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Abstract. Given an undirected and edge-weighted graph G together
with a set of ordered vertex-pairs, called st-pairs, we consider the prob-
lems of finding an orientation of all edges in G: min-sum orientation

is to minimize the sum of the shortest directed distances between all st-
pairs; and min-max orientation is to minimize the maximum shortest
directed distance among all st-pairs. In this paper, we first show that
both problems are strongly NP-hard for planar graphs even if all edge-
weights are identical, and that both problems can be solved in polynomial
time for cycles. We then consider the problems restricted to cacti, which
form a graph class that contains trees and cycles but is a subclass of
planar graphs. Then, min-sum orientation is solvable in polynomial
time, whereas min-max orientation remains NP-hard even for two st-
pairs. However, based on LP-relaxation, we present a polynomial-time
2-approximation algorithm for min-max orientation. Finally, we give
a fully polynomial-time approximation scheme (FPTAS) for min-max

orientation on cacti if the number of st-pairs is a fixed constant.

1 Introduction

Consider the situation in which we wish to assign one-way restrictions to (nar-
row) aisles in a limited area, such as in an industrial factory, with keeping reacha-
bility between several sites. Since traffic jams rarely occur in industrial factories,
the distances of routes between important sites are of great interest for the
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Fig. 1. (a) Solution for min-sum orientation and (b) solution for min-max orienta-

tion

efficiency. This situation frequently appears in the context of the scheduling of
automated guided vehicles without collision [5]. In this paper, we model the sit-
uation as graph orientation problems, in which we wish to find an orientation so
that the distances of (directed) routes are not so long for given multiple st-pairs.

Let G = (V, E) be an undirected graph together with an assignment of a
non-negative integer, called the weight ω(e), to each edge e in G. Assume that
we are given q ordered vertex-pairs (si, ti), 1 ≤ i ≤ q, called st-pairs. Then, an
orientation of G is an assignment of exactly one direction to each edge in G so
that there exists a directed (si, ti)-path (i.e., a directed path from si to ti) for
every st-pair (si, ti), 1 ≤ i ≤ q. For an orientation G of G and an st-pair (si, ti),
we denote by ω(G, si, ti) the total weight of a shortest directed (si, ti)-path on
G, that is, ω(G, si, ti) = min {ω(P ) | P is a directed (si, ti)-path on G} where
ω(P ) is the sum of weights of all edges in a path P .

We introduce two objective functions for orientations G of a graph G, and
study the corresponding two minimization problems. The first objective is sum-
type, defined as follows: g(G) =

∑
1≤i≤q ω(G, si, ti). Its corresponding problem,

called the min-sum orientation problem, is to find an orientation G of G such
that g(G) is minimum; we denote by g∗(G) the optimal value for G. The second
objective is max-type, defined as follows: h(G) = max{ω(G, si, ti) | 1 ≤ i ≤ q}.
Its corresponding problem, called the min-max orientation problem, is to
find an orientation G of G such that h(G) is minimum; we denote by h∗(G)
the optimal value for G. For the sake of convenience, let g∗(G) = +∞ and
h∗(G) = +∞ if G has no orientation for a given set of st-pairs. Clearly, both
problems can be solved in polynomial time if we are given a single st-pair (s1, t1);
in this case, we simply seek a shortest path between s1 and t1.

Figure 1 illustrates two orientations of the same graph G for the same set
of st-pairs, where the weight ω(e) is attached to each edge e and the direction
assigned to an edge is indicated by an arrow (but the direction is not indicated
if the edge is not used in any shortest directed (si, ti)-path, 1 ≤ i ≤ 3). The
orientation G in Fig.1(a) is an optimal solution for min-sum orientation,
where g∗(G) = g(G) = (1+6+8)+2+(6+5) = 28. On the other hand, Fig.1(b)
illustrates an optimal solution for min-max orientation, in which the st-pair
(s1, t1) has the maximum distance; h∗(G) = max{1+2+9, 4+3+1, 6+5} = 12.

Robbins [7] showed that every 2-edge-connected graph can be directed so
that the resulting digraph is strongly connected. Therefore, a graph G has at
least one orientation for any set of st-pairs if G is 2-edge-connected. Chvátal
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Table 1. Summary of our results

min-sum orientation min-max orientation

planar • strongly NP-hard • strongly NP-hard
graphs • no (2 − ε)-approximation • no (2 − ε)-approximation
cacti O(nq2) • NP-hard even for q = 2

• polynomial-time 2-approximation
• FPTAS for a fixed constant q

cycles O(n + q2) O(n + q2)

and Thomassen [2] showed that it is NP-complete to determine whether a given
unweighted graph can be directed so that the resulting digraph is strongly con-
nected and whose (directed) diameter is 2. This implies that our min-max ori-

entation is NP-hard in general. On the other hand, Hakimi et al. [4] proposed a
quadratic algorithm for the problem of directing a 1-edge-connected graph so as
to maximize the number of ordered vertex-pairs (x, y) having a directed (x, y)-
path. The problem of [4] can be easily reduced to our min-sum orientation.

In this paper, we mainly give the following three results. (Table1 summarizes
our results, where n is the number of vertices in a graph.) The first is to show
that both problems are strongly NP-hard for planar graphs even if all edge-
weights are identical. We remark that the known result of [2] does not imply
NP-completeness for planar graphs. The second is to show that both problems
can be solved in polynomial time for cycles. By extending the algorithm for
cycles, we show that min-sum orientation is solvable in polynomial time for
cacti, whereas min-max orientation remains NP-hard even for cacti with q =
2. (Cacti form a graph class that contains trees and cycles, but is a subclass
of planar graphs.) The third is to give a fully polynomial-time approximation
scheme (FPTAS) for min-max orientation on cacti if q is a fixed constant.

In addition, we give several results on the way to the three main results above.
Firstly, our proof of strong NP-hardness implies that, for any constant ε > 0,
both problems admit no polynomial-time (2−ε)-approximation algorithm unless
P = NP. Secondly, in order to obtain a lower bound and an upper bound on
h∗(G) for a cactus G, we present a polynomial-time 2-approximation algorithm
based on LP-relaxation; we remark that q is not required to be a fixed constant
for this 2-approximation algorithm. We finally remark that our complexity anal-
ysis for min-max orientation on cacti is tight in some sense: the problem is in
P if q = 1, and the problem for cacti cannot be strongly NP-hard if q is a fixed
constant because our third result gives an FPTAS for the problem [6, p. 307].

2 Computational Hardness

In this section, we first show that our two problems are both strongly NP-hard
for planar graphs, and then show that min-max orientation remains NP-hard
even for cacti with q = 2.
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Fig. 2. (a) Flower gadget Fi(M), and (b) planar graph Gφ corresponding to a Boolean
formula φ with three clauses c1 = (u1∨ū2∨u4), c2 = (u2∨u5∨u4) and c3 = (u2∨ū3∨ū5)

Theorem 1. Both min-sum orientation and min-max orientation are
strongly NP-hard for planar graphs even if all edge-weights are identical.

Proof. We show that the planar 3-SAT problem, which is known to be strongly
NP-complete [3,6], can be reduced in polynomial time to min-max orientation.
(The reduction to min-sum orientation is similar.)

In planar 3-SAT, we are given a Boolean formula φ in conjunctive nor-
mal form, say with set U of n variables u1, u2, . . . , un and set C of m clauses
c1, c2, . . . , cm, such that each clause cj ∈ C contains exactly three literals and
the following bipartite graph B = (V ′, E′) is planar: V ′ = U ∪C and E′ contains
exactly those pairs {ui, cj} such that either ui or ūi appears in cj . The planar

3-SAT problem is to determine whether there is a satisfying truth assignment
for φ. Given an instance of planar 3-SAT, we construct the corresponding in-
stance of min-max orientation. We first make a flower gadget Fi(M) for each
variable ui ∈ U , and then construct the whole graph Gφ corresponding to φ.

We first define a flower gadget Fi(M). Let M be a fixed constant (integer) such
that M ≥ 3. The flower gadget Fi(M) = (Vi, Ei) for a variable ui ∈ U consists
of 2m hexagonal elementary cycles, as illustrated in Fig.2(a). (Remember that
m is the number of clauses in φ.) More precisely, Vi = {ak, bk, ck, dk | 1 ≤ k ≤
2m} and Ei = {{ak+1, ak}, {ak, bk}, {bk, ck}, {ck, dk}, {dk, bk+1} | 1 ≤ k ≤ 2m},
where a2m+1 = a1 and b2m+1 = b1. The edge-weights are defined as follows: for
each k, 1 ≤ k ≤ 2m, ω({ak+1, ak}) = ω({bk, ck}) = ω({dk, bk+1}) = M and
ω({ak, bk}) = ω({ck, dk}) = 1. (In Fig.2(a), the weight-M edges are depicted by
thick lines.) Finally, we define the set STi of 12m st-pairs, as follows:

STi ={(ak, dk), (dk, ak), (bk, bk+1), (bk+1, bk), (ck, ak+1), (ak+1, ck) |1 ≤ k ≤ 2m}.

For each k, 1 ≤ k ≤ 2m, the kth hexagonal elementary cycle akbkckdkbk+1ak+1
is called the kth petal Pk; Pk is called an odd petal if k is odd, while is called an
even petal if k is even. We call the edge {ck, dk} in each petal Pk, 1 ≤ k ≤ 2m, an
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external edge of Pk. For the sake of convenience, we fix the embedding of Fi(M)
such that the outer face consists of bk, ck, dk, 1 ≤ k ≤ 2m, which are placed in a
clockwise direction, as illustrated in Fig.2(a).

It is easy to see that Fi(M) has only two optimal orientations for STi: the
one is to direct each odd petal in a clockwise direction and to direct each even
petal in an anticlockwise direction; and the other is the reversed one. In the first
optimal orientation, the external edges {ck, dk} are directed from ck to dk in
all odd petals Pk, while directed from dk to ck in all even petals; we call this
optimal orientation of Fi(M) a true-orientation, which corresponds to assigning
true to the variable ui. On the other hand, the other optimal orientation of
Fi(M) is called a false-orientation, which corresponds to assigning false to ui.
Clearly, h∗(Fi(M)) = 2M + 1.

We now construct the planar graph Gφ corresponding to the formula φ, as
follows. We fix an embedding of the bipartite graph B = (V ′, E′) arbitrarily.
For each variable ui, 1 ≤ i ≤ n, we replace it with a flower gadget Fi(M). For
each clause cj , 1 ≤ j ≤ m, we replace it with a path consisting of three vertices
sj , rj , tj ; let ω({sj, rj}) = ω({rj , tj}) = 2M . We then connect flower gadgets
Fi(M), 1 ≤ i ≤ n, with paths sjrjtj , 1 ≤ j ≤ m, as follows. For each clause
cj , 1 ≤ j ≤ m, let lj1, lj2, lj3 be three literals in cj , and assume without loss
of generality that three flower gadgets corresponding to lj1, lj2, lj3 are placed in
a clockwise direction around the path sjrjtj corresponding to cj . Assume that
ljk is either ui or ūi. Then, we replace the edge of B joining variable ui and
clause cj with a pair of weight-1 edges which, together with an external edge in
Fi(M), forms a path between two vertices chosen from {sj, rj , tj}, according to
the following rules (see Fig.2(b) as an example):

(i) The endpoints of this path are sj and rj if k = 1; rj and tj if k = 2; and
sj and tj if k = 3.

(ii) The external edge is from an even petal if lj1 = ui, lj2 = ui, or lj3 = ūi;
while it is from an odd petal if lj1 = ūi, lj2 = ūi, or lj3 = ui.

(iii) From the viewpoint of variable ui, we choose a distinct external edge for
each clause containing ui, honoring the order of those clauses around ui

and thereby preserving the planarity of the embedding.
Finally, we replace each edge e in Gφ with a path of length ω(e) in which all edges
are of weight 1. (Remember that M is a fixed constant.) Clearly, the resulting
graph Gφ is planar, and can be constructed in polynomial time. The set of all
st-pairs in this instance is defined as follows: (

⋃n
i=1 STi)∪{(sj , tj) | 1 ≤ j ≤ m}.

Therefore, there are (12mn+m) st-pairs in total. This completes the construction
of the corresponding instance of min-max orientation.

Then, deciding whether h∗(Gφ) ≤ 2M + 3 is equivalent to solving planar

3-SAT for φ. (We omit the details due to the page limitation.) ��

From our proof of Theorem 1, we immediately obtain the following corollary.

Corollary 1. For any constant ε > 0, both min-sum orientation and min-

max orientation admit no polynomial-time (2 − ε)-approximation algorithm
for planar graphs unless P = NP.
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A graph G is a cactus if every edge is part of at most one cycle in G [1,8].
Cacti form a subclass of planar graphs. However, we have the following theorem.

Theorem 2. Min-max orientation is NP-hard for cacti even if q = 2.

3 Polynomial-Time Algorithms

The main result of this section is the following theorem.

Theorem 3. Both min-sum orientation and min-max orientation can be
solved in time O(n + q2) for a cycle C, where n is the number of vertices in C.

Proof. Suppose that we are given an edge-weighted cycle C = (V, E) and q st-
pairs (si, ti), 1 ≤ i ≤ q. Note that C has at least one orientation for any set of
st-pairs: simply directing C in a clockwise direction.

For each st-pair (si, ti), 1 ≤ i ≤ q, let cw(i) be the set of all edges in the
directed (si, ti)-path when all edges in C are directed in a clockwise direction,
and let acw(i) be the set of all edges in the directed (si, ti)-path when all edges
in C are directed in an anticlockwise direction. Clearly, for each i, 1 ≤ i ≤ q,
{cw(i), acw(i)} is a partition of E, that is, cw(i)∩acw(i) = ∅ and cw(i)∪acw(i) =
E. We introduce a {0, 1}-variable xi for each st-pair (si, ti), 1 ≤ i ≤ q: if xi = 0,
then the edges in cw(i) are directed in a clockwise direction; if xi = 1, then
the edges in acw(i) are directed in an anticlockwise direction. For two st-pairs
(si, ti) and (sj , tj), it is easy to see that the two corresponding variables xi and
xj have the following constraints (a)–(c):

(a) if cw(i) ∩ acw(j) �= ∅ and acw(i) ∩ cw(j) �= ∅, then xi = xj ;
(b) if cw(i) ∩ acw(j) = ∅ and acw(i) ∩ cw(j) �= ∅, then xi ≤ xj ; and
(c) if cw(i) ∩ acw(j) �= ∅ and acw(i) ∩ cw(j) = ∅, then xi ≥ xj .

We now construct a constraint graph C in which each vertex vi corresponds
to an st-pair (si, ti) and there is an edge between two vertices vi and vj if and
only if cw(i) ∩ acw(j) �= ∅ and acw(i) ∩ cw(j) �= ∅, that is, the corresponding
variables xi and xj have the constraint xi = xj . From an orientation of C, we
can obtain an assignment of {0, 1} to each variable xk, 1 ≤ k ≤ q; clearly, any
two variables satisfy their constraint, and hence two variables xi and xj receive
the same value if their corresponding vertices vi and vj are contained in the
same connected component of C.

Let V = {V1, V2, . . . , Vm} be the partition of the vertex set of C such that each
Vi, 1 ≤ i ≤ m, forms a connected component of C. Then, we define a relation “≤”
on V , as follows: Vi ≤ Vj if and only if there exist two vertices vi ∈ Vi and vj ∈ Vj

such that their corresponding variables xi and xj have the constraint xi ≤ xj .
We show that V is totally ordered under the relation ≤. (However, its proof is
omitted from this extended abstract.) Then, for some index k, 1 ≤ k ≤ m, we
have xi = 0 for all variables xi whose corresponding vertices are contained in
Vj with Vj ≤ Vk; otherwise xi = 1. Therefore, both min-sum orientation and
min-max orientation can be reduced simply to finding such an appropriate
index k on V = {V1, V2, . . . , Vm}. It is now easy to see that both problems can
be solved in time O(n + q2). ��
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By extending Theorem 3, we can easily obtain the following theorem.

Theorem 4. Min-sum orientation can be solved in time O(nq2) for a cactus
G, where n is the number of vertices in G.

4 FPTAS for Min-Max Orientation on Cacti

In contrast to min-sum orientation, min-max orientation remains NP-hard
even for cacti with q = 2. However, in this section, we give an FPTAS for min-

max orientation on cacti if q is a fixed constant.
In Section 4.1 we first present a polynomial-time 2-approximation algorithm

based on LP-relaxation, which gives us both lower and upper bounds on h∗(G)
for a given cactus G. We then show in Section 4.2 that the problem can be solved
in pseudo-polynomial time for cacti. In Section 4.3, we finally give our FPTAS
based on the algorithm in Section 4.2 and using the lower and upper bounds on
h∗(G) obtained in Section 4.1.

It can be easily determined in time O(nq) whether a given cactus G = (V, E)
has an orientation for the given set of st-pairs; we simply check the placements of
st-pairs which pass through each bridge in G. Therefore, we may assume without
loss of generality that G has at least one orientation, and hence h∗(G) �= +∞.

[Cactus and its underlay tree]
A cactus G can be represented by an underlay tree T , which is a rooted tree and
can be easily obtained from G in a straightforward way. In the underlay tree
T of G, each node represents either a bridge of G or an elementary cycle of G;
and if there is an edge between nodes u and v of T , then bridges or cycles of G
represented by u and v share exactly one vertex in G in common. (A similar idea
can be found in [8, Theorem 11].) Each node v of T corresponds to a subgraph
Gv of G induced by all bridges and cycles represented by the nodes that are
descendants of v in T . Clearly, Gv is a cactus for each node v of T , and G = Gr

for the root r of T . It is easy to see that an underlay tree T of a given cactus G
can be found in linear time, and hence we may assume that a cactus G and its
underlay tree T are given. In Section 4.2, we solve min-max orientation by a
dynamic programming approach based on the underlay tree T of G.

4.1 2-Approximation Algorithm Based on LP-Relaxation

In this subsection, we give the following theorem. It should be noted that the
number q of st-pairs is not required to be a fixed constant in the theorem.

Theorem 5. There is a polynomial-time 2-approximation algorithm for min-

max orientation on cacti.

For each st-pair (si, ti), 1 ≤ i ≤ q, let Ci be the set of elementary cycles
represented by the nodes which are on the path from vsi to vti in the underlay
tree T of a given cactus G, where vsi and vti are the nodes in T containing si

and ti, respectively. Let di be the sum of weights of bridges represented by the
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nodes which are on the path from vsi to vti in T . Clearly, both Ci and di can
be computed in time O(nq) for all st-pairs (si, ti), 1 ≤ i ≤ q.

Consider the following two orientations of G: the one, denoted by Ga, directs
all elementary cycles in G in a clockwise direction; the other, denoted by Gb,
directs all elementary cycles in G in an anticlockwise direction. Clearly, both
Ga and Gb are (feasible) orientations of G. For an st-pair (si, ti), 1 ≤ i ≤ q,
and each elementary cycle c ∈ Ci, we denote by ac

i and bc
i the sums of weights

of the edges which are contained in c and are in the directed (si, ti)-paths on
Ga and Gb, respectively. For each elementary cycle c in G, we call an ordered
index-pair (i, j), 1 ≤ i, j ≤ q, a conflicting pair on c if the directed (si, ti)-
path on Ga and the directed (sj , tj)-path on Gb share at least one edge of c
in common.

For an st-pair (si, ti), 1 ≤ i ≤ q, and each elementary cycle c ∈ Ci, we
introduce two kinds of {0, 1}-variables xc

i and yc
i : if xc

i = 1, then we direct
edges of c so that there is a directed (si, ti)-path which passes through c in a
clockwise direction; if yc

i = 1, then we direct edges of c so that there is a directed
(si, ti)-path which passes through c in an anticlockwise direction.

We are now ready to formulate min-max orientation for a cactus G.

minimize z (1)
subject to xc

i + yc
i = 1, ∀c ∈ Ci, i = 1, . . . , q, (2)

xc
i + yc

j ≤ 1, ∀(i, j) ∈ conflicting pairs on c, ∀c in G, (3)

di +
∑

c∈Ci

(ac
ix

c
i + bc

iy
c
i ) ≤ z, i = 1, . . . , q, (4)

xc
i , yc

i ∈ {0, 1}, ∀c ∈ Ci, i = 1, . . . , q. (5)

Equations (2) and (3) ensure that there are directed (si, ti)-paths for all st-
pairs (si, ti), 1 ≤ i ≤ q. Therefore, according to the values of xc

i and yc
i , we

can find an orientation G of G such that h(G) = z. Thus, minimizing z in Eq.
(1) is equivalent to computing h∗(G) for G. Since the size of the above integer
programming formulation is polynomial in n, its linear relaxation problem can
be solved in polynomial time.

We now propose a polynomial-time 2-approximation algorithm for cacti. Our
algorithm is very simple. We first solve the linear relaxation problem, and obtain
a fractional solution x̄c

i and ȳc
i , whose objective value is z̄. Clearly, h∗(G) ≥ z̄

since h∗(G) is the optimal value for the IP above. We then obtain an integer
solution xc

i and yc
i by rounding the values of x̄c

i and ȳc
i , as follows: xc

i = 1 if
x̄c

i ≥ 0.5, otherwise xc
i = 0; yc

i = 1 if ȳc
i > 0.5, otherwise yc

i = 0. Clearly, xc
i and

yc
i satisfy Eqs. (2), (3) and (5), and hence xc

i and yc
i form a feasible solution for

the IP above; we can thus obtain an orientation of G. Moreover, this algorithm
clearly terminates in polynomial time. Therefore, it suffices to show that the
approximation ratio of this algorithm is 2. Let zA be the objective value for the
solution xc

i and yc
i . Since x̄c

i ≥ 1
2xc

i and ȳc
i ≥ 1

2yc
i , by Eq. (4) we have
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h∗(G) ≥ z̄ = max
{
di +

∑

c∈Ci

(ac
i x̄

c
i + bc

i ȳ
c
i ) | 1 ≤ i ≤ q

}

≥ 1
2

max
{

di +
∑

c∈Ci

(ac
ix

c
i + bc

iy
c
i ) | 1 ≤ i ≤ q

}
=

1
2
zA. (6)

4.2 Pseudo-polynomial-time Algorithm

From now on, assume that the number q of st-pairs is a fixed constant. The main
result of this subsection is the following theorem.

Theorem 6. Min-max orientation can be solved in time O(nU2q) for a cac-
tus G if q is a fixed constant, where U is an arbitrary upper bound on h∗(G) and
n is the number of vertices in G.

As the upper bound U on h∗(G), we will employ the approximation value zA

obtained by the 2-approximation algorithm in Section 4.1; zA can be computed
in polynomial time.

Let G = (V, E) be a given cactus, let v be a node of an underlay tree T
of G, and let Gv be the subgraph of G for the node v. Then, Gv and G \ Gv

share exactly one vertex u in common. Consider an optimal orientation G of
G. (Remember that G has at least one orientation for the given set of st-pairs.)
Then, G naturally induces the “edge-direction” Gv of Gv, which is not always an
orientation for the given set of st-pairs but satisfies the following four conditions:
for each st-pair (si, ti), 1 ≤ i ≤ q,
(a) if both si and ti are in Gv, then a shortest directed (si, ti)-path on G is on

Gv because G is optimal and all edge-weights are non-negative;
(b) if si is in Gv but ti is in G\Gv, then there is a directed (si, u)-path on Gv;
(c) if si is in G \Gv but ti is in Gv, then there is a directed (u, ti)-path on Gv;

and
(d) if neither si nor ti are in Gv, then G has a shortest directed (si, ti)-path

which contains no edge of Gv.
For a q-tuple (x1, x2, . . . , xq) of integers 0 ≤ xi ≤ U , 1 ≤ i ≤ q, an edge-

direction Gv of Gv is called an (x1, x2, . . . , xq)-orientation of Gv if the following
three conditions (a)–(c) are satisfied: for each st-pair (si, ti), 1 ≤ i ≤ q,
(a) if both si and ti are in Gv, then ω(Gv, si, ti) ≤ xi;
(b) if si is in Gv but ti is in G \ Gv, then ω(Gv, si, u) ≤ xi; and
(c) if si is in G \ Gv but ti is in Gv, then ω(Gv, u, ti) ≤ xi.

We then define a set F (Gv) of q-tuples, as follows:

F (Gv) = {(x1, x2, . . . , xq) | Gv has an (x1, x2, . . . , xq)-orientation}.

Our algorithm computes F (Gv) for each node v of T from the leaves to the root
r of T by means of dynamic programming. Since G = Gr, we clearly have

h∗(G) = min
{

max
1≤i≤q

xi | (x1, x2, . . . , xq) ∈ F (Gr)
}

. (7)
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Note that F (Gr) �= ∅ since G has at least one orientation for the given set of st-
pairs. Therefore, we can always compute h∗(G) by Eq. (7). We omit the details
of our pseudo-polynomial-time algorithm due to the page limitation.

4.3 FPTAS

We finally give the main result of this section, as in the following theorem.

Theorem 7. Min-max orientation admits a fully polynomial-time approxi-
mation scheme for cacti if q is a fixed constant.

As a proof of Theorem 7, we give an algorithm to find an orientation G of
a cactus G with h(G) < (1 + ε)h∗(G) in time polynomial in both n and 1/ε
for any real number ε > 0, where n is the number of vertices in G. Thus, our
approximation value hA(G) for G is h(G), and hence the error is bounded by
εh∗(G), that is,

hA(G) − h∗(G) = h(G) − h∗(G) < εh∗(G). (8)

We now outline our algorithm and its analysis. We extend the ordinary “scal-
ing and rounding” technique [9], and apply it to min-max orientation for a
cactus G = (V, E). For some scaling factor τ > 0, let Gτ be the graph with the
same vertex set V and edge set E as G, but the weight of each edge e ∈ E is de-
fined as follows: ω̄(e) = 
ω(e)/τ�. We optimally solve min-max orientation for
Gτ by using the pseudo-polynomial-time algorithm in Section 4.2. We take the
optimal orientation Gτ for Gτ as our approximation solution for G. Then, we can
show that hA(G) − h∗(G) < τ |E|. Intuitively, this inequality holds because the
error occurs at most τ at each edge in Gτ . By Eq. (6) and taking τ = εzA/2|E|,
we have Eq. (8). Since h∗(Gτ ) ≤ |E| + zA

τ = (1 + 2
ε )|E|, by Theorem 6 we can

find the optimal orientation Gτ for Gτ in time O
(
n
(
|E|+ 2|E|

ε

)2q
)

= O
(

n2q+1

ε2q

)
;

since G is a cactus, |E| = O(n).
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