
Succinct Index for Dynamic Dictionary

Matching�

Wing-Kai Hon1, Tak-Wah Lam2, Rahul Shah3,
Siu-Lung Tam2, and Jeffrey Scott Vitter4

1 National Tsing Hua University, Taiwan
wkhon@cs.nthu.edu.tw

2 University of Hong Kong, Hong Kong
{twlam,sltam}@cs.hku.hk

3 Louisiana State University, Louisiana, USA
rahul@csc.lsu.edu

4 Texas A&M University, Texas, USA
jsv@tamu.edu

Abstract. In this paper we revisit the dynamic dictionary matching
problem, which asks for an index for a set of patterns P1, P2, . . . , Pk that
can support the following query and update operations efficiently. Given
a query text T , we want to find all the occurrences of of these patterns;
furthermore, as the set of patterns may change over time, we also want
to insert or delete a pattern. The major contribution of this paper is
the first succinct index for dynamic dictionary matching. Prior to our
work, the most compact index is given by Chan et al. (2007), which
is based on the compressed suffix arrays (Grossi and Vitter (2005) and
Sadakane (2003)) and the FM-index (Ferragina and Manzini (2005)), and
it requires O(nσ) bits where n is the total length of patterns and σ is
the alphabet size. We develop a dynamic succinct index using a different
(and simpler) paradigm based on suffix sampling. The new index not only
improves the space complexity to (1 + o(1))n log σ + O(k log n) bits, but
also the time complexity of the query and update operations. Specifically,
the query and update operations respectively take O(|T | log n+ occ) and
O(|P | log σ + log n) times, where occ is the number of occurrences.

1 Introduction

Given a pattern P and a text T finding all the occurrences of P in T has been a
fundamental problem and has developed into a very mature research field. The
earliest work involved developing algorithms to solve the problem in O(|P |+ |T |)
time [14]. When the text remains relatively static but patterns keep changing,
one would like to build an index on the text T and treat the patterns as queries.
Data structures like suffix trees [16,20] and suffix arrays [15] achieve optimal

� This work is supported in part by Taiwan NSC Grant 96-2221-E-007-082-MY3 (W.
Hon), Hong Kong RGC Grant HKU 7140/06E (T. Lam), and US NSF Grant CCF–
0621457 (R. Shah and J. S. Vitter).

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 1034–1043, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Succinct Index for Dynamic Dictionary Matching 1035

query performance. The space for these structures was considered to be “linear”
but this was only when measured in terms of number of words and in asymptotic
sense. In the stricter information-theoretic sense (which measures space in bits),
this could be Θ(log n) times more than the optimal. Furthermore, the hidden
constants in the asymptotic notions often make these indexes about 20 to 60
times bigger than the original text.

Recently, Ferragina and Manzini [10] and Grossi and Vitter [11] presented
text indexes based on the concept of Burrows-Wheeler transform (BWT) [6]
whose space bounds are very close to the size of the compressed text. This
has evolved into a thriving research field with many new application-specific
compressed/succinct indexes developed.

The dictionary matching problem is an orthogonal problem to the text index-
ing problem. Here, some number of patterns are given beforehand and then a
text comes in as the query. We need to find which patterns appear in this query
text and at which locations. Hence, the index is built on the set of patterns.
More formally, the problem is defined as follows.

Index: A set of patterns P1, P2, ..., Pk with total n characters.
Query: A text T of size |T | characters.
Output: For each Pi occurring in T , all locations � where Pi matches T

beginning at position �.

In the dynamic version of the problem, we support two update operations,
namely insert(P) and delete(P). These operations, respectively, insert a new
pattern to the set and delete any of the existing patterns from the set.

Dictionary matching problem has a long history starting with Aho and Cora-
sick in 1975 [1] who solved the problem optimally for the case of static patterns.
Amir et al. [3] gave a solution for dynamic case where inserts and deletes of pat-
terns are allowed. Their approach consists of constructing a generalized suffix
tree of the patterns with suffix links. In particular, suffix links are exploited to
avoid repeatedly matching the characters of T when different positions of T are
examined for pattern occurrences.

However, a major problem with all the above solutions was that the index
takes too much space. With the advent of the field of compressed data struc-
tures, it remained to be shown that a space-efficient index can be designed for
dictionary matching. Also, the issue of dynamism was somewhat hard to achieve
with some of the earlier compressed indexing solutions. Chan et al. [7] were the
first to present O(nσ) bit index to solve this problem. Their solution mainly re-
lied on Compressed Suffix Arrays (CSA) [11,18] and the subsequent Compressed
Suffix Tree (CST) [19] with ingenious extension of suffix link operations. How-
ever, this solution remained from optimal in space (it only achieves big-O term)
usage.

In this paper, we take a different approach than CSA or BWT based indexes.
Our approach is based on directly sparsifying suffix links and using only sampled
suffixes. A similar approach, but with a rather different sampling criteria, was
considered by Kärkkäinen and Ukkonen [13] to solve the text indexing problem.

1036 W.-K. Hon et al.

1.1 Comparisons with Previous Results

The solution by Aho and Corasick for the static case required O(n log n) bits
and answered the queries in optimal O(|T |+ occ) time. When the dynamic case
was addressed by Amir et al., they achieved O(n log n)-bit index but their query
and update times had an extra multiplicative factor of O(log n/ log log n).

The first attempt to reduce index space for the dynamic dictionary matching
problem was given by Chan et al. [7]. Their approach builds on compressed
suffix arrays (CSA) and compressed suffix trees. They extend the compressed
suffix tree representation to use suffix links (using LCA queries). However, their
approach in a way uses CSA as a black-box tool and hence it not only remains
complicated but also that it does not attain the best possible bounds. For the
case of constant alphabet size (i.e., σ = O(1)), they achieve O(n) bits index.
However, their search and update times have an extra multiplicative factor of
O(log2 n) which comes from attempting to dynamize some of more sophisticated
data structures underlying the CSA based approach.

Hon et al. [12] introduced the suffix sampling technique to obtain stronger
bounds for the static version of this problem. Namely, they achieved O(n log σ)
bits index with O(|T | log log n + occ) time. They also showed that space bounds
like nHh + o(n log σ) + O(k log n) are achievable if the log log n multiplicative
factor can be increased to log n; here, Hh denotes the hth-order empirical entropy
of the set of patterns.

In this paper, we build on suffix sampling technique of [12] to achieve the
best known bounds for the dynamic dictionary matching problem. One of the
consequences of suffix sampling is that it results in sparsification of suffix links
which in turn results in the space savings. We also show that in our approach
we can split the data structure into two parts: one part is where the compressed
text can be stored separately and the other part is the indexing overhead. By
choosing the sampling rate appropriately, we can arbitrarily reduce the second
part of the data structure, achieving space very close to the one required for the
compressed representation of the text. Our space requirement and query times
are as given in Table 1. We also note that we can achieve the entropy-compressed
bound like nHh+o(n log σ)+O(k log n) under the assumption that the generative
model from which the dynamic pattern statistics are taken remains the same.
Not only our method is simpler to understand (and implement) but it may also
greatly enhance the understanding of the nature of this problem.

Table 1. Summary of Results

Result Space (bits) Query Time Update Time

[3] O(n log n) O((|T | + occ) log n/ log log n) O(|P | log n/ log log n)

[7] O(nσ) O((|T | + occ) log2 n) O(|P | log2 n)

this O(n log σ) O(|T | log n + occ) O(|P | log σ + log n)

this (1 + o(1))n log σ + O(k log n) O(|T | log n + occ) O(|P | log σ + log n)

Succinct Index for Dynamic Dictionary Matching 1037

2 Preliminaries

2.1 Basic Notation

Let S = {S1, S2, . . . , Sr} be a set of r strings over an alphabet Σ of size σ. Let
$ and # be two characters not in Σ, whose alphabetic orders are, respectively,
smaller than and larger than any character in Σ. Let C be a compact trie such
that each string Si$ or Si# corresponds to a distinct leaf in C; also, each edge
is labeled by a sequence of characters, such that for each leaf representing some
string Si$ (or Si#), the concatenation of the edge labels along the root-to-leaf
path is exactly Si$ (or Si#). For each node v, we use path(v) to denote the
concatenation of edge labels along the path from root to v. Note that for each
Si, there must be some internal node vi such that path(vi) = Si.

Definition 1. For any string Q, the locus of Q in C is defined to be the lowest
node v (i.e., farthest from the root) such that path(v) is a prefix of Q.

2.2 Suffix Tree

The suffix tree [16,20] for a set S of strings {S1, S2, . . . , Sr} is a compact trie
storing all suffixes of each Si$ and each Si#. It can be stored in O(m log m)-bit
space where m = |S| denote the total number of characters in the strings of S.
For each internal node v in the suffix tree, it is shown that there exists a unique
internal node u in the tree, such that path(u) is equal to the string obtained
from removing the first character of path(v). Usually, a pointer is stored from v
to such a u; this pointer is known as the suffix link of v.

By utilizing the suffix links, the suffix tree can be updated according to the
insertion or deletion of Si in the set S with O(|Si| log σ) time [9].1 In addition,
we can efficiently find the loci of all suffixes of any text T within the suffix tree
in O(|T | log σ) time [3].

2.3 Review: Dictionary Matching with Suffix Trees

Let Δ = {P1, P2, . . . , Pk} be the set of patterns that are currently stored in the
collection. Let Σ be the alphabet, and σ be its size. Let n =

∑ |Pi| be the total
characters of the patterns in Δ. Suppose that we store the suffix tree for Δ; also
for each i, we mark the node vi with path(vi) = Pi. Then we have the following:

Lemma 1. Let T (j) denote the jth suffix of a text T and let u be the locus of
T (j) in the suffix tree of Δ. Then, Pi appears at position j in T if and only if
the marked node vi is an ancestor of u.

In case the set of patterns is static, we can store a pointer in each node of
the suffix tree, pointing to the nearest marked ancestor. Then by the previous
lemma, we can answer the dictionary matching query in O(|T | log σ + occ) time,

1 That is, we insert or delete all suffixes of Si in the suffix tree.

1038 W.-K. Hon et al.

since finding all loci of all suffixes of T can be done in O(|T | log σ) time. In
case the set of patterns is dynamic, the above scheme of storing pointers does
not work well, as in the worst case a single pattern update can cause many
nodes to change their nearest marked ancestors. Nevertheless, Amir et al. [3]
showed that with suitable maintenance of the marked ancestors, we can answer
the dictionary matching query in O((|T |+ occ) log n/ log log n) time and we can
update a pattern P in O(|P | log n/ log log n) time.2

3 Towards Succinctness with Sparse Suffix Tree

A major problem with the existing suffix-tree-based solutions is the index space,
requiring O(n log n) bits which can be Θ(log n) times more than the storage
of the patterns in the plain form. To achieve space reduction, our idea is to
selectively sample one suffix per every d suffixes, and maintain a compact trie C
from these sampled suffixes. Intuitively, the resulting trie is a suffix tree for the
original patterns, when we imagine every d characters of a pattern are merged
into a single meta-character.

Our query is answered analogously as in the original suffix tree scheme. Ba-
sically, when a text T is given, we shall locate T positions, say πi for i = 1 to
|T |, in the compact trie C which respectively represents the locus of T [i..|T |].
Because of the similarity of C and an ordinary suffix tree, finding the loci can be
done efficiently by exploiting “suffix links”. However, since each meta-character
represents d original characters, the computation of loci will be done by d sep-
arate traversals in C, where the jth traversal computes the loci of those suffixes
T [i..|T |] with i(mod d) = j. Afterwards, we report the occurrences by finding
the marked ancestors of each locus, using the data structure in Section 4.

3.1 Implementation Details

Various performance tradeoffs can be obtained by varying the sampling factor
d. We first consider the simple case where d is set to 0.5 logσ n. In this case, the
number of suffixes is reduced from n to at most �n/d� + k. Consequently, the
compact trie C has O(n/d+ k) nodes, so that its space is O((n/d+ k)× log n) =
O(n log σ + k log n) bits.

Recall that C is similar to an ordinary suffix tree; indeed, we can analogously
define suffix link for each internal node v in C, which is the node u such that
path(u) is the same as the string obtained by removal of first d characters of
path(v) (i.e., removal of its first meta-character). However, due to the effect of
merging characters, the alphabet size has increased from σ to σd =

√
n.

When a query text T is given, our target is to obtain the locus of each suffix
of T in C. We may first treat T as a meta-text T ′ by blocking every d characters.
Then, we can utilize the suffix links and find the loci of each suffix of T ′ in
O((|T |/d+1) logn) time, since there are O(|T |/d+1) meta-characters, each from
2 When σ is not a constant, an additive O(|T | log σ) and O(|P | log σ) term will be

added to the query time and update time, respectively.

Succinct Index for Dynamic Dictionary Matching 1039

an alphabet of
√

n. Note that these loci may not be the same as the loci of those
T [i..|T |] with i(mod d) = 1, but they are closely related. For instance, the locus
of T can be at most d nodes further from the locus of T ′. In general, the locus
of each T [i..|T |] with i(mod d) = 1 can be obtained in an extra O(d log σ) =
O(log n) time through traversal in C. As a result, the loci of roughly 1/d of all
suffixes of T are obtained. To find the other loci, we can repeat the procedure
for d− 1 times, where at the jth time we search C with the meta-text formed by
blocking T [j + 1..|T |]. This gives the following lemma.

Lemma 2. When d = 0.5 logσ n, the compact trie C requires O(n log σ+k log n)
bits of space. On any input text T , the loci of all suffixes of T in C can be obtained
in O(|T | log n) time.

Next, we briefly discuss two ideas of further reducing the space terms. The first
one is to reduce the O(k log n) terms, under tha natural assumption that all
patterns in the set Δ are distinct. For this case, we shall classify patterns into
two groups, one for those longer than d, the other for those with length at most d.
The number of patterns, k1, in the first group is at most n/d, and these patterns
will be indexed by a compact trie C′ using Lemma 2. The number of patterns,
k2, in the second group is at most Θ(

√
n logσ n), whose total length is at most

Θ(
√

n(logσ n)2); these patterns will be stored in an ordinary suffix tree R, and
requires only o(n) bits of space. Once the loci of all suffixes of T are located in
both trees, we can proceed as before to output the marked ancestors of these
loci. We summarize the above discussion as follows:

Lemma 3. Assuming patterns in Δ are distinct. When d = 0.5 logσ n, we can
store the compact trie C′ and the o(n)-bit suffix tree R, in total O(n log σ) bits
of space, such that on any input text T , the loci of all suffixes of T in C′ and in
R can be obtained in O(|T | log n) time.

The second idea to reduce space is by raising the sampling factor d. In particular,
we set d = log n logσ n.3 Then, we can immediately obtain a lemma similar to
Lemma 2, such that the space of C is reduced to o(n log σ) + O(k log n) bits and
finding all loci is done in O(|T | log2 n) time. The increased in time to find loci is
due to the inefficiency in extending each of the “approximate” locus (obtained
from searching T ′ in C) to the true locus. In fact, each such extension can be
reduced to the prefix matching problem in [12], which can be solved more effi-
ciently using O(d/ logσ n + log k) = O(log n) time (see Lemma 4 of [12]).4 The
extra space required to support the reduction is O(k log n) bits in total. Thus,
we have the following lemma:

3 Due to the increase in d, we can no longer combine this idea with the first one; as a
result, we do not classify short and long patterns, and the O(k log n) term reappears.

4 The idea is to maintain an extra data structure, called String B-tree [9], to manage
the marked nodes so that once we obtain an approximate locus, we can easily jump
to the nearest marked ancestor of the true locus. Due to space limitation, we defer
the details to the full paper.

1040 W.-K. Hon et al.

Lemma 4. When d = log n logσ n, the compact trie C requires o(n log σ) +
O(k log n) bits of space. On any input text T , the loci of all suffixes of T in C
can be obtained in O(|T | log n) time.

4 New Approach for Dynamic Marked Ancestors

Let C be a rooted tree with m nodes, where some k nodes are marked. The
dynamic marked ancestor problem is to index C so that on given any node v, we
can report all the ancestors of v which are marked; in addition, the tree can be
updated by insertion or deletion of nodes, and by marking or unmarking nodes.
Existing solutions [3,2] are achieved by the reduction to parentheses maintenance
problem. In the following, we use an alternative approach where we solve the
problem via management of one-dimensional intervals.

4.1 Reduction for Semi-static Case: Intervals Management

When the structure of the tree is static, and the set of marked nodes is fixed,
the marked ancestor problem can be easily and optimally solved, simply by
maintaining a pointer in each node to its nearest marked ancestor. Nevertheless,
we shall show a non-optimal solution, which acts as a stepping stone towards an
efficient solution for the dynamic case.

First, we perform a pre-order traversal of the tree. Each node is assigned the
order in which it is first visited as its label. For instance, the root has label 1
and its leftmost child has label 2. For each marked node v, let v′ denote the
last node visited in the subtree rooted at v; also, let Lv and Lv′ be their labels,
respectively. It is easy to check that v is a marked ancestor of a node u if and
only if the label of u falls in the interval [Lv, Lv′].

Using the interval tree, we can maintain the k intervals corresponding to the
k marked nodes in O(k log m) bits, such that for any node u with label Lu, we
can report all occ intervals containing Lu in O(log k + occ) time; that is, we can
find all marked ancestors of u in O(log k + occ) time.

In fact, if the tree structure is static, the above scheme can also handle marking
or unmarking of a tree node. Each such operation simply corresponds to inserting
or deleting an interval in the interval tree. For this semi-static case, we can apply
the dynamic interval tree by Arge and Vitter [4], where each update can be
done in O(log k) time, while the query time and the space requirement remain
unchanged.

4.2 Reduction for Dynamic Case: Elastic Intervals Management

Note that the interval tree scheme cannot be directly used to handle the fully
dynamic case. In particular, when a node is inserted or deleted in the tree,5 it
5 Here, node insertion includes the case where a node is inserted into the middle of

an existing edge, thus splitting one edge into two edges. On the other hand, when a
degree-1 internal node is deleted, we reverse the process so that its parent edge and
its child edge will be merged to a single edge.

Succinct Index for Dynamic Dictionary Matching 1041

can cause the pre-order label of many nodes to change, which in turn can cause
the intervals of many marked nodes to change.

However, observe that the relative order of the pre-order label of the existing
nodes, before and after the updates, are not changed. This motivates us to
represent each marked node v by an “elastic” interval (instead of a fixed interval
when v is marked), where endpoints are represented by pointers to v and v′, so
that its interval can be flexibly changed according to the current ranks of v and
v′ in the tree.

Now, suppose that the relative rank of two nodes can be compared online
in f(m) time, where m is the number of nodes in the tree. Then the dynamic
interval tree of Arge and Vitter can easily be adapted to support each update
in O(f(m) log k) time and each query in O(f(m)(log k + occ)) time. One simple
solution is to overlay a balanced binary tree for the nodes so that the exact rank
of any node can be computed in O(log m) time, thus comparison can be made
in O(log m) time. A more complicated solution is by Dietz and Sleator [8] or by
Bender el. [5], which is an O(m log m)-bit data structure for maintaining order in
a list of items. In this order-maintenance data structure, an item can be inserted
into the list in O(1) time when either its predecessor or its successor is given,
while it can be deleted (freely) in O(1) time; given two items, we can compare
their rank in the list in O(1) time. Thus, we can obtain a solution of dynamic
marked ancestor by interval tree without any sacrifice in query efficiency.

Yet, there are two important points to note for using the final scheme. First,
the insertion of a node v in a tree will require the knowledge of which node is v’s
predecessor or successor. This can be immediately done when v is the first child
of its parent (so that its predecessor is known), or v is inserted in the middle of
an existing edge (whose successor is known). However, it will be time-consuming
in case v is the last child of its parent, in which case we may need to find its
successor by traversing to the root and finding the first branch to the right. Thus,
the position of where a node is inserted will greatly affect the time in updating.

Second, as the endpoints of the interval for a marked node v is now replaced
by pointers to v and v′, it will cause a serious problem if v′ can be deleted while v
is marked (in that case, the endpoint becomes undefined). To avoid this problem,
whenever we mark a node v, we will create a dummy node v̂ and insert it as the
rightmost child of v; on the other hand, v̂ will be deleted only when v becomes
unmarked. As v̂ will always be the last node visited in the subtree rooted at v,
v̂ = v′ by definition, so that the interval of each marked nodes will always be
well-defined.

5 All in a Nutshell

We are now ready to combine the sparse suffix tree (Section 3) and the dynamic
marked ancestor data structures (Section 4) to see their overall performance.

When d = 0.5 logσ n and assuming the patterns are distinct, we can solve the
dictionary matching query as follows. Recall that we maintain a compact trie C′

for long patterns (length longer than d) and a suffix tree R for short patterns
(length at most d).

1042 W.-K. Hon et al.

1. We locate the loci of all suffixes of T in C′ in O(|T | log n) time. (Lemma 3)
2. Then, we apply the dynamic interval tree to report all marked ancestors of

these |T | loci in a total of O(|T | log n + occ�) time, where occ� denote the
number of occurrences of long patterns.

3. Next, we traverse the suffix tree in O(|T | log σ) time to locate the |T | loci of
all suffixes of T in R.

4. Then, we use a brute-force method to report all marked ancestors of these
|T | loci in a total of O(|T | × d) = O(|T | log n) time.

Thus, in total, O(|T | log n + occ) time is required.
To support the update when a pattern P is inserted, we perform the following.

Firstly, when P is shorter than d, we add P and its suffixes into the suffix tree
R, using O(|P | log σ) time. After that, we mark the node v with path(v) = P ,
using O(1) time. Otherwise, when P is long, we shall update the compact trie
C′ and the dynamic marked ancestor data structures as follows:

1. We first insert the �|P |/d� suffixes of P into C′, using O((|P |/d + 1) log n)
time, by exploiting the suffix links. In addition, we will ensure that for each
node inserted to the tree C, if it is not inserted into the middle of some
existing edge, then it will be inserted as the first child of its parent.

2. Then, for each node inserted, we find either its predecessor or its successor
in the pre-order traversal in O(1) time. Then, we make the corresponding
change in the Dietz-Sleator order-maintenance data structure, using an extra
O(1) time per node. In total, this takes O(|P |/d + 1) time.

3. Next, we mark the node v with path(v) = P in C′. This involves adding a
dummy node v̂ as the rightmost child of v. For this step, we find the successor
of v̂ in C′ by traversing from v̂ to the root, and finding the first branch to the
right. This takes O(|P |) time. After that, we update the order-maintenance
data structure in O(1) time. In total, adding v̂ takes O(|P |) time.

4. After that, we add the elastic interval corresponding to the marked node v
to the dynamic interval tree. This step takes O(log k) time.

As the most time-consuming step is Step 1, pattern insertion can be supported
in O((|P |/d + 1) log n) = O(|P | log σ + log n) time. To support pattern deletion,
it can be done similarly (and more easily) with the above steps, using the same
time bound. This gives the following theorem.

Theorem 1. Suppose that the patterns in Δ are distinct. Then we can maintain
an O(n log σ)-bit index for Δ, such that on any given text T , a dictionary match-
ing query can be answered in O(|T | log n + occ) time. Also, the index supports
insertion or deletion of a pattern in Δ in O(|P | log σ + log n) time.

When d = log n logσ n, answering a dictionary matching query will only involve
the search in the compact trie C for |T | loci, and subsequently finding the marked
ancestors of each locus using the data structures of Section 4. In total, this can be
done in O(|T | log n+occ) time. For updates due to pattern insertion or deletion,
it can be done in similar time as the above.6 This gives the following theorem.
6 Though we will need to handle a single update in the String B-tree data structure,

this can easily be done in O(|P |) time. Details are deferred in the full paper.

Succinct Index for Dynamic Dictionary Matching 1043

Theorem 2. Suppose that patterns in Δ are stored separately in n log σ bits.
Then we can maintain an o(n log σ) + O(k log n)-bit index for Δ, such that dic-
tionary matching query can be answered in O(|T | log n + occ) time. The index
supports insertion or deletion of a pattern in O(|P | log σ + log n) time.

References

1. Aho, A., Corasick, M.: Efficient String Matching: An Aid to Bibliographic Search.
Communications of the ACM 18(6), 333–340 (1975)

2. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked Ancestor Problems. In: Proceedings
of Symposium on Foundations of Computer Science, pp. 534–544 (1998)

3. Amir, A., Farach, M., Idury, R., La Poutre, A., Schaffer, A.: Improved Dynamic
Dictionary Matching. Information and Computation 119(2), 258–282 (1995)

4. Arge, L., Vitter, J.S.: Optimal External Memory Interval Management. SIAM Jour-
nal on Computing, 1488–1508 (2003)

5. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two Sim-
plified Algorithms for Maintaining Order in a List. In: Proceedings of European
Symposium on Algorithms, pp. 152–164 (2002)

6. Burrows, M., Wheeler, D.J.: A Block-sorting Lossless Data Compression Algo-
rithm. Tech Report 124, Digital Equipment Corporation, CA, USA (1994)

7. Chan, H.L., Hon, W.K., Lam, T.W., Sadakane, K.: Compressed Indexes for Dy-
namic Text Collections. ACM Transactions on Algorithms 3(2) (2007)

8. Dietz, P.F., Sleator, D.D.: Two Algorithms for Maintaining Order in a List. In:
Proceedings of Symposium on Theory of Computing, pp. 365–372 (1987)

9. Ferragina, P., Grossi, R.: The String B-tree: A New Data Structure for String
Searching in External Memory and Its Application. Journal of the ACM 46(2),
236–280 (1999)

10. Ferragina, P., Manzini, G.: Indexing Compressed Text. Journal of the ACM 52(4),
552–581 (2005)

11. Grossi, R., Vitter, J.S.: Compressed Suffix Arrays and Suffix Trees with Applica-
tions to Text Indexing and String Matching. SIAM Journal on Computing 35(2),
378–407 (2005)

12. Hon, W.-K., Lam, T.-W., Shah, R., Tam, S.-L., Vitter, J.S.: Compressed Index for
Dictionary Matching. In: DCC 2008, pp. 23–32 (2008)

13. Kärkkäinen, J., Ukkonen, E.: Sparse Suffix Trees. In: Proceedings of International
Conference on Computing and Combinatorics, pp. 219–230 (1996)

14. Knuth, D.E., Morris, J.H., Pratt, V.B.: Fast Pattern Matching in Strings. SIAM
Journal on Computing 6(2), 323–350 (1977)

15. Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

16. McCreight, E.M.: A Space-economical Suffix Tree Construction Algorithm. Journal
of the ACM 23(2), 262–272 (1976)

17. Overmars, M.H.: The Design of Dynamic Data Structures. LNCS, vol. 156.
Springer, Heidelberg (1983)

18. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms 48(2), 294–313 (2003)

19. Sadakane, K.: Compressed Suffix Trees with Full Functionality. Theory of Com-
puting Systems, 589–607 (2007)

20. Weiner, P.: Linear Pattern Matching Algorithms. In: Proceedings of Symposium
on Switching and Automata Theory, pp. 1–11 (1973)

	Succinct Index for Dynamic Dictionary Matching
	Introduction
	Comparisons with Previous Results

	Preliminaries
	Basic Notation
	Suffix Tree
	Review: Dictionary Matching with Suffix Trees

	Towards Succinctness with Sparse Suffix Tree
	Implementation Details

	New Approach for Dynamic Marked Ancestors
	Reduction for Semi-static Case: Intervals Management
	Reduction for Dynamic Case: Elastic Intervals Management

	All in a Nutshell

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

