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and Maxim Sviridenko5

1 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
bansal@us.ibm.com

2 DEIS, University of Bologna, Viale Risorgimento 2,
I-40136 Bologna, Italy

acaprara@deis.unibo.it
3 Department of Computer Science, University of Kiel, Christian-Albrechts-Platz 4,

24098 Kiel, Germany
kj@informatik.uni-kiel.de

4 Department of Computer Science, University of Kiel, Christian-Albrechts-Platz 4,
24098 Kiel, Germany

lap@informatik.uni-kiel.de
5 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598

sviri@us.ibm.com

Abstract. We present a new lemma stating that, given an arbitrary packing of
a set of rectangles into a larger rectangle, a “structured” packing of nearly the
same set of rectangles exists. In this paper, we use it to show the existence of
a polynomial-time approximation scheme for 2-dimensional geometric knapsack
in the case where the range of the profit to area ratio of the rectangles is bounded
by a constant. As a corollary, we get an approximation scheme for the prob-
lem of packing rectangles into a larger rectangle to occupy the maximum area.
Moreover, we show that our approximation scheme can be used to find a (1+ ε)-
approximate solution to 2-dimensional fractional bin packing, the LP relaxation
of the popular set covering formulation of 2-dimensional bin packing, which is
the key to the practical solution of the problem.

1 Introduction

Due to their practical relevance, 2-dimensional (geometric) packing problems always
received considerable attention in the combinatorial optimization literature. Given that
the structure of their solutions can be extremely complicated, after some early approx-
imability results proved in the early 1980s [1,2,12,13], the study of these problems was
limited for a long time to the design of heuristic algorithms that could be useful in prac-
tice, without any proof of approximation guarantee. Moreover, in the last few years,
some progress was made towards the solution of some instances to proven optimality
by enumerative methods. Only in the last decade it was observed that the tools used
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in the late 1970s and early 1980s [15,21,29,32] to settle the approximability status of
the main 1-dimensional packing problems could in fact be used with the same pur-
pose also for their 2-dimensional counterparts. For two of the three basic 2-dimensional
packing problems, namely 2-Dim Strip Packing and 2-Dim Bin Packing, the picture of
approximability is now pretty clear, due to a series of recent relevant results listed in
the state-of-the-art review below. For the third basic problem, namely 2-Dim Geometric
Knapsack, the main question, concerning the existence of a polynomial-time approxi-
mation scheme (PTAS), remains open. In this problem, we are given a collection of two
dimensional rectangular items with profits and a bin. The goal is to find the maximum
profit subset of items that can be packed feasibly in the bin. In this paper we present the
first, to the best of our knowledge, nontrivial PTAS for a variant (in fact, restriction) of
2-Dim Geometric Knapsack in which items are rectangles of arbitrary size and the bin
cannot be enlarged. The restriction requires that the range of profit to area ratios of the
items to be bounded from above by a constant. As a special case, this implies a PTAS
for case when the profit of an item is equal to its area. This result has several applica-
tions in 2-Dim Bin Packing and 2-Dim Strip Packing. For example, it has already been
used independently by Harren and van Stee [20] and by Jansen et al. [23] to derive an
approximation algorithm for 2-Dim Bin Packing with absolute approximation ratio 2
(which is best possible unless P = NP ). For the 2-Dim Strip Packing the PTAS has
been used to achieve approximation algorithms with absolute ratios 1.939 . . . by Harren
and van Stee [20] and 1.75 + ε by Jansen and Prädel [22], respectively.

The main result leading to our PTAS for 2-Dim Geometric Knapsack is a new lemma
about the structure of the packings of the items in a bin. Very roughly, it says that given
any complicated packing of items in a bin, there is a simpler packing with almost the
same value of items. We also show that the PTAS above can be used to solve to near-
optimality the column generation problem for 2-Dim Fractional Bin Packing, which
is the LP relaxation of the natural (exponentially-large) Set Covering formulation of
2-Dim Bin Packing and plays a key role in the state-of-the-art practical solution break ap-
proaches to the problem (see e.g., [11]). By the well known connection between approxi-
mate separation and optimization [18,19,31], this leads to an asymptotic polynomial-time
approximation scheme (APTAS) for 2-Dim Fractional Bin Packing itself.

Basic notions: In the 2-dimensional packing problems considered in this paper we are
given a set I of items, the i-th corresponding to a rectangle having width (or basis) wi,
height hi, and profit pi, to be packed into bins, corresponding to unit squares. We will
let ai := wi · hi denote the area of item i. For a subset S ⊆ I , we will use the notations
b(S) :=

∑
i∈S wi, h(S) :=

∑
i∈S hi, p(S) :=

∑
i∈S pi, a(S) :=

∑
i∈S ai.

A set C of items can be packed into a bin if the items can be placed into the bin
without any two overlapping with each other. We only consider the orthogonal packing
case, where the items must be placed so that their edges are parallel to the edges of
the bin. We address both the classical version without rotations, in which the edges
associated with the item heights have to be parallel to each other, and the version with
rotations, in which this restriction is not imposed. In the latter case, we will assume
w.l.o.g. wi ≥ hi for i ∈ I .

In 2-Dim Geometric Knapsack, only one bin is available and the objective is to pack
a subset of the items having maximum profit into the bin. In 2-Dim Bin Packing, an
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unlimited number of bins is available and the objective is to pack all the items in I into
the minimum number of bins. 2-Dim Fractional Bin Packing is the variant in which bins
can be assigned a real value in [0, 1], and the objective is to assign values to bins and
pack the items into these bins so that, for each item, the sum of the values assigned to
the bins containing the item is at least 1, and the sum of the values assigned to the bins
is minimized (for those familiar, this is just a solution to the configuration LP for 2-Dim
Bin Packing).

Given an instance I of a minimization problem, we let opt(I) denote the value of the
optimal solution of the problem for I . Given an algorithm for the problem, we say that
it has asymptotic approximation guarantee ρ if there exists a constant δ such that the
value of the solution found by the algorithm is at most ρ opt(I) + δ for each instance
I . If δ = 0, then the algorithm has (absolute) approximation guarantee ρ. An APTAS
is a family of polynomial-time algorithms such that, for each ε > 0, there is a member
of the family with asymptotic approximation guarantee 1+ ε. If δ = 0 for every ε, then
this is a PTAS. In case, the running time of the algorithm is polynomial in |I| and 1/ε

we obtain an asymptotic fully polynomial time approximation scheme(AFPTAS). The
definitions for a maximization problem are analogous, replacing “at most ρ opt(I)+ δ”
by “at least ρ opt(I)−δ” and “1+ε” by “1−ε”. In the paper we will let opt2KP(I) denote
the optimal solution value of 2-Dim Geometric Knapsack for the given instance I .

State-of-the-art: For 2-Dim Geometric Knapsack, a basic result of Steinberg [33] eas-
ily leads to an approximation guarantee arbitrarily close to 3 [10]. The best known
approximation algorithm for the problem, due to Jansen and Zhang [27], has an ap-
proximation guarantee of 2+ ε, for any ε > 0. On the other hand, no inapproximability
result is known. PTASs are known only with resource augmentation, i.e. the algorithm
can use a bin with both sides slightly enlarged [17], or even with only one side slightly
enlarged [24] (but the optimum does not have this privilege). Without resource aug-
mentation, a PTAS is also known in case all items are much smaller than the bin [16] or
when all items are squares [25].

As to the other two relevant 2-dimensional packing problems, for 2-Dim Strip Pack-
ing the result in [33] yields a polynomial-time algorithm with (absolute) approxima-
tion guarantee 2, and Kenyon and Rémila [28] showed the existence of an AFPTAS.
This was recently extended by Jansen and van Stee [26] to the case in which the items
can be rotated. Furthermore there is an APTAS by Jansen and Solis-Oba with additive
constant 1 [24].

For 2-Dim Bin Packing, Bansal et al. [3] showed that it does not admit an APTAS
unless P=NP. For the case without rotations, Caprara [8] presented a polynomial-time
algorithm with asymptotic approximation guarantee arbitrarily close to Π∞, where
Π∞ = 1.691 . . . is the so-called harmonic constant in the context of bin-packing [30].
For the case with rotations, an asymptotic approximation guarantee arbitrarily close to
2 follows from the result of [26]. APTASs are known for the 2-Stage and the Guillotine
2-Dim Bin Packing [6,9], in which the items must be packed in a certain structured way,
as well as for the cases in which one or two sides of the bins can be slightly enlarged
[7,3,14]. Building upon the results of [8,28], Bansal et al. derived in [4,5] a random-
ized approximation algorithm for 2-Dim Bin Packing, with and without rotations, with
asymptotic approximation guarantee arbitrarily close to 1 + lnΠ∞ = 1.525 . . .. This



80 N. Bansal et al.

latter algorithm runs in polynomial time if there exists an APTAS for 2-Dim Fractional
Bin Packing, a question that was open before this paper.

Our results: The main result of this paper is a technical lemma on the structure of
packings of items into a bin. Roughly speaking, the lemma concerns a packing into a
bin of a set of items that can be partitioned into three subsets, namely “fat and tall”,
“fat and low”, and “thin and tall”, and for which the number of widths of the “fat and
low” items as well as the number of heights of the “thin and tall” items is bounded by a
constant. The (fairly complex) formal statement is:

Lemma 1 (Structural lemma). Consider a set of items (rectangles) that fits into a bin
(unit square) of the form L∪O∪V , where wi ≥ ε for i ∈ L∪O; hi ≥ ε for i ∈ L∪V ;
and the number of distinct widths of the items in O and heights of the items in V is
at most d, where ε and d are given constants. Let w1, w2 . . . be the distinct widths of
the items in O; h(wj) be the total height of the items having width wj; h1, h2 . . . be
the distinct heights of the items in V ; and b(hj) be the total width of the items having
height hj . Then, there exists a constant f(d, ε) such that, for any δ > 0, the following
set of rectangles fits into a unit square: the items in L plus, for j = 1, 2, . . ., a set of
rectangles of width wj and height δ for a total height at least h(wj) − δf(d, ε), and a
set of rectangles of height hj and width δ for a total width at least b(hj) − δf(d, ε).

By using this lemma, we are able to prove the following theorem, that shows that 2-
Dim Geometric Knapsack has a PTAS if the range of the profit/area ratios, namely
maxi∈I(pi/ai)/ mini∈I(pi/ai), is bounded from above by a constant. Note that, by
possibly scaling the profits, this is equivalent to saying that there exists a constant r
such that pi/ai ∈ [1, r] for i ∈ I .

Theorem 1. For any fixed r ≥ 1, there exists a PTAS for 2-Dim Geometric Knapsack
with and without rotations restricted to instances I for which pi/ai ∈ [1, r] for i ∈ I .
As a corollary, we get a PTAS for the problem of maximizing the area occupied in a
bin, whose existence was open so far.

Corollary 1. There exists a PTAS for the special case of 2-Dim Geometric Knapsack
with and without rotations in which pi = wi · hi for i ∈ I .

Although the straightforward column generation (or dual separation) problem for the
customary LP formulation of 2-Dim Fractional Bin Packing is a general 2-Dim Geomet-
ric Knapsack, to which Theorem 1 does not apply, we show that the column generation
problem for a closely-related variant can be solved near-optimally. By the well known
connection between approximate separation and optimization [18,19,31], this implies:

Theorem 2. There exists an APTAS for 2-Dim Fractional Bin Packing with and without
rotations.

As mentioned above, the results in [4,5] along with Theorem 2 imply:

Corollary 2 ([4,5]). For any fixed ε > 0, there exists a polynomial-time approxima-
tion algorithm for 2-Dim Bin Packing without rotations with approximation guarantee
arbitrarily close to 1 + lnΠ∞ = 1.525 . . ..

For the case without rotations, the bins can be assumed to be unit squares without loss
of generality. For the case with rotations, our results hold also for the case in which



A Structural Lemma in 2-Dimensional Packing, and Its Implications 81

the bins can be arbitrary rectangles, and we address the case of unit squares only for
simplicity of presentation. For the sake of readability, in the coming sections we present
the above results in reverse order, which corresponds to increasing technical difficulty.
For a full discription of the proof of the structural lemma we refer to the full version.

Next-fit decreasing height: Throughout the paper, we will extensively use the next-fit
decreasing height (NFDH) procedure introduced by [13]:

Observation 1 ([13]) Consider a set of items I and its packing into bins by NFDH,
letting m be the number of these bins and, for j = 1, . . . , m, Sj be the subset of items
packed into the j-th bin. The following hold:

(i) if m > 1 and wi ≥ hi for i ∈ I , then the area a(S1) ≥ 1/4;
(ii) if m > 2, then max{a(S1), a(S2)} ≥ 1/4;

(iii) if m > 1, then a(S1) ≥ (1 − maxi∈S1 wi) · (1 − maxi∈S1 hi).

2 An APTAS for 2-Dim Fractional Bin Packing

In this section we prove Theorem 2. It is well known that 2-Dim Bin Packing can be
formulated as the Set Covering problem in which the set I of items has to be covered
by configurations from the collection C ⊆ 2I , where each configuration C ∈ C corre-
sponds to a set of items that can be packed into a bin. The associated 2-Dim Fractional
Bin Packing is the continuous relaxation of this Set Covering problem:

min{
∑

C∈C
xC :

∑

C�i

xC ≥ 1 (i ∈ I), xC ≥ 0 (C ∈ C)}. (1)

The dual of this LP is given by:

max{
∑

i∈I

πi :
∑

i∈C

πi ≤ 1 (C ∈ C), πi ≥ 0 (i ∈ I)}. (2)

The well known connection between approximate separation and optimization for (1)
reads:

Theorem 3 ([18,19,31]). There exists a PTAS for (1) if, for any ε > 0, there exists
a polynomial-time algorithm that, given (π∗

i ) ∈ R
|I|
+ such that maxC∈C

∑
i∈C π∗

i ≥
1 + ε, finds a configuration C∗ ∈ C such that

∑
i∈C∗ π∗

i > 1.

Note that a PTAS for the 2-Dim Geometric Knapsack associated with the items in I in
which the item profits correspond to the dual values π∗

i would suffice in Theorem 3.
Since the existence of such a PTAS remains open, we now introduce a variant of (1)
that, on the one hand, is almost equivalent to the original problem and, on the other,
has a dual separation problem that fulfils the requirements of Theorem 1. The definition
of this variant and its properties is the novelty of this section. The variant is simply
obtained by imposing a bound of 4ai on each dual variable πi:

max{
∑

i∈I

πi :
∑

i∈C

πi ≤ 1 (C ∈ C), 0 ≤ πi ≤ 4ai (i ∈ I)}, (3)

which corresponds to the primal problem with the additional variables yi:
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min{
∑

C∈C
xC +

∑

i∈I

4aiyi :
∑

C�i

xC + yi ≥ 1 (i ∈ I), xC , yi ≥ 0 (C ∈ C, i ∈ I)}. (4)

Lemma 2. Given any solution of (4) of value z∗, one can obtain in polynomial time a
solution of (1) of value at most z∗+1 for the case with rotations and z∗+2 for the case
without rotations.

Proof. Consider a solution (x∗
C , y∗

i ) of (4). Let I∗ := {i ∈ I : y∗
i > 0} be the set of

items associated with a positive y-component in the solution. We pack the items in I∗

into bins by NFDH. If at least one of these bins contains a subset of items S∗ ⊆ I∗ such
that a(S∗) ≥ 1/4, we do the following. We let α := mini∈S∗ y∗

i , and define the new
solution of (4) in which y∗

i is decreased by α for i ∈ S∗ and xS∗ is increased by α. It
is immediate to verify that the new solution is feasible, and not worse than the previous
one since

∑
i∈S∗ 4aiα = 4αa(S∗) ≥ α.

We repeat the procedure above until no bin packed by NFDH with the items in I∗

has area occupied at least 1/4. In this case, by Observation 1(ii), for the case without
rotations we have that NFDH packs the items in I∗ into at most two bins, associated
with, say, subsets S∗

1 and S∗
2 . At this point, we define the new solution of (4) in which

y∗
i is set to 0 for i ∈ S∗

1 ∪ S∗
2 and xS∗

1
, xS∗

2
are increased to value 1. This solution

is feasible also for (1) (by neglecting the y variables) and has a value which is larger
than the previous one by at most 2. On the other hand, for the case with rotations,
by Observation 1(i) NFDH packs the items in I∗ into one bin, and the reasoning is
analogous. Note that the number of iterations of the above procedure is at most |I| as,
in each iteration, at least one y∗

i is decreased from a positive value to 0.

Lemma 3. There exists a PTAS for (4) with and without item rotations.

Proof. By the counterpart of Theorem 3 for (4), for any ε > 0 we need a polynomial-
time algorithm that, given (π∗

i ) ∈ [0, 4ai]|I| such that maxC∈C
∑

i∈C π∗
i ≥ 1+ε, finds a

configuration C∗ ∈ C such that
∑

i∈C∗ π∗
i > 1. In other words, if the 2-Dim Geometric

Knapsack associated with the items in I having profits π∗
i satisfies opt2KP(I) ≥ 1 + ε,

we want a solution of the problem of value > 1. Letting σ := ε/3, we first remove
all the items i ∈ I such that π∗

i ≤ σai, whose overall contribution to opt2KP(I) is at
most σ. For the items left, the range of the profit/area ratios is [σ, 4], i.e., it becomes
[1, 4/σ] after scaling. Then, we apply the PTAS of Theorem 1 with internal precision σ
where now r = 4/σ. The solution found by this PTAS, after scaling profits back to their
original values, has value at least (1 − σ) (opt2KP(I) − σ) ≥ (1 − σ)(1 + ε − σ) > 1.

3 A PTAS for 2-Dim Geometric Knapsack

In this section we prove Theorem 1. Recall that we are assuming pi/ai ∈ [1, r] for i ∈ I ,
where r is a constant. For simplicity, we will assume that r is integer. By Observation
1(ii), items for a total area at least min{a(I), 1}/4 can be packed into the bin. Together
with pi/ai ≥ 1 for i ∈ I this implies opt2KP(I) ≥ min{a(I), 1}/4.

Let ε < 1/2 denote the accuracy required. Letting δ < ε2 be a suitable constant
threshold specified below, we distinguish the case in which a(I) ≥ δ, for which we ap-
ply the algorithm described below, from the case in which a(I) < δ. In this second case,
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if rotations are allowed all the items are packed into the bin by NFDH, by Observation
1(i). On the other hand, for the case without rotations handling instances in which the
overall area a(I) of the items is very small may be tricky. In fact, for the case in which
a(I) < δ, we adopt a completely different method illustrated in the full version.

Description of the main algorithm: We first illustrate the case without rotations, as
it is more complex. Let ε > 0 denote an internal accuracy parameter, assuming for
simplicity that 1/ε is integer. We will show how to find in polynomial time a solution of
value at least (1−αε) opt2KP(I)−ε, where α > 2 is a suitable constant (independent of
ε). Note that this yields a PTAS for the case in which a(I) > δ, implying opt2KP(I) > δ
(recalling δ < ε2 < 1/4), by setting for instance ε := (εδ)/α.

Size classification: Let ε0 := 1 and, for j = 0, . . . , 2/ε, εj+1 be a suitable constant,
depending on ε, r, εj , to be specified later, such that εj+1 < ε2εj . Let Ij ⊆ I denote the
subset of items that have width or height in the interval (εj+1, εj ]. We apply the method
that follows for all values m = 0, . . . , 2/ε, and take the best solution produced. We
neglect the items in Im (i.e., we find a solution in which none of these items is packed)
and partition the rectangles in I \ Im as follows: Let L (large) denote the rectangles
having both height and width > εm; O (horizontal) denote the rectangles having width
> εm and height ≤ εm+1; V (vertical) denote the rectangles having height > εm and
width ≤ εm+1; S (small) denote the rectangles having both height and width ≤ εm+1.

Rounding the items in O and V : In order to apply Lemma 1, we modify the widths
of the items in O (resp., the heights of the items in V ) so that there are only a constant
number of distinct widths (resp., heights). In this phase we allow the items in O to
be sliced horizontally (resp., the items in V to be sliced vertically) so as to be able to
form subsets whose total height (resp., width) is exactly a given value. At the end of
the algorithm, we will pack the items in O and V with their original sizes and without
slicing them.

We partition the items in O into groups Ojk for which the width and the profit/area
ratio is approximately the same, as follows:

Ojk := {i ∈ O : wi ∈ ((1 − ε)j , (1 − ε)j−1], pi/ai ∈ (r(1 − ε)k, r(1 − ε)k−1]}.

Note that we have to consider j = 1, . . . , �(log εm)/(log(1−ε))�, as wi ∈ (εm, 1], and
k = 1, . . . , �(log 1/r)/(log(1 − ε))� + 1, as pi/ai ∈ [1, r]. This implies that the total
number of groups is at most

gm := �(log εm)/(log(1 − ε))� · (�(log 1/r)/(log(1 − ε))� + 1) (5)

For simplicity, we redefine (decrease) the profits of the items in each group Ojk so that
their profit/height ratio is equal to r(1 − ε)j+k , i.e., the profit of any (slice of) item in
Ojk having height h is given by r(1 − ε)j+k · h. Given that items in Ojk can be sliced,
this implies that it is better to pack the items in Ojk with smallest width. Analogously,
we redefine the profits of the items in each group Vjk so that their profit/width ratio is
equal to r(1 − ε)j+k.

For each group Ojk , if h(Ojk) > 1/(1−ε)j , we keep only the items with the smallest
width for a total height equal to 1/(1− ε)j. Accordingly, in the reminder of this section
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we will assume h(Ojk) ≤ 1/(1 − ε)j . Then, we consider the items in increasing order
of widths, and define rgm/ε subgroups Ojk1, Ojk2, . . . of consecutive items, so that the
total height of the items in each subgroup Ojk� is h(Ojk)ε/(rgm). Note that the overall
number of subgroups of items in O is at most rg2

m/ε.
For each subgroup Ojk�, we define the increased width wjk� of all items as the largest

original width of an item in the subgroup. Finally, for each subgroup Ojk� we further
slice the items into 	h(Ojk)ε/(rgmδm)
 identical slices of width wjk� and height δm,
where δm ∈ [(εm+1/ε), εm] is a suitable constant, depending on ε, r, εm, to be specified
later. The possible residual slice of height < δm is neglected.

The rounding procedure for the items in V is analogous, leading to at most rg2
m/ε

distinct increased heights and, for each increased height hjk�, to identical slices of
height hjk� and width δm. After having defined the slices as above, we consider these
slices as single items that cannot be sliced further. Overall, this leaves us with a modified
instance I ′ with the items in L and the items corresponding to slices from O and V . Note
that |I ′| ≤ |I| as δm > εm+1.

Enumeration of the solutions for I ′: We enumerate all 2-Dim Geometric Knapsack
solutions associated with I ′ as these are polynomially many. Specifically, since the
area of each item in I ′ is at least δmεm, only the O(|I|1/(δmεm)) subsets with at most
1/(δmεm) items may be fit into the bin. Moreover, we can test in constant time if each
of these subsets indeed fits into the bin, since we can assume that the bottom left corner
of each item is placed into the bin at some (x, y) position which is an integer linear
combination of the widths and heights of the items in the subset, and therefore we
have O(22/(δmεm)) possible positions for each item. For each solution for I ′, and the
associated packing into the bin, we pack the small items in S and the original items in
O and V by the greedy procedure of the next section. Among the solutions defined in
this way, we keep the best one.

Converting the solution for I ′ into one for I: We use the empty spaces left in the bin
by the items in I ′ to pack the items in S, and the space occupied by the slices of items
in O and V to pack the original items in O and V . All (original) items in O, V and S
are unpacked at the beginning of this phase. In order to pack the items in S, we draw
horizontal and vertical lines through the coordinates of each corner of the items in I ′,
and let the cells be the rectangles that are empty among those defined by these lines.
We consider the cells one by one (in an arbitrary order) and, for each cell C, having
area aC , we consider the unpacked items in S in decreasing order of profit/area ratios
and define a subset R by selecting the first items until condition a(R) ≥ aC − 2εm+1
is satisfied. We pack all the items in R by NFDH into the cell, given that they fit as we
now show. Indeed, by Observation 1(iii), letting wC and hC be the width and height
of the cell, after scaling all small item widths by 1/wC and all item heights by 1/hC ,
we have that the area of any subset of items in S packed by NFDH in the cell, in case
some items are unpacked, is at least (1 − εm+1/wC) · (1 − εm+1/hC) · (wC · hC) ≥
wC · hC − 2εm+1 = aC − 2εm+1.

As to the items in O, for each group Ojk , we consider the slices of width wjk� and
height δm in increasing order of widths (i.e., by increasing 	). For each such slice, we
consider the unpacked (original) items in Ojk in increasing order of widths, and define
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a subset R by selecting the first items until condition h(R) ≥ δm − εm+1 is satisfied.
We pack all items in R in the slice (noting that they clearly fit). Note that the order in
which we consider slices and items guarantees that we never run out of items. We do
the same for the items in V .

The case with rotations and proof of approximation guarantee: For a full descrip-
tion of the case with rotations and the following lemma we refer to the full version.

Lemma 4. By defining ε0 := 1 and, for each m = 0, . . . , 2/ε, δm :=
ε2/(2r2g2

mf(rg2
m/ε, εm)) and εm+1 := ε/(2r(2/(δmεm) + 1)2), the value of the 2-

Dim Geometric Knapsack solution produced by the algorithm above is at least (1 −
13ε) opt2KP(I) − ε, where gm is defined by (5) and f(·, ·) is the constant in the state-
ment of Lemma 1.
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