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Abstract. Let P be a set of n points in the Euclidean plane and let O
be the origin point in the plane. In the k-tour cover problem (called fre-
quently the capacitated vehicle routing problem), the goal is to minimize
the total length of tours that cover all points in P , such that each tour
starts and ends in O and covers at most k points from P .

The k-tour cover problem is known to be NP-hard. It is also known
to admit constant factor approximation algorithms for all values of k and
even a polynomial-time approximation scheme (PTAS) for small values
of k, k = O(log n/ log log n).

In this paper, we significantly enlarge the set of values of k for which

a PTAS is provable. We present a new PTAS for all values of k ≤ 2logδ n,
where δ = δ(ε). The main technical result proved in the paper is a novel
reduction of the k-tour cover problem with a set of n points to a small
set of instances of the problem, each with O((k/ε)O(1)) points.

1 Introduction

The k-tour cover problem (k-TC), is a very natural and well known generalization
of the traveling salesperson problem (TSP) to include several tours [2,3,8,12].
Namely, we are given a set P of points (sites), a distinguished point O outside
P , called the origin as well as a distance function defined on P ∪{O}. A tour is a
cycle whose vertices are in P ∪{O}. The length of a tour is the sum of distances
between the adjacent points on the tour. The objective is to find a set of tours,
each including the origin and at most k points in P , which covers all points in
P and achieves the minimum total length.

In Operations Research, the k-TC problem is well known as the capacitated
vehicle routing problem [12]. The name comes from its standard application when
the points in P represent customer locations, and the origin O stands for a depot.
Then, a fleet of vehicles located at the depot must serve all the customers, so
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that each vehicle can serve at most k customers. The objective is to minimize
the total distance traveled by the fleet. The k-TC problem (capacitated vehicle
routing problem) is one of the central special cases of a more general vehicle
routing problem, introduced by Dantzig and Ramser [5] fifty years ago, and
studied very extensively in the literature ever since (cf. [9,12]).

The k-TC problem contains the TSP problem as a special case and it is known
to be NP-hard for all k ≥ 3. For this reason, the research on k-TC has focused on
heuristic algorithms and approximation algorithms. The most extensively stud-
ied variants of k-TC are the metric one, when the distance function is symmet-
ric and satisfies the triangle inequality, and in particular the two-dimensional
Euclidean one, when the points are placed in the plane and the distance is
Euclidean.

The general metric case of k-TC for k ≥ 3 has been shown to be APX-
complete [2], i.e., complete for the class of optimization problems admitting
constant factor approximations. However, the approximability status of the two-
dimensional Euclidean k-TC problem, in particular, the problem of the existence
of a PTAS, has not been completely settled yet. One of the first studies of two-
dimensional Euclidean k-TC has been due to Haimovich and Rinnooy Kan [8],
who presented several heuristics for the metric and Euclidean k-TC, including
a PTAS for the two-dimensional Euclidean k-TC with k < c log log n, for some
constant c [8, Section 6]. Asano et al. [3] substantially subsumed this result by
designing a PTAS for k = O(log n/ log log n). They also observed that Arora’s [1]
or Mitchell’s [10] PTAS for the two-dimensional Euclidean TSP implies a PTAS
for the corresponding k-TC where k = Ω(n). There has not been any significant
progress since the paper by Asano et al. [3] until very recently, when Das and
Mathieu [6] showed a quasi-polynomial time approximation scheme (QPTAS)
for the two-dimensional Euclidean k-TC for every k. Their algorithm combines
the approach developed by Arora [1] for Euclidean TSP with some new ideas
to deal with k-TC and gives a (1 + ε)-approximation for the two-dimensional
Euclidean k-TC in time nlogO(1/ε) n (this bound holds for any k).

In this paper we focus on the two-dimensional Euclidean variant of k-TC. (To
simplify the notation, we shall further refer to this variant as to k-TC).

Our main result is a new PTAS for k-TC for all values of k ≤ 2logδ n, where
δ = δ(ε). This significantly enlarges the set of values of k for which a PTAS is
known. Our PTAS relies on a novel reduction of an instance of k-TC with a set
of n points to an instance or a small number of independent instances of the
problem with a small number of points. Our first reduction takes any instance
of k-TC on n points and reduces it to an instance with O((k/ε)O(1) log2(n/ε))
points. Then we present a refinement, where the instance of k-TC is reduced to
a small set of instances of k-TC, each with O((k/ε)O(1)) points. These results,
when combined with the recent QPTAS due to Das and Mathieu [6], give the
aforementioned PTAS for k-TC for all values k ≤ 2logδ n, where δ = δ(ε).

For simplicity of the presentation, we will present (1 + O(ε))-approximation
algorithms; reduction to (1 + ε)-approximation is straightforward.
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2 Preliminaries

We assume a fixed origin in the plane and denote it by O. For a tour T , its (Eu-
clidean) length is denoted by |T |. For a set U of tours, we set |U | to

∑
T ∈U |T |.

For a set P of points in the plane, we denote by TSP (P ) the minimum length
of a TSP-tour through P and by opt(P ) the minimum length of a solution to
k-TC (i.e., the minimum length of a set of tours, each through the origin and
containing at most k points of P , which covers all points in P ). When P is clear
from the context, we shall simply use the notation opt.

For a point p ∈ P , we denote by r(p) the distance of p from the origin O.
The following simple lower bound plays a very important role in the previous

approaches to k-TC, see [3, Proposition 2] and [8, Lemma 1].

Fact 1. opt(P ) ≥ 2
k

∑
p∈P r(p).

Following [3], we shall term 2
k

∑
p∈P r(p) as the radial cost of P , and denote

by rad(P ). Among other things, Haimovich and Kan considered the so called
iterated tour partitioning heuristic for k-TC in [8]. The heuristic starts from con-
structing a TSP-tour T through P . Then, it considers all k-tour covers resulting
from partitioning T into paths visiting exactly k points (assuming that n is di-
visible by k), and connecting the endpoints of the paths with O. The heuristic
outputs the shortest among these solutions.

Fact 2. [3] If the iterated tour partitioning heuristic uses a TSP tour U , then
it returns a k-tour cover of total length not exceeding (1 − 1

k ) · |U | + rad(P ).

Note that given a TSP tour, the iterated tour partitioning heuristic can be
implemented in time O(k n

k + n) by repeatedly updating the previous partition
and k-tour cover to the next one in time O(n

k ). Using the minimum spanning tree
heuristic for TSP we can find a 2-approximation of the TSP in time O(n log n).
Hence, we obtain the following.

Corollary 1. If the iterated tour partitioning heuristic uses the minimum span-
ning tree heuristic for TSP then it returns a (3− 2

k )-approximation of an optimal
k-tour cover of an n-point set and it can be implemented in time O(n log n).

3 PTAS for Moderate Values of k

In this section we present a reduction that takes as an input any instance of the
k-tour cover problem on a set of n points in the Euclidean plane and reduces it to
an instance of the problem with O((k/ε)O(1) log2(n/ε)) points. Then, we apply
this reduction to obtain a PTAS for the k-tour cover problem for all k ≤ 2logδ n,
where δ is some positive constant, δ = δ(ε).

Our construction uses a series of transformations that eliminate most of the
input points and reduce the input problem instance to one significantly smaller.
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Fig. 1. The structure of circles, rays, and locations. The point labeled O is the origin.
Other fat dots represent the points from P . In the right picture each point has been
moved to its nearest location.

3.1 Removing Close Points

Let L be the maximum distance from a point in P to the origin O, that is,
L = max{p ∈ P : r(p)}. Since opt ≥ 2L, we can ignore any point that is at a
distance at most Lε/n from the origin: covering all such points with 1-tours will
give us additional cost not greater than n · 2Lε

n ≤ ε · opt. Therefore, from now
on, we will consider only the points p with r(p) ≥ Lε/n.

3.2 Circles, Rays, and Locations

Let us create circles around the origin, the i-th circle with a radius

ci =
Lε

n
·
(
1 +

ε

k

)i

, for 0 ≤ i ≤
⌈
log(1+ε/k)

n

ε

⌉
.

Let us draw rays from the origin with the angle between any pair of neighbor-
ing rays equal to 2π/s (that is, partition the space into s sectors) with s = � 2πk

ε �.
Define a location to be any point on the plane that is the intersection of a

circle and a ray. Since

log(1+ε/k)

n

ε
=

log n
ε

log(1 + ε/k)
= Θ

(
k

ε
· log

n

ε

)

,

there are Θ
(

k
ε log(n/ε)

)
circles and Θ

(
k
ε

)
rays. Therefore we obtain:

Claim 1. The total number of locations T satisfies T = Θ(k2ε−2 log(n/ε)).

Now, we modify P by moving each point from P to its nearest location.

Claim 2. The operation of moving each point to its nearest location can change
the cost of a k-tour cover by at most ε · opt.
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Proof. Let p be a point in P . Suppose that p lies between the circles with radius
ci and ci+1 (the distance between p and the origin is in the interval [Lε/n, L], so
we know such circles exist). The distance between these circles equals ci+1−ci =
ε
k · ci. The distance between two consecutive locations at the i-th circle is less
than 2πci/s ≤ ε

k · ci. Therefore the distance between p and its nearest location
is at most

√
2 · (1

2 · ε
k ci) < ε

k · ci ≤ ε
k · r(p).

If we move a point p ∈ P by a distance at most ε
k · r(p), the cost of a tour can

change by at most 2 ε
k · r(p). If we add up the changes of the cost generated by

moving all points in P , then this total change is upper bounded by
∑

p∈P 2 ε
k ·r(p).

Next, we use Fact 1 to conclude that the total cost of moving all the points is
at most ε · opt. 	


From a k-tour cover U ′ for a modified instance of the problem (where all points
have been moved to their nearest locations) we can easily get a k-tour cover U
for the original version of the problem such that |U | ≤ |U ′|+ ε ·opt. So a PTAS
for the modified version yields a PTAS for the original version. In the rest of
this paper we will consider the modified version of the problem.

3.3 Trivial and Nontrivial Tours

We say that a tour visits a location if it contains at least one point from that
location. (If an edge passes trough a location, but the tour does not contain any
point from that location, then the tour does not visit that location.) We call a
tour trivial if it visits only a single location in P ; it is nontrivial otherwise.

Theorem 1. There is an optimal solution in which there are at most T non-
trivial tours.

Proof. We say that a set of tours t1, t2, . . . , tm (m ≥ 2) forms a cycle if there is
a set of locations �1, �2, · · · , �m, �m+1 = �1 such that each tour ti visits locations
�i and �i+1. Note that the origin is not considered as a location.

To prove our theorem we will need the following:

Lemma 1. There is an optimal solution in which there are no cycles.

Proof. Let U be such an optimal solution which minimizes the sum over all its
nontrivial tours of the number of locations visited by that tour.

Let us suppose that U has a cycle, and let t1, t2, . . . , tm be a minimal cycle
(m is minimal). Let �1, �2, . . . , �m be the locations in which the consecutive tours
meet. From the minimality of the cycle we know that both tours and locations
are pairwise distinct.

Let v(t, �) denote the number of points from a location � visited by a tour
t. Let min = mini∈{1,...,m}{v(ti, �i)}. Now we are ready to swap points between
the tours: the i-th tour, instead of visiting v(ti, �i) points in the location �i and
v(ti, �i+1) points in the location �i+1 will now visit (v(ti, �i) − min) points in �i

and (v(ti, �i+1) + min) points in �i+1. Here �m+1 denotes �1.
Observe that the modification does not change the number of points visited

by each tour. It also does not increase the length of any tour. Therefore, we



PTAS for k-Tour Cover Problem on the Plane 999

obtain another optimal solution, in which the sum over all nontrivial tours of
the number of locations visited by that tour is smaller than in U (we managed
to remove one location from each tour ti for which v(ti, �i) = min). This is a
contradiction with the minimality of that sum in U .

Therefore the optimal solution U has no cycles. 	


Consider an optimal solution without cycles. Note that the lack of 2-cycles means
that no two tours visit the same pair of locations. To each nontrivial tour we can
assign a pair of distinct locations visited by this tour. The chosen pairs are in
one-to-one correspondence with the nontrivial tours and they induce an acyclic
undirected graph on the locations.

Hence, we can have at most T − 1 nontrivial tours in an acyclic solution, so
using Lemma 1 we have proved the theorem. 	


3.4 Reduction to an Instance of k-TC with (k log n/ε)O(1) Points

Observe that Theorem 1 implies that there is an optimal solution in which at
most Tk points are covered by nontrivial tours. Therefore it is enough to consider
only solutions which fulfill that property.

If the number of points in a location � is greater than Tk, some of the points
will have to be covered by trivial tours. We may assume, without loss of gener-
ality, that among all trivial tours visiting a given location there is at most one
that visits less than k points. Moreover, if at least one point from some loca-
tion is visited by a nontrivial tour, we can assume that all trivial tours visiting
that location contain exactly k elements. Therefore, for each location � contain-
ing c� points, we only have to consider at most min{c�, c� − k · � c�−Tk

k �} ≤ Tk
points for nontrivial tours. After finding a (1+ε)-approximation for such reduced
case, we will add trivial tours covering all remaining points. That will give us
(1 + ε)−approximation for the original problem.

Corollary 2. One can reduce the k-TC problem on n points to one on at most
T 2k points.

3.5 PTAS for k-TC with k ≤ 2logδ n

We use Corollary 2 to reduce any instance of k-TC with the input set of n points
P to an instance of k-TC with N = T 2k = Θ(k5ε−4 log2(n/ε)) input points. For
such input instance, we apply the quasi-polynomial time approximation scheme
for k-TC due to Das and Mathieu [6]. The obtained algorithm returns a (1 + ε)-
approximation in time N logO(1/ε) N . This gives polynomial time for all k ≤ 2logδ n

for some constant δ = δ(ε) > 0. Hence, we have the following main theorem.

Theorem 2. There is a PTAS for the k-TC problem provided that k ≤ 2logδ n

for some positive constant δ = δ(ε).
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4 Refinement: Reduction to (k/ε)O(1) Points

In the preceding section, we have demonstrated that the problem of close approx-
imation of the k-TC problem on the input set of n points in the plane reduces
to that for a multi-point-set of size polynomial in k/ε and polylogarithmic in n
in the relevant locations. In this section, we shall eliminate the polylogarithmic
dependency of n in the reduction. This will have only a relatively small effect
on the asymptotics for the size of the largest k in terms of n for which we can
attain a PTAS and we will obtain a PTAS for all k ≤ 2logδ′ n, where comparing
to the bound in Theorem 2, we will have δ′ > δ. However, for small values of
k this will lead to a faster PTAS. Hopefully, because it removes completely the
dependency on n from the size of the reduced instance, it also might be a step
towards a PTAS for arbitrary values of k.

Our approach resembles Baker’s method [4] of closely approximating several
hard problems on planar graphs. It relies on the following separation lemma.

Lemma 2. Let P be a set of points situated in the locations and let ε > 0. There
is a clustering of the circles into rings of �log1+ ε

k
(6/ε)� consecutive circles and

there are positive integers a = O(ε−1) and b ∈ {1, . . . , a} such that if we mark
each (b+ja)-th ring then any k-tour cover U of P can be transformed to a k-tour
cover U ′ of the points in the unmarked rings such that

1. no tour in U ′ visits two points in P separated by a marked ring, and
2. |U ′| ≤ (1 + ε

2 )|U |.
Furthermore, the points in the marked rings can be covered with k-tours of total
length at most ε

2 |U | produced by the iterated tour partitioning heuristic from [8]
(cf. Section 2).

Proof. Let t denote a tour obtained by removing its edges incident to O. Suppose
that t crosses one of the marked rings. Let i be the number of the most inner circle
of the ring. Denote the circle by Ci. It follows by straightforward calculation
and the definition of the circles that each minimal fragment of t crossing the
aforementioned ring is at least 2

ε times longer than the doubled radius of Ci. We
can appropriately split the tour t along Ci into smaller ones by connecting pairs
of crossing points on Ci with O or just with themselves, see Figure 2.

The total length of the smaller tours is longer than |t| by at most ε
2 of the

total length of the aforementioned fragments of t.
We may assume, without loss of generality, that the aforementioned marked

ring is the outermost among those crossed by t. We can iterate the elimination
of the crossings of the smaller resulting tours but for their edges incident to O
with more inner marked rings. Note that then other disjoint fragments of t will
be charged with the increase of the length of the union of the resulting smaller
tours. Finally, by applying short-cutting, we can drop the points in the marked
rings from the resulting tours.

We conclude that we can transform U into a k-tour cover U ′ of the points in
P in the unmarked rings such that no tour in U ′ crosses any marked ring (but
for its edges incident to O) and |U ′| ≤ (1 + ε

2 )|U |.
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OCi OCi

Fig. 2. Splitting t into smaller tours. The grey area is the marked ring. In the left
picture dotted lines represent the lines which will be added to our solution. The right
picture shows two separate tours obtained from the original tour (one is marked with
a dashed line, and the other with a solid one), before the short-cutting.

It remains to show that we can set a and b ∈ {1, . . . , a} such that one can
easily cover the points in P contained in the marked rings with k-tours of total
length not exceeding ε|U|

2 .
Let Rj denote the set of points from P lying in the j-th ring. Set a to � 24

ε �.
For each b ∈ {1, . . . , a}, let Pb be the set of points in P in the marked rings,
Pb =

∑
j≡b mod a Rj . We shall show that there is some b ∈ {1, . . . , a} such that

by applying the k-TC heuristic given in Corollary 1 for Pb, we can cover Pb

with k-tours of length at most ε|U|
2 . For this purpose, we shall observe that∑

j TSP (Rj) ≤ 3 · TSP (P ).
Suppose for the sake of this observation that the tour t considered in the first

part of the proof is an n-tour, i.e., an optimal TSP tour of P ∪{O}. Apply almost
the same transformation to the tour t as before with the exception that instead
of connecting the outer cut part by two rays to O, we connect the cutting points
directly. By the triangle inequality, the total length of the so modified TSP tour
t is at most (1+ ε

2 ) ·TSP (P ). The modified TSP tour t can be easily reduced to
the non-necessarily optimal TSP tours of the unmarked regions by short-cutting.
Assuming first for a moment that the unmarked rings are the even ones, and
then conversely, that the unmarked rings are the odd ones, and that ε < 1

2 , we
conclude that

∑
j TSP (Rj) ≤ 3 · TSP (P ).

Using Fact 2 we get that

∑

b∈{1,...,a}
opt(Pb) ≤

∑

b∈{1,...,a}

∑

j≡b(mod a)

opt(Rj) =
∑

j

opt(Rj)

≤
∑

j

(rad(Rj) + TSP (Rj)) ≤ rad(P ) + 3 · TSP (P ) ≤ 4|U |.

There must be some b ∈ {1, . . . , a} such that opt(Pb) ≤ 4
a |U | ≤ ε|U|

6 . Thus,
if we apply the 3-approximation algorithm for the k-tour cover of Pb, which
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is a composition of the iterated tour partitioning heuristic with the minimum
spanning tree heuristic for TSP, we obtain a k-tour cover of Pb of length at
most ε|U|

2 . 	


Theorem 3. The k-TC problem on a set P of n points on the plane can be
reduced to a collection of O(ε−1 log(n/ε)/ log(1/ε)) disjoint k-tour cover prob-
lems, each on O(k5ε−6 log2(1/ε))-point set and each having the maximum dis-
tance to the origin at most (1/ε)O(1/ε) larger than the minimum one, such that
(1 + ε)-approximate solutions to each of the latter problems yield a (1 + O(ε))-
approximation to the original k-tour cover problem. The reduction can be done
in time O(n log n) for a fixed ε.

Proof. Move the points to the locations and compute the sets Rj of input points
lying in the rings for a fixed ε. This all can be easily done in time O(n log n) by
using standard data structures for point location [11].

Next, compute the value a (the distance between marked rings) and for each
b ∈ {1, . . . , a}, compute a 3-approximate k-tour cover of the set Pb of points con-
tained in the marked rings. All the a computations take O(an log n) = O(n log n)
time by Corollary 1.

Fix b to that minimizing the length of the aforementioned tour. It follows
from Lemma 2 that the produced cover of Pb has length at most ε

2opt. Now
we will have to compute approximate solutions for each maximal sequence of
consecutive not marked rings. Let us denote the number of such sequences by
q. We can easily compute that q = O(ε−1 log n

ε / log 1
ε ). For i = 1, . . . , q, let Ii

denote the set of points contained in such i-th sequence. Note that these point
sets can be also easily computed in time O(n log n).

It follows from Lemma 2 that if we compute separately (1+ ε)-approximation
of the optimal cover with k-tours for each set Ii, then the union of these coverings
will have length at most (1 + O(ε))opt.

Note that for a given i, the number of locations in Ii is O(a · k
ε · log(1+ ε

k )
1
ε ) =

O(k2ε−3 log 1
ε ). Hence, by the discussion in Section 3, we can account to the

intended (1+ε)-approximation of opt(Ii) the trivial tours decreasing the point-
multiplicity in each location to O(k3ε−3 log 1

ε ). Thus, for each Ii we can reduce
the problem to one with O(k5ε−6(log 1

ε )2) points.
Each Ii consists of O(ε−1) consecutive rings and for a point in a ring the

maximum distance to the origin is at most O(ε−1) times larger than the mini-
mum one. Hence, for a point in Ii the maximum distance to the origin is at most
(1/ε)O(1/ε) times larger than the minimum one.

The appropriate q sets of points can be computed in time O(n log n) and they
specify the problems to which we approximately reduce the original k-tour cover
problem. 	


5 Final Remarks

The central open question left is whether there is a PTAS for the k-TC problem
for all values of k. While we have enlarged the set of values of k for which a
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PTAS exists, we still do not know how to reach polynomial values for k, even
k = n0.001. In particular, a PTAS k-TC for k = Θ(

√
n) is elusive. For arbitrary

values of k, the best currently known result is either a quasi-polynomial time
approximation scheme by Das and Mathieu [6] that runs in time nlogO(1/ε) n, or
the polynomial-time constant-factor approximation algorithm due to Haimovich
and Rinnooy Kan [8]. Similarly as in [3], we believe that the case k = Θ(

√
n) is

the hardcore of the difficulty in obtaining a PTAS for all values of k.
Following [8], let us observe that if we divide the range of k into a logarithmic

number of intervals of the form [ε−2i, ε−2(i+1)), then for k in at most one of the
intervals none of the inequalities TSP (P ) ≤ ε·rad(P ), rad(P ) ≤ ε·TSP (P ) hold.
Note that if any of the inequalities holds then by plugging any PTAS for TSP in
the iterated tour partitioning heuristic, we obtain an (1 + O(ε))-approximation
of k-TC. Thus, the aforementioned heuristic is a PTAS for a substantial range
of k depending on P : for every set of points P there is k0 such that there is a
polynomial-time (1 + O(ε))-approximation algorithm for k-TC for every k with
k0/ε < k < εk0. Despite this observation and despite recent progress in [3,6], the
problem of designing a PTAS for all k remains open: we believe that our paper
sheds the light on this problem and is a step towards a PTAS for arbitrary k.
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