents obtained in the form of a merged list for the user. Key 
functions include query dispatching, result retrieving, search engine and document 
selection and result merging. Result merging is a well explored area. Algorithms, 
models and strategies include the application of linear combination of document ranks 
[5,7,8], collaborative filtering, multi-criteria decision making techniques such as 
Borda Fuse [1], and of course fuzzy aggregation [3, 4, 11, 12] of search engine results 
based on Yager’s operator [9,10,11] Most search engine result merging models 
employ a mathematical aggregation function to search engine ranks. Aslam and 
Montague [1] apply Borda-Fuse in a linear combination function and Weighted Borda 
Fuse in a weighted linear combination. Diaz [3,4] and De [11,12] apply Yager’s 
[9,10,11] OWA and IGOWA operator as a fuzzy aggregation function. De [13] use 
information from pair-wise comparison of documents returned in determining the 
rank of the document(s) in the merged result list. The motive of our work has been to 
further explore the effects of pairwise comparisons in result merging and to observe 
how search engine importance weights affect result merging in the context of pair 
wise comparisons. We propose the Weighted Hybrid Fuzzy Result Merging model 
that first compares search engines pair wise and then documents through the 
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Analytical Hierarchy Process before using search engine importance weights to 
generate ordered weights that are used in result aggregation. This paper is organized 
as follows. In the next section we describe the OWA [3,4] and IGOWA [12] models 
for metasearch. Subsequently, we describe our proposed model for metasearch. 
Subsequently we describe our experiments, results and conclusions.  

2   Related Work 

Diaz [3, 4] develops a fuzzy result merging model OWA which is based on the fuzzy 
aggregation OWA operator by Yager [9, 10]. The OWA model uses a measure, 
positional value (PV) to quantify the rank of a document in a search engine result list 
to be merged. The positional value of a document di in the result list lk returned by a 
search engine sk is defined as (n – rik + 1) where, rik is the rank of di in search engine 
sk and n is the total number of documents in the result.  Thus, higher the rank of a 
document in a result list, the larger the positional value of the document in that list. 
One key feature of the OWA model is that it provides two heuristics (H1 and H2) for 
handling missing documents. This is done by computing the positional value of a 
missing document in the result list and thereby effectively inserting the document in 
the result list in which it is missing. Diaz in [3] shows that the heuristic H1 provides 
the most effective way to handle missing documents.  Let PVi be the positional values 
for a document d in the ith search engine. Let m be the total number of search engines. 
Let r be the number of search engines in which d appears. Let j denote a search engine 
not among the r search engines where d appears.  In heuristic H1 PVj for all j is 
denoted by the average of the positional values of the documents in r search engines. 
In heuristic H2 PVj for all j is denoted by the average of the positional values of the 
documents in all m search engines. 

In computing the final score of a document in the merged list, the positional values 
are sorted in descending order and then are aggregated along with a set of ordered 
weights using Yager’s OWA operator.  

The IGOWA model [11] was a direct extension to the OWA model, but used 
search engine performance weights to compare the ordered weights used in OWA 
aggregation. Thus search engine performance weights could be used to affect the 
score/rank of a document in the merged list. 

The Hybrid Fuzzy Result Merging model [14] is similar to the OWA and IGOWA 
models described in section 3.3 and 3.4 respectively. However it allows for pair wise 
comparisons by applying the Analytical Hierarchy Process, to compute the positional 
values. These are then aggregated using the OWA operator. 

3   Proposed Weighted Hybrid Fuzzy Result Merging Model 

Our proposed Weighted Hybrid Fuzzy Result Merging model is similar to the OWA 
model as it uses the concept of positional values and uses the heuristic H1 for handling 
missing documents. It is similar to the Hybrid Fuzzy Result Merging model as it 
applies the Analytical Hierarchy Process to search engine rankings and document 
rankings, to compute positional values based on document and search engine rankings. 
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These pair-wise positional values are then used in aggregation using the OWA 
operator. The ordered weights computed using search engine performance weights.  

Saaty [14] proposed the Analytic Hierarchy Process, which outlines the mechanism 
for pairwise comparison for objects. Let us say we have two object Oi and Oj. We can 
compare the two objects and quantify the comparison as outlined by Saaty. If Oi is 
equally important as Oj then the pair-wise value is 1, if Oi is weakly more important 
than Oj then the pair-wise value is 3, Oi is strongly important than Oj then the pair-
wise value is 5, Oi is very strongly important than Oj then the pair-wise value is 7. If 
Oi is absolutely more important than Oj then the pair-wise value is 9. Similarly if Oi is 
less important than Oj to a varying degrees then the value is 1/3, 1/5, 1/7, 1/9 
respectively. 

The Analytical Hierarchy process is a multi-criteria decision making process. In 
this process, Saaty [14] first proceeds to compare the criteria themselves pair-wise 
and gives each comparison a value as mentioned earlier. These values of pair-wise 
comparisons are then put into a matrix A. This matrix is then normalized by dividing 
each element with the sum of the member column and then averaging the normalized 
values by each row. This way, criteria scores are obtained. In the same way 
alternatives are compared with each other with respect to each criteria, a matrix is 
formed normalized and row averages are computed to obtain alternative scores with 
respect to each criteria. These are multiplied by criteria scores computed earlier. Thus 
for each criteria, alternative pairing we obtain a score.  

To put this in context of metasearch engines, let us suppose we have m search 
engines and each return a set of n documents ranked in any specified order. Let us say 
we have a result of documents D = {d1, d2, …..dn} returned by the Search Engine SEk 
that need to be ranked. Here the Search Engines are the criteria and the documents the 
alternatives. We can compare the documents pair wise and form a square matrix 

=A [ aij ] where aij  is a measure of how the two documents di and dj compare pair 
wise using a scale of 1/9 to 9 as per the AHP scale mentioned earlier.  

Let ri and rj be the ranks of two documents i and j respectively. aij is calculated as 
((ri ~ rj) / n)·9 and normalized to the nearest value in the number set [1,3,5,7,9] if  ri > 
rj. and the reciprocal it ri < rj. Thus we can form the matrix A = [aij ] in conformance 
with table 1. The next step is to normalize A such that each element is divided by the 
sum of the column in which it belongs. The next step is to compute the document 
scores for search engine k by averaging of each row of the matrix. Thus obtaining a 
search engine-document score matrix SE-DOC-SCOREk= [s1k, s2k, …..snk] which are 
the document scores. We can proceed to compute the scores for all search engines. 
We can also similarly rank search engines in order of preference or performance and 
compute search engine scores SE-SCORE = [ss1, ss2,… ssm] where m is the number 
of search engines. We can compute the final scores of the pth document DOC-
SCOREp as [ dsp1, dsp2,…dspm] where dsp1 = sp1* ss1 etc. Thus we can obtain a two 
dimensional matrix SCORE of m columns (one for each search engine) and n rows 
(one for each column).   

With pair-wise comparisons taken care of using the AHP MCDM technique we 
now apply the OWA operator for aggregation. The OWA operator was an aggregation 
function employed in Fuzzy Multi-Criteria decision making. Let there be a set of n 
criteria. Let a1, a2,..., an be degree to which an alternative satisfies each of the n 
criteria. To combine these degrees to which an alternative satisfies multiple criteria  
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Table 2. Values in a Pair-Wise Matrix 

Pair-Wise Comparison 
Normalized 

  
se1 se2 Se3 se1 se2 se3 

Score 

se1 1.00 3.00 7.00 0.68 0.69 0.64 0.67 

se2 0.33 1.00 3.00 0.23 0.23 0.27 0.24 

se3 0.14 0.33 1.00 0.10 0.08 0.09 0.09 

 

the OWA operator F is applied as F(a1, a2,..., an) = ∑
=

n

j 1

wj bj, where  bj  is  the jth largest 

ai.  The Ordered Weights can be calculated in different ways. Popularly they can be 
calculated using a Regular Increasing Monotone (RIM) quantifier guided approach 
specified by Yager [10]. Once again in our problem of metasearch the documents are 
the alternatives and the search engines are the criteria. However, here we consider the 
scores obtained through the AHP pair-wise comparison process as the degree to 
which a document satisfies the  search engine. The OWA operator can be transformed 
in this context as follows: 

∑
=

=
n

1j
ij

'
iji )(Dwds)SCORE(D  where '

ijds is the jth greatest ijds  (4) 

We can compute the jth ordered weight for document Di , wj(Di) as per Yager [10] as 
follows: 
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Where ∑
=

=
n

1k
kuT and Q is Regular Increasing Monotone quantifier of the form Q = 

rα. Here α is a quantifier of parameter. Once we have obtained the ordered weights we 
can now calculate the score for the document, using the OWA operator.  We can rank 
documents by their final scores. 

Let us illustrate the working of the example. Let us consider search engines se1, 
se2, se3 and 5 documents numbered d1 through d5. The search engines se1,se2 and se3 
return the documents in the order { d2, d3, d1, d4, d5 }, { d5,d4, d1, d3, d2 } and { d1, d5, 
d2, d3, d4 }. Let us say the performance weights of the search engines se1, se2, se3 be 
0.6, 0.3 and 0.2. Based on the performance of search engines we can rank them in the 
following order se1 > se2 > se3. We proceed first to apply pair-wise comparison to the 
search engines.  

Performing pair-wise comparisons of documents based on their ranks in list 
returned by se1 we obtain the following document scores: 
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Table 3. Pair-Wise Matrix for Comparing Documents in Search Engine List 

 d1 d2 d3 d4 d5 

d1 1.00 0.20 0.33 5.00 7.00 

d2 5.00 1.00 3.00 7.00 9.00 

d3 3.00 0.33 1.00 5.00 7.00 

d4 0.20 0.14 0.20 1.00 3.00 

d5 0.14 0.11 0.14 0.33 1.00 

Table 4. Normalized Pair-Wise Matrix for Comparing Documents in Search Engine List 

 d1 d2 d3 d4 d5 

d1 0.11 0.11 0.07 0.27 0.26 

d2 0.54 0.56 0.64 0.38 0.33 

d3 0.32 0.19 0.21 0.27 0.26 

d4 0.02 0.08 0.04 0.05 0.11 

d5 0.02 0.06 0.03 0.02 0.04 

 
Similarly we can perform pair-wise comparison for search engines se2 and se3. The 

final scores of each document with respect to each search engine are computed 
similarly and tabulated below. 

Table 5. Final Document scores for Search Engines 

 se1 se2 se3 

d1 0.11 0.04 0.01 

d2 0.33 0.06 0.00 

d3 0.17 0.02 0.01 

d4 0.04 0.01 0.02 

d5 0.02 0.12 0.04 
 

Proceeding to compute the ordered weights for document d4 we first sort the 
positional values in descending order [ 0.04 (se1), 0.02(se3), 0.01 (se2) ]. Using the 
performance weights of the search engines [0.6, 0.1, 0.3] and a RIM quantifier of the 
form Q = rα  with α = 2 we obtain the Ordered Weights as [0.07, 0.13, 0.79]. Then we 
can apply the OWA operator to obtain the score of the document as 0.07*0.04 + 
0.13*0.02 + 0.79*0.01 = 0.02. The remaining document scores can be computed 
similarly. Thus scores for documents d1 through d5 would be 0.05, 0.12, 0.06, 0.02, 
0.05 respectively. The merged ranking would be { d2, d3, d5, d1, d4 }. 

4   Experimental Results and Discussion 

We use the Text REtrieval Conference (TREC) datasets, TREC 3 (ad hoc track), 
TREC 5 (ad hoc track) and TREC 9 (web track). Each dataset contains a set of 



 A Weighted Hybrid Fuzzy Result Merging Model for Metasearch 499 

systems (search engines) and 50 topics (queries). For each query and search engine 
there is a ranked result list of 1000 documents returned. The relevance information 
for the documents is provided along with the datasets. Since our Weighted Hybrid 
Result Merging model requires us to not only rank search engines for pair-wise 
comparisons using AHP but also require search engine performance weights. To 
obtain search engine performance weights for our data sets, we split the queries in 
each data set into two parts. The odd numbered queries in each data set are used to 
evaluate the performance of search engines. Based on the performance of search 
engines we rank them for pair-wise comparisons. The performance weights are then 
applied to compute ordered weights for OWA aggregation, based on equation 5. In 
our experiments we compare the OWA model [3], the IGOWA model [12] and our 
proposed Weighted Hybrid Fuzzy Model. All these models use the OWA 
aggregation operator. The ordered weights are computed in different ways but all of 
them involve the use of a RIM quantifier of the form rα, where r is the input to the 
function and α is the parameter. In our experiments we vary the value of α as (0.25, 
0.5, 1, 2, 2.5). For each value of α  we perform a total 1000 trials of experiment in 
batches of 200. In each batch a specified number of search engines (picked randomly 
from the dataset) are merged. This number varies as 2,4,6,8 and 10. The average 
precision of the merged list are computed and at the end the mean of the average 
precision from all 1000 trials is computed. The average precision is the average of 
the precisions computed at points in the result list where a relevant document is 
found. The results for TREC 3, TREC 5 and TREC 9 are shown in table 6. For each 
of the datasets the average precision is measured while the OWA quantifier 
parameter α varies from 0.25 to 2.5.  From the table it can be observed that for 
TREC 3, for all values of α the IGOWA model outperforms the OWA model. This 
fact was established by De [12]. However when the value of α is small (i.e., α = 
0.25), both the OWA and the IGOWA model outperforms our proposed Weighted 
Hybrid Fuzzy Model. However, as the value of α is increased, our proposed model 
begins to outperform both the OWA and IGOWA model. In case of both the OWA 
and the IGOWA model there is a dip in performance as α goes from 0.25 to α = 1. 
As α moves beyond 1 the performance goes up. However, in case of our proposed 
model the performance goes up as we move from α = 0.25 to α = 2.5. Similar 
observations can be made with respect to the TREC 5 dataset. In case of the TREC 9 
data set our proposed model outperforms the OWA model. At α = 0.25, the 
performance of the IGOWA model and our proposed Weighted Hybrid Fuzzy model 
remains the same. But the latter outperforms IGOWA at higher values of α. Yager 
shows that the degree ‘orness’ of a aggregation  is 1/(1+ α). When using a quantifier 
guided approach and using a RIM quantifier to compute the ordered weights.  Thus 
orness decreases as α increase from 0.25 to 2.5. At α = 1 the orness becomes half, in 
other words the conditions represent simple averaging. At this point the Average 
precision in case of the OWA model is the least. As α tends away from the, α = 1 
point of inflection, average precision increases. Applying pair wise analysis using 
AHP tends to remove this dip in performance as exhibited by our Weighted Hybrid 
Fuzzy model. Table 6, illustrates these results. 
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Table 6. Final Document scores for Search Engines 

α 
Data Sets Models 

0.25 0.5 1 2 2.5 

OWA 0.3004 0.2648 0.2323 0.2889 0.3293 

IGOWA 0.3278 0.2811 0.2493 0.3097 0.3494 
TREC 3 

Weighted  
Fuzzy  
Hybrid 

0.2786 0.3217 0.3438 0.3579 0.4152 

OWA 0.2710 0.2791 0.2408 0.2805 0.3269 

IGOWA 0.3038 0.2744 0.2617 0.3291 0.3521 
TREC 5 

Weighted  
Fuzzy  
Hybrid 

0.2697 0.2996 0.3147 0.3310 0.3596 

OWA 0.1577 0.1577 0.1578 0.1578 0.1578 

IGOWA 0.1782 0.1649 0.1649 0.1649 0.1799 TREC 9 
Weighted  
Fuzzy  
Hybrid 

0.1781 0.1781 0.1781 0.1907 0.1961 

5   Conclusions 

In this paper we have proposed a Weighted Hybrid Fuzzy model for result merging 
for metasearch that compares search engines and documents pair-wise to determine 
the final position of the document in the merged list. The model is an extension of the 
IGOWA model [12] and the OWA [3] model for metasearch, as it applies the OWA 
operator for aggregation. The ordered weights for aggregation using the OWA 
operator are computed based on the performance weights of search engines whose 
result sets are being merged. The model first uses the Analytical Hierarchy Process 
(AHP) to do pair wise comparison of search engines, and documents in result lists 
returned by them, prior to aggregation using the OWA operator. It then proceeds to 
compute ordered weights based on search engine performances and uses these 
weights in the OWA operator for determining document positions in the merged list. 

We compare our proposed model with the IGOWA and OWA models that it 
extends. In our experiments involving standard Text Retrieval Conference (TREC) 
datasets TREC 3, TREC 5 and TREC 9, we show that the performance of merging in 
terms of average precision of the merged result list improves significantly when using 
the Weighted Hybrid Fuzzy model over IGOWA and OWA. However our model 
requires some learning to determine search engine performance weights and also 
search engine rankings that are needed in search engine pair-wise comparison.   
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Abstract. In temporal text mining, some importance indices such as
simple appearance frequency, tf-idf, and differences of some indices play
the key role to identify remarkable trends of terms in sets of documents.
However, most of conventional methods have treated their remarkable
trends as discrete statuses for each time-point or fixed period. In order
to find their trends as continuous statuses, we have considered the val-
ues of importance indices of the terms in each time-point as temporal
behaviors of the terms. In this paper, we describe the method to identify
the temporal behaviors of terms on several importance indices by using
the linear trends. Then, we show a comparison between visualizations on
each time-point by using composed indices with PCA and the trends of
the emergent terms, which are detected the burst word detection method.

Keywords: Text Mining, Trend Detection, TF-IDF, Jaccard Coefficient,
Linear Regression.

1 Introduction

In recent years, the development of information systems in every field such as
business, academics, and medicine, and the amount of stored data have increased
year by year. Accumulation is advanced to document data by not the exception
but various fields. Document data provides valuable findings to not only domain
experts in headquarter sections but also novice users on particular domains such
as day trading, news readings and so on. Hence, the detection of new phrases and
words has become very important. In order to realize such detection, emergent
term detection (ETD) methods have been developed [1,2].

However, because the frequency of words was used in earlier methods, detec-
tion was difficult as long as the word that became an object did not appear.
Usually, emergent or new concepts are appeared as new combination of multi-
ple words, coinages created by an author, and words with different spellings of
current words. Most conventional methods did not consider above-mentioned na-
tures of terms and importance indices separately. This causes difficulties in text
mining applications, such as limitations on the extensionality of time direction,
time consuming post-processing, and generality expansions.

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 502–509, 2009.
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After considering these problems, we focus on temporal behaviors of impor-
tance indices of terms and their temporal patterns. Temporal behaviors of the
importance indices of extracted phrases are paid attention so that a specialist
may recognize emergent terms and/or such fields. In order to detect various tem-
poral patterns of behaviors of terms in the sets of documents, we have proposed
a framework to identify the remarkable terms as continuous changes of multiple
metrics of the terms [3].

In this paper, we propose an integrated for detecting trends of technical terms
by combining automatic term extraction methods, importance indices of the
terms, and trend analysis methods in Section 2. After implementing this frame-
work as described in Section 3, we performed a comparison between the emergent
words detected by a past emergent term detection study and the trends of terms
based on the indices. In Section 4, the comparison is shown by using the ti-
tles of the two well-known AI related conferences: IJCAI and AAAI. Finally, in
Section 5, we summarize this paper.

2 An Integrated Framework for Detecting Trends of
Technical Terms Based on Importance Indices

In this section, we describe about the difference between conventional ETD meth-
ods and our proposal; detecting continuous temporal patterns of terms in tem-
poral sets of documents.

As illustrated in Fig.1, conventional ETD methods focus on to find out discrete
status of emergent terms as points defined by one or more importance indices in
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Fig. 1. Relationship between our proposal and conventional ETD methods
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text mining. Since each point corresponds to each term, it is difficult to detect
similar terms as emergent. Several conventional methods expand each point to
regions by using frequent patterns with regular expressions for words [4] and so
on. However, it is more important to capture temporal changes of each term as
temporal trends. We considered about to introduce general temporal analysis
framework for finding out remarkable trends of terms.

In order to find remarkable temporal trends of terms, we developed a frame-
work for detecting various temporal trends of technical terms by using multiple
importance indices consisting of the following three components:

1. Technical term extraction in a corpus
2. Importance indices calculation
3. Trend detection

There are some conventional methods of extracting technical terms in a corpus
on the basis of each particular importance index [2]. Although these methods
calculate each index in order to extract technical terms, information about the
importance of each term is lost by cutting off the information with a threshold
value. We suggest separating term determination and temporal trend detection
based on importance indices. By separating these phases, we can calculate dif-
ferent types of importance indices in order to obtain a dataset consisting of the
values of these indices for each term. Subsequently, we can apply many types of
temporal analysis methods to the dataset based on statistical analysis, cluster-
ing, and machine learning algorithms.

First, the system determines terms in a given corpus. There are two reasons
why we introduce term extraction methods before calculating importance in-
dices. One is that the cost of building a dictionary for each particular domain
is very expensive task. The other is that new concepts need to be detected in a
given temporal corpus. Especially, a new concept is often described in the docu-
ment for which the character is needed at the right time in using the combination
of existing words.

After determining terms in the given corpus, the system calculates multiple
importance indices of the terms for the documents of each period. Further, in
the proposed method, we can assume the degrees of co-occurrence such as the
χ2 statistics for terms consisting of multiple words to be the importance indices
in our method.

In the proposed method, we suggest treating these indices explicitly as a
temporal dataset. The features of this dataset consist of the values of prepared
indices for each period.

Fig.2 shows an example of the dataset consisting of an importance index for
each year.

Then, the framework provides the choice of some adequate trend extraction
method to the dataset. In order to extract useful time-series patterns, there are
so many conventional methods as surveyed in the literatures [5,6]. By applying
an adequate time-series analysis method, users can find out valuable patterns
by processing the values in rows in Fig.2.
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Term Jacc_1996 Jacc_1997 Jacc_1998 Jacc_1999 Jacc_2000 Jacc_2001 Jacc_2002 Jacc_2003 Jacc_2004 Jacc_2005

output feedback 0 0 0 0 0 0 0 0 0 0

H/sub infinity 0 0 0.012876 0 0.00885 0 0 0 0.005405 0.003623

resource allocation 0.006060606 0 0 0 0 0 0 0 0 0

image sequences 0 0 0 0 0 0 0 0.004785 0 0

multiagent systems 0 0 0 0 0 0 0.004975 0 0 0

feature extraction 0 0.005649718 0 0.004484 0 0 0 0 0 0

images using 0 0 0 0 0 0.004673 0 0 0 0

human-robot interaction 0 0 0 0 0.004425 0 0 0 0 0

evolutionary algorithm 0 0.005649718 0 0.004484 0 0 0 0 0.002703 0.003623

deadlock avoidance 0 0 0 0 0.004425 0 0 0 0 0

ambient intelligence 0 0 0 0 0 0 0 0 0 0.003623

feature selection 0 0 0 0 0 0 0 0 0.002703 0

data mining 0 0 0 0 0.004425 0 0 0 0.002703 0

Fig. 2. Example of a dataset consisting of an importance index

3 Implementing the Integrated Framework for Detecting
Temporal Trends of Technical Terms

As described in Section 2, the integrated framework for detecting temporal trends
of technical terms consists of the three sub-processes. In order to implement the
framework, we assigned each process described as follows.

Considering the difficulties of the term extraction without any dictionary,
we apply a term extraction method that is based on the adjacent frequency of
compound nouns. This method involves the detection of technical terms by using
the following values for each composed nouns CN :

FLR(CN) = f(CN) × (
L∏

i=1

(FL(Ni) + 1)(FR(Ni) + 1))
1

2L

where each CN consists of L words. Then, f(CN) means the frequency of appear-
ances of CN solely, and FL(Ni) and FR(Ni) indicate the frequencies of differences
on the right and the left of each noun Ni. In the following experiment, we selected
technical terms with this FLR score as FLR(term) > 1.0. This threshold is impor-
tant to select adequate terms at the first iteration. However, since our framework
assumes the whole process as iterative search process for finding required trends of
terms by a user, the user can input manually selected terms in the other iterations.
In order to determine terms in this part of the process, we can also use other term
extraction methods and terms/keywords from users.

As for importance indices of words and phrases in a corpus, there are some
well-known indices. Term frequency divided by inversed document frequency (tf-
idf) is one of the popular indices used for measuring the importance of the terms.
tf-idf for each term term can be defined as follows:

TFIDF (term, Dperiod) = TF (term) × log
|Dperiod|

DF (term)

where TF (term) is the frequency of each term term in the corpus with |Dperiod|
documents. |Dperiod| means the number of documents included in each period.
DF (term) is the frequency of documents containing term.

As another importance index, we use Jaccard’s matching coefficient [7]1. Jac-
card coefficient can be defined as follows:
1 Hereafter, we refer to this coefficient as “Jaccard coefficient”.
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Jaccard(term, Dperiod) =
DF (w1 ∩ w2 ∩ ... ∩ wL)
DF (w1 ∪ w2 ∪ ... ∪ wL)

where DF (w1 ∩w2 ∩ ...∩wL) is equal to DF (term), because each term consists
of wi (1 ≤ i ≤ L). DF (w1∪w2∪ ...∪wL) means the frequency of documents that
contains wi. Jaccard coefficient is originally defined as the ratio of the probability
of an intersection divided by the probability of a union in a set of documents. In
this framework, we applied this index by defining as the ratio of the frequency
of an intersection divided by the frequency of a union in each set of documents
Dperiod. Each value of Jaccard coefficient shows strength of co-occurrence of
multiple words as an importance of the terms in the set of documents.

In addition to the above two importance indices, we used simple appearance
ratio of terms in a set of documents.

Odds(term, Dperiod) =
DF (term)

|Dperiod| − DF (term)

where, DF (term) means the frequency of the appearance of each term term in
each set of documents Dperiod.

As for the first step to determine temporal trends in the dataset, we apply
the linear regression analysis technique in order to detect the degree of existing
trends for each importance index. The degree of each term term is calculated as
the following:

Deg(term) =
∑M

i=1(yi − ȳ)(xi − x̄)∑M
i=1(xi − x̄)2

where x̄ is the average of the M time points, and ȳ is the average of each impor-
tance index for the period. Simultaneously, we calculate the intercept Int(term)
of each term term as follows:

Int(term) = ȳ − Deg(term)x̄

4 Comparison of Visualization on the Time Points of
Technical Terms and Their Temporal Trends

In this section, we compared the emergent words detected by a past emergent term
detection study and the trends of terms based on the three importance indices.

In [8], it proposed amethod todetect burstywords that occurwith high intensity
over a limitedperiod. The analysis uses a probabilistic automatonwhose states cor-
respond to the frequencies of individual words. To the titles of several famous inter-
national conferences related to computer science, the bursty words are detected2.

From AAAI and IJCAI titles, the method detected the following words as cur-
rently bursting: auctions, combinational, and reinforcement. In order to compare
the bursty words in the past, we also compared the degrees and the intercepts
of terms including the following words: language and objects. These two words
are detected as bursty word from 1980 to 1983, and from 1998 to 2002 or later
in the earlier work.
2 They can be found in http://www.cs.cornell.edu/home/kleinber/kdd02.html

http://www.cs.cornell.edu/home/kleinber/kdd02.html
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Fig. 3. Visualization of the top ten frequent terms and the terms including the burst
words for the titles; (a)AAAI from 1998 to 2000, (b)IJCAI from 1997 to 2001

4.1 Visualizing the Burst Terms by Using Multiple Importance
Indices

By using top ten frequent terms and the terms including burstwords for the period,
we visualized these terms on two dimensions consisting of composed indices by us-
ing the first two components of the result of PCA (Principal Component Analysis).

As for AAAI titles, we visualize the top ten frequent terms and the terms in-
cluding ‘auction’, ‘combinational’, and ‘reinforcement’ by using the values of the
three indices and DF (term, Dperiod) from 1998 to 2000. As shown in Fig.3(a), the
terms including the bust words are placed near the origin than the frequent terms.

For the titles of IJCAI, the top ten frequent terms and the terms including
‘reinforcement’ are visualized as shown in Fig.3(b) from 1997 to 2001.

As shown these figures, emergent terms are placed different regions of the
popular terms. However, in order to identify emergent terms with the values of
indices for the limited period, it is difficult to categorize as discrete statuses.

4.2 Temporal Trends of the Burst Terms by Detecting Linear
Regression Technique

Table1 shows the terms including the five words with the degrees and intercepts
of tf-idf, Jaccard coefficient and Odds. In order to eliminate specific paper, we
selected the terms, which appeared more than two times.

Table 1. Degrees and intercepts of tf-idf, Jaccard coefficient, and Odds of the terms
including language, objects, auctions, combinational, and reinforcement

Term TFIDF_Deg TFIDF_Int Jacc_Deg Jacc_Int Odds_Deg Odds_Int

AAAI Combinatorial Auctions 0.402 -2.039 0.052 -0.272 0.00027 -0.00119

Combinatorial Auction 0.205 -0.950 0.011 -0.058 0.00015 -0.00063

Auctions 0.123 -0.467 0.005 -0.021 0.00010 -0.00035

Reinforcement Learning 0.748 -1.640 0.006 -0.001 0.00058 -0.00011

Reinforcement Learning Algorithm 0.064 -0.199 0.000 -0.001 0.00003 -0.00007

IJICAI Reinforcement Learning 0.576 -1.687 0.005 -0.010 0.00039 -0.00097

Reinforcement Learning Approach 0.079 -0.113 0.001 -0.001 0.00005 -0.00010
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As shown in these degrees, they show positive degree with negative intercepts
for the terms including the bursty words in recent years. On the other hand,
the terms including ‘language’ and ‘objects’ show two different trends. One has
positive degrees and big positive intercepts. This trend means that the terms
with these trends are assumed as important and popular issue in this field. The
other has negative degrees and small positive intercepts. This trend means that
the terms have not been used in recent years, and the topics shown with these
terms appeared as the other representations. This means that our method can
determine not only emergent terms, but also the other various trends of terms
based on the multiple importance indices in Text Mining.

5 Conclusion

In this paper, we proposed a framework to detect remarkable trends of technical
terms by focusing on the temporal changes of the importance indices. We im-
plemented the framework by combining the technical term extraction method,
the three important indices, and linear regression analysis.

The case studies show that the temporal changes of the importance indices
can detect the trend of each phrase, according to the degree of the values for each
annual set of the titles of the four academic conferences. Regarding to the result,
our method can support to find out remarkable technical terms in documents
based on the temporal changes of the importance indices.

In the future, we will apply other term extraction methods, importance in-
dices, and trend detection method. As for importance indices, we are planning
to apply evaluation metrics of information retrieval studies, probability of occur-
rence of the terms, and statistics values of the terms. To extract the trends, we
will introduce temporal pattern recognition methods, such as temporal cluster-
ing [6,9]. Then, we will apply this framework to other documents from various
domains.
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Abstract. In biological sequence pattern mining, pattern matching is
a core component to count the matches of each candidate pattern. We
consider patterns with wildcard gaps. A wildcard gap matches any subse-
quence with a length between predefined lower and upper bounds. Since
the number of candidate patterns might be huge, the efficiency of pattern
matching is critical. We study two existing pattern matching algorithms
named Pattern mAtching with Independent wildcard Gaps (PAIG) and
Gap Constraint Search (GCS). GCS was designed to deal with patterns
with identical gaps, and we propose to revise it for the case of inde-
pendent gaps. PAIG can deal with global length constraints while GCS
cannot. Both algorithms have the same space complexity. In the worst
case, the time complexity of GCS is lower. However, in the best case,
PAIG is more efficient. We discuss appropriate selection between PAIG
and GCS through theoretical analysis and experimental results on a bi-
ological sequence.

Keywords: Pattern matching, sequence, wildcard gap, constraint.

1 Introduction

Recent advances in biology and the Internet have attracted extensive research
interests regarding pattern mining from sequences [1][2][3]. A DNA sequence
is represented by a sequence S with a small alphabet

∑
={A, C, G, T} [4][2].

RNAs have a slightly different alphabet {A, U, C, G}, and proteins have a larger
alphabet with 20 characters. Lengths of these sequences typically range from a
few thousand to a few million. For example, the H1N1 No. FJ984346 sequence
[5] begins with ATGGAAGA and its length is 2,150.

A repetitive fragment of a sequence is represented by a pattern P . There are
a number of different definitions of a pattern, with respective applications in
biology sequences [2]. For the simplest case, a pattern is a subsequence. P =
GA has 2 matches in sequence ATGGAAGA, beginning at indices 4 and 7,

H. Sakai et al. (Eds.): RSFDGrC 2009, LNAI 5908, pp. 510–517, 2009.
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respectively. We can introduce a special symbol φ, called wildcard [6] or don’t
care [7][8], to P that matches any character in the alphabet. P = GφA also has
2 matches in ATGGAAGA, while the beginning indices are 3 and 4, respectively.
An even more general definition allows wildcard gaps. P = G[0,2]A is a pattern
with 0 to 2 wildcards between G and A. It matches subsequences GA, GGA,
GGAA, GAA of ATGGAAGA, and the total number of matches is 5. In this
paper we adopt the last definition.

Frequently appearing patterns tend to be interesting. During the process of
pattern mining, we need to compute the number of matches of each constructed
pattern. Therefore, pattern matching is a core component of pattern mining.
It is also an independent problem in many applications, where the pattern is
specified by the user (see, e.g., [6][9][10]).

PAIG [10] and GCS [3] are two pattern matching algorithms. Both can com-
pute the number of matches in polynomial time. However, since the number
of patterns to be checked in the process of pattern mining might be huge, the
efficiency difference is important in applications.

In this paper, we closely study these two algorithms. We compare the applica-
bility of them, and the focus is their time complexities. Both theoretical analysis
and experiments on biological sequences show that PAIG is more efficient when
gaps in the pattern are not flexible, while GCS is more efficient for the other
case. We can decide which algorithm to be employed for a new pattern according
to the computational time of some existing patterns.

2 PAIG and GCS

In this section, we revisit PAIG and GCS using the following example: S =
AGAAGAGGAAGAA and P = A[0,2]G[1,2]A[0,3]A. An enhanced version of
GCS is proposed. The length of S is denoted by L, the length of P without
considering wildcard gaps is denoted by l, and the maximal gap length in P is
denoted by W . For this example, L = 13, l = 4, and W = 3 − 0 + 1 = 4.

2.1 PAIG

The main idea of PAIG is to fill an L × (l − 1) matching table, as given by
Table 1. The meaning of each cell in the table is explained as follows. The row
index indicates the starting index of the match in the sequence; the column index
indicates the length of the pattern; numbers in the cell indicate the ending indices
of matches; and numbers in brackets indicate counters of respective matches. For
example, 8(1),9(2) in row index 5 indicates that starting from index 5 of S, there
are 1 + 2 = 3 matches of P2 = A[0,2]G[1,2]A, 1 ending at index 8 of S, and the
other 2 ending at index 9. The final result is obtained through summing up all
counters of the last column. It is 13 for the example.

Computational time is saved through skipping some empty cells. Once an
empty cell is obtained, all remaining cells in the same row should also be empty.
Therefore we should simply skip them and go to the beginning of the next row.
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Table 1. Matching table of PAIG

index S P1 =A[0,2]G P2 =A[0,2]G[1,2]A P3 =A[0,2]G[1,2]A[0,3]A
0 A 1(1) 3(1) 5(1)
1 G - - -
2 A 4(1) - -
3 A 4(1),6(1) 8(1),9(1) 9(1),11(2),12(2)
4 G - - -
5 A 6(1),7(1) 8(1),9(2) 9(1),11(3),12(3)
6 G - - -
7 G - - -
8 A 10(1) 12(1) -
9 A 10(1) 12(1) -
10 G - - -
11 A - - -
12 A - - -

For example, starting from index 2, there is no match of P2 =A[0,2]G[1,2]A,
so there should be no match of P3 =A[0,2]G[1,2]A[0,3]A, either. For the same
reason, in row indices 1, 4, 6, 7, 10, 11 and 12 we only fill the first column. In
applications, only a small fraction of the table should be filled.

2.2 GCS

GCS also employs a matching table to obtain the matching information, as given
by Table 2. The matching table m is an L × l matrix of integers, where m[i][j]
is the number of matches of Pj ending at si. For example, m[9][3] = 7 is the
number of matches of P ending at index 9.

Table 2. Matching table of GCS

index S A [0,2]G [1,2]A [0,3]A
0 A 1 0 0 0
1 G 0 1 0 0
2 A 1 0 0 0
3 A 1 0 1 0
4 G 0 2 0 0
5 A 1 0 0 1
6 G 0 2 0 0
7 G 0 1 0 0
8 A 1 0 2 0
9 A 1 0 3 2
10 G 0 2 0 0
11 A 1 0 0 5
12 A 1 0 2 5
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Algorithm 1. Gap constraint search (enhanced version)
Input: S = s0s1 . . . sL−1, P = p0g(N0, M0)p1 . . . g(Nl−2, Ml−2)pl−1

Output: the number of matches
Method: gcs
1: mTbl = new int[2][L];
2: for (j = 0; j ≤ L − 1; j ++) do
3: if sj �= p0 then

4: mTbl[0][j] = 1;
5: else
6: mTbl[0][j] = 0;
7: end if
8: end for
9: for (i = 1; i ≤ l − 1; i ++) do

10: for (j = 0; j ≤ L − 1; j ++) do
11: if sj �= pi then

12: mTbl[i mod 2][j] = 0;
13: continue;
14: end if
15: mTbl[i mod 2][j] = 0;
16: for (k = max{0, j - Mi−1 - 1}; k ≤ j - Ni−1 - 1; k ++) do
17: mTbl[i mod 2][j] += mTbl[(i - 1) mod 2][k];
18: end for
19: end for
20: end for
21: return

∑L−1

i=0
mTbl[i][(l - 1) mod 2];

Algorithm 1 is an enhanced version of GCS [3]. Lines 2 through 8 initialize
the first column. Lines 9 through 20 compute elements of other columns. Finally,
Line 21 sums up numbers of the last column and return it.

To obtain each element, one should first check whether or not the current
character in S matches the ending character of the current pattern. This is done
by Lines 11 through 14. For example, at position [6][3] of Table 2, since G does
not match A, the element is simply set to 0. If these two characters are identical,
the summing operation is undertaken, as indicated by Lines 16 through 18. The
number of elements to be summed up is equal to the flexibility of the recent gap.
For example, m[11][3] = m[7][2] + m[8][2] + m[9][2] + m[10][2].

Two enhancements are made here. First, the algorithm is suitable for patterns
where gaps are independent. Second, m is represented by an array with 2 columns
instead of l, and the space complexity is reduced to O(L) from O(Ll). This is
because the computation of m[i][j] only relies on some elements in column j−1.
A mod operation is employed to fulfill the task.

3 Comparisons

This section compares PAIG and GCS from a theoretical point of view. The
focus is time complexities.
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3.1 General Comparison

Generally, both PAIG and GCS employ incremental approaches through fill-
ing matching tables. In other words, they are dynamic programming oriented
approaches [3]. This is why they are efficient.

The data structure of GCS is simpler, and it is a matrix of integers. The
algorithm description is shorter.

Parallelization of both algorithms is easy. The sequence can be segmented,
then run on different computers/CPUs, and the final result is obtained through
summing up results of each segment. For PAIG, a number of characters after
each segment should be kept, such that matches starting close to the end of
the segment could be counted. For GCS, however, a number of characters before
each segment should be kept for the same reason.

In PAIG, more information is recorded. Therefore the starting-ending pairs of
matches are available. In GCS, only the ending points of matches are available.
For this reason, PAIG can be easily revised to suit global length constraints,
while GCS cannot. In the given example of Tables 1 and 2, if we require that
each match have a length between 7 and 9, then according to the last column in
Table 1, the following starting-ending pairs satisfy this requirement: (3, 9), (3,
11), (5, 11) and (5, 12). There are 1 + 2 + 3 + 3 matches.

3.2 Complexity Comparison

PAIG and GCS have the same space complexity. While employing certain mem-
ory sharing techniques, the space complexity of PAIG is O(lW ). However, it is
required that the sequence be segmented and read a number of times. If we read
the whole sequence into the memory, the space complexity is

O(L + lW ) = O(L), (1)

since very long gaps or sequences are unreasonable. The space complexity of GCS
is also O(L), as discussed in Subsection 2.2. To reduce it further, we can fill the
table row by row instead column by column. The mod operation is also needed
to keep only W rows. In that case, the space complexity is O(lW ). However, this
approach is more complex, and also requires the segmentation of the sequence. In
most applications, reading the whole sequence into the memory is a better choice.

The time complexity of PAIG is [10]

O(L × l × lW × W × log(lW )) = O(Ll2W 2 log(lW )). (2)

For GCS, the complexity of Lines 2 through 8 is L, the complexity of Line 21 is
also L, and the overall time complexity is only

L +
l−1∑
i=1

L−1∑
j=0

(1 + f(pi)Wi−1)) + L = O(LlW ), (3)

where f(pi) is the frequency of pi in S, and W = max0≤i≤(l−2) Wi is the maximal
gap length.
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Intuitively, GCS should be significantly more efficient than PAIG. However,
this is not always true in applications. The reason is that complexities given
above are for the worst case. In the following we will discuss the complexities
for the best case. According to the analysis in Subsection 2.1, when we fill the
matching table of PAIG, if one element is empty, all remaining cells in the same
row are simply skipped. Therefore the time complexity of PAIG is

Ω(L). (4)

However, each element in the matching table of GCS should be filled, and the
time complexity is

Ω(Ll), (5)

which could be observed from Lines 9 and 10 in the algorithm. We will discuss
this issue in more detail through experiments.

4 Experiments

Our experiments were conducted on a number of DNA sequences downloaded
from the National Center for Biotechnology Information website [5]. Since dif-
ferent sequences result in similar conclusions, we only discuss results of sequence
New York/11/2009 (H1N1) No. FJ984346.

Fig. 1 compares the performance of PAIG and GCS. P1 = A([0,M ]A)9

stands for A[0,M ]A[0,M ]A[0,M ]A[0,M ]A[0,M ]A[0,M ]A[0,M ]A[0,M ]A[0,M ]A.
“Computing time” is the number of basic operations (comparison or addition).
We chose it instead of running time since it is implementation independent. We
observe that with the increase of M , the time of PAIG increases polynomially,
and the time of GCS increases linearly. The time of PAIG exceeds that of GCS
when M ≥ 4 for P1, and M ≥ 7 for P2. This is because that the number of
matches increases faster on P1, and PAIG fills more cells of the matching table.

Fig. 2 shows the computing time for P3 which contains both A and C. PAIG
performs worse when M ≥ 5, where 5 is between 4 and 7. We also observe that the
computing time of P3 is always between that of P1 and P2, as indicated in Fig. 1.

Fig. 3 shows the numbers of matches for different patterns. N(P, S) increases
exponentially with the increase of M . N(P3, S) is always between N(P1, S) and
N(P2, S).
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The above results show a strong trend that PAIG is better when the pattern is
inflexible, and the number of matches is not big. GCS is better in the other case.
According to Figures 1 and 2, we can decide which algorithm is faster for many
patterns. For example, C[0,6]C[2,4]C[1,5]C[1,6]C[2,5]C[3,5]C[1,6]C[2,5]C[1,4]C is
less flexible than C([0,6]C)9, therefore PAIG is faster. While the number of pat-
terns to be checked is huge, we can choose a small partition of patterns to run
both algorithms, and then decide which algorithm to use for each pattern. How
to choose these representative patterns is application dependent. It is an issue
of pattern mining rather than pattern matching.

Figures 1 through 3 do not indicate that GCS is more scalable than PAIG.
With the increase of M , the pattern is more flexible, and the number of matches
is typically greater. However, the frequency of the pattern tends to be small,
and henceforth such patterns are not interesting. A typically employed gap is
[10, 12], which indicates that M = 12− 10 + 1 = 3. We do not discuss this issue
further since it is out of the scope of this paper.

Patterns employed above have equal wildcard gaps [0, M ]. The purpose is to
make patterns easier to describe. Both PAIG and GCS described in Section 2
can deal with independent wildcard gaps.

5 Conclusions

In this paper, we compared PAIG and GCS. PAIG can deal with global length
constraints while GCS cannot. For flexible patterns where the number of matches
is big, GCS is faster than PAIG. While in the other case PAIG is faster. However,
this does not indicate that GCS is more scalable than PAIG, since very flexible
patterns are usually not interesting. We indicated how to choose the more effi-
cient algorithm for a given pattern. This is important in pattern mining where
many patterns are checked.
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Abstract. Pattern matching with wildcards and length constraints under the 
one-off condition is a challenging topic. We propose an algorithm BPBM, 
based on bit parallelism and the Boyer-Moore algorithm, that outputs an 
occurrence of a given pattern P as soon as the pattern appears in the given 
sequence. The experimental results show that our BPBM algorithm has an 
improved time performance of over 50% with the same matching results when 
compared with SAIL, a state-of-the-art algorithm of this matching problem. The 
superiority is even more remarkable when the scale of the pattern increases. 

Keywords: Pattern matching, wildcards, length constraints, bit-parallelism. 

1   Introduction 

Pattern matching with wildcards owns a significant impact on many search 
applications such as text indexing, biological sequence analysis and data mining. For 
example, in the biology field, the DNA sequence TATA is a common promoter that 
often occurs after the sequence CAATCT within 30–50 wildcards [1, 9]. In addition, 
mining frequent patterns with wildcards from sequences has been an active research 
topic in data mining. However pattern matching is the key issue to such an efficient 
mining algorithm. We also can find many examples about patterns with wildcards in 
biological sequences and their corresponding motivations in [6]. There are many 
research efforts on the problem of pattern matching with wildcards already [4, 5, 7, 8, 
9, 10]. In many existing research efforts, they specified the same number of wildcards 
between every two consecutive characters in a given pattern P, or fixed the total 
number of wildcards in P. Navarro and Raffinot [10] addressed a more flexible 
pattern matching problem. That is the user is allowed to specify a different number of 
wildcards between each two consecutive characters in P (e.g., P= Ag(0,2)Cg(0,3)G). 
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An efficient algorithm Gaps-BNDM, based on bit-parallel technique, was also 
proposed. Unfortunately, this algorithm only presents the initial or final character 
positions for each occurrence of P. But a number of wildcards in P may cause a 
significant variance of the matching subsequence. For example, given a sequence 
T=ACCGG and a pattern P=Ag(0,2)Cg(0,3)G, there are 4 matching subsequences 
(i.e., {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}) of P in T. But with the above algorithm 
only 2 matches can be found. Note that for the same position 1 in T, there are 4 
different matches. So, it is necessary to present all matching positions for each 
occurrence.  

Chen et al. [3] considered a similar problem as Navarro and Raffinot [10]. The 
main difference is that they considered global length constraint for a pattern. Yet 
proved by Chen et al. is that the number of matches may be exponential with respect 
to the maximal gap range and pattern length (a gap means a sequence of wildcards 
with length constraint). They think it might not be necessary to find ‘all’ such 
matches, and proposed a new challenging problem: finding all matching subsequences 
with a one-off condition. The algorithm SAIL was put forward to present all matching 
positions for each occurrence as well as finding all occurrences under the one-off 
condition. At the same time SAIL consumes much time especially when the pattern is 
long. In this paper, we propose a BPBM algorithm which use both advantages of the 
Boyes-Moore algorithm [2] and bit-parallel technique [10]. With the same accuracy 
compared to SAIL, our algorithm improves the time significantly. 

The remainder of the paper is organized as follows. Section 2 provides our problem 
statement. Section 3 presents the design of our BPBM algorithm. Section 4 analyzes 
the complexity of BPBM, and shows our comparative experimental results with 
SAIL. Section 5 draws our conclusions. 

2   Problem Statement and Related Work 

In this section, we adopt the problem definition proposed by Chen et al [3]. We use Σ 
to denote the alphabet. A wildcard (denoted by φ ) is a special symbol that matches 

any character in Σ. A gap is a sequence of wildcards with length constraint. We use 
g(N, M) to represent a gap whose size is within the range [N, M]. 

A pattern is denoted by 1 1 1 1 1 1 1( , )... ( , )m m m mP p g N M g N M p− − −= , where ip ∈∑ , 

and ip φ≠ , 1 i m≤ ≤ . ( , )i i ig N M  is a gap between ip  and 1ip +  and it indicates the 
local length constraint. If there’s no wildcard between two adjacent characters in P, 

(0,0)ig  will be used. We define the length of a pattern P, denoted by p =m. Note 

that 1P g= +  is mandatory. L is used to denote the size of a pattern:  

                 L= -1
1

m
i im M=+∑  .                                                    (1) 

When we indicate the i-th position in P, it include the wildcards (i.e., 1 i L≤ ≤ ). We 
use NG , MG  to denote the minimum and maximum length constraints for P (i.e., a 

global length constraint), the following inequality should be satisfied: 
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1 1
1

m m
i i N M i im N G G m M− −
=+∑ ≤ ≤ ≤ +∑  .                              (2) 

Given a sequence T= 1... ...j nt t t , if there exists a subsequence of position indices 

{ 1,..., ,...,k mi i i } where jt ∈∑ , jt φ≠ , 1 j n≤ ≤ , 1 ki n≤ ≤ , 1 k m≤ ≤ , 1k ki i− <  such 

that 
ki kt p= , 1 1 11k k k kN i i M− − −≤ − − ≤ , 1 1N m MG i i G≤ − + ≤ , the subsequence 

{ 1,..., ,...,k mi i i } is an occurrence of P in T, and the substring 
1 1 1... ...

k mi i i it t t t+  is a 

matching subsequence. The second condition above is a local constraint and the third 
condition is about global constraint. 

We apply a one-off condition and an on-line optimization in this paper. That is, 
every character in T can only be used at most once for matching ip  (1 i m≤ ≤ ) and 

an optimal occurrence should be output under the one-off condition. Through the 
example which is from Chen et al [3], we explain the one-off condition and 
optimization. Given P=A 1(0,1)g G 2 (0,1)g C, T=AAGGCC, NG =3 and MG =5. 

Sequence {1, 3, 5} is an occurence. After it has been used to match one occurrence of 
P, they can not be used again under the one-off condition. Therefore P occurs only 
twice in T. When the first C at position 5 comes, four possible occurrences of P exist, 
which are {1, 3, 5}, {2, 4, 5}, {1, 4, 5} and {2, 3, 5}. Which one of them is the 
optimal occurrence? As we can see, another C in position 6 will come. The only 
possible occurrence for this position is {2, 4, 6}. As a result, {1, 3, 5} is the only 
optimal occurrence for C in position 5 under the one-off condition. We have taken the 
two issues into consideration when designing BPBM. 

3   Algorithm Design 

The BPBM algorithm proposed in this paper draws on the Boyer-Moore algorithm for 
the security thinking of a moving window, and also uses bit parallelism. We set the 
size of the window as MG  (i.e., the maximal length of a possible matching 

subsequence), but at the beginning, we set it as NG . In each window, we read 

characters backwards. We use two nondeterministic automatons (NFA) to simulate 
the transfer of the states in the search process. We use u to represent the string that 
has been read in the current search window. The first NFA is used to identify all the 
suffix of P. When the state moves to the terminal state, it means u can match P. We 
then check the length of u. If it satisfies the global constraint of P, we output the 
occurrence. The second NFA is used to identify all the substrings of P (except the 
suffix). When the state moves to the terminal state, it means that the string u currently 
read is the prefix of P. Then we save the location of the prefix. BPBM now in 
accordance with the first NFA determines whether there is a successful match. When 
the first NFA doesn't have an active state, we calculate the secure moving distance 
of the searching window as follows: 
 
1) If the second NFA has an active state, that is, u is a substring of P, then the 

window moves forward by 1 distance unit. (Because of P’s complexity, it’s hard 
to calculate the position of u in P, so we simply move 1 unit.) 
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2) If the second NFA doesn't have an active state, but there exists a string v that is 
in the suffix of u and also in the prefix of P, find the v that is the longest in all 
such strings, and move the window forward by a minLen-length (v) distance. 
Here length (v) is the length of v. If length (v) is longer than NG , the window is 

moved forward by 1 unit. 
3) If the second NFA doesn't have an active state and u dosen’t have any suffix that 

is in the prefix of P, then the window is moved forward by a NG  distance. 

The NFA we explained above allow the existence of wildcards between consecutive 
characters in P, and are constructed with reference to Navarro and Raffinot [10]. The 
NFA we construct here only consider the local constraints of P, and the global 
constraints will be considered in the realization. Figures 1 and 2 show the NFAs for 
the identification of the suffix of pattern P and a substring of pattern P (except the 
suffix) respectivly.  

As with other algorithms which use bit-parallel technique, we keep state of the 
search in a bit mask. But we use two bit masks to record the state of the search, which 
are D1 and D2. D1 and D2 correspond to the two NFAs respectively. Also a table B, 
which for each character c in Σ stores a bit mask, is created. This mask sets the bits 
corresponding to the positions where the reversed pattern has the character c or a 
wildcard. Each time we position the window in the sequence T, we initialize D1, D2 as 

10 1L− , 11 0L−  respectively. Note that the number of states (except the initial state 0) in 
the NFA also equals to the size in the given pattern. If the i-th bit is 1, then it denotes 
that the i-th state is active, and 0 means the state is inactive currently. For each new 
character read in the window, we update D1 and D2 as follows. First D1=D1&B[ jt ] 

( jt  is the current character). If D1 0L≠ , then an operation will be used to simulate an 

ε-transition: 1 1 | (( ( 1& ))&~ )D D F D I F← − . The operation is proposed by Navarro 

and Raffinot for solving the ε-transition in the NFA. They created a bit mask I which 
has 1 in the “gap-initial” states, and another mask F that has 1 in the “gap-final” states. 
A “gap-initial” state is a state from where an ε-transition leaves. For each “gap-initial” 
state jS  corresponding to a gap g(N, M), then its related “gap-final” state should be 

1j M NS + − + . We then use the same way to update D2. 

ε

Σ

ε

7 6 5 4 3 2 1 0
A CΣ Σ Σ G

ε

Σ

8

εε

 

Fig. 1. NFA for recognizing suffix of pattern: A 1g (0,2)C 2g (0,3)G 
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ε
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ε
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Fig. 2. NFA for recognizing substring of pattern: A 1g (0,2)C 2g (0,3)G (except suffix) 
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There are two phases in the BPBM algorithm, Preprocessing and Search. The 
Preprocessing initializes a table B and two arrays of I, F, which is similar to Gaps-
BNDM. The difference is that we add an exceptional character φ  into table B to mark 

the character has been used. B[φ ] has 1 in the positions where the reversed pattern 

has wildcards. The procedure Search finds all occurrences of P. The main idea has 
been introduced at the beginning of this section. Now the problem is that under the 
one-off condition, BPBM should determine which occurence is an optimal one if 
there are multiple occurences of mP ’s position. As discussed in Section 2, here we 

select the smallest position within the local constraints to guarantee optimum. In order 
to achieve this strategy, we don’t report an occurrence of P when we find it, but mark 
it and continue to search until there’s no state is active in D1. Then we come back to 
find the optimal occurrence of what we have found. Next, the specific positions for 
each occurence should be found and outputed. To this end, we should save all the 
search states. We add an array D whose length is MG  to save the value of D1 every  
 

( : ... , , )
( ) , /* :

1 n

1

array B, , , 

1  0 the end of the window, :moving distance*/

(2)  While <  Do

(3)    0,D1 0 1, D2 1 0/*len counts the characters have been read

M N

N

L L 1

T t t I F G G

 pos G shift pos shift

pos n

len

-

[

1

1

*/

(4)    While D1 0  AND <  Do

(5)        +1

(6)        D1 D1&B[ ], D1 D1|(( -(D1& ))&~ )

(7)        D[ ] D1

(8)        If D2 0  Then

(9)               D2 D2&B[ ],D2 D2|((

L
M

pos len

L

pos-len

len G

len len

t F I F

len

t F i] [ ] [ ]

,

-1

-1

-(D2& ))&~ )

(10)             If D2&10 0  Then true,

(11)               D2 D2<<1/*End of If,  are used to mark prefix*/

(12)      If D1&10  AND  Then/*find a 

L L

L
N

I i F i

ispre prenum len

ispre prenum

len G

/*

possible match*/

(13)               If D1<<1=0  Then call PrintOcc( ,D, , ) , jump to line 17;

(14)               Else true, save a possible match*/

(15)      D1 D1<<1/*End of Whi

L occ len pos

find lentemp len

/*
( )? :

( )

le*/

(16)   If  true Then call PrintOcc( ,D, , ) output the latest found match*/

(17)   If D2=0  AND  =true Then - 0 - 1 

18    Else If D2=0   Then 

(

L
N N

L
N

find occ lentemp pos

ispre shift G prenum G prenum

shift G

/*
,

,
1

19)   Else 1/*End of If*/

(20)   + End of While*/

(array occ[],array D[], )

(21)  2, 0

(22)  Cout<< - +1/*print 's position in */

(23)  t[ - +1]

shift

pos pos shift

num pos

i posflag

pos num p T

pos num num n

,
1 1

-1

(24)  While >0

(25)         +1

(26)        If D[ ]&occ[ ]=occ[ ] AND  Then

(27)              +1,t[ - +1]  Cout<< - +1, 0

(28)        1

i i

um

num

posflag posflag

num i i N posflag M

i i pos num pos num posflag

num num /*End of While*/

 

Fig. 3. Pseudo code for procedure Search 
 
 
 



 BPBM: An Algorithm for String Matching with Wildcards and Length Constraints 523 

time when reading a new character (shown on line 7 of Figure 3). We use an array occ 
with the length of m to represent P: occ[i], which is expressed by a mask 1 1L Lo o o− ⋅ ⋅⋅  

and represents the position of iP  in P. The mask in occ[i] has the j-th bit set 1 if and 

only if the j-th in P is iP . For example, when P= 1 2A ( , )C ( , )Gg 0 1 g 0 1 , occ[1]= 410 , 

occ[2]= 2 20 10  and occ[3]= 40 1 , the value of array occ can be initialized in the 
procedure Preprocessing. In the procedure Search, the sub-procedure of PrintOcc is 
called to output the specific positions for each optimal occurrence of P (shown on 
lines 13, 16 of Figure 3).  

The procedure PrintOcc first outputs position pos-num+1 which is the optimal 
position of 1p , and marks it as φ  (num is the size of the matching subseqence). Then 

sub-procedure PrintOcc searches forward to find the optimal position of another 
pattern character ip  ( 2 i m≤ ≤ ) by considering the number range 1ig − . So on line 21, 

variable i is initialized as 2. In order to satisfy the local constraints, we use variable 
posflag to record the local wildcards’ number. On line 26 of Figure 3, the equation 
D[num]&occ[i]=occ[i] accounts for t[pos-num+1]= ip , and the condition 

1iN − ≤ posflag ≤ 1iM −  accounts for the number range of wildcards between 1ip −  and 

ip . If both are satisfied, we have found the optimal position of ip , and also we set 

t[pos-num+1] as φ . Figure 3 presents the Search procedure of BPBM. 

4   Complexity Analysis and Experiments 

In this section we will analyze the time complexity of our algorithm compared to 
SAIL. We analyze the Preprocessing procedure at first. The procedure creates bit 
masks for all characters in Σ, and each bit mask has L bits. So the time complexity of 
Preprocessing is ( )O L∑ . In the procedure Search, the time complexity is 

( )MO kG n+  where k is the number of mp ’s occurrences in T. Each time to find an 
occurrence we need to call the procedure PrintOcc, whose time complexity is 

( )MO G , because of the variable num, which controls the number of cycles with the 

maximum value as MG . Accordingly, the time complexity of BPBM is 

( 2 )MO L n kGΣ + + . However, in an actual implementation of BPBM, when the 

pattern P’s size L is greater than a machine word w, the algorithm needs /l w⎢ ⎥⎣ ⎦  times 
of the machine word to store each bit mask which is used to keep record of the state 
of the search. Therefore, the actual time complexity of BPBM is 

(( 2 ) / )MO L n kG L w∑+ + ⋅⎢ ⎥⎣ ⎦ . In comparison, SAIL [3], which solves the same matching 

problem as this paper, has a complexity of ( )MO n G k m g+ ⋅ ⋅ ⋅  where g is the 
max{ j jM N− } (1 1)j m≤ ≤ − . Notice that k and n is the same order of magnitude. 

Therefore the time complexity of SAIL is about / 2 /mg L w⎢ ⎥⎣ ⎦  times compared to 
BPBM. Moreover, BPBM inherit the advantage of the Boyes-Moore algorithm and 
can skip some characters in the search process. 

We have used a Pentium IV, 1024 MB, Windows XP and programming language 
C. Our experiments aim at comparing BPBM against SAIL. The tested data is over 
gene sequences from http://www.noncode.org/index.htm. We choose four RNA 
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sequences as our testing text (AB114186, AF400501, AF222981, and AF252279). 
We first preprocess these sequences, and truncate them into 1000, 5000, 10000 and 
30000 characters. And in order to simulate a large amount of data search, we have 
duplicated 10 times for each sequence. Fig. 4 shows four groups of experiments. In 
each group, a set of patterns with the same sizes are searched in four sequences, and 
we compute the average time of all patterns. In (a) and (b), we select the patterns 
whose size L is shorter than w, and in (c) and (d) the size is longer than w.  

For all experiments shown in Figure 4, BPBM can get the same matching results 
compared to SAIL. We can find that BPBM has an improved time performance at 
least 50% faster than SAIL for each pattern. Specially, when the length of patterns 
increases, the time performance of BPBM can be 10% of SAIL. When the size of P 
increases, the occurrences of P in T become fewer, and so our algorithm consumes 
less time as shown in (c) and (d). 
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(a)  L=10                                                         (b)  L=25 
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(c)  L=45                                                               (d)  L=60 

Fig. 4. Efficiency between SAIL and BPBM with fixed sequences 

5   Conclusion 

In this paper, we have addressed a challenging problem of pattern matching with 
wildcards, where the users can not only specify the local length constraint but also 
specify the global length constraint. With our proposed approach, a search engine can 
efficiently find the optimal occurrences of P in a given sequence under the one-off 
condition. Also the specific matching positions for each occurrence of P can be 
presented. BPBM is a solution for exact pattern matching, and in real world 
applications, it’s more than often that a pattern does not repeat exactly. How to extend 
BPBM to solve approximate pattern matching, where some errors may be allowed for 
the matching of the patterns, will be our future work. 
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